Long-term leaf production response to elevated atmospheric carbon dioxide and tropospheric ozone
Alan F. Talhelm; Kurt S. Pregitzer; Christian P. Giardina
2011-01-01
Elevated concentrations of atmospheric CO2 and tropospheric O3 will profoundly influence future forest productivity, but our understanding of these influences over the long-term is poor. Leaves are key indicators of productivity and we measured the mass, area, and nitrogen concentration of leaves collected in litter traps...
Chen, H; Rygiewicz, P T; Johnson, M G; Harmon, M E; Tian, H; Tang, J W
2008-01-01
Elevated atmospheric CO(2) concentrations and warming may affect the quality of litters of forest plants and their subsequent decomposition in ecosystems, thereby potentially affecting the global carbon cycle. However, few data on root tissues are available to test this feedback to the atmosphere. In this study, we used fine (diameter < or = 2 mm) and small (2-10 mm) roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings that were grown for 4 yr in a 2 x 2 factorial experiment: ambient or elevated (+ 180 ppm) atmospheric CO(2) concentrations, and ambient or elevated (+3.8 degrees C) atmospheric temperature. Exposure to elevated CO(2) significantly increased water-soluble extractives concentration (%WSE), but had little effect on the concentration of N, cellulose, and lignin of roots. Elevated temperature had no effect on substrate quality except for increasing %WSE and decreasing the %lignin content of fine roots. No significant interaction was found between CO(2) and temperature treatments on substrate quality, except for %WSE of the fine roots. Short-term (< or = 9 mo) root decomposition in the field indicated that the roots from the ambient CO(2) and ambient temperature treatment had the slowest rate. However, over a longer period of incubation (9-36 mo) the influence of initial substrate quality on root decomposition diminished. Instead, the location of the field incubation sites exhibited significant control on decomposition. Roots at the warmer, low elevation site decomposed significantly faster than the ones at the cooler, high elevation site. This study indicates that short-term decomposition and long-term responses are not similar. It also suggests that increasing atmospheric CO(2) had little effect on the carbon storage of Douglas-fir old-growth forests of the Pacific Northwest.
Kurt S. Pregitzer; Andrew J. Burton; John S. King; Donald R. Zak
2008-01-01
The Rhinelander free-air CO2 enrichment (FACE) experiment is designed to understand ecosystem response to elevated atmospheric carbon dioxide (+CO2) and elevated tropospheric ozone (+O3). The objectives of this study were: to understand how soil respiration responded to the experimental treatments; to...
Ivan P. Edwards; Donald R. Zak
2011-01-01
The long-term effects of rising atmospheric carbon dioxide (CO2) and tropospheric O3 concentrations on fungal communities in soil are not well understood. Here, we examine fungal community composition and the activities of cellobiohydrolase and N-acetylglucosaminidase (NAG) after 10 years of exposure to 1...
Elevated atmospheric CO2 concentrations and warming may affect the quality of litters of forest plants and their subsequent decomposition in ecosystems, thereby potentially affecting the global carbon cycle. However, few data on root tissues are available to test this feedback to...
Using high-frequency sampling to detect effects of atmospheric pollutants on stream chemistry
Stephen D. Sebestyen; James B. Shanley; Elizabeth W. Boyer
2009-01-01
We combined information from long-term (weekly over many years) and short-term (high-frequency during rainfall and snowmelt events) stream water sampling efforts to understand how atmospheric deposition affects stream chemistry. Water samples were collected at the Sleepers River Research Watershed, VT, a temperate upland forest site that receives elevated atmospheric...
Elevated atmospheric CO2 and warming may affect litter quality of plants and its subsequent decomposition in forested ecosystems. Little data are available to test this potential feedback on root tissues. In this study, we used the fine (diameter ≤ 2 mm) and small (2-10 mm) roo...
We investigated the effects of elevated soil temperature and atmospheric CO2 efflux (SCE) during the third an fourth years of study. We hypothesized that elevated temperature would stimulate SCE, and elevated CO2 would also stimulate SCE with the stimulation being greater at hig...
USDA-ARS?s Scientific Manuscript database
During the first few years of elevated atmospheric [CO2] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO2], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased Asat...
Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure
USDA-ARS?s Scientific Manuscript database
While previous elevated atmospheric CO2 research has addressed changes in belowground processes, its effects on soil structure remain virtually undescribed. This study examined the long-term effects of elevated CO2 and N fertilization on soil structural changes in a bahiagrass pasture grown on a san...
Among-provence variability of gas exchange and growth in response to long-term elevated CO2 exposure
James L.J. Houpis; Paul D. Anderson; James C. Pushnik; David J. Anschel
1999-01-01
Genetic variability can have profound effects on the interpretation of results from elevated CO2 studies, and future forest management decisions. Information on which varieties are best suited to future atmospheric conditions is needed to develop future forest management practices. A large-scale screening study of the effects of elevated CO
Mast, M. Alisa; Turk, John T.; Clow, David W.; Campbell, Donald D.
2011-01-01
Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 μeq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 μeq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93°C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering.
Mast, M.A.; Turk, J.T.; Clow, D.W.; Campbell, D.H.
2011-01-01
Trends in precipitation chemistry and hydrologic and climatic data were examined as drivers of long-term changes in the chemical composition of high-elevation lakes in three wilderness areas in Colorado during 1985-2008. Sulfate concentrations in precipitation decreased at a rate of -0.15 to -0.55 ??eq/l/year at 10 high-elevation National Atmospheric Deposition Program stations in the state during 1987-2008 reflecting regional reductions in SO2 emissions. In lakes where sulfate is primarily derived from atmospheric inputs, sulfate concentrations also decreased although the rates generally were less, ranging from -0.12 to -0.27 ??eq/l/year. The similarity in timing and sulfur isotopic data support the hypothesis that decreases in atmospheric deposition are driving the response of high-elevation lakes in some areas of the state. By contrast, in lakes where sulfate is derived primarily from watershed weathering sources, sulfate concentrations showed sharp increases during 1985-2008. Analysis of long-term climate records indicates that annual air temperatures have increased between 0.45 and 0.93??C per decade throughout most mountainous areas of Colorado, suggesting climate as a factor. Isotopic data reveal that sulfate in these lakes is largely derived from pyrite, which may indicate climate warming is preferentially affecting the rate of pyrite weathering. ?? 2010 US Government.
Smith, Stanley D; Charlet, Therese N; Zitzer, Stephen F; Abella, Scott R; Vanier, Cheryl H; Huxman, Travis E
2014-03-01
Desert annuals are a critically important component of desert communities and may be particularly responsive to increasing atmospheric (CO2 ) because of their high potential growth rates and flexible phenology. During the 10-year life of the Nevada Desert FACE (free-air CO2 enrichment) Facility, we evaluated the productivity, reproductive allocation, and community structure of annuals in response to long-term elevated (CO2 ) exposure. The dominant forb and grass species exhibited accelerated phenology, increased size, and higher reproduction at elevated (CO2 ) in a wet El Niño year near the beginning of the experiment. However, a multiyear dry cycle resulted in no increases in productivity or reproductive allocation for the remainder of the experiment. At the community level, early indications of increased dominance of the invasive Bromus rubens at elevated (CO2 ) gave way to an absence of Bromus in the community during a drought cycle, with a resurgence late in the experiment in response to higher rainfall and a corresponding high density of Bromus in a final soil seed bank analysis, particularly at elevated (CO2 ). This long-term experiment resulted in two primary conclusions: (i) elevated (CO2 ) does not increase productivity of annuals in most years; and (ii) relative stimulation of invasive grasses will likely depend on future precipitation, with a wetter climate favoring invasive grasses but currently predicted greater aridity favoring native dicots. © 2013 John Wiley & Sons Ltd.
EFFECTS OF ELEVATED CO2 AND OTHER ENVIRONMENTAL STRESSES ON WESTERN CONIFER SEEDLINGS
The future productivity of forests will be affected by increased levels of atmospheric CO2 which will likely be associated with climate change and regional air pollutants such as O3. We have conducted two long-term experiments to determine the effects of elevated CO2 and other s...
Long-term effects of elevated carbon dioxide on sour orange tree specific gravity and anatomy
Michael C. Wiemann; David Kretschmann; Alan Rudie; Bruce A. Kimball; Sherwood B. Idso
2008-01-01
Exposure to elevated levels of atmospheric CO2 for a period of 17 years resulted in small but statistically significant decreases in wood basic specific gravity and number of rays per millimeter. Other anatomical characteristics (percentages of tissues, number of vessels per square millimeter, vessel diameters, and fiber wall thickness) were...
McGrath, Justin M; Karnosky, David F; Ainsworth, Elizabeth A
2010-04-01
Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael
Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO 2) and ozone (O 3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean ( Glycine max) grown under elevated and ambient atmospheric concentrations of both CO 2 and O 3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO 2 altered themore » community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O 3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO 2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.« less
Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; ...
2015-01-05
Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO 2) and ozone (O 3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean ( Glycine max) grown under elevated and ambient atmospheric concentrations of both CO 2 and O 3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO 2 altered themore » community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O 3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO 2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.« less
Eberhardt, Thomas L.; Labbé, Nicole; So, Chi-Leung; ...
2015-07-23
Long-term exposure of sweetgum trees to elevated atmospheric CO 2 concentrations significantly shifted inner bark (phloem) and outer bark (rhytidome) chemical compositions, having implications for both defense and nutrient cycling. Changes in plant tissue chemistry due to increasing atmospheric carbon dioxide (CO 2) concentrations have direct implications for tissue resistance to abiotic and biotic stress while living, and soil nutrient cycling when senesced as litter. Although the effects of elevated CO 2 concentrations on tree foliar chemistry are well documented, the effects on tree bark chemistry are largely unknown. The objective of our study was to determine the effects ofmore » a long-term elevated CO 2 treatment on the contents of individual elements, extractives, ash, lignin, and polysaccharide sugars of sweetgum (Liquidambar styraciflua L.) bark. Trees were harvested from sweetgum plots equipped with the Free-Air CO 2 Enrichment (FACE) apparatus, receiving either elevated or ambient CO 2 treatments over a 12-year period. Whole bark sections were partitioned into inner bark (phloem) and outer bark (rhytidome) samples before analysis. Moreover, principal component analysis, coupled with either Fourier transform infrared spectroscopy or pyrolysis-gas chromatography-mass spectrometry data, was also used to screen for differences. Elevated CO 2 reduced the N content (0.42 vs. 0.35 %) and increased the C:N ratio (109 vs. 136 %) of the outer bark. For the inner bark, elevated CO 2 increased the Mn content (470 vs. 815 mg kg -1), total extractives (13.0 vs. 15.6 %), and residual ash content (8.1 vs. 10.8 %) as compared to ambient CO 2; differences were also observed for some hemicellulosic sugars, but not lignin. Shifts in bark chemistry can affect the success of herbivores and pathogens in living trees, and as litter, bark can affect the biogeochemical cycling of nutrients within the forest floor. Our results demonstrate that increasing atmospheric CO 2 concentrations have the potential to impact the chemistry of temperate, deciduous tree bark such as sweetgum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eberhardt, Thomas L.; Labbé, Nicole; So, Chi-Leung
Long-term exposure of sweetgum trees to elevated atmospheric CO 2 concentrations significantly shifted inner bark (phloem) and outer bark (rhytidome) chemical compositions, having implications for both defense and nutrient cycling. Changes in plant tissue chemistry due to increasing atmospheric carbon dioxide (CO 2) concentrations have direct implications for tissue resistance to abiotic and biotic stress while living, and soil nutrient cycling when senesced as litter. Although the effects of elevated CO 2 concentrations on tree foliar chemistry are well documented, the effects on tree bark chemistry are largely unknown. The objective of our study was to determine the effects ofmore » a long-term elevated CO 2 treatment on the contents of individual elements, extractives, ash, lignin, and polysaccharide sugars of sweetgum (Liquidambar styraciflua L.) bark. Trees were harvested from sweetgum plots equipped with the Free-Air CO 2 Enrichment (FACE) apparatus, receiving either elevated or ambient CO 2 treatments over a 12-year period. Whole bark sections were partitioned into inner bark (phloem) and outer bark (rhytidome) samples before analysis. Moreover, principal component analysis, coupled with either Fourier transform infrared spectroscopy or pyrolysis-gas chromatography-mass spectrometry data, was also used to screen for differences. Elevated CO 2 reduced the N content (0.42 vs. 0.35 %) and increased the C:N ratio (109 vs. 136 %) of the outer bark. For the inner bark, elevated CO 2 increased the Mn content (470 vs. 815 mg kg -1), total extractives (13.0 vs. 15.6 %), and residual ash content (8.1 vs. 10.8 %) as compared to ambient CO 2; differences were also observed for some hemicellulosic sugars, but not lignin. Shifts in bark chemistry can affect the success of herbivores and pathogens in living trees, and as litter, bark can affect the biogeochemical cycling of nutrients within the forest floor. Our results demonstrate that increasing atmospheric CO 2 concentrations have the potential to impact the chemistry of temperate, deciduous tree bark such as sweetgum.« less
Thomas L. Eberhardt; Nicole Labbé; Chi-Leung So; Keonhee Kim; Karen G. Reed; Daniel J. Leduc; Jeffrey M. Warren
2015-01-01
Changes in plant tissue chemistry due to increasing atmospheric carbon dioxide (CO2) concentrations have direct implications for tissue resistance to abiotic and biotic stress while living, and soil nutrient cycling when senesced as litter. Although the effects of elevatedCO2 concentrations on tree foliar chemistry are well...
Impacts of elevated atmospheric CO2 and O3 on Paper Birch (Betula papyrifera): reproductive fitness
Joseph N.T. Darbah; Mark E. Kubiske; Neil Nelson; Elina Oksanen; Elina Vaapavuori; David F. Karnosky
2007-01-01
Atmospheric CO2 and tropospheric O3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO2 and O3 for paper birch...
Colin B. Fuss; Charles T. Driscoll; John L. Campbell
2015-01-01
Atmospheric acid deposition of sulfate and nitrate has declined markedly in the northeastern United States due to emissions controls. We investigated long-term trends in soil water (1984â2011) and stream water (1982â2011) chemistry along an elevation gradient of a forested watershed to evaluate the progress of recovery of drainage waters from acidic deposition at the...
Long-term Ecosystem Experiments, Data Assimilation, and Meta-Analysis
NASA Astrophysics Data System (ADS)
Hungate, B. A.; Van Groenigen, K. J.; Osenberg, C. W.; van Gestel, N.
2015-12-01
Land ecosystems affect climate and the atmosphere, and climate and atmospheric change affects ecosystems. Syntheses of ecosystem experiments investigating their responses to environmental change holds promise for understanding how to model these interactions, and thereby gain insight into Earth's future biosphere, atmosphere, and climate. Long-term experiments examining ecosystem responses are thought to be especially important in this effort, for their potential to reveal cumulative and progressive effects, subtle effects initially undetectable experimentally, but manifest more clearly over time, often with stronger implications for modeled responses than the more dramatic, short-term experimental responses. Here, we present new analyses of long-term experiments manipulating temperature, CO2 concentration, and precipitation, testing the general hypothesis that there are common temporal patterns of responses that reveal general biogeochemical characterizing ecosystem responses to these environmental changes. For example, we show that increased carbon input with elevated CO2 stimulates emissions of nitrous oxide and methane, important greenhouse gases, and that effects show no signs of diminishing over the duration of experiments that have documented responses. At the same time, we show that the temporal resolution for this response is limited, pointing to a potential limitation in the ability of experiments to address clearly long-term hypotheses. We also show that warming tends to have limited cumulative effects on total soil carbon stocks in long-term experiments, and explore the mechanisms underlying this response. Finally, we discuss the implications of these findings for models used to simulate long-term ecosystem responses to these environmental forcings, as well as the implications of these findings for the next generation of terrestrial ecosystem experiments.
Šigut, Ladislav; Holišová, Petra; Klem, Karel; Šprtová, Mirka; Calfapietra, Carlo; Marek, Michal V.; Špunda, Vladimír; Urban, Otmar
2015-01-01
Background and Aims Plants growing under elevated atmospheric CO2 concentrations often have reduced stomatal conductance and subsequently increased leaf temperature. This study therefore tested the hypothesis that under long-term elevated CO2 the temperature optima of photosynthetic processes will shift towards higher temperatures and the thermostability of the photosynthetic apparatus will increase. Methods The hypothesis was tested for saplings of broadleaved Fagus sylvatica and coniferous Picea abies exposed for 4–5 years to either ambient (AC; 385 µmol mol−1) or elevated (EC; 700 µmol mol−1) CO2 concentrations. Temperature response curves of photosynthetic processes were determined by gas-exchange and chlorophyll fluorescence techniques. Key Results Initial assumptions of reduced light-saturated stomatal conductance and increased leaf temperatures for EC plants were confirmed. Temperature response curves revealed stimulation of light-saturated rates of CO2 assimilation (Amax) and a decline in photorespiration (RL) as a result of EC within a wide temperature range. However, these effects were negligible or reduced at low and high temperatures. Higher temperature optima (Topt) of Amax, Rubisco carboxylation rates (VCmax) and RL were found for EC saplings compared with AC saplings. However, the shifts in Topt of Amax were instantaneous, and disappeared when measured at identical CO2 concentrations. Higher values of Topt at elevated CO2 were attributed particularly to reduced photorespiration and prevailing limitation of photosynthesis by ribulose-1,5-bisphosphate (RuBP) regeneration. Temperature response curves of fluorescence parameters suggested a negligible effect of EC on enhancement of thermostability of photosystem II photochemistry. Conclusions Elevated CO2 instantaneously increases temperature optima of Amax due to reduced photorespiration and limitation of photosynthesis by RuBP regeneration. However, this increase disappears when plants are exposed to identical CO2 concentrations. In addition, increased heat-stress tolerance of primary photochemistry in plants grown at elevated CO2 is unlikely. The hypothesis that long-term cultivation at elevated CO2 leads to acclimation of photosynthesis to higher temperatures is therefore rejected. Nevertheless, incorporating acclimation mechanisms into models simulating carbon flux between the atmosphere and vegetation is necessary. PMID:25851132
John E Drake; Anne Gallet-Budynek; Kirsten S Hofmockel; Emily S Bernhardt; Sharon A Billings; Robert B Jackson; Kurt S Johnsen; al. et.
2011-01-01
The earthâs future climate state is highly dependent upon changes in terrestrial C storage in response to rising concentrations of atmospheric CO2. Here we show that consistently enhanced rates of net primary production (NPP) are sustained by a C-cascade through the root-microbe-soil system; increases in the flux of C belowground under elevated CO2 stimulated microbial...
Karbin, Saeed; Guillet, Cécile; Kammann, Claudia I; Niklaus, Pascal A
2015-01-01
Effects of elevated atmospheric CO2 concentrations on plant growth and associated C cycling have intensively been studied, but less is known about effects on the fluxes of radiatively active trace gases other than CO2. Net soil-atmosphere CH4 fluxes are determined by the balance of soil microbially-driven methane (CH4) oxidation and methanogenesis, and both might change under elevated CO2. Here, we studied CH4 dynamics in a permanent grassland exposed to elevated CO2 for 14 years. Soil-atmosphere fluxes of CH4 were measured using large static chambers, over a period of four years. The ecosystem was a net sink for atmospheric CH4 for most of the time except summer to fall when net CH4 emissions occurred. We did not detect any elevated CO2 effects on CH4 fluxes, but emissions were difficult to quantify due to their discontinuous nature, most likely because of ebullition from the saturated zone. Potential methanotrophic activity, determined by incubation of fresh sieved soil under standardized conditions, also did not reveal any effect of the CO2 treatment. Finally, we determined the spatial micro-distribution of methanotrophic activity at less than 5× atmospheric (10 ppm) and elevated (10000 ppm) CH4 concentrations, using a novel auto-radiographic technique. These analyses indicated that domains of net CH4 assimilation were distributed throughout the analyzed top 15 cm of soils, with no dependence on CH4 concentration or CO2 treatment. Our investigations suggest that elevated CO2 exerts no or only minor effects on CH4 fluxes in the type of ecosystem we studied, at least as long as soil moisture differences are small or absent as was the case here. The autoradiographic analyses further indicate that the spatial niche of CH4 oxidation does not shift in response to CO2 enrichment or CH4 concentration, and that the same type of methanotrophs may oxidize CH4 from atmospheric and soil-internal sources.
Mast, M. Alisa
2011-01-01
The U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, conducted a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. Understanding how and why lake chemistry is changing in mountain areas is essential for effectively managing and protecting high-elevation aquatic ecosystems. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) were evaluated over a similar period of record. A main objective of the study was to determine if changes in atmospheric deposition of contaminants in the Rocky Mountain region have resulted in measurable changes in the chemistry of high-elevation lakes. A second objective was to investigate linkages between lake chemistry and air temperature and precipitation to improve understanding of the sensitivity of mountain lakes to climate variability.
NASA Astrophysics Data System (ADS)
Sickman, J. O.; Heard, A. M.; Rose, N. L.; Bennett, D. M.; Lucero, D. M.; Melack, J. M.; Curtis, J. H.
2014-12-01
High mountain lakes of the Sierra Nevada are excellent indicators of anthropogenic global change due to their limited capacity to buffer acid deposition, their sensitivity to changes in snowpack dynamics and their oligotrophic nutrient status. In this presentation, we examine long-term records of hydrochemistry and biological monitoring at the Emerald Lake watershed to assess whether high elevation lakes of the Sierra Nevada are changing in response to climate change or changes in atmospheric deposition of nutrients and acid. To provide a broader context for these changes, we augment these long-term records with results from paleolimnological analysis that examines changes in nutrient status and acid buffering capacity of Sierra Nevada lakes over the past two millennia. Our research suggests that, although atmospheric deposition is the dominant driver of twentieth century ANC trends, aquatic communities in the Sierra Nevada are responding to combined effects from acidification, climate change, and eutrophication. Early in the twentieth century the primary stressor effecting Sierra Nevada lakes was acid deposition driven by SO2 emissions. As the century and industrialization progressed, NOx levels increased adding a eutrophication stressor while simultaneously contributing to acidification. Effects were further complicated by a warming climate in the late twentieth century, as warmer temperatures may have contributed to the recovery of ANC in lakes via increased weathering rates, while simultaneously enhancing eutrophication effects.
Long term observation of low altitude atmosphere by high precision polarization lidar
NASA Astrophysics Data System (ADS)
Shiina, Tatsuo; Noguchi, Kazuo; Fukuchi, Tetsuo
2011-11-01
Prediction of weather disaster such as heavy rain and light strike is an earnest desire. Successive monitoring of the low altitude atmosphere is important to predict it. The weather disaster often befalls with a steep change in a local area. It is hard for usual meteorological equipments to capture and alert it speedily. We have been developed the near range lidar to capture and analyze the low altitude atmosphere. In this study, high precision polarization lidar was developed to observe the low altitude atmosphere. This lidar has the high extinction ratio of polarization of >30dB to detect the small polarization change of the atmosphere. The change of the polarization in the atmosphere leads to the detection of the depolarization effect and the Faraday effect, which are caused by ice-crystals and lightning discharge, respectively. As the lidar optics is "inline" type, which means common use of optics for transmitter and receiver, it can observe the near range echo with the narrow field of view. The long-term observation was accomplished at low elevation angle. It aims to monitor the low altitude atmosphere under the cloud base and capture its spatial distribution and convection process. In the viewpoint of polarization, the ice-crystals' flow and concentration change of the aerosols are monitored. The observation has been continued in the cloudy and rainy days. The thunder cloud is also a target. In this report, the system specification is explained to clear the potential and the aims. The several observation data including the long-term observation will be shown with the consideration of polarization analysis.
Drigo, Barbara; Kowalchuk, George A; Knapp, Brigitte A; Pijl, Agata S; Boschker, Henricus T S; van Veen, Johannes A
2013-02-01
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short-term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil-borne microbial community. Long-term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by (13) C pulse-chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA-stable isotope probing (RNA-SIP), in combination with real-time PCR and PCR-DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the (13) C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes. © 2012 Blackwell Publishing Ltd.
Faster turnover of new soil carbon inputs under increased atmospheric CO2.
van Groenigen, Kees Jan; Osenberg, Craig W; Terrer, César; Carrillo, Yolima; Dijkstra, Feike A; Heath, James; Nie, Ming; Pendall, Elise; Phillips, Richard P; Hungate, Bruce A
2017-10-01
Rising levels of atmospheric CO 2 frequently stimulate plant inputs to soil, but the consequences of these changes for soil carbon (C) dynamics are poorly understood. Plant-derived inputs can accumulate in the soil and become part of the soil C pool ("new soil C"), or accelerate losses of pre-existing ("old") soil C. The dynamics of the new and old pools will likely differ and alter the long-term fate of soil C, but these separate pools, which can be distinguished through isotopic labeling, have not been considered in past syntheses. Using meta-analysis, we found that while elevated CO 2 (ranging from 550 to 800 parts per million by volume) stimulates the accumulation of new soil C in the short term (<1 year), these effects do not persist in the longer term (1-4 years). Elevated CO 2 does not affect the decomposition or the size of the old soil C pool over either temporal scale. Our results are inconsistent with predictions of conventional soil C models and suggest that elevated CO 2 might increase turnover rates of new soil C. Because increased turnover rates of new soil C limit the potential for additional soil C sequestration, the capacity of land ecosystems to slow the rise in atmospheric CO 2 concentrations may be smaller than previously assumed. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Vieno, M.; Heal, M. R.; Hallsworth, S.; Famulari, D.; Doherty, R. M.; Dore, A. J.; Tang, Y. S.; Braban, C. F.; Leaver, D.; Sutton, M. A.; Reis, S.
2013-12-01
Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001-2010 using the EMEP4UK regional atmospheric chemistry transport model. In early 2003 an episode of substantially elevated surface concentrations of ammonium nitrate was measured across the UK by the AGANET network. The EMEP4UK model was able accurately to represent both the long-term decadal surface concentrations and the episode in 2003. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological, a persistent high pressure system, but whose varying location impacted the relative importance of transboundary vs. domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and south-east, may be close to or actually exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on PM concentrations and the need for international agreements to address the transboundary component of air pollution.
Bing Xu; Yude Pan; Alain F. Plante; Kevin McCullough; Richard Birdsey
2017-01-01
Process-based models are a powerful approach to test our understanding of biogeochemical processes, to extrapolate ground survey data from limited plots to the landscape scale, and to simulate the effects of climate change, nitrogen deposition, elevated atmospheric CO2, increasing natural disturbances, and land-use change on ecological processes...
Aranjuelo, Iker; Ebbets, Allison L; Evans, R Dave; Tissue, David T; Nogués, Salvador; van Gestel, Natasja; Payton, Paxton; Ebbert, Volker; Adams, Williams W; Nowak, Robert S; Smith, Stanley D
2011-10-01
During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization, and partitioning influence the responsiveness of these desert shrubs during long-term exposure to elevated [CO(2)].
Mast, M. Alisa; Clow, David W.; Baron, Jill S.; Wetherbee, Gregory A.
2014-01-01
Long-term patterns of stream nitrate export and atmospheric N deposition were evaluated over three decades in Loch Vale, a high-elevation watershed in the Colorado Front Range. Stream nitrate concentrations increased in the early 1990s, peaked in the mid-2000s, and have since declined by over 40%, coincident with trends in nitrogen oxide emissions over the past decade. Similarities in the timing and magnitude of N deposition provide evidence that stream chemistry is responding to changes in atmospheric deposition. The response to deposition was complicated by a drought in the early 2000s that enhanced N export for several years. Other possible explanations, including forest disturbance, snow depth, or permafrost melting, could not explain patterns in N export. Our results show that stream chemistry responds rapidly to changes in N deposition in high-elevation watersheds, similar to the response observed to changes in sulfur deposition.
Mapping Atmospheric Moisture Climatologies across the Conterminous United States
Daly, Christopher; Smith, Joseph I.; Olson, Keith V.
2015-01-01
Spatial climate datasets of 1981–2010 long-term mean monthly average dew point and minimum and maximum vapor pressure deficit were developed for the conterminous United States at 30-arcsec (~800m) resolution. Interpolation of long-term averages (twelve monthly values per variable) was performed using PRISM (Parameter-elevation Relationships on Independent Slopes Model). Surface stations available for analysis numbered only 4,000 for dew point and 3,500 for vapor pressure deficit, compared to 16,000 for previously-developed grids of 1981–2010 long-term mean monthly minimum and maximum temperature. Therefore, a form of Climatologically-Aided Interpolation (CAI) was used, in which the 1981–2010 temperature grids were used as predictor grids. For each grid cell, PRISM calculated a local regression function between the interpolated climate variable and the predictor grid. Nearby stations entering the regression were assigned weights based on the physiographic similarity of the station to the grid cell that included the effects of distance, elevation, coastal proximity, vertical atmospheric layer, and topographic position. Interpolation uncertainties were estimated using cross-validation exercises. Given that CAI interpolation was used, a new method was developed to allow uncertainties in predictor grids to be accounted for in estimating the total interpolation error. Local land use/land cover properties had noticeable effects on the spatial patterns of atmospheric moisture content and deficit. An example of this was relatively high dew points and low vapor pressure deficits at stations located in or near irrigated fields. The new grids, in combination with existing temperature grids, enable the user to derive a full suite of atmospheric moisture variables, such as minimum and maximum relative humidity, vapor pressure, and dew point depression, with accompanying assumptions. All of these grids are available online at http://prism.oregonstate.edu, and include 800-m and 4-km resolution data, images, metadata, pedigree information, and station inventory files. PMID:26485026
Soil nitrogen cycling under elevated CO2: a synthesis of forest FACE experiments
Donald R. Zak; William E. Holmes; Adrien C. Finzi; Richard J. Norby; William H. Schlesinger
2003-01-01
The extent to which greater net primary productivity (NPP) will be sustained as the atmospheric CO2 concentration increases will depend, in part, on the long-term supply of N for plant growth. Over a two-year period, we used common field and laboratory methods to quantify microbial N, gross N mineralization, microbial N immobilization, and...
Pooja Sharma; Anu Sober; Jaak Sober; Gopi P. Podila; Mark E. Kubiske; William J. Mattson; Judson G. Isebrands; David F. Karnosky
2003-01-01
The greenhouse gases CO2 and 03 are increasing in the earth's atmosphere. Little is known about long-term impacts of these two co-occurring gases on forest trees. We have been examining the impacts of these two gases on the physiology and growth of trembling aspen (Populus tremuloides) and sugar...
Warming reduces carbon losses from grassland exposed to elevated atmospheric carbon dioxide.
Pendall, Elise; Heisler-White, Jana L; Williams, David G; Dijkstra, Feike A; Carrillo, Yolima; Morgan, Jack A; Lecain, Daniel R
2013-01-01
The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate - carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate - carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil.
Lamba, Shubhangi; Hall, Marianne; Räntfors, Mats; Chaudhary, Nitin; Linder, Sune; Way, Danielle; Uddling, Johan; Wallin, Göran
2018-02-01
Physiological processes of terrestrial plants regulate the land-atmosphere exchange of carbon, water, and energy, yet few studies have explored the acclimation responses of mature boreal conifer trees to climate change. Here we explored the acclimation responses of photosynthesis, respiration, and stomatal conductance to elevated temperature and/or CO 2 concentration ([CO 2 ]) in a 3-year field experiment with mature boreal Norway spruce. We found that elevated [CO 2 ] decreased photosynthetic carboxylation capacity (-23% at 25 °C) and increased shoot respiration (+64% at 15 °C), while warming had no significant effects. Shoot respiration, but not photosynthetic capacity, exhibited seasonal acclimation. Stomatal conductance at light saturation and a vapour pressure deficit of 1 kPa was unaffected by elevated [CO 2 ] but significantly decreased (-27%) by warming, and the ratio of intercellular to ambient [CO 2 ] was enhanced (+17%) by elevated [CO 2 ] and decreased (-12%) by warming. Many of these responses differ from those typically observed in temperate tree species. Our results show that long-term physiological acclimation dampens the initial stimulation of plant net carbon assimilation to elevated [CO 2 ], and of plant water use to warming. Models that do not account for these responses may thus overestimate the impacts of climate change on future boreal vegetation-atmosphere interactions. © 2017 John Wiley & Sons Ltd.
Warming Reduces Carbon Losses from Grassland Exposed to Elevated Atmospheric Carbon Dioxide
Pendall, Elise; Heisler-White, Jana L.; Williams, David G.; Dijkstra, Feike A.; Carrillo, Yolima; Morgan, Jack A.; LeCain, Daniel R.
2013-01-01
The flux of carbon dioxide (CO2) between terrestrial ecosystems and the atmosphere may ameliorate or exacerbate climate change, depending on the relative responses of ecosystem photosynthesis and respiration to warming temperatures, rising atmospheric CO2, and altered precipitation. The combined effect of these global change factors is especially uncertain because of their potential for interactions and indirectly mediated conditions such as soil moisture. Here, we present observations of CO2 fluxes from a multi-factor experiment in semi-arid grassland that suggests a potentially strong climate – carbon cycle feedback under combined elevated [CO2] and warming. Elevated [CO2] alone, and in combination with warming, enhanced ecosystem respiration to a greater extent than photosynthesis, resulting in net C loss over four years. The effect of warming was to reduce respiration especially during years of below-average precipitation, by partially offsetting the effect of elevated [CO2] on soil moisture and C cycling. Carbon losses were explained partly by stimulated decomposition of soil organic matter with elevated [CO2]. The climate – carbon cycle feedback observed in this semiarid grassland was mediated by soil water content, which was reduced by warming and increased by elevated [CO2]. Ecosystem models should incorporate direct and indirect effects of climate change on soil water content in order to accurately predict terrestrial feedbacks and long-term storage of C in soil. PMID:23977180
NASA Astrophysics Data System (ADS)
Jones, Joshua A.; Cherry, Julia A.; McKee, Karen L.
2016-02-01
Organic matter accumulation, the net effect of plant production and decomposition, contributes to vertical soil accretion in coastal wetlands, thereby playing a key role in whether they keep pace with sea-level rise. Any factor that affects decomposition may affect wetland accretion, including atmospheric CO2 concentrations. Higher CO2 can influence decomposition rates by altering plant tissue chemistry or by causing shifts in plant species composition or biomass partitioning. A combined greenhouse-field experiment examined how elevated CO2 affected plant tissue chemistry and subsequent decomposition of above- and belowground tissues of two common brackish marsh species, Schoenoplectus americanus (C3) and Spartina patens (C4). Both species were grown in monoculture and in mixture under ambient (350-385 μL L-1) or elevated (ambient + 300 μL L-1) atmospheric CO2 conditions, with all other growth conditions held constant, for one growing season. Above- and belowground tissues produced under these treatments were decomposed under ambient field conditions in a brackish marsh in the Mississippi River Delta, USA. Elevated CO2 significantly reduced nitrogen content of S. americanus, but not sufficiently to affect subsequent decomposition. Instead, long-term decomposition (percent mass remaining after 280 d) was controlled by species composition and tissue type. Shoots of S. patens had more mass remaining (41 ± 2%) than those of S. americanus (12 ± 2%). Belowground material decomposed more slowly than that placed aboveground (62 ± 1% vs. 23 ± 3% mass remaining), but rates belowground did not differ between species. Increases in atmospheric CO2 concentration will likely have a greater effect on overall decomposition in this brackish marsh community through shifts in species dominance or biomass allocation than through effects on tissue chemistry. Consequent changes in organic matter accumulation may alter marsh capacity to accommodate sea-level rise through vertical accretion.
Jones, Joshua A; Cherry, Julia A; Mckee, Karen L.
2016-01-01
Organic matter accumulation, the net effect of plant production and decomposition, contributes to vertical soil accretion in coastal wetlands, thereby playing a key role in whether they keep pace with sea-level rise. Any factor that affects decomposition may affect wetland accretion, including atmospheric CO2 concentrations. Higher CO2 can influence decomposition rates by altering plant tissue chemistry or by causing shifts in plant species composition or biomass partitioning. A combined greenhouse-field experiment examined how elevated CO2 affected plant tissue chemistry and subsequent decomposition of above- and belowground tissues of two common brackish marsh species, Schoenoplectus americanus (C3) and Spartina patens (C4). Both species were grown in monoculture and in mixture under ambient (350-385 μL L-1) or elevated (ambient + 300 μL L-1) atmospheric CO2 conditions, with all other growth conditions held constant, for one growing season. Above- and belowground tissues produced under these treatments were decomposed under ambient field conditions in a brackish marsh in the Mississippi River Delta, USA. Elevated CO2 significantly reduced nitrogen content of S. americanus, but not sufficiently to affect subsequent decomposition. Instead, long-term decomposition (percent mass remaining after 280 d) was controlled by species composition and tissue type. Shoots of S. patens had more mass remaining (41 ± 2%) than those of S. americanus (12 ± 2 %). Belowground material decomposed more slowly than that placed aboveground (62 ± 1% vs. 23 ± 3% mass remaining), but rates belowground did not differ between species. Increases in atmospheric CO2concentration will likely have a greater effect on overall decomposition in this brackish marsh community through shifts in species dominance or biomass allocation than through effects on tissue chemistry. Consequent changes in organic matter accumulation may alter marsh capacity to accommodate sea-level rise through vertical accretion.
NASA Astrophysics Data System (ADS)
Vieno, M.; Heal, M. R.; Hallsworth, S.; Famulari, D.; Doherty, R. M.; Dore, A. J.; Tang, Y. S.; Braban, C. F.; Leaver, D.; Sutton, M. A.; Reis, S.
2014-08-01
Surface concentrations of secondary inorganic particle components over the UK have been analysed for 2001-2010 using the EMEP4UK regional atmospheric chemistry transport model and evaluated against measurements. Gas/particle partitioning in the EMEP4UK model simulations used a bulk approach, which may lead to uncertainties in simulated secondary inorganic aerosol. However, model simulations were able to accurately represent both the long-term decadal surface concentrations of particle sulfate and nitrate and an episode in early 2003 of substantially elevated nitrate measured across the UK by the AGANet network. The latter was identified as consisting of three separate episodes, each of less than 1 month duration, in February, March and April. The primary cause of the elevated nitrate levels across the UK was meteorological: a persistent high-pressure system, whose varying location impacted the relative importance of transboundary versus domestic emissions. Whilst long-range transport dominated the elevated nitrate in February, in contrast it was domestic emissions that mainly contributed to the March episode, and for the April episode both domestic emissions and long-range transport contributed. A prolonged episode such as the one in early 2003 can have substantial impact on annual average concentrations. The episode led to annual concentration differences at the regional scale of similar magnitude to those driven by long-term changes in precursor emissions over the full decade investigated here. The results demonstrate that a substantial part of the UK, particularly the south and southeast, may be close to or exceeding annual mean limit values because of import of inorganic aerosol components from continental Europe under specific conditions. The results reinforce the importance of employing multiple year simulations in the assessment of emissions reduction scenarios on particulate matter concentrations and the need for international agreements to address the transboundary component of air pollution.
NASA Astrophysics Data System (ADS)
de la Fuente, Alberto; Meruane, Carolina
2017-09-01
Altiplanic wetlands are unique ecosystems located in the elevated plateaus of Chile, Argentina, Peru, and Bolivia. These ecosystems are under threat due to changes in land use, groundwater extractions, and climate change that will modify the water balance through changes in precipitation and evaporation rates. Long-term prediction of the fate of aquatic ecosystems imposes computational constraints that make finding a solution impossible in some cases. In this article, we present a spectral model for long-term simulations of the thermodynamics of shallow wetlands in the limit case when the water depth tends to zero. This spectral model solves for water and sediment temperature, as well as heat, momentum, and mass exchanged with the atmosphere. The parameters of the model (water depth, thermal properties of the sediments, and surface albedo) and the atmospheric downscaling were calibrated using the MODIS product of the land surface temperature. Moreover, the performance of the daily evaporation rates predicted by the model was evaluated against daily pan evaporation data measured between 1964 and 2012. The spectral model was able to correctly represent both seasonal fluctuation and climatic trends observed in daily evaporation rates. It is concluded that the spectral model presented in this article is a suitable tool for assessing the global climate change effects on shallow wetlands whose thermodynamics is forced by heat exchanges with the atmosphere and modulated by the heat-reservoir role of the sediments.
Gräns, Albin; Jutfelt, Fredrik; Sandblom, Erik; Jönsson, Elisabeth; Wiklander, Kerstin; Seth, Henrik; Olsson, Catharina; Dupont, Sam; Ortega-Martinez, Olga; Einarsdottir, Ingibjörg; Björnsson, Björn Thrandur; Sundell, Kristina; Axelsson, Michael
2014-03-01
As a consequence of increasing atmospheric CO2, the world's oceans are becoming warmer and more acidic. Whilst the ecological effects of these changes are poorly understood, it has been suggested that fish performance including growth will be reduced mainly as a result of limitations in oxygen transport capacity. Contrary to the predictions given by the oxygen- and capacity-limited thermal tolerance hypothesis, we show that aerobic scope and cardiac performance of Atlantic halibut (Hippoglossus hippoglossus) increase following 14-16 weeks exposure to elevated temperatures and even more so in combination with CO2-acidified seawater. However, the increase does not translate into improved growth, demonstrating that oxygen uptake is not the limiting factor for growth performance at high temperatures. Instead, long-term exposure to CO2-acidified seawater reduces growth at temperatures that are frequently encountered by this species in nature, indicating that elevated atmospheric CO2 levels may have serious implications on fish populations in the future.
NASA Astrophysics Data System (ADS)
Ehleringer, J. R.; Hopkins, F. M.; Xu, X.; Barnette, J.; Randerson, J. T.; Bush, S.; Lai, C.
2013-12-01
Carbon-14 analyses of mature deciduous tree leaves (aspen and cottonwood) were used to measure the increases in atmospheric carbon dioxide within the expansive urbanizing Salt Lake Valley, Utah, USA associated with fossil fuel combustion. Our objectives were twofold: to understand the fine scale spatial structure of elevated carbon dioxide levels in this urban environment and to relate these observations to actual carbon dioxide observations collected using both long-term monitoring sites and a mobile measurement vehicle. Paired observations of aspen and cottonwood at sites across the valley showed that there was no significant difference in carbon-14 values, allowing spatial pattern evaluations at sites where one but not the other species was present. Statistically significant patterns were observed over a two-year measurement period, with elevated carbon dioxide levels associated with carbon-14 depleted leaves, particularly in regions with higher vehicle travel. Carbon-14 content of leaves was significantly lower on 4-lane roads than on nearby 2-lane roads in both residential and commercial zones, consistent with atmospheric carbon dioxide observations. The analysis of spatial patterns in the carbon-14 in leaves was then used to evaluate how well these observations compared to instantaneous and long-term observations of carbon dioxide using traditional infrared gas analyzer approaches.
Quality assurance report - Loch Vale Watershed, 1999-2002
Botte, Jorin A.; Baron, Jill S.
2004-01-01
The National Park Service initiated the Loch Vale Watershed (LVWS) project in 1980 with funding from the Aquatic Effects Research Program of the National Acid Precipitation Assessment Program. Long-term ecological research and monitoring address watershed-scale ecosystem processes, particularly as they respond to atmospheric deposition and climate variability. Monitoring of meteorological, hydrologic, precipitation chemistry, and surface water quality parameters enable us to use long-term trends to distinguish natural from human-caused disturbances. Research into snow distribution, hydrologic flowpaths, vegetation responses to N deposition, isotopic transformations of N by forest and soil processes, trace metals, and aquatic ecological responses to disturbance enable us to understand processes that influence high elevation ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azcon-Bieto, J.; Gonzalez-Meler, M.A.; Doherty, W.
1994-11-01
C{sub 3} and C{sub 4} plants were grown in open-top chambers in the field at two CO{sub 2} concentrations, normal ambient (ambient) and normal ambient + 340 {mu}L L{sup {minus}1} (elevated). Dark oxygen uptake was measured in leaves and stems using a liquid-phase Clark-type oxygen electrode. High CO{sub 2} treatment decreased dark oxygen uptake in stems of Scirpus olneyi (C{sub 3}) and leaves of Lindera benzoin (C{sub 3}) expressed on either a dry weight or area basis. Respiration of Spartina patens (C{sub 4}) leaves was unaffected by CO{sub 2} treatment. Leaf dry weight per unit area was unchanged by CO{submore » 2}, but respiration per unit of carbon or per unit of nitrogen was decreased in the C{sub 3} species grown at high CO{sub 2}. The component of respiration in stems of S. olneyi and leaves of L. benzoin primarily affected by long-term exposure to the elevated CO{sub 2} treatment was the activity of the cytochrome pathway. Elevated CO{sub 2} had no effect on activity and capacity of the alternative pathway in S. olneyi. The cytochrome c oxidase activity, assayed in a cell-free extract, was strongly decreased by growth at high CO{sub 2} in stems of S. olneyi but it was unaffected in S. patens leaves. The activity of cytochrome c oxidase and complex III extracted from mature leaves of L. benzoin was also decreased after one growing season of plant exposure to elevated CO{sub 2} concentration. These results show that in some C{sub 3} species respiration will be reduced when plants are grown in elevated atmospheric CO{sub 2}. The possible physiological causes and implications of these effects are discussed. 34 refs., 1 fig., 6 tabs.« less
NASA Astrophysics Data System (ADS)
Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.
2013-07-01
A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).
Benner, Ina; Diner, Rachel E; Lefebvre, Stephane C; Li, Dian; Komada, Tomoko; Carpenter, Edward J; Stillman, Jonathon H
2013-01-01
Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming.
Do fossil plants signal palaeoatmospheric carbon dioxide concentration in the geological past?
McElwain, J. C.
1998-01-01
Fossil, subfossil, and herbarium leaves have been shown to provide a morphological signal of the atmospheric carbon dioxide environment in which they developed by means of their stomatal density and index. An inverse relationship between stomatal density/index and atmospheric carbon dioxide concentration has been documented for all the studies to date concerning fossil and subfossil material. Furthermore, this relationship has been demonstrated experimentally by growing plants under elevated and reducedcarbon dioxide concentrations. To date, the mechanism that controls the stomatal density response to atmospheric carbon dioxide concentration remains unknown. However, stomatal parameters of fossil plants have been successfully used as a proxy indicator of palaeo-carbon dioxide levels. This paper presents new estimates of palaeo-atmospheric carbon dioxide concentrations for the Middle Eocene (Lutetian), based on the stomatal ratios of fossil Lauraceae species from Bournemouth in England. Estimates of atmospheric carbon dioxide concentrations derived from stomatal data from plants of the Early Devonian, Late Carboniferous, Early Permian and Middle Jurassic ages are reviewed in the light of new data. Semi-quantitative palaeo-carbon dioxide estimates based on the stomatal ratio (a ratio of the stomatal index of a fossil plant to that of a selected nearest living equivalent) have in the past relied on the use of a Carboniferous standard. The application of a new standard based on the present-day carbon dioxide level is reported here for comparison. The resultant ranges of palaeo-carbon dioxide estimates made from standardized fossil stomatal ratio data are in good agreement with both carbon isotopic data from terrestrial and marine sources and long-term carbon cycle modelling estimates for all the time periods studied. These data indicate elevated atmospheric carbon dioxide concentrations during the Early Devonian, Middle Jurassic and Middle Eocene, and reduced concentrations during the Late Carboniferous and Early Permian. Such data are important in demonstrating the long-term responses of plants to changing carbon dioxide concentrations and in contributing to the database needed for general circulation model climatic analogues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norby, R.J.; Pastor, J.; Melillo, J.M.
1985-01-01
The responses of forest trees to atmospheric CO/sub 2/ enrichment will depend in part on carbon-nutrient linkages. Insights into the possible long-term ecological consequences of CO/sub 2/ enrichment can be gained from studying physiological responses in short-term experiments. One-year-old white oak (Quercus alba L.) seedlings were grown in an unfertilized forest soil for 40 weeks in controlled-environment chambers with ambient (362 ..mu..L.L/sup -1/) or elevated (690 ..mu..L.L/sup -1/) CO/sub 2/. Seedling dry weight was 85% greater in the elevated CO/sub 2/ environment, despite a severe nitrogen deficiency in all seedlings. The increase in growth occurred without a concomitant increase inmore » nitrogen uptake, indicating an increase in nitrogen-use efficiency in elevated CO/sub 2/. The weight of new buds was greater in elevated CO/sub 2/, suggesting that shoot growth in the next year would have been enhanced relative to that of seedlings in ambient CO/sub 2/. However, there was a lower amount of translocatable nitrogen in perennial woody tissue in elevated CO/sub 2/; thus, further increases in nitrogen-use efficiency may not be possible. The leaves that abscised from seedlings in elevated CO/sub 2/ contained higher amounts of soluble sugars and tannin and a lower amount of lignin compared with amounts in abscised leaves in ambient CO/sub 2/. Based on lignin to N and lignin to P ratios, the rates of litter decomposition might not be greatly affected by CO/sub 2/ enrichment, but the total amount of nitrogen returned to soil would be lower in elevated CO/sub 2/.« less
Relationship between sea level and climate forcing by CO2 on geological timescales
Foster, Gavin L.; Rohling, Eelco J.
2013-01-01
On 103- to 106-year timescales, global sea level is determined largely by the volume of ice stored on land, which in turn largely reflects the thermal state of the Earth system. Here we use observations from five well-studied time slices covering the last 40 My to identify a well-defined and clearly sigmoidal relationship between atmospheric CO2 and sea level on geological (near-equilibrium) timescales. This strongly supports the dominant role of CO2 in determining Earth’s climate on these timescales and suggests that other variables that influence long-term global climate (e.g., topography, ocean circulation) play a secondary role. The relationship between CO2 and sea level we describe portrays the “likely” (68% probability) long-term sea-level response after Earth system adjustment over many centuries. Because it appears largely independent of other boundary condition changes, it also may provide useful long-range predictions of future sea level. For instance, with CO2 stabilized at 400–450 ppm (as required for the frequently quoted “acceptable warming” of 2 °C), or even at AD 2011 levels of 392 ppm, we infer a likely (68% confidence) long-term sea-level rise of more than 9 m above the present. Therefore, our results imply that to avoid significantly elevated sea level in the long term, atmospheric CO2 should be reduced to levels similar to those of preindustrial times. PMID:23292932
Regenerating temperate forest mesocosms in elevated CO2: belowground growth and nitrogen cycling.
Berntson, G M; Bazzaz, F A
1997-12-01
The response of temperate forest ecosystems to elevated atmospheric CO 2 concentrations is important because these ecosystems represent a significant component of the global carbon cycle. Two important but not well understood processes which elevated CO 2 may substantially alter in these systems are regeneration and nitrogen cycling. If elevated CO 2 leads to changes in species composition in regenerating forest communities then the structure and function of these ecosystems may be affected. In most temperate forests, nitrogen appears to be a limiting nutrient. If elevated CO 2 leads to reductions in nitrogen cycling through increased sequestration of nitrogen in plant biomass or reductions in mineralization rates, long-term forest productivity may be constrained. To study these processes, we established mesocosms of regenerating forest communities in controlled environments maintained at either ambient (375 ppm) or elevated (700 ppm) CO 2 concentrations. Mesocosms were constructed from intact monoliths of organic forest soil. We maintained these mesocosms for 2 years without any external inputs of nitrogen and allowed the plants naturally present as seeds and rhizomes to regenerate. We used 15 N pool dilution techniques to quantify nitrogen fluxes within the mesocosms at the end of the 2 years. Elevated atmospheric CO 2 concentration significantly affected a number of plant and soil processes in the experimental regenerating forest mesocosms. These changes included increases in total plant biomass production, plant C/N ratios, ectomycorrhizal colonization of tree fine roots, changes in tree fine root architecture, and decreases in plant NH 4 + uptake rates, gross NH 4 + mineralization rates, and gross NH 4 + consumption rates. In addition, there was a shift in the relative biomass contribution of the two dominant regenerating tree species; the proportion of total biomass contributed by white birch (Betula papyrifera) decreased and the proportion of total biomass contributed by yellow birch (B. alleghaniensis) increased. However, elevated CO 2 had no significant effect on the total amount of nitrogen in plant and soil microbial biomass. In this study we observed a suite of effects due to elevated CO 2 , some of which could lead to increases in potential long term growth responses to elevated CO 2 , other to decreases. The reduced plant NH 4 + uptake rates we observed are consistent with reduced NH 4 + availability due to reduced gross mineralization rates. Reduced NH 4 + mineralization rates are consistent with the increases in C/N ratios we observed for leaf and fine root material. Together, these data suggest the positive increases in plant root architectural parameters and mycorrhizal colonization may not be as important as the potential negative effects of reduced nitrogen availability through decreased decomposition rates in a future atmosphere with elevated CO 2 .
Factors influencing atmospheric composition over subarctic North America during summer
NASA Technical Reports Server (NTRS)
Wofsy, Steven C.; Fan, S. -M.; Blake, D. R.; Bradshaw, J. D.; Sandholm, S. T.; Singh, H. B.; Sachse, G. W.; Harriss, R. C.
1994-01-01
Elevated concentrations of hydrocarbons, CO, and nitrogen oxides were observed in extensive haze layers over northeastern Canada in the summer of 1990, during ABLE 3B. Halocarbon concentrations remained near background in most layers, indicating a source from biomass wildfires. Elevated concentrations of C2Cl4 provided a sensitive indicator for pollution from urban/industrial sources. Detailed analysis of regional budgets for CO and hydrocarbons indicates that biomass fires accounted for approximately equal to 70% of the input to the subarctic for most hydrocarbons and for acetone and more than 50% for CO. Regional sources for many species (including CO) exceeded chemical sinks during summer, and the boreal region provided a net source to midlatitudes. Interannual variations and long-term trends in atmospheric composition are sensitive to climatic change; a shift to warmer, drier conditions could increase the areas burned and thus the sources of many trace gases.
Haworth, Matthew; Elliott-Kingston, Caroline; McElwain, Jennifer C
2013-01-01
Plant stomata display a wide range of short-term behavioural and long-term morphological responses to atmospheric carbon dioxide concentration ([CO(2)]). The diversity of responses suggests that plants may have different strategies for controlling gas exchange, yet it is not known whether these strategies are co-ordinated in some way. Here, we test the hypothesis that there is co-ordination of physiological (via aperture change) and morphological (via stomatal density change) control of gas exchange by plants. We examined the response of stomatal conductance (G(s)) to instantaneous changes in external [CO(2)] (C(a)) in an evolutionary cross-section of vascular plants grown in atmospheres of elevated [CO(2)] (1,500 ppm) and sub-ambient [O(2)] (13.0 %) compared to control conditions (380 ppm CO(2), 20.9 % O(2)). We found that active control of stomatal aperture to [CO(2)] above current ambient levels was not restricted to angiosperms, occurring in the gymnosperms Lepidozamia peroffskyana and Nageia nagi. The angiosperm species analysed appeared to possess a greater respiratory demand for stomatal movement than gymnosperm species displaying active stomatal control. Those species with little or no control of stomatal aperture (termed passive) to C(a) were more likely to exhibit a reduction in stomatal density than species with active stomatal control when grown in atmospheres of elevated [CO(2)]. The relationship between the degree of stomatal aperture control to C(a) above ambient and the extent of any reduction in stomatal density may suggest the co-ordination of physiological and morphological responses of stomata to [CO(2)] in the optimisation of water use efficiency. This trade-off between stomatal control strategies may have developed due to selective pressures exerted by the costs associated with passive and active stomatal control.
Long-term results from an urban CO2 monitoring network
NASA Astrophysics Data System (ADS)
Ehleringer, J.; Pataki, D. E.; Lai, C.; Schauer, A.
2009-12-01
High-precision atmospheric CO2 has been monitored in several locations through the Salt Lake Valley metropolitan region of northern Utah over the past nine years. Many parts of this semi-arid grassland have transitioned into dense urban forests, supported totally by extensive homeowner irrigation practices. Diurnal changes in fossil-fuel energy uses and photosynthesis-respiration processes have resulted in significant spatial and temporal variations in atmospheric CO2. Here we present an analysis of the long-term patterns and trends in midday and nighttime CO2 values for four sites: a midvalley residential neighborhood, a midvalley non-residential neighborhood, an undeveloped valley-edge area transitioning from agriculture, and a developed valley-edge neighborhood with mixed residential and commercial activities; the neighborhoods span an elevation gradient within the valley of ~100 m. Patterns in CO2 concentrations among neighborhoods were examined relative to each other and relative to the NOAA background station, a desert site in Wendover, Utah. Four specific analyses are considered. First, we present a statistical analysis of weekday versus weekend CO2 patterns in the winter, spring, summer, and fall seasons. Second, we present a statistical analysis of the influences of high-pressure systems on the elevation of atmospheric CO2 above background levels in the winter versus summer seasons. Third, we present an analysis of the nighttime CO2 values through the year, relating these patterns to observed changes in the carbon isotope ratios of atmospheric CO2. Lastly, we examine the rate of increase in midday urban CO2 over time relative to regional and global CO2 averages to determine if the amplification of urban energy use is statistically detectable from atmospheric trace gas measurements over the past decade. These results show two important patterns. First, there is a strong weekday-weekend effect of vehicle emissions in contrast to the temperature-dependent effect of home-heating emissions on diurnal/seasonal cycles. Second, there appears to be photosynthetic drawdown of atmospheric CO2 levels during the growing season, but at a cost of significant water expenditure. To the degree that atmospheric CO2 and particulate matter levels are correlated, these results have implications for both climate and health issues.
David Kretschmann; James Evans; Mike Wiemann; Bruce A. Kimball; Sherwood B. Idso
2007-01-01
The carbon dioxide (CO2) concentration of Earthâs atmosphere continues to rise. Plants in general are responsive to changing CO2 concentrations, which suggests changes in agricultural productivity in the United States and around the world. The ability of plants to absorb CO2 during photosynthesis and then store carbon in their structure or sequester it in the soil has...
Flight and ground tests of a GOES satellite time receiver for satellite communications applications
NASA Technical Reports Server (NTRS)
Swanson, R. L.; Nichols, S. A.
1981-01-01
A satellite time receiver was tested in various environmental conditions during the past year. The commercial receiver designed to work with the National Oceanic and Atmospheric Administration's (NOAA) Geostationary Operational Environmental Satellites (GOES). The test program included operation at low elevation during flight in a military cargo aircraft and long term comparison with laboratory standards. The GOES satellite time receiver offers an opportunity to provide easy wide area coverage synchronization at low cost.
Mast, M. Alisa; Ingersoll, George P.
2011-01-01
In 2010, the U.S. Geological Survey, in cooperation with the U.S. Department of Agriculture Forest Service, Air Resource Management, began a study to evaluate long-term trends in lake-water chemistry for 64 high-elevation lakes in selected Class I wilderness areas in Colorado, Idaho, Utah, and Wyoming during 1993 to 2009. The purpose of this report is to describe trends in the chemical composition of these high-elevation lakes. Trends in emissions, atmospheric deposition, and climate variables (air temperature and precipitation amount) are evaluated over a similar period of record to determine likely drivers of changing lake chemistry. Sulfate concentrations in precipitation decreased over the past two decades at high-elevation monitoring stations in the Rocky Mountain region. The trend in deposition chemistry is consistent with regional declines in sulfur dioxide emissions resulting from installation of emission controls at large stationary sources. Trends in nitrogen deposition were not as widespread as those for sulfate. About one-half of monitoring stations showed increases in ammonium concentrations, but few showed significant changes in nitrate concentrations. Trends in nitrogen deposition appear to be inconsistent with available emission inventories, which indicate modest declines in nitrogen emissions in the Rocky Mountain region since the mid-1990s. This discrepancy may reflect uncertainties in emission inventories or changes in atmospheric transformations of nitrogen species that may be affecting deposition processes. Analysis of long-term climate records indicates that average annual mean air temperature minimums have increased from 0.57 to 0.75 °C per decade in mountain areas of the region with warming trends being more pronounced in Colorado. Trends in annual precipitation were not evident over the period 1990 to 2006, although wetter than average years during 1995 to 1997 and drier years during 2001 to 2004 caused a notable decline in precipitation in the middle part of the record.
Benner, Ina; Diner, Rachel E.; Lefebvre, Stephane C.; Li, Dian; Komada, Tomoko; Carpenter, Edward J.; Stillman, Jonathon H.
2013-01-01
Increased atmospheric pCO2 is expected to render future oceans warmer and more acidic than they are at present. Calcifying organisms such as coccolithophores that fix and export carbon into the deep sea provide feedbacks to increasing atmospheric pCO2. Acclimation experiments suggest negative effects of warming and acidification on coccolithophore calcification, but the ability of these organisms to adapt to future environmental conditions is not well understood. Here, we tested the combined effect of pCO2 and temperature on the coccolithophore Emiliania huxleyi over more than 700 generations. Cells increased inorganic carbon content and calcification rate under warm and acidified conditions compared with ambient conditions, whereas organic carbon content and primary production did not show any change. In contrast to findings from short-term experiments, our results suggest that long-term acclimation or adaptation could change, or even reverse, negative calcification responses in E. huxleyi and its feedback to the global carbon cycle. Genome-wide profiles of gene expression using RNA-seq revealed that genes thought to be essential for calcification are not those that are most strongly differentially expressed under long-term exposure to future ocean conditions. Rather, differentially expressed genes observed here represent new targets to study responses to ocean acidification and warming. PMID:23980248
Gain degradation and amplitude scintillation due to tropospheric turbulence
NASA Technical Reports Server (NTRS)
Theobold, D. M.; Hodge, D. B.
1978-01-01
It is shown that a simple physical model is adequate for the prediction of the long term statistics of both the reduced signal levels and increased peak-to-peak fluctuations. The model is based on conventional atmospheric turbulence theory and incorporates both amplitude and angle of arrival fluctuations. This model predicts the average variance of signals observed under clear air conditions at low elevation angles on earth-space paths at 2, 7.3, 20 and 30 GHz. Design curves based on this model for gain degradation, realizable gain, amplitude fluctuation as a function of antenna aperture size, frequency, and either terrestrial path length or earth-space path elevation angle are presented.
Dohyoung Kim; Ram Oren; James S. Clark; Sari Palmroth; A. Christopher Oishi; Heather R. McCarthy; Chris A. Maier; Kurt Johnsen
2017-01-01
We evaluated the effect on soil CO2 efflux (FCO2) of sudden changes in photosynthetic rates by altering CO2 concentration in plots subjected to +200 ppmv for 15 years. Five-day intervals of exposure to elevated CO2 (eCO2) ranging 1.0â1.8 times ambient did not affect FCO2. FCO2 did not decrease until 4 months after termination of the long-term eCO2 treatment, longer...
Monthly and seasonal variability of the land-atmosphere system
Yong-Qiang Liu
2003-01-01
The land surface and the atmosphere can interact with each other through exchanges of energy, water, and momentum. With the capacity of long memory, land surface processes can contribute to long-term variability of atmospheric processes. Great efforts have been made in the past three decades to study land-atmosphere interactions and their importance to long-term...
Temperature Trends in the White Mountains of New Hampshire
NASA Astrophysics Data System (ADS)
Murray, G.; Kelsey, E. P.; Raudzens Bailey, A.
2014-12-01
Located at the summit of Mount Washington (1917 m asl; ~800 hPa), the highest peak in the northeastern United States, the Mount Washington Observatory has meticulously recorded hourly temperature, humidity, cloud-cover, and other atmospheric variables for over 80 years using the same standard procedures to ensure high-quality, homogeneous data. Nearby Hubbard Brook Experimental Forest (253 m asl; ~980 hPa), a Long-Term Ecological Research site, has recorded atmospheric and environmental data since 1956. Together, these two sites provide a unique opportunity to evaluate elevation-dependent climate changes. Using Sen's slope and the Mann Kendall non-parameteric test we examine annual and seasonal trends in minimum, maximum, and mean temperatures. Both Mount Washington and Hubbard Brook exhibit 56-yr warming trends for most seasons, however, the magnitudes and statistical significances are variable, suggesting the processes controlling these trends likely differ with elevation. Since 1957, for instance, spring maximum temperatures at Hubbard Brook have warmed 0.32 °C dec-1 and winter minimums have increased 0.54 °C dec-1, both well within the range reported for six neighboring low elevation stations from 1970-2012 (Wake et al, 2014a,b). In comparison, Mount Washington summit seasonal minimum temperature trends are typically weaker, with changes in winter minimums (the largest of the seasons) reaching only 0.33 °C dec-1. In this presentation, we highlight differences between these two long-term records and discuss possible role of moist processes and boundary layer/free troposphere exposure in causing their divergence. Authors are planning to study the effects of humidity and cloud-cover on summit temperatures and to investigate how changes in the frequency with which the summit is exposed to boundary layer and free tropospheric air masses influences these relationships.
Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.
2015-01-01
Riverine nitrate (NO3) is a well-documented driver of eutrophication and hypoxia in coastal areas. The development of the elevated river NO3 concentration is linked to anthropogenic inputs from municipal, agricultural, and atmospheric sources. The intensity of these sources has varied regionally, through time, and in response to multiple causes such as economic drivers and policy responses. This study uses long-term water quality, land use, and other ancillary data to further describe the evolution of river NO3 concentrations at 22 monitoring stations in the United States (U.S.). The stations were selected for long-term data availability and to represent a range of climate and land-use conditions. We examined NO3 at the monitoring stations, using a flow-weighting scheme meant to account for interannual flow variability allowing greater focus on river chemical conditions. River NO3 concentration increased strongly during 1945-1980 at most of the stations and have remained elevated, but stopped increasing during 1981-2008. NO3 increased to a greater extent at monitoring stations in the Midwest U.S. and less so at those in the Eastern and Western U.S. We discuss 20th Century agricultural development in the U.S. and demonstrate that regional differences in NO3 concentration patterns were strongly related to an agricultural index developed using principal components analysis. This unique century-scale dataset adds to our understanding of long-term NO3 patterns in the U.S.
Carbon Pools in a Temperate Heathland Resist Changes in a Future Climate
NASA Astrophysics Data System (ADS)
Ambus, P.; Reinsch, S.; Nielsen, P. L.; Michelsen, A.; Schmidt, I. K.; Mikkelsen, T. N.
2014-12-01
The fate of recently plant assimilated carbon was followed into ecosystem carbon pools and fluxes in a temperate heathland after a 13CO2 pulse in the early growing season in a 6-year long multi-factorial climate change experiment. Eight days after the pulse, recently assimilated carbon was significantly higher in storage organs (rhizomes) of the grass Deschampsia flexuosa under elevated atmospheric CO2 concentration. Experimental drought induced a pronounced utilization of recently assimilated carbon belowground (roots, microbes, dissolved organic carbon) potentially counterbalancing limited nutrient availability. The fate of recently assimilated carbon was not affected by moderate warming. The full factorial combination of elevated CO2, warming and drought simulating future climatic conditions as expected for Denmark in 2075 did not change short-term carbon turnover significantly compared to ambient conditions. Overall, climate factors interacted in an unexpected way resulting in strong resilience of the heathland in terms of short-term carbon turnover in a future climate.
Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure.
Jutfelt, Fredrik; Hedgärde, Maria
2013-12-27
The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour. Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible. As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content.
Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure
2013-01-01
Introduction The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour. Results Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible. Conclusions As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content. PMID:24373523
The application of geostationary propagation models to non-geostationary propagation measurements
NASA Astrophysics Data System (ADS)
Haddock, Paul Christopher
Atmospheric attenuation becomes evident above 10 GHz due to the absorption of microwave energy from the molecular motion of the atmospheric constituents. Atmospheric effects on satellite communications systems operating at frequencies greater than 10 GHz become more pronounced. Most geostationary (GEO) climate models, which predict the fading statistics for earth-space telecommunications, have satellite elevation angle as one of the input parameters. There has been an interest in the industry to apply the propagation models developed for the GEO satellites to the non-geostationary (NGO) satellite case. With the NGO satellites, the elevation angle to the satellite is time-variable, and as a result the earth-space propagation medium is time varying. We can calculate the expected probability that a satellite, in a given orbit, will be found at a given elevation angle as a percentage of the year based on the satellite orbital elements, the minimum elevation angle allowed in the constellation operation plan, and the constellation configuration. From this calculation, we can develop an empirical fit to a given probability density function (PDF) to account for the distribution of elevation angles. This PDF serves as a weighting function for the elevation input into the GEO climate model to produce the overall fading statistics for the NGO case. In this research, a Ka-band total power radiometer was developed to measure the down-dwelling incoherent radiant electromagnetic energy from the atmosphere. This whole sky sampling radiometer collected 1 year of radiometric measurements. These observations occurred at varying elevation and azimuthal angles, in close proximity to a weak water vapor absorption line. By referencing the output power of the radiometer to known radiometric emissions and by performing frequent internal calibrations, the developed radiometer provided long term highly accurate and stable low-level derived attenuation measurements. By correlating the 1 year of atmospheric measurements to the modified GEO climate model, the hypothesis is tested. That by application of the proper elevation weighting factors, the GEO model is applicable to the NGO case, where the time-varying angle changes are occurring on a short-time period. Finally, we look at the joint statistics of multiple link failures. Using the 1 year of observed attenuations for multiple sky sections, we show that for a given sky section what the probability is that its attenuation level will be equaled or exceeded for each of the remaining sky sections.
Zhang, Lisheng; Zhang, Lingling; Shi, Dongtao; Wei, Jing; Chang, Yaqing
2017-01-01
Increases in ocean temperature due to climate change are predicted to change the behaviors of marine invertebrates. Altered behaviors of keystone ecosystem engineers such as echinoderms will have consequences for the fitness of individuals, which are expected to flow on to the local ecosystem. Relatively few studies have investigated the behavioral responses of echinoderms to long-term elevated temperature. We investigated the effects of exposure to long-term (∼31 weeks) elevated temperature (∼3 °C above the ambient water temperature) on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. Long-term elevated temperature showed different effects on the three behaviors. It significantly decreased covering behavior, including both covering behavior reaction (time to first covering) and ability (number of covered sea urchins and number of shells used for covering). Conversely, exposure to long-term elevated temperature significantly increased sheltering behavior. Righting response in S. intermedius was not significantly different between temperature treatments. The results provide new information into behavioral responses of echinoderms to ocean warming. PMID:28348933
Earth system sensitivity inferred from Pliocene modelling and data
Lunt, D.J.; Haywood, A.M.; Schmidt, G.A.; Salzmann, U.; Valdes, P.J.; Dowsett, H.J.
2010-01-01
Quantifying the equilibrium response of global temperatures to an increase in atmospheric carbon dioxide concentrations is one of the cornerstones of climate research. Components of the Earths climate system that vary over long timescales, such as ice sheets and vegetation, could have an important effect on this temperature sensitivity, but have often been neglected. Here we use a coupled atmosphere-ocean general circulation model to simulate the climate of the mid-Pliocene warm period (about three million years ago), and analyse the forcings and feedbacks that contributed to the relatively warm temperatures. Furthermore, we compare our simulation with proxy records of mid-Pliocene sea surface temperature. Taking these lines of evidence together, we estimate that the response of the Earth system to elevated atmospheric carbon dioxide concentrations is 30-50% greater than the response based on those fast-adjusting components of the climate system that are used traditionally to estimate climate sensitivity. We conclude that targets for the long-term stabilization of atmospheric greenhouse-gas concentrations aimed at preventing a dangerous human interference with the climate system should take into account this higher sensitivity of the Earth system. ?? 2010 Macmillan Publishers Limited. All rights reserved.
Soil Microbial Responses to Elevated CO2 and O3 in a Nitrogen-Aggrading Agroecosystem
Cheng, Lei; Booker, Fitzgerald L.; Burkey, Kent O.; Tu, Cong; Shew, H. David; Rufty, Thomas W.; Fiscus, Edwin L.; Deforest, Jared L.; Hu, Shuijin
2011-01-01
Climate change factors such as elevated atmospheric carbon dioxide (CO2) and ozone (O3) can exert significant impacts on soil microbes and the ecosystem level processes they mediate. However, the underlying mechanisms by which soil microbes respond to these environmental changes remain poorly understood. The prevailing hypothesis, which states that CO2- or O3-induced changes in carbon (C) availability dominate microbial responses, is primarily based on results from nitrogen (N)-limiting forests and grasslands. It remains largely unexplored how soil microbes respond to elevated CO2 and O3 in N-rich or N-aggrading systems, which severely hinders our ability to predict the long-term soil C dynamics in agroecosystems. Using a long-term field study conducted in a no-till wheat-soybean rotation system with open-top chambers, we showed that elevated CO2 but not O3 had a potent influence on soil microbes. Elevated CO2 (1.5×ambient) significantly increased, while O3 (1.4×ambient) reduced, aboveground (and presumably belowground) plant residue C and N inputs to soil. However, only elevated CO2 significantly affected soil microbial biomass, activities (namely heterotrophic respiration) and community composition. The enhancement of microbial biomass and activities by elevated CO2 largely occurred in the third and fourth years of the experiment and coincided with increased soil N availability, likely due to CO2-stimulation of symbiotic N2 fixation in soybean. Fungal biomass and the fungi∶bacteria ratio decreased under both ambient and elevated CO2 by the third year and also coincided with increased soil N availability; but they were significantly higher under elevated than ambient CO2. These results suggest that more attention should be directed towards assessing the impact of N availability on microbial activities and decomposition in projections of soil organic C balance in N-rich systems under future CO2 scenarios. PMID:21731722
NASA Astrophysics Data System (ADS)
Moser, Gerald; Gorenflo, André; Keidel, Lisa; Brenzinger, Kristof; Elias, Dafydd; McNamara, Niall; Maček, Irena; Vodnik, Dominik; Braker, Gesche; Schimmelpfennig, Sonja; Gerstner, Judith; Müller, Christoph
2014-05-01
To predict ecosystem reactions to elevated atmospheric CO2 (eCO2) it is essential to understand the interactions between plant carbon input, microbial community composition and activity and associated nutrient dynamics. Long-term observations (> 14 years) within the Giessen Free Air Carbon dioxide Enrichment (Giessen FACE) study on permanent grassland showed next to an enhanced biomass production an unexpected strong positive feedback effect on ecosystem respiration and nitrous oxide (N2O) production. The overall goal of this study is to understand the long-term effects of eCO2 and carbon input on microbial community composition and activity as well as the associated nitrogen dynamics, N2O production and plant N uptake in the Giessen FACE study on permanent grassland. A combination of 13CO2 pulse labelling with 15N tracing of 15NH4+ and 15NO3- was carried out in situ. Different fractions of soil organic matter (recalcitrant, labile SOM) and the various mineral N pools in the soil (NH4+, NO3-), gross N transformation rates, pool size dependent N2O and N2 emissions as well as N species dependent plant N uptake rates and the origin of the CO2 respiration have been quantified. Microbial analyses include exploring changes in the composition of microbial communities involved in the turnover of NH4+, NO3-, N2O and N2, i.e. ammonia oxidizing, denitrifying, and microbial communities involved in dissimilatory nitrate reduction to ammonia (DNRA). mRNA based analyses will be employed to comparably evaluate the long-term effects of eCO2 on the structure and abundance of these communities, while transcripts of these genes will be used to target the fractions of the communities which actively contribute to N transformations. We quantified the contribution of mycorrhizae on N2O emissions and observed the phenological development of the mycorrhizae after the labeling.
NASA Astrophysics Data System (ADS)
Jepsen, S. M.; Harmon, T. C.; Ficklin, D. L.; Molotch, N. P.; Guan, B.
2018-01-01
Changes in long-term, montane actual evapotranspiration (ET) in response to climate change could impact future water supplies and forest species composition. For scenarios of atmospheric warming, predicted changes in long-term ET tend to differ between studies using space-for-time substitution (STS) models and integrated watershed models, and the influence of spatially varying factors on these differences is unclear. To examine this, we compared warming-induced (+2 to +6 °C) changes in ET simulated by an STS model and an integrated watershed model across zones of elevation, substrate available water capacity, and slope in the snow-influenced upper San Joaquin River watershed, Sierra Nevada, USA. We used the Soil Water and Assessment Tool (SWAT) for the watershed modeling and a Budyko-type relationship for the STS modeling. Spatially averaged increases in ET from the STS model increasingly surpassed those from the SWAT model in the higher elevation zones of the watershed, resulting in 2.3-2.6 times greater values from the STS model at the watershed scale. In sparse, deep colluvium or glacial soils on gentle slopes, the SWAT model produced ET increases exceeding those from the STS model. However, watershed areas associated with these conditions were too localized for SWAT to produce spatially averaged ET-gains comparable to the STS model. The SWAT model results nevertheless demonstrate that such soils on high-elevation, gentle slopes will form ET "hot spots" exhibiting disproportionately large increases in ET, and concomitant reductions in runoff yield, in response to warming. Predicted ET responses to warming from STS models and integrated watershed models may, in general, substantially differ (e.g., factor of 2-3) for snow-influenced watersheds exhibiting an elevational gradient in substrate water holding capacity and slope. Long-term water supplies in these settings may therefore be more resilient to warming than STS model predictions would suggest.
NASA Astrophysics Data System (ADS)
Nikolaidou, Thalia; Santos, Marcelo
2017-04-01
The caused time delay induced by the atmosphere on the GNSS signals (NAD), depends primarily on the amount of atmosphere the signal traverses till it reaches to the Earth's surface and can exceed t 20 m for low elevation angles (around 3 degrees). For a particular ray i.e. satellite/quasar-antenna link, the delay depends on the atmospheric parameters of total pressure, temperature, and the partial pressure of water vapor. Because of that, numerical weather models (NWM) have already proven beneficial for atmospheric modelling and geodesy. By direct raytracing, inside NWM, the VMF1 and the University of New Brunswick VMF1 (UNB-VMF1) (Urquhart et al. 2011), access the 3D variation of the meteorological parameters that determine the delay thus being the state-the-art mapping functions used today. The raytracing procedure is capable of providing NADs delays for any point on the Earth's surface. In this study we study the impact of regional numerical weather models, with high spatial and temporal resolution, namely 25km and 6h. These models outweigh the currently used NWM by having about 2.6 times better spatial resolution. Raytracing through such NWM, using the independent raytracing algorithm develop at UNB (Nievinski, 2009), we acquire superior quality NADs with regional application. We ray-trace for the International GNSS service (IGS) network stations for a time span of 11 years. Benchmarking against the IGS troposphere product is performed to access the accuracy of our results. A periodicity analysis is conducted to examine the signature of atmospheric oscillations on the NAD time series. In order to recognize the NAD periodicities, we compared our product against the GPS-derived IGS troposphere product. Systematic effects within each single technique are identified and long-term NAD stability is accessed.
Land-atmosphere coupling and soil moisture memory contribute to long-term agricultural drought
NASA Astrophysics Data System (ADS)
Kumar, S.; Newman, M.; Lawrence, D. M.; Livneh, B.; Lombardozzi, D. L.
2017-12-01
We assessed the contribution of land-atmosphere coupling and soil moisture memory on long-term agricultural droughts in the US. We performed an ensemble of climate model simulations to study soil moisture dynamics under two atmospheric forcing scenarios: active and muted land-atmosphere coupling. Land-atmosphere coupling contributes to a 12% increase and 36% decrease in the decorrelation time scale of soil moisture anomalies in the US Great Plains and the Southwest, respectively. These differences in soil moisture memory affect the length and severity of modeled drought. Consequently, long-term droughts are 10% longer and 3% more severe in the Great Plains, and 15% shorter and 21% less severe in the Southwest. An analysis of Coupled Model Intercomparsion Project phase 5 data shows four fold uncertainty in soil moisture memory across models that strongly affects simulated long-term droughts and is potentially attributable to the differences in soil water storage capacity across models.
Long-term monitoring of high-elevation white pine communities in Pacific West Region National Parks
Shawn T. McKinney; Tom Rodhouse; Les Chow; Penelope Latham; Daniel Sarr; Lisa Garrett; Linda Mutch
2011-01-01
National Park Service Inventory and Monitoring (I&M) networks conduct long-term monitoring to provide park managers information on the status and trends in key biological and environmental attributes (Vital Signs). Here we present an overview of a collaborative approach to long-term monitoring of high-elevation white pine forest dynamics among three Pacific West...
Chambers, Jeffrey Q; Silver, Whendee L
2004-01-01
Atmospheric changes that may affect physiological and biogeochemical processes in old-growth tropical forests include: (i) rising atmospheric CO2 concentration; (ii) an increase in land surface temperature; (iii) changes in precipitation and ecosystem moisture status; and (iv) altered disturbance regimes. Elevated CO2 is likely to directly influence numerous leaf-level physiological processes, but whether these changes are ultimately reflected in altered ecosystem carbon storage is unclear. The net primary productivity (NPP) response of old-growth tropical forests to elevated CO2 is unknown, but unlikely to exceed the maximum experimentally measured 25% increase in NPP with a doubling of atmospheric CO2 from pre-industrial levels. In addition, evolutionary constraints exhibited by tropical plants adapted to low CO2 levels during most of the Late Pleistocene, may result in little response to increased carbon availability. To set a maximum potential response for a Central Amazon forest, using an individual-tree-based carbon cycling model, a modelling experiment was performed constituting a 25% increase in tree growth rate, linked to the known and expected increase in atmospheric CO2. Results demonstrated a maximum carbon sequestration rate of ca. 0.2 Mg C per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), and a sequestration rate of only 0.05 Mg C ha(-1) yr(-1) for an interval centred on calendar years 1980-2020. This low rate results from slow growing trees and the long residence time of carbon in woody tissues. By contrast, changes in disturbance frequency, precipitation patterns and other environmental factors can cause marked and relatively rapid shifts in ecosystem carbon storage. It is our view that observed changes in tropical forest inventory plots over the past few decades is more probably being driven by changes in disturbance or other environmental factors, than by a response to elevated CO2. Whether these observed changes in tropical forests are the beginning of long-term permanent shifts or a transient response is uncertain and remains an important research priority. PMID:15212096
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cushman, R.M.
2003-08-28
The Carbon Dioxide Information Analysis Center (CDIAC), which includes the World Data Center (WDC) for Atmospheric Trace Gases, is the primary global change data and information analysis center of the U.S. Department of Energy (DOE). More than just an archive of data sets and publications, CDIAC has, since its inception in 1982, enhanced the value of its holdings through intensive quality assurance, documentation, and integration. Whereas many traditional data centers are discipline-based (for example, meteorology or oceanography), CDIAC's scope includes potentially anything and everything that would be of value to users concerned with the greenhouse effect and global climate change,more » including atmospheric concentrations and atmospheric emissions of carbon dioxide (CO{sub 2}) and other radiatively active gases; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; long-term climate trends; the effects of elevated CO{sub 2} on vegetation; and the vulnerability of coastal areas to rising sea levels.« less
The long-term carbon cycle, fossil fuels and atmospheric composition.
Berner, Robert A
2003-11-20
The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.
Diurnal and long-term variation of instability indices over a tropical region in India
NASA Astrophysics Data System (ADS)
Chakraborty, Rohit; Basha, Ghouse; Venkat Ratnam, M.
2018-07-01
Climatology of atmospheric instability is studied over Gadanki using high-resolution radiosonde launched daily during April 2006 to April 2017. The diurnal and seasonal variation of instability parameters is discussed in relation with surface meteorological parameters. Seasonal variations depict strong variability in instability which is masked by stronger diurnal variation with descending Lifting Condensation Level (LCL) and Level of Free Convection (LFC) between 11 and 18 IST resulting in high Convective Available Potential Energy (CAPE) values and heavy rainfall. On a seasonal basis, parcel parameters are high during the late monsoon and post-monsoon while the instability parameters like Total Totals index (TT) and Vertical Totals index (VT) show highest values in the pre-monsoon associated with strong convection. LFC and LCL start descending with ascent in Equilibrium Level (EL) before the monsoon onset. However after the onset, atmospheric instability falls sharply as supported by decreasing TT, VT and CAPE with increasing LI. The 11-year long-term variation depicts slightly elevated LFC and LCL and declining EL values indicating a decrease in the instability with a decrease in CAPE and K Index (KI) and increase in Lifted Index (LI) and Convective Inhibition (CIN).
Kant, Pratap C B; Bhadraray, Subhendu; Purakayastha, T J; Jain, Vanita; Pal, Madan; Datta, S C
2007-05-01
Study on active and labile carbon-pools can serve as a clue for soil organic carbon dynamics on exposure to elevated level of CO2. Therefore, an experimental study was conducted in a Typic Haplustept in sub-tropical semi-arid India with wheat grown in open top chambers at ambient (370 micromol mol-1) and elevated (600 micromol mol-1) concentrations of atmospheric CO2. Elevated atmospheric CO2 caused increase in yield and carbon uptake by all plant parts, and their preferential partitioning to root. Increases in fresh root weight, volume and length have also been observed. Relative contribution of medium-sized root to total root length increased at the expense of very fine roots at elevated CO2 level. All active carbon-fractions gained due to elevated atmospheric CO2 concentration, and the order followed their relative labilities. All the C-pools have recorded a significant increase over initial status, and are expected to impart short-to-medium-term effect on soil carbon sequestration.
Azam, Andaleeb; Khan, Ikhtiar; Mahmood, Abid; Hameed, Abdul
2013-10-01
Future concentration of carbon dioxide in the atmosphere is very important due to its apparent economic and environmental impact in terms of climate change. However, a compressive assessment of its effect on the nutritional and chemical characteristics of food crops has yet to be established. In the present study the impact of elevated atmospheric CO2 on the yield, chemical composition and nutritional quality of three root vegetables, carrot (Daucus carota L. cv. T-1-111), radish (Raphanus sativus L. cv. Mino) and turnip (Brassica rapa L. cv. Grabe) has been investigated. The yield of carrot, radish and turnip increased by 69, 139 and 72%, respectively, when grown under elevated CO2 conditions. Among the proximate composition, protein, vitamin C and fat contents decreased significantly for all the vegetables while sugar and fibre contents were increased. Response of the vegetables to elevated CO2 , in terms of elemental composition, was different with a significant decrease in many important minerals. Elevated CO2 decreased the amount of majority of the fatty acids and amino acids in these vegetables. It was observed that elevated CO2 increased the yield of root vegetables but many important nutritional parameters including protein, vitamin C, minerals, essential fatty acids and amino acids were decreased. © 2013 Society of Chemical Industry.
Elevated atmospheric CO2 increases microbial growth rates and enzymes activity in soil
NASA Astrophysics Data System (ADS)
Blagodatskaya, Evgenia; Blagodatsky, Sergey; Dorodnikov, Maxim; Kuzyakov, Yakov
2010-05-01
Increasing the belowground translocation of assimilated carbon by plants grown under elevated CO2 can cause a shift in the structure and activity of the microbial community responsible for the turnover of organic matter in soil. We investigated the long-term effect of elevated CO2 in the atmosphere on microbial biomass and specific growth rates in root-free and rhizosphere soil. The experiments were conducted under two free air carbon dioxide enrichment (FACE) systems: in Hohenheim and Braunschweig, as well as in the intensively managed forest mesocosm of the Biosphere 2 Laboratory (B2L) in Oracle, AZ. Specific microbial growth rates (μ) were determined using the substrate-induced respiration response after glucose and/or yeast extract addition to the soil. We evaluated the effect of elevated CO2 on b-glucosidase, chitinase, phosphatase, and sulfatase to estimate the potential enzyme activity after soil amendment with glucose and nutrients. For B2L and both FACE systems, up to 58% higher μ were observed under elevated vs. ambient CO2, depending on site, plant species and N fertilization. The μ-values increased linearly with atmospheric CO2 concentration at all three sites. The effect of elevated CO2 on rhizosphere microorganisms was plant dependent and increased for: Brassica napus=Triticum aestivum
NASA Astrophysics Data System (ADS)
Manning, Andrew C.; Forster, Grant L.; Oram, David E.; Reeves, Claire E.; Pickers, Penelope A.; Barningham, S. Thomas; Sturges, William T.; Bandy, Brian; Nisbet, Euan G.; Lowry, David; Fisher, Rebecca; Fleming, Zoe
2016-04-01
The Weybourne Atmospheric Observatory (WAO) is situated on the north Norfolk Coast (52.95°N, 1.13°E) in the United Kingdom and is run by the University of East Anglia (UEA), with support from the UK National Centre for Atmospheric Science (NCAS). In 2016, the WAO became a UK-ICOS (Integrated Carbon Observing System) monitoring station. Since 2008, we have been collecting high-precision long-term in situ measurements of atmospheric carbon dioxide (CO2), oxygen (O2), carbon monoxide (CO) and molecular hydrogen (H2), as well as regular bag sampling for δ13CH4. In early 2013, the measurement of atmospheric methane (CH4) commenced, and nitrous oxide (N2O) and sulphur hexafluoride (SF6) began in 2014. We summarise the CO2, O2, CH4, N2O, SF6, CO, H2 and δ13CH4 measurements made to date and highlight some key features observed (e.g. seasonal cycles, long-term trends, pollution events and deposition events). We summarise how the long-term measurements fit into other broader projects which have helped to support the long term time-series at WAO over the years, and highlight how we contribute to broader global atmospheric observation networks.
Enhanced acidification of global coral reefs driven by regional biogeochemical feedbacks
NASA Astrophysics Data System (ADS)
Cyronak, Tyler; Schulz, Kai G.; Santos, Isaac R.; Eyre, Bradley D.
2014-08-01
Physical uptake of anthropogenic CO2 is the dominant driver of ocean acidification (OA) in the open ocean. Due to expected decreases in calcification and increased dissolution of CaCO3 framework, coral reefs are thought to be highly susceptible to OA. However, biogeochemical processes can influence the pCO2 and pH of coastal ecosystems on diel and seasonal time scales, potentially modifying the long-term effects of increasing atmospheric CO2. By compiling data from the literature and removing the effects of short-term variability, we show that the average pCO2 of coral reefs throughout the globe has increased ~3.5-fold faster than in the open ocean over the past 20 years. This rapid increase in pCO2 has the potential to enhance the acidification and predicted effects of OA on coral reef ecosystems. A simple model demonstrates that potential drivers of elevated pCO2 include additional anthropogenic disturbances beyond increasing global atmospheric CO2 such as enhanced nutrient and organic matter inputs.
Darbah, Joseph N. T.; Kubiske, Mark E.; Nelson, Neil; ...
2007-01-01
Atmospheric CO 2 and tropospheric O 3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO 3 and O 3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI. Elevated CO 2 increased both male and female flower production, while elevated O 3 increased female flower production compared to trees in control rings. Interestingly, very little flowering hasmore » yet occurred in combined treatment. Elevated CO 2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO 2 increased germination rate of birch by 110% compared to ambient CO 2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination), while the opposite was true of elevated O 3 (elevated O 3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%). Under elevated CO 2 , plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO 2 , while the reverse was true for seedlings from seeds produced under the elevated O 3 . Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO 2 and O 3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.« less
Impacts of elevated atmospheric CO2 and O3 on paper birch (Betula papyrifera): reproductive fitness.
Darbah, Joseph N T; Kubiske, Mark E; Nelson, Neil; Oksanen, Elina; Vaapavuori, Elina; Karnosky, David F
2007-03-21
Atmospheric CO2 and tropospheric O3 are rising in many regions of the world. Little is known about how these two commonly co-occurring gases will affect reproductive fitness of important forest tree species. Here, we report on the long-term effects of CO2 and O3 for paper birch seedlings exposed for nearly their entire life history at the Aspen FACE (Free Air Carbon Dioxide Enrichment) site in Rhinelander, WI. Elevated CO2 increased both male and female flower production, while elevated O3 increased female flower production compared to trees in control rings. Interestingly, very little flowering has yet occurred in combined treatment. Elevated CO2 had significant positive effect on birch catkin size, weight, and germination success rate (elevated CO2 increased germination rate of birch by 110% compared to ambient CO2 concentrations, decreased seedling mortality by 73%, increased seed weight by 17%, increased root length by 59%, and root-to-shoot ratio was significantly decreased, all at 3 weeks after germination), while the opposite was true of elevated O3 (elevated O3 decreased the germination rate of birch by 62%, decreased seed weight by 25%, and increased root length by 15%). Under elevated CO2, plant dry mass increased by 9 and 78% at the end of 3 and 14 weeks, respectively. Also, the root and shoot lengths, as well as the biomass of the seedlings, were increased for seeds produced under elevated CO2, while the reverse was true for seedlings from seeds produced under the elevated O3. Similar trends in treatment differences were observed in seed characteristics, germination, and seedling development for seeds collected in both 2004 and 2005. Our results suggest that elevated CO2 and O3 can dramatically affect flowering, seed production, and seed quality of paper birch, affecting reproductive fitness of this species.
Osborne, C. P.; Drake, B. G.; LaRoche, J.; Long, S. P.
1997-05-01
As the partial pressure of CO2 (pCO2) in the atmosphere rises, photorespiratory loss of carbon in C3 photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. We tested this expectation for Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor. Open-top chambers were used to elevate the pCO2 of a forest floor habitat to 67 Pa and were paired with control chambers providing an ambient pCO2 of 38 Pa. After 3.5 years, D. indica leaves grown and measured in the elevated pCO2 showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) and a lower light compensation point (by 42%) than leaves grown and measured in the control chambers. The quantum efficiency to minimize photorespiration, measured in 1% O2, was the same for controls and plants grown at elevated pCO2. This showed that the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and that the increase in light-limited photosynthesis at elevated pCO2 was simply a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Even so, leaves of D. indica grown and measured at elevated pCO2 showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO2. In situ measurements under natural forest floor lighting showed large increases in leaf photosynthesis at elevated pCO2, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO2 allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborne, C.P.; Long, S.P.; Drake, B.G.
1997-05-01
As the partial pressure of CO{sub 2} (pCO{sub 2}) in the atmosphere rises, photorespiratory loss of carbon in C, photosynthesis will diminish and the net efficiency of light-limited photosynthetic carbon uptake should rise. Indiana strawberry (Duchesnea indica) growing on a Maryland forest floor was tested. Open-top chambers were used to elevate the pCO{sub 2} of a forest floor habitat to 67 Pa and were paired with control chambers with an ambient pCO{sub 2} of 38 Pa. After 3.5 years, D. indica leaves in the elevated pCO{sub 2} showed a significantly greater maximum quantum efficiency of net photosynthesis (by 22%) andmore » a lower light compensation point (by 42%) than leaves in the control chambers. The quantum efficiency to minimize photorespiration was the same for controls and plants grown at elevated pCO{sub 2}, showing the maximum efficiency of light-energy transduction into assimilated carbon was not altered by acclimation and the increase in light-limited photosynthesis at elevated pCO{sub 2} was a function of the decrease in photorespiration. Acclimation did decrease the ribulose-1,5-bisphosphate carboxylase/oxygenase and light-harvesting chlorophyll protein content of the leaf by more than 30%. These changes were associated with a decreased capacity for light-saturated, but not light-limited, photosynthesis. Leaves of D. indica grown and measured at elevated pCO{sub 2} showed greater light-saturated photosynthetic rates than leaves grown and measured at the current atmospheric pCO{sub 2}. In situ measurements under natural lighting showed large increases in leaf photosynthesis at elevated pCO{sub 2}, relative to controls, in both summer and fall. The increase in efficiency of light-limited photosynthesis with elevated pCO{sub 2} allowed positive net photosynthetic carbon uptake on days and at locations on the forest floor that light fluxes were insufficient for positive net photosynthesis in the current atmospheric pCO{sub 2}. 33 refs., 3 figs., 3 tabs.« less
The geological record of ocean acidification.
Hönisch, Bärbel; Ridgwell, Andy; Schmidt, Daniela N; Thomas, Ellen; Gibbs, Samantha J; Sluijs, Appy; Zeebe, Richard; Kump, Lee; Martindale, Rowan C; Greene, Sarah E; Kiessling, Wolfgang; Ries, Justin; Zachos, James C; Royer, Dana L; Barker, Stephen; Marchitto, Thomas M; Moyer, Ryan; Pelejero, Carles; Ziveri, Patrizia; Foster, Gavin L; Williams, Branwen
2012-03-02
Ocean acidification may have severe consequences for marine ecosystems; however, assessing its future impact is difficult because laboratory experiments and field observations are limited by their reduced ecologic complexity and sample period, respectively. In contrast, the geological record contains long-term evidence for a variety of global environmental perturbations, including ocean acidification plus their associated biotic responses. We review events exhibiting evidence for elevated atmospheric CO(2), global warming, and ocean acidification over the past ~300 million years of Earth's history, some with contemporaneous extinction or evolutionary turnover among marine calcifiers. Although similarities exist, no past event perfectly parallels future projections in terms of disrupting the balance of ocean carbonate chemistry-a consequence of the unprecedented rapidity of CO(2) release currently taking place.
NASA Technical Reports Server (NTRS)
Davis, J. L.; Herring, T. A.; Shapiro, I. I.; Rogers, A. E. E.; Elgered, G.
1985-01-01
Analysis of very long baseline interferometry data indicates that systematic errors in prior estimates of baseline length, of order 5 cm for approximately 8000-km baselines, were due primarily to mismodeling of the electrical path length of the troposphere and mesosphere ('atmospheric delay'). Here observational evidence for the existence of such errors in the previously used models for the atmospheric delay is discussed, and a new 'mapping' function for the elevation angle dependence of this delay is developed. The delay predicted by this new mapping function differs from ray trace results by less than approximately 5 mm, at all elevations down to 5 deg elevation, and introduces errors into the estimates of baseline length of less than about 1 cm, for the multistation intercontinental experiment analyzed here.
Walker, Anthony P.; Zaehle, Sönke; Medlyn, Belinda E.; ...
2015-04-27
Large uncertainty exists in model projections of the land carbon (C) sink response to increasing atmospheric CO 2. Free-Air CO 2 Enrichment (FACE) experiments lasting a decade or more have investigated ecosystem responses to a step change in atmospheric CO 2 concentration. To interpret FACE results in the context of gradual increases in atmospheric CO 2 over decades to centuries, we used a suite of seven models to simulate the Duke and Oak Ridge FACE experiments extended for 300 years of CO 2 enrichment. We also determine key modeling assumptions that drive divergent projections of terrestrial C uptake and evaluatemore » whether these assumptions can be constrained by experimental evidence. All models simulated increased terrestrial C pools resulting from CO 2 enrichment, though there was substantial variability in quasi-equilibrium C sequestration and rates of change. In two of two models that assume that plant nitrogen (N) uptake is solely a function of soil N supply, the net primary production response to elevated CO 2 became progressively N limited. In four of five models that assume that N uptake is a function of both soil N supply and plant N demand, elevated CO 2 led to reduced ecosystem N losses and thus progressively relaxed nitrogen limitation. Many allocation assumptions resulted in increased wood allocation relative to leaves and roots which reduced the vegetation turnover rate and increased C sequestration. Additionally, self-thinning assumptions had a substantial impact on C sequestration in two models. As a result, accurate representation of N process dynamics (in particular N uptake), allocation, and forest self-thinning is key to minimizing uncertainty in projections of future C sequestration in response to elevated atmospheric CO 2.« less
NASA Astrophysics Data System (ADS)
Baron, J.; Advani, S. M.; Allen, J.; Boot, C.; Denef, K.; Denning, S.; Hall, E.; Moore, J. C.; Reuth, H.; Ryan, M. G.; Shaw, E.
2016-12-01
Long-term field experiments can reveal changes in ecosystem processes that may not be evident in short-term studies. Short-term measurements or experiments may have narrower objectives or unrealistic treatments in order to see a change, whereas long-term studies can reveal complex interactions that take longer to manifest. We report results from a long-term experiment (1996 to present) in subalpine forests to simulate the consequences of sustained atmospheric nitrogen (N) deposition. Loch Vale watershed in Rocky Mountain National Park, the location of the experiment, has received an order of magnitude greater atmospheric N deposition than estimated background since mid-20th Century. Augmenting that, in 1996 we began adding 25 kg NH4NO3 ha-1 yr-1 to three 30m x 30m old-growth Engelmann spruce and subalpine fir plots. Treated stands were matched by nearby controls. N addition caused rapid leaching of nitrate and cations from soils, and increased N mineralization and nitrification rates. These observations in the fertilized plots have been sustained over time. Soluble aluminum concentrations do not differ significantly between fertilized and control plots, but treated soils are now markedly more acidic (pH of 4.7) than original soil and controls (pH of 5.1); further acidification might increase aluminum leaching. Effects on soil carbon were complex, mediated by reductions in total microbial biomass, decreases in arbuscular mychorrizal and saprotropic fungi, and increased potential rates of N enzyme degrading activities. Initial soil C:N of 24 was lower than similar soils in low N deposition stands (C:N of 36). The C:N declined to 22 with treatment. Fertilized plots lost 11% soil C, but the mechanism is unclear. We did not measure changes in C inputs from litter, microbial biomass, or plant uptake, but there was no change in summer CO2 flux, measured in 2003, 2004, and 2014. Leaching of DOC from fertilized plots was elevated throughout the experiment, providing one pathway for C loss. The soil microfauna was dominated by nematodes; plant parasites and bacterial and fungal feeders were more abundant in fertilized plots than in controls, with fewer predaceous and omnivorous nematodes. Overall, N fertilization altered soil biogeochemical characteristics, soil food webs, and C cycling.
Abe, Naoyuki; Miura, Takashi; Miyashita, Yusuke; Hashizume, Naoto; Ebisawa, Soichiro; Motoki, Hirohiko; Tsujimura, Takuya; Ishihara, Takayuki; Uematsu, Masaaki; Katagiri, Toshio; Ishihara, Ryuma; Tosaka, Atsushi; Ikeda, Uichi
2017-04-01
The admission shock index (SI) enables prediction of short-term prognosis. This study investigated the prognostic implications of admission SI for predicting long-term prognoses for acute myocardial infarction (AMI). The participants were 680 patients with AMI who received percutaneous coronary intervention. Shock index is the ratio of heart rate and systolic blood pressure. Patients were classified as admission SI <0.66 (normal) and ≥0.66 (elevated; 75th percentile). The end point was 5-year major adverse cardiac events (MACEs). Elevated admission SI was seen in 176 patients. Peak creatine kinase levels were significantly higher and left ventricular ejection fraction was lower in the elevated SI group, which had a worse MACEs. In multivariate Cox regression analysis, SI ≥0.66 was a risk factor for MACE. Elevated admission SI was associated with poorer long-term prognosis.
NASA Astrophysics Data System (ADS)
Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.
2013-03-01
A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian Research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, a- and g-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar as observed for Arctic samples, HCB is the predominant POP compound with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART). The POP levels determined in Troll air were compared with 1 concentrations found in earlier measurement campaigns at other Antarctic research stations from the past 18 yr. Except for HCB for which similar concentration distributions were observed in all sampling campaigns, concentrations in the recent Troll samples were lower than in samples collected during the early 1990s. These concentration reductions are obviously a direct consequence of international regulations restricting the usage of POP-like chemicals on a worldwide scale.
Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hungate, B. A.; van Groenigen, K.; Six, J.
2009-08-01
Soil is the largest reservoir of organic carbon (C) in the terrestrial biosphere and soil C has a relatively long mean residence time. Rising atmospheric carbon dioxide (CO{sub 2}) concentrations generally increase plant growth and C input to soil, suggesting that soil might help mitigate atmospheric CO{sub 2} rise and global warming. But to what extent mitigation will occur is unclear. The large size of the soil C pool not only makes it a potential buffer against rising atmospheric CO{sub 2}, but also makes it difficult to measure changes amid the existing background. Meta-analysis is one tool that can overcomemore » the limited power of single studies. Four recent meta-analyses addressed this issue but reached somewhat different conclusions about the effect of elevated CO{sub 2} on soil C accumulation, especially regarding the role of nitrogen (N) inputs. Here, we assess the extent of differences between these conclusions and propose a new analysis of the data. The four meta-analyses included different studies, derived different effect size estimates from common studies, used different weighting functions and metrics of effect size, and used different approaches to address nonindependence of effect sizes. Although all factors influenced the mean effect size estimates and subsequent inferences, the approach to independence had the largest influence. We recommend that meta-analysts critically assess and report choices about effect size metrics and weighting functions, and criteria for study selection and independence. Such decisions need to be justified carefully because they affect the basis for inference. Our new analysis, with a combined data set, confirms that the effect of elevated CO{sub 2} on net soil C accumulation increases with the addition of N fertilizers. Although the effect at low N inputs was not significant, statistical power to detect biogeochemically important effect sizes at low N is limited, even with meta-analysis, suggesting the continued need for long-term experiments.« less
Soil calcium status and the response of stream chemistry to changing acidic deposition rates
Lawrence, G.B.; David, M.B.; Lovett, Gary M.; Murdoch, Peter S.; Burns, Douglas A.; Stoddard, J.L.; Baldigo, Barry P.; Porter, J.H.; Thompson, A.W.
1999-01-01
Despite a decreasing trend in acidic deposition rates over the past two to three decades, acidified surface waters in the northeastern United States have shown minimal changes. Depletion of soil Ca pools has been suggested as a cause, although changes in soil Ca pools have not been directly related to long-term records of stream chemistry. To investigate this problem, a comprehensive watershed study was conducted in the Neversink River Basin, in the Catskill Mountains of New York, during 1991-1996. Spatial variations of atmospheric deposition, soil chemistry, and stream chemistry were evaluated over an elevation range of 817-1234 m to determine whether these factors exhibited elevational patterns. An increase in atmospheric deposition of SO4 with increasing elevation corresponded with upslope decreases of exchangeable soil base concentrations and acid-neutralizing capacity of stream water. Exchangeable base concentrations in homogeneous soil incubated within the soil profile for one year also decreased with increasing elevation. An elevational gradient in precipitation was not observed, and effects of a temperature gradient on soil properties were not detected. Laboratory leaching experiments with soils from this watershed showed that (1) concentrations of Ca in leachate increased as the concentrations of acid anions in added solution increased, and (2) the slope of this relationship was positively correlated with base saturation. Field and laboratory soil analyses are consistent with the interpretation that decreasing trends in acid-neutralizing capacity in stream water in the Neversink Basin, dating back to 1984, are the result of decreases in soil base saturation caused by acidic deposition.
NASA Astrophysics Data System (ADS)
Holmstrup, Martin; Damgaard, Christian; Schmidt, Inger K.; Arndal, Marie F.; Beier, Claus; Mikkelsen, Teis N.; Ambus, Per; Larsen, Klaus S.; Pilegaard, Kim; Michelsen, Anders; Andresen, Louise C.; Haugwitz, Merian; Bergmark, Lasse; Priemé, Anders; Zaitsev, Andrey S.; Georgieva, Slavka; Dam, Marie; Vestergård, Mette; Christensen, Søren
2017-01-01
In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical variables. The analysis revealed a persistent and positive effect of elevated CO2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.
Holmstrup, Martin; Damgaard, Christian; Schmidt, Inger K.; Arndal, Marie F.; Beier, Claus; Mikkelsen, Teis N.; Ambus, Per; Larsen, Klaus S.; Pilegaard, Kim; Michelsen, Anders; Andresen, Louise C.; Haugwitz, Merian; Bergmark, Lasse; Priemé, Anders; Zaitsev, Andrey S.; Georgieva, Slavka; Dam, Marie; Vestergård, Mette; Christensen, Søren
2017-01-01
In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical variables. The analysis revealed a persistent and positive effect of elevated CO2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term. PMID:28120893
Holmstrup, Martin; Damgaard, Christian; Schmidt, Inger K; Arndal, Marie F; Beier, Claus; Mikkelsen, Teis N; Ambus, Per; Larsen, Klaus S; Pilegaard, Kim; Michelsen, Anders; Andresen, Louise C; Haugwitz, Merian; Bergmark, Lasse; Priemé, Anders; Zaitsev, Andrey S; Georgieva, Slavka; Dam, Marie; Vestergård, Mette; Christensen, Søren
2017-01-25
In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO 2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical variables. The analysis revealed a persistent and positive effect of elevated CO 2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO 2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO 2 -increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunderson, C.A.; Norby, R.J.
1991-05-01
A critical consideration in evaluating forest response to rising atmospheric CO{sub 2} is whether the enhancement of net photosynthesis (P{sub N}) by elevated CO{sub 2} can be sustained over the long term. There are reports of declining enhancement of P{sub N} with duration of exposure to elevated CO{sub 2}, associated with decreases in photosynthetic capacity and carboxylation efficiency. We investigated whether this photosynthetic acclimation occurs in two tree species under field conditions. Seedlings of yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) were planted in the ground within six open-top field chambers in May 1989 and have beenmore » exposed continuously to CO{sub 2} enrichment during the last two growing seasons. The three CO{sub 2} treatment levels were: ambient, ambient +150, and ambient +300 {mu}L/L. Throughout the second season, gas exchange of upper, light-saturated leaves was surveyed periodically, and leaves of different ages and canopy positions were measured occasionally. Net photosynthesis remained higher at higher CO{sub 2} levels (28-32% higher in +150 and 49-67% higher in +300 seedlings) in both species throughout the season, regardless of increasing leaf age and duration of exposure to CO{sub 2} enrichment. Stomatal conductance remained unchanged or decreased slightly with increasing CO{sub 2}, but instantaneous water use efficiency (P{sub N}/transpiration) increased significantly with CO{sub 2}. Analysis of P{sub N} versus internal CO{sub 2} concentration indicated no significant treatment differences in carboxylation efficiency, CO{sub 2}-saturated P{sub N}, or CO{sub 2} compensation point. There was no evidence of a downward acclimation of photosynthesis to CO{sub 2} enrichment in this system.« less
Asshoff, Roman; Hättenschwiler, Stephan
2005-01-01
The consequences for plant-insect interactions of atmospheric changes in alpine ecosystems are not well understood. Here, we tested the effects of elevated CO(2) on leaf quality in two dwarf shrub species (Vaccinium myrtillus and V. uliginosum) and the response of the alpine grasshopper (Miramella alpina) feeding on these plants in a field experiment at the alpine treeline (2,180 m a.s.l.) in Davos, Switzerland. Relative growth rates (RGR) of M. alpina nymphs were lower when they were feeding on V. myrtillus compared to V. uliginosum, and were affected by elevated CO(2) depending on plant species and nymph developmental stage. Changes in RGR correlated with CO(2)-induced changes in leaf water, nitrogen, and starch concentrations. Elevated CO(2) resulted in reduced female adult weight irrespective of plant species, and prolonged development time on V. uliginosum only, but there were no significant differences in nymphal mortality. Newly molted adults of M. alpina produced lighter eggs and less secretion (serving as egg protection) under elevated CO(2). When grasshoppers had a choice among four different plant species grown either under ambient or elevated CO(2), V. myrtillus and V. uliginosum consumption increased under elevated CO(2) in females while it decreased in males compared to ambient CO(2)-grown leaves. Our findings suggest that rising atmospheric CO(2) distinctly affects leaf chemistry in two important dwarf shrub species at the alpine treeline, leading to changes in feeding behavior, growth, and reproduction of the most important insect herbivore in this system. Changes in plant-grasshopper interactions might have significant long-term impacts on herbivore pressure, community dynamics and ecosystem stability in the alpine treeline ecotone.
Ultraviolet spectrophotometry of flares on ``quiescent'' M and K dwarf exoplanet hosts
NASA Astrophysics Data System (ADS)
Loyd, R. O. Parke; France, Kevin; Youngblood, Allison
We present an analysis of a sample of flares on ``quiescent'' (i.e. non-flare) M and K stars using temporally resolved UV spectroscopy from the growing body of MUSCLES Treasury Survey data. Specifically, our analysis quantified the response of the far-UV C II, Si III, Si IV, and N V emission lines and the far-UV continuum during the flares. Using these tracers, we examined one representative event on GJ 832. In concordance with flares recorded on the Sun and AD Leo, the MUSCLES flares are well fit by a power law relationship of similar slope in frequency versus energy. Flares can strip atmospheric mass from orbiting planets, adversely affecting their long-term habitability. To gauge the amplitude of this effect, we computed an energy-balance upper-limit on the amount of atmosphere a large flare might remove from an orbiting Earth due purely to elevated EUV flux and found this limit to be modest relative to Earth's atmospheric mass.
Enhanced Climatic Warming in the Tibetan Plateau Due to Double CO2: A Model Study
NASA Technical Reports Server (NTRS)
Chen, Baode; Chao, Winston C.; Liu, Xiao-Dong; Lau, William K. M. (Technical Monitor)
2001-01-01
The NCAR (National Center for Atmospheric Research) regional climate model (RegCM2) with time-dependent lateral meteorological fields provided by a 130-year transient increasing CO2 simulation of the NCAR Climate System Model (CSM) has been used to investigate the mechanism of enhanced ground temperature warming over the TP (Tibetan Plateau). From our model results, a remarkable tendency of warming increasing with elevation is found for the winter season, and elevation dependency of warming is not clearly recognized in the summer season. This simulated feature of elevation dependency of ground temperature is consistent with observations. Based on an analysis of surface energy budget, the short wave solar radiation absorbed at the surface plus downward long wave flux reaching the surface shows a strong elevation dependency, and is mostly responsible for enhanced surface warming over the TP. At lower elevations, the precipitation forced by topography is enhanced due to an increase in water vapor supply resulted from a warming in the atmosphere induced by doubling CO2. This precipitation enhancement must be associated with an increase in clouds, which results in a decline in solar flux reaching surface. At higher elevations, large snow depletion is detected in the 2xCO2run. It leads to a decrease in albedo, therefore more solar flux is absorbed at the surface. On the other hand, much more uniform increase in downward long wave flux reaching the surface is found. The combination of these effects (i.e. decrease in solar flux at lower elevations, increase in solar flux at higher elevation and more uniform increase in downward long wave flux) results in elevation dependency of enhanced ground temperature warming over the TP.
Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.
Manna, Suman; Singh, Neera; Singh, V P
2013-04-01
An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.
NASA Astrophysics Data System (ADS)
Phillips, J. R.; Hanson, P. J.; Warren, J.; Ward, E. J.; Brice, D. J.; Graham, J.
2017-12-01
Spruce and Peatland Responses Under Changing Environments (SPRUCE) is an in situ warming by elevated CO2 manipulation located in a high-carbon, spruce peatland in northern Minnesota. Warming treatments combined a 12-m diameter open topped chamber with internally recirculating warm air and soil deep heating to simulate a broad range of future warming treatments. Deep below ground soil warming rates are 0, +2.25, +4.5, +6.75, and +9 °C. Deep belowground warming was initiated in June 2014 followed by air warming in August 2015. In June 2016, elevated CO2 atmospheres (eCO2 at + 500 ppm) were added to half of the warming treatments in a regression design. Our objective was to track long-term vegetation responses to warming and eCO2. Annual tree growth is based on winter measurement of circumference of all Picea mariana and Larix laricina trees within each 113 m2 plot, automated dendrometers, terrestrial LIDAR scanning of tree heights and canopy volumes, and destructive allometry. Annual shrub growth is measured in late summer by destructive clipping in two 0.25 m2 sub-plots and separation of the current year tissues. During the first year of warming, tree basal area growth was reduced for Picea, but not Larix trees. Growth responses for the woody shrub vegetation remains highly variable with a trend towards increasing growth with warming. Elevated CO2 enhancements of growth are not yet evident in the data. Second-year results will also be reported. Long-term hypotheses for increased woody plant growth under warming include potential enhancements driven by increased nutrient availability from warming induced decomposition of surface peats.
Manninen, Sirkku; Zverev, Vitali; Bergman, Igor; Kozlov, Mikhail V
2015-12-01
Boreal coniferous forests act as an important sink for atmospheric carbon dioxide. The overall tree carbon (C) sink in the forests of Europe has increased during the past decades, especially due to management and elevated nitrogen (N) deposition; however, industrial atmospheric pollution, primarily sulphur dioxide and heavy metals, still negatively affect forest biomass production at different spatial scales. We report local and regional changes in forest aboveground biomass, C and N concentrations in plant tissues, and C and N pools caused by long-term atmospheric emissions from a large point source, the nickel-copper smelter in Monchegorsk, in north-western Russia. An increase in pollution load (assessed as Cu concentration in forest litter) caused C to increase in foliage but C remained unchanged in wood, while N decreased in foliage and increased in wood, demonstrating strong effects of pollution on resource translocation between green and woody tissues. The aboveground C and N pools were primarily governed by plant biomass, which strongly decreased with an increase in pollution load. In our study sites (located 1.6-39.7 km from the smelter) living aboveground plant biomass was 76 to 4888 gm(-2), and C and N pools ranged 35-2333 g C m(-2) and 0.5-35.1 g N m(-2), respectively. We estimate that the aboveground plant biomass is reduced due to chronic exposure to industrial air pollution over an area of about 107,200 km2, and the total (aboveground and belowground) loss of phytomass C stock amounts to 4.24×10(13) g C. Our results emphasize the need to account for the overall impact of industrial polluters on ecosystem C and N pools when assessing the C and N dynamics in northern boreal forests because of the marked long-term negative effects of their emissions on structure and productivity of plant communities. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Holder, J.; Riches, M.; Abeleira, A.; Farmer, D.
2017-12-01
Accurate prediction of both climate and air quality under a changing earth system requires a full understanding of the sources, feedbacks, and ultimate fate of all atmospherically relevant chemical species, including volatile organic compounds (VOCs). Biogenic VOCs (BVOC) from plant emissions are the main source of VOCs to the atmosphere. However, the impact of global change on BVOC emissions is poorly understood. For example, while short-term increases in temperature are typically associated with increased BVOC emissions, the impact of long-term temperature increases are less clear. Our study aims to investigate the effects of long-term, singular and combined environmental perturbations on plant BVOC emissions through the use of whole plant chambers in order to better understand the effects of global change on BVOC-climate-air quality feedbacks. To fill this knowledge gap and provide a fundamental understanding of how BVOC emissions respond to environmental perturbations, specifically elevated temperature, CO2, and drought, whole citrus trees were placed in home-built chambers and monitored for monoterpene and other BVOC emissions utilizing thermal desorption gas chromatography mass spectrometry (TD-GC-MS). Designing and building a robust whole plant chamber to study atmospherically relevant chemical species while accommodating the needs of live plants over timescales of days to weeks is not a trivial task. The environmental conditions within the chamber must be carefully controlled and monitored. The inter-plant and chamber variability must be characterized. Finally, target BVOCs need to be sampled and detected from the chamber. Thus, the chamber design, control and characterization considerations along with preliminary BVOC results will be presented and discussed.
NASA Astrophysics Data System (ADS)
Verma, Santosh Kumar; Kawamura, Kimitaka; Chen, Jing; Fu, Pingqing
2018-01-01
In order to understand the atmospheric transport of bioaerosols, we conducted long-term observations of primary sugars and sugar alcohols over remote Chichijima Island in the western North Pacific from 2001 to 2013. Our results showed that concentrations of total sugar compounds for 13 years ranged from 1.2 to 310 ng m-3 (average of 46 ± 49 ng m-3). We found that atmospheric circulations significantly affect the seasonal variations of bioaerosol distributions over the western North Pacific. The primary sugars (glucose and fructose) maximized in summer, possibly due to an increased emission of the vegetation products from local vascular plants in Chichijima. We also found higher concentrations of sugar components (arabitol, mannitol, and trehalose) in more recent years during summer and autumn, suggesting an enhanced emission of fungal and microbial species over the island. Sucrose peaked in late winter to early spring, indicating a springtime pollen contribution by long-range atmospheric transport, while elevated concentrations of sucrose in early summer could be explained by long-range transport of soil dust from Southeast Asia to Chichijima. Sucrose and trehalose were found to present increasing trends from 2001 to 2013, while total sugar components did not show any clear trends during the 13-year period. Positive matrix factorization analyses suggested the locally emitted sugar compounds as well as long-range-transported airborne pollen grains, microbes, and fungal spores are the major contributors to total sugar compounds in the Chichijima aerosols. Backward air mass trajectories support the atmospheric transport of continental aerosols from the Asian continent during winter and spring over Chichijima.
Preface to Long-term trends in the upper atmosphere and ionosphere
NASA Astrophysics Data System (ADS)
Laštovička, J.; Lübken, F.-J.
2017-10-01
The anthropogenic emissions of greenhouse gases influence the atmosphere at nearly all altitudes between the ground and the topside ionosphere and upper thermosphere, thus affecting not only life on the surface, but also the space-based technological systems on which we increasingly rely. This special issue deals with long-term trends in the mesosphere, thermosphere, ionosphere, and partly also in the stratosphere, which are predominantly (but not only) caused by anthropogenic factors, particularly by the increasing concentration of carbon dioxide in the atmosphere. The special issue is based on selected papers from the 9th IAGA/ICMA/SCOSTEP workshop ;Long-Term Changes and Trends in the Atmosphere; held in September 2016 in Kühlungsborn, Germany. The 10th workshop will be held in June 2018 in Hefei, China.
Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M; Belnap, Jayne; Evans, R David; Kuske, Cheryl R
2012-12-01
Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Steven, Blaire; Gallegos-Graves, La Verne; Yeager, Chris M.; Belnap, Jayne; Evans, R. David; Kuske, Cheryl R.
2012-01-01
Biological soil crusts (biocrusts) cover soil surfaces in many drylands globally. The impacts of 10 years of elevated atmospheric CO2 on the cyanobacteria in biocrusts of an arid shrubland were examined at a large manipulated experiment in Nevada, USA. Cyanobacteria-specific quantitative PCR surveys of cyanobacteria small-subunit (SSU) rRNA genes suggested a reduction in biocrust cyanobacterial biomass in the elevated CO2 treatment relative to the ambient controls. Additionally, SSU rRNA gene libraries and shotgun metagenomes showed reduced representation of cyanobacteria in the total microbial community. Taxonomic composition of the cyanobacteria was similar under ambient and elevated CO2 conditions, indicating the decline was manifest across multiple cyanobacterial lineages. Recruitment of cyanobacteria sequences from replicate shotgun metagenomes to cyanobacterial genomes representing major biocrust orders also suggested decreased abundance of cyanobacteria sequences across the majority of genomes tested. Functional assignment of cyanobacteria-related shotgun metagenome sequences indicated that four subsystem categories, three related to oxidative stress, were differentially abundant in relation to the elevated CO2 treatment. Taken together, these results suggest that elevated CO2 affected a generalized decrease in cyanobacteria in the biocrusts and may have favoured cyanobacteria with altered gene inventories for coping with oxidative stress.
Preliminary studies of elevated atmospheric CO/sub 2/ on conifers, May 1-December 30, 1985
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helms, J.A.
1985-01-01
The original scope of work consisted of two parts: Intensive physiological studies of Pinus ponderosa seedlings and saplings that were continuously exposed to various levels of CO/sub 2/ and SO/sub 2/ in open-topped chambers. Site selection and preparation in anticipation of DOE approval of a proposed 5-year project on effects of long-term exposure of forest vegetation to enhanced CO/sub 2/. Establishment of 5 Nelder-type plots utilizing 5 western conifers to permit fundamental studies on the physiological bases of tree-to-tree competition. Because the DOE project was not funded, site selection was abandoned.
The Isotopic Record of Elevation Thresholds in Continental Plateaus to Atmospheric Circulation
NASA Astrophysics Data System (ADS)
Mulch, A.; Chamberlain, C. P.; Graham, S. A.; Teyssier, C.; Cosca, M. A.
2011-12-01
High-elevation orogenic plateaus and mountain ranges exert a strong control on global climate and precipitation patterns and interact with lithospheric and upper mantle tectonic processes as well as atmospheric circulation. Reconstructing the history of surface elevation thus not only provides a critical link between erosional and tectonic processes but also ties Earth surface processes to the long-term climate history of our planet. This interaction, however, has important implications when using stable isotopes (O, H) as proxies for landscape and terrestrial climate evolution as interacting land surface properties (elevation, relief, vegetation cover) and atmospheric circulation patterns (upstream moisture path) may attain threshold conditions that can cloak or amplify the impact of topography on isotopes in precipitation. A large number of stable isotope studies in lacustrine and pedogenic environments of intermontane basins record the isotopic and sedimentologic fingerprint of the evolving landscape of the Cenozoic western North American Cordillera. In general we observe the onset of strong oxygen isotope in precipitation gradients along the eastward and westward flanks of the Cordilleran orogen and associated 18O-depleted moisture within the Cordilleran hinterland to develop no later than 50-55 Ma in British Columbia and Washington, 49 Ma in Montana, and 39-40 Ma in Nevada. However, some of these shifts to very low oxygen isotope compositions in meteoric water occur at rates that by far exceed those that could be attributed to tectonic surface uplift alone. Here we present a multi-proxy approach from the Elko Basin (NV) that ties stable and radiogenic tracers of landscape evolution with high resolution Ar-Ar geochronology. In pedogenic and lacustrine deposits of the Elko basin we observe a change in oxygen isotope ratios that is far too large (6-8 %) and rapid (<200 000 a) to be solely due to changes in elevation. Rather we suggest that the combined effects of developing topography and relief and changing global climate conditions during the Mid Eocene climatic optimum interacted to change atmospheric moisture transport. We suggest that such rapid changes in rainfall composition may be relatively common in evolving plateau regions once critical relief and elevation conditions are attained and caution against using stable isotope paleoaltimetry in regions with relatively poor age control where such effects may easily be mistaken as changes in absolute paleoelevation of the plateau region. On the other hand, such highly resolved terrestrial isotope records provide extremely valuable information when trying to recover how landscape evolution interacted with atmospheric moisture transport across the continents and the terrestrial biosphere during times of paleoclimate change.
On the causes of mid-Pliocene warmth and polar amplification
Lunt, Daniel J.; Haywood, Alan M.; Schmidt, Gavin A.; Salzmann, Ulrich; Valdes, Paul J.; Dowsett, Harry J.; Loptson, Claire A.
2012-01-01
The mid-Pliocene (~ 3 to 3.3 Ma ago), is a period of sustained global warmth in comparison to the late Quaternary (0 to ~ 1 Ma ago), and has potential to inform predictions of long-term future climate change. However, given that several processes potentially contributed, relatively little is understood about the reasons for the observed warmth, or the associated polar amplification. Here, using a modelling approach and a novel factorisation method, we assess the relative contributions to mid-Pliocene warmth from: elevated CO2, lowered orography, and vegetation and ice sheet changes. The results show that on a global scale, the largest contributor to mid-Pliocene warmth is elevated CO2. However, in terms of polar amplification, changes to ice sheets contribute significantly in the Southern Hemisphere, and orographic changes contribute significantly in the Northern Hemisphere. We also carry out an energy balance analysis which indicates that that on a global scale, surface albedo and atmospheric emmissivity changes dominate over cloud changes. We investigate the sensitivity of our results to uncertainties in the prescribed CO2 and orographic changes, to derive uncertainty ranges for the various contributing processes.
Temperature sensitivity of organic-matter decay in tidal marshes
Kirwan, Matthew L.; Guntenspergen, Glenn R.; Langley, J.A.
2014-01-01
Approximately half of marine carbon sequestration takes place in coastal wetlands, including tidal marshes, where organic matter contributes to soil elevation and ecosystem persistence in the face of sea-level rise. The long-term viability of marshes and their carbon pools depends, in part, on how the balance between productivity and decay responds to climate change. Here, we report the sensitivity of labile soil organic-matter decay in tidal marshes to seasonal and latitudinal variations in temperature measured over a 3-year period. We find a moderate increase in decay rate at warmer temperatures (3-6% per °C, Q10 = 1.3-1.5). Despite the profound differences between microbial metabolism in wetlands and uplands, our results indicate a strong conservation of temperature sensitivity. Moreover, simple comparisons with organic-matter production suggest that elevated atmospheric CO2 and warmer temperatures will accelerate carbon accumulation in marsh soils, and potentially enhance their ability to survive sea-level rise.
Cherry, J.A.; McKee, K.L.; Grace, J.B.
2009-01-01
1. Sea-level rise, one indirect consequence of increasing atmospheric CO2, poses a major challenge to long-term stability of coastal wetlands. An important question is whether direct effects of elevated CO 2 on the capacity of marsh plants to accrete organic material and to maintain surface elevations outweigh indirect negative effects of stressors associated with sea-level rise (salinity and flooding). 2. In this study, we used a mesocosm approach to examine potential direct and indirect effects of atmospheric CO2 concentration, salinity and flooding on elevation change in a brackish marsh community dominated by a C3 species, Schoenoplectus americanus, and a C4 grass, Spartina patens. This experimental design permitted identification of mechanisms and their role in controlling elevation change, and the development of models that can be tested in the field. 3. To test hypotheses related to CO2 and sea-level rise, we used conventional anova procedures in conjunction with structural equation modelling (SEM). SEM explained 78% of the variability in elevation change and showed the direct, positive effect of S. americanus production on elevation. The SEM indicated that C3 plant response was influenced by interactive effects between CO2 and salinity on plant growth, not a direct CO2 fertilization effect. Elevated CO2 ameliorated negative effects of salinity on S. americanus and enhanced biomass contribution to elevation. 4. The positive relationship between S. americanus production and elevation change can be explained by shoot-base expansion under elevated CO 2 conditions, which led to vertical soil displacement. While the response of this species may differ under other environmental conditions, shoot-base expansion and the general contribution of C3 plant production to elevation change may be an important mechanism contributing to soil expansion and elevation gain in other coastal wetlands. 5. Synthesis. Our results revealed previously unrecognized interactions and mechanisms contributing to marsh elevation change, including amelioration of salt stress by elevated CO2 and the importance of plant production and shoot-base expansion for elevation gain. Identification of biological processes contributing to elevation change is an important first step in developing comprehensive models that permit more accurate predictions of whether coastal marshes will persist with continued sea-level rise or become submerged. ?? 2008 The Authors.
Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua
2015-09-23
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.
Jia, Xia; Zhao, YongHua; Wang, WenKe; He, Yunhua
2015-01-01
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and l-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings. PMID:26395070
NASA Astrophysics Data System (ADS)
Jia, Xia; Zhao, Yonghua; Wang, Wenke; He, Yunhua
2015-09-01
The objective of this study was to investigate the effects of slightly elevated atmospheric temperature in the spring on photosynthetic products in wheat seedlings and on organic compounds and biological activity in rhizosphere soil under cadmium (Cd) stress. Elevated temperature was associated with increased soluble sugars, reducing sugars, starch, and total sugars, and with decreased amino acids in wheat seedlings under Cd stress. Elevated temperature improved total soluble sugars, free amino acids, soluble phenolic acids, and organic acids in rhizosphere soil under Cd stress. The activity of amylase, phenol oxidase, invertase, β-glucosidase, and L-asparaginase in rhizosphere soil was significantly improved by elevated temperature under Cd stress; while cellulase, neutral phosphatase, and urease activity significantly decreased. Elevated temperature significantly improved bacteria, fungi, actinomycetes, and total microorganisms abundance and fluorescein diacetate activity under Cd stress. In conclusion, slightly elevated atmospheric temperature in the spring improved the carbohydrate levels in wheat seedlings and organic compounds and biological activity in rhizosphere soil under Cd stress in the short term. In addition, elevated atmospheric temperature in the spring stimulated available Cd by affecting pH, DOC, phenolic acids, and organic acids in rhizosphere soil, which resulted in the improvement of the Cd uptake by wheat seedlings.
NASA Astrophysics Data System (ADS)
Fuss, Colin B.; Driscoll, Charles T.; Campbell, John L.
2015-11-01
Atmospheric acid deposition of sulfate and nitrate has declined markedly in the northeastern United States due to emissions controls. We investigated long-term trends in soil water (1984-2011) and stream water (1982-2011) chemistry along an elevation gradient of a forested watershed to evaluate the progress of recovery of drainage waters from acidic deposition at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA. We found slowed losses of base cations from soil and decreased mobilization of dissolved inorganic aluminum. Stream water pH at the watershed outlet increased at a rate of 0.01 units yr-1, and the acid neutralizing capacity (ANC) gained 0.88 µeq L-1 yr-1. Dissolved organic carbon generally decreased in stream water and soil solutions, contrary to trends observed at many North American and European sites. We compared whole-year hydrochemical trends with those during snowmelt, which is the highest-flow and lowest ANC period of the year, indicative of episodic acidification. Stream water during snowmelt had long-term trends of increasing ANC and pH at a rate very similar to the whole-year record, with closely related steady decreases in sulfate. A more rapid decline in stream water nitrate during snowmelt compared with the whole-year trend may be due, in part, to the marked decrease in atmospheric nitrate deposition during the last decade. The similarity between the whole-year trends and those of the snowmelt period is an important finding that demonstrates a consistency between recovery from chronic acidification during base flow and abatement of snowmelt acidification.
Atmospheric deposition and ozone levels in Swiss forests: are critical values exceeded?
Waldner, Peter; Schaub, Marcus; Graf Pannatier, Elisabeth; Schmitt, Maria; Thimonier, Anne; Walthert, Lorenz
2007-05-01
Air pollution affects forest health through atmospheric deposition of acidic and nitrogen compounds and elevated levels of tropospheric ozone (O3). In 1985, a monitoring network was established across Europe and various research efforts have since been undertaken to define critical values. We measured atmospheric deposition of acidity and nitrogen as well as ambient levels of O3 on 12, 13, and 14 plots, respectively, in the framework of the Swiss Long-Term Forest Ecosystem Research (LWF) in the period from 1995 to 2002. We estimated the critical loads of acidity and of nitrogen, using the steady state mass balance approach, and calculated the critical O3 levels using the AOT40 approach. The deposition of acidity exceeded the critical loads on 2 plots and almost reached them on 4 plots. The median of the measured molar ratio of base nutrient cations to total dissolved aluminium (Bc/Al) in the soil solution was higher than the critical value of 1 for all depths, and also at the plots with an exceedance of the critical load of acidity. For nitrogen, critical loads were exceeded on 8 plots and deposition likely represents a long-term ecological risk on 3 to 10 plots. For O3, exceedance of critical levels was recorded on 12 plots, and led to the development of typical O3-induced visible injury on trees and shrubs, but not for all plots due to (1) the site specific composition of O3 sensitive and tolerant plant species, and (2) the influence of microclimatic site conditions on the stomatal behaviour, i.e., O3 uptake.
NASA Astrophysics Data System (ADS)
Campbell, D. H.; Mast, M. A.; Clow, D. W.; Ingersoll, G. P.; Nanus, L.
2004-12-01
Wilderness areas and national parks of the West are largely protected from acute changes in land use such as urbanization and natural resource development. However, the ecosystems in these areas are sensitive to both climate variability and atmospheric deposition of acids, nitrogen (N), and toxic contaminants, and these stressors interact in ways that we are just beginning to understand. Here we examine some examples of the interactions between climate variability and nitrogen and mercury cycling in high elevation watersheds. During the recent drought, which began in 2000, streamwater nitrate concentrations nearly doubled in the Loch Vale watershed in Rocky Mountain National Park, exceeding 60 μ M during early snowmelt. Much of the elevated nitrate resulted from an increased percentage contribution to streamwater of nitrate-rich shallow groundwater. In a nearby pond used for breeding by a threatened amphibian species, nitrate concentrations were negligible but ammonium concentrations were extremely high (850 μ M) during the drought. In this case, organic N in pond sediments was likely mineralized and released during cycles of drying and rewetting of pond sediments. Even after 2 years of near-average precipitation, water levels remained below normal and ammonium concentrations remained elevated, indicating that the hydrologic response of this small system has a timescale of many years. Mercury (Hg) deposition at high elevations of the Rocky Mountains is comparable to that of the Midwest and Northeast, but the processes that control Hg cycling in alpine/subalpine ecosystems are not well understood. Methylation and bioaccumulation of Hg must occur before Hg reaches levels harmful to the ecosystem or human health, and both climate and nutrient cycling affect these processes. Fluctuating water levels caused by climate variability can mobilize Hg from lake and pond sediments, increasing reactivity and bioavailability of Hg in the ecosystem. Increased nutrient release from the terrestrial ecosystem (eg. from N saturation) may increase productivity and accumulation of organic matter, altering Hg cycling in the aquatic system. Long durations of ice cover and thick snowpacks are likely to cause elevated methyl Hg in aquatic ecosystems. Snow and ice cover on lakes promotes hypoxia in lake water, favoring production and accumulation of methyl Hg- the percentage of methyl-Hg in lake water under snow and ice was as much as 6 times greater than the percentage measured during late summer in a northwestern Colorado lake. Analysis of long-term trends indicates that climate variability is increasing in the Mountain West. Climatic extremes appear to exacerbate adverse impacts of atmospheric deposition, as well as stressing ecosystems directly. A better understanding of these interactions is needed in order to predict the response of mountain ecosystems to future changes in climate and atmospheric deposition.
Matson, Amanda L; Corre, Marife D; Veldkamp, Edzo
2014-12-01
Although the canopy can play an important role in forest nutrient cycles, canopy-based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using (15) N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4 (+) transformations decreased with increasing elevation; gross rates of NO3 (-) transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient-addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long-term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Hess, N. J.; Tfaily, M.; Evans, R. D.; Koyama, A.
2017-12-01
Little is known about how soils in arid ecosystems will respond to rising atmospheric CO2 concentration yet arid and semi-arid ecosystems cover more than 40% of Earth's land surface. Previous work in the Mojave Desert (Evans et al., 2014 Nature Climate Change) reported higher soil organic carbon (SOC) and total nitrogen (N) concentrations following 10 years exposure to elevated atmospheric CO2 at the Nevada Desert Free-Air-Carbon dioxide-Enrichment (FACE) Facility (NDFF). In this study, we investigated potential mechanisms that resulted in increased SOC and total N accumulation and stabilization using high resolution mass spectrometry at the NDFF site. Samples were collected from soil profiles to 1 m in depth with a 0.2 m a increment under the dominant evergreen shrub Larrea tridentata. The differences in the molecular composition and diversity of soil organic matter (SOM) were more evident in surface soils and declined with depth, and were consistent with higher SOC and total N concentrations under elevated than ambient CO2. Our molecular analysis also suggested increased root exudation and/or microbial necromass from stabilization of labile C and N contributed to SOM and N stocks. Increased microbial activity and metabolism under elevated CO2 compared to ambient plots suggested that elevated CO2 altered microbial carbon (C) use patterns, reflecting changes in the quality and quantity of SOC inputs. We found that plant-derived compounds were primary substrates for microbial activity under elevated CO2 and microbial products were the main constituents of stabilized SOM. Our results suggest that arid ecosystems are a potential large C sink under elevated CO2, give the extensive coverage of the land surface, and that labile compounds are transformed to stable SOM via microbial processes. Arid systems are limited by water, and thus may have a different C storage potential under changing climates than other ecosystems that are limited by nitrogen or phosphorus.
Can increasing CO2 cool Antarctica?
NASA Astrophysics Data System (ADS)
Schmithuesen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter
2014-05-01
CO2 is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. Our investigations show, that for the high elevated areas of Antarctica the greenhouse effect (GHE) of CO2 is commonly around zero or even negative. This is based on the quantification of GHE as the difference between long-wave surface emission and top of atmosphere emission. We demonstrate this behaviour with the help of three models: a simple two-layer model, line-by-line calculations, and an ECMWF experiment. Additionally, in this region an increase in CO2 concentration leads to an instantaneous increased long-wave energy loss to space, which is a cooling effect on the earth-atmosphere system. However, short-wave warming by the weak absorption of solar radiation by CO2 are not taken into account here. The reason for this counter-intuitive behaviour is the fact that in the interior of Antarctica the surface is often colder than the stratosphere above. Radiation from the surface in the atmospheric window emitted to space is then relatively lower compared to radiation in the main CO2 band around 15 microns, which originates mostly from the stratosphere. Increasing CO2 concentration leads to increasing emission from the atmosphere to space, while blocking additional portions of surface emission. If the surface is colder than the stratosphere, this leads to additional long-wave energy loss to space for increasing CO2. Our findings for central Antarctica are in strong contrast to the generally known effect that increasing CO2 has on the long-wave emission to space, and hence on the Antarctic climate.
Hung, H; Blanchard, P; Halsall, C J; Bidleman, T F; Stern, G A; Fellin, P; Muir, D C G; Barrie, L A; Jantunen, L M; Helm, P A; Ma, J; Konoplev, A
2005-04-15
The Northern Contaminants Program (NCP) baseline monitoring project was established in 1992 to monitor for persistent organic pollutants (POPs) in Arctic air. Under this project, weekly samples of air were collected at four Canadian and two Russian arctic sites, namely Alert, Nunavut; Tagish, Yukon; Little Fox Lake, Yukon; Kinngait, Nunavut; Dunai Island, Russia and Amderma, Russia. Selected POPs, including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine (OC) pesticides, were analyzed in both the gas and particulate phases. This paper summarizes results obtained from this project in the past 5 years. Temporal trends were developed for atmospheric PCBs and OCs observed at Alert using a digital filtration (DF) technique. It was found that trends developed with 5 years of data (1993-1997) did not differ significantly from those determined with 7 years of data (1993-1999). This implies that with the DF technique, long-term trends can still be developed with less than 10 years of data. An acceleration in decline of OC and PCB air concentrations was noted in 1999 for some compounds, although the reason is unknown. Monitoring efforts must continue to assess the effect of this decline on the long-term trends of POPs in the Canadian Arctic. Occasional high trans-/cis-chlordane ratios and heptachlor air concentrations measured at Alert between 1995 and 1997 suggests sporadic fresh usage of chlordane-based pesticides. However, significant decreasing trends of chlordanes along with their chemical signatures has provided evidence that emission of old soil residues is replacing new usage as an important source to the atmosphere. Measurements of OC air concentrations conducted at Kinngait in 1994-1995 and 2000-2001 indicated faster OC removal at this location than at Alert. This may be attributed to the proximity of Kinngait to temperate regions where both biotic and abiotic degradation rates are faster. The PAH concentrations observed at Alert mimic those at mid-latitudes and are consistent with long-range transport to the Arctic, particularly for the lighter PAHs. A decline in particulate PAH was observed, similar to atmospheric sulphate aerosol and can be attributed to the collapse of industrial activity in the former Soviet Union between 1991 and 1995. Spatial comparisons of OC seasonality at Alert, Tagish, Dunai and Kinngait show elevated air concentrations of some compounds in spring. However, elevated spring concentrations were observed for different compounds at different sites. Potential causes are discussed. Further investigation in the atmospheric flow pattern in spring which is responsible for the transport of POPs into the Arctic is required. OC and PCB air concentrations at Alert were found to be influenced by two climate variation patterns, the North Atlantic Oscillation (NAO) and the Pacific North American (PNA) pattern. Planetary atmospheric patterns must be taken into account in the global prediction and modelling of POPs in the future.
Burns, Douglas A.
2002-01-01
The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7 kilograms per hectare per year ((kg/ha)/yr) of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. The Rocky Mountain National Park, in its role of protecting air-quality related values under provisions of the Clean Air Act Amendments of 1977, has provided support for this synthesis and critical assessment of published literature on the effects of atmospheric N deposition. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but no region-wide increase during the past 2 decades, although the rate of atmospheric N deposition has increased at three sites east of the Continental Divide in the Front Range region since the mid-1980s. Much of the increase in atmospheric N deposition at all three sites has resulted from an increase in the ammonium concentrations of wet deposition; this suggests an increase in contributions from agricultural areas or from vehicle traffic east of the Rocky Mountains. Lakes at two study sites in the Front Range (Loch Vale and Green Lakes Valley) had NO3- concentrations of 30 to 40 micromoles per liter (µmol/L) during early spring snowmelt and remained at 5 to 10 µmol/L during summer. Retention of N in atmospheric wet deposition in some sub-catchments of these lakes was less than 50 percent, which reflects an advanced stage of N saturation. Nitrate concentrations in surface waters west of the Continental Divide were lower—often less than 10 µmol/L during snowmelt and less than 2 µmol/L during summer -- than surface waters east of the Divide, except in areas such as the Mt. Zirkel Wilderness that receive elevated amounts of atmospheric N deposition of 4 to 5 (kg/ha)/yr. Atmospheric N deposition in the Front Range east of the Divide may have altered the composition of alpine tundra-plant communities and lake diatoms, but additional studies would be needed to definitively demonstrate the hypothesized cause-and-effect relations. Rates of N-mineralization and nitrification in soils of the Front Range have increased in response to increased atmospheric N deposition. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. The likelihood of future increased N emissions along the Front Range warrants a continuation of existing long-term precipitation and surface-water chemistry monitoring programs, and an expansion of the networks into areas that receive large amounts of atmospheric N deposition, but currently lack adequate monitoring. Long-term study and expanded sampling are needed to address uncertainties about the effects of atmospheric N deposition on terrestrial plant communities, nutrient limitation in lake plankton, shifts of dominant species within diatom communities, and on amphibian response to episodic surface-water acidification.
NASA Astrophysics Data System (ADS)
Sulman, B. N.; Brzostek, E. R.; Menge, D.; Malyshev, S.; Shevliakova, E.
2017-12-01
Earth System Model (ESM) projections of terrestrial carbon (C) uptake are critical to understanding the future of the global C cycle. Current ESMs include intricate representations of photosynthetic C fixation in plants, allowing them to simulate the stimulatory effect of increasing atmospheric CO2 levels on photosynthesis. However, they lack sophisticated representations of plant nutrient acquisition, calling into question their ability to project the future land C sink. We conducted simulations using a new model of terrestrial C and nitrogen (N) cycling within the Geophysical Fluid Dynamics Laboratory (GFDL) global land model LM4 that uses a return on investment framework to simulate global patterns of N acquisition via fixation of N2 from the atmosphere, scavenging of inorganic N from soil solution, and mining of organic N from soil organic matter (SOM). We show that these strategies drive divergent C cycle responses to elevated CO2 at the ecosystem scale, with the scavenging strategy leading to N limitation of plant growth and the mining strategy facilitating stimulation of plant biomass accumulation over decadal time scales. In global simulations, shifts in N acquisition from inorganic N scavenging to organic N mining along with increases in N fixation supported long-term acceleration of C uptake under elevated CO2. Our results indicate that the ability of the land C sink to mitigate atmospheric CO2 levels is tightly coupled to the functional diversity of ecosystems and their capacity to change their N acquisition strategies over time. Incorporation of these mechanisms into ESMs is necessary to improve confidence in model projections of the global C cycle.
Analysis of shoreline and geomorphic change for Breton Island, Louisiana, from 1869 to 2014
Terrano, Joseph F.; Flocks, James G.; Smith, Kathryn E. L.
2016-04-19
Many barrier islands in the United States are eroding and losing elevation substantively because of storm surge, waves, and sea-level changes. This is particularly true for the deltaic barrier system in Louisiana. Breton Island is near the mouth of the Mississippi River at the southern end of the Chandeleur barrier island chain in southeast Louisiana. This report expands on previous geomorphic studies of Breton Island by incorporating additional historic and recent datasets. Multiple analyses focus on longand short-term shoreline change, as well as episodic events and anthropogenic modification. Analyses periods include long term (1869–2014), long-term historic (1869–1950), post-Mississippi River-Gulf Outlet (1950–2014), pre/post-Hurricane Katrina (2004–5), and recent (2005–14). In addition to shoreline change, barrier island geomorphology is evaluated using island area, elevation, and sediment volume change. In the long term (1869–2014), Breton Island was affected by landward transgression, island narrowing, and elevation loss. Major storm events exacerbated the long-term trends. In the recent period (2005–14), Breton Island eroded at a slower rate than in the long-term and gained area and total sediment volume. The recent accretion is likely because of the lack of major storms since Hurricane Katrina in 2005.
Stable isotope paleoaltimetry and the evolution of landscapes and life
NASA Astrophysics Data System (ADS)
Mulch, Andreas
2016-01-01
Reconstructing topography of our planet not only advances our knowledge of the geodynamic processes that shape the Earth's surface; equally important it adds a key element towards understanding long-term continental moisture transport, atmospheric circulation and the distribution of biomes and biodiversity. Stable isotope paleoaltimetry exploits systematic decreases in the oxygen (δ18O) or hydrogen (δD) isotopic composition of precipitation along a mountain front when the interaction of topography and advected moist air masses induces orographic precipitation. These changes in δ18O or δD can be recovered from the geologic record and recent geochemical and modeling advances allow a broad range of proxy materials to be evaluated. Over the last 10 yr stable isotope paleoaltimetry has witnessed rapidly expanding research activities and has produced a broad array of fascinating tectonic and geomorphologic studies many of which have concentrated on determining the elevation history of continental plateau regions. These single-site studies have greatly expanded what used to be very sparse global paleoaltimetric data. The challenge now lies in disentangling the surface uplift component from the impact of climate change on δ18O and δD in precipitation. The robustness of stable isotope paleoaltimetry can be enhanced when high-elevation δ18O or δD data are referenced against low-elevation sites that track climate-modulated sea level δ18O or δD of precipitation through time (' δ- δ approach'). Analysis of central Andean paleosols documents that differences in δ18O of soil carbonate between the Subandean foreland and the Bolivian Altiplano are small between 11 and 7 Ma but rise rapidly to ca. 2.9‰ after 7 Ma, corroborating the magnitude of late Miocene change in δ18O on the Altiplano. Future advances in stable isotope paleoaltimetry will greatly benefit from addressing four key challenges: (1) Identifying topographically-induced changes in atmospheric circulation and associated teleconnections in the global climate system that affect δ18O or δD of precipitation; (2) Evaluating on a case-by-case basis if temporal and spatial changes in isotope lapse rates influence interpretations of paleoelevation; (3) Interfacing with phylogenetic techniques to evaluate competing hypotheses with respect to the timing of surface uplift and the diversification of lineages; (4) Characterizing feedbacks between changes in surface elevation and atmospheric circulation as these are likely to be equally important to the diversification of lineages than changes in surface elevation alone. Tackling these challenges will benefit from the accelerating pace of improved data-model comparisons and rapidly evolving geochemical techniques for reconstructing precipitation patterns. Most importantly, stable isotope paleoaltimetry has the potential to develop into a truly interdisciplinary field if innovative tectonic/paleoclimatic and evolutionary biology/phylogenetic approaches are integrated into a common research framework. It therefore, opens new avenues to study the long-term evolution of landscapes and life.
Henneberger, P K; Cumro, D; Deubner, D D; Kent, M S; McCawley, M; Kreiss, K
2001-04-01
Workers at a beryllium ceramics plant were tested for beryllium sensitization and disease in 1998 to determine whether the plant-wide prevalence of sensitization and disease had declined since the last screening in 1992; an elevated prevalence was associated with specific processes or with high exposures; exposure-response relationships differed for long-term workers hired before the last plant-wide screening and short-term workers hired since then. Current workers were asked to complete a questionnaire and to provide blood for the beryllium lymphocyte proliferation test (BeLPT). Those with an abnormal BeLPT were classified as sensitized, and were offered clinical evaluation for beryllium disease. Task- and time-specific measurements of airborne beryllium were combined with individual work histories to compute mean, cumulative, and peak beryllium exposures for each worker. The 151 participants represented 90% of 167 eligible workers. Fifteen (9.9% of 151) had an abnormal BeLPT and were split between long-term workers (8/77 = 10.4%) and short-term workers (7/74 = 9.5%). Beryllium disease was detected in 9.1% (7/77) of long-term workers but in only 1.4% (1/74) of short-term workers (P = 0.06), for an overall prevalence of 5.3% (8/151). These prevalences were similar to those observed in the earlier survey. The prevalence of sensitization was elevated in 1992 among machinists, and was still elevated in 1998 among long-term workers (7/40 = 18%) but not among short-term workers (2/36 = 6%) with machining experience. The prevalence of sensitization was also elevated in both groups of workers for the processes of lapping, forming, firing, and packaging. The data suggested a positive relationship between peak beryllium exposure and sensitization for long-term workers and between mean, cumulative, and peak exposure and sensitization for short-term workers, although these findings were not statistically significant. Long-term workers with either a high peak exposure or work experience in forming were more likely to have an abnormal BeLPT (8/51 = 16%) than the other long-term workers (0/26, P = 0.05). All seven sensitized short-term workers either had high mean beryllium exposure or had worked longest in forming or machining (7/55 = 13% versus 0/19, P = 0.18). A plant-wide decline in beryllium exposures between the 1992 and 1998 surveys was not matched by a decline in the prevalence of sensitization and disease. Similar to findings from other studies, beryllium sensitization/disease was associated with specific processes and elevated exposures. The contrast in disease prevalence between long-term and short-term workers suggests that beryllium sensitization can occur after a short period of exposure, but beryllium disease usually requires a longer latency and/or period of exposure. The findings from this study motivated interventions to more aggressively protect and test workers, and new research into skin exposure as a route of sensitization and the contribution of individual susceptibility.
Irigoyen, J J; Goicoechea, N; Antolín, M C; Pascual, I; Sánchez-Díaz, M; Aguirreolea, J; Morales, F
2014-09-01
Continued emissions of CO2, derived from human activities, increase atmospheric CO2 concentration. The CO2 rise stimulates plant growth and affects yield quality. Effects of elevated CO2 on legume quality depend on interactions with N2-fixing bacteria and mycorrhizal fungi. Growth at elevated CO2 increases photosynthesis under short-term exposures in C3 species. Under long-term exposures, however, plants generally acclimate to elevated CO2 decreasing their photosynthetic capacity. An updated survey of the literature indicates that a key factor, perhaps the most important, that characteristically influences this phenomenon, its occurrence and extent, is the plant source-sink balance. In legumes, the ability of exchanging C for N at nodule level with the N2-fixing symbionts creates an extra C sink that avoids the occurrence of photosynthetic acclimation. Arbuscular mycorrhizal fungi colonizing roots may also result in increased C sink, preventing photosynthetic acclimation. Defoliation (Anthyllis vulneraria, simulated grazing) or shoot cutting (alfalfa, usual management as forage) largely increases root/shoot ratio. During re-growth at elevated CO2, new shoots growth and nodule respiration function as strong C sinks that counteracts photosynthetic acclimation. In the presence of some limiting factor, the legumes response to elevated CO2 is weakened showing photosynthetic acclimation. This survey has identified limiting factors that include an insufficient N supply from bacterial strains, nutrient-poor soils, low P supply, excess temperature affecting photosynthesis and/or nodule activity, a genetically determined low nodulation capacity, an inability of species or varieties to increase growth (and therefore C sink) at elevated CO2 and a plant phenological state or season when plant growth is stopped. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Photochemical Pollution over the suburban forest in Seoul South Korea
NASA Astrophysics Data System (ADS)
Kim, Saewung; Sanchez, Dianne; Jeong, Daun; Seco, Roger; Gu, Dasa; Guenther, Alex; Lee, Meehye
2017-04-01
We will present long term photo-chemical observations at Taehwa Research Forest a suburban forest near by Seoul Metropolitan Area a home of 23 million. The discussion is mainly about observations during KORUS-AQ 2016 a NASA-NIER collaborative field campaign in the late spring. There were a couple of pollution stagnation episodes during the campaign and we will present how intensified pollution elevate ozone forming potentials by interacting with BVOC from surrounding forest. During the campaign, we conducted a comprehensive suite of trace gas observations along with OH reactivity and radical precursor observations. We will comprehensively examine atmospheric oxidation capacity and reactivity to evaluate the accuracy of our photochemical understanding in diagnosing regional pollution.
NASA Technical Reports Server (NTRS)
Fogarty, Jennifer A.; Polk, James D.; Tarver, William J.; Gibson, Charles R.; Sargsyan, Ashot E.; Taddeo, Terrance A.; Alexander, David J.; Otto, Christian A.
2010-01-01
A. CO2 - Acute: Given the history of uneven removal of CO2 from spacecraft areas, there is a history of acute illness that impacts short-term health and performance. 1) Acute CO2 symptoms occur in space flight due to a combination of CO2 scrubbing limitations, microgravity-related lack of convection, and possibly interaction with microgravity-related physiological changes. 2) Reported symptoms mainly include headaches, malaise, and lethargy. Symptoms are treatable with analgesics, rest, temporarily increasing scrubbing capability, and breathing oxygen. This does not treat the underlying pathology. 3)ld prevent occurrence of symptoms. B. CO2 - Chronic: Given prolonged exposure to elevated CO2 levels, there is a history that the long-term health of the crew is impacted. 1) Chronic CO2 exposures occur in space flight due to a combination of CO2 scrubbing limitations and microgravity-related lack of convection, with possible contribution from microgravity-related physiological changes. 2) Since acute symptoms are experienced at levels significantly lower than expected, there are unidentified long-term effects from prolonged exposure to elevated CO2 levels on orbit. There have been long term effects seen terrestrially and research needed to further elucidate long term effects on orbit. 3) Recommended disposition: Research required to further elucidate long term effects. In particular, elucidation of the role of elevated CO2 on various levels of CO2 vasodilatation of intracranial blood vessels and its potential contribution to elevation of intracranial pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, P.S.; Snow, A.A.
1993-06-01
Rising atmospheric CO[sub 2] levels may lead to microevolutionary change in native plant populations. To test for within-population variation in genetic responses to elevated p(CO[sub 2]), we exposed five paternal sibships of wild radish to ambient and 2X ambient (700 [mu]bar) p(CO[sub 2]) in 3 m open top chambers for an entre growing season. Seeds were planted singly in 2.5 1 pots filled with locally derived, low fertility soil (160 plants per CO[sub 2] treatment). Net CO[sub 2] assimilation increased 25% in vegetative plants and 48% in reproductive plants growing at elevated p(CO[sub 2]). Every flower was hand-pollinated to mimicmore » natural pollination levels. Lifetime fecundity was greater in the elevated CO[sub 2] treatment, but the magnitude of this effect differed dramatically among paternal sibships: seed production increased 13% overall, yet among paternal sibships seed production varied between 0% and 50% more seeds in elevated p(CO[sub 2]) as compared to ambient. Our results suggest that natural selection can occur due to genotypic differences in the CO[sub 2] response. This process should be considered in estimates of long-term effects of elevated p(CO[sub 2]), especially with regard to anticipated increases in primary productivity.« less
Hungate, Bruce A; Dijkstra, Paul; Wu, Zhuoting; Duval, Benjamin D; Day, Frank P; Johnson, Dale W; Megonigal, J Patrick; Brown, Alisha L P; Garland, Jay L
2013-01-01
Summary Rising atmospheric carbon dioxide (CO2) could alter the carbon (C) and nitrogen (N) content of ecosystems, yet the magnitude of these effects are not well known. We examined C and N budgets of a subtropical woodland after 11 yr of exposure to elevated CO2. We used open-top chambers to manipulate CO2 during regrowth after fire, and measured C, N and tracer 15N in ecosystem components throughout the experiment. Elevated CO2 increased plant C and tended to increase plant N but did not significantly increase whole-system C or N. Elevated CO2 increased soil microbial activity and labile soil C, but more slowly cycling soil C pools tended to decline. Recovery of a long-term 15N tracer indicated that CO2 exposure increased N losses and altered N distribution, with no effect on N inputs. Increased plant C accrual was accompanied by higher soil microbial activity and increased C losses from soil, yielding no statistically detectable effect of elevated CO2 on net ecosystem C uptake. These findings challenge the treatment of terrestrial ecosystems responses to elevated CO2 in current biogeochemical models, where the effect of elevated CO2 on ecosystem C balance is described as enhanced photosynthesis and plant growth with decomposition as a first-order response. PMID:23718224
Cusick, Kathleen D; Dale, Jason R; Little, Brenda J; Biffinger, Justin C
2016-11-23
Alteromonas macleodii is a marine bacterium involved in the early stages of biofouling on ship hulls treated with copper as an antifouling agent. We report here the draft genome sequences of an A. macleodii strain isolated from copper coupons and three laboratory mutants grown long-term at elevated copper levels. Copyright © 2016 Cusick et al.
NASA Astrophysics Data System (ADS)
Oshima, Kazuhiro; Ogata, Koto; Park, Hotaek; Tachibana, Yoshihiro
2018-05-01
River discharges from Siberia are a large source of freshwater into the Arctic Ocean, whereas the cause of the long-term variation in Siberian discharges is still unclear. The observed river discharges of the Lena in the east and the Ob in the west indicated different relationships in each of the epochs during the past 7 decades. The correlations between the two river discharges were negative during the 1980s to mid-1990s, positive during the mid-1950s to 1960s, and became weak after the mid-1990s. More long-term records of tree-ring-reconstructed discharges have also shown differences in the correlations in each of the epochs. It is noteworthy that the correlations obtained from the reconstructions tend to be negative during the past 2 centuries. Such tendency has also been obtained from precipitations in observations, and in simulations with an atmospheric general circulation model (AGCM) and fully coupled atmosphere-ocean GCMs conducted for the Fourth Assessment Report of the IPCC. The AGCM control simulation further demonstrated that an east-west seesaw pattern of summertime large-scale atmospheric circulation frequently emerges over Siberia as an atmospheric internal variability. This results in an opposite anomaly of precipitation over the Lena and Ob and the negative correlation. Consequently, the summertime atmospheric internal variability in the east-west seesaw pattern over Siberia is a key factor influencing the long-term variation in precipitation and river discharge, i.e., the water cycle in this region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oechel, Walter C
2002-08-15
This research incorporated an integrated hierarchical approach in space, time, and levels of biological/ecological organization to help understand and predict ecosystem response to elevated CO{sub 2} and concomitant environmental change. The research utilized a number of different approaches, and collaboration of both PER and non-PER investigators to arrive at a comprehensive, integrative understanding. Central to the work were the CO{sub 2}-controlled, ambient Lit, Temperature controlled (CO{sub 2}LT) null-balance chambers originally developed in the arctic tundra, which were re-engineered for the chaparral with treatment CO{sub 2} concentrations of from 250 to 750 ppm CO{sub 2} in 100 ppm increments, replicated twicemore » to allow for a regression analysis. Each chamber was 2 meters on a side and 2 meters tall, which were installed over an individual shrub reprouting after a fire. This manipulation allowed study of the response of native chaparral to varying levels of CO{sub 2}, while regenerating from an experimental burn. Results from these highly-controlled manipulations were compared against Free Air CO{sub 2} Enrichment (FACE) manipulations, in an area adjacent to the CO{sub 2}LT null balance greenhouses. These relatively short-term results (5-7 years) were compared to long-term results from Mediterranean-type ecosystems (MTEs) surrounding natural CO{sub 2} springs in northern Italy, near Laiatico, Italy. The springs lack the controlled experimental rigor of our CO{sub 2}LT and FACE manipulation, but provide invaluable validation of our long-term predictions.« less
NASA Astrophysics Data System (ADS)
Musolff, Andreas; Selle, Benny; Fleckenstein, Jan H.; Oosterwoud, Marieke R.; Tittel, Jörg
2016-04-01
The instream concentrations of dissolved organic carbon (DOC) are rising in many catchments of the northern hemisphere. Elevated concentrations of DOC, mainly in the form of colored humic components, increase efforts and costs of drinking water purification. In this study, we evaluated a long-term dataset of 110 catchments draining into German drinking water reservoirs in order to assess sources of DOC and drivers of a potential long-term change. The average DOC concentrations across the wide range of different catchments were found to be well explained by the catchment's topographic wetness index. Higher wetness indices were connected to higher average DOC concentrations, which implies that catchments with shallow topography and pronounced riparian wetlands mobilize more DOC. Overall, 37% of the investigated catchments showed a significant long-term increase in DOC concentrations, while 22% exhibited significant negative trends. Moreover, we found that increasing trends in DOC were positively correlated to trends in dissolved iron concentrations at pH≤6 due to remobilization of DOC previously sorbed to iron minerals. Both, increasing trends in DOC and dissolve iron were found to be connected to decreasing trends and low concentrations of nitrate (below ~6 mg/L). This was especially observed in forested catchments where atmospheric N-depositions were the major source for nitrate availability. In these catchments, we also found long-term increases of phosphate concentrations. Therefore, we argue that dissolved iron, DOC and phosphate were jointly released under iron-reducing conditions when nitrate as a competing electron acceptor was too low in concentrations to prevent the microbial iron reduction. In contrast, we could not explain the observed increasing trends in DOC, iron and phosphate concentrations by the long-term trends of pH, sulfate or precipitation. Altogether this study gives strong evidence that both, source and long-term increases in DOC are primarily controlled by riparian wetland soils within the catchments. Here, the achievement of a long-term reduction in nitrogen deposition may in turn lead to a more pronounced iron reduction and a subsequent release of DOC and other iron-bound substances such as phosphate.
Ren, Lihui; Ye, Huiming; Wang, Ping; Cui, Yuxia; Cao, Shichang; Lv, Shuzheng
2014-01-01
Background and aims: This study is to compare the short-term and long-term mortality in patients with ST-segment elevation myocardial infarction (STEMI) and non-ST-segment elevation acute coronary syndrome (NSTE-ACS) after percutaneous coronary intervention (PCI). Methods and results: A total of 266 STEMI patients and 140 NSTE-ACS patients received PCI. Patients were followed up by telephone or at medical record or case statistics center and were followed up for 4 years. Descriptive statistics and multivariate survival analyses were employed to compare the mortality in STEMI and NSTE-ACS. All statistical analyses were performed by SPSS19.0 software package. NSTE-ACS patients had significantly higher clinical and angiographic risk profiles at baseline. During the 4-year follow-up, all-cause mortality in STEMI was significantly higher than that in NSTE-ACS after coronary stent placement (HR 1.496, 95% CI 1.019-2.197). In a landmark analysis no difference was seen in all-cause mortality for both STEMI and NSTE-ACS between 6 month and 4 years of follow-up (HR 1.173, 95% CI 0.758-1.813). Conclusions: Patients with STEMI have a worse long-term prognosis compared to patients with NSTE-ACS after PCI, due to higher short-term mortality. However, NSTE-ACS patients have a worse long-term survival after 6 months. PMID:25664077
Linares, Juan-Carlos; Delgado-Huertas, Antonio; Julio Camarero, J; Merino, José; Carreira, José A
2009-09-01
The gas-exchange and radial growth responses of conifer forests to climatic warming and increasing atmospheric CO2 have been widely studied. However, the modulating effects of variables related to stand structure (e.g., tree-to-tree competition) on those responses are poorly explored. The basal-area increment (BAI) and C isotope discrimination (C stable isotope ratio; delta13C) in the Mediterranean fir Abies pinsapo were investigated to elucidate the influences of stand competition, atmospheric CO2 concentrations and climate on intrinsic water-use efficiency (WUEi). We assessed the variation in delta13C of tree-rings from dominant or co-dominant trees subjected to different degrees of competition. A high- (H) and a low-elevation (L) population with contrasting climatic constraints were studied in southern Spain. Both populations showed an increase in long-term WUEi. However, this increase occurred more slowly at the L site, where a decline of BAI was also observed. Local warming and severe droughts have occurred in the study area over the past 30 years, which have reduced water availability more at lower elevations. Contrastingly, trees from the H site were able to maintain high BAI values at a lower cost in terms of water consumption. In each population, trees subjected to a higher degree of competition by neighboring trees showed lower BAI and WUEi than those subjected to less competition, although the slopes of the temporal trends in WUEi were independent of the competitive micro-environment experienced by the trees. The results are consistent with an increasing drought-induced limitation of BAI and a decreasing rate of WUEi improvement in low-elevation A. pinsapo forests. This relict species might not be able to mitigate the negative effects of a decrease in water availability through a reduction in stomatal conductance, thus leading to a growth decline in the more xeric sites. An intense and poorly asymmetric competitive environment at the stand level may also act as an important constraint on the adaptive capacity of these drought-sensitive forests to climatic warming.
Elevation trends and shrink-swell response of wetland soils to flooding and drying
Cahoon, Donald R.; Perez, Brian C.; Segura, Bradley D.; Lynch, James C.
2011-01-01
Given the potential for a projected acceleration in sea-level rise to impact wetland sustainability over the next century, a better understanding is needed of climate-related drivers that influence the processes controlling wetland elevation. Changes in local hydrology and groundwater conditions can cause short-term perturbations to marsh elevation trends through shrink—swell of marsh soils. To better understand the magnitude of these perturbations and their impacts on marsh elevation trends, we measured vertical accretion and elevation dynamics in microtidal marshes in Texas and Louisiana during and after the extreme drought conditions that existed there from 1998 to 2000. In a Louisiana marsh, elevation was controlled by subsurface hydrologic fluxes occurring below the root zone but above the 4 m depth (i.e., the base of the surface elevation table benchmark) that were related to regional drought and local meteorological conditions, with marsh elevation tracking water level variations closely. In Texas, a rapid decline in marsh elevation was related to severe drought conditions, which lowered local groundwater levels. Unfragmented marshes experienced smaller water level drawdowns and more rapid marsh elevation recovery than fragmented marshes. It appears that extended drawdowns lead to increased substrate consolidation making it less resilient to respond to future favorable conditions. Overall, changes in water storage lead to rapid and large short-term impacts on marsh elevation that are as much as five times greater than the long-term elevation trend, indicating the importance of long-term, high-resolution elevation data sets to understand the prolonged effects of water deficits on marsh elevation change.
Donald R. Zak; Kurt S. Pregitzer; Mark E. Kubiske; Andrew J. Burton
2011-01-01
The accumulation of anthropogenic CO2 in the Earth's atmosphere, and hence the rate of climate warming, is sensitive to stimulation of plant growth by higher concentrations of atmospheric CO2. Here, we synthesise data from a field experiment in which three developing northern forest communities have been exposed to...
High-temperature electronics applications in space exploration
NASA Astrophysics Data System (ADS)
Jurgens, R. F.
1982-05-01
One of the most exciting applications of high-temperature electronics is related to the exploration of the planet Venus. On this planet the atmospheric temperatures range from about 170 K at elevations of 100 km to a searing 730 K near the surface. Mechanisms for exploring the atmosphere might include balloons, airplanes, surface landers, and surface-launched probes. Balloons, for example, could fly in the region from 20 (320 C at 22 bars) to 60 km (-20 C at 0.2 bar). Suitable balloon fabrics presently exclude excursions to lower altitudes; however, adequate electronic systems could survive to 325 C. Small airplanes would require more sophisticated electronics for guidance and control. Long life surface landers would most likely be developed first, as these could be used to measure long-term variations in weather. Ranging transponders would be important for ephemeris development, measurement of spin state, and studies of general relativity. Surface temperatures of 460 C and pressures of 90 bars present a challenge to the developers of such instruments. Other space applications for high-temperature electronics include transponders for the surface of Mercury, near solar drag-free orbiters, and deep atmospheric penetrators for Jupiter and Saturn. Each of these has its own particular problems with respect to instrumentation adequate to meet the desired scientific goals. This paper is primarily concerned with defining possible mission applications, the required electronic systems, and the approaches that are currently being studied for their development.
High-temperature electronics applications in space exploration
NASA Technical Reports Server (NTRS)
Jurgens, R. F.
1982-01-01
One of the most exciting applications of high-temperature electronics is related to the exploration of the planet Venus. On this planet the atmospheric temperatures range from about 170 K at elevations of 100 km to a searing 730 K near the surface. Mechanisms for exploring the atmosphere might include balloons, airplanes, surface landers, and surface-launched probes. Balloons, for example, could fly in the region from 20 (320 C at 22 bars) to 60 km (-20 C at 0.2 bar). Suitable balloon fabrics presently exclude excursions to lower altitudes; however, adequate electronic systems could survive to 325 C. Small airplanes would require more sophisticated electronics for guidance and control. Long life surface landers would most likely be developed first, as these could be used to measure long-term variations in weather. Ranging transponders would be important for ephemeris development, measurement of spin state, and studies of general relativity. Surface temperatures of 460 C and pressures of 90 bars present a challenge to the developers of such instruments. Other space applications for high-temperature electronics include transponders for the surface of Mercury, near solar drag-free orbiters, and deep atmospheric penetrators for Jupiter and Saturn. Each of these has its own particular problems with respect to instrumentation adequate to meet the desired scientific goals. This paper is primarily concerned with defining possible mission applications, the required electronic systems, and the approaches that are currently being studied for their development.
Accelerated Test Method for Corrosion Protective Coatings Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Calle, Luz
2015-01-01
This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.
Tanaka, Yu; Koizumi, Chie; Marumo, Toshiyuki; Omura, Tomohiro; Yoshida, Shigeru
2007-08-02
In recent years, serum S100B has been used as a secondary endpoint in some clinical trials, in which serum S100B has successfully indicated the benefits or harm done by the tested agents. Compared to clinical stroke studies, few experimental stroke studies report using serum S100B as a surrogate marker for estimating the long-term effects of neuroprotectants. This study sought to observe serum S100B kinetics in PIT stroke models and to clarify the association between serum S100B and both final infarct volumes and long-term neurological outcomes. Furthermore, to demonstrate that early elevations in serum S100B reflect successful neuroprotective treatment, a pharmacological study was performed with a non-competitive NMDA glutamate receptor antagonist, MK-801. Serum S100B levels were significantly elevated after PIT stroke, reaching peak values 48 h after the onset and declining thereafter. Single measurements of serum S100B as early as 48 h after PIT stroke correlated significantly with final infarct volumes and long-term neurological outcomes. Elevated serum S100B was significantly attenuated by MK-801, correlating significantly with long-term beneficial effects of MK-801 on infarct volumes and neurological outcomes. Our results showed that single measurements of serum S100B 48 h after PIT stroke would serve as an early and simple surrogate marker for long-term evaluation of histological and neurological outcomes in PIT stroke rat models.
On the Causes of Mid-Pliocene Warmth and Polar Amplification
NASA Technical Reports Server (NTRS)
Lunt, Daniel J.; Haywood, Alan M.; Schmidt, Gavin A.; Salzmann, Ulrich; Valdes, Paul J.; Dowsett, Harry J.; Loptson, Claire A.
2012-01-01
The mid-Pliocene (approximately 3 to 3.3 Ma ago), is a period of sustained global warmth in comparison to the late Quaternary (0 to approximately 1 Ma ago), and has potential to inform predictions of long-term future climate change. However, given that several processes potentially contributed, relatively little is understood about the reasons for the observed warmth, or the associated polar amplification. Here, using a modelling approach and a novel factorisation method, we assess the relative contributions to mid-Pliocene warmth from: elevated CO2, lowered orography, and vegetation and ice sheet changes. The results show that on a global scale, the largest contributor to mid-Pliocene warmth is elevated CO2. However, in terms of polar amplification, changes to ice sheets contribute significantly in the Southern Hemisphere, and orographic changes contribute significantly in the Northern Hemisphere. We also carry out an energy balance analysis which indicates that that on a global scale, surface albedo and atmospheric emmissivity changes dominate over cloud changes. We investigate the sensitivity of our results to uncertainties in the prescribed CO2 and orographic changes, to derive uncertainty ranges for the various contributing processes.
Refraction corrections for surveying
NASA Technical Reports Server (NTRS)
Lear, W. M.
1979-01-01
Optical measurements of range and elevation angle are distorted by the earth's atmosphere. High precision refraction correction equations are presented which are ideally suited for surveying because their inputs are optically measured range and optically measured elevation angle. The outputs are true straight line range and true geometric elevation angle. The 'short distances' used in surveying allow the calculations of true range and true elevation angle to be quickly made using a programmable pocket calculator. Topics covered include the spherical form of Snell's Law; ray path equations; and integrating the equations. Short-, medium-, and long-range refraction corrections are presented in tables.
R. Minocha; S. Long; S. Minocha; P Marquardt; M. Kubiske
2010-01-01
The objective of the present study was to evaluate the long-term (10 years) effects of elevated CO2 and O3 on the carbon and nitrogen metabolism of aspen trees. The study was conducted at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site, Rhinelander, WI, (USA).
NASA Astrophysics Data System (ADS)
Bevington, Azure E.; Twilley, Robert R.; Sasser, Charles E.; Holm, Guerry O.
2017-05-01
Deltas are globally important locations of diverse ecosystems, human settlement, and economic activity that are threatened by reductions in sediment delivery, accelerated sea level rise, and subsidence. Here we investigated the relative contribution of river flooding, hurricanes, and cold fronts on elevation change in the prograding Wax Lake Delta (WLD). Sediment surface elevation was measured across 87 plots, eight times from February 2008 to August 2011. The high peak discharge river floods in 2008 and 2011 resulted in the greatest mean net elevation gain of 5.4 to 4.9 cm over each flood season, respectively. The highest deltaic wetland sediment retention (13.5% of total sediment discharge) occurred during the 2008 river flood despite lower total and peak discharge compared to 2011. Hurricanes Gustav and Ike resulted in a total net elevation gain of 1.2 cm, but the long-term contribution of hurricane derived sediments to deltaic wetlands was estimated to be just 22% of the long-term contribution of large river floods. Winter cold front passage resulted in a net loss in elevation that is equal to the elevation gain from lower discharge river floods and was consistent across years. This amount of annual loss in elevation from cold fronts could effectively negate the long-term land building capacity within the delta without the added elevation gain from both high and low discharge river floods. The current lack of inclusion of cold front elevation loss in most predictive numerical models likely overestimates the land building capacity in areas that experience similar forcings to WLD.
Medhurst, Jane; Parsby, Jan; Linder, Sune; Wallin, Göran; Ceschia, Eric; Slaney, Michelle
2006-09-01
A whole-tree chamber (WTC) system was installed at Flakaliden in northern Sweden to examine the long-term physiological responses of field-grown 40-year-old Norway spruce trees [Picea abies (L.) Karst.] to climate change. The WTCs were designed as large cuvettes to allow the net tree-level CO(2) and water fluxes to be measured on a continuous basis. A total of 12 WTCs were used to impose combinations of atmospheric carbon dioxide concentration, [CO(2)], and air temperature treatments. The air inside the ambient and elevated [CO(2)] WTCs was maintained at 365 and 700 micromol mol(-1), respectively. The air temperature inside the ambient temperature WTCs tracked air temperature outside the WTCs. Elevated temperatures were altered on a monthly time-step and ranged between +2.8 and +5.6 degrees C above ambient temperature. The system allowed continuous, long-term measurement of whole-tree photosynthesis, night-time respiration and transpiration. The performance of the WTCs was assessed using winter and spring data sets. The ability of the WTC system to measure tree-level physiological responses is demonstrated. All WTCs displayed a high level of control over tracking of air temperatures. The set target of 365 micromol mol(-1) in the ambient [CO(2)] chambers was too low to be maintained during winter because of tree dormancy and the high natural increase in [CO(2)] over winter at high latitudes such as the Flakaliden site. Accurate control over [CO(2)] in the ambient [CO(2)] chambers was restored during the spring and the system maintained the elevated [CO(2)] target of 700 micromol mol(-1) for both measurement periods. Air water vapour deficit (VPD) was accurately tracked in ambient temperature WTCs. However, as water vapour pressure in all 12 WTCs was maintained at the level of non-chambered (reference) air, VPD of elevated temperature WTCs was increased.
Belyazid, Salim; Kurz, Dani; Braun, Sabine; Sverdrup, Harald; Rihm, Beat; Hettelingh, Jean-Paul
2011-03-01
A dynamic model of forest ecosystems was used to investigate the effects of climate change, atmospheric deposition and harvest intensity on 48 forest sites in Sweden (n = 16) and Switzerland (n = 32). The model was used to investigate the feasibility of deriving critical loads for nitrogen (N) deposition based on changes in plant community composition. The simulations show that climate and atmospheric deposition have comparably important effects on N mobilization in the soil, as climate triggers the release of organically bound nitrogen stored in the soil during the elevated deposition period. Climate has the most important effect on plant community composition, underlining the fact that this cannot be ignored in future simulations of vegetation dynamics. Harvest intensity has comparatively little effect on the plant community in the long term, while it may be detrimental in the short term following cutting. This study shows: that critical loads of N deposition can be estimated using the plant community as an indicator; that future climatic changes must be taken into account; and that the definition of the reference deposition is critical for the outcome of this estimate. Copyright © 2010 Elsevier Ltd. All rights reserved.
Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing
NASA Technical Reports Server (NTRS)
Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerone C.; Kolody, Mark R.
2011-01-01
Evaluation of metal-based structures has long relied on atmospheric exposure test sites to determine corrosion resistance in marine environments. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions of the corrosive environment. Their success for correlation to atmospheric exposure is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated laboratory testing, which often focuses on the electrochemical reactions that occur during corrosion conditions, has yet to be universally accepted as a useful tool in predicting the long term service life of a metal despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard and their use is imperative, a method that correlates timescales from atmospheric exposure to accelerated testing would be very valuable. This work uses surface chemistry to interpret the chemical changes occurring on low carbon steel during atmospheric and accelerated corrosion conditions with the objective of finding a correlation between its accelerated and long-term corrosion performance. The current results of correlating data from marine atmospheric exposure conditions at the Kennedy Space Center beachside corrosion test site, alternating seawater spray, and immersion in typical electrochemical laboratory conditions, will be presented. Key words: atmospheric exposure, accelerated corrosion testing, alternating seawater spray, marine, correlation, seawater, carbon steel, long-term corrosion performance prediction, X-ray photoelectron spectroscopy.
Pravosudov, Vladimir V
2003-12-22
It is widely assumed that chronic stress and corresponding chronic elevations of glucocorticoid levels have deleterious effects on animals' brain functions such as learning and memory. Some animals, however, appear to maintain moderately elevated levels of glucocorticoids over long periods of time under natural energetically demanding conditions, and it is not clear whether such chronic but moderate elevations may be adaptive. I implanted wild-caught food-caching mountain chickadees (Poecile gambeli), which rely at least in part on spatial memory to find their caches, with 90-day continuous time-release corticosterone pellets designed to approximately double the baseline corticosterone levels. Corticosterone-implanted birds cached and consumed significantly more food and showed more efficient cache recovery and superior spatial memory performance compared with placebo-implanted birds. Thus, contrary to prevailing assumptions, long-term moderate elevations of corticosterone appear to enhance spatial memory in food-caching mountain chickadees. These results suggest that moderate chronic elevation of corticosterone may serve as an adaptation to unpredictable environments by facilitating feeding and food-caching behaviour and by improving cache-retrieval efficiency in food-caching birds.
Bessling, Seneca; Thielen, Peter; Zhang, Sherry; Wolfe, Joshua
2017-01-01
Many biotechnology capabilities are limited by stringent storage needs of reagents, largely prohibiting use outside of specialized laboratories. Focusing on a large class of protein-based biotechnology applications, we address this issue by developing a method for preserving cell-free protein expression systems for months above room temperature. Our approach realizes unprecedented long-term stability at elevated temperatures by leveraging the sugar alcohol trehalose, a simple, low-cost, open-air drying step, and strategic separation of reaction components during drying. The resulting preservation capacity enables efficient production of a wide range of on-demand proteins under adverse conditions, for instance during emergency outbreaks or in remote locations. To demonstrate application potential, we use cell-free reagents subjected to months of exposure at 37°C and atmospheric conditions to produce sufficient concentrations of a pyocin protein to kill Pseudomonas aeruginosa, a troublesome pathogen for traumatic and burn wound injuries. Our work makes possible new biotechnology applications that demand ruggedness and scalability. PMID:28446704
NASA Astrophysics Data System (ADS)
Yuan, Ye; Ries, Ludwig; Petermeier, Hannes; Steinbacher, Martin; Gómez-Peláez, Angel J.; Leuenberger, Markus C.; Schumacher, Marcus; Trickl, Thomas; Couret, Cedric; Meinhardt, Frank; Menzel, Annette
2018-03-01
Critical data selection is essential for determining representative baseline levels of atmospheric trace gases even at remote measurement sites. Different data selection techniques have been used around the world, which could potentially lead to reduced compatibility when comparing data from different stations. This paper presents a novel statistical data selection method named adaptive diurnal minimum variation selection (ADVS) based on CO2 diurnal patterns typically occurring at elevated mountain stations. Its capability and applicability were studied on records of atmospheric CO2 observations at six Global Atmosphere Watch stations in Europe, namely, Zugspitze-Schneefernerhaus (Germany), Sonnblick (Austria), Jungfraujoch (Switzerland), Izaña (Spain), Schauinsland (Germany), and Hohenpeissenberg (Germany). Three other frequently applied statistical data selection methods were included for comparison. Among the studied methods, our ADVS method resulted in a lower fraction of data selected as a baseline with lower maxima during winter and higher minima during summer in the selected data. The measured time series were analyzed for long-term trends and seasonality by a seasonal-trend decomposition technique. In contrast to unselected data, mean annual growth rates of all selected datasets were not significantly different among the sites, except for the data recorded at Schauinsland. However, clear differences were found in the annual amplitudes as well as the seasonal time structure. Based on a pairwise analysis of correlations between stations on the seasonal-trend decomposed components by statistical data selection, we conclude that the baseline identified by the ADVS method is a better representation of lower free tropospheric (LFT) conditions than baselines identified by the other methods.
Lipsett, Michael J; Ostro, Bart D; Reynolds, Peggy; Goldberg, Debbie; Hertz, Andrew; Jerrett, Michael; Smith, Daniel F; Garcia, Cynthia; Chang, Ellen T; Bernstein, Leslie
2011-10-01
Several studies have linked long-term exposure to particulate air pollution with increased cardiopulmonary mortality; only two have also examined incident circulatory disease. To examine associations of individualized long-term exposures to particulate and gaseous air pollution with incident myocardial infarction and stroke, as well as all-cause and cause specific mortality. We estimated long-term residential air pollution exposure for more than 100,000 participants in the California Teachers Study, a prospective cohort of female public school professionals.We linked geocoded residential addresses with inverse distance-weighted monthly pollutant surfaces for two measures of particulate matter and for several gaseous pollutants. We examined associations between exposure to these pollutants and risks of incident myocardial infarction and stroke, and of all-cause and cause-specific mortality, using Cox proportional hazards models. We found elevated hazard ratios linking long-term exposure to particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5), scaled to an increment of 10 μg/m3 with mortality from ischemic heart disease (IHD) (1.20; 95% confidence interval [CI], 1.02-1.41) and, particularly among postmenopausal women, incident stroke (1.19; 95% CI, 1.02-1.38). Long-term exposure to particulate matter less than 10 μm in aerodynamic diameter (PM10) was associated with elevated risks for IHD mortality (1.06; 95% CI, 0.99-1.14) and incident stroke (1.06; 95% CI, 1.00-1.13), while exposure to nitrogen oxides was associated with elevated risks for IHD and all cardiovascular mortality. This study provides evidence linking long-term exposure to PM2.5 and PM10 with increased risks of incident stroke as well as IHD mortality; exposure to nitrogen oxides was also related to death from cardiovascular diseases.
Merlos, Pilar; López-Lereu, Maria P; Monmeneu, Jose V; Sanchis, Juan; Núñez, Julio; Bonanad, Clara; Valero, Ernesto; Miñana, Gema; Chaustre, Fabián; Gómez, Cristina; Oltra, Ricardo; Palacios, Lorena; Bosch, Maria J; Navarro, Vicente; Llácer, Angel; Chorro, Francisco J; Bodí, Vicente
2013-08-01
A variety of cardiac magnetic resonance indexes predict mid-term prognosis in ST-segment elevation myocardial infarction patients. The extent of transmural necrosis permits simple and accurate prediction of systolic recovery. However, its long-term prognostic value beyond a comprehensive clinical and cardiac magnetic resonance evaluation is unknown. We hypothesized that a simple semiquantitative assessment of the extent of transmural necrosis is the best resonance index to predict long-term outcome soon after a first ST-segment elevation myocardial infarction. One week after a first ST-segment elevation myocardial infarction we carried out a comprehensive quantification of several resonance parameters in 206 consecutive patients. A semiquantitative assessment (altered number of segments in the 17-segment model) of edema, baseline and post-dobutamine wall motion abnormalities, first pass perfusion, microvascular obstruction, and the extent of transmural necrosis was also performed. During follow-up (median 51 months), 29 patients suffered a major adverse cardiac event (8 cardiac deaths, 11 nonfatal myocardial infarctions, and 10 readmissions for heart failure). Major cardiac events were associated with more severely altered quantitative and semiquantitative resonance indexes. After a comprehensive multivariate adjustment, the extent of transmural necrosis was the only resonance index independently related to the major cardiac event rate (hazard ratio=1.34 [1.19-1.51] per each additional segment displaying>50% transmural necrosis, P<.001). A simple and non-time consuming semiquantitative analysis of the extent of transmural necrosis is the most powerful cardiac magnetic resonance index to predict long-term outcome soon after a first ST-segment elevation myocardial infarction. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Sensitivity Analysis Tailored to Constrain 21st Century Terrestrial Carbon-Uptake
NASA Astrophysics Data System (ADS)
Muller, S. J.; Gerber, S.
2013-12-01
The long-term fate of terrestrial carbon (C) in response to climate change remains a dominant source of uncertainty in Earth-system model projections. Increasing atmospheric CO2 could be mitigated by long-term net uptake of C, through processes such as increased plant productivity due to "CO2-fertilization". Conversely, atmospheric conditions could be exacerbated by long-term net release of C, through processes such as increased decomposition due to higher temperatures. This balance is an important area of study, and a major source of uncertainty in long-term (>year 2050) projections of planetary response to climate change. We present results from an innovative application of sensitivity analysis to LM3V, a dynamic global vegetation model (DGVM), intended to identify observed/observable variables that are useful for constraining long-term projections of C-uptake. We analyzed the sensitivity of cumulative C-uptake by 2100, as modeled by LM3V in response to IPCC AR4 scenario climate data (1860-2100), to perturbations in over 50 model parameters. We concurrently analyzed the sensitivity of over 100 observable model variables, during the extant record period (1970-2010), to the same parameter changes. By correlating the sensitivities of observable variables with the sensitivity of long-term C-uptake we identified model calibration variables that would also constrain long-term C-uptake projections. LM3V employs a coupled carbon-nitrogen cycle to account for N-limitation, and we find that N-related variables have an important role to play in constraining long-term C-uptake. This work has implications for prioritizing field campaigns to collect global data that can help reduce uncertainties in the long-term land-atmosphere C-balance. Though results of this study are specific to LM3V, the processes that characterize this model are not completely divorced from other DGVMs (or reality), and our approach provides valuable insights into how data can be leveraged to be better constrain projections for the land carbon sink.
Falso, Paul G; Noble, Christopher A; Diaz, Jesus M; Hayes, Tyrone B
2015-02-01
The effect of long-term stress on amphibian immunity is not well understood. We modeled a long-term endocrine stress scenario by elevating plasma corticosterone in two species of amphibians and examined effects on white blood cell differentials and innate immune activity. Plasma corticosterone was elevated in American bullfrogs (Lithobates catesbeianus) by surgically implanting corticosterone capsules and in African clawed frogs (Xenopus laevis) by immersion in corticosterone-treated water. To provide a context for our results within endogenous corticosterone fluctuations, diurnal plasma corticosterone cycles were determined. A daily low of corticosterone was observed in X. laevis at 12:00, while a significant pattern was not observed in L. catesbeianus. Elevated plasma corticosterone levels increased the ratio of peripheral neutrophils to lymphocytes, in both species, and decreased eosinophil concentrations in L. catesbeianus over a long-term period. Whole blood oxidative burst generally correlated with neutrophil concentrations, and thus was increased with corticosterone treatment, significantly in L. catesbeianus. In L. catesbeianus, an endogenous response of eosinophils and lymphocytes to implanted empty (sham) capsules was observed, but this effect was attenuated by corticosterone. Peripheral monocyte and basophil concentrations were not significantly altered by corticosterone treatment in either species. Our results show that long-term stress can alter amphibian immune parameters for extended periods and may play a role in susceptibility to disease. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheu, Guey-Rong; Lin, Neng-Huei; Wang, Jia-Lin; Lee, Chung-Te; Ou Yang, Chang-Feng; Wang, Sheng-Hsiang
2010-07-01
Measurements of gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and particulate mercury (PHg) have been conducted at Lulin Atmospheric Background Station (LABS) in Taiwan since April 2006. This was the first long-term free tropospheric atmospheric Hg monitoring program in the downwind region of East Asia, which is a major Hg emission source region. Between April 13, 2006 and December 31, 2007, the mean concentrations of GEM, RGM, and PHg were 1.73 ng m -3, 12.1 pg m -3, and 2.3 pg m -3, respectively. A diurnal pattern was observed for GEM with afternoon peaks and nighttime lows, whereas the diurnal pattern of RGM was opposite to that of GEM. Spikes of RGM were frequently observed between midnight and early morning with concurrent decreases in GEM and relative humidity and increases in O 3, suggesting the oxidation of GEM and formation of RGM in free troposphere (FT). Upslope movement of boundary layer (BL) air in daytime and subsidence of FT air at night resulted in these diurnal patterns. Considering only the nighttime data, which were more representative of FT air, the composite monthly mean GEM concentrations ranged between 1.06 and 2.06 ng m -3. Seasonal variation in nighttime GEM was evident, with lower concentrations usually occurring in summer when clean marine air masses prevailed. Between fall and spring, air masses passed the East Asian continent prior to reaching LABS, contributing to the elevated GEM concentrations. Analysis of GEM/CO correlation tends to support the argument. Good GEM/CO correlations were observed in fall, winter, and spring, suggesting influence of anthropogenic emission sources. Our results demonstrate the significance of East Asian Hg emissions, including both anthropogenic and biomass burning emissions, and their long-range transport in the FT. Because of the pronounced seasonal monsoon activity and the seasonal variation in regional wind field, export of the Asian Hg emissions to Taiwan occurs mainly during fall, winter, and spring.
Atmospheric Science Research at the Whiteface Mountain Adirondack High Peaks Observatory
NASA Astrophysics Data System (ADS)
Schwab, J. J.; Brandt, R. E.; Casson, P.; Demerjian, K. L.; Crandall, B. A.
2014-12-01
The Atmospheric Sciences Research Center established an atmospheric observatory at Whiteface Mountain in the Adirondacks in 1961. The current mountain top observatory building was built by the University at Albany in 1969-70 and the New York State Department of Environmental Conservation (DEC) began ozone measurements at this summit location in 1973. Those measurements continue to this day and constitute a valuable long term data record for tropospheric ozone in the northeastern U.S. The elevation of the summit is 1483 m above sea level, and is roughly 90 m above the tree line in this location. With a mean cloud base height of less than 1100 m at the summit, it is a prime location for cloud research. The research station headquarters, laboratories, offices, and a second measurement site are located at the Marble Mountain Lodge, perched on a shoulder northeast of the massif at an elevation of 604 m above sea level. Parameters measured at the site include meteorological variables, trace gases, precipitation chemistry, aerosol mass and components, and more. Precipitation and cloud chemistry has a long history at the lodge and summit locations, respectively, and continues to this day. Some data from the 40-year record will be shown in the presentation. In the late 1980's the summit site was outfitted with instrumentation to measure oxides of nitrogen and other ozone precursors. Measurements of many of these same parameters were added at the lodge site and continue to this day. In this poster we will give an overview of the Whiteface Mountain Observatory and its two measurement locations. We will highlight the parameters currently being measured at our sites, and indicate those measured by ASRC, as well as those measured by other organizations. We will also recap some of the historical activities and measurement programs that have taken place at the site, as alluded to above. Also included will be examples of the rich archive of trends data for gas phase species, precipitation chemistry, and particulate matter.
Environmental exposure effects on composite materials for commercial aircraft
NASA Technical Reports Server (NTRS)
Gibbons, M. N.
1982-01-01
The data base for composite materials' properties as they are affected by the environments encountered in operating conditions, both in flight and at ground terminals is expanded. Absorbed moisture degrades the mechanical properties of graphite/epoxy laminates at elevated temperatures. Since airplane components are frequently exposed to atmospheric moisture, rain, and accumulated water, quantitative data are required to evaluate the amount of fluids absorbed under various environmental conditions and the subsequent effects on material properties. In addition, accelerated laboratory test techniques are developed are reliably capable of predicting long term behavior. An accelerated environmental exposure testing procedure is developed, and experimental results are correlated and compared with analytical results to establish the level of confidence for predicting composite material properties.
Long-term Variations of The Solar Activity -- Lower Atmosphere Relationship
NASA Astrophysics Data System (ADS)
Zaitseva, S.; Akhremtchik, S.; Pudovkin, M.; Besser, B.; Rijnbeek, R.
Long-term variations of the air temperature in St.Petersburg, Stockholm, Salzburg and English Midlands are considered. There is shown that in the regions under consider- ation the air temperature distinctly depends on the intensity of the lower atmospheric zonal circulation (Blinova index and North Atlantic Oscillation index (NAO)). In turn, the NAO-index is shown to depend on the solar activity. However, this dependence is rather complicated and exhibits long-period variations associated with secular varia- tions of the solar activity. A possible mechanism of this phenomena is discussed.
Ekmekci, Ahmet; Uluganyan, Mahmut; Tufan, Fatif; Uyarel, Huseyin; Karaca, Gurkan; Kul, Seref; Gungor, Barış; Ertas, Gokhan; Erer, Betul; Sayar, Nurten; Gul, Mehmet; Eren, Mehmet
2013-01-01
Objective Admission hyperglycemia in acute myocardial infarction (MI) is related with increased in-hospital and long term mortality and major cardiac adverse events. We aimed to investigate how admission hyperglycemia affects the short and long term outcomes in elderly patients (> 65 years) after primary percutaneous coronary intervention for ST elevation myocardial infarction. Methods We retrospectively analyzed 677 consecutive elderly patients (mean age 72.2 ± 5.4). Patients were divided into two groups according to admission blood glucose levels. Group 1: low glucose group (LLG), glucose < 168 mg/dL; and Group 2: high glucose group (HGG), glucose > 168 mg/dL. Results In-hospital, long term mortality and in-hospital major adverse cardiac events were higher in the high admission blood glucose group (P < 0.001). Multivariate regression analysis showed: Killip > 1, post-thrombolysis in MI < 3 and admission blood glucose levels were independent predictors of in-hospital adverse cardiac events (P < 0.001). Conclusions Admission hyperglycemia in elderly patients presented with ST elevation myocardial infarction is an independent predictor of in-hospital major adverse cardiac events and is associated with in-hospital and long term mortality. PMID:24454322
Consuegra-Sánchez, Luciano; Melgarejo-Moreno, Antonio; Galcerá-Tomás, José; Alonso-Fernández, Nuria; Díaz-Pastor, Angela; Escudero-García, Germán; Jaulent-Huertas, Leticia; Vicente-Gilabert, Marta
2014-06-01
Patients with a current acute coronary syndrome and previous ischemic heart disease, peripheral arterial disease, and/or cerebrovascular disease are reported to have a poorer outcome than those without these previous conditions. It is uncertain whether this association with outcome is observed at long-term follow-up. Prospective observational study, including 4247 patients with ST-segment elevation myocardial infarction. Detailed clinical data and information on previous ischemic heart disease, peripheral arterial disease, and cerebrovascular disease ("vascular burden") were recorded. Multivariate models were performed for in-hospital and long-term (median, 7.2 years) all-cause mortality. One vascular territory was affected in 1131 (26.6%) patients and ≥ 2 territories in 221 (5.2%). The total in-hospital mortality rate was 12.3% and the long-term incidence density was 3.5 deaths per 100 patient-years. A background of previous ischemic heart disease (odds ratio = 0.83; P = .35), peripheral arterial disease (odds ratio = 1.30; P = .34), or cerebrovascular disease (stroke) (odds ratio = 1.15; P = .59) was not independently predictive of in-hospital death. In an adjusted model, previous cerebrovascular disease and previous peripheral arterial disease were both predictors of mortality at long-term follow-up (hazard ratio = 1.57; P < .001; and hazard ratio = 1.34; P = .001; respectively). Patients with ≥ 2 diseased vascular territories showed higher long-term mortality (hazard ratio = 2.35; P < .001), but not higher in-hospital mortality (odds ratio = 1.07; P = .844). In patients with a diagnosis of ST-segment elevation acute myocardial infarction, the previous vascular burden determines greater long-term mortality. Considered individually, previous cerebrovascular disease and peripheral arterial disease were predictors of mortality at long-term after hospital discharge. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.
Tsao, Connie W; Preis, Sarah Rosner; Peloso, Gina M; Hwang, Shih-Jen; Kathiresan, Sekar; Fox, Caroline S; Cupples, L Adrienne; Hoffmann, Udo; O'Donnell, Christopher J
2012-12-11
This study evaluated the association of timing of lipid levels and lipid genetic risk score (GRS) with subclinical atherosclerosis. Atherosclerosis is a slowly progressive disorder influenced by suboptimal lipid levels. Long-term versus contemporary lipid levels may more strongly impact the development of coronary artery calcium (CAC). Framingham Heart Study (FHS) Offspring Cohort participants (n = 1,156, 44% male, 63 ± 9 years) underwent serial fasting lipids (low-density lipoprotein cholesterol [LDL-C], high-density lipoprotein, and triglycerides), Exam 1 (1971 to 1975) to Exam 7 (1998 to 2001). FHS Third Generation Cohort participants (n = 1,954, 55% male, 45 ± 6 years) had fasting lipid profiles assessed, 2002 to 2005. Computed tomography (2002 to 2005) measured CAC. Lipid GRSs were computed from significantly associated single-nucleotide polymorphisms. The association between early, long-term average, and contemporary lipids, and lipid GRS with elevated CAC was assessed using logistic regression. In FHS Offspring, Exam 1 and long-term average as compared with Exam 7 lipid measurements, including untreated lipid levels, were strongly associated with elevated CAC. In the FHS Third Generation, contemporary lipids were associated with CAC. The LDL-C GRS was associated with CAC (age-/sex-adjusted odds ratio: 1.14, 95% confidence interval: 1.00 to 1.29, p = 0.04). However, addition of the GRS to the lipid models did not result in a significant increase in the odds ratio or C-statistic for any lipid measure. Early and long-term average lipid levels, as compared with contemporary measures, are more strongly associated with elevated CAC. Lipid GRS was associated with lipid levels but did not predict elevated CAC. Adult early and long-term average lipid levels provide important information when assessing subclinical atherosclerosis and cardiovascular risk. Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Keenan, Trevor F.; Prentice, Colin; Canadell, Josep; Williams, Christopher; Han, Wang; Riley, William; Zhu, Qing; Koven, Charlie; Chambers, Jeff
2017-04-01
In this presentation we will focus on using decadal changes in the global carbon cycle to better understand how ecosystems respond to changes in CO2 concentration, temperature, and water and nutrient availability. Using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple process-based global vegetation models, we examine the causes and consequences of the long-term changes in the terrestrial carbon sink. We show that over the past century the sink has been greatly enhanced, largely due to the effect of elevated CO2 on photosynthesis dominating over warming induced increases in respiration. We also examine the relative roles of greening, water and nutrients, along with individual events such as El Nino. We show that a slowdown in the rate of warming over land since the start of the 21st century likely led to a large increase in the sink, and that this increase was sufficient to lead to a pause in the growth rate of atmospheric CO2. We also show that the recent El Nino resulted in the highest growth rate of atmospheric CO2 ever recorded. Our results provide evidence of the relative roles of CO2 fertilization and warming induced respiration in the global carbon cycle, along with an examination of the impact of climate extremes.
Bao, Zhongwen; Haberer, Christina; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter
2015-12-15
Soil-atmosphere exchange is important for the environmental fate and atmospheric transport of many semi-volatile organic compounds (SVOCs). This study focuses on modeling the vapor phase exchange of semi-volatile hydrophobic organic pollutants between soil and the atmosphere using the multicomponent reactive transport code MIN3P. MIN3P is typically applied to simulate aqueous and vapor phase transport and reaction processes in the subsurface. We extended the code to also include an atmospheric boundary layer where eddy diffusion takes place. The relevant processes and parameters affecting soil-atmosphere exchange were investigated in several 1-D model scenarios and at various time scales (from years to centuries). Phenanthrene was chosen as a model compound, but results apply for other hydrophobic organic compounds as well. Gaseous phenanthrene was assumed to be constantly supplied to the system during a pollution period and a subsequent regulation period (with a 50% decline in the emission rate). Our results indicate that long-term soil-atmosphere exchange of phenanthrene is controlled by the soil compartment - re-volatilization thus depends on soil properties. A sensitivity analysis showed that accumulation and transport in soils in the short term is dominated by diffusion, whereas in the long term groundwater recharge and biodegradation become relevant. As expected, sorption causes retardation and slows down transport and biodegradation. If atmospheric concentration is reduced (e.g. after environmental regulations), re-volatilization from soil to the atmosphere occurs only for a relatively short time period. Therefore, the model results demonstrate that soils generally are sinks for atmospheric pollutants. The atmospheric boundary layer is only relevant for time scales of less than one month. The extended MIN3P code can also be applied to simulate fluctuating concentrations in the atmosphere, for instance due to temperature changes in the topsoil. Copyright © 2015. Published by Elsevier B.V.
Adaptive mapping functions to the azimuthal anisotropy of the neutral atmosphere
NASA Astrophysics Data System (ADS)
Gegout, P.; Biancale, R.; Soudarin, L.
2011-10-01
The anisotropy of propagation of radio waves used by global navigation satellite systems is investigated using high-resolution observational data assimilations produced by the European Centre for Medium-range Weather Forecast. The geometry and the refractivity of the neutral atmosphere are built introducing accurate geodetic heights and continuous formulations of the refractivity and its gradient. Hence the realistic ellipsoidal shape of the refractivity field above the topography is properly represented. Atmospheric delays are obtained by ray-tracing through the refractivity field, integrating the eikonal differential system. Ray-traced delays reveal the anisotropy of the atmosphere. With the aim to preserve the classical mapping function strategy, mapping functions can evolve to adapt to high-frequency atmospheric fluctuations and to account for the anisotropy of propagation by fitting at each site and time the zenith delays and the mapping functions coefficients. Adaptive mapping functions (AMF) are designed with coefficients of the continued fraction form which depend on azimuth. The basic idea is to expand the azimuthal dependency of the coefficients in Fourier series introducing a multi-scale azimuthal decomposition which slightly changes the elevation functions with the azimuth. AMF are used to approximate thousands of atmospheric ray-traced delays using a few tens of coefficients. Generic recursive definitions of the AMF and their partial derivatives lead to observe that the truncation of the continued fraction form at the third term and the truncation of the azimuthal Fourier series at the fourth term are sufficient in usual meteorological conditions. Delays' and elevations' mapping functions allow to store and to retrieve the ray-tracing results to solve the parallax problem at the observation level. AMF are suitable to fit the time-variable isotropic and anisotropic parts of the ray-traced delays at each site at each time step and to provide GPS range corrections at the measurement level with millimeter accuracy at low elevation. AMF to the azimuthal anisotropy of the neutral atmosphere are designed to adapt to complex weather conditions by adaptively changing their truncations.
Science and society: the role of long-term studies in environmental stewardship
Charles T. Driscoll; Kathleen F. Lambert; F. Stuart Chapin; David J. Nowak; Thomas A. Spies; Frederick J. Swanson; David B. Kittredge; Clarisse M. Hart
2012-01-01
Long-term research should play a crucial role in addressing grand challenges in environmental stewardship. We examine the efforts of five Long Term Ecological Research Network sites to enhance policy, management, and conservation decisions for forest ecosystems. In these case studies, we explore the approaches used to inform policy on atmospheric deposition, public...
Plant responses to soil heterogeneity and global environmental change
García-Palacios, Pablo; Maestre, Fernando T.; Bardgett, Richard D.; de Kroon, Hans
2015-01-01
Summary Recent evidence suggests that soil nutrient heterogeneity, a ubiquitous feature of terrestrial ecosystems, modulates plant responses to ongoing global change (GC). However, we know little about the overall trends of such responses, the GC drivers involved, and the plant attributes affected. We synthesized literature to answer the question: Does soil heterogeneity significantly affect plant responses to main GC drivers, such as elevated atmospheric carbon dioxide concentration (CO2), nitrogen (N) enrichment and changes in rainfall regime? Overall, most studies have addressed short-term effects of N enrichment on the performance of model plant communities using experiments conducted under controlled conditions. The role of soil heterogeneity as a modulator of plant responses to elevated CO2 may depend on the plasticity in nutrient uptake patterns. Soil heterogeneity does interact with N enrichment to determine plant growth and nutrient status, but the outcome of this interaction has been found to be both synergistic and inhibitory. The very few studies published on interactive effects of soil heterogeneity and changes in rainfall regime prevented us from identifying any general pattern. We identify the long-term consequences of soil heterogeneity on plant community dynamics in the field, and the ecosystem level responses of the soil heterogeneity × GC driver interaction, as the main knowledge gaps in this area of research. In order to fill these gaps and take soil heterogeneity and GC research a step forward, we propose the following research guidelines: 1) combining morphological and physiological plant responses to soil heterogeneity with field observations of community composition and predictions from simulation models; and 2) incorporating soil heterogeneity into a trait-based response-effect framework, where plant resource-use traits are used as both response variables to this heterogeneity and GC, and predictors of ecosystem functioning. Synthesis. There is enough evidence to affirm that soil heterogeneity modulates plant responses to elevated atmospheric CO2 and N enrichment. Our synthesis indicates that we must explicitly consider soil heterogeneity to accurately predict plant responses to GC drivers. PMID:25914423
Organic matter composition and substrate diversity under elevated CO2 in the Mojave Desert
NASA Astrophysics Data System (ADS)
Tfaily, M. M.; Hess, N. J.; Koyama, A.; Evans, R. D.
2016-12-01
Little is known about how rising atmospheric CO2 concentration will impact long-term plant biomass or the dynamics of soil organic matter (SOM) in arid ecosystems. In this study, we investigated the change in the molecular composition of SOM by high resolution mass spectrometry after 10 years exposure to elevated atmospheric CO2 concentrations at the Nevada Desert FACE Facility. Samples were collected from soil profiles from 0 to 1m in 0.2m increments under the dominant evergreen shrub (Larrea tridentata). The differences in the composition of SOM were more evident in soils close to the surface and consistent with higher bulk soil organic carbon (C) and total nitrogen (N) concentrations under elevated than ambient CO2, reflecting increased net productivity of shrubs under elevated CO2, which could be attributed to increased litter input from above-ground biomass and/or shallow roots, root exudation and/or microbial residues. This was further supported by the significant increase in the abundance of amino sugars-, protein- and carbohydrate-like compounds. These compounds are involved in diverse pathways ranging from sugars and amino-acid metabolism to lipid biosynthesis. This indicates increased activity and metabolism under elevated CO2 and suggests that elevated CO2 have altered microbial C use patterns, reflecting changes in the quality and quantity of soil C inputs. A significant increase in the mineral-bound soil organic C was also observed in the surface soils under elevated CO2. This was accompanied by increased microbial residues as identified by mass spectrometry that supports microbial lipid analysis, and reflecting accelerated microbial turnover under elevated CO2. Fungal neutral lipid fatty acids (NLFA) abundance doubled under elevated CO2. When provided with excess labile compounds, such as root exudates, and with limited supply of nutrients, fungi assimilate the excess labile C and store it as NLFA likely contributing to increased total N concentrations. This was further supported by the presence of acetyl glucosamine, a typical amino sugar, present in the chitin of fungi, under elevated than ambient CO2. Our results suggest that arid ecosystems, limited by water, may have a different C storage potential under changing climates than other ecosystems that are limited by N or P.
NASA Astrophysics Data System (ADS)
Keppel-Aleks, G.; Hoffman, F. M.
2014-12-01
Feedbacks between the global carbon cycle and climate represent one of the largest uncertainties in climate prediction. A promising method for reducing uncertainty in predictions of carbon-climate feedbacks is based on identifying an "emergent constraint" that leverages correlations between mechanistically linked long-term feedbacks and short-term variations within the model ensemble. By applying contemporary observations to evaluate model skill in simulating short-term variations, we may be able to better assess the probability of simulated long-term feedbacks. We probed the constraint on long-term terrestrial carbon stocks provided by climate-driven fluctuations in the atmospheric CO2 growth rate at contemporary timescales. We considered the impact of both temperature and precipitation anomalies on terrestrial ecosystem exchange and further separated the direct influence of fire where possible. When we explicitly considered the role of atmospheric transport in smoothing the imprint of climate-driven flux anomalies on atmospheric CO2 patterns, we found that the extent of temporal averaging of both the observations and ESM output leads to estimates for the long-term climate sensitivity of tropical land carbon storage that are different by a factor of two. In the context of these results, we discuss strategies for applying emergent constraints for benchmarking biogeochemical feedbacks in ESMs. Specifically, our results underscore the importance of selecting appropriate observational benchmarks and, for future model intercomparison projects, outputting fields that most closely correspond to available observational datasets.
Liu, Liang-Ying; Kukučka, Petr; Venier, Marta; Salamova, Amina; Klánová, Jana; Hites, Ronald A
2014-03-01
Atmospheric concentrations of high molecular weight polycyclic aromatic hydrocarbons (PAHs) were measured at five sites for almost two decades near the North American Great Lakes, as part of the Integrated Atmospheric Deposition Network (IADN), and at three remote sites around Europe, as part of the European Monitoring and Evaluation Programme (EMEP). The primary objectives were to reveal the spatial distributions, long-term temporal trends, and seasonal variations of atmospheric PAH concentrations and to investigate potential differences between these two regions. Atmospheric PAH concentrations at the urban sites in Chicago and Cleveland near Great Lakes were about 20 times (depending on PAH congener and sampling site) greater than those at the rural sites except for Košetice in the Czech Republic. Atmospheric PAH concentrations at Košetice, also a rural site, were about one-third of those at Chicago and Cleveland, but 10 times higher than those at other rural sites (Sturgeon Point, Sleeping Bear Dunes, Eagle Harbor, Aspvreten, and Spitsbergen). Significant long-term decreasing trends of all these PAH atmospheric concentrations were observed at Chicago and Cleveland. For the other sites, either less significant or no long-term decreasing trends were observed. Clear seasonality was observed at Sturgeon Point, Sleeping Bear Dunes, Košetice, and Spitsbergen, with the highest PAH concentrations observed in mid-January. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sources and Deposition of Polycyclic Aromatic Hydrocarbons to Western U.S. National Parks
USENKO, SASCHA; MASSEY SIMONICH, STACI L.; HAGEMAN, KIMBERLY J.; SCHRLAU, JILL E.; GEISER, LINDA; CAMPBELL, DON H.; APPLEBY, PETER G.; LANDERS, DIXON H.
2010-01-01
Seasonal snowpack, lichens, and lake sediment cores were collected from fourteen lake catchments in eight western U.S. National Parks and analyzed for sixteen polycyclic aromatic hydrocarbons (PAHs) in order to determine their current and historical deposition, as well as to identify their potential sources. Seasonal snowpack was measured to determine the current wintertime atmospheric PAH deposition; lichens were measured to determine the long-term, year around deposition; and the temporal PAH deposition trends were reconstructed using lake sediment cores dated using 210Pb and 137Cs. The fourteen remote lake catchments ranged from low-latitude catchments (36.6° N) at high elevation (2900 masl) in Sequoia National Park, CA to high-latitude catchments (68.4° N) at low elevation (427 masl) in the Alaskan Arctic. Over 75% of the catchments demonstrated statistically significant temporal trends in ΣPAH sediment flux, depending on catchment proximity to source regions and topographic barriers. The ΣPAH concentrations and fluxes in seasonal snowpack, lichens, and surficial sediment were 3.6 to 60,000 times greater in the Snyder Lake catchment of Glacier National Park than the other 13 lake catchments. The PAH ratios measured in snow, lichen, and sediment were used to identify a local aluminum smelter as a major source of PAHs to the Snyder Lake catchment. These results suggest that topographic barriers influence the atmospheric transport and deposition of PAHs in high-elevation ecosystems and that PAH sources to these national park ecosystems range from local point sources to diffuse regional and global sources. PMID:20465303
Timescale Correlation between Marine Atmospheric Exposure and Accelerated Corrosion Testing - Part 2
NASA Technical Reports Server (NTRS)
Montgomery, Eliza L.; Calle, Luz Marina; Curran, Jerome C.; Kolody, Mark R.
2012-01-01
Evaluation of metals to predict service life of metal-based structures in corrosive environments has long relied on atmospheric exposure test sites. Traditional accelerated corrosion testing relies on mimicking the exposure conditions, often incorporating salt spray and ultraviolet (UV) radiation, and exposing the metal to continuous or cyclic conditions similar to those of the corrosive environment. Their reliability to correlate to atmospheric exposure test results is often a concern when determining the timescale to which the accelerated tests can be related. Accelerated corrosion testing has yet to be universally accepted as a useful tool in predicting the long-term service life of a metal, despite its ability to rapidly induce corrosion. Although visual and mass loss methods of evaluating corrosion are the standard, and their use is crucial, a method that correlates timescales from accelerated testing to atmospheric exposure would be very valuable. This paper presents work that began with the characterization of the atmospheric environment at the Kennedy Space Center (KSC) Beachside Corrosion Test Site. The chemical changes that occur on low carbon steel, during atmospheric and accelerated corrosion conditions, were investigated using surface chemistry analytical methods. The corrosion rates and behaviors of panels subjected to long-term and accelerated corrosion conditions, involving neutral salt fog and alternating seawater spray, were compared to identify possible timescale correlations between accelerated and long-term corrosion performance. The results, as well as preliminary findings on the correlation investigation, are presented.
Onandia, Gabriela; Olsson, Anna-Karin; Barth, Sabine; King, John S; Uddling, Johan
2011-10-01
With rising concentrations of both atmospheric carbon dioxide (CO(2)) and tropospheric ozone (O(3)), it is important to better understand the interacting effects of these two trace gases on plant physiology affecting land-atmosphere gas exchange. We investigated the effect of growth under elevated CO(2) and O(3), singly and in combination, on the primary short-term stomatal response to CO(2) concentration in paper birch at the Aspen FACE experiment. Leaves from trees grown in elevated CO(2) and/or O(3) exhibited weaker short-term responses of stomatal conductance to both an increase and a decrease in CO(2) concentration from current ambient level. The impairement of the stomatal CO(2) response by O(3) most likely developed progressively over the growing season as assessed by sap flux measurements. Our results suggest that expectations of plant water-savings and reduced stomatal air pollution uptake under rising atmospheric CO(2) may not hold for northern hardwood forests under concurrently rising tropospheric O(3). Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rowley, David
2017-04-01
On a spherical Earth, the mean elevation ( -2440m) would be everywhere at a mean Earth radius from the center. This directly links an elevation at the surface to physical dimensions of the Earth, including surface area and volume that are at most very slowly evolving components of the Earth system. Earth's mean elevation thus provides a framework within which to consider changes in heights of Earth's solid surface as a function of time. In this paper the focus will be on long-term, non-glacially controlled sea level. Long-term sea level has long been argued to be largely controlled by changes in ocean basin volume related to changes in area-age distribution of oceanic lithosphere. As generally modeled by Pitman (1978) and subsequent workers, the age-depth relationship of oceanic lithosphere, including both the ridge depth and coefficients describing the age-depth relationship are assumed constant. This paper examines the consequences of adhering to these assumptions when placed within the larger framework of maintaining a constant mean radius of the Earth. Self-consistent estimates of long-term sea level height and changes in mean depth of the oceanic crust are derived from the assumption that the mean elevation and corresponding mean radius are unchanging aspects of Earth's shorter-term evolution. Within this context, changes in mean depth of the oceanic crust, corresponding with changes in mean age of the oceanic lithosphere, acting over the area of the oceanic crust represent a volume change that is required to be balanced by a compensating equal but opposite volume change under the area of the continental crust. Models of paleo-cumulative hypsometry derived from a starting glacial isostatic adjustment (GIA)-corrected ice-free hypsometry that conserve mean elevation provide a basis for understanding how these compensating changes impact global hypsometry and particularly estimates of global mean shoreline height. Paleo-shoreline height and areal extent of flooding can be defined as the height and corresponding cumulative area of the solid surface of the Earth at which the integral of area as a function of elevation, from the maximum depth upwards, equals the volume of ocean water filling it with respect to cumulative paleo-hypsometry. Present height of the paleo-shoreline is the height on the GIA-corrected cumulative hypsometry at an area equal to the areal extent of flooding. Paleogeographic estimates of global extent of ocean flooding from the Middle Jurassic to end Eocene, when combined with conservation of mean elevation and ocean water volume allow an explicit estimate of the paleo-height and present height of the paleo-shoreline. The best-fitting estimate of present height of the paleo-shoreline, equivalent to a long-term "eustatic" sea level curve, implies very modest (25±22m) changes in long-term sea level above the ice-free sea level height of +40m. These, in turn, imply quite limited changes in mean depth of the oceanic crust (15±11m), and mean age of the oceanic lithosphere ( 62.1±2.4 my) since the Middle Jurassic.
Carlsson, Bengt Å.; Melillo, Jerry M.
2018-01-01
A seven-year long, two-factorial experiment using elevated temperatures (5 °C) and CO2 (concentration doubled compared to ambient conditions) designed to test the effects of global climate change on plant community composition was set up in a Subarctic ecosystem in northernmost Sweden. Using point-frequency analyses in permanent plots, an increased abundance of the deciduous Vaccinium myrtillus, the evergreens V. vitis-idaea and Empetrum nigrum ssp. hermaphroditum and the grass Avenella flexuosa was found in plots with elevated temperatures. We also observed a possibly transient community shift in the warmed plots, from the vegetation being dominated by the deciduous V. myrtillus to the evergreen V. vitis-idaea. This happened as a combined effect of V. myrtillus being heavily grazed during two events of herbivore attack—one vole outbreak (Clethrionomys rufocanus) followed by a more severe moth (Epirrita autumnata) outbreak that lasted for two growing seasons—producing a window of opportunity for V. vitis-idaea to utilize the extra light available as the abundance of V. myrtillus decreased, while at the same time benefitting from the increased growth in the warmed plots. Even though the effect of the herbivore attacks did not differ between treatments they may have obscured any additional treatment effects. This long-term study highlights that also the effects of stochastic herbivory events need to be accounted for when predicting future plant community changes.
Boregowda, Siddaraju; Krishnappa, Veena; Chambers, Jeremy; LoGrasso, Phillip V.; Lai, Wen-Tzu; Ortiz, Luis A.; Phinney, Donald G.
2013-01-01
Large scale expansion of human mesenchymal stem cells (MSCs) is routinely performed for clinical therapy. In contrast, developing protocols for large scale expansion of primary mouse MSCs has been more difficult due to unique aspects of rodent biology. Currently, established methods to isolate mouse MSCs select for rapidly dividing subpopulations that emerge from bone marrow cultures following long-term (months) expansion in atmospheric oxygen. Herein, we demonstrate that exposure to atmospheric oxygen rapidly induced p53, TOP2A and BAX expression and mitochondrial ROS generation in primary mouse MSCs resulting in oxidative stress, reduced cell viability and inhibition of cell proliferation. Alternatively, procurement and culture in 5% oxygen supported more prolific expansion of the CD45−ve/CD44+ve cell fraction in marrow, produced increased MSC yields following immuno-depletion, and supported sustained MSC growth resulting in a 2300-fold increase in cumulative cell yield by 4th passage. MSCs cultured in 5% oxygen also exhibited enhanced tri-lineage differentiation. The oxygen-induced stress response was dependent upon p53 since siRNA mediated knockdown of p53 in wild type cells or exposure of p53−/− MSCs to atmospheric oxygen failed to induce ROS generation, reduce viability, or arrest cell growth. These data indicate that long-term culture expansion of mouse MSCs in atmospheric oxygen selects for clones with absent or impaired p53 function, which allows cells to escape oxygen-induced growth inhibition. In contrast, expansion in 5% oxygen generates large numbers of primary mouse MSCs that retain sensitivity to atmospheric oxygen, and therefore a functional p53 protein, even after long-term expansion in vitro. PMID:22367737
NASA Astrophysics Data System (ADS)
Becker, S.; Halsall, C. J.; Tych, W.; Kallenborn, R.; Su, Y.; Hung, H.
Twelve year datasets of weekly atmospheric concentrations of α- and γ-HCH were compared between the two Arctic monitoring stations of Alert, Nunavut, Canada, and Zeppelin Mountain, Svalbard, Norway. Time-series analysis was conducted with the use of dynamic harmonic regression (DHR), which provided a very good model fit, to examine both the seasonal behaviour in these isomers and the longer-term, underlying trends. Strong spatial differences were not apparent between the two sites, although subtle differences in seasonal behaviour and composition were identified. For example, the composition of γ-HCH to total HCH (α + γ) was greater at Zeppelin compared to Alert, probably reflecting this site's proximity to major use regions of lindane. Pronounced seasonality in air concentrations for γ-HCH was marked by a 'spring maximum event' (SME), confirming earlier studies. For α-HCH, the SME was much weaker and only evident at Alert, whereas at Zeppelin, seasonal fluctuations for α-HCH were marked by elevated concentrations in summer and lower concentrations during winter, with this pattern most apparent for the years after 2000. We attribute this difference in spatial and temporal patterns to the Arctic oscillation. A similar climatic pattern was not evident at either site in the γ-HCH data. Seasonally adjusted, long-term trends revealed declining concentrations at both sites for α- and γ-HCH over the entire time-series. Recent legislation affecting lindane use appear to account for this decline in γ-HCH, with little evidence of a delay or 'lag' between the banning of lindane in Europe (a main source region) or Canada, and a decline in air concentrations observed at both Arctic sites.
Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing
2015-12-01
Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.
Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project
NASA Technical Reports Server (NTRS)
Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)
2000-01-01
The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.
Elevated CO2 did not mitigate the effect of a short-term drought on biological soil crusts
Wertin, Timothy M.; Phillips, Susan L.; Reed, Sasha C.; Belnap, Jayne
2012-01-01
Biological soil crusts (biocrusts) are critical components of arid and semi-arid ecosystems that contribute significantly to carbon (C) and nitrogen (N) fixation, water retention, soil stability, and seedling recruitment. While dry-land ecosystems face a number of environmental changes, our understanding of how biocrusts may respond to such perturbation remains notably poor. To determine the effect that elevated CO2 may have on biocrust composition, cover, and function, we measured percent soil surface cover, effective quantum yield, and pigment concentrations of naturally occurring biocrusts growing in ambient and elevated CO2 at the desert study site in Nevada, USA, from spring 2005 through spring 2007. During the experiment, a year-long drought allowed us to explore the interacting effects that elevated CO2 and water availability may have on biocrust cover and function. We found that, regardless of CO2 treatment, precipitation was the major regulator of biocrust cover. Drought reduced moss and lichen cover to near-zero in both ambient and elevated CO2 plots, suggesting that elevated CO2 did not alleviate water stress or increase C fixation to levels sufficient to mitigate drought-induced reduction in cover. In line with this result, lichen quantum yield and soil cyanobacteria pigment concentrations appeared more strongly dependent upon recent precipitation than CO2 treatment, although we did find evidence that, when hydrated, elevated CO2 increased lichen C fixation potential. Thus, an increase in atmospheric CO2 may only benefit biocrusts if overall climate patterns shift to create a wetter soil environment.
Mather, Tamsin A
2008-12-28
Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents. This has led to the recognition that volcanic vents should be regarded not only as passive sources of volcanic gases to the atmosphere, but also as 'reaction vessels' that unlock otherwise inert volcanic and atmospheric gas species. The atypical conditions created by the mixing of ambient atmosphere with the hot gases emitted from magma give rise to elevated concentrations of otherwise unexpected chemical compounds. Rapid cooling of this mixture allows these species to persist into the environment, with important consequences for gas plume chemistry and impacts. This paper discusses some examples of the implications of these high-temperature interactions in terms of nitrogen, halogen and sulphur chemistry, and their consequences in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate.
Drigo, Barbara; Nielsen, Uffe N; Jeffries, Thomas C; Curlevski, Nathalie J A; Singh, Brajesh K; Duursma, Remko A; Anderson, Ian C
2017-08-01
Global change models indicate that rainfall patterns are likely to shift towards more extreme events concurrent with increasing atmospheric carbon dioxide concentration ([CO 2 ]). Both changes in [CO 2 ] and rainfall regime are known to impact above- and belowground communities, but the interactive effects of these global change drivers have not been well explored, particularly belowground. In this experimental study, we examined the effects of elevated [CO 2 ] (ambient + 240 ppm; [eCO 2 ]) and changes in rainfall patterns (seasonal drought) on soil microbial communities associated with forest ecosystems. Our results show that bacterial and archaeal communities are highly resistant to seasonal drought under ambient [CO 2 ]. However, substantial taxa specific responses to seasonal drought were observed at [eCO 2 ], suggesting that [eCO 2 ] compromise the resistance of microbial communities to extreme events. Within the microbial community we were able to identify three types of taxa specific responses to drought: tolerance, resilience and sensitivity that contributed to this pattern. All taxa were tolerant to seasonal drought at [aCO 2 ], whereas resilience and sensitivity to seasonal drought were much greater in [eCO 2 ]. These results provide strong evidence that [eCO 2 ] moderates soil microbial community responses to drought in forests, with potential implications for their long-term persistence and ecosystem functioning. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Gomez-Casanovas, Nuria; Blanc-Betes, Elena; Gonzalez-Meler, Miquel A.; Azcon-Bieto, Joaquim
2007-01-01
Studies on long-term effects of plants grown at elevated CO2 are scarce and mechanisms of such responses are largely unknown. To gain mechanistic understanding on respiratory acclimation to elevated CO2, the Crassulacean acid metabolism Mediterranean invasive Opuntia ficus-indica Miller was grown at various CO2 concentrations. Respiration rates, maximum activity of cytochrome c oxidase, and active mitochondrial number consistently decreased in plants grown at elevated CO2 during the 9 months of the study when compared to ambient plants. Plant growth at elevated CO2 also reduced cytochrome pathway activity, but increased the activity of the alternative pathway. Despite all these effects seen in plants grown at high CO2, the specific oxygen uptake rate per unit of active mitochondria was the same for plants grown at ambient and elevated CO2. Although decreases in photorespiration activity have been pointed out as a factor contributing to the long-term acclimation of plant respiration to growth at elevated CO2, the homeostatic maintenance of specific respiratory rate per unit of mitochondria in response to high CO2 suggests that photorespiratory activity may play a small role on the long-term acclimation of respiration to elevated CO2. However, despite growth enhancement and as a result of the inhibition in cytochrome pathway activity by elevated CO2, total mitochondrial ATP production was decreased by plant growth at elevated CO2 when compared to ambient-grown plants. Because plant growth at elevated CO2 increased biomass but reduced respiratory machinery, activity, and ATP yields while maintaining O2 consumption rates per unit of mitochondria, we suggest that acclimation to elevated CO2 results from physiological adjustment of respiration to tissue ATP demand, which may not be entirely driven by nitrogen metabolism as previously suggested. PMID:17660349
NASA Astrophysics Data System (ADS)
Andrews, M. Grace; Jacobson, Andrew D.
2017-10-01
Several studies have examined the geochemistry of Icelandic rivers to quantify the relationship between basalt weathering and long-term climate regulation. Recent research has suggested that the chemical weathering of hydrothermal and metamorphic calcite contributes significant quantities of HCO3- to the Icelandic riverine flux (Jacobson et al., 2015). Because the HCO3- derives from volcanic CO2 that was sequestered in mineral form prior to atmospheric injection, the strength of the basalt weathering feedback occurring in Iceland may be lower than previously realized. To test these hypotheses, we analyzed the radiogenic and stable Sr isotope composition (87Sr/86Sr and δ88/86Sr) of the same suite of water, rock, and mineral samples as examined in Jacobson et al. (2015), and we developed a simple model of the long-term C cycle that considers the transformation of volcanic CO2 to HCO3- during subsurface silicate weathering, which is a precursor to hydrothermal calcite formation. Interpretations based on 87Sr/86Sr and Ca/Sr ratios suggest that conservative, three-component mixing between basalt, calcite, and atmospheric deposition adequately explains river geochemistry. On average, the δ88/86Sr values of glacial and non-glacial rivers (0.414‰ and 0.388‰, respectively) are generally higher than those for basalt (0.276‰); however, calcite δ88/86Sr values (0.347‰) are also higher than those for basalt and span the range of riverine values. Thus, riverine δ88/86Sr values are also consistent three-component mixing between basalt, calcite, and atmospheric deposition. Isotopic fractionation is not required to explain riverine trends. Finally, model equations for the long-term C cycle demonstrate that subsurface silicate weathering reduces the magnitude of the volcanic CO2 degassing flux, which in turn causes the atmosphere to stabilize at lower pCO2 values compared to the case where no subsurface silicate weathering occurs. However, the proportion of the net volcanic C flux introduced to the atmosphere-ocean system as HCO3- after subsurface silicate weathering does not regulate long-term climate. Because hydrothermal calcite simply sequesters some of this HCO3- and delays its transmission to the atmosphere-ocean system until it dissolves at the surface later in time, it can be concluded the weathering of hydrothermal calcite bearing non-atmospheric C also has no effect on long-term climate regulation. Icelandic riverine HCO3- fluxes should be corrected for the hydrothermal calcite weathering contribution prior to quantifying atmospheric CO2 consumption rates by basalt weathering at the Earth's surface.
Ryan, Michael G
2013-11-01
Nutrient supply often limits growth in forest ecosystems and may limit the response of growth to an increase in other resources, or to more favorable environmental factors such as temperature and soil water. To explore the consequences and mechanisms of optimum nutrient supply for forest growth, the Flakaliden research site was established in 1986 on a young Norway spruce site with nutrient-poor soil. This special section on research at Flakaliden presents five papers that explore different facets of nutrition, atmospheric CO2 concentration, [CO2], and increased temperature treatments, using the original experiment as a base. Research at Flakaliden shows the dominant role of nutrition in controlling the response of growth to the increased photosynthesis promoted by elevated [CO2] and temperature. Experiments with whole-tree chambers showed that all treatments (air temperature warming, elevated [CO2] and optimum nutrition) increased shoot photosynthesis by 30-50%, but growth only increased with [CO2] when combined with the optimum nutrition treatment. Elevated [CO2] and temperature increased shoot photosynthesis by increasing the slope between light-saturated photosynthesis and foliar nitrogen by 122%, the initial slope of the light response curve by 52% and apparent quantum yield by 10%. Optimum nutrition also decreased photosynthetic capacity by 17%, but increased it by 62% in elevated [CO2], as estimated from wood δ(13)C. Elevated air temperature advanced spring recovery of photosynthesis by 37%, but spring frost events remained the controlling factor for photosynthetic recovery, and elevated [CO2] did not affect this. Increased nutrient availability increased wood growth primarily through a 50% increase in tracheid formation, mostly during the peak growth season. Other notable contributions of research at Flakaliden include exploring the role of optimal nutrition in large-scale field trials with foliar analysis, using an ecosystem approach for multifactor experiments, development of whole-tree chambers allowing inexpensive environmental manipulations, long-term deployment of shoot chambers for continuous measurements of gas exchange and exploring the ecosystem response to soil and aboveground tree warming. The enduring legacy of Flakaliden will be the rich data set of long-term, multifactor experiments that has been and will continue to be used in many modeling and cross-site comparison studies.
Aging behavior of near atmospheric N2 ambient sputtered/patterned Au IR absorber thin films
NASA Astrophysics Data System (ADS)
Gaur, Surender P.; Kothari, Prateek; Rangra, Kamaljit; Kumar, Dinesh
2018-03-01
Near atmospheric N2 ambient sputtered Au thin films exhibit significant spectral absorptivity over medium to long wave infrared radiations. Thin films were found adequately robust for micropatterning using conventional photolithography and metal lift off processes. Since long term spectral absorptivity is major practical concern for Au blacks, this paper reports on aging behavior of near atmospheric Ar and Ar + N2 (1:1) ambient sputtered infrared absorber Au thin films. Comparative analysis on electrical, morphological and spectral absorption behavior of twenty-five weeks room temperature/vacuum aged Au infrared absorber thin films is performed. The Ar and Ar + N2 ambient sputtered Au thing films have shown anticipated consistency in their physical, electrical and spectral properties regardless the long term aging in this work.
The impacts of ocean acidification in nearshore estuarine environments remain poorly characterized, despite these areas being some of the most ecologically, economically, and culturally important habitats in the global ocean. Here, we quantify how rising atmospheric CO2 from 1765...
Interaction of ice sheets and climate during the past 800 000 years
NASA Astrophysics Data System (ADS)
Stap, L. B.; van de Wal, R. S. W.; de Boer, B.; Bintanja, R.; Lourens, L. J.
2014-12-01
During the Cenozoic, land ice and climate interacted on many different timescales. On long timescales, the effect of land ice on global climate and sea level is mainly set by large ice sheets in North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely determined by the meridional temperature profile resulting from radiation and greenhouse gas (GHG) forcing. As a response, the ice sheets cause an increase in albedo and surface elevation, which operates as a feedback in the climate system. To quantify the importance of these climate-land ice processes, a zonally averaged energy balance climate model is coupled to five one-dimensional ice sheet models, representing the major ice sheets. In this study, we focus on the transient simulation of the past 800 000 years, where a high-confidence CO2 record from ice core samples is used as input in combination with Milankovitch radiation changes. We obtain simulations of atmospheric temperature, ice volume and sea level that are in good agreement with recent proxy-data reconstructions. We examine long-term climate-ice-sheet interactions by a comparison of simulations with uncoupled and coupled ice sheets. We show that these interactions amplify global temperature anomalies by up to a factor of 2.6, and that they increase polar amplification by 94%. We demonstrate that, on these long timescales, the ice-albedo feedback has a larger and more global influence on the meridional atmospheric temperature profile than the surface-height-temperature feedback. Furthermore, we assess the influence of CO2 and insolation by performing runs with one or both of these variables held constant. We find that atmospheric temperature is controlled by a complex interaction of CO2 and insolation, and both variables serve as thresholds for northern hemispheric glaciation.
Global, long-term surface reflectance records from Landsat
USDA-ARS?s Scientific Manuscript database
Global, long-term monitoring of changes in Earth’s land surface requires quantitative comparisons of satellite images acquired under widely varying atmospheric conditions. Although physically based estimates of surface reflectance (SR) ultimately provide the most accurate representation of Earth’s s...
Long-term orbit prediction for China's Tiangong-1 spacecraft based on mean atmosphere model
NASA Astrophysics Data System (ADS)
Tang, Jingshi; Liu, Lin; Miao, Manqian
Tiangong-1 is China's test module for future space station. It has gone through three successful rendezvous and dockings with Shenzhou spacecrafts from 2011 to 2013. For the long-term management and maintenance, the orbit sometimes needs to be predicted for a long period of time. As Tiangong-1 works in a low-Earth orbit with an altitude of about 300-400 km, the error in the a priori atmosphere model contributes significantly to the rapid increase of the predicted orbit error. When the orbit is predicted for 10-20 days, the error in the a priori atmosphere model, if not properly corrected, could induce the semi-major axis error and the overall position error up to a few kilometers and several thousand kilometers respectively. In this work, we use a mean atmosphere model averaged from NRLMSIS00. The a priori reference mean density can be corrected during precise orbit determination (POD). For applications in the long-term orbit prediction, the observations are first accumulated. With sufficiently long period of observations, we are able to obtain a series of the diurnal mean densities. This series bears the recent variation of the atmosphere density and can be analyzed for various periods. After being properly fitted, the mean density can be predicted and then applied in the orbit prediction. We show that the densities predicted with this approach can serve to increase the accuracy of the predicted orbit. In several 20-day prediction tests, most predicted orbits show semi-major axis errors better than 700m and overall position errors better than 600km.
NASA Astrophysics Data System (ADS)
Ma, W.; Ma, Y.; Hu, Z.; Zhong, L.
2017-12-01
In this study, a land-atmosphere model was initialized by ingesting AMSR-E products, and the results were compared with the default model configuration and with in situ long-term CAMP/Tibet observations. Firstly our field observation sites will be introduced based on ITPCAS (Institute of Tibetan Plateau Research, Chinese Academy of Sciences). Then, a land-atmosphere model was initialized by ingesting AMSR-E products, and the results were compared with the default model configuration and with in situ long-term CAMP/Tibet observations. The differences between the AMSR-E initialized model runs with the default model configuration and in situ data showed an apparent inconsistency in the model-simulated land surface heat fluxes. The results showed that the soil moisture was sensitive to the specific model configuration. To evaluate and verify the model stability, a long-term modeling study with AMSR-E soil moisture data ingestion was performed. Based on test simulations, AMSR-E data were assimilated into an atmospheric model for July and August 2007. The results showed that the land surface fluxes agreed well with both the in situ data and the results of the default model configuration. Therefore, the simulation can be used to retrieve land surface heat fluxes from an atmospheric model over the Tibetan Plateau.
Pattanshetty, Deepak J; Bhat, Pradeep K; Aneja, Ashish; Pillai, Dilip P
2012-12-01
Hypertensive crisis is associated with poor clinical outcomes. Elevated troponin, frequently observed in hypertensive crisis, may be attributed to myocardial supply-demand mismatch or obstructive coronary artery disease (CAD). However, in patients presenting with hypertensive crisis and an elevated troponin, the prevalence of CAD and the long-term adverse cardiovascular outcomes are unknown. We sought to assess the impact of elevated troponin on cardiovascular outcomes and evaluate the role of troponin as a predictor of obstructive CAD in patients with hypertensive crisis. Patients who presented with hypertensive crisis (n = 236) were screened retrospectively. Baseline and follow-up data including the event rates were obtained using electronic patient records. Those without an assay for cardiac Troponin I (cTnI) (n = 65) were excluded. Of the remaining 171 patients, those with elevated cTnI (cTnI ≥ 0.12 ng/ml) (n = 56) were compared with those with normal cTnI (cTnI < 0.12 ng/ml) (n = 115) at 2 years for the occurrence of major adverse cardiac or cerebrovascular events (MACCE) (composite of myocardial infarction, unstable angina, hypertensive crisis, pulmonary edema, stroke or transient ischemic attack). At 2 years, MACCE occurred in 40 (71.4%) patients with elevated cTnI compared with 44 (38.3%) patients with normal cTnI [hazard ratio: 2.77; 95% confidence interval (CI): 1.79-4.27; P < 0.001]. Also, patients with elevated cTnI were significantly more likely to have underlying obstructive CAD (odds ratio: 8.97; 95% CI: 1.4-55.9; P < 0.01). In patients with hypertensive crisis, elevated cTnI confers a significantly greater risk of long-term MACCE, and is a strong predictor of obstructive CAD.
Huang, Zhiqun; Liu, Bao; Davis, Murray; Sardans, Jordi; Peñuelas, Josep; Billings, Sharon
2016-04-01
The impact of long-term nitrogen (N) deposition is under-studied in phosphorus (P)-limited subtropical forests. We exploited historically collected herbarium specimens to investigate potential physiological responses of trees in three subtropical forests representing an urban-to-rural gradient, across which N deposition has probably varied over the past six decades. We measured foliar [N] and [P] and stable carbon (δ(13) C), oxygen (δ(18) O) and nitrogen (δ(15) N) isotopic compositions in tissue from herbarium specimens of plant species collected from 1947 to 2014. Foliar [N] and N : P increased, and δ(15) N and [P] decreased in the two forests close to urban centers. Consistent with recent studies demonstrating that N deposition in the region is (15) N-depleted, these data suggest that the increased foliar [N] and N : P, and decreased [P], may be attributable to atmospheric deposition and associated enhancement of P limitation. Estimates of intrinsic water use efficiency calculated from foliar δ(13) C decreased by c. 30% from the 1950s to 2014, contrasting with multiple studies investigating similar parameters in N-limited forests. This effect may reflect decreased photosynthesis, as suggested by a conceptual model of foliar δ(13) C and δ(18) O. Long-term N deposition may exacerbate P limitation and mitigate projected increases in carbon stocks driven by elevated CO2 in forests on P-limited soils. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Research Opportunities at Storm Peak Laboratory
NASA Astrophysics Data System (ADS)
Hallar, A. G.; McCubbin, I. B.
2006-12-01
The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.
Environmental mercury in China: a review.
Lin, Yan; Vogt, Rolf; Larssen, Thorjorn
2012-11-01
Mercury is a global pollutant that can be transported over long distances and can bioaccumulate. Currently, China is the country that contributes most to atmospheric Hg emissions and has the greatest intentional (industrial) use of Hg. Mercury in the Chinese environment is generally elevated, particularly in air and water bodies. Remote areas in China also show elevated Hg levels in air and water bodies compared to other rural regions in the world. Large river estuaries are often heavily affected by upstream industrial sources. Mercury is also elevated in sediments, a direct result of contamination in river systems. Regardless of the few heavily polluted sites, the urban environment in Chinese cities is comparable to that of other megacities in terms of Hg pollution, considering the size and rapid development of Chinese cities. Studies on Hg in fish showed generally low levels of contamination resulting from low bioaccumulation of Hg in the mostly short food chains. Mercury in rice has recently received increased research interest; elevated concentrations have been reported from rice grown in contaminated areas and may pose a threat to people dependent on such locally grown food. For the general population, Hg exposure from rice is, however, small. In addition, Hg hair concentration in the Chinese population showed generally low levels of exposure to Hg, except for people with special occupational exposure. Copyright © 2012 SETAC.
Modeling some long-term implications of CO2 fertilization for global forests and forest industries
Joseph Buongiorno
2015-01-01
Background: This paper explored the long-term, ceteris-paribus effects of potential CO2 fertilization on the globalforest sector. Based on the findings of Norby et al. (PNAS 2005, 102(50)) about forest response to elevated [CO2].Methods:...
NASA Astrophysics Data System (ADS)
McInerney, J. M.; Qian, L.; Liu, H.
2013-12-01
It has been over two decades since the projection that, not only will the human induced increase in atmospheric CO2 produce a warming in the troposphere, it will also produce a cooling in the middle to upper atmosphere into the 21st century with significant consequences. The thermospheric density decrease associated with this projected upper atmosphere cooling due to greenhouse gases has been confirmed by observations, in particular satellite drag measurements, and by various modeling studies. Recent studies also suggest potential impacts from the lower atmosphere on thermosphere dynamics such as atmospheric thermal tides and gravity waves. With the current advance of whole atmosphere climate models which extend from the ground through the thermosphere, it is now possible to include effects of these and other lower atmosphere processes in modeling studies of long term thermospheric changes. One such whole atmosphere model under development at the National Center for Atmospheric Research (NCAR) is the Whole Atmosphere Community Climate Model - eXtended (WACCM-X). WACCM-X is a self consistent climate model extending from the ground to approximately 500 kilometers and is based on the Whole Atmosphere Community Climate Model (WACCM) / Community Atmosphere Model (CAM) component of the Community Earth System Model (CESM). Although an interactive ionosphere module is not complete, the globally averaged structure of thermosphere temperature and neutral species from WACCM-X are reasonable compared with the NCAR global mean model. In this study, we will examine a transient WACCM-X simulation from 1955 to 2005 with realistic tropospheric CO2 input and solar and geomagnetic forcing. The preliminary study will focus on the long term changes in the thermosphere from this simulation, in particular the secular changes of thermosphere neutral density and temperature due to anthropogenic forcing.
Yang, Hao; He, Nianpeng; He, Yongtao; Li, Shenggong; Shi, Peili; Zhang, Xianzhou
2015-01-01
Understanding the influences of climatic changes on water use efficiency (WUE) of Tibetan alpine meadows is important for predicting their long-term net primary productivity (NPP) because they are considered very sensitive to climate change. Here, we collected wool materials produced from 1962 to 2010 and investigated the long-term WUE of an alpine meadow in Tibet on basis of the carbon isotope values of vegetation (δ 13Cveg). The values of δ 13Cveg decreased by 1.34‰ during 1962–2010, similar to changes in δ 13C values of atmospheric CO2. Carbon isotope discrimination was highly variable and no trend was apparent in the past half century. Intrinsic water use efficiency (W i) increased by 18 μmol·mol–1 (approximately 23.5%) during 1962–2010 because the increase in the intercellular CO2 concentration (46 μmol·mol–1) was less than that in the atmospheric CO2 concentration (C a, 73 μmol·mol–1). In addition, W i increased significantly with increasing growing season temperature and C a. However, effective water use efficiency (W e) remained relatively stable, because of increasing vapor pressure deficit. C a, precipitation, and growing season temperature collectively explained 45% of the variation of W e. Our findings indicate that the W e of alpine meadows in the Tibetan Plateau remained relatively stable by physiological adjustment to elevated C a and growing season temperature. These findings improve our understanding and the capacity to predict NPP of these ecosystems under global change scenarios. PMID:26660306
The Lifecycle of NASA's Earth Science Enterprise Data Resources
NASA Technical Reports Server (NTRS)
McDonald, Kenneth R.; McKinney, Richard A.; Smith, Timothy B.; Rank, Robert
2004-01-01
A major endeavor of NASA's Earth Science Enterprise (ESE) is to acquire, process, archive and distribute data from Earth observing satellites in support of a broad set of science research and applications in the U. S. and abroad. NASA policy directives specifically call for the agency to collect, announce, disseminate and archive all scientific and technical data resulting from NASA and NASA-funded research. During the active life of the satellite missions, while the data products are being created, validated and refined, a number of NASA organizations have the responsibility for data and information system functions. Following the completion of the missions, the responsibility for the long-term stewardship of the ocean and atmospheric, and land process data products transitions to the National Oceanic and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS), respectively. Ensuring that long-term satellite data be preserved to support global climate change studies and other research topics and applications presents some major challenges to NASA and its partners. Over the last several years, with the launch and operation of the EOS satellites and the acquisition and production of an unprecedented volume of Earth science data, the importance of addressing these challenges has been elevated. The lifecycle of NASA's Earth science data has been the subject of several agency and interagency studies and reports and has implications and effects on agency charters, policies and budgets and on their data system's requirements, implementation plans and schedules. While much remains to be done, considerable progress has been made in understanding and addressing the data lifecycle issues.
Long Term Baseline Atmospheric Monitoring
ERIC Educational Resources Information Center
Goldman, Mark A.
1975-01-01
Describes a program designed to measure the normal concentrations of certain chemical and physical parameters of the atmosphere so that quantitative estimates can be made of local, regional, and global pollution. (GS)
Boreal mire Green House Gas exchange in response to global change perturbations
NASA Astrophysics Data System (ADS)
Nilsson, Mats
2017-04-01
High latitude boreal peatlands contribute importantly to the land-atmosphere-hydrosphere exchange of carbon and GHG, i.e. carbon dioxide, methane and dissolved organic carbon. High latitude biomes are identified as most vulnerable to changing climate. High latitudes are also characterized by a strong seasonality in incoming solar radiation, weather conditions and thus also in biogeochemical processes. The strong seasonality in incoming solar radiation, not to change in response to a changing climate, constitute firm constraints on how changes in air temperature, evapotranspiration and precipitation will affect biogeochemical processes underlying the land atmosphere and land hydrosphere exchange of green house gases. In this presentation I combine data from long-term monitoring, long-term field manipulations and detailed chemical analysis to understand how changes in atmosphere and weather conditions influence the major carbon fluxes of a boreal mire Net Ecosystem Carbon Balance. The long-term monitoring data contains >12 years of continuous Eddy Covariance CO2 data, growing season chamber CH4 data and continuous measurements of discharge export of DOC, CO2 and CH4. Data from long-term field snow removal manipulations and growing season temperature increase manipulations are used to further understand the impact of climate on mire carbon and GHG fluxes. Finally we uses Nuclear Magnetic Spectroscopy (NMR) to reveal how century scale changes in atmospheric CO2 from 300 to 400 pm CO2 and temperature have influenced the net photosynthetic capacity of Sphagnum mosses, the single most important plant genus for boreal mire carbon sequestration.
Concerns Regarding Hair Cortisol as a Biomarker of Chronic Stress in Exercise and Sport Science
Gerber, Markus; Brand, Serge; Lindwall, Magnus; Elliot, Catherine; Kalak, Nadeem; Herrmann, Christian; Pühse, Uwe; Jonsdottir, Ingibjörg H.
2012-01-01
Hair cortisol has the potential to fill the methodological void of long-term cortisol assessment while becoming a widely accepted measure in biopsychology. This review critically examines the applicability and relevance of hair cortisol measurement specifically within the field of exercise and sport science. Current measures of the HPA axis only cover a brief time period, whereas hair cortisol is a unique, non-invasive means to capture long- term cortisol secretion. Studies have shown that individuals who have elevated cortisol secretion (e.g. due to diseases associated with a disturbed activation of the HPA axis or exposure to stressful life events) reveal increased hair cortisol. By contrast, only weak correlations exist between hair cortisol and perceived stress, and the direction of the relationship between hair cortisol levels and mental disorders is unclear. Acute exercise, however, results in increased levels of cortisol that eventually is reflected in higher levels of cortisol in hair samples and studies have shown that exercise intensity is related to hair cortisol level. Thus, elevated hair cortisol levels found among regular exercisers are not necessarily pathological. Thus, one should practice caution when associating athletes’ elevated hair cortisol with poor mental health or disease. Hair cortisol analysis can contribute to a more complete understanding of how long-term cortisol elevation mediates stress-related effects on the health and performance of recreational exercisers and elite athletes. Nevertheless, it is crucial for exercise and sport scientists to consider whether their research questions can be adequately addressed, given that regular intense exercise results in substantially augmented hair cortisol levels. Key points Hair cortisol is a unique, non-invasive and painless means to capture long-term cortisol secretion. Individuals expected to have elevated cortisol secretion (e.g. due to trauma) have increased hair cortisol. Preliminary evidence shows that exercisers have higher hair cortisol levels as well. Hair cortisol analysis can contribute to a more complete understanding of how long-term cortisol secretion mediates stress-related effects on health and performance. There is a great dearth of knowledge about the relationship between sport, exercise and hair cortisol. PMID:24150065
The Mars water cycle at other epochs: History of the polar caps and layered terrain
NASA Technical Reports Server (NTRS)
Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.
1992-01-01
The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.
Outreach Plans for Storm Peak Laboratory
NASA Astrophysics Data System (ADS)
Hallar, A. G.; McCubbin, I. B.
2006-12-01
The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation 10,500 ft. SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a full kitchen and two bunk rooms with sleeping space for nine persons. We plan to create a unique summer undergraduate education experiences for students of diversity at Storm Peak Laboratory. As stressed by the College Pathways to Science Education Standards [Siebert and McIntosh, 2001], to support changes in K-12 science education transformations must first be made at the college level, including inquiry-oriented opportunities to engage in meaningful research. These workshops will be designed to allow students to experience the excitement of science, increasing their likelihood of pursing careers within the fields of scientific education or research.
Keonhee Kim; Nicole Labbé; Jeffrey M. Warren; Thomas Elder; Timothy G. Rials
2015-01-01
The anatomical and chemical characteristics of sweetgum were studied after 11 years of elevated CO2(544 ppm, ambient at 391 ppm) exposure. Anatomically, branch xylem cells were larger for elevated CO2 trees, and the cell wall thickness was thinner. Chemically, elevated CO2 exposure did not...
Nitrogen enrichment regulates calcium sources in forests
Hynicka, Justin D.; Pett-Ridge, Julie C.; Perakis, Steven
2016-01-01
Nitrogen (N) is a key nutrient that shapes cycles of other essential elements in forests, including calcium (Ca). When N availability exceeds ecosystem demands, excess N can stimulate Ca leaching and deplete Ca from soils. Over the long term, these processes may alter the proportion of available Ca that is derived from atmospheric deposition vs. bedrock weathering, which has fundamental consequences for ecosystem properties and nutrient supply. We evaluated how landscape variation in soil N, reflecting long-term legacies of biological N fixation, influenced plant and soil Ca availability and ecosystem Ca sources across 22 temperate forests in Oregon. We also examined interactions between soil N and bedrock Ca using soil N gradients on contrasting basaltic vs. sedimentary bedrock that differed 17-fold in underlying Ca content. We found that low-N forests on Ca-rich basaltic bedrock relied strongly on Ca from weathering, but that soil N enrichment depleted readily weatherable mineral Ca and shifted forest reliance toward atmospheric Ca. Forests on Ca-poor sedimentary bedrock relied more consistently on atmospheric Ca across all levels of soil N enrichment. The broad importance of atmospheric Ca was unexpected given active regional uplift and erosion that are thought to rejuvenate weathering supply of soil minerals. Despite different Ca sources to forests on basaltic vs. sedimentary bedrock, we observed consistent declines in plant and soil Ca availability with increasing N, regardless of the Ca content of underlying bedrock. Thus, traditional measures of Ca availability in foliage and soil exchangeable pools may poorly reflect long-term Ca sources that sustain soil fertility. We conclude that long-term soil N enrichment can deplete available Ca and cause forests to rely increasingly on Ca from atmospheric deposition, which may limit ecosystem Ca supply in an increasingly N-rich world.
NASA Astrophysics Data System (ADS)
Palmer, M. D.; Cannaby, H.; Howard, T.; Bricheno, L.
2016-02-01
Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980-2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m(0.74 m) under the RCP 4.5(8.5) scenarios respectively. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region.
NASA Astrophysics Data System (ADS)
Cannaby, H.; Palmer, M. D.; Howard, T.; Bricheno, L.; Calvert, D.; Krijnen, J.; Wood, R.; Tinker, J.; Bunney, C.; Harle, J.; Saulter, A.; O'Neill, C.; Bellingham, C.; Lowe, J.
2015-12-01
Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using ~ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled (~ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980-2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the RCP 4.5 (8.5) scenarios respectively. Trends in surge and significant wave height 2 year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of ~ 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region.
Damman, Peter; Wallentin, Lars; Fox, Keith A A; Windhausen, Fons; Hirsch, Alexander; Clayton, Tim; Pocock, Stuart J; Lagerqvist, Bo; Tijssen, Jan G P; de Winter, Robbert J
2012-01-31
The present study was designed to investigate the long-term prognostic impact of procedure-related and spontaneous myocardial infarction (MI) on cardiovascular mortality in patients with non-ST-elevation acute coronary syndrome. Five-year follow-up after procedure-related or spontaneous MI was investigated in the individual patient pooled data set of the FRISC-II (Fast Revascularization During Instability in Coronary Artery Disease), ICTUS (Invasive Versus Conservative Treatment in Unstable Coronary Syndromes), and RITA-3 (Randomized Intervention Trial of Unstable Angina 3) non-ST-elevation acute coronary syndrome trials. The principal outcome was cardiovascular death up to 5 years of follow-up. Cumulative event rates were estimated by the Kaplan-Meier method; hazard ratios were calculated with time-dependent Cox proportional hazards models. Adjustments were made for the variables associated with long-term outcomes. Among the 5467 patients, 212 experienced a procedure-related MI within 6 months after enrollment. A spontaneous MI occurred in 236 patients within 6 months. The cumulative cardiovascular death rate was 5.2% in patients who had a procedure-related MI, comparable to that for patients without a procedure-related MI (hazard ratio 0.66; 95% confidence interval, 0.36-1.20, P=0.17). In patients who had a spontaneous MI within 6 months, the cumulative cardiovascular death rate was 22.2%, higher than for patients without a spontaneous MI (hazard ratio 4.52; 95% confidence interval, 3.37-6.06, P<0.001). These hazard ratios did not change materially after risk adjustments. Five-year follow-up of patients with non-ST-elevation acute coronary syndrome from the 3 trials showed no association between a procedure-related MI and long-term cardiovascular mortality. In contrast, there was a substantial increase in long-term mortality after a spontaneous MI.
Mueller, Kevin E; Hobbie, Sarah E; Tilman, David; Reich, Peter B
2013-04-01
The effects of global environmental changes on soil nitrogen (N) pools and fluxes have consequences for ecosystem functions such as plant productivity and N retention. In a 13-year grassland experiment, we evaluated how elevated atmospheric carbon dioxide (CO2 ), N fertilization, and plant species richness alter soil N cycling. We focused on soil inorganic N pools, including ammonium and nitrate, and two N fluxes, net N mineralization and net nitrification. In contrast with existing hypotheses, such as progressive N limitation, and with observations from other, often shorter, studies, elevated CO2 had relatively static and small, or insignificant, effects on soil inorganic N pools and fluxes. Nitrogen fertilization had inconsistent effects on soil N transformations, but increased soil nitrate and ammonium concentrations. Plant species richness had increasingly positive effects on soil N transformations over time, likely because in diverse subplots the concentrations of N in roots increased over time. Species richness also had increasingly positive effects on concentrations of ammonium in soil, perhaps because more carbon accumulated in soils of diverse subplots, providing exchange sites for ammonium. By contrast, subplots planted with 16 species had lower soil nitrate concentrations than less diverse subplots, especially when fertilized, probably due to greater N uptake capacity of subplots with 16 species. Monocultures of different plant functional types had distinct effects on N transformations and nitrate concentrations, such that not all monocultures differed from diverse subplots in the same manner. The first few years of data would not have adequately forecast the effects of N fertilization and diversity on soil N cycling in later years; therefore, the dearth of long-term manipulations of plant species richness and N inputs is a hindrance to forecasting the state of the soil N cycle and ecosystem functions in extant plant communities. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Cai, Jiangping; Luo, Wentao; Liu, Heyong; Feng, Xue; Zhang, Yongyong; Wang, Ruzhen; Xu, Zhuwen; Zhang, Yuge; Jiang, Yong
2017-12-01
Atmospheric nitrogen (N) deposition can result in soil acidification and reduce soil acid buffering capacity. However, it remains poorly understood how changes in precipitation regimes with elevated atmospheric N deposition affect soil acidification processes in a water-limited grassland. Here, we conducted a 9-year split-plot experiment with water addition as the main factor and N addition as the second factor. Results showed that soil acid buffering capacity significantly decreased with increased N inputs, mainly due to the decline of soil effective cation exchange capacity (ECEC) and exchangeable basic cations (especially Ca2+), indicating an acceleration of soil acidification status in this steppes. Significant interactive N and water effects were detected on the soil acid buffering capacity. Water addition enhanced the soil ECEC and exchangeable base cations and thus alleviated the decrease of soil acid buffering capacity under N addition. Our findings suggested that precipitation can mitigate the impact of increased N deposition on soil acidification in semi-arid grasslands. This knowledge should be used to improve models predicting soil acidification processes in terrestrial ecosystems under changing environmental conditions.
Reconstruction of daily solar UV irradiation from 1893 to 2002 in Potsdam, Germany
NASA Astrophysics Data System (ADS)
Junk, Jürgen; Feister, Uwe; Helbig, Alfred
2007-08-01
Long-term records of solar UV radiation reaching the Earth’s surface are scarce. Radiative transfer calculations and statistical models are two options used to reconstruct decadal changes in solar UV radiation from long-term records of measured atmospheric parameters that contain information on the effect of clouds, atmospheric aerosols and ground albedo on UV radiation. Based on earlier studies, where the long-term variation of daily solar UV irradiation was derived from measured global and diffuse irradiation as well as atmospheric ozone by a non-linear regression method [Feister et al. (2002) Photochem Photobiol 76:281 293], we present another approach for the reconstruction of time series of solar UV radiation. An artificial neural network (ANN) was trained with measurements of solar UV irradiation taken at the Meteorological Observatory in Potsdam, Germany, as well as measured parameters with long-term records such as global and diffuse radiation, sunshine duration, horizontal visibility and column ozone. This study is focussed on the reconstruction of daily broad-band UV-B (280 315 nm), UV-A (315 400 nm) and erythemal UV irradiation (ER). Due to the rapid changes in cloudiness at mid-latitude sites, solar UV irradiance exhibits appreciable short-term variability. One of the main advantages of the statistical method is that it uses doses of highly variable input parameters calculated from individual spot measurements taken at short time intervals, which thus do represent the short-term variability of solar irradiance.
NASA Astrophysics Data System (ADS)
Campbell, J. E.; Hilton, T. W.; Laine, M.; Wang, Y.; Berry, J. A.; Hannigan, J. W.
2017-12-01
The seasonal amplitude in atmospheric CO2 has grown over the last 50 years, pointing to a fundamental shift in the regional carbon cycle. Theoretical drivers from the amplitude growth include changes in terrestrial photosynthesis and heterotrophic respiration. However, large-scale, measurement-based evidence for these mechanisms is unclear. Here we analyze historical measurements of carbonyl sulfide which also show long-term growth in seasonal amplitude. We use this new trend to interpret the underlying mechanisms of CO2 amplitude growth and to validate global ecosystem models.
Busing, Richard T.; Stephens, Luther A.; Clebsch, Edward E.C.
2004-01-01
A climate data set is presented for four sites spanning the elevation gradient in the Great Smoky Mountains from Gatlinburg to Clingmans Dome. Monthly mean values for cloud cover, temperature, humidity, precipitation, and soil moisture are included. Stephens (1969) is the source of all summarized mean monthly data. Values are the averages of four years (1947-1950) with moderate to high precipitation. Graphical displays show strong climatic patterns of variation among seasons and elevations. The upper stations had lower temperatures and higher precipitation totals; however, temperature lapse rates and variation in vapor pressure deficits decreased at upper elevations. To examine how well the four-year sample represents the long-term climate, temperature and precipitation for the Gatlinburg (1460 ft elevation at park headquarters) station were compared between the years in the sample and the years in the full record from 1928 to 2003. Trends related to season and elevation are consistent with earlier studies and provide a basis for interpretation of climate dynamics in the southern Appalachian Mountains.
Long-term sedimentary recycling of rare sulphur isotope anomalies.
Reinhard, Christopher T; Planavsky, Noah J; Lyons, Timothy W
2013-05-02
The accumulation of substantial quantities of O2 in the atmosphere has come to control the chemistry and ecological structure of Earth's surface. Non-mass-dependent (NMD) sulphur isotope anomalies in the rock record are the central tool used to reconstruct the redox history of the early atmosphere. The generation and initial delivery of these anomalies to marine sediments requires low partial pressures of atmospheric O2 (p(O2); refs 2, 3), and the disappearance of NMD anomalies from the rock record 2.32 billion years ago is thought to have signalled a departure from persistently low atmospheric oxygen levels (less than about 10(-5) times the present atmospheric level) during approximately the first two billion years of Earth's history. Here we present a model study designed to describe the long-term surface recycling of crustal NMD anomalies, and show that the record of this geochemical signal is likely to display a 'crustal memory effect' following increases in atmospheric p(O2) above this threshold. Once NMD anomalies have been buried in the upper crust they are extremely resistant to removal, and can be erased only through successive cycles of weathering, dilution and burial on an oxygenated Earth surface. This recycling results in the residual incorporation of NMD anomalies into the sedimentary record long after synchronous atmospheric generation of the isotopic signal has ceased, with dynamic and measurable signals probably surviving for as long as 10-100 million years subsequent to an increase in atmospheric p(O2) to more than 10(-5) times the present atmospheric level. Our results can reconcile geochemical evidence for oxygen production and transient accumulation with the maintenance of NMD anomalies on the early Earth, and suggest that future work should investigate the notion that temporally continuous generation of new NMD sulphur isotope anomalies in the atmosphere was likely to have ceased long before their ultimate disappearance from the rock record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Ya-Tang; Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taiwan; Genomics Research Center, Academia Sinica, Taiwan
Arsenic ingestion has been linked to increasing global prevalence of and mortality from cardiovascular disease (CVD); arsenic can be removed from drinking water to reduce related health effects. Lactate dehydrogenase (LDH) is used for the evaluation of acute arsenic toxicity in vivo and in vitro, but it is not validated for the evaluation of long-term, chronic arsenic exposure. The present study examined the long-term effect of chronic arsenic exposure on CVD and serum LDH levels, after consideration of arsenic metabolism capacity. A total of 380 subjects from an arseniasis-endemic area and 303 from a non-endemic area of southwestern Taiwan weremore » recruited in 2002. Various urinary arsenic species were analyzed using high-performance liquid chromatography (HPLC) and hydride generation systems. Fasting serum was used for quantitative determination of the total LDH activity. A significant dose–response relationship was observed between arsenic exposure and LDH elevation, independent of urinary arsenic profiles (P < 0.001). Furthermore, abnormal LDH elevation was associated with CVD mortality after adjustment for Framingham risk scores for 10-year CVD and arsenic exposure (hazard ratio, 3.98; 95% confidence interval, 1.07–14.81). LDH was elevated in subjects with arsenic exposure in a dose-dependent manner. LDH is a marker of arsenic toxicity associated with CVD mortality. Results of this study have important implications for use in ascertaining long-term arsenic exposure risk of CVD. -- Highlights: ► We showed that arsenic exposure was correlated with LDH elevation. ► LDH elevation was related to arsenic methylation capacity. ► Abnormal LDH elevation can be a marker of susceptibility to CVD mortality.« less
Evaluation of very long baseline interferometry atmospheric modeling improvements
NASA Technical Reports Server (NTRS)
Macmillan, D. S.; Ma, C.
1994-01-01
We determine the improvement in baseline length precision and accuracy using new atmospheric delay mapping functions and MTT by analyzing the NASA Crustal Dynamics Project research and development (R&D) experiments and the International Radio Interferometric Surveying (IRIS) A experiments. These mapping functions reduce baseline length scatter by about 20% below that using the CfA2.2 dry and Chao wet mapping functions. With the newer mapping functions, average station vertical scatter inferred from observed length precision (given by length repeatabilites) is 11.4 mm for the 1987-1990 monthly R&D series of experiments and 5.6 mm for the 3-week-long extended research and development experiment (ERDE) series. The inferred monthly R&D station vertical scatter is reduced by 2 mm or by 7 mm is a root-sum-square (rss) sense. Length repeatabilities are optimum when observations below a 7-8 deg elevation cutoff are removed from the geodetic solution. Analyses of IRIS-A data from 1984 through 1991 and the monthly R&D experiments both yielded a nonatmospheric unmodeled station vertical error or about 8 mm. In addition, analysis of the IRIS-A exeriments revealed systematic effects in the evolution of some baseline length measurements. The length rate of change has an apparent acceleration, and the length evolution has a quasi-annual signature. We show that the origin of these effects is unlikely to be related to atmospheric modeling errors. Rates of change of the transatlantic Westford-Wettzell and Richmond-Wettzell baseline lengths calculated from 1988 through 1991 agree with the NUVEL-1 plate motion model (Argus and Gordon, 1991) to within 1 mm/yr. Short-term (less than 90 days) variations of IRIS-A baseline length measurements contribute more than 90% of the observed scatter about a best fit line, and this short-term scatter has large variations on an annual time scale.
Gago, Custódia M L; Miguel, Maria G; Cavaco, Ana M; Almeida, Domingos P F; Antunes, Maria D C
2015-03-01
The combination of temperature and atmosphere composition for storage of Pyrus communis L. 'Rocha' treated with 1-methylcyclopropene was investigated. Fruits treated with 312 nl l(-1) 1-methylcyclopropene were stored at 0 ℃ and 2.5 ℃ in air and controlled atmosphere (CA) (3.04 kPa O2+ 0.91 kPa CO2). Fruits were removed from storage after 14, 26 and 35 weeks, transferred to shelf-life at approximately 22 ℃ and assessed for ripening and quality, symptoms of superficial scald and internal browning and the accumulation of biochemical compounds related to scald after 0, 1 and 2 weeks. Superficial scald occurred only in fruits stored for 35 weeks in air at 2.5 ℃. Levels of conjugated trienols and α-farnesene increased during the first 26 weeks in storage, remaining constant thereafter. During shelf-life, conjugated trienols were higher in fruits stored in air at 2.5 ℃. Internal browning developed in shelf-life after 26 weeks at 2.5 ℃. Pears in air at 2.5 ℃ were not able to stand a 2-week shelf-life after 35 weeks of storage, while fruits stored at 0 ℃ under CA ripened slowly after the same storage period. The retention of firmness during shelf-life of 1-methylcyclopropene-treated 'Rocha' pear can be overcome by elevating the storage temperature from 0 ℃ to 2.5 ℃, but CA is a required complement to avoid excessive softening after long-term storage. The ratio carotenoid/chlorophyll increased during storage and shelf-life, as plastids senesced. CA reduced the rate of chlorophyll loss during the first 14 weeks in storage, but its effect was reduced afterwards. 'Rocha' pear treated with 1-methylcyclopropene had a similar post-harvest behaviour during long-term storage at 0 ℃ in air or at 2.5 ℃ under CA. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
The Tree-Ring Mercury Record of Gold Mining in the Klondike, Central Yukon Territory
NASA Astrophysics Data System (ADS)
Clackett, S.; Porter, T. J.; Lehnherr, I.
2016-12-01
Mercury (Hg) is an atmospherically mixed pollutant of global concern with the potential to become toxic methyl-Hg (MeHg) is some environments. Accurate projections of future health impacts caused by Hg pollution will partly depend on changes in the atmospheric Hg pool, but knowledge of natural Hg variability is limited by a lack of long term monitoring data, which precludes a robust analysis of how it may evolve in the future. Natural archives such as lake sediments, ice cores and tree-rings have the potential to fill this knowledge gap. Tree-rings may be ideally suited for this purpose since they are annually resolved, they span multiple centuries in some areas, and cover large portions of the Earth's surface. Few studies have evaluated tree-ring Hg, and generally agree tree-rings are a passive archive for local Hg emissions. However, further studies are needed to validate this hypothesis. An ideal site to test this proxy is Bear Creek in the Klondike where the Hg amalgamation method was used during the period 1918-1966 to recover fine gold from placer ore. Gaseous Hg was lost to the local environment during operations, as is confirmed by high soil Hg concentrations at the site today. Local trees would have been exposed to the elevated Hg emissions. We measured tree-ring Hg at Bear Creek to determine if historical Hg trends are preserved. Our preliminary results from a single tree reveal that: (1) peak tree-ring Hg coincides with Bear Creek operations; (2) the lowest tree-ring Hg is observed during the pre-industrial control period (1870-1880); and (3) post-Bear Creek operations (1970-2010) coincides with intermediate tree-ring Hg levels, presumably due to higher Hg global backgrounds in recent decades. Additional trees are being analysed to determine if this result is robust, and will provide important insights on the reliability of this proxy for reconstructing long-term atmospheric Hg at local and potentially broader spatial scales.
Evaluation of Chemistry-Climate Model Results using Long-Term Satellite and Ground-Based Data
NASA Technical Reports Server (NTRS)
Stolarski, Richard S.
2005-01-01
Chemistry-climate models attempt to bring together our best knowledge of the key processes that govern the composition of the atmosphere and its response to changes in forcing. We test these models on a process by process basis by comparing model results to data from many sources. A more difficult task is testing the model response to changes. One way to do this is to use the natural and anthropogenic experiments that have been done on the atmosphere and are continuing to be done. These include the volcanic eruptions of El Chichon and Pinatubo, the solar cycle, and the injection of chlorine and bromine from CFCs and methyl bromide. The test of the model's response to these experiments is their ability to produce the long-term variations in ozone and the trace gases that affect ozone. We now have more than 25 years of satellite ozone data. We have more than 15 years of satellite and ground-based data of HC1, HN03, and many other gases. I will discuss the testing of models using long-term satellite data sets, long-term measurements from the Network for Detection of Stratospheric Change (NDSC) , long-term ground-based measurements of ozone.
Preliminary design study of a high resolution meteor radar
NASA Technical Reports Server (NTRS)
Lee, W.; Geller, M. A.
1973-01-01
A design study for a high resolution meteor radar system is carried out with the objective of measuring upper atmospheric winds and particularly studying short period atmospheric waves in the 80 to 120 km altitude region. The transmitter that is to be used emits a peak power of 4 Mw. The system is designed to measure the wind velocity and height of a meteor trail very accurately. This is achieved using a specially developed digital reduction procedure to determine wind velocity and range together with an interferometer for measuring both the azimuth and elevation angles of the region with a long baseline vernier measurement being used to refine the elevation angle measurement. The resultant accuracies are calculated to be + or - 0.9 m/s for the wind, + or - 230 m for the range and + or - 0.12 deg for the elevation angle, giving a height accuracy of + or - 375 m. The prospects for further development of this system are also discussed.
Argon-40 as a Constraint on the Volcanic Degassing History and Thermal Evolution of Mars
NASA Astrophysics Data System (ADS)
Kiefer, W. S.
2017-12-01
Models for the thermal and magmatic evolution of Mars are strongly controlled by the volcanic degassing of water from the interior. Water affects the mantle's viscosity and hence the vigor of convective flow. It also affects the mantle's solidus temperature and hence the rate of magma generation. This set of coupled feedback loops affects both the volume of crustal production and the possible production of a magnetic field via a core dynamo (e.g., Sandu and Kiefer, GRL 2012, 2011GL050225). Volcanic degassing also affects other atmospheric components. Argon-40, which is a radioactive decay product of potassium-40, can potentially serve as an additional test of thermal evolution models. As a noble gas, 40Ar is highly incompatible in mantle and crustal rocks and thus tends to degas to the atmosphere during magmatic events. 40K has a half-life of 1.25 billion years and thus 40Ar measures volcanic degassing throughout martian history. It is relatively insensitive to atmospheric loss processes during the earliest part of solar system history, and long-term loss of 40Ar from the atmosphere can be estimated from fractionation of the 38Ar/36Ar ratio relative to solar (MAVEN results indicate that 66% of 36Ar has been lost from the martian atmosphere, Jakosky et al., Science 2017). The noble gas composition of the martian atmosphere has been measured both in situ using the SAM mass spectrometer on NASA's Curiosity rover and via measurements of trapped atmospheric gases in martian meteorites. One important application of 40Ar degassing models is as a constraint on the bulk silicate composition of Mars. The most widely accepted composition model for Mars has a potassium abundance of 305-310 ppm, slightly higher than the bulk silicate Earth. However, several other models assume a bulk silicate Mars K of up to 1040 ppm. Preliminary Ar degassing modeling favors K in the lower half of this range, consistent with results from long-term and present-day magma production models. Constraints on the bulk silicate K abundance are important to understanding the thermal and magmatic history of Mars because 40K is a radioactive heat source. In addition, the expected abundances of K and Na are correlated and elevated values of Na act to lower the peridotite solidus and thus to enhance the magma production rate (Kiefer et al., Geochimica, 2015).
Hussin, Sayed; Geissler, Nicole; El-Far, Mervat M M; Koyro, Hans-Werner
2017-09-01
The effect of water salinity on plant growth and photosynthetic traits of Stevia rebaudiana was investigated to determine its level and mechanisms of salinity tolerance. It was also attempted to assess how short-term elevated CO 2 concentration would influence the boundaries and mechanisms of its photosynthetic capacity. The plants were grown in gravel/hydroponic system under controlled greenhouse conditions and irrigated with four different salinity levels (0, 25, 50 and 100 mol m -3 NaCl). Low salinity did not significantly alter the plant fresh weight, which was substantially decreased by 67% at high salinity treatment. Salinity tolerance threshold was reached at 50 mol m -3 NaCl while C50 was between 50 and 100 mol m -3 NaCl, indicating that S. rebaudiana is a moderate salt tolerant species. Salt-induced growth reduction was apparently linked to a significant decline of about 47% in the photosynthetic rates (A net ) at high salinity treatment, leading consequently to a disequilibrium between CO 2 -assimilation and electron transport rates (indicated by enhanced ETR max /A gross ratio). Elevated atmospheric CO 2 enhanced CO 2 assimilation rates by 65% and 80% for control and high-salt-stressed plants respectively, likely due to significant increases in intercellular CO 2 concentration (indicated by enhanced C i /C a ). The priority for Stevia under elevated atmospheric CO 2 was not to save water but to maximize photosynthesis so that the PWUE was progressively improved and the threat of oxidative stress was diminished (decline in ETR max /A gross ). The results imply that elevated CO 2 level could ameliorate some of the detrimental effects of salinity, conferring higher tolerance and survival of S. rebaudiana, a highlydesired feature with the forthcoming era of global changes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Cole, A. S.; Steffen, A.; Hung, H.
2010-12-01
Elevated levels of mercury and other pollutants are an ongoing threat to the health of Arctic people and wildlife, despite the vast distance that separates the region from major anthropogenic sources of these contaminants. The International Polar Year (IPY) project INterContinental Atmospheric Transport of anthropogenic Pollutants to the Arctic (INCATPA) is investigating the transport of pollutants, specifically persistent organic pollutants and mercury, from source regions to the remote Arctic. Transport from Asia is of particular interest since Asian sources comprise a significant and increasing fraction of global mercury emissions. The INCATPA project is also studying how climate change may affect atmospheric chemistry and transport of these pollutants in the Arctic. Mercury studies under INCATPA have involved concurrent measurements of ambient mercury during the period 2007-2009 at new and ongoing sites in Arctic and Pan-Pacific regions. These data include a first look at ambient mercury levels in areas of western Canada where mercury had not previously been monitored. At some sites, mercury measurements were analyzed along with supplementary data to assess contributions from local and long-distance sources. Long-term Arctic monitoring data were also used to address how climate change may already be affecting mercury chemistry and deposition in this region. As IPY and the INCATPA project wind down, their legacy is a continuation of mercury monitoring at these sites and new international scientific relationships to support growing international cooperation on the delivery of sound science for the development of public policy on mercury.
Ubl, Sandy; Scheringer, Martin; Hungerbühler, Konrad
2017-09-05
Polychlorinated biphenyls (PCBs) are persistent hazardous chemicals that are still detected in the atmosphere and other environmental media, although their production has been banned for several decades. At the long-term monitoring site, Zeppelin at Spitsbergen, different PCB congeners have been continuously measured for more than a decade. However, it is not clear what factors determine the seasonal and interannual variability of different (lighter versus heavier) PCB congeners. To investigate the influence of atmospheric transport patterns on PCB-28 and PCB-101 concentrations at Zeppelin, we applied the Lagrangian Particle Dispersion Model FLEXPART and calculated "footprints" that indicate the potential source regions of air arriving at Zeppelin. By means of a cluster analysis, we assigned groups of similar footprints to different transport regimes and analyzed the PCB concentrations according to the transport regimes. The concentrations of both PCB congeners are affected by the different transport regimes. For PCB-101, the origin of air masses from the European continent is primarily related to high concentrations; elevated PCB-101 concentrations in winter can be explained by the high frequency of this transport regime in winter, whereas PCB-101 concentrations are low when air is arriving from the oceans. For PCB-28, in contrast, concentrations are high during summer when air is mainly arriving from the oceans but low when air is arriving from the continents. The most likely explanation of this finding is that local emissions of PCB-28 mask the effect of long-range transport and determine the concentrations measured at Zeppelin.
Evidence of exceptional oyster-reef resilience to fluctuations in sea level.
Ridge, Justin T; Rodriguez, Antonio B; Fodrie, F Joel
2017-12-01
Ecosystems at the land-sea interface are vulnerable to rising sea level. Intertidal habitats must maintain their surface elevations with respect to sea level to persist via vertical growth or landward retreat, but projected rates of sea-level rise may exceed the accretion rates of many biogenic habitats. While considerable attention is focused on climate change over centennial timescales, relative sea level also fluctuates dramatically (10-30 cm) over month-to-year timescales due to interacting oceanic and atmospheric processes. To assess the response of oyster-reef ( Crassostrea virginica ) growth to interannual variations in mean sea level (MSL) and improve long-term forecasts of reef response to rising seas, we monitored the morphology of constructed and natural intertidal reefs over 5 years using terrestrial lidar. Timing of reef scans created distinct periods of high and low relative water level for decade-old reefs ( n = 3) constructed in 1997 and 2000, young reefs ( n = 11) constructed in 2011 and one natural reef (approximately 100 years old). Changes in surface elevation were related to MSL trends. Decade-old reefs achieved 2 cm/year growth, which occurred along higher elevations when MSL increased. Young reefs experienced peak growth (6.7 cm/year) at a lower elevation that coincided with a drop in MSL. The natural reef exhibited considerable loss during the low MSL of the first time step but grew substantially during higher MSL through the second time step, with growth peaking (4.3 cm/year) at MSL, reoccupying the elevations previously lost. Oyster reefs appear to be in dynamic equilibrium with short-term (month-to-year) fluctuations in sea level, evidencing notable resilience to future changes to sea level that surpasses other coastal biogenic habitat types. These growth patterns support the presence of a previously defined optimal growth zone that shifts correspondingly with changes in MSL, which can help guide oyster-reef conservation and restoration.
MODELING THE VARIATIONS OF DOSE RATE MEASURED BY RAD DURING THE FIRST MSL MARTIAN YEAR: 2012–2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jingnan; Wimmer-Schweingruber, Robert F.; Heber, Bernd
2015-09-01
The Radiation Assessment Detector (RAD), on board Mars Science Laboratory’s (MSL) rover Curiosity, measures the energy spectra of both energetic charged and neutral particles along with the radiation dose rate at the surface of Mars. With these first-ever measurements on the Martian surface, RAD observed several effects influencing the galactic cosmic-ray (GCR) induced surface radiation dose concurrently: (a) short-term diurnal variations of the Martian atmospheric pressure caused by daily thermal tides, (b) long-term seasonal pressure changes in the Martian atmosphere, and (c) the modulation of the primary GCR flux by the heliospheric magnetic field, which correlates with long-term solar activitymore » and the rotation of the Sun. The RAD surface dose measurements, along with the surface pressure data and the solar modulation factor, are analyzed and fitted to empirical models that quantitatively demonstrate how the long-term influences ((b) and (c)) are related to the measured dose rates. Correspondingly, we can estimate dose rate and dose equivalents under different solar modulations and different atmospheric conditions, thus allowing empirical predictions of the Martian surface radiation environment.« less
Third International Colloquium on Mars
NASA Technical Reports Server (NTRS)
1981-01-01
Abstracts of papers concerning the geology and geophysics of Mars, volcanism on Mars, the Mars atmosphere, and the long term history of the atmosphere-cap-regolith volatile regime are presented. Formation of the Mars surface, climatology, gravity and magnetism, atmospheric boundary layers, and interpretation of Viking imagery and Earth-based observations are considered.
Atmospheric mass and the record of liquid water on Mars
NASA Astrophysics Data System (ADS)
Halevy, I.; Head, J. W., III
2017-12-01
Widespread evidence for the action of liquid water on early Mars is generally accepted to require the presence of atmospheric greenhouse agents other than CO2. Much of this activity clusters in the late Noachian and early Hesperian (3.9-3.6 Ga), and appears to coincide with a long maximum in extrusive and explosive volcanic activity. Among other suggestions, a role for S-bearing volcanic gases has been proposed, but these and any other non-CO2 greenhouse gases or atmospheric components require a background CO2 atmosphere of several hundred mbar. Global climate models suggest that even if the surface reservoir of CO2 were much larger than today, this reservoir would be mostly trapped as CO2 ice, and only a few to tens of mbar would be in the atmosphere. Thus, at the long-term steady state, sustained warmth is difficult to achieve in the face of a fainter Sun. We suggest that episodic volcanism released the CO2 trapped as ice at the planet's surface in two ways. First, the emission of S-bearing greenhouse gases (mostly SO2) would lead to warming of a few Kelvins. Second, the deposition of volcanic ash on water and CO2 ice surfaces would push the local energy budget to favor sublimation, and would also decrease the planetary albedo and lead to additional warming. Inflation of the CO2 atmosphere has been shown in global climate models to shift the distribution of snowfall to high elevations, as opposed to a latitude-dependent distribution at low atmospheric pressure. We suggest that seasonal melting of this snow carved the valley networks and filled basin lakes. The duration of warm periods was limited by the timescale for atmospheric collapse by condensation, which is 102-103 years. Repeated inflation episodes over the duration of active volcanism led to an integrated duration of aqueous activity of 106-107 years, enough to carve the valley networks. The S-bearing gases emitted by eruptions formed sulfate minerals, initially uniformly dispersed, then remobilized and locally redeposited at low latitudes during periods of aqueous activity. As volcanic activity waned in the mid-Hesperian, fewer instances of atmospheric inflation occurred, and CO2 was trapped as high-latitude surface ice. Decreasing volcanic input and gradual atmospheric escape ultimately resulted in the remaining reservoir of CO2 observed today.
Emission of atmospheric pollutants out of Africa - Analysis of CARIBIC aircraft air samples
NASA Astrophysics Data System (ADS)
Thorenz, Ute R.; Baker, Angela K.; Schuck, Tanja; van Velthoven, Peter F. J.; Ziereis, Helmut; Brenninkmeijer, Carl A. M.
2014-05-01
Africa is the single largest continental source of biomass burning (BB) emissions. The burning African savannas and tropical forests are a source for a wide range of chemical species, which are important for global atmospheric chemistry, especially for the pristine Southern Hemisphere. Emitted compounds include carbon monoxide (CO), nitrogen oxides (NOx), hydrocarbons, oxygenated hydrocarbons and particles. Deep convection over Central Africa transports boundary layer emissions to the free troposphere making aircraft-based observations useful for investigation of surface emissions and examination of transport and chemistry processes over Africa The CARIBIC project (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container, www.caribic-atmosphere.com part of IAGOS www.iagos.org) is a long term atmospheric measurement program using an instrument container deployed aboard a Lufthansa Airbus A340-600 for a monthly sequence of long-distance passenger flights. Besides the online measurements mixing ratios of greenhouse gases and a suite of C2-C8 non methane hydrocarbons (NMHCs) are measured from flask samples collected at cruise altitude. During northern hemispheric winter 2010/2011 CARIBIC flights took place from Frankfurt to Cape Town and Johannesburg in South Africa. Several BB tracers like methane, CO and various NMHCs were found to be elevated over tropical Africa. Using tracer-CO- and tracer-NOy-correlations emissions were characterized. The NMHC-CO correlations show monthly changing slopes, indicating a change in burned biomass, major fire stage, source region and/or other factors influencing NMHC emissions. To expand our analysis of emission sources a source region data filter was used, based on backward trajectories calculated along the flight tracks. Taking all CARIBIC samples into account having backward trajectories to the African boundary layer the dataset was enlarged from 77 to 168 samples. For both datasets tracer-tracer correlations are used to investigate sources and the correlations between NMHCs are used to analyze photochemical processing and transport.
NASA Astrophysics Data System (ADS)
Kawase, Hiroaki; Hara, Masayuki; Yoshikane, Takao; Ishizaki, Noriko N.; Uno, Fumichika; Hatsushika, Hiroaki; Kimura, Fujio
2013-11-01
Sea of Japan side of Central Japan is one of the heaviest snowfall areas in the world. We investigate near-future snow cover changes on the Sea of Japan side using a regional climate model. We perform the pseudo global warming (PGW) downscaling based on the five global climate models (GCMs). The changes in snow cover strongly depend on the elevation; decrease in the ratios of snow cover is larger in the lower elevations. The decrease ratios of the maximum accumulated snowfall in the short term, such as 1 day, are smaller than those in the long term, such as 1 week. We conduct the PGW experiments focusing on specific periods when a 2 K warming at 850 hPa is projected by the individual GCMs (PGW-2K85). The PGW-2K85 experiments show different changes in precipitation, resulting in snow cover changes in spite of similar warming conditions. Simplified sensitivity experiments that assume homogenous warming of the atmosphere (2 K) and the sea surface show that the altitude dependency of snow cover changes is similar to that in the PGW-2K85 experiments, while the uncertainty of changes in the sea surface temperature influences the snow cover changes both in the lower and higher elevations. The decrease in snowfall is, however, underestimated in the simplified sensitivity experiments as compared with the PGW experiments. Most GCMs project an increase in dry static stability and some GCMs project an anticyclonic anomaly over Central Japan, indicating the inhibition of precipitation, including snowfall, in the PGW experiments.
Time-Series Analysis: A Cautionary Tale
NASA Technical Reports Server (NTRS)
Damadeo, Robert
2015-01-01
Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.
NASA Astrophysics Data System (ADS)
Zavoruev, V. V.; Domysheva, V. M.; Pestunov, D. A.; Sakirko, M. V.; Panchenko, M. V.
2018-04-01
The process of gas exchange of CO2 in the atmosphere-water system and its relation to the daily course of variable fluorescence of phytoplankton is studied on the basis of long-term (2004-2014) measurements during the open water period for Lake Baikal. It is found that the decrease in photosynthetic activity of plankton is almost synchronous to the increase in the CO2 flux from atmosphere to water. It follows from comparison of the spring and summer data with December measurements that the daily decrease in variable fluorescence of phytoplankton is caused by the internal daily rhythm of the photosynthetic activity of plankton.
How increasing CO2 leads to an increased negative greenhouse effect in Antarctica
NASA Astrophysics Data System (ADS)
Schmithüsen, Holger; Notholt, Justus; König-Langlo, Gert; Lemke, Peter; Jung, Thomas
2015-12-01
CO2 is the strongest anthropogenic forcing agent for climate change since preindustrial times. Like other greenhouse gases, CO2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, the emission to space is higher than the surface emission; and the greenhouse effect of CO2 is around zero or even negative, which has not been discussed so far. We investigated this in detail and show that for central Antarctica an increase in CO2 concentration leads to an increased long-wave energy loss to space, which cools the Earth-atmosphere system. These findings for central Antarctica are in contrast to the general warming effect of increasing CO2.
Long-term nitrogen regulation of forest carbon sequestration
NASA Astrophysics Data System (ADS)
Yang, Y.; Luo, Y.
2009-12-01
It is well established that nitrogen (N) limits plant production but unclear how N regulates long-term terrestrial carbon (C) sequestration in response to rising atmospheric C dioxide (CO2)(Luo et al., 2004). Most experimental evidence on C-N interactions is primarily derived from short-term CO2 manipulative studies (e.g. Oren et al., 2001; Reich et al., 2006a), which abruptly increase C inputs into ecosystems and N demand from soil while atmospheric CO2 concentration in the real world is gradually increasing over time (Luo & Reynolds, 1999). It is essential to examine long-term N regulations of C sequestration in natural ecosystems. Here we present results of a synthesis of more than 100 studies on long-term C-N interactions during secondary succession. C significantly accumulates in plant, litter and forest floor in most studies, and in mineral soil in one-third studies during stand development. Substantial increases in C stock are tightly coupled with N accretion. The C: N ratio in plant increases with stand age in most cases, but remains relatively constant in litter, forest floor and mineral soil. Our results suggest that natural ecosystems could have the intrinsic capacity to maintain long-term C sequestration through external N accrual, high N use efficiency, and efficient internal N cycling.
Huang, Jie; Kang, Shichang; Tian, Lide; Guo, Junming; Zhang, Qianggong; Cong, Zhiyuan; Sillanpää, Mika; Sun, Shiwei; Tripathee, Lekhendra
2016-10-01
Monsoon circulation is an important process that affects long-range transboundary transport of anthropogenic contaminants such as mercury (Hg). During the Indian monsoon season of 2013, a total of 92 and 26 atmospheric water vapor samples were collected at Lhasa, the largest city of the Tibet, for Hg and major ions analysis, respectively. The relatively low pH/high electronic conductivity values, together with the fact that NH4(+) in atmospheric water vapor was even higher than that determined in precipitation of Lhasa, indicated the effects of anthropogenic perturbations through long-range transboundary atmospheric transport. Concentrations of Hg in atmospheric water vapor ranged from 2.5 to 73.7ngL(-1), with an average of 12.5ngL(-1). The elevated Hg and major ions concentrations, and electronic conductivity values were generally associated with weak acidic samples, and Hg mainly loaded with anthropogenic ions such as NH4(+). The results of principal component analysis and trajectory analysis suggested that anthropogenic emissions from the Indian subcontinent may have largely contributed to the determined Hg in atmospheric water vapor. Furthermore, our study reconfirmed that below-cloud scavenging contribution was significant for precipitation Hg in Lhasa, and evaluated that on average 74.1% of the Hg in precipitation could be accounted for by below-cloud scavenging. Copyright © 2016 Elsevier B.V. All rights reserved.
Fonti, Patrick; von Arx, Georg; Carrer, Marco
2017-01-01
Background and Aims During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Methods Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Key Results Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August–September temperature at high elevation. Conclusions Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions. PMID:28130220
Jensen, Magnus Thorsten; Kaiser, Christoph; Sandsten, Karl Erik; Alber, Hannes; Wanitschek, Maria; Iversen, Allan; Jensen, Jan Skov; Pedersen, Sune; Soerensen, Rikke; Rickli, Hans; Zurek, Marzena; Fahrni, Gregor; Bertel, Osmund; De Servi, Stefano; Erne, Paul; Pfisterer, Matthias; Galatius, Søren
2013-10-09
Elevated heart rate (HR) is associated with mortality in a number of heart diseases. We examined the long-term prognostic significance of HR at discharge in a contemporary population of patients with stable angina (SAP), non-ST-segment elevation acute coronary syndromes (NSTE-ACS), and ST-segment elevation myocardial infarction (STEMI) revascularized with percutaneous coronary intervention (PCI). Patients from the BASKET-PROVE trial, an 11-center randomized all-comers trial comparing bare-metal and drug-eluting stenting in large coronary vessels, were included. Discharge HR was determined from a resting ECG. Long-term outcomes (7 days to 2 years) were evaluated for all-cause mortality and cardiovascular death and non-fatal myocardial infarction. A total of 2029 patients with sinus rhythm were included, 722 (35.6%) SAP, 647 (31.9%) NSTE-ACS, and 660 (32.5%) STEMI. Elevated discharge HR was associated significantly with all-cause mortality: when compared to a reference of <60 beats per minute (bpm), the adjusted hazard ratios were (95% CI) 4.5 (1.5-13.5, p=0.006) for 60-69 bpm, 3.8 (1.2-11.9, p=0.022) for 70-79 bpm, 4.3 (1.2-15.6, p=0.025) for 80-89 bpm, and 16.9 (5.2-55.0, p<0.001) for >90 bpm. For cardiovascular death/myocardial infarction, a discharge HR >90 bpm was associated with a hazard ratio of 6.2 (2.5-15.5, p<0.001) compared to a HR <60 bpm. No interaction was found for disease presentation, diabetes or betablocker use. In patients revascularized with PCI for stable angina or acute coronary syndromes an elevated discharge HR was independently associated with poor prognosis. Conversely, a HR <60 bpm at discharge was associated with a good long-term prognosis irrespective of indication for PCI. © 2013.
Wang, Bingjian; Zhang, Yanchun; Wang, Xiaobing; Hu, Tingting; Li, Ju; Geng, Jin
2017-01-01
The association between off-hours presentation and mortality in patients with ST-segment elevation myocardial infarction (STEMI) remains unclear. We performed a meta-analysis to assess the impact of off-hours presentation on short- and long-term mortality among STEMI patients. We searched PubMed, EMBASE, and the Cochrane Library from their inception to 10 July 2016. Studies were eligible if they evaluated the relationship of off-hours (weekend and/or night) presentation with short- and/or long-term mortality. A total of 30 studies with 33 cohorts involving 192,658 STEMI patients were included. Off-hours presentation was associated with short-term mortality (odds ratio [OR] 1.07, 95% confidence interval [CI] 1.02-1.12, P = 0.004) but not with long-term mortality (OR 1.00, 95% CI 0.94-1.07, P = 0.979). No significant heterogeneity was observed. The outcomes remained the same after sensitivity analyses and trim and fill analyses. Subgroup analyses showed that STEMI patients undergoing primary percutaneous coronary intervention do not have a higher risk of short-term mortality (OR 1.061, 95% CI 0.993-1.151). In addition, higher mortality was observed only during hospitalization (OR 1.072, 95% CI 1.022-1.125), not at the 30-day, 1-year or long-term follow-ups. Off-hours presentation was associated with an increase in short-term mortality, but not long-term mortality, among STEMI patients. Clinical approaches to decrease short-term mortality regardless of the time of presentation should be evaluated in future studies.
An ecohydrologic model for a shallow groundwater urban environment.
Arden, Sam; Ma, Xin Cissy; Brown, Mark
2014-01-01
The urban environment is a patchwork of natural and artificial surfaces that results in complex interactions with and impacts to natural hydrologic cycles. Evapotranspiration is a major hydrologic flow that is often altered through urbanization, although the mechanisms of change are sometimes difficult to tease out due to difficulty in effectively simulating soil-plant-atmosphere interactions. This paper introduces a simplified yet realistic model that is a combination of existing surface runoff and ecohydrology models designed to increase the quantitative understanding of complex urban hydrologic processes. Results demonstrate that the model is capable of simulating the long-term variability of major hydrologic fluxes as a function of impervious surface, temperature, water table elevation, canopy interception, soil characteristics, precipitation and complex mechanisms of plant water uptake. These understandings have potential implications for holistic urban water system management.
Toward the next generation of air quality monitoring: Mercury
NASA Astrophysics Data System (ADS)
Pirrone, Nicola; Aas, Wenche; Cinnirella, Sergio; Ebinghaus, Ralf; Hedgecock, Ian M.; Pacyna, Jozef; Sprovieri, Francesca; Sunderland, Elsie M.
2013-12-01
Mercury is a global pollutant that is ubiquitous in the environment. Enrichment of mercury in the biosphere as the result of human activities and subsequent production of methylmercury (MeHg) has resulted in elevated concentrations in fish, wildlife and marine mammals globally. Elemental mercury (Hg0) is the most common form of mercury in the atmosphere, and the form that is most readily transported long distances from its emission source. Most mercury deposition from the atmosphere is in the highly soluble, oxidised inorganic form HgII. Thus, understanding atmospheric transport and oxidant distribution is essential for understanding mercury inputs to ecosystems. Methylmercury (MeHg) is the most toxic form of mercury that accumulates in aquatic food web and can cause a variety of negative health effects such as long-term IQ deficits and cardiovascular impairment in exposed individuals. Humans are predominately exposed to MeHg by consuming fish. Hg0 emitted from anthropogenic sources has a long (6 months-1 year) atmospheric residence time allowing it to be transported long distances in the atmosphere. It is eventually oxidised to the highly soluble HgII (likely by atomic Br and/or OH/O3) and rapidly deposited with precipitation. Some of the mercury deposited to terrestrial and marine ecosystems is converted to MeHg, which is the only form that bioaccumulates in aquatic food webs. Recent studies suggest that there is a first-order relationship between the supply of inorganic mercury to ecosystems and production of MeHg, thus implying that declines in deposition will translate directly into reduced concentrations in biota and human exposures. However, one of the major uncertainties in this cycle is the time scale required for these changes to take place and this is known to vary from years to centuries across different environmental compartments depending on their physical and biogeochemical attributes. Thus, a key challenge in the case of mercury pollution is understanding the link between the magnitude of mercury emissions and the concentrations found in the fish that we consume. For air quality monitoring, priorities include expanding the existing data collection network and widening the scope of atmospheric mercury measurements (elemental, oxidised, and particulate species as well as mercury in precipitation). Presently, the only accurate indicators of mercury impacts on human and biological health are methylmercury concentrations in biota. However, recent advances in analytical techniques (stable mercury isotopes) and integrated modelling tools are allowing greater understanding of the relationship between atmospheric deposition, concentrations in water, methylation and uptake by biota. This article recommends an expansion of the current atmospheric monitoring network and the establishment of new coordinated measurements of total mercury and methylmercury concentrations in seawater and concurrent concentrations and trends in marine fish.
Resilience to Changing Snow Depth in a Shrubland Ecosystem.
NASA Astrophysics Data System (ADS)
Loik, M. E.
2008-12-01
Snowfall is the dominant hydrologic input for high elevations and latitudes of the arid- and semi-arid western United States. Sierra Nevada snowpack provides numerous important services for California, but is vulnerable to anthropogenic forcing of the coupled ocean-atmosphere system. GCM and RCM scenarios envision reduced snowpack and earlier melt under a warmer climate, but how will these changes affect soil and plant water relations and ecosystem processes? And, how resilient will this ecosystem be to short- and long-term forcing of snow depth and melt timing? To address these questions, our experiments utilize large- scale, long-term roadside snow fences to manipulate snow depth and melt timing in eastern California, USA. Interannual snow depth averages 1344 mm with a CV of 48% (April 1, 1928-2008). Snow fences altered snow melt timing by up to 18 days in high-snowfall years, and affected short-term soil moisture pulses less in low- than medium- or high-snowfall years. Sublimation in this arid location accounted for about 2 mol m- 2 of water loss from the snowpack in 2005. Plant water potential increased after the ENSO winter of 2005 and stayed relatively constant for the following three years, even after the low snowfall of winter 2007. Over the long-term, changes in snow depth and melt timing have impacted cover or biomass of Achnatherum thurberianum, Elymus elemoides, and Purshia tridentata. Growth of adult conifers (Pinus jeffreyi and Pi. contorta) was not equally sensitive to snow depth. Thus, complex interactions between snow depth, soil water inputs, physiological processes, and population patterns help drive the resilience of this ecosystem to changes in snow depth and melt timing.
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2003-01-01
Although the surface of Venus is an extremely hostile environment, at about 50 kilometers above the surface the atmosphere of Venus is the most earthlike environment (other than Earth itself) in the solar system. It is proposed here that in the near term, human exploration of Venus could take place from aerostat vehicles in the atmosphere, and that in the long term, permanent settlements could be made in the form of cities designed to float at about fifty kilometer altitude in the atmosphere of Venus.
CO2 EFFECTS ON MOJAVE DESERT PLANT INTERACTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. A. DEFALCO; G. C. FERNANDEZ; S. D. SMITH
2004-01-01
Seasonal and interannual droughts characteristic of deserts have the potential to modify plant interactions as atmospheric CO{sub 2} concentrations continue to rise. At the Nevada Desert FACE (free-air CO{sub 2} enrichment) facility in the northern Mojave Desert, the effects of elevated atmospheric C02 (550 vs. ambient {approx}360 {micro}mol mol{sup -1}) on plant interactions were examined during two years of high and low rainfall. Results suggest that CO{sub 2} effects on the interaction between native species and their understory herbs are dependent on the strength of competition when rainfall is plentiful, but are unimportant during annual drought. Seasonal rainfall for 1999more » was 23% the long-term average for the area, and neither elevated CO{sub 2} nor the low production of herbaceous neighbors had an effect on relative growth rate (RGR, d{sup -1}) and reproductive effort (RE, number of flowers g{sup -1}) for Achnatherum hymenoides (early season perennial C{sub 3} grass), Pleuraphis rigida (late season perennial C{sub 4} grass), and Larrea tridentata (evergreen C{sub 3} shrub). In contrast, 1998 received 213% the average rainfall. Consequently, the decrease in RGR and increase in RE for Achnatherum, whose period of growth overlaps directly with that of its neighbors, was exaggerated at elevated CO{sub 2}. However, competitive effects of neighbors on Eriogonum trichopes (a winter annual growing in shrub interspaces), Pleuraphis and Larrea were not affected by elevated CO{sub 2}, and possible explanations are discussed. Contrary to expectations, the invasive annual neighbor Bromus madritensis ssp. rubens had little influence on target plant responses because densities in 1998 and 1999 at this site were well below those found in other studies where it has negatively affected perennial plant growth. The extent that elevated CO{sub 2} reduces the performance of Achnatherum in successive years to cause its loss from the plant community depends more on future pressure from herbaceous neighbors and less on the extent that CO{sub 2} enhances Achnatherum growth during periods of severe drought.« less
UTLS Drift Analysis for the ACE-FTS and MIPAS CFC-11 and CFC-12 Data Products
NASA Astrophysics Data System (ADS)
Walker, K. A.; Zou, J.; Sheese, P.; Boone, C. D.; Stiller, G. P.; von Clarmann, T.
2017-12-01
To progress from monitoring atmospheric composition to investigating and quantifying atmospheric changes, well-characterized measurements over many years are required. The long lifetime of the Atmospheric Chemistry Experiment (ACE) has provided more than a decade of composition measurements that contribute to our understanding of ozone recovery, climate change and pollutant emissions. To enable the generation of climate data records using multiple data sets, characterization of the "drift" between data sets is required. This study will analyze and compare the time series of chlorofluorocarbon (CFC) measurements from two infrared satellite sensors, the ACE-Fourier Transform Spectrometer (ACE-FTS) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). With a focus on the upper troposphere-lower stratosphere, the long-term trend as well as annual, semi-annual and quasi-biennial oscillation terms derived from each data set will be compared for different altitude and latitude regions.
A method for simulating the atmospheric entry of long-range ballistic missiles
NASA Technical Reports Server (NTRS)
Eggers, A J , Jr
1958-01-01
It is demonstrated with the aid of similitude arguments that a model launched from a hypervelocity gun upstream through a special supersonic nozzle should experience aerodynamic heating and resulting thermal stresses like those encountered by a long-range ballistic missile entering the earth's atmosphere. This demonstration hinges on the requirements that model and missile be geometrically similar and made of the same material, and that they have the same flight speed and Reynolds number (based on conditions just outside the boundary layer) at corresponding points in their trajectories. The hypervelocity gun provides the model with the required initial speed, while the nozzle scales the atmosphere, in terms of density variation, to provide the model with speeds and Reynolds numbers over its entire trajectory. Since both the motion and aerodynamic heating of a missile tend to be simulated in the model tests, this combination of hypervelocity gun and supersonic nozzle is termed an atmosphere entry simulator.
Atmospheric, Long Baseline, and Reactor Neutrino Data Constraints on θ13
NASA Astrophysics Data System (ADS)
Roa, J. E.; Latimer, D. C.; Ernst, D. J.
2009-08-01
An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on θ13. The recent, more finely binned, Super-K atmospheric data are employed. For L/Eν≳104km/GeV, we previously found significant linear in θ13 terms. This analysis finds θ13 bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in θ13 to produce asymmetric bounds on θ13. Assuming CP conservation, we find θ13=-0.07-0.11+0.18 (90% C.L.).
Atmospheric, long baseline, and reactor neutrino data constraints on theta_{13}.
Roa, J E; Latimer, D C; Ernst, D J
2009-08-07
An atmospheric neutrino oscillation tool that uses full three-neutrino oscillation probabilities and a full three-neutrino treatment of the Mikheyev-Smirnov-Wolfenstein effect, together with an analysis of the K2K, MINOS, and CHOOZ data, is used to examine the bounds on theta_{13}. The recent, more finely binned, Super-K atmospheric data are employed. For L/E_{nu} greater, similar 10;{4} km/GeV, we previously found significant linear in theta_{13} terms. This analysis finds theta_{13} bounded from above by the atmospheric data while bounded from below by CHOOZ. The origin of this result arises from data in the previously mentioned very long baseline region; here, matter effects conspire with terms linear in theta_{13} to produce asymmetric bounds on theta_{13}. Assuming CP conservation, we find theta_{13} = -0.07_{-0.11};{+0.18} (90% C.L.).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, W. -L.; Gu, Y.; Liou, K. N.
2015-05-19
We investigate 3-D mountain effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and the Sierra Nevada, using the global CCSM4 (Community Climate System Model version 4; Community Atmosphere Model/Community Land Model – CAM4/CLM4) with a 0.23° × 0.31° resolution for simulations over 6 years. In a 3-D radiative transfer parameterization, we have updated surface topography data from a resolution of 1 km to 90 m to improve parameterization accuracy. In addition, we have also modified the upward-flux deviation (3-D–PP (plane-parallel)) adjustment to ensure that the energy balance atmore » the surface is conserved in global climate simulations based on 3-D radiation parameterization. We show that deviations in the net surface fluxes are not only affected by 3-D mountains but also influenced by feedbacks of cloud and snow in association with the long-term simulations. Deviations in sensible heat and surface temperature generally follow the patterns of net surface solar flux. The monthly snow water equivalent (SWE) deviations show an increase in lower elevations due to reduced snowmelt, leading to a reduction in cumulative runoff. Over higher-elevation areas, negative SWE deviations are found because of increased solar radiation available at the surface. Simulated precipitation increases for lower elevations, while it decreases for higher elevations, with a minimum in April. Liquid runoff significantly decreases at higher elevations after April due to reduced SWE and precipitation.« less
Lundquist, J.D.; Cayan, D.R.
2007-01-01
A realistic description of how temperatures vary with elevation is crucial for ecosystem studies and for models of basin-scale snowmelt and spring streamflow. This paper explores surface temperature variability using temperature data from an array of 37 sensors, called the Yosemite network, which traverses both slopes of the Sierra Nevada in the vicinity of Yosemite National Park, California. These data indicate that a simple lapse rate is often a poor description of the spatial temperature structure. Rather, the spatial pattern of temperature over the Yosemite network varies considerably with synoptic conditions. Empirical orthogonal functions (EOFs) were used to identify the dominant spatial temperature patterns and how they vary in time. Temporal variations of these surface temperature patterns were correlated with large-scale weather conditions, as described by National Centers for Environmental Prediction-National Center for Atmospheric Research Reanalysis data. Regression equations were used to downscale larger-scale weather parameters, such as Reanalysis winds and pressure, to the surface temperature structure over the Yosemite network. These relationships demonstrate that strong westerly winds are associated with relatively warmer temperatures on the east slope and cooler temperatures on the west slope of the Sierra, and weaker westerly winds are associated with the opposite pattern. Reanalysis data from 1948 to 2005 indicate weakening westerlies over this time period, a trend leading to relatively cooler temperatures on the east slope over decadal timescale's. This trend also appears in long-term observations and demonstrates the need to consider topographic effects when examining long-term changes in mountain regions. Copyright 2007 by the American Geophysical Union.
Aromatic acids in a Eurasian Arctic ice core: a 2600-year proxy record of biomass burning
NASA Astrophysics Data System (ADS)
Grieman, Mackenzie M.; Aydin, Murat; Fritzsche, Diedrich; McConnell, Joseph R.; Opel, Thomas; Sigl, Michael; Saltzman, Eric S.
2017-04-01
Wildfires and their emissions have significant impacts on ecosystems, climate, atmospheric chemistry, and carbon cycling. Well-dated proxy records are needed to study the long-term climatic controls on biomass burning and the associated climate feedbacks. There is a particular lack of information about long-term biomass burning variations in Siberia, the largest forested area in the Northern Hemisphere. In this study we report analyses of aromatic acids (vanillic and para-hydroxybenzoic acids) over the past 2600 years in the Eurasian Arctic Akademii Nauk ice core. These compounds are aerosol-borne, semi-volatile organic compounds derived from lignin combustion. The analyses were made using ion chromatography with electrospray mass spectrometric detection. The levels of these aromatic acids ranged from below the detection limit (0.01 to 0.05 ppb; 1 ppb = 1000 ng L-1) to about 1 ppb, with roughly 30 % of the samples above the detection limit. In the preindustrial late Holocene, highly elevated aromatic acid levels are observed during three distinct periods (650-300 BCE, 340-660 CE, and 1460-1660 CE). The timing of the two most recent periods coincides with the episodic pulsing of ice-rafted debris in the North Atlantic known as Bond events and a weakened Asian monsoon, suggesting a link between fires and large-scale climate variability on millennial timescales. Aromatic acid levels also are elevated during the onset of the industrial period from 1780 to 1860 CE, but with a different ratio of vanillic and para-hydroxybenzoic acid than is observed during the preindustrial period. This study provides the first millennial-scale record of aromatic acids. This study clearly demonstrates that coherent aromatic acid signals are recorded in polar ice cores that can be used as proxies for past trends in biomass burning.
Potential climate change impacts on a tropical estuary: Hilo Bay, Hawaii
NASA Astrophysics Data System (ADS)
Adolf, J.; LaPinta, J.; Marusek, J.; Pascoe, K.; Pugh, A.
2016-02-01
Hilo Bay is a tropical estuarine ecosystem on the northeast (windward) coast of Hawai`i Island that is potentially vulnerable to climate change effects mediated through elevated water temperatures and/or changing rainfall patterns that impact river and groundwater fluxes. Here, we document trends in water temperature, river flow and phytoplankton dynamics in Hilo Bay. Hilo Bay is fed by two major rivers, Wailuku and Honoli`i, both of which have shown long term declines in output over their 85 and 38 year monitoring periods (USGS), respectively. Time series of groundwater inputs to Hilo Bay do not exist, but the average estimated rate rivals that of average river inputs. Daily average Hilo Bay water temperatures have increased at a rate of 0.35 degrees C per year (p < 0.001) since measurement by the Hilo Bay water quality buoy began in 2010, with the warmest temperatures on record recorded Sept 2015. Salinity did not show a trend over this same time period. Phytoplankton showed a pronounced seasonal cycle in Hilo Bay with a long term average of 3.7 mg m-3 and dominance by diatoms that exploit the co-availability of silica and nitrate in this environment. On shorter time scales of days to < 1 week, flood events dramatically reduce Hilo Bay salinity, temperature and phytoplankton biomass. Coincidental atmospheric warming, SST warming in the adjacent North Pacific ocean, and declining river flows will likely work together to result in elevated SST in Hilo Bay if observed trends continue. The El Nino event that started this year is expected to exacerbate this warming through reduce river flow and warmer regional SST.
Sun, G; Zhao, P; Zeng, X; Peng, S
2001-06-01
The photosynthetic rate (Pn) in leaves of Musa paradisiaca grown under elevated CO2 concentration (700 +/- 56 microliters.L-1) for one week was 5.14 +/- 0.32 mumol.m-2.s-1, 22.1% higher than that under ambient CO2 concentration, while under elevated CO2 concentration for 8 week, the Pn decreased by 18.1%. It can be inferred that the photosynthetic acclimation to elevated CO2 concentration and the Pn inhibition occurred in leaves of M. paradisiaca. The respiration rate in light (Rd) was lower in leaves under higher CO2 concentration, compared with that under ambient CO2 concentration. If the respiration in light was not included, the difference in CO2 compensation point for the leaves of both plants was not significant. Under higher CO2 concentration for 8 weeks, the maximum carboxylation rate(Vcmax) and electron transportation rate (J) in leaves decreased respectively by 30.5% and 14.8%, compared with that under ambient CO2 concentration. The calculated apparent quantum yield (alpha) in leaves under elevated CO2 concentration according to the initial slope of Pn/PAR was reduced to 0.014 +/- 0.010 molCO2.mol-1 quanta, compared with the value of 0.025 +/- 0.005 molCO2.mol-1 quanta in the control. The efficiency of light energy conversion also decreased from 0.203 to 0.136 electrons.quanta-1 in plants under elevated CO2 concentration. A lower partitioning coefficient for leaf nitrogen in Rubisco, bioenergetics and thylakoid light-harvesting components was observed in plants under higher CO2 concentration. The results indicated that the multi-process of photosynthesis was suppressed significantly by a long-term (8 weeks) higher CO2 concentration incubation.
Biomass burning - Combustion emissions, satellite imagery, and biogenic emissions
NASA Technical Reports Server (NTRS)
Levine, Joel S.; Cofer, Wesley R., III; Winstead, Edward L.; Rhinehart, Robert P.; Cahoon, Donald R., Jr.; Sebacher, Daniel I.; Sebacher, Shirley; Stocks, Brian J.
1991-01-01
After detailing a technique for the estimation of the instantaneous emission of trace gases produced by biomass burning, using satellite imagery, attention is given to the recent discovery that burning results in significant enhancement of biogenic emissions of N2O, NO, and CH4. Biomass burning accordingly has an immediate and long-term impact on the production of atmospheric trace gases. It is presently demonstrated that satellite imagery of fires may be used to estimate combustion emissions, and could be used to estimate long-term postburn biogenic emission of trace gases to the atmosphere.
NASA Astrophysics Data System (ADS)
Klem, K.; Urban, O.; Holub, P.; Rajsnerova, P.
2012-04-01
One of the main manifestations of global change is an increase in atmospheric CO2 concentration. Elevated concentration of CO2 has stimulating effect on plant photosynthesis and consequently also on the productivity. Long-term studies, however, show that this effect is progressively reduced due to feedback regulation of photosynthesis. The main causes of this phenomenon are considered as two factors: i) increased biomass production consumes a larger amount of nitrogen from the soil and this leads to progressive nitrogen limitation of photosynthesis, particularly at the level of the enzyme Rubisco, ii) the sink capacity is genetically limited and elevated CO2 concentration leads to increased accumulation of carbohydtrates (mainly sucrose, which is the main transport form of assimilates) in leaves. Increased concentrations of carbohydrates leads to a feedback regulation of photosynthesis by both, long-term feedback regulation of synthesis of the enzyme Rubisco, and also due to reduced capacity to produce ATP in the chloroplasts. However, mechanisms for interactive effects of nitrogen and accumulation of non-structural carbohydrates are still not well understood. Using 3-year-old Fagus sylvatica seedlings we have explored the interactive effects of nitrogen nutrition and sink capacity manipulation (sucrose feeding) on the dynamics of accumulation of non-structural carbohydrates and changes in photosynthetic parameters under ambient (385 μmol (CO2) mol-1) and elevated (700 μmol(CO2) mol-1) CO2 concentration. Sink manipulation by sucrose feeding led to a continuous increase of non-structural carbohydrates in leaves, which was higher in nitrogen fertilized seedlings. The accumulation of non-structural carbohydrates was also slightly stimulated by elevated CO2 concentration. Exponential decay (p <0.01) was observed in CO2 assimilation rate and stomatal conductance when the content of non-structural carbohydrates increased. However, this relationship was modified by the nitrogen content. Accumulation of non-structural carbohydrates had relatively smaller effect on actual quantum yield of photosystem II. Both, CO2 assimilation rate and the actual quantum yield of photosystem II decreased more rapidly during sink manipulation in elevated concentrations of CO2 than in ambient. Application of chlorophyll fluorescence imaging enabled us to evaluate changes in spatial distribution of feedback regulation of photosynthesis on the leaf-level. We can conclude that the accumulation of non-structural carbohydrates down-regulates photosynthesis mainly through the stomatal conductance, and this effect is further modified by nitrogen content.
Five regional scale models with a horizontal domain covering the European continent and its surrounding seas, two hemispheric and one global scale model participated in the atmospheric Hg modelling intercomparison study. The models were compared between each other and with availa...
Controlling for anthropogenically induced atmospheric variation in stable carbon isotope studies
Long, E.S.; Sweitzer, R.A.; Diefenbach, D.R.; Ben-David, M.
2005-01-01
Increased use of stable isotope analysis to examine food-web dynamics, migration, transfer of nutrients, and behavior will likely result in expansion of stable isotope studies investigating human-induced global changes. Recent elevation of atmospheric CO2 concentration, related primarily to fossil fuel combustion, has reduced atmospheric CO2 ??13C (13C/12C), and this change in isotopic baseline has, in turn, reduced plant and animal tissue ??13C of terrestrial and aquatic organisms. Such depletion in CO2 ??13C and its effects on tissue ??13C may introduce bias into ??13C investigations, and if this variation is not controlled, may confound interpretation of results obtained from tissue samples collected over a temporal span. To control for this source of variation, we used a high-precision record of atmospheric CO2 ??13C from ice cores and direct atmospheric measurements to model modern change in CO2 ??13C. From this model, we estimated a correction factor that controls for atmospheric change; this correction reduces bias associated with changes in atmospheric isotopic baseline and facilitates comparison of tissue ??13C collected over multiple years. To exemplify the importance of accounting for atmospheric CO2 ??13C depletion, we applied the correction to a dataset of collagen ??13C obtained from mountain lion (Puma concolor) bone samples collected in California between 1893 and 1995. Before correction, in three of four ecoregions collagen ??13C decreased significantly concurrent with depletion of atmospheric CO2 ??13C (n ??? 32, P ??? 0.01). Application of the correction to collagen ??13C data removed trends from regions demonstrating significant declines, and measurement error associated with the correction did not add substantial variation to adjusted estimates. Controlling for long-term atmospheric variation and correcting tissue samples for changes in isotopic baseline facilitate analysis of samples that span a large temporal range. ?? Springer-Verlag 2005.
Meanderbelt Dynamics of the Sacramento River, California
Michael D. Harvey
1989-01-01
A 160 km-long reach of Sacramento River was studied with the objective of predicting future changes in channel planform and their effects on water-surface elevations. Planform data were used to develop regression relationships between bend radius of curvature (Rc) and both short-term (5 years) and long term (90 years) lateral migration rates (MR) and migration...
Chris A. Maier; Sari Palmroth; Eric Ward
2008-01-01
We examined effects of a first nitrogen (N) fertilizer application on upper-canopy needle morphology and gas exchange in ~20-m-tall loblolly pine (Pinus taeda L.) exposed to elevated carbon dioxide concentration ([CO2]) for 9 years. Duke Forest free-air CO2 enrichment (FACE) plots were split and half of...
Ahmed, Al-Motarreb; Abdulwahab, Al-Matry; Hesham, Al-Fakih; Nawar, Wather
2013-01-01
Background: Acute Coronary Syndrome (ACS) is increasing in Yemen in recent years and there are no data available on its short and long-term outcome. We evaluated the clinical pictures, management, in-hospital, and long-term outcomes of the ACS patients in Yemen. Design and Setting: A 9-month prospective, multi-center study conducted in 26 hospitals from 9 governorates. The study included 30-day and 1-year mortality follow-up. Patients and Methods: One thousand seven hundred and sixty one patients with ACS were collected prospectively during the 9-month period. Patients with ST-elevation myocardial infarction (STEMI) and non-ST-elevation acute coronary syndrome (NSTEACS), including non-ST-elevation myocardial infarction and unstable angina were included. Conclusions: ACS patients in Yemen present at a relatively young age with high prevalence of Smoking, khat chewing and hypertension. STEMI patients present late, and their acute management is poor. In-hospital evidence-based medication rates are high, but coronary revascularization procedures were very low. In-hospital mortality was high and long-term mortality rates increased two folds compared with the in-hospital mortality. PMID:24695681
NASA Technical Reports Server (NTRS)
Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.; Sager, J. C. (Principal Investigator)
1997-01-01
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estunate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.
NASA Astrophysics Data System (ADS)
Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.
1997-01-01
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.
NASA Astrophysics Data System (ADS)
1997-01-01
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard
The Atmospheric Boundary Layer
ERIC Educational Resources Information Center
Tennekes, Hendrik
1974-01-01
Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)
Shutter, Lori; Tong, Karen A; Holshouser, Barbara A
2004-12-01
Proton magnetic resonance spectroscopy (MRS) is being used to evaluate individuals with acute traumatic brain injury and several studies have shown that changes in certain brain metabolites (N-acetylaspartate, choline) are associated with poor neurologic outcomes. The majority of previous MRS studies have been obtained relatively late after injury and none have examined the role of glutamate/ glutamine (Glx). We conducted a prospective MRS study of 42 severely injured adults to measure quantitative metabolite changes early (7 days) after injury in normal appearing brain. We used these findings to predict long-term neurologic outcome and to determine if MRS data alone or in combination with clinical outcome variables provided better prediction of long-term outcomes. We found that glutamate/glutamine (Glx) and choline (Cho) were significantly elevated in occipital gray and parietal white matter early after injury in patients with poor long-term (6-12-month) outcomes. Glx and Cho ratios predicted long-term outcome with 94% accuracy and when combined with the motor Glasgow Coma Scale score provided the highest predictive accuracy (97%). Somatosensory evoked potentials were not as accurate as MRS data in predicting outcome. Elevated Glx and Cho are more sensitive indicators of injury and predictors of poor outcome when spectroscopy is done early after injury. This may be a reflection of early excitotoxic injury (i.e., elevated Glx) and of injury associated with membrane disruption (i.e., increased Cho) secondary to diffuse axonal injury.
Denda, Mitsuhiro
2016-01-01
It has long been suggested that climate, especially atmospheric pressure change, can cause health problems ranging from migraine to myocardial infarction. Here, I hypothesize that the sensory system of epidermal keratinocytes mediates the influence of atmospheric pressure change on the human physiological condition. We previously demonstrated that even subtle changes of atmospheric pressure (5-20 hPa) induce elevation of intracellular calcium level in cultured human keratinocytes (excitation of keratinocytes). It is also established that communication occurs between epidermal keratinocytes and peripheral nerve systems. Moreover, various neurotransmitters and hormones that influence multiple systems (nervous, cardiovascular, endocrine, and immune systems) are generated and released from epidermal keratinocytes in response to various external stimuli. Thus, I suggest that pathophysiological phenomena induced by atmospheric pressure changes might be triggered by epidermal keratinocytes.
NASA Astrophysics Data System (ADS)
Matrai, P.
2016-02-01
Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).
Joseph N.T. Darbah; Mark E. Kubiske; Neil Nelson; Katre Kets; Johanna Riikonen; Anu Sober; Lisa Rouse; David F. Karnosky
2010-01-01
Photosynthetic acclimation under elevated carbon dioxide (CO2) and/or ozone (O3) has been the topic of discussion in many papers recently. We examined whether or not aspen plants grown under elevated CO2 and/or O3 will acclimate after 11 years of exposure at the Aspen Face site...
Joseph N.T. Darbah; Mark E. Kubiske; Neil Nelson; Elina Oksanan; Elina Vapaavuori; David F. Karnosky
2008-01-01
We studied the effects of long-term exposure (nine years) of birch (Betula papyrifera) trees to elevated CO2 and/or O3 on reproduction and seedling development at the Aspen FACE (Free-Air Carbon Dioxide Enrichment) site in Rhinelander, WI. We found that elevated CO2 increased both...
Hirata, Riki; Togashi, Hiroko; Matsumoto, Machiko; Yamaguchi, Taku; Izumi, Takeshi; Yoshioka, Mitsuhiro
2008-08-21
Several lines of evidence have shown that exposure to stress impairs long-term potentiation (LTP) in the CA1 field of the hippocampus, but the detailed mechanisms for this effect remain to be clarified. The present study elucidated the synaptic mechanism of stress-induced LTP suppression in conscious, freely moving rats using electrophysiological approaches. Open field stress (i.e., novel environment stress) and elevated platform stress (i.e., uncontrollable stress) were employed. Basal synaptic transmission was significantly reduced during exposure to elevated platform stress but not during exposure to open field stress. LTP induction was blocked by elevated platform stress but not influenced by open field stress. Significant increases in serum corticosterone levels were observed in the elevated platform stress group compared with the open field stress group. Furthermore, LTP suppression induced by elevated platform stress was prevented by pretreatment with an anxiolytic drug diazepam (1 mg/kg, i.p.). These results suggest that stress-induced LTP suppression depends on the relative intensity of the stressor. The inhibitory synaptic response induced by an intense psychological stress, such as elevated platform stress, may be attributable to LTP impairment in the CA1 field of the hippocampus.
NASA Astrophysics Data System (ADS)
Nanus, L.; Campbell, D. H.; Williams, M. W.
2004-12-01
Acidification of high-elevation lakes in the Western United States is of concern because of the storage and release of pollutants in snowmelt runoff combined with steep topography, granitic bedrock, and limited soils and biota. Land use managers have limited resources for sampling and thus need direction on how best to design monitoring programs. We evaluated the sensitivity of 400 lakes in Grand Teton (GRTE) and Yellowstone (YELL) National Parks to acidification from atmospheric deposition of nitrogen and sulfur based on statistical relations between acid-neutralizing capacity (ANC) concentrations and basin characteristics to aid in the design of a long-term monitoring plan for Outstanding Natural Resource Waters. ANC concentrations that were measured at 52 lakes in GRTE and 23 lakes in YELL during synoptic surveys were used to calibrate the statistical models. Basin-characteristic information was derived from Geographic Information System data sets. The explanatory variables that were considered included bedrock type, basin slope, basin aspect, basin elevation, lake area, basin area, inorganic nitrogen (N) deposition, sulfate deposition, hydrogen ion deposition, basin precipitation, soil type, and vegetation type. A logistic regression model was developed and applied to lake basins greater than 1 hectare (ha) in GRTE (n=106) and YELL (n=294). For GRTE, 36 percent of lakes had a greater than 60-percent probability of having ANC concentrations less than 100 microequivalents per liter, and 14 percent of lakes had a greater than 80-percent probability of having ANC concentrations less than 100 microequivalents per liter. The elevation of the lake outlet and the area of the basin with northeast aspects were determined to be statistically significant and were used as the explanatory variables in the multivariate logistic regression model. For YELL, results indicated that 13 percent of lakes had a greater than 60-percent probability of having ANC concentrations less than 100 microequivalents per liter, and 9 percent of lakes had a greater than 80-percent probability of having ANC concentrations less than 100 microequivalents per liter. Only the elevation of the lake outlet was determined to be statistically significant and was used as the explanatory variable in the multivariate logistic regression model. The lakes that exceeded 80-percent probability of having an ANC concentration less than 100 microequivalents per liter, and therefore had the greatest sensitivity to acidification from atmospheric deposition, are located at elevations greater than 2,810 meters (m) in GRTE, and greater than 2,655 m in YELL.
Closing the loop on elevation change at Summit, Greenland.
NASA Astrophysics Data System (ADS)
Hawley, R. L.; Brunt, K. M.; Neumann, T.; Waddington, E. D.
2016-12-01
Surface elevation on a large ice sheet changes due to multiplephysical processes, some of which imply mass change of the ice sheet,and some not. Accumulation of new snow, in absence of otherprocesses, will increase surface elevation as new mass is added to theice sheet. Compaction of snow and firn, both new and old, has atendency to decrease surface elevation, with no corresponding changein mass. As ice flows out to the sides on an ice sheet, conservationof mass dictates that the surface elevation will decrease,corresponding to mass loss. In response to long-term changes in mass,the continental crust on which the ice rests seeks isostatic balance,resulting (since the last glacial maximum) in an increase inelevation, with no associated mass change. The summation of theseprocesses results in net elevation change.We have measured elevation change along a 12 km transect at Summit,Greenland, monthly since 2007. Along the same transect we measuredthe burial rate of stakes to determine accumulation. We havepreviously measured firn compaction over a period of 4 years, and haverecently measured differential ice motion and the resulting strain.Over the course of the measurement period, we find no significantelevation change. We do, however, find intriguing periodicities inelevation. By combining our measurements of elevation, accumulation,firn compaction, and ice flow, we attempt to "close the loop" inattributing the long-term balance of surface elevation.
Can we protect high-elevation wilderness vegetation from air pollution impacts?
Anna W. Schoettle
1998-01-01
Our wilderness and alpine ecosystem areas are a unique resource. While these areas are in remote locations they are not isolated from long-range atmospheric transport. The increase in regional air pollution sources may expose them to anthropogenic pollutants. The Clean Air Act of 1990, as amended, charges the Federal Land Manager (FLM) with the affirmative...
NASA Astrophysics Data System (ADS)
Brönnimann, S.; Luterbacher, J.; Schmutz, C.; Wanner, H.; Staehelin, J.
2000-08-01
Atmospheric circulation determines to a considerable extent the variability of lower stratospheric ozone and can modulate its long-term trends in Europe and the North Atlantic Region. Due to dynamical stratosphere-troposphere coupling, important features of the variability of the surface pressure field are reflected in the long-term total ozone record from Arosa, Switzerland. Significant (p<0.01) correlations between total ozone and different atmospheric circulation indices (NAOI, AOI, EU1, EU2) are found in all months except for April, June, July, and November for the period 1931 to 1997. An analysis of geopotential heights for the period 1958 to 1997 shows that these circulation anomaly patterns have upper tropospheric features over the North Atlantic-European sector that are consistent with a dynamical influence on total ozone.
Rakesh Minocha; Stephanie Long; Subhash Minocha; Paula Marquardt; Neil Nelson; Mark. Kubiske
2010-01-01
This study was conducted at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site, Rhinelander, WI, (USA). Since 1998, 12 experimental rings planted in 1997 underwent four different treatments: control; elevated CO2 (560 ppm); elevated O3 (1.5X ambient) and elevated CO2 (560 ppm) + O...
Keeling, Charles D. [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; Whorf, Timothy P. [Univ. of California, San Diego, CA (United States). Scripps Inst. of Oceanography; Blasing, T. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Jones, Sonja [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA)
2004-09-01
The Carbon Dioxide Research Group, Scripps Institution of Oceanography, University of California, San Diego, has provided this data set, which includes long-term measurements of near-surface atmospheric CO2 concentrations at 10 locations spanning latitudes 82°N to 90°S. Most of the data are based on replicated (collected at the same time and place) flask samples taken at intervals of approximately one week to one month and subsequently subjected to infrared analysis. Periods of record begin in various years, ranging from 1957 (for the South Pole station) to 1985 (for Alert, Canada), and all flask data records except for Christmas Island and Baring Head, New Zealand extend through year 2001. Christmas Island data end with August, 2001 and Baring Head data end with October 2001. Weekly averages of continuous data from Mauna Loa Observatory, Hawaii, are available back to March 1958. Similar weekly averages are also available for La Jolla, California, from November 1972 to October 1975, and for the South Pole from June 1960 to October 1963. These long-term records of atmospheric CO2 concentration complement the continuous records made by SIO, and also complement the long term flask records of the Climate Monitoring and Diagnostics Laboratory of the National Oceanic and Atmospheric Administration. All these data are useful for characterizing seasonal and geographical variations in atmospheric CO2 over several years, and for assessing results of global carbon models.
NASA Astrophysics Data System (ADS)
Sicart, J.; Essery, R.; Pomeroy, J.
2004-12-01
At high latitudes, long-wave radiation emitted by the atmosphere and solar radiation can provide similar amounts of energy for snowmelt due to the low solar elevation and the high albedo of snow. This paper investigates temporal and spatial variations of long-wave irradiance at the snow surface in an open sub-Arctic environment. Measurements were conducted in the Wolf Creek Research Basin, Yukon Territory, Canada (60°36'N, 134°57'W) during the springs of 2002, 2003 and 2004. The main causes of temporal variability are air temperature and cloud cover, especially in the beginning of the melting period when the atmosphere is still cold. Spatial variability was investigated through a sensitivity study to sky view factors and to temperatures of surrounding terrain. The formula of Brutsaert gives a useful estimation of the clear-sky irradiance at hourly time steps. Emission by clouds was parameterized at the daily time scale from the atmospheric attenuation of solar radiation. The inclusion of air temperature variability does not much improve the calculation of cloud emission.
A weather regime characterisation of Irish wind generation and electricity demand in winters 2009–11
NASA Astrophysics Data System (ADS)
Cradden, Lucy C.; McDermott, Frank
2018-05-01
Prolonged cold spells were experienced in Ireland in the winters of 2009–10 and 2010–11, and electricity demand was relatively high at these times, whilst wind generation capacity factors were low. Such situations can cause difficulties for an electricity system with a high dependence on wind energy. Studying the atmospheric conditions associated with these two winters offers insights into the large-scale drivers for cold, calm spells, and helps to evaluate if they are rare events over the long-term. The influence of particular atmospheric patterns on coincidental winter wind generation and weather-related electricity demand is investigated here, with a focus on blocking in the North Atlantic/European sector. The occurrences of such patterns in the 2009–10 and 2010–11 winters are examined, and 2010–11 in particular was found to be unusual in a long-term context. The results are discussed in terms of the relevance to long-term planning and investment in the electricity system.
Long-Term Trends in Space-Ground Atmospheric Propagation Measurements
NASA Technical Reports Server (NTRS)
Zemba, Michael J.; Nessel, James A.; Morse, Jacquelynne R.
2015-01-01
Propagation measurement campaigns are critical to characterizing the atmospheric behavior of a location and efficiently designing space-ground links. However, as global climate change affects weather patterns, the long-term trends of propagation data may be impacted over periods of decades or longer. Particularly, at high microwave frequencies (10 GHz and above), rain plays a dominant role in the attenuation statistics, and it has been observed that rain events over the past 50 years have trended toward increased frequency, intensity, and rain height. In the interest of quantifying the impact of these phenomena on long-term trends in propagation data, this paper compares two 20 GHz measurement campaigns both conducted at NASAs White Sands facility in New Mexico. The first is from the Advanced Communications Technology Satellite (ACTS) propagation campaign from 1994 to 1998, while the second is amplitude data recorded during a site test interferometer (STI) phase characterization campaign from 2009 to 2014.
Long-Term Trends in Space-Ground Atmospheric Propagation Measurements
NASA Technical Reports Server (NTRS)
Zemba, Michael J.; Morse, Jacquelynne R.; Nessel, James A.
2015-01-01
Propagation measurement campaigns are critical to characterizing the atmospheric behavior of a location and efficiently designing space-ground links. However, as global climate change affects weather patterns, the long-term trends of propagation data may be impacted over periods of decades or longer. Particularly, at high microwave frequencies (10 GHz and above), rain plays a dominant role in the attenuation statistics, and it has been observed that rain events over the past 50 years have trended toward increased frequency, intensity, and rain height. In the interest of quantifying the impact of these phenomena on long-term trends in propagation data, this paper compares two 20 GHz measurement campaigns both conducted at NASA's White Sands facility in New Mexico. The first is from the Advanced Communication Technology Satellite (ACTS) propagation campaign from 1994 - 1998, while the second is amplitude data recorded during a site test interferometer (STI) phase characterization campaign from 2009 - 2014.
Mai, Carolin; Theobald, Norbert; Hühnerfuss, Heinrich; Lammel, Gerhard
2016-12-01
Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were studied to determine occurrence, levels and spatial distribution in the marine atmosphere and surface seawater during cruises in the German Bight and the wider North Sea in spring and summer 2009-2010. In general, the concentrations found in air are similar to, or below, the levels at coastal or near-coastal sites in Europe. Hexachlorobenzene and α-hexachlorocyclohexane (α-HCH) were close to phase equilibrium, whereas net atmospheric deposition was observed for γ-HCH. The results suggest that declining trends of HCH in seawater have been continuing for γ-HCH but have somewhat levelled off for α-HCH. Dieldrin displayed a close to phase equilibrium in nearly all the sampling sites, except in the central southwestern part of the North Sea. Here atmospheric deposition dominates the air-sea exchange. This region, close to the English coast, showed remarkably increased surface seawater concentrations. This observation depended neither on riverine input nor on the elevated abundances of dieldrin in the air masses of central England. A net depositional flux of p,p'-DDE into the North Sea was indicated by both its abundance in the marine atmosphere and the changes in metabolite pattern observed in the surface water from the coast towards the open sea. The long-term trends show that the atmospheric concentrations of DDT and its metabolites are not declining. Riverine input is a major source of PCBs in the German Bight and the wider North Sea. Atmospheric deposition of the lower molecular weight PCBs (PCB28 and PCB52) was indicated as a major source for surface seawater pollution.
de Mulder, Maarten; Cornel, Jan-Hein; van der Ploeg, Tjeerd; Boersma, Eric; Umans, Victor A
2010-09-01
It is uncertain if elevated admission plasma glucose (APG) remains an independent determinant of longer-term mortality in myocardial infarction (MI) patients with early restoration of coronary reperfusion by primary percutaneous coronary intervention. The objective of the study was to describe the relation between elevated APG and long-term mortality in MI patients undergoing invasive management. We studied 1,185 consecutive MI patients treated in the Medical Center Alkmaar in the separate years 1996 and 1999 (preinvasive era) and 2003 and 2006 (invasive era). In both eras, APG was derived according to a standard protocol. A multivariate Cox regression model was created to study the relation between APG, reperfusion era, and 5-year mortality. During a median follow-up of 63 months, 261 patients had died. Mortality was lower in the invasive (19%) than in the preinvasive era (28%). Increased APG was associated with increased mortality, irrespective of the initial reperfusion strategy, although the relation was more pronounced in the preinvasive era (P value for heterogeneity of effects < .001). Each millimole-per-liter APG increase corresponded to a 7% increased mortality (adjusted hazard ratio 1.07, 95% CI 1.04-1.10). Patients with an APG >11 mmol/L had nearly 2-fold higher mortality (hazard ratio 1.9, 95% CI 1.3-2.7) than those with lower values. Elevated APG remains a determinant of long-term mortality in MI patients, irrespective of the advances that have been made in reperfusion therapy. 2010 Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nilsson, J.; Paolo, F. S.; Simonsen, S.; Gardner, A. S.
2017-12-01
Satellite and airborne altimetry provide the longest continuous record from which the mass balance of the Antarctic ice sheet can be derived, starting with the launch of ERS-1 in 1992. Accurate knowledge of the long-term mass balance is vital for understanding the geophysical processes governing the ice sheet contribution to present day sea-level rise. However, this record is comprised of several different measurement systems, with different accuracies and varying resolution. This poses a major challenge on the interpretation and reconstruction of consistent elevation-change time series for determining long-term ice sheet trends and variability. Previous studies using data from multiple satellite altimetry missions have relied on a cross-calibration technique based on crossover bias analysis to merge records from different sensors. This methodology, though accurate, limits the spatial coverage to typical resolutions of 10-50 km, restricting the approach to regional or continental-wide studies. In this study, we present a novel framework for seamless integration of heterogeneous altimetry records, using an adaptive least-squares minimization technique. The procedure allows reconstructing time series at fine spatial (<5 km) and temporal (monthly) scales, while accounting for sensor-dependent biases and heterogeneous data quality. We synthesize altimetry records spanning the time period 1992-2016 to derive long-term time series of elevation change for the Antarctica ice sheet, including both data from the European Space Agency (ERS-1, ERS-2, Envisat and CryoSat-2) and NASA (ICESat and Operation IceBridge), with future inclusion of data from NASA's ICESat-2. Mission specific errors, estimated from independent airborne measurements and crossover analysis, are propagated to derive uncertainty bounds for each individual time series. We also perform an extensive analysis of the major corrections applied to raw satellite altimetry data to assess their overall effect on the estimated uncertainty. This methodology will allow us to determine robust long-term changes in the surface elevation of grounded Antarctic ice. Such a dataset will be invaluable to advancing ice sheet assimilation efforts and to disentangle causal mechanisms of modern ice sheet response to environmental forcing.
NASA Astrophysics Data System (ADS)
Arneth, A.; Lloyd, J.; Šantrůčková, H.; Bird, M.; Grigoryev, S.; Kalaschnikov, Y. N.; Gleixner, G.; Schulze, E.-D.
2002-01-01
Twenty tree ring 13C / 12C ratio chronologies from Pinus sylvestris (Scots pine) trees were determined from five locations sampled along the Yenisei River, spaced over a total distance of ~1000 km between the cities of Turuhansk (66°N) and Krasnoyarsk (56°N). The transect covered the major part of the natural distribution of Scots pine in the region with median growing season temperatures and precipitation varying from 12.2°C and 218 mm to 14.0°C and 278 mm for Turuhansk and Krasnoyarsk, respectively. A key focus of the study was to investigate the effects of variations in temperature, precipitation, and atmospheric CO2 concentration on long- and short-term variation in photosynthetic 13C discrimination during photosynthesis and the marginal cost of tree water use, as reflected in the differences in the historical records of the 13C / 12C ratio in wood cellulose compared to that of the atmosphere (Δ13Cc). In 17 of the 20 samples, trees Δ13Cc has declined during the last 150 years, particularly so during the second half of the twentieth century. Using a model of stomatal behaviour combined with a process-based photosynthesis model, we deduce that this trend indicates a long-term decrease in canopy stomatal conductance, probably in response to increasing atmospheric CO2 concentrations. This response being observed for most trees along the transect is suggestive of widespread decreases in Δ13Cc and increased water use efficiency for Scots pine in central Siberia over the last century. Overlying short-term variations in Δ13Cc were also accounted for by the model and were related to variations in growing season soil water deficit and atmospheric humidity.
The long-term use of cyproterone acetate in pedophilia: a case study.
Cooper, A J; Cernovsky, Z; Magnus, R V
1992-01-01
This investigation reports the long-term use of the antiandrogen cyproterone acetate (CPA) in a pedophile, who was studied continuously over 38 months. Measures of sexual arousal, serum testosterone, and gonadotropin levels were significantly reduced by the drug as compared with placebo and no treatment; prolactin levels were significantly elevated. Some workers have observed that long-term administration of CPA (more than one year, which was then discontinued) produced enduring (in some cases apparently permanent) anti-libidinal effects; however, in the case described, within three weeks of stopping the drug, all measures had returned to pretrial levels. The importance of continuous long-term monitoring in sex offenders receiving an antiandrogen is discussed.
Peter M. Groffman; Lindsey Rustad; Pamela H. Templer; John Campbell; Lynn M. Christenson; Nina K. Lany; Anne M. Socci; Matthew A. Vadeboncoeur; Paul Schaberg; Geoffrey F. Wilson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Christine L. Goodale; Mark B. Green; Steven P. Hamburg; Chris E. Johnson; Myron J. Mitchell; Jennifer L. Morse; Linda H. Pardo; Nicholas L. Rodenhouse
2012-01-01
Evaluations of the local effects of global change are often confounded by the interactions of natural and anthropogenic factors that overshadow the effects of climate changes on ecosystems. Long-term watershed and natural elevation gradient studies at the Hubbard Brook Experimental Forest and in the surrounding region show surprising results demonstrating the effects...
S. G. Field; A. W. Schoettle; J. G. Klutsch; S. J. Tavener; M. F. Antolin
2012-01-01
Matrix population models have long been used to examine and predict the fate of threatened populations. However, the majority of these efforts concentrate on long-term equilibrium dynamics of linear systems and their underlying assumptions and, therefore, omit the analysis of transience. Since management decisions are typically concerned with the short term (
NASA Technical Reports Server (NTRS)
Johnson, W. Steven
1990-01-01
A workshop was held to help assess the state-of-the-art in evaluating the long term durability of polymeric matrix composites (PMCs) and to recommend future activities. Design and evaluation of PMCs at elevated temperatures were discussed. The workshop presentations, the findings of the workshop sessions are briefly summarized.
Gauthier, Paul P. G.; Crous, Kristine Y.; Ayub, Gohar; Duan, Honglang; Weerasinghe, Lasantha K.; Ellsworth, David S.; Tjoelker, Mark G.; Evans, John R.; Tissue, David T.; Atkin, Owen K.
2014-01-01
Climate change is resulting in increasing atmospheric [CO2], rising growth temperature (T), and greater frequency/severity of drought, with each factor having the potential to alter the respiratory metabolism of leaves. Here, the effects of elevated atmospheric [CO2], sustained warming, and drought on leaf dark respiration (R dark), and the short-term T response of R dark were examined in Eucalyptus globulus. Comparisons were made using seedlings grown under different [CO2], T, and drought treatments. Using high resolution T–response curves of R dark measured over the 15–65 °C range, it was found that elevated [CO2], elevated growth T, and drought had little effect on rates of R dark measured at T <35 °C and that there was no interactive effect of [CO2], growth T, and drought on T response of R dark. However, drought increased R dark at high leaf T typical of heatwave events (35–45 °C), and increased the measuring T at which maximal rates of R dark occurred (T max) by 8 °C (from 52 °C in well-watered plants to 60 °C in drought-treated plants). Leaf starch and soluble sugars decreased under drought and elevated growth T, respectively, but no effect was found under elevated [CO2]. Elevated [CO2] increased the Q 10 of R dark (i.e. proportional rise in R dark per 10 °C) over the 15–35 °C range, while drought increased Q 10 values between 35 °C and 45 °C. Collectively, the study highlights the dynamic nature of the T dependence of R dark in plants experiencing future climate change scenarios, particularly with respect to drought and elevated [CO2]. PMID:25205579
Nonlinear, interacting responses to climate limit grassland production under global change.
Zhu, Kai; Chiariello, Nona R; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B
2016-09-20
Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale-a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability.
PASSIVE/DIFFUSIVE SAMPLERS FOR PESTICIDES IN RESIDENTIAL INDOOR AIR
Pesticides applied indoors vaporize from treated surfaces (e.g., carpets and baseboards) resulting in elevated air concentrations that may persist for long periods after applications. Estimating long-term respiratory exposures to pesticide vapors in residential indoor environme...
Long-Term Simulated Atmospheric Nitrogen Deposition Alters Leaf and Fine Root Decomposition
Atmospheric nitrogen deposition has been suggested to increase forest carbon sequestration across much of the Northern Hemisphere; slower organic matter decomposition could contribute to this increase. At four sugar maple (Acer saccharum)-dominated northern hardwood forests, we p...
Multimedia risk assessments require the temporal integration of atmospheric concentration and deposition with other media modules. However, providing an extended time series of estimates is computationally expensive. An alternative approach is to substitute long-term average a...
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Bernath, Peter; Boone, Chris; Nassar, Ray
2007-01-01
We highlight chemistry and trend measurement results from the Atmospheric Chemistry Experiment (ACE) which is providing precise middle troposphere to the lower thermosphere measurements with a 0.02/cm resolution Fourier transform spectrometer covering 750-4400/cm
Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments
NASA Technical Reports Server (NTRS)
Opila, Elizabeth J.; Myers, Dwight L.
2003-01-01
The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.
NASA Astrophysics Data System (ADS)
Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey
2015-11-01
We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5 °N, 85.0 °E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of TOMS satellite data for the period 1979- 1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk after a series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, researchers record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.
NASA Astrophysics Data System (ADS)
Nevzorov, Aleksey; Bazhenov, Oleg; Burlakov, Vladimir; Dolgii, Sergey
2016-06-01
We consider the results of long-term remote optical monitoring, obtained at the Siberian Lidar Station of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5°N, 85.0°E). The scattering characteristics of stratospheric aerosol layer, obtained according to data of lidar measurements since 1986, are presented. We analyze the trends of changes in the total ozone (TO) content over Tomsk for the period 1996-2013 according to data of spectrophotometric measurements with employment of Total Ozone Mapping Spectrometer (TOMS) data for the period 1979-1994. We determined the periods of elevated content of stratospheric aerosol over Tomsk aftera series of explosive eruptions of volcanoes of Pacific Ring of Fire and Iceland in 2006-2011. Since the second half of 1990s, we record an increasing TO trend, equaling 0.65 DU/yr for the period 1996-2013.
Long-term nitrogen addition causes the evolution of less-cooperative mutualists.
Weese, Dylan J; Heath, Katy D; Dentinger, Bryn T M; Lau, Jennifer A
2015-03-01
Human activities have altered the global nitrogen (N) cycle, and as a result, elevated N inputs are causing profound ecological changes in diverse ecosystems. The evolutionary consequences of this global change have been largely ignored even though elevated N inputs are predicted to cause mutualism breakdown and the evolution of decreased cooperation between resource mutualists. Using a long-term (22 years) N-addition experiment, we find that elevated N inputs have altered the legume-rhizobium mutualism (where rhizobial bacteria trade N in exchange for photosynthates from legumes), causing the evolution of less-mutualistic rhizobia. Plants inoculated with rhizobium strains isolated from N-fertilized treatments produced 17-30% less biomass and had reduced chlorophyll content compared to plants inoculated with strains from unfertilized control plots. Because the legume-rhizobium mutualism is the major contributor of naturally fixed N to terrestrial ecosystems, the evolution of less-cooperative rhizobia may have important environmental consequences. © 2015 The Author(s).
Transgenerational effects of ocean warming on the sea urchin Strongylocentrotus intermedius.
Zhao, Chong; Zhang, Lisheng; Shi, Dongtao; Ding, Jingyun; Yin, Donghong; Sun, Jiangnan; Zhang, Baojing; Zhang, Lingling; Chang, Yaqing
2018-04-30
Transgenerational effects, which involve both selection and plasticity, are important for the evolutionary adaptation of echinoderms in the changing ocean. Here, we investigated the effects of breeding design and water temperature for offspring on fertilization, hatchability, larval survival, size, abnormality and metamorphosis of the sea urchin Strongylocentrotus intermedius, whose dams and sires were exposed to long-term (~15 months) elevated temperature (~3°C above ambient) or ambient temperature. There was no transgenerational effect on fertilization and metamorphosis of S. intermedius, while negative transgenerational effects were found in hatchability and most traits of larval size. Dam and sire effects were highly trait and developmental stage dependent. Interestingly, we found S. intermedius probably cannot achieve transgenerational acclimation to long-term elevated temperature for survival provided their offspring were exposed to an elevated temperature. The present study enriches our understanding of transgenerational effects of ocean warming on sea urchins. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Rinsland, Curtis P.; Chiou, Linda; Goldman, Aaron; Hannigan, James W.
2010-01-01
Solar absorption spectra were recorded for the first time in 5 years with the McMath Fourier transform spectrometer at the US National solar Observatory on Kitt Peak in southern Arizona, USA (31.91 N latitude, 111.61 W longitude, 2.09 km altitude). The solar absorption spectra cover 750-1300 and 1850-5000 cm(sup -1) and were recorded on 20 days during March-June 2009. The measurements mark the continuation of a long-term record of atmospheric chemical composition measurements that have been used to quantify seasonal cycles and long-term trends of both tropospheric and stratospheric species from observations that began i 1977. Fits to the measured spectra have been performed, and they indicate the spectra obtained since return to operational status are nearly free of channeling and the instrument line shape function is well reproduced taking into account the measurement parameters. We report updated time series measurements of total columns for six atmospheric species and their analysis for seasonal cycles and long-term trends. An sn example, the time series fit shows a decrease in the annual increase rate i Montreal-Protocol-regulated chlorofluorocarbon CCL2F2 from 1.51 plus or minus 0.38% yr(sup -1) at the beginning of the time span to -1.54 plus or minus 1.28 yr(sup -1) at the end of the time span, 1 sigma, and hence provides evidence for the impact of those regulations on the trend.
Centennial-scale reductions in nitrogen availability in temperate forests of the United States
McLauchlan, Kendra K.; Gerhart, Laci M.; Battles, John J.; Craine, Joseph M.; Elmore, Andrew J.; Higuera, Phil E.; Mack, Michelle M; McNeil, Brendan E.; Nelson, David M.; Pederson, Neil; Perakis, Steven
2017-01-01
Forests cover 30% of the terrestrial Earth surface and are a major component of the global carbon (C) cycle. Humans have doubled the amount of global reactive nitrogen (N), increasing deposition of N onto forests worldwide. However, other global changes—especially climate change and elevated atmospheric carbon dioxide concentrations—are increasing demand for N, the element limiting primary productivity in temperate forests, which could be reducing N availability. To determine the long-term, integrated effects of global changes on forest N cycling, we measured stable N isotopes in wood, a proxy for N supply relative to demand, on large spatial and temporal scales across the continental U.S.A. Here, we show that forest N availability has generally declined across much of the U.S. since at least 1850 C.E. with cool, wet forests demonstrating the greatest declines. Across sites, recent trajectories of N availability were independent of recent atmospheric N deposition rates, implying a minor role for modern N deposition on the trajectory of N status of North American forests. Our results demonstrate that current trends of global changes are likely to be consistent with forest oligotrophication into the foreseeable future, further constraining forest C fixation and potentially storage.
Regional and Global Impacts of Megacity Air Pollution in China
NASA Astrophysics Data System (ADS)
Zhang, Renyi
2014-05-01
Air quality has deteriorated in many megacities of China because of their rapid economic developments. For example, as the world's second largest economy, China has experienced severe air pollution, with aerosols or fine particulate matter less than 2.5 micrometers (PM2.5) reaching unprecedented high levels across many cities in recent winters. In addition to the impacts of aerosols on air chemistry, visibility, and human health, intense aerosol pollution is believed to exert profound impacts on the regional and global atmosphere and climate. In the first part of the talk, perspectives are provided on formation and transformation of haze in China. In the second part the long-term impacts of aerosols on precipitation and lightning over a megacity area in China will be presented, on the basis of atmospheric observations and simulations using a cloud-resolving WRF model. Our results reveal that elevated aerosol loading suppresses light and moderate precipitation, but enhances heavy precipitation. Also, we demonstrate climatically modulated mid-latitude cyclones by Asian pollution over past three decades, using a novel hierarchical modeling approach and observational analysis. Our results unambiguously reveal a large impact of the Asian pollutant outflows on the global general circulation and climate.
Experimental sulfate amendment alters peatland bacterial community structure.
Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J
2016-10-01
As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group. Copyright © 2016 Elsevier B.V. All rights reserved.
CANE FIBERBOARD DEGRADATION WITHIN THE 9975 SHIPPING PACKAGE DURING LONG-TERM STORAGE APPLICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daugherty, W.; Dunn, K.; Hackney, B.
The 9975 shipping package is used as part of the configuration for long-term storage of special nuclear materials in the K Area Complex at the Savannah River Site. The cane fiberboard overpack in the 9975 package provides thermal insulation, impact absorption and criticality control functions relevant to this application. The Savannah River National Laboratory has conducted physical, mechanical and thermal tests on aged fiberboard samples to identify degradation rates and support the development of aging models and service life predictions in a storage environment. This paper reviews the data generated to date, and preliminary models describing degradation rates of canemore » fiberboard in elevated temperature – elevated humidity environments.« less
Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components
NASA Technical Reports Server (NTRS)
Larsen, D. C.; Adams, J. W.
1985-01-01
Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.
A Review of Human Health and Ecological Risks due to CO2 Exposure
NASA Astrophysics Data System (ADS)
Hepple, R. P.; Benson, S. M.
2001-05-01
This paper presents an overview of the human health and ecological consequences of exposure to elevated levels of carbon dioxide (CO2) in the context of geologic carbon sequestration. The purpose of this effort is to provide a baseline of information to guide future efforts in risk assessment for CO2 sequestration. Scenarios for hazardous CO2 exposure include surface facility leaks, leaks from abandoned or aging wells, and leakage from geologic CO2 storage structures. Amounts of carbon in various reservoirs, systems, and applications were summarized, and the levels of CO2 encountered in nature and everyday life were compared along with physiologically relevant concentrations. Literature pertaining to CO2 occupational exposure limits, regulations, monitoring, and ecological consequences was reviewed. The OSHA, NIOSH, and ACGIH occupational exposure standards are 0.5% CO2 averaged over a 40 hour week, 3% average for a short-term (15 minute) exposure, and 4% as the maximum instantaneous limit considered immediately dangerous to life and health. All three conditions must be satisfied at all times. Any detrimental effects of low-level CO2 exposure are reversible, including the long-term metabolic compensation required by chronic exposure to 3% CO2. Breathing rate doubles at 3% CO2 and is four times the normal rate at 5% CO2. According to occupational exposure and controlled atmosphere research into CO2 toxicology, CO2 is hazardous via direct toxicity at levels above 5%, concentrations not encountered in nature outside of volcanic settings and water-logged soils. Small leaks do not present any danger to people unless the CO2 does not disperse quickly enough through atmospheric mixing but accumulates instead in depressions and confined spaces. These dangers are the result of CO2 being more dense than air. Carbon dioxide is regulated for diverse purposes but never as a toxic substance. Catastrophic incidents involving large amounts and/or rapid release of CO2 such as Lake Nyos in Cameroon, Mammoth Mountain in California, Dieng Volcanic Complex in Java, Indonesia, and industrial accidents with CO2 fire suppression systems teach that slow leakage rates and effective dilution must be proven to ensure human and environmental safety. Monitoring CO2 levels in occupational settings is done with reliable IR sensors. Remote sensing of low levels of CO2 over long distances cannot be done easily yet, although LIDAR, an airborne laser technique under development, may have good potential. The environmental impacts of elevated CO2 levels on vegetation are being investigated now in free-air CO2 enrichment studies. In general, persistent elevated CO2 levels cause a change in species composition, favoring C3 plants over C4 or CAM. The ecological effects of catastrophic releases are severe but depend upon (a) release rate and amount, (b) surface topography and rate of atmospheric mixing (c) exposure concentrations and duration, (d) the respiratory mechanism of the form of life under discussion, (e) its tolerance for oxygen deprivation, and (f) its ability to maintain homeostatic pH levels. Suppression of root respiration due to elevated soil-gas CO2 concentrations and acidifiction of the root zone are known mechanisms of tree-kill. Soil-gas CO2 in the tree-kill areas at Mammoth Mountain exceeded 20-30% at 15 cm depth. Surface masses of concentrated CO2 probably smother the canopy through oxygen deprivation, but the precise mechanism is not known. Lake Nyos and Mammoth Mountain reveal that catastrophic releases can result in complete dead zones.
NASA Astrophysics Data System (ADS)
Cannaby, Heather; Palmer, Matthew D.; Howard, Tom; Bricheno, Lucy; Calvert, Daley; Krijnen, Justin; Wood, Richard; Tinker, Jonathan; Bunney, Chris; Harle, James; Saulter, Andrew; O'Neill, Clare; Bellingham, Clare; Lowe, Jason
2016-05-01
Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time-mean sea level were evaluated using the process-based climate model data and methods presented in the United Nations Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). Regional surge and wave solutions extending from 1980 to 2100 were generated using ˜ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( ˜ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980 to 2010, enabling a quantitative assessment of model skill. Simulated historical sea-surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data, respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the Representative Concentration Pathway (RCP)4.5 (8.5) scenarios. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of ˜ 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region.
Hirane, Miku; Ishii, Shuhei; Tomimatsu, Ayaka; Fukushima, Kaori; Takahashi, Kaede; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi
2016-11-01
Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA 1 to LPA 6 ) mediates a variety of cellular functions, including cell motility. In the present study, we investigated the effects of LPA receptors on cell motile activity during multi-stage hepatocarcinogenesis in rat liver epithelial WB-F344 cells treated with chemical liver carcinogens. Cells were treated with a initiator (N-nitrosodiethylamine (DEN)) and three promoters (phenobarbital (PB), okadaic acid (OA) and clofibrate) every 24 h for 2 days. Cell motile activity was elevated by DEN, correlating with Lpar3 expression. PB, OA, and clofibrate elevated Lpar1 expression and inhibited cell motile activity. To evaluate the effects of long-term treatment on cell motility, cells were treated with DEN and/or PB for at least 6 months. Lpar3 expression and cell motile activity were significantly elevated by the long-term DEN treatment with or without further PB treatment. In contrast, long-term PB treatment with or without further DEN elevated Lpar1 expression and inhibited cell motility. When the synthesis of extracellular LPA was blocked by a potent ATX inhibitor S32826 before cell motility assay, the cell motility induced by DEN and PB was markedly suppressed. These results suggest that activation of the different LPA receptors may regulate the biological functions of cells treated with chemical carcinogens. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Sando, Steven K.; McCarthy, Peter M.; Sando, Roy; Dutton, DeAnn M.
2016-04-05
The two low-elevation gaging stations in eastern Montana (Poplar River at international boundary [gaging station 06178000] and Powder River at Moorhead, Montana [gaging station 06324500]) had considerable changes in annual-peakflow characteristics after the mid-1970s, which might provide evidence of potential nonstationarity in the peak-flow records. The two low-elevation gaging stations that have potential nonstationarity are located in drainage basins that are strongly affected by agricultural activities that potentially affect the hydrologic regimes. Primary agricultural activities that might alter natural hydrologic conditions include construction of small impoundments (primarily for stock-watering purposes) and irrigation diversions. Temporal variability in these activities might contribute to the potential nonstationarity issues. Changes in climatic characteristics after the mid-1970s also possibly contribute to the potential nonstationarity issues. Lack of considerable indication of potential nonstationarity in annual peak flow for the other long-term gaging stations in this study might indicate that climatic changes have been more pronounced with respect to effects on peak flows in low elevation areas in eastern Montana than in areas represented by the other long-term gaging stations. Another possibility is that climatic changes after the mid-1970s are exacerbated in low-elevation areas where small-impoundment development and potential effects of irrigation diversions might be more extensive.
Liu, Ming; Chen, Laiguo; Xie, Donghai; Sun, Jiaren; He, Qiusheng; Cai, Limei; Gao, Zhiqiang; Zhang, Yiqiang
2016-11-01
Concentrations of gaseous elemental mercury (GEM) were continuously monitored from May 2011 to May 2012 at the Wuzhishan State Atmosphere Background Monitoring Station (109°29'30.2″ E, 18°50'11.0″ N) located in Hainan Island. This station is an ideal site for monitoring long-range transport of atmospheric pollutants from mainland China and Southeast Asia to South China Sea. Annual average GEM concentration was 1.58 ± 0.71 ng m -3 during the monitoring period, which was close to background values in the Northern Hemisphere. GEM concentrations showed a clear seasonal variation with relatively higher levels in autumn (1.86 ± 0.55 ng m -3 ) and winter (1.80 ± 0.62 ng m -3 ) and lower levels in spring (1.16 ± 0.45 ng m -3 ) and summer (1.43 ± 0.46 ng m -3 ). Long-range atmospheric transport dominated by monsoons was a dominant factor influencing the seasonal variations of GEM. The GEM diel trends were related to the wind speed and long-range atmospheric mercury transport. We observed 30 pollution episodes throughout the monitoring period. The analysis of wind direction and backward trajectory suggested that elevated GEM concentrations at the monitoring site were primarily related to the outflows of atmospheric Hg from mainland China and the Indochina peninsula. The △GEM/△CO values also suggested that GEM was significantly affected by the long-range transport from the anthropogenic sources and biomass burning in Asia and Indochina peninsula.
Investigation of models for large-scale meteorological prediction experiments
NASA Technical Reports Server (NTRS)
Spar, J.
1973-01-01
Studies are reported of the long term responses of the model atmosphere to anomalies in snow cover and sea surface temperature. An abstract of a previously issued report on the computed response to surface anomalies in a global atmospheric model is presented, and the experiments on the effects of transient sea surface temperature on the Mintz-Arakawa atmospheric model are reported.
The probability density function (PDF) of the time intervals between subsequent extreme events in atmospheric Hg0 concentration data series from different latitudes has been investigated. The Hg0 dynamic possesses a long-term memory autocorrelation function. Above a fixed thresh...
Nonlinear dynamics of global atmospheric and Earth system processes
NASA Technical Reports Server (NTRS)
Saltzman, Barry
1993-01-01
During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.
Nitrogen-mediated effects of elevated CO2 on intra-aggregate soil pore structure.
Caplan, Joshua S; Giménez, Daniel; Subroy, Vandana; Heck, Richard J; Prior, Stephen A; Runion, G Brett; Torbert, H Allen
2017-04-01
Soil pore structure has a strong influence on water retention, and is itself influenced by plant and microbial dynamics such as root proliferation and microbial exudation. Although increased nitrogen (N) availability and elevated atmospheric CO 2 concentrations (eCO 2 ) often have interacting effects on root and microbial dynamics, it is unclear whether these biotic effects can translate into altered soil pore structure and water retention. This study was based on a long-term experiment (7 yr at the time of sampling) in which a C 4 pasture grass (Paspalum notatum) was grown on a sandy loam soil while provided factorial additions of N and CO 2 . Through an analysis of soil aggregate fractal properties supported by 3D microtomographic imagery, we found that N fertilization induced an increase in intra-aggregate porosity and a simultaneous shift toward greater accumulation of pore space in larger aggregates. These effects were enhanced by eCO 2 and yielded an increase in water retention at pressure potentials near the wilting point of plants. However, eCO 2 alone induced changes in the opposite direction, with larger aggregates containing less pore space than under control conditions, and water retention decreasing accordingly. Results on biotic factors further suggested that organic matter gains or losses induced the observed structural changes. Based on our results, we postulate that the pore structure of many mineral soils could undergo N-dependent changes as atmospheric CO 2 concentrations rise, having global-scale implications for water balance, carbon storage, and related rhizosphere functions. © 2016 John Wiley & Sons Ltd.
Burzyńska, Małgorzata; Uryga, Agnieszka; Kasprowicz, Magdalena; Kędziora, Jarosław; Szewczyk, Ewa; Woźniak, Jowita; Jarmundowicz, Włodzimierz; Kübler, Andrzej
2017-12-01
Cardiopulmonary abnormalities are common after aneurysmal subarachnoid haemorrhage (aSAH). However, the relationship between short- and long-term outcome is poorly understood. In this paper, we present how cardiac troponine elevations (cTnI) and pulmonary disorders are associated with short- and long-term outcomes assessed by the Glasgow Outcome Scale (GOS) and Extended Glasgow Outcome Scale (GOSE). A total of 104 patients diagnosed with aSAH were analysed in the study. The non-parametric U Mann-Whitney test was used to evaluate the difference between good (GOS IV-V, GOSE V-VIII) and poor (GOS I-III, GOSE I-IV) outcomes in relation to cTnI elevation and pulmonary disorders. Outcome was assessed at discharge from the hospital, and then followed up 6 and 12 months later. Pulmonary disorders were determined by the PaO 2 /FiO 2 ratio and radiography. The areas under the ROC curves (AUCs) were used to determine the predictive power of these factors. In the group with good short-term outcomes cTnI elevation on the second day after aSAH was significantly lower (p = .00007) than in patients with poor short-term outcomes. The same trend was observed after 6 months, although there were different results 12 months from the onset (p = .024 and n.s., respectively). A higher peak of cTnI was observed in the group with a pathological X-ray (p = .008) and pathological PaO 2 /FiO 2 ratio (p ≪ .001). cTnI was an accurate predictor of short-term outcomes (AUC = 0.741, p ≪ .001) and the outcome after 6 months (AUC = 0.688, p = .015). The results showed that cardiopulmonary abnormalities perform well as predictive factors for short- and long-term outcomes after aSAH.
Castagneri, Daniele; Fonti, Patrick; von Arx, Georg; Carrer, Marco
2017-04-01
During the growing season, the cambium of conifer trees produces successive rows of xylem cells, the tracheids, that sequentially pass through the phases of enlargement and secondary wall thickening before dying and becoming functional. Climate variability can strongly influence the kinetics of morphogenetic processes, eventually affecting tracheid shape and size. This study investigates xylem anatomical structure in the stem of Picea abies to retrospectively infer how, in the long term, climate affects the processes of cell enlargement and wall thickening. Tracheid anatomical traits related to the phases of enlargement (diameter) and wall thickening (wall thickness) were innovatively inspected at the intra-ring level on 87-year-long tree-ring series in Picea abies trees along a 900 m elevation gradient in the Italian Alps. Anatomical traits in ten successive tree-ring sectors were related to daily temperature and precipitation data using running correlations. Close to the altitudinal tree limit, low early-summer temperature negatively affected cell enlargement. At lower elevation, water availability in early summer was positively related to cell diameter. The timing of these relationships shifted forward by about 20 (high elevation) to 40 (low elevation) d from the first to the last tracheids in the ring. Cell wall thickening was affected by climate in a different period in the season. In particular, wall thickness of late-formed tracheids was strongly positively related to August-September temperature at high elevation. Morphogenesis of tracheids sequentially formed in the growing season is influenced by climate conditions in successive periods. The distinct climate impacts on cell enlargement and wall thickening indicate that different morphogenetic mechanisms are responsible for different tracheid traits. Our approach of long-term and high-resolution analysis of xylem anatomy can support and extend short-term xylogenesis observations, and increase our understanding of climate control of tree growth and functioning under different environmental conditions. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Woodford, Joanne; Farrand, Paul; Watkins, Edward R; LLewellyn, David J
2018-01-01
Health and social care services are increasingly reliant on informal caregivers to provide long-term support to stroke survivors. However, caregiving is associated with elevated levels of depression and anxiety in the caregiver that may also negatively impact stroke survivor recovery. This qualitative study aims to understand the specific difficulties experienced by caregivers experiencing elevated symptoms of anxiety and depression. Nineteen semi-structured interviews were conducted with caregivers experiencing elevated levels of depression and anxiety, with a thematic analysis approach adopted for analysis. Analysis revealed three main themes: Difficulties adapting to the caring role; Uncertainty; and Lack of support. Caregivers experienced significant difficulties adapting to changes and losses associated with becoming a caregiver, such as giving up roles and goals of importance and value. Such difficulties persisted into the long-term and were coupled with feelings of hopelessness and worry. Difficulties were further exacerbated by social isolation, lack of information and poor long-term health and social care support. A greater understanding of difficulties experienced by depressed and anxious caregivers may inform the development of psychological support targeting difficulties unique to the caring role. Improving caregiver mental health may also result in health benefits for stroke survivors themselves.
Is Ecosystem-Atmosphere Observation in Long-Term Networks actually Science?
NASA Astrophysics Data System (ADS)
Schmid, H. P. E.
2015-12-01
Science uses observations to build knowledge by testable explanations and predictions. The "scientific method" requires controlled systematic observation to examine questions, hypotheses and predictions. Thus, enquiry along the scientific method responds to questions of the type "what if …?" In contrast, long-term observation programs follow a different strategy: we commonly take great care to minimize our influence on the environment of our measurements, with the aim to maximize their external validity. We observe what we think are key variables for ecosystem-atmosphere exchange and ask questions such as "what happens next?" or "how did this happen?" This apparent deviation from the scientific method begs the question whether any explanations we come up with for the phenomena we observe are actually contributing to testable knowledge, or whether their value remains purely anecdotal. Here, we present examples to argue that, under certain conditions, data from long-term observations and observation networks can have equivalent or even higher scientific validity than controlled experiments. Internal validity is particularly enhanced if observations are combined with modeling. Long-term observations of ecosystem-atmosphere fluxes identify trends and temporal scales of variability. Observation networks reveal spatial patterns and variations, and long-term observation networks combine both aspects. A necessary condition for such observations to gain validity beyond the anecdotal is the requirement that the data are comparable: a comparison of two measured values, separated in time or space, must inform us objectively whether (e.g.) one value is larger than the other. In turn, a necessary condition for the comparability of data is the compatibility of the sensors and procedures used to generate them. Compatibility ensures that we compare "apples to apples": that measurements conducted in identical conditions give the same values (within suitable uncertainty intervals). In principle, a useful tool to achieve comparability and compatibility is the standardization of sensors and methods. However, due to the diversity of ecosystems and settings, standardization in ecosystem-atmosphere exchange is difficult. We discuss some of the challenges and pitfalls of standardization across networks.
NASA Astrophysics Data System (ADS)
Shean, David E.; Christianson, Knut; Larson, Kristine M.; Ligtenberg, Stefan R. M.; Joughin, Ian R.; Smith, Ben E.; Stevens, C. Max; Bushuk, Mitchell; Holland, David M.
2017-11-01
In the last 2 decades, Pine Island Glacier (PIG) experienced marked speedup, thinning, and grounding-line retreat, likely due to marine ice-sheet instability and ice-shelf basal melt. To better understand these processes, we combined 2008-2010 and 2012-2014 GPS records with dynamic firn model output to constrain local surface and basal mass balance for PIG. We used GPS interferometric reflectometry to precisely measure absolute surface elevation (zsurf) and Lagrangian surface elevation change (Dzsurf/ Dt). Observed surface elevation relative to a firn layer tracer for the initial surface (zsurf - zsurf0') is consistent with model estimates of surface mass balance (SMB, primarily snow accumulation). A relatively abrupt ˜ 0.2-0.3 m surface elevation decrease, likely due to surface melt and increased compaction rates, is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed Dzsurf/ Dt trends (-1 to -4 m yr-1) for the PIG shelf sites are all highly linear. Corresponding basal melt rate estimates range from ˜ 10 to 40 m yr-1, in good agreement with those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo digital elevation model (DEM) records. The GPS and DEM records document higher melt rates within and near features associated with longitudinal extension (i.e., transverse surface depressions, rifts). Basal melt rates for the 2012-2014 period show limited temporal variability despite large changes in ocean temperature recorded by moorings in Pine Island Bay. Our results demonstrate the value of long-term GPS records for ice-shelf mass balance studies, with implications for the sensitivity of ice-ocean interaction at PIG.
Subalpine Forest Carbon Cycling Short- and Long-Term Influence ofClimate and Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueppers, L.; Harte, J.
2005-08-23
Ecosystem carbon cycle feedbacks to climate change comprise one of the largest remaining sources of uncertainty in global model predictions of future climate. Both direct climate effects on carbon cycling and indirect effects via climate-induced shifts in species composition may alter ecosystem carbon balance over the long term. In the short term, climate effects on carbon cycling may be mediated by ecosystem species composition. We used an elevational climate and tree species composition gradient in Rocky Mountain subalpine forest to quantify the sensitivity of all major ecosystem carbon stocks and fluxes to these factors. The climate sensitivities of carbon fluxesmore » were species-specific in the cases of relative above ground productivity and litter decomposition, whereas the climate sensitivity of dead wood decay did not differ between species, and total annual soil CO2 flux showed no strong climate trend. Lodge pole pine relative productivity increased with warmer temperatures and earlier snowmelt, while Engelmann spruce relative productivity was insensitive to climate variables. Engelmann spruce needle decomposition decreased linearly with increasing temperature(decreasing litter moisture), while lodgepole pine and subalpine fir needle decay showed a hump-shaped temperature response. We also found that total ecosystem carbon declined by 50 percent with a 2.88C increase in mean annual temperature and a concurrent 63 percent decrease ingrowing season soil moisture, primarily due to large declines in mineral soil and dead wood carbon. We detected no independent effect of species composition on ecosystem C stocks. Overall, our carbon flux results suggest that, in the short term, any change in subalpine forest net carbon balance will depend on the specific climate scenario and spatial distribution of tree species. Over the long term, our carbon stock results suggest that with regional warming and drying, Rocky Mountain subalpine forest will be a net source of carbon to the atmosphere.« less
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
A Functional Response Metric for the Temperature Sensitivity of Tropical Ecosystems
Keppel-Aleks, Gretchen; Basile, Samantha J.; Hoffman, Forrest M.
2018-04-23
Earth system models (ESMs) simulate a large spread in carbon cycle feedbacks to climate change, particularly in their prediction of cumulative changes in terrestrial carbon storage. Evaluating the performance of ESMs against observations and assessing the likelihood of long-term climate predictions are crucial for model development. Here, we assessed the use of atmospheric CO 2 growth rate variations to evaluate the sensitivity of tropical ecosystem carbon fluxes to interannual temperature variations. We found that the temperature sensitivity of the observed CO 2 growth rate depended on the time scales over which atmospheric CO 2 observations were averaged. The temperature sensitivitymore » of the CO 2 growth rate during Northern Hemisphere winter is most directly related to the tropical carbon flux sensitivity since winter variations in Northern Hemisphere carbon fluxes are relatively small. This metric can be used to test the fidelity of interactions between the physical climate system and terrestrial ecosystems within ESMs, which is especially important since the short-term relationship between ecosystem fluxes and temperature stress may be related to the long-term feedbacks between ecosystems and climate. If the interannual temperature sensitivity is used to constrain long-term temperature responses, the inferred sensitivity may be biased by 20%, unless the seasonality of the relationship between the observed CO 2 growth rate and tropical fluxes is taken into account. Lastly, these results suggest that atmospheric data can be used directly to evaluate regional land fluxes from ESMs, but underscore that the interaction between the time scales for land surface processes and those for atmospheric processes must be considered.« less
Liu, Xin; Han, Yanqing; Zhu, Jinge; Deng, Jiancai; Hu, Weiping; da Silva, Thomaz Edson Veloso
2018-01-01
The growth of most submerged macrophytes is likely to be limited by the availability of carbon resource, and this is especially true for the obligatory carbon dioxide (CO 2 ) users. A mesocosm experiment was performed to investigate the physiological, photophysiological, and biochemical responses of Cabomba caroliniana, an invasive macrophyte specie in the Lake Taihu Basin, to elevated atmospheric CO 2 (1000 μmol mol -1 ); we also examined the possible impacts of interferences derived from the phytoplankton proliferation and its concomitant disturbances on the growth of C. caroliniana. The results demonstrated that elevated atmospheric CO 2 significantly enhanced the biomass, relative growth rate, and photosynthate accumulation of C. caroliniana. C. caroliniana exposed to elevated atmospheric CO 2 exhibited a higher relative maximum electron transport rate and photosynthetic efficiency, compared to those exposed to ambient atmospheric CO 2 . However, the positive effects of elevated atmospheric CO 2 on C. caroliniana were gradually compromised as time went by, and the down-regulations of the relative growth rate (RGR) and photosynthetic activity were coupled with phytoplankton proliferation under elevated atmospheric CO 2 . This study demonstrated that the growth of C. caroliniana under the phytoplankton interference can be greatly affected, directly and indirectly, by the increasing atmospheric CO 2 .
Loess as an environmental archive of atmospheric trace element deposition
NASA Astrophysics Data System (ADS)
Blazina, T.; Winkel, L. H.
2013-12-01
Environmental archives such as ice cores, lake sediment cores, and peat cores have been used extensively to reconstruct past atmospheric deposition of trace elements. These records have provided information about how anthropogenic activities such as mining and fossil fuel combustion have disturbed the natural cycles of various atmospherically transported trace elements (e.g. Pb, Hg and Se). While these records are invaluable for tracing human impacts on such trace elements, they often provide limited information about the long term natural cycles of these elements. An assumption of these records is that the observed variations in trace element input, prior to any assumed anthropogenic perturbations, represent the full range of natural variations. However, records such as those mentioned above which extend back to a maximum of ~400kyr may not capture the potentially large variations of trace element input occurring over millions of years. Windblown loess sediments, often representing atmospheric deposition over time scales >1Ma, are the most widely distributed terrestrial sediments on Earth. These deposits have been used extensively to reconstruct continental climate variability throughout the Quaternary and late Neogene periods. In addition to being a valuable record of continental climate change, loess deposits may represent a long term environmental archive of atmospheric trace element deposition and may be combined with paleoclimate records to elucidate how fluctuations in climate have impacted the natural cycle of such elements. Our research uses the loess-paleosol deposits on the Chinese Loess Plateau (CLP) to quantify how atmospheric deposition of trace elements has fluctuated in central China over the past 6.8Ma. The CLP has been used extensively to reconstruct past changes of East Asian monsoon system (EAM). We present a suite of trace element concentration records (e.g. Pb, Hg, and Se) from the CLP which exemplifies how loess deposits can be used as an environmental archive to reconstruct long term natural variations in atmospheric trace element input. By comparing paleomonsoon proxy data with geochemical data we can directly correlate variations in atmospheric trace element input to fluctuations in the EAM. For example we are able to link Se input into the CLP to EAM derived precipitation. In interglacial climatic periods from 2.3-1.56Ma and 1.50-1.29Ma, we find very strong positive correlations between Se concentration and the summer monsoon index, a proxy for effective precipitation. In later interglacial periods from 1.26-0.83Ma and 0.78-0.16Ma, we find dust input plays a greater role. Our findings demonstrate that the CLP is a valuable environmental archive of atmospheric trace element deposition and suggest that other loess deposits worldwide may serve as useful records for investigating long term natural variations in atmospheric trace element cycling.
Solar UV Variations During the Decline of Cycle 23
NASA Technical Reports Server (NTRS)
DeLand, Matthew, T.; Cebula, Richard P.
2011-01-01
Characterization of temporal and spectral variations in solar ultraviolet irradiance over a solar cycle is essential for understanding the forcing of Earth's atmosphere and climate. Satellite measurements of solar UV variability for solar cycles 21, 22, and 23 show consistent solar cycle irradiance changes at key wavelengths (e.g. 205 nm, 250 nm) within instrumental uncertainties. All historical data sets also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. Empirical solar irradiance models also produce long-term solar UV variations that agree well with observational data. Recent UV irradiance data from the Solar Radiation and Climate Experiment (SORCE) Spectral Irradiance Monitor (SIM) and Solar Stellar Irradiance Comparison Experiment (SOLSTICE) instruments covering the declining phase of Cycle 23 present a different picture oflong-term solar variations from previous results. Time series of SIM and SOLSTICE spectral irradiance data between 2003 and 2007 show solar variations that greatly exceed both previous measurements and predicted irradiance changes over this period, and the spectral dependence of the SIM and SOLSTICE variations during these years do not show features expected from solar physics theory. The use of SORCE irradiance variations in atmospheric models yields substantially different middle atmosphere ozone responses in both magnitude and vertical structure. However, short-term solar variability derived from SIM and SOLSTICE UV irradiance data is consistent with concurrent solar UV measurements from other instruments, as well as previous results, suggesting no change in solar physics. Our analysis of short-term solar variability is much less sensitive to residual instrument response changes than the observations of long-term variations. The SORCE long-term UV results can be explained by under-correction of instrument response changes during the first few years of measurements, rather than requiring an unexpected change in the physical behavior of the Sun.
Martian Atmospheric and Ionospheric plasma Escape
NASA Astrophysics Data System (ADS)
Lundin, Rickard
2016-04-01
Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now carried out in the Martian planetary realm. Of particular interest from a planetary atmospheric escape point of view is the long-term implications of solar forcing. From ASPERA-data on MEX it has been possible to cover the transition from cycle 23 up to the cycle 24 maximum, data displaying clear solar cycle dependence. The planetary ion escape rate increased from solar minimum to solar maximum by a factor of 10. From a regression analysis using ion escape fluxes and solar forcing proxies, a "back-casting" tool is developed [1], enabling determination of the planetary ion escape back in time based on long-term solar forcing proxies (F10.7, sunspot number). The tool may be applied to other long-term solar proxies, such as the radiogenic isotopes in the Earth's atmosphere, 10Be and 14C. The cosmic-ray production of these long-lifetime (>10000 year) isotopes is modulated by the solar-heliospheric magnetic flux, i.e. an indirect measure of solar magnetic activity. Beyond that there is so far only one additional rough "back-casting" tool, the "Sun-in-time", a method whereby the age of, EUV/UV radiation, and mass-loss of other sun-like stars are determined [2, 3]. [1] Lundin et al., Geophys. Res. Lett., 40, 23, pp. 6028-6032, 2013. [2] Wood et al., ApJ, 574:412-425, 2002. [3] Ribas et al., ApJ., 622:680-694, 2005
Giustino, Gennaro; Baber, Usman; Stefanini, Giulio Giuseppe; Aquino, Melissa; Stone, Gregg W; Sartori, Samantha; Steg, Philippe Gabriel; Wijns, William; Smits, Pieter C; Jeger, Raban V; Leon, Martin B; Windecker, Stephan; Serruys, Patrick W; Morice, Marie-Claude; Camenzind, Edoardo; Weisz, Giora; Kandzari, David; Dangas, George D; Mastoris, Ioannis; Von Birgelen, Clemens; Galatius, Soren; Kimura, Takeshi; Mikhail, Ghada; Itchhaporia, Dipti; Mehta, Laxmi; Ortega, Rebecca; Kim, Hyo-Soo; Valgimigli, Marco; Kastrati, Adnan; Chieffo, Alaide; Mehran, Roxana
2015-09-15
The long-term risk associated with different coronary artery disease (CAD) presentations in women undergoing percutaneous coronary intervention (PCI) with drug-eluting stents (DES) is poorly characterized. We pooled patient-level data for women enrolled in 26 randomized clinical trials. Of 11,577 women included in the pooled database, 10,133 with known clinical presentation received a DES. Of them, 5,760 (57%) had stable angina pectoris (SAP), 3,594 (35%) had unstable angina pectoris (UAP) or non-ST-segment-elevation myocardial infarction (NSTEMI), and 779 (8%) had ST-segment-elevation myocardial infarction (STEMI) as clinical presentation. A stepwise increase in 3-year crude cumulative mortality was observed in the transition from SAP to STEMI (4.9% vs 6.1% vs 9.4%; p <0.01). Conversely, no differences in crude mortality rates were observed between 1 and 3 years across clinical presentations. After multivariable adjustment, STEMI was independently associated with greater risk of 3-year mortality (hazard ratio [HR] 3.45; 95% confidence interval [CI] 1.99 to 5.98; p <0.01), whereas no differences were observed between UAP or NSTEMI and SAP (HR 0.99; 95% CI 0.73 to 1.34; p = 0.94). In women with ACS, use of new-generation DES was associated with reduced risk of major adverse cardiac events (HR 0.58; 95% CI 0.34 to 0.98). The magnitude and direction of the effect with new-generation DES was uniform between women with or without ACS (pinteraction = 0.66). In conclusion, in women across the clinical spectrum of CAD, STEMI was associated with a greater risk of long-term mortality. Conversely, the adjusted risk of mortality between UAP or NSTEMI and SAP was similar. New-generation DESs provide improved long-term clinical outcomes irrespective of the clinical presentation in women. Published by Elsevier Inc.
Mantovani, Alessandro; Targher, Giovanni; Temporelli, Pier Luigi; Lucci, Donata; Gonzini, Lucio; Nicolosi, Gian Luigi; Marchioli, Roberto; Tognoni, Gianni; Latini, Roberto; Cosmi, Franco; Tavazzi, Luigi; Maggioni, Aldo Pietro
2018-06-01
The prognostic impact of hyperuricemia on long-term clinical outcomes in patients with chronic heart failure (HF) has been investigated in observational registries and clinical trials, but the results have been often inconclusive. We examined the prognostic impact of elevated serum uric acid levels on long-term clinical outcomes in the GISSI-HF (Gruppo Italiano per lo Studio della Sopravvivenza nella Insufficienza Cardiaca-Heart Failure) trial. CLINICALTRIALS. NCT00336336. We assessed the rates of all-cause death, cardiovascular death, cardiovascular hospitalization and the composite of all-cause death or cardiovascular hospitalization over a median follow-up of 3.9 years among 6683 ambulatory patients with chronic HF. Patients in the 3rd serum uric acid tertile (>7.2 mg/dl) had a nearly 1.8-fold increased risk of both all-cause death and cardiovascular death, and a nearly 1.5-fold increased risk of cardiovascular hospitalization and of the composite endpoint compared to those in the 1st uric acid tertile (<5.7 mg/dl). Beyond serum uric acid ≥ 7 mg/dl the risk of outcomes increased sharply and linearly. The significant association between elevated serum uric acid levels and adverse outcomes persisted after adjustment for multiple established cardiovascular risk factors, HF etiology, left ventricular ejection fraction, medication use and other potential confounders, with an adjusted hazard ratio of 1.37 (95% CI 1.22-1.55) for all-cause death, 1.48 (1.29-1.69) for cardiovascular death, 1.19 (1.09-1.30) for cardiovascular hospitalization and 1.21 (1.11-1.31) for the composite endpoint, respectively. Elevated serum uric acid levels are independently associated with poor long-term survival and increased risk of cardiovascular hospitalization in patients with chronic HF. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Yuting; Donohue, Randall J.; McVicar, Tim R.; Roderick, Michael L.; Beck, Hylke E.
2016-08-01
Understanding how tropical rainforests respond to elevated atmospheric CO2 concentration (eCO2) is essential for predicting Earth's carbon, water, and energy budgets under future climate change. Here we use long-term (1982-2010) precipitation (P) and runoff (Q) measurements to infer runoff coefficient (Q/P) and evapotranspiration (E) trends across 18 unimpaired tropical rainforest catchments. We complement that analysis by using satellite observations coupled with ecosystem process modeling (using both "top-down" and "bottom-up" perspectives) to examine trends in carbon uptake and relate that to the observed changes in Q/P and E. Our results show there have been only minor changes in the satellite-observed canopy leaf area over 1982-2010, suggesting that eCO2 has not increased vegetation leaf area in tropical rainforests and therefore any plant response to eCO2 occurs at the leaf level. Meanwhile, observed Q/P and E also remained relatively constant in the 18 catchments, implying an unchanged hydrological partitioning and thus approximately conserved transpiration under eCO2. For the same period, using a top-down model based on gas exchange theory, we predict increases in plant assimilation (A) and light use efficiency (ɛ) at the leaf level under eCO2, the magnitude of which is essentially that of eCO2 (i.e., 12% over 1982-2010). Simulations from 10 state-of-the-art bottom-up ecosystem models over the same catchments also show that the direct effect of eCO2 is to mostly increase A and ɛ with little impact on E. Our findings add to the current limited pool of knowledge regarding the long-term eCO2 impacts in tropical rainforests.
Elkin, Ché; Giuggiola, Arnaud; Rigling, Andreas; Bugmann, Harald
2015-06-01
In many regions of the world, drought is projected to increase under climate change, with potential negative consequences for forests and their ecosystem services (ES). Forest thinning has been proposed as a method for at least temporarily mitigating drought impacts, but its general applicability and longer-term impacts are unclear. We use a process-based forest model to upscale experimental data for evaluating the impacts of forest thinning in a drought-susceptible valley in the interior of the European Alps, with the specific aim of assessing (1) when and where thinning may be most effective and (2) the longer-term implications for forest dynamics. Simulations indicate that forests will be impacted by climate-induced increases in drought across a broad elevation range. At lower elevations, where drought is currently prevalent, thinning is projected to temporarily reduce tree mortality, but to have minor impacts on forest dynamics in the longer term. Thinning may be particularly useful at intermediate and higher elevations as a means of temporarily reducing mortality in drought-sensitive species such as Norway spruce and larch, which currently dominate these elevations. However, in the longer term, even intense thinning will likely not be sufficient to prevent a climate change induced dieback of these species, which is projected to occur under even moderate climate change. Thinning is also projected to have the largest impact on long-term forest dynamics at intermediate elevations, with the magnitude of the impact depending on the timing and intensity of thinning. More intense thinning that is done later is projected to more strongly promote a transition to more drought-tolerant species. We conclude that thinning is a viable option for temporarily reducing the negative drought impacts on forests, but that efficient implementation of thinning should be contingent on a site-specific evaluation of the near term risk of significant drought, and how thinning will impact the rate and direction of climate driven forest conversion.
Native Soil Charcoal as a Model for Designing Biochar for Carbon Sequestration
Under changing climate a variety of mechanisms for removing carbon from the atmosphere and sequestering it elsewhere are being considered to reduce the forcing of the atmosphere. Amending soils with biochar has been proposed as one long-term means of sequestering carbon originat...
NASA Astrophysics Data System (ADS)
Jastrow, J. D.; O'Brien, S. L.; Moran, K. K.; Boutton, T. W.
2012-12-01
The impact of atmospheric CO2 enrichment on soil organic matter (SOM) dynamics and stocks will depend on the interplay between plant responses, the soil's capability to protect and stabilize SOM against decomposition, and nutrient availability. Information on C and N allocation to functionally meaningful SOM pools and their dynamics can improve our understanding of soil responses and facilitate predictions of the potential for long-term stabilization. At the sweetgum free-air CO2 enrichment (FACE) experiment in Oak Ridge, Tennessee, we used (1) repeated sampling over time, (2) the 13C tracer provided by the fossil fuel source of fumigation CO2, and (3) physical fractionation to determine the fate and dynamics of FACE-derived detritus inputs to SOM. Samples collected in years 0, 3, 5, 8, 10, and 12 of the experiment were fractionated to separate particulate organic matter (POM) and silt- and clay-associated organic matter protected by occlusion in stable microaggregates from their more readily dispersible counterparts. In this aggrading system, significant linear increases in bulk soil C and N occurred in the surface 5 cm of both ambient and elevated CO2 treatments during the 12 years of the experiment, but accrual rates doubled in response to CO2 enrichment - with no treatment effect on C:N ratio. "New" FACE-derived C accounted for the 12-year increase in bulk soil C and also replaced a fifth of the "old" pretreatment C. The difference in SOM accrual between elevated- and ambient-CO2 treatments occurred mostly in fine POM and silt-sized fractions. Initially, occlusion within microaggregates facilitated much of this accrual. But in years 8 and 10, transfer of microaggregate-occluded C and N to non-aggregated pools occurred in response to prolonged drought. In year 12, after the drought ended, the quantities of silt-associated SOM occluded in microaggregates recovered to pre-drought levels. However, microaggregate-occluded POM continued to decline. The sensitivity of physical protection mechanisms to climate has implications for the potential long-term stability of accrued SOM in this system and those with similar soil characteristics. Beyond the CO2 treatment responses, the isotopic tracer and observed dynamic changes contribute to understanding of SOM cycling and stabilization processes and provide data useful for model parameterization and validation.
Geologic Storage of CO2: Leakage Pathways and Environmental Risks
NASA Astrophysics Data System (ADS)
Celia, M. A.; Peters, C. A.; Bachu, S.
2002-05-01
Geologic storage of CO2 appears to be an attractive option for carbon mitigation because it offers sufficient capacity to solve the problem, and it can be implemented with existing technology. Among the list of options for storage sites, depleted hydrocarbon reservoirs and deep saline aquifers are two major categories. While injection into hydrocarbon reservoirs offers immediate possibilities, especially in the context of enhanced oil recovery, it appears that deep saline aquifers provide the extensive capacity necessary to solve the problem over the decade to century time scale. Capacity and technology argue favorably for this option, but remaining obstacles to implementation include capture technologies, overall economic considerations, and potential environmental consequences of the injection. Of these, the environmental questions may be most difficult to solve. Experience from CO2 floods for enhanced oil recovery and from CO2 and acid gas disposal operations indicates that geological storage of CO2 is safe over the short term for comparatively small amounts of CO2. However, there is no experience to date regarding the long-term fate and safety of the large volumes of CO2 that must be injected to significantly reduce atmospheric emissions. In order to make proper evaluation of environmental risks, the full range of possible environmental consequences must be considered. Most of these environmental concerns involve migration and leakage of CO2 into shallow portions of the subsurface and eventually into the atmosphere. In shallow subsurface zones, elevated levels of carbon dioxide can cause pH changes, leading to possible mobilization of ground-water contaminants including metals. In the unsaturated zone, vegetation can be adversely affected, as can other ecosystem components. At the land surface, elevated levels of CO2 can lead to asphyxiation in humans and other animals. And finally, in the atmosphere, CO2 that leaks from underground diminishes the effectiveness of the overall storage scheme and contributes to possible climate change. To characterize these environmental consequences, reliable models of leakage characteristics and rates are needed. While leakage through natural flowpaths in the subsurface may occur, a more likely pathway is leakage through abandoned wells. This may be especially troublesome in mature sedimentary basins, which are often "punctured" by a very large number of exploration and production wells. For example, in the Alberta Basin there are more than 100,000 abandoned wells, the oldest from 1883. The cement used in the completion and abandonment of these wells, historically of variable quality and quantity, most probably has degraded with age and under the effect of formation brines. The cement may degrade even more rapidly when contacted by CO2 and possibly other components in the injection mixture (such as H2S). Cement properties and their modification through time must be understood in order to provide reliable estimates of leakage rates. Those leakage rates must then be linked to models of environmental consequences, and ultimately the entire analysis must be embedded in a probabilistic framework. Such an approach will allow leakage to be addressed rationally in terms of safety and long-term environmental impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, C.E.
1994-11-01
Understanding how photosynthetic capacity acclimates to elevated CO{sub 2} concentrations is vital in predicting the response of important grassland species such as Trifolium repens. Previous studies of acclimatization have been carried out in artificial experimental conditions, such as acrylic greenhouses or controlled environment chambers. The advent of FACE technology has enabled a large area of crop to be fumigated in the field, providing more realistic growing conditions. Pure stands of Trifolium repens L. cv. Blanca grown at either 355 or 600{mu}mol mol{sup -1} CO{sub 2} were examined, and their photosynthetic response to elevated Ca determined via gas exchange studies. Ratesmore » of photosynthesis of young, fully expanded leaves were increased between 21 and 36% when grown and measured at elevated CO{sub 2}. This increase in A corresponded to a decrease in g{sub S} of between 18 and 52%. No acclimation effect was observed in the most frequently cut stands, whilst the response of stands clipped only 4 times per year was more variable. When down regulation of V{sub cmax} did occur, this was not nearly as marked as that which occurred in 3 other temperate species (Chrysanthemum leucanthemum, Ranunculus friesianus, Plantago lanceolata (L.) J. & C. Presl.), at similar growth regimes. No acclimation of stomatal frequency, SI or pore length was found to occur in the enriched clover stands.« less
NASA Astrophysics Data System (ADS)
Greene, S. E.; Ridgwell, A. J.; Schmidt, D. N.; Kirtland Turner, S.; Paelike, H.; Thomas, E.
2014-12-01
The carbonate compensation depth (CCD) is the depth below which negligible calcium carbonate is preserved in marine sediments. The long-term position of the CCD is often considered to be a powerful constraint on palaeoclimate and atmospheric CO2 concentration due to the requirement that carbonate burial balance riverine weathering over long timescales. The requirement that weathering and burial be in balance is clear, but it is less certain that burial compensates for changes in weathering via shoaling or deepening of the CCD. Because most carbonate burial occurs well above the CCD , changes in weathering fluxes may be primarily accommodated by increasing or decreasing carbonate burial at shallower depths, i.e., at or near the lysocline, the depth range over which carbonate dissolution markedly increases. Indeed, recent earth system modelling studies have suggested that the position of the CCD is relatively insensitive to changes in atmospheric pCO2. Additionally, studies have questioned the nature and strength of the relationship between the CCD, carbonate saturation state in the water column, and lysocline. To test the relationship between palaeoclimate and the location of the CCD, we reconstructed the global, long-term CCD behaviour across major Cenozoic climate transitions: the late Paleocene - early Eocene long-term warming trend (study interval ~58 to 49 Ma) and the late Eocene - early Oligocene cooling and glaciation (study interval ~38 to 27 Ma). We use Earth system modelling (GENIE) to explore the links between atmospheric pCO2 and the CCD, isolating and teasing apart the roles of total dissolved inorganic carbon, temperature, circulation, and productivity in determining the CCD.
Long-term trend analysis on total and extreme precipitation over Shasta Dam watershed.
Toride, Kinya; Cawthorne, Dylan L; Ishida, Kei; Kavvas, M Levent; Anderson, Michael L
2018-06-01
California's interconnected water system is one of the most advanced water management systems in the world, and understanding of long-term trends in atmospheric and hydrologic behavior has increasingly being seen as vital to its future well-being. Knowledge of such trends is hampered by the lack of long-period observation data and the uncertainty surrounding future projections of atmospheric models. This study examines historical precipitation trends over the Shasta Dam watershed (SDW), which lies upstream of one of the most important components of California's water system, Shasta Dam, using a dynamical downscaling methodology that can produce atmospheric data at fine time-space scales. The Weather Research and Forecasting (WRF) model is employed to reconstruct 159years of long-term hourly precipitation data at 3km spatial resolution over SDW using the 20th Century Reanalysis Version 2c dataset. Trend analysis on this data indicates a significant increase in total precipitation as well as a growing intensity of extreme events such as 1, 6, 12, 24, 48, and 72-hour storms over the period of 1851 to 2010. The turning point of the increasing trend and no significant trend periods is found to be 1940 for annual precipitation and the period of 1950 to 1960 for extreme precipitation using the sequential Mann-Kendall test. Based on these analysis, we find the trends at the regional scale do not necessarily apply to the watershed-scale. The sharp increase in the variability of annual precipitation since 1970s is also detected, which implies an increase in the occurrence of extreme wet and dry conditions. These results inform long-term planning decisions regarding the future of Shasta Dam and California's water system. Copyright © 2018 Elsevier B.V. All rights reserved.
Wavelet filter analysis of local atmospheric pressure effects in the long-period tidal bands
NASA Astrophysics Data System (ADS)
Hu, X.-G.; Liu, L. T.; Ducarme, B.; Hsu, H. T.; Sun, H.-P.
2006-11-01
It is well known that local atmospheric pressure variations obviously affect the observation of short-period Earth tides, such as diurnal tides, semi-diurnal tides and ter-diurnal tides, but local atmospheric pressure effects on the long-period Earth tides have not been studied in detail. This is because the local atmospheric pressure is believed not to be sufficient for an effective pressure correction in long-period tidal bands, and there are no efficient methods to investigate local atmospheric effects in these bands. The usual tidal analysis software package, such as ETERNA, Baytap-G and VAV, cannot provide detailed pressure admittances for long-period tidal bands. We propose a wavelet method to investigate local atmospheric effects on gravity variations in long-period tidal bands. This method constructs efficient orthogonal filter bank with Daubechies wavelets of high vanishing moments. The main advantage of the wavelet filter bank is that it has excellent low frequency response and efficiently suppresses instrumental drift of superconducting gravimeters (SGs) without using any mathematical model. Applying the wavelet method to the 13-year continuous gravity observations from SG T003 in Brussels, Belgium, we filtered 12 long-period tidal groups into eight narrow frequency bands. Wavelet method demonstrates that local atmospheric pressure fluctuations are highly correlated with the noise of SG measurements in the period band 4-40 days with correlation coefficients higher than 0.95 and local atmospheric pressure variations are the main error source for the determination of the tidal parameters in these bands. We show the significant improvement of long-period tidal parameters provided by wavelet method in term of precision.
Year-round Regional CO2 Fluxes from Boreal and Tundra Ecosystems in Alaska
NASA Astrophysics Data System (ADS)
Commane, R.; Lindaas, J.; Benmergui, J. S.; Luus, K. A.; Chang, R. Y. W.; Daube, B. C.; Euskirchen, E. S.; Henderson, J.; Karion, A.; Miller, J. B.; Miller, S. M.; Parazoo, N.; Randerson, J. T.; Sweeney, C.; Tans, P. P.; Thoning, K. W.; Veraverbeke, S.; Miller, C. E.; Wofsy, S. C.
2016-12-01
High-latitude ecosystems could release large amounts of carbon dioxide (CO2) to the atmosphere in a warmer climate. We derive temporally and spatially resolved year-round CO2 fluxes in Alaska from a synthesis of airborne and tower CO2 observations in 2012-2014. We find that tundra ecosystems were net sources of atmospheric CO2. We discuss these flux estimates in the context of long-term CO2 measurements at Barrow, AK, to asses the long term trend in carbon fluxes in the Arctic. Many Earth System Models incorrectly simulate net carbon uptake in Alaska presently. Our results imply that annual net emission of CO2 to the atmosphere may have increased markedly in this region of the Arctic in response to warming climate, supporting the view that climate-carbon feedback is strongly positive in the high Arctic.
Open-loop simulations of atmospheric turbulence using the AdAPS interface
NASA Astrophysics Data System (ADS)
Widiker, Jeffrey J.; Magee, Eric P.
2005-08-01
We present and analyze experimental results of lab-based open-loop turbulence simulation utilizing the Adaptive Aberrating Phase Screen Interface developed by ATK Mission Research, which incorporates a 2-D spatial light modulator manufactured by Boulder Nonlinear Systems. These simulations demonstrate the effectiveness of a SLM to simulate various atmospheric turbulence scenarios in a laboratory setting without altering the optical setup. This effectiveness is shown using several figures of merit including: long-term Strehl ratio, time-dependant mean-tilt analysis, and beam break-up geometry. The scenarios examined here range from relatively weak (D/ro = 0.167) to quite strong (D/ro = 10) turbulence effects modeled using a single phase-screen placed at the pupil of a Fourier Transforming lens. While very strong turbulence scenarios result long-term Strehl ratios higher than expected, the SLM provided an accurate simulation of atmospheric effects for conventional phase-screen strengths.
Reversible and non-reversible changes in nanostructured Si in humid atmosphere
NASA Astrophysics Data System (ADS)
Zhigalov, V.; Pyatilova, O.; Timoshenkov, S.; Gavrilov, S.
2014-12-01
Atmosphere water influence in the nanostructured silicon (NSS) was investigated by IR-spectroscopy and electron work function measurement. Long-term non-reversible dynamics of IR-spectra was found as a result of 100% humidity influence on the nanostructured silicon. It was indicated that air humidity affects on the work function. Dynamics of the electron work function consists of reversible and non-reversible components. Reversible component appears as strong anti-correlation between work function and humidity. Work function change of NSS is about 0.4 eV while the humidity changes between 0% and 100%. Reversible component can be explained by physical sorption of water molecules on the surface. Non-reversible component manifests as long-term decreasing trend of work function in humid atmosphere. Transition curve during abruptly humidity changes alters its shape. Non-reversible component can be explained by chemisorption of water.
Long-term carbon sink in Borneo's forests halted by drought and vulnerable to edge effects.
Qie, Lan; Lewis, Simon L; Sullivan, Martin J P; Lopez-Gonzalez, Gabriela; Pickavance, Georgia C; Sunderland, Terry; Ashton, Peter; Hubau, Wannes; Abu Salim, Kamariah; Aiba, Shin-Ichiro; Banin, Lindsay F; Berry, Nicholas; Brearley, Francis Q; Burslem, David F R P; Dančák, Martin; Davies, Stuart J; Fredriksson, Gabriella; Hamer, Keith C; Hédl, Radim; Kho, Lip Khoon; Kitayama, Kanehiro; Krisnawati, Haruni; Lhota, Stanislav; Malhi, Yadvinder; Maycock, Colin; Metali, Faizah; Mirmanto, Edi; Nagy, Laszlo; Nilus, Reuben; Ong, Robert; Pendry, Colin A; Poulsen, Axel Dalberg; Primack, Richard B; Rutishauser, Ervan; Samsoedin, Ismayadi; Saragih, Bernaulus; Sist, Plinio; Slik, J W Ferry; Sukri, Rahayu Sukmaria; Svátek, Martin; Tan, Sylvester; Tjoa, Aiyen; van Nieuwstadt, Mark; Vernimmen, Ronald R E; Yassir, Ishak; Kidd, Petra Susan; Fitriadi, Muhammad; Ideris, Nur Khalish Hafizhah; Serudin, Rafizah Mat; Abdullah Lim, Layla Syaznie; Saparudin, Muhammad Shahruney; Phillips, Oliver L
2017-12-19
Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha -1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.
Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event
Dahl, Tais W.; Boyle, Richard A.; Canfield, Donald E.; Connelly, James N.; Gill, Benjamin C.; Lenton, Timothy M.; Bizzarro, Martin
2015-01-01
Anoxic marine zones were common in early Paleozoic oceans (542–400 Ma), and present a potential link to atmospheric pO2 via feedbacks linking global marine phosphorous recycling, primary production and organic carbon burial. Uranium (U) isotopes in carbonate rocks track the extent of ocean anoxia, whereas carbon (C) and sulfur (S) isotopes track the burial of organic carbon and pyrite sulfur (primary long-term sources of atmospheric oxygen). In combination, these proxies therefore reveal the comparative dynamics of ocean anoxia and oxygen liberation to the atmosphere over million-year time scales. Here we report high-precision uranium isotopic data in marine carbonates deposited during the Late Cambrian ‘SPICE’ event, at ca. 499 Ma, documenting a well-defined −0.18‰ negative δ238U excursion that occurs at the onset of the SPICE event’s positive δ13C and δ34S excursions, but peaks (and tails off) before them. Dynamic modelling shows that the different response of the U reservoir cannot be attributed solely to differences in residence times or reservoir sizes - suggesting that two chemically distinct ocean states occurred within the SPICE event. The first ocean stage involved a global expansion of euxinic waters, triggering the spike in U burial, and peaking in conjunction with a well-known trilobite extinction event. During the second stage widespread euxinia waned, causing U removal to tail off, but enhanced organic carbon and pyrite burial continued, coinciding with evidence for severe sulfate depletion in the oceans (Gill et al., 2011). We discuss scenarios for how an interval of elevated pyrite and organic carbon burial could have been sustained without widespread euxinia in the water column (both non-sulfidic anoxia and/or a more oxygenated ocean state are possibilities). Either way, the SPICE event encompasses two different stages of elevated organic carbon and pyrite burial maintained by high nutrient fluxes to the ocean, and potentially sustained by internal marine geochemical feedbacks. PMID:25684783
In 2000, Florida DEP, USEPA, and Broward EPD located an atmospheric mercury monitoring site adjacent to the Everglades in southeast Florida for the purposes of field testing the Tekran mercury speciation system under long-term operational conditions and evaluating the impact of e...
USDA-ARS?s Scientific Manuscript database
Although long-term reductions in surface water nitrogen and sulfate concentrations have been widely observed in response to reductions in atmospheric deposition, documenting and inter-relating transient variations in deposition and stream time series has proven problematical due to low signal-to-noi...
Manji, Jamil; Singh, Gurkaran; Okpaleke, Christopher; Dadgostar, Anali; Al-Asousi, Fahad; Amanian, Ameen; Macias-Valle, Luis; Finkelstein, Andres; Tacey, Mark; Thamboo, Andrew; Javer, Amin
2017-05-01
Although short-term use (≤2 months) of atomized topical nasal steroids has been shown to be safe and effective, the long-term safety has yet to be demonstrated. The aim of this study was to determine the impact of long-term topical budesonide treatment via the mucosal atomization device (MAD) on the hypothalamic-pituitary-adrenal axis (HPAA) and intraocular pressure (IOP). A cross-sectional study of patients with chronic rhinosinusitis (CRS), with or without nasal polyposis, managed with daily nasal budesonide via MAD was conducted at a tertiary rhinology center. Patients using systemic steroids within 3 months of assessment were excluded. HPAA impact was assessed using the cosyntropin stimulation test for adrenal function and a survey of relevant symptomatology. Patients also underwent tonometry to assess for elevated IOP potentially related to corticosteroid use. A total of 100 CRS patients were recruited with a mean budesonide treatment duration of 23.5 months (range, 6-37 months). Stimulated cortisol response was diminished in 3 patients (3%). No patients with adrenal suppression had relevant symptomatology. IOP was elevated in 6 patients (6%). These findings suggest that there is a risk of adrenal suppression and raised IOP associated with the long-term use of topical nasal budesonide via MAD. Otolaryngologists should consider periodic surveillance for these adverse events in this patient cohort. © 2017 ARS-AAOA, LLC.
Long-term measurements of tropospheric carbon dioxide and its isotopes in coastal East Asia
NASA Astrophysics Data System (ADS)
Ou-Yang, C. F.; Lin, N. H.; Wang, J. L.; Schnell, R. C.
2016-12-01
Many studies have reported that Asian continental outflow has significantly impacted on global atmospheric chemistry, affecting air quality over the western Pacific, even as far as North America. Taiwan is situated at an ideal location in the western North Pacific for monitoring biomass burning and Asian dust coincided with polluted air masses originating from Southeast Asia and Asian continent. A high-elevation baseline station, Lulin Atmospheric Background Station (LABS; 23.47°N, 120.87°E; 2,862 m a.s.l.), was thus established in April 2006 to investigate the characteristics of trace gases and atmospheric transport patterns in the lower free troposphere. In March 2010, as part of GMD's Cooperative Air Sampling Network, flask air sampling at Dongsha Island (DSI; 20.70°N, 116.73°E; 3 m a.s.l.) was launched to measure surface greenhouse gases (GHGs) in the South China Sea. As reported by IPCC in 2013, CO2 is the largest contributor of the atmospheric well-mixed GHGs, accounting for 64.3% of the total global radiative forcing from 1750 to 2011. The annual mean CO2 mixing ratio reached the milestone of 400 ppm at LABS (402.6±3.1 ppm) in 2015 and at DSI (401.7±4.7 ppm) in 2014. Vegetation growth in spring drew down CO2 mixing ratios and elevated its stable isotope ratio (δ13C of CO2) at LABS and DSI in summer. By the continuous measurement of CO2 using a cavity ring-down spectroscopy, a daily minimum with a lager standard deviation was observed at LABS during daytime when photosynthesis was active. The CO2 increased at an average rate of +2.69±2.30 ppm at LABS and +2.10±1.32 ppm at DSI during the measurement period, whereas the δ13C isotope ratio of CO2 decreased at an average rate of -0.060±0.099 ‰ at LABS and -0.021±0.053 ‰ at DSI. Increasing trends for the δ18O isotope ratio of CO2 were found at both LABS and DSI in recent years.
Impacts and societal benefits of research activities at Summit Station, Greenland
NASA Astrophysics Data System (ADS)
Hawley, R. L.; Burkhart, J. F.; Courville, Z.; Dibb, J. E.; Koenig, L.; Vaughn, B. H.
2017-12-01
Summit Station began as the site for the Greenland Ice Sheet Project 2 ice core in 1989. Since then, it has hosted both summer campaign science, and since 1997, year-round observations of atmospheric and cryospheric processes. The station has been continuously occupied since 2003. While most of the science activities at the station are supported by the US NSF Office of Polar Programs, the station also hosts many interagency and international investigations in physical glaciology, atmospheric chemistry, satellite validation, astrophysics and other disciplines. Summit is the only high elevation observatory north of the Arctic circle that can provide clean air or snow sites. The station is part of the INTER-ACT consortium of Arctic research stations with the main objective to identify, understand, predict and respond to diverse environmental changes, and part of the International Arctic Systems for Observing the Atmosphere (IASOA) that coordinates Arctic research activities and provides a networked, observations-based view of the Arctic. The Summit Station Science Summit, sponsored by NSF, assembled a multidisciplinary group of scientists to review Summit Station science, define the leading research questions for Summit, and make community-based recommendations for future science goals and governance for Summit. The impact of several on-going observation records was summarized in the report "Sustaining the Science Impact of Summit Station, Greenland," including the use of station data in weather forecasts and climate models. Observations made at the station as part of long-term, year-round research or during shorter summer-only campaign seasons contribute to several of the identified Social Benefit Areas (SBAs) outlined in the International Arctic Observations Assessment Framework published by the IDA Science and Technology Policy Institute and Sustaining Arctic Observing Networks as an outcome of the 2016 Arctic Science Ministerial. The SBAs supported by research conducted at Summit include Fundamental Understanding of Arctic Systems, Infrastructure and Operations, Terrestrial and Freshwater Ecosystems and Processes and Weather and Climate. Future efforts at maintaining the station's long-term climate record will focus on these areas, as identified in the Summit Station Science Summit report.
Sellin, Arne; Niglas, Aigar; Õunapuu-Pikas, Eele; Kupper, Priit
2014-03-24
Effects of water deficit on plant water status, gas exchange and hydraulic conductance were investigated in Betula pendula under artificially manipulated air humidity in Eastern Estonia. The study was aimed to broaden an understanding of the ability of trees to acclimate with the increasing atmospheric humidity predicted for northern Europe. Rapidly-induced water deficit was imposed by dehydrating cut branches in open-air conditions; long-term water deficit was generated by seasonal drought. The rapid water deficit quantified by leaf (ΨL) and branch water potentials (ΨB) had a significant (P < 0.001) effect on gas exchange parameters, while inclusion of ΨB in models resulted in a considerably better fit than those including ΨL, which supports the idea that stomatal openness is regulated to prevent stem rather than leaf xylem dysfunction. Under moderate water deficit (ΨL≥-1.55 MPa), leaf conductance to water vapour (gL), transpiration rate and leaf hydraulic conductance (KL) were higher (P < 0.05) and leaf temperature lower in trees grown in elevated air humidity (H treatment) than in control trees (C treatment). Under severe water deficit (ΨL<-1.55 MPa), the treatments showed no difference. The humidification manipulation influenced most of the studied characteristics, while the effect was to a great extent realized through changes in soil water availability, i.e. due to higher soil water potential in H treatment. Two functional characteristics (gL, KL) exhibited higher (P < 0.05) sensitivity to water deficit in trees grown under increased air humidity. The experiment supported the hypothesis that physiological traits in trees acclimated to higher air humidity exhibit higher sensitivity to rapid water deficit with respect to two characteristics - leaf conductance to water vapour and leaf hydraulic conductance. Disproportionate changes in sensitivity of stomatal versus leaf hydraulic conductance to water deficit will impose greater risk of desiccation-induced hydraulic dysfunction on the plants, grown under high atmospheric humidity, in case of sudden weather fluctuations, and might represent a potential threat in hemiboreal forest ecosystems. There is no trade-off between plant hydraulic capacity and photosynthetic water-use efficiency on short time scale.
Long-term (6-wk) hindlimb suspension inhibits spermatogenesis in adult male rats
NASA Technical Reports Server (NTRS)
Tash, Joseph S.; Johnson, Donald C.; Enders, George C.
2002-01-01
The International Space Station will allow extended habitation in space and long-term exposure to microgravity (microG). A concern is the impact of long-term microG exposure on the ability of species to reproduce. The model often used to simulate microG is rat hindlimb suspension (HLS), where the hindlimbs are elevated above the cage floor with a tail harness. Experiments described here are the first to examine the effect of long-term HLS on testicular function in adult male rats. Free-roaming (controls), animals with only the tail harnessed but hindlimbs in contact with the cage floor (TO), and HLS animals were tested for 6 wk. Cryptorchidism was prevented in TO and HLS animals by partial constriction of the inguinal canal with sutures. All parameters were compared at the end of the 6-wk experiment. Testicular weights and spermatogenesis were significantly reduced by HLS, such that no spermatogenic cells beyond round spermatids were present and epididymides were devoid of mature sperm. In many tubules, loss of all germ cells, except a few spermatogonia, resulting in histopathology similar to the Sertoli cell, was observed. Spermatogenesis appeared unaffected in control and TO animals. Sertoli and Leydig cell appearance, testosterone, luteinizing hormone, and follicle-stimulating hormone levels, and epididymal and seminal vesicle weight were unchanged by HLS. Cortisone was not elevated by HLS; thus stress may not be a factor. These results demonstrate that spermatogenesis is severely inhibited by long-term HLS, whereas testicular androgen production is not. These results have significant implications regarding serious effects of long-term exposure to microG on the reproductive capability of scrotal mammals, including humans.
Constraining Marsh Carbon Budgets Using Long-Term C Burial and Contemporary Atmospheric CO2 Fluxes
NASA Astrophysics Data System (ADS)
Forbrich, I.; Giblin, A. E.; Hopkinson, C. S.
2018-03-01
Salt marshes are sinks for atmospheric carbon dioxide that respond to environmental changes related to sea level rise and climate. Here we assess how climatic variations affect marsh-atmosphere exchange of carbon dioxide in the short term and compare it to long-term burial rates based on radiometric dating. The 5 years of atmospheric measurements show a strong interannual variation in atmospheric carbon exchange, varying from -104 to -233 g C m-2 a-1 with a mean of -179 ± 32 g C m-2 a-1. Variation in these annual sums was best explained by differences in rainfall early in the growing season. In the two years with below average rainfall in June, both net uptake and Normalized Difference Vegetation Index were less than in the other three years. Measurements in 2016 and 2017 suggest that the mechanism behind this variability may be rainfall decreasing soil salinity which has been shown to strongly control productivity. The net ecosystem carbon balance was determined as burial rate from four sediment cores using radiometric dating and was lower than the net uptake measured by eddy covariance (mean: 110 ± 13 g C m-2 a-1). The difference between these estimates was significant and may be because the atmospheric measurements do not capture lateral carbon fluxes due to tidal exchange. Overall, it was smaller than values reported in the literature for lateral fluxes and highlights the importance of investigating lateral C fluxes in future studies.
NASA Astrophysics Data System (ADS)
Decina, Stephen M.; Templer, Pamela H.; Hutyra, Lucy R.
2018-02-01
Rates of atmospheric deposition are declining across the United States, yet urban areas remain hotspots of atmospheric deposition. While past studies show elevated rates of inorganic nitrogen (N) deposition in cities, less is known about atmospheric inputs of organic N, organic carbon (C), and organic and inorganic phosphorus (P), all of which can affect ecosystem processes, water quality, and air quality. Further, the effect of the tree canopy on amounts and forms of nutrients reaching urban ground surfaces is not well-characterized. We measured growing season rates of total N, organic C, and total P in bulk atmospheric inputs, throughfall, and soil solution around the greater Boston area. We found that organic N constitutes a third of total N inputs, organic C inputs are comparable to rural inputs, and inorganic P inputs are 1.2 times higher than those in sewage effluent. Atmospheric inputs are enhanced two-to-eight times in late spring and are elevated beneath tree canopies, suggesting that trees augment atmospheric inputs to ground surfaces. Additionally, throughfall inputs may directly enter runoff when trees extend above impervious surfaces, as is the case with 26.1% of Boston's tree canopy. Our results indicate that the urban atmosphere is a significant source of elemental inputs that may impact urban ecosystems and efforts to improve water quality, particularly in terms of P. Further, as cities create policies encouraging tree planting to provide ecosystem services, locating trees above permeable surfaces to reduce runoff nutrient loads may be essential to managing urban biogeochemical cycling and water quality.
Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong
2016-04-07
Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport.
Long-term Morphological Modeling at Coastal Inlets
2015-05-15
the Coriolis effect which in this case deflects the ebb jet towards the north. a. Initial b. 10 years Figure 3. Idealized inlet representing...In order to quantify the physical effects of long-term, regional climactic changes in the environment, numerical morphodynamic models must be able...atmospheric pressure, wave, river, and tidal forcing; and Coriolis -Stokes force. The sediment transport model simulates nonequilibrium total-load
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1992-01-01
In order to understand matrix dominated behavior in laminated polymer matrix composites, an elastic/viscoplastic constitutive model was developed and used to predict stress strain behavior of off-axis and angle-ply symmetric laminates under in-plane, tensile axial loading. The model was validated for short duration tests at elevated temperatures. Short term stress relaxation and short term creep, strain rate sensitivity, and material nonlinearity were accounted for. The testing times were extended for longer durations, and periods of creep and stress relaxation were used to investigate the ability of the model to account for long term behavior. The model generally underestimated the total change in strain and stress for both long term creep and long term relaxation respectively.
NASA Astrophysics Data System (ADS)
Price, A.; Giardino, J. R.; Marcantonio, F.
2015-12-01
The alpine critical zone is affected by various inputs, storages, pathways, and outputs. Unfortunately, many of these processes distribute the pollutants beyond the immediate area and into the surrounding biological and anthropogenic communities. Years of mining and improper disposal of the tailings and acid-mine drainage have degraded the quality of surface water within the San Juan Mountains. However, mining may not be the only factor significantly affecting the surface water quality in this high-elevation environment. As a high elevation system, this area is a fragile ecosystem with inputs ranging from local mining to atmospheric transport and deposition. Studies from around the world have shown atmospheric transport and deposition affect high-elevation systems. Thus, a significant question arises: does elevation or aspect affect the volume and rate of atmospheric deposition of pollutants? We assume atmospheric deposition occurs on the slopes in addition to in streams, lakes, and ponds. Deposition on slopes can be transported to nearby surface waters and increase the impact of the atmospheric pollutants along with residence time. Atmospheric deposition data were collected for aluminum, iron, manganese, nitrate, phosphate, and sulfate. Water chemistry data were collected for the same constituents as the atmospheric deposition with the addition of temperature, dissolved oxygen, pH, and specific conductance. Deposition samples were collected on a five-day sampling regime during two summers. Water quality samples were collected in-stream adjacent to the deposition-ample collectors. Collection sites were located on opposite sides of Red Mountain at five equal elevations providing two different aspects. The north side is drained by Red Mountain Creek and the south side is drained by Mineral Creek. Differences in atmospheric deposition and water quality at different elevations and aspects suggest there is a relationship between aspect and elevation on atmospheric pollution deposition. It is suggested that degradation of water quality in the San Juan Mountains is affected by atmospheric deposition along with the damage sustained from local mining activities. These results facilitate a better understanding of this high-elevation critical-zone system.
Ishihara, Masaharu; Nakao, Koichi; Ozaki, Yukio; Kimura, Kazuo; Ako, Junya; Noguchi, Teruo; Fujino, Masashi; Yasuda, Satoshi; Suwa, Satoru; Fujimoto, Kazuteru; Nakama, Yasuharu; Morita, Takashi; Shimizu, Wataru; Saito, Yoshihiko; Hirohata, Atsushi; Morita, Yasuhiro; Inoue, Teruo; Okamura, Atsunori; Uematsu, Masaaki; Hirata, Kazuhito; Tanabe, Kengo; Shibata, Yoshisato; Owa, Mafumi; Tsujita, Kenichi; Funayama, Hiroshi; Kokubu, Nobuaki; Kozuma, Ken; Tobaru, Tetsuya; Oshima, Shigeru; Nakai, Michikazu; Nishimura, Kunihiro; Miyamoto, Yoshihiro; Ogawa, Hisao
2017-06-23
According to troponin-based criteria of myocardial infarction (MI), patients without elevation of creatine kinase (CK), formerly classified as unstable angina (UA), are now diagnosed as non-ST-elevation MI (NSTEMI), but little is known about their outcomes.Methods and Results:Between July 2012 and March 2014, 3,283 consecutive patients with MI were enrolled. Clinical follow-up data were obtained up to 3 years. The primary endpoint was a composite of all-cause death, non-fatal MI, non-fatal stroke, cardiac failure and urgent revascularization for UA. There were 2,262 patients with ST-elevation MI (STEMI), 563 NSTEMI with CK elevation (NSTEMI+CK) and 458 NSTEMI without CK elevation (NSTEMI-CK). From day 0, Kaplan-Meier curves for the primary endpoint began to diverge in favor of NSTEMI-CK for up to 30 days. The 30-day event rate was significantly lower in patients with NSTEMI-CK (3.3%) than in STEMI (8.6%, P<0.001) and NSTEMI+CK (9.9%, P<0.001). Later, the event curves diverged in favor of STEMI. The event rate from 31 days to 3 years was significantly lower in patients with STEMI (19.8%) than in NSTEMI+CK (33.6%, P<0.001) and NSTEMI-CK (34.2%, P<0.001). Kaplan-Meier curves from 31 days to 3 years were almost identical between NSTEMI+CK and NSTEMI-CK (P=0.91). Despite smaller infarct size and better short-term outcomes, long-term outcomes of NSTEMI-CK after convalescence were as poor as those for NSTEMI+CK and worse than for STEMI.
Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests
NASA Astrophysics Data System (ADS)
Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.
2015-12-01
Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric calcium helps explain reports of greater ecological calcium limitation in an increasingly nitrogen-rich world.
NASA Astrophysics Data System (ADS)
Yamamoto, A.; Abe-Ouchi, A.; Shigemitsu, M.; Oka, A.; Takahashi, K.; Ohgaito, R.; Yamanaka, Y.
2016-12-01
Long-term oceanic oxygen change due to global warming is still unclear; most future projections (such as CMIP5) are only performed until 2100. Indeed, few previous studies using conceptual models project oxygen change in the next thousands of years, showing persistent global oxygen reduction by about 30% in the next 2000 years, even after atmospheric carbon dioxide stops rising. Yet, these models cannot sufficiently represent the ocean circulation change: the key driver of oxygen change. Moreover, considering serious effect oxygen reduction has on marine life and biogeochemical cycling, long-term oxygen change should be projected for higher validity. Therefore, we used a coupled atmosphere-ocean general circulation model (AOGCM) and an offline ocean biogeochemical model, investigating realistic long-term changes in oceanic oxygen concentration and ocean circulation. We integrated these models for 2000 years under atmospheric CO2 doubling and quadrupling. After global oxygen reduction in the first 500 years, oxygen concentration in deep ocean globally recovers and overshoots, despite surface oxygen decrease and weaker Atlantic Meridional Overturning Circulation. Deep ocean convection in the Weddell Sea recovers and overshoots, after initial cessation. Thus, enhanced deep convection and associated Antarctic Bottom Water supply oxygen-rich surface waters to deep ocean, resulting global deep ocean oxygenation. We conclude that the change in ocean circulation in the Southern Ocean potentially drives millennial-scale oxygenation in the deep ocean; contrary to past reported long-term oxygen reduction and general expectation. In presentation, we will discuss the mechanism of response of deep ocean convection in the Weddell Sea and show the volume changes of hypoxic waters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sionit, N.
1992-12-31
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO{sub 2}, may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO{sub 2}, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO{sub 2} levels. Native tall grass prairie plots were exposed continuously to ambient and twice-ambient CO{sub 2}. We compared our results to an unfertilized companion experiment on the same research site. Above- and below-ground biomass production and leafmore » area of fertilized plots were greater with elevated than ambient CO{sub 2}. Nitrogen concentration was lower in plants exposed to elevated CO{sub 2}, but total standing crop N was greater at high CO{sub 2} increased root biomass under elevated CO{sub 2} apparently increased N uptake. The biomass production response to elevated CO{sub 2} was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated C{sub 2} was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and below-ground biomass could slow microbial degradation of soil organic matter and surface litter. The reduced tissue N concentration higher acid detergent fiber under elevated CO{sub 2} compared to ambient for forage indicated that ruminant growth and reproduction could be reduced under elevated CO{sub 2}.« less
Burns, Douglas A.
2003-01-01
The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7kgha-1yr-1 of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but data from the National Atmospheric Deposition Program and Clean Air Status and Trends Network show no region-wide increase during the past 2 decades. Nitrogen loads in atmospheric wet deposition have increased since the mid-1980s, however, at three high elevation (>3000m) sites east of the Continental Divide in the Front Range. Much of this increase is the result of increased ammonium (NH4+) concentrations in wet deposition. This suggests an increase in contributions from agricultural areas or from vehicles east of the Rocky Mountains and is consistent with the results of previous studies that have suggested a significant eastern source for atmospheric N deposition to the Front Range. The four sites with the highest NH4+ concentrations in wet deposition were among the six easternmost NADP sites, which is also consistent with a source to the east of the Rockies. This analysis found an increase in N loads in wet deposition at Niwot Ridge of only 0.013kgha-1yr-1, more than an order of magnitude less than previously reported for this site. This lower rate of increase results from application of the non-parametric Seasonal Kendall trend test to mean monthly data, which failed a test for normality, in contrast to linear regression, which was applied to mean annual data in a previous study. Current upward trends in population growth and energy use in Colorado and throughout the west suggest a need for continued monitoring of atmospheric deposition of N, and may reveal more widespread trends in N deposition in the future.
Long-term Internal Variability of the Tropical Pacific Atmosphere-Ocean System
NASA Astrophysics Data System (ADS)
Hadi Bordbar, Mohammad; Martin, Thomas; Park, Wonsun; Latif, Mojib
2016-04-01
The tropical Pacific has featured some remarkable trends during the recent decades such as an unprecedented strengthening of the Trade Winds, a strong cooling of sea surface temperatures (SST) in the eastern and central part, thereby slowing global warming and strengthening the zonal SST gradient, and highly asymmetric sea level trends with an accelerated rise relative to the global average in the western and a drop in the eastern part. These trends have been linked to an anomalously strong Pacific Walker Circulation, the major zonal atmospheric overturning cell in the tropical Pacific sector, but the origin of the strengthening is controversial. Here we address the question as to whether the recent decadal trends in the tropical Pacific atmosphere-ocean system are within the range of internal variability, as simulated in long unforced integrations of global climate models. We show that the recent trends are still within the range of long-term internal decadal variability. Further, such variability strengthens in response to enhanced greenhouse gas concentrations, which may further hinder detection of anthropogenic climate signals in that region.
NASA Astrophysics Data System (ADS)
Franke, Jasper G.; Werner, Johannes P.; Donner, Reik V.
2017-11-01
Obtaining reliable reconstructions of long-term atmospheric circulation changes in the North Atlantic region presents a persistent challenge to contemporary paleoclimate research, which has been addressed by a multitude of recent studies. In order to contribute a novel methodological aspect to this active field, we apply here evolving functional network analysis, a recently developed tool for studying temporal changes of the spatial co-variability structure of the Earth's climate system, to a set of Late Holocene paleoclimate proxy records covering the last two millennia. The emerging patterns obtained by our analysis are related to long-term changes in the dominant mode of atmospheric circulation in the region, the North Atlantic Oscillation (NAO). By comparing the time-dependent inter-regional linkage structures of the obtained functional paleoclimate network representations to a recent multi-centennial NAO reconstruction, we identify co-variability between southern Greenland, Svalbard, and Fennoscandia as being indicative of a positive NAO phase, while connections from Greenland and Fennoscandia to central Europe are more pronounced during negative NAO phases. By drawing upon this correspondence, we use some key parameters of the evolving network structure to obtain a qualitative reconstruction of the NAO long-term variability over the entire Common Era (last 2000 years) using a linear regression model trained upon the existing shorter reconstruction.
NASA Astrophysics Data System (ADS)
Braban, Christine; Tang, Sim; Bealey, Bill; Roberts, Elin; Stephens, Amy; Galloway, Megan; Greenwood, Sarah; Sutton, Mark; Nemitz, Eiko; Leaver, David
2017-04-01
Ambient ammonia measurements have been undertaken both in the atmosphere to understand sources, concentrations at background and vulnerable ecosystems and for long term monitoring of concentrations. As a pollutant which is projected to increase concentration in the coming decades with significant policy challenges to implementing mitigation strategies it is useful to assess what has been measured, where and why. In this study a review of the literature, has shown that ammonia measurements are frequently not publically reported and in general not reposited in the open data centres, available for research. The specific sectors where measurements have been undertaken are: agricultural point source assessments, agricultural surface exchange measurements, sensitive ecosystem monitoring, landscape/regional studies and governmental long term monitoring. Less frequently ammonia is measured as part of an intensive atmospheric chemistry field campaign. Technology is developing which means a shift from chemical denuder methods to spectroscopic techniques may be possible, however chemical denuding techniques with off-line laboratory analysis will likely be an economical approach for some time to come. This paper reviews existing datasets from the different sectors of research and integrates them for a global picture to allow both a long term understanding and facilitate comparison with future measurements.
LOSCAR: Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir Model
NASA Astrophysics Data System (ADS)
Zeebe, R. E.
2011-06-01
The LOSCAR model is designed to efficiently compute the partitioning of carbon between ocean, atmosphere, and sediments on time scales ranging from centuries to millions of years. While a variety of computationally inexpensive carbon cycle models are already available, many are missing a critical sediment component, which is indispensable for long-term integrations. One of LOSCAR's strengths is the coupling of ocean-atmosphere routines to a computationally efficient sediment module. This allows, for instance, adequate computation of CaCO3 dissolution, calcite compensation, and long-term carbon cycle fluxes, including weathering of carbonate and silicate rocks. The ocean component includes various biogeochemical tracers such as total carbon, alkalinity, phosphate, oxygen, and stable carbon isotopes. We have previously published applications of the model tackling future projections of ocean chemistry and weathering, pCO2 sensitivity to carbon cycle perturbations throughout the Cenozoic, and carbon/calcium cycling during the Paleocene-Eocene Thermal Maximum. The focus of the present contribution is the detailed description of the model including numerical architecture, processes and parameterizations, tuning, and examples of input and output. Typical CPU integration times of LOSCAR are of order seconds for several thousand model years on current standard desktop machines. The LOSCAR source code in C can be obtained from the author by sending a request to loscar.model@gmail.com.
The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Feldman, Mark
1994-01-01
Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.
Yun, Miaoying; Li, Shengxu; Sun, Dianjianyi; Ge, Shaoqing; Lai, Chin-Chih; Fernandez, Camilo; Chen, Wei; Srinivasan, Sathanur R; Berenson, Gerald S
2015-02-01
The study assessed the hypothesis that smoking strengthens the association of adult arterial stiffness with long-term cumulative burden of blood pressure (BP) from childhood to adulthood. Tobacco smoking and elevated BPs are important risk factors of vascular stiffness. However, the synergistic effect of these two risk factors is not well established, especially for the long-term burden of elevated BP since childhood. The study cohort consisted of 945 adults (661 whites and 284 blacks, aged 24-43 years) who have BP measured 4-15 times since childhood (aged 4-17 years) in Bogalusa, Louisiana. The adult arterial stiffness was measured as aorta-femoral pulse wave velocity (afPWV); the total area under the curve (AUC) and incremental AUC were used as a measure of long-term burden and trends of BP, respectively. Increased adult afPWV was significantly associated with higher adulthood (P < 0.001), total AUC (P < 0.001) and incremental AUC (P < 0.001) values of SBP and DBP, but not with childhood BP, after adjusting for age, race, sex, BMI and heart rate. Furthermore, smoking was a significant predictor of increased adult afPWV and BP levels. In the interaction analyses, the increasing trend of afPWV with increasing adult SBP (P = 0.009) and its incremental AUC (P = 0.007) were significantly greater among the current smokers than among the nonsmokers. DBP showed a similar pattern regarding the smoking-BP interaction on afPWV. These results, by showing the synergistic effect of tobacco smoking and long-term BP measures from childhood to adulthood on arterial stiffening process, underscore the importance of undertaking preventive strategies early in life and smoking behavior control.
Long-term prediction test procedure for most ICs, based on linear response theory
NASA Technical Reports Server (NTRS)
Litovchenko, V.; Ivakhnenko, I.
1991-01-01
Experimentally, thermal annealing is known to be a factor which enables a number of different integrated circuits (IC's) to recover their operating characteristics after suffering radiation damage in the space radiation environment; thus, decreasing and limiting long term cumulative total-dose effects. This annealing is also known to be accelerated at elevated temperatures both during and after irradiation. Linear response theory (LRT) was applied, and a linear response function (LRF) to predict the radiation/annealing response of sensitive parameters of IC's for long term (several months or years) exposure to the space radiation environment were constructed. Compressing the annealing process from several years in orbit to just a few hours or days in the laboratory is achieved by subjecting the IC to elevated temperatures or by increasing the typical spaceflight dose rate by several orders of magnitude for simultaneous radiation/annealing only. The accomplishments are as follows: (1) the test procedure to make predictions of the radiation response was developed; (2) the calculation of the shift in the threshold potential due to the charge distribution in the oxide was written; (3) electron tunneling processes from the bulk Si to the oxide region in an MOS IC were estimated; (4) in order to connect the experimental annealing data to the theoretical model, constants of the model of the basic annealing process were established; (5) experimental data obtained at elevated temperatures were analyzed; (6) time compression and reliability of predictions for the long term region were shown; (7) a method to compress test time and to make predictions of response for the nonlinear region was proposed; and (8) nonlinearity of the LRF with respect to log(t) was calculated theoretically from a model.
Compher, Charlene W; Kinosian, Bruce P; Stoner, Nancy E; Lentine, Deborah C; Buzby, Gordon P
2002-01-01
Choline has recently been recognized as an essential nutrient, in part based on deficiency data in long-term home total parenteral nutrition (TPN) patients. Choline, a methyl donor in the metabolism of homocysteine, is intricately related to folate status, but little is known about choline and vitamin B12 status. Long-term TPN patients are also subject to vitamin B12 deficiency. The objective of the study was to evaluate any interaction between choline, vitamin B12, and folate in patients with severe malabsorption syndromes, requiring long-term TPN. Plasma free choline, serum and red blood cell (RBC) folate, serum vitamin B12 methylmalonic acid, B6, and plasma total homocysteine concentrations were assayed by standard methods. Low choline was defined as values that fall 1 to < or =3 and marked low choline concentration as >3 SD below the control mean. Both low choline concentrations (52% were marked low, 33% low, 14% normal) and elevated methylmalonic acid concentrations (47%) were prevalent. Choline concentration was significantly lower and RBC folate higher in patients with elevated methylmalonic acid. Total homocysteine elevations were rare (3 of 21) and mild. These data suggest a strong interaction between vitamin B12 and choline deficiencies and folate status in this population, which may be due in part to variations in vitamin and choline delivery by TPN. Folate adequacy may increase B12 use for homocysteine metabolism, thus limiting B12 availability for methylmaIonic acid metabolism. Choline use may also increase, and choline deficiency may worsen if choline substitutes when the vitamin B12 side of the homocysteine metabolic pathway cannot be used.
Temporal and spatial distribution of metallic species in the upper atmosphere
NASA Astrophysics Data System (ADS)
Correira, John Thomas
2009-06-01
Every day the Earth is bombarded by approximately 100 tons of meteoric material. Much of this material is completely ablated on atmospheric entry, resulting in a layer of atomic metals in the upper atmosphere between 70 km - 150 km. These neutral atoms are ionized by solar radiation and charge exchange. Metal ions have a long lifetime against recombination loss, allowing them to be redistributed globally by electromagnetic forces, especially when lifted to altitudes >150 km. UV radiances from the Global Ozone Monitoring Experiment (GOME) spectrometer are used to determine long-term dayside variations of the total vertical column density below 795 km of the meteoric metal species Mg and Mg + in the upper atmosphere. A retrieval algorithm developed to determine magnesium column densities was applied to all available data from the years 1996-2001. Long term results show middle latitude dayside Mg + peaks in vertical content during the summer, while neutral Mg demonstrates a much more subtle maximum in summer. Atmospheric metal concentrations do not correlate strongly solar activity. An analysis of spatial variations shows geospatial distributions are patchy, with local regions of increased column density. To study short term variations and the role of meteor showers a time dependent mass flux rate is calculated using published estimates of meteor stream mass densities and activity profiles. An average daily mass flux rate is also calculated and used as a baseline against which shower mass flux rates are compared. These theoretical mass flux rates are then compared with GOME derived metal column densities. There appears to be little correlation between modeled meteor shower mass flux rates and changes in the observed neutral magnesium and Mg + metal column densities.
Accessibility issues with long-term disabilities.
Sebring-Cale, Nancy J
2008-06-01
Home modifications for barrier-free accessibility will assist the physically challenged populations by increasing their independence. By providing an accessible environment, an individual can become more independent and require less assistance for functional activities, such as kitchen appliance access, door widening, open floor plan, elevated electric outlets, roll-under sinks, roll-in showers and MobiLife elevating wheelchair.
NASA Technical Reports Server (NTRS)
Won, Young-In; Vollimer, Bruce; Theobald, Mike; Hua, Xin-Min
2008-01-01
The Atmospheric Infrared Sounder (AIRS) instrument suite is designed to observe and characterize the entire atmospheric column from the surface to the top of the atmosphere in terms of surface emissivity and temperature, atmospheric temperature and humidity profiles, cloud amount and height, and the spectral outgoing infrared radiation on a global scale. The AIRS Data Support Team at the GES DISC provides data support to assist others in understanding, retrieving and extracting information from the AIRS/AMSU/HSB data products. Because a number of years has passed since its operation started, the amount of data has reached a certain level of maturity where we can address the climate change study utilizing AIRS data, In this presentation we will list various service we provide and to demonstrate how to utilize/apply the existing service to long-term and short-term variability study.
Ramesh Murthy; Greg Barron-Gafford; Philip M. Dougherty; Victor c. Engels; Katie Grieve; Linda Handley; Christie Klimas; Mark J. Postosnaks; Stanley J. Zarnoch; Jianwei Zhang
2005-01-01
We examined the effects of atmospheric vapor pressure deficit (VPD) and soil moisture stress (SMS) on leaf- and stand-level CO2 exchange in model 3-year-old coppiced cottonwood (Populus deltoides Bartr.) plantations using the large-scale, controlled environments of the Biosphere 2 Laboratory. A short-term experiment was imposed...
Postsynaptic Regulation of Long-Term Facilitation in Aplysia
Cai, Diancai; Chen, Shanping; Glanzman, David L.
2009-01-01
Summary Repeated exposure to serotonin (5-HT), an endogenous neurotransmitter that mediates behavioral sensitization in Aplysia [1–3], induces long-term facilitation (LTF) of the Aplysia sensorimotor synapse [4]. LTF, a prominent form of invertebrate synaptic plasticity, is believed to play a major role in long-term learning in Aplysia [5]. Until now, LTF has been thought to be due predominantly to cellular processes activated by 5-HT within the presynaptic sensory neuron [6]. Recent work indicates that LTF depends on the increased expression and release of a sensory neuron-specific neuropeptide, sensorin [7]. Sensorin released during LTF appears to bind to autoreceptors on the sensory neuron, thereby activating critical presynaptic signals, including mitogen-activated protein kinase (MAPK) [8, 9]. Here, we show that LTF depends on elevated postsynaptic Ca2+ and postsynaptic protein synthesis. Furthermore, we find that the increased expression of presynaptic sensorin due to 5-HT stimulation requires elevation of postsynaptic intracellular Ca2+. Our results represent perhaps the strongest evidence to date that the increased expression of a specific presynaptic neuropeptide during LTF is regulated by retrograde signals. PMID:18571411
The Long-term Middle Atmospheric Influence of Very Large Solar Proton Events
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Marsh, Daniel R.; Vitt, Francis M.; Garcia, Rolando R.; Randall, Cora E.; Fleming, Eric L.; Frith, Stacey M.
2008-01-01
Long-term variations in ozone have been caused by both natural and humankind related processes. The humankind or anthropogenic influence on ozone originates from the chlorofluorocarbons and halons (chlorine and bromine) and has led to international regulations greatly limiting the release of these substances. Certain natural ozone influences are also important in polar regions and are caused by the impact of solar charged particles on the atmosphere. Such natural variations have been studied in order to better quantify the human influence on polar ozone. Large-scale explosions on the Sun near solar maximum lead to emissions of charged particles (mainly protons and electrons), some of which enter the Earth's magnetosphere and rain down on the polar regions. "Solar proton events" have been used to describe these phenomena since the protons associated with these solar events sometimes create a significant atmospheric disturbance. We have used the National Center for Atmospheric Research (NCAR) Whole Atmosphere Community Climate Model (WACCM) to study the long-term (> few months) influences of solar proton events from 1963 through 2004 on stratospheric ozone and temperature. There were extremely large solar proton events in 1972, 1989,2000,2001, and 2003. These events caused very distinctive polar changes in layers of the Earth's atmosphere known as the stratosphere (12-50 km; -7-30 miles) and mesosphere (50-90 km; 30-55 miles). The solar protons connected with these events created hydrogen- and nitrogen-containing compounds, which led to the polar ozone destruction. The nitrogen-containing compounds, called odd nitrogen, lasted much longer than the hydrogen-containing compounds and led to long-lived stratospheric impacts. An extremely active period for these events occurred in the five-year period, 2000- 2004, and caused increases in odd nitrogen which lasted for several months after individual events. Associated stratospheric ozone decreases of >lo% were calculated to last for up to five months past the largest events. However, the computed total column ozone and stratospheric temperature changes connected with the solar events were not found to be statistically significant. Thus, solar proton events do not likely contribute significantly to measured total column ozone fluctuations and stratospheric temperature changes.
Jessica Sherman; Ivan J. Fernandez; Stephen A. Norton; Tsutomu Ohno; Lindsey E. Rustad
2006-01-01
Atmospheric deposition of nitrogen (N) and sulfur (S) containing compounds affects soil chemistry in forested ecosystems through (1) acidification and the depletion of base cations, (2) metal mobilization, particularly aluminum (Al), and iron (Fe), (3) phosphorus (P) mobilization, and (4) N accumulation. The Bear BrookWatershed in Maine (BBWM) is a long-term paired...
NASA Astrophysics Data System (ADS)
Liang, Jianyin; Yang, Song; Li, Cunhui; Li, Xia
2007-05-01
The authors depict the long-term changes in the South China Sea (SCS) summer monsoon using observational data of the Xisha Islands. The SCS monsoon is an important component of the Asian monsoon system, and its long-term changes have seldom been explored because of the unavailability of reliable data. The daily Xisha station observations provide an important source of information for understanding the changes in the monsoon. The intensity of the SCS summer monsoon measured by kinetic energy decreased significantly from 1958-1977 to 1978-2004. This change in monsoon was mainly caused by the weakening of the meridional component of lower tropospheric winds, and the weakening in the mean flow was signaled by decreased frequency of strong southerlies (6 m s-1 and above) of the daily winds. The weakening of the monsoon was also associated with increases in sea surface temperature and surface and lower tropospheric air temperatures over SCS, which occurred more frequently when daily surface temperature reaches 29°C and higher. The long-term warming of the lower troposphere was accompanied by cooling at the upper troposphere, destabilizing the local atmosphere. However, from 1958-1977 to 1978-2004, the long-term change in Xisha precipitation tended to decrease; furthermore, in fact, the station precipitation became less variable. Thus besides local air-sea interaction, large-scale atmospheric forcing also plays an important role in causing the long-term change of the Xisha precipitation. Indeed, the warming of Xisha was linked to large-scale warming in the tropics including SCS and was associated with smaller thermal contrast between the Asian continent and the surrounding oceans, which weakened monsoon circulation.
The Tropospheric Products of the International VLBI Service for Geodesy and Astrometry
NASA Technical Reports Server (NTRS)
Heinkelmann, Robert; Schwatke, Christian
2010-01-01
The IVS runs two tropospheric products: The IVS tropospheric parameter rapid combination monitors the zenith wet delay (ZWD) and zenith total delay (ZTD) of the rapid turnaround sessions R1 and R4. Goal of the combination is the identification and the exclusion of outliers by comparison and the assessment of the precision of current VLBI solutions in terms of tropospheric parameters. The rapid combination is done on a weekly basis four weeks after the observation files are released on IVS Data Centers. Since tropospheric and geodetic parameters, such as vertical station components, can significantly correlate, the consistency of the ZTD can be a measure of the consistency of the corresponding TRF as well. The ZWD mainly rely on accurate atmospheric pressure data. Thus, besides estimation techniques, modeling and analyst s noise, ZWD reflects differences in the atmospheric pressure data applied to the VLBI analysis. The second product, called tropospheric parameter long-term combination, aims for an accurate determination of climatological signals, such as trends of the atmospheric water vapor observed by VLBI. Therefore, the long-term homogeneity of atmospheric pressure data plays a crucial role for this product. The paper reviews the methods applied and results achieved so far and describes the new maintenance through DGFI.
Bao, Zhongwen; Haberer, Christina M; Maier, Uli; Beckingham, Barbara; Amos, Richard T; Grathwohl, Peter
2016-11-01
Temperature changes can drive cycling of semi-volatile pollutants between different environmental compartments (e.g. atmosphere, soil, plants). To evaluate the impact of daily temperature changes on atmospheric concentration fluctuations we employed a physically based model coupling soil, plants and the atmosphere, which accounts for heat transport, effective gas diffusion, sorption and biodegradation in the soil as well as eddy diffusion and photochemical oxidation in the atmospheric boundary layer of varying heights. The model results suggest that temperature-driven re-volatilization and uptake in soils cannot fully explain significant diurnal concentration fluctuations of atmospheric pollutants as for example observed for polychlorinated biphenyls (PCBs). This holds even for relatively low water contents (high gas diffusivity) and high sorption capacity of the topsoil (high organic carbon content and high pollutant concentration in the topsoil). Observed concentration fluctuations, however, can be easily matched if a rapidly-exchanging environmental compartment, such as a plant layer, is introduced. At elevated temperatures, plants release organic pollutants, which are rapidly distributed in the atmosphere by eddy diffusion. For photosensitive compounds, e.g. some polycyclic aromatic hydrocarbons (PAHs), decreasing atmospheric concentrations would be expected during daytime for the bare soil scenario. This decline is buffered by a plant layer, which acts as a ground-level reservoir. The modeling results emphasize the importance of a rapidly-exchanging compartment above ground to explain short-term atmospheric concentration fluctuations. Copyright © 2016 Elsevier B.V. All rights reserved.
Mathiasen, Paula; Premoli, Andrea C
2016-06-01
Current climate change affects the competitive ability and reproductive success of many species, leading to local extinctions, adjustment to novel local conditions by phenotypic plasticity or rapid adaptation, or tracking their optima through range shifts. However, many species have limited ability to expand to suitable areas. Altitudinal gradients, with abrupt changes in abiotic conditions over short distances, represent "natural experiments" for the evaluation of ecological and evolutionary responses under scenarios of climate change. Nothofagus pumilio is the tree species which dominates as pure stands the montane forests of Patagonia. We evaluated the adaptive value of variation in quantitative traits of N. pumilio under contrasting conditions of the altitudinal gradient with a long-term reciprocal transplant experimental design. While high-elevation plants show little response in plant, leaf, and phenological traits to the experimental trials, low-elevation ones show greater plasticity in their responses to changing environments, particularly at high elevation. Our results suggest a relatively reduced potential for evolutionary adaptation of high-elevation genotypes, and a greater evolutionary potential of low-elevation ones. Under global warming scenarios of forest upslope migration, high-elevation variants may be outperformed by low-elevation ones during this process, leading to the local extinction and/or replacement of these genotypes. These results challenge previous models and predictions expected under global warming for altitudinal gradients, on which the leading edge is considered to be the upper treeline forests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jastrow, J.D.; Miller, R.M.; Owensby, C.E.
2000-01-01
We determined the effects of elevated [CO{sub 2}] on the quantity and quality of below-ground biomass and several soil organic matter pools at the conclusion of an eight-year CO{sub 2} enrichment experiment on native tallgrass prairie. Plots in open-top chambers were exposed continuously to ambient and twice-ambient [CO{sub 2}] from early April through late October of each year. Soil was sampled to a depth of 30 cm beneath and next to the crowns of C4 grasses in these plots and in unchambered plots. Elevated [CO{sub 2}] increased the standing crops of rhizomes (87%), coarse roots (46%), and fibrous roots (40%)more » but had no effect on root litter (mostly fine root fragments and sloughed cortex material >500 {mu}m). Soil C and N stocks also increased under elevated [CO{sub 2}], with accumulations in the silt/clay fraction over twice that of particulate organic matter (POM; >53 {mu}m). The mostly root-like, light POM (density {<=}1.8 Mg m{sup -3}) appeared to turn over more rapidly, while the more amorphous and rendered heavy POM (density >1.8 Mg m{sup -3}) accumulated under elevated [CO{sub 2}]. Overall, rhizome and root C:N ratios were not greatly affected by CO{sub 2} enrichment. However, elevated [CO{sub 2}] increased the C:N ratios of root litter and POM in the surface 5 cm and induced a small but significant increase in the C:N ratio of the silt/clay fraction to a depth of 15 cm. Our data suggest that 8 years of CO{sub 2} enrichment may have affected elements of the N cycle (including mineralization, immobilization, and asymbiotic fixation) but that any changes in N dynamics were insufficient to prevent significant plant growth responses.« less
Response of giant sequoia canopy foliage to elevated concentrations of atmospheric ozone
Nancy Grulke; P.R. Miller; D. Scioli
1996-01-01
We examined the physiological response of foliage in the upper third of the canopy of 125-year-old giant sequoia (Sequoiadendron giganteum Buchholz.) trees to a 61-day exposure to 0.25x, 1x, 2x or 3x ambient ozone concentration. Four branch exposure chambers, one per ozone treatment, were installed on 1-m long secondary branches of each tree at a...
False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth
NASA Astrophysics Data System (ADS)
Reinhard, Christopher T.; Olson, Stephanie L.; Schwieterman, Edward W.; Lyons, Timothy W.
2017-04-01
Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth - oxygen (O2), ozone (O3), and methane (CH4). We suggest that the canonical O2-CH4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ˜4.5-billion-year history and that in general atmospheric O2/O3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ˜500 million years. We further suggest that detecting atmospheric CH4 would have been problematic for most of the last ˜2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures.
Nutrient loading enhances methane flux in an ombrotrophic bog
NASA Astrophysics Data System (ADS)
Bubier, Jill L.; Juutinen, Sari; Moore, Tim; Arnkil, Sini; Humphreys, Elyn; Marincak, Brenden; Roy, Cameron; Larmola, Tuula
2017-04-01
Peatlands are significant sources of atmospheric methane (CH4) and emission rates may be affected by atmospheric nutrient inputs and associated changes in vegetation. In a long-term (10-15 yr) fertilization experiment at a nutrient-poor, Sphagnum moss- and dwarf shrub-dominated bog in eastern Canada, we tested the effect of ammonium nitrate (NH4NO3,0 to 6.4 g N m-2 yr-1) and potassium phosphate (KH2PO4,5 g P m-2 yr-1) on fluxes of CH4. Fluxes were measured using a closed chamber technique over the growing seasons of 2005 and 2015. The effect of long-term field treatments on aerobic consumption and anaerobic production potentials of CH4 was tested by laboratory incubations of peat samples, as well as an amendment with KH2PO4on anaerobic production potentials at the water table. Over the 10-15 yr, three levels of N plus PK addition and N-only addition of 6.4g N m-2yr-1 decreased the abundance of Sphagnum and Polytrichum mosses, increased the growth and coverage of dwarf shrubs, and caused a decline in surface elevation and thus a higher water table. Overall, CH4 flux was small, ˜ 12 mg m-2 d-1 in the control plots, primarily because of the low water table (30 to 50 cm beneath the peat surface), but flux varied as a function of water table position and treatment. KH2PO4 addition was associated with the highest fluxes: in the 5th treatment year, the PK treatment had the largest CH4 flux (˜25 mg m-2 d-1), whereas in the 15th year the 6.4NPK treatment had the largest flux (˜50 mg m-2 d-1). Rates of potential production and consumption of CH4in laboratory incubations of peat samples were associated with position relative to the water table. Anaerobic potential CH4production was largest in the PK treatment and overall was marginally increased by PK amendment; there were no clear effects of NH4NO3 on CH4 production. The major increase in CH4 flux appearing in the long term seemed to be result of the change in water table position owing to peat subsidence and loss of moss, plus potential stimulation of CH4 production by PK.
Assimilation of nontraditional datasets to improve atmospheric compensation
NASA Astrophysics Data System (ADS)
Kelly, Michael A.; Osei-Wusu, Kwame; Spisz, Thomas S.; Strong, Shadrian; Setters, Nathan; Gibson, David M.
2012-06-01
Detection and characterization of space objects require the capability to derive physical properties such as brightness temperature and reflectance. These quantities, together with trajectory and position, are often used to correlate an object from a catalogue of known characteristics. However, retrieval of these physical quantities can be hampered by the radiative obscuration of the atmosphere. Atmospheric compensation must therefore be applied to remove the radiative signature of the atmosphere from electro-optical (EO) collections and enable object characterization. The JHU/APL Atmospheric Compensation System (ACS) was designed to perform atmospheric compensation for long, slant-range paths at wavelengths from the visible to infrared. Atmospheric compensation is critically important for airand ground-based sensors collecting at low elevations near the Earth's limb. It can be demonstrated that undetected thin, sub-visual cirrus clouds in the line of sight (LOS) can significantly alter retrieved target properties (temperature, irradiance). The ACS algorithm employs non-traditional cirrus datasets and slant-range atmospheric profiles to estimate and remove atmospheric radiative effects from EO/IR collections. Results are presented for a NASA-sponsored collection in the near-IR (NIR) during hypersonic reentry of the Space Shuttle during STS-132.
Kanic, Vojko; Suran, David; Vollrath, Maja; Tapajner, Alojz; Kompara, Gregor
2017-10-01
Our aim was to assess the possible impact of a deterioration of renal function (DRF) not fulfilling the criteria for acute kidney injury after percutaneous coronary intervention (PCI) on outcome in patients with ST-elevation myocardial infarction (STEMI) on 30-day and long-term outcomes. Data is lacking on the influence of DRF after PCI on outcome in patients with STEMI. The present study is an analysis of 2572 STEMI patients who underwent PCI. The group with DRF (1022 patients) and the group without DRF (1550 patients) were compared. Thirty-day and long-term all-cause mortality were observed. Data was analyzed using descriptive statistics. Similar mortality was observed in both groups at day 30 (4.2% patients with DRF died vs 3.2% without DRF; ns) but more patients had died in the DRF group (18.9% patients with DRF vs 14.0% without DRF; P = 0.001) by the end of the observation period. After adjustments, DRF did not independently predict long-term mortality. Age more than 70 years, bleeding, hyperlipidemia, renal dysfunction on admission, anemia on admission, diabetes, PCI of LAD, the use of more than 200 mL contrast, but not DRF after PCI, were identified as independent prognostic factors for increased long-term mortality. Renal dysfunction, bleeding, contrast >200 mL, hyperlipidemia, age >70 years, anemia, and PCI LAD predicted DRF. DRF identified patients at increased risk of higher long-term mortality but was not independently associated with mortality. © 2017, Wiley Periodicals, Inc.
Bernal, S; Belillas, C; Ibáñez, J J; Àvila, A
2013-08-01
The aim of this study was to gain insights on the potential hydrological and biogeochemical mechanisms controlling the response of two nested Mediterranean catchments to long-term changes in atmospheric inorganic nitrogen and sulphate deposition. One catchment was steep and fully forested (TM9, 5.9 ha) and the other one had gentler slopes and heathlands in the upper part while side slopes were steep and forested (TM0, 205 ha). Both catchments were highly responsive to the 45% decline in sulphate concentration measured in atmospheric deposition during the 1980s and 1990s, with stream concentrations decreasing by 1.4 to 3.4 μeq L(-1) y(-1). Long-term changes in inorganic nitrogen in both, atmospheric deposition and stream water were small compared to sulphate. The quick response to changes in atmospheric inputs could be explained by the small residence time of water (4-5 months) in these catchments (inferred from chloride time series variance analysis), which was attributed to steep slopes and the role of macropore flow bypassing the soil matrix during wet periods. The estimated residence time for sulphate (1.5-3 months) was substantially lower than for chloride suggesting unaccounted sources of sulphate (i.e., dry deposition, or depletion of soil adsorbed sulphate). In both catchments, inorganic nitrogen concentration in stream water was strongly damped compared to precipitation and its residence time was of the order of decades, indicating that this essential nutrient was strongly retained in these catchments. Inorganic nitrogen concentration tended to be higher at TM0 than at TM9 which was attributed to the presence of nitrogen fixing species in the heathlands. Our results indicate that these Mediterranean catchments react rapidly to environmental changes, which make them especially vulnerable to changes in atmospheric deposition. Copyright © 2013 Elsevier B.V. All rights reserved.
Birnie-Gauvin, K; Peiman, K S; Larsen, M H; Aarestrup, K; Gilmour, K M; Cooke, S J
2018-01-01
This study demonstrates that vegetable shortening and cocoa butter are two effective vehicles for intraperitoneal cortisol implants in juvenile teleosts, specifically brown trout Salmo trutta, residing in north temperate freshwater environments. Each vehicle showed a different pattern of cortisol elevation. Vegetable shortening was found to be a more suitable vehicle for long-term cortisol elevation [elevated at 3, 6 and 9 days post treatment (dpt)], while cocoa butter may be better suited for short-term cortisol elevation (only elevated at 3 dpt). Additionally, plasma cortisol levels were higher with cortisol-vegetable shortening than with cortisol-cocoa butter implants. Plasma glucose levels were elevated 6 and 9 dpt for fishes injected with cortisol-vegetable shortening, but did not change relative to controls and shams in cortisol-cocoa butter fishes. In conclusion, vegetable shortening and cocoa butter are both viable techniques for cortisol manipulation in fishes in temperate climates, providing researchers with different options depending on study objectives. © 2017 The Fisheries Society of the British Isles.
Process connectivity reveals ecohydrologic sensitivity to drought and rainfall pulses
NASA Astrophysics Data System (ADS)
Goodwell, A. E.; Kumar, P.
2017-12-01
Ecohydrologic fluxes within atmosphere, canopy and soil systems exhibit complex and joint variability. This complexity arises from direct and indirect forcing and feedback interactions that can cause fluctuations to propagate between water, energy, and nutrient fluxes at various time scales. When an ecosystem is perturbed in the form of a single storm event, an accumulating drought, or changes in climate and land cover, this aspect of joint variability may dictate responsiveness and resilience of the entire system. A characterization of the time-dependent and multivariate connectivity between processes, fluxes, and states is necessary to identify and understand these aspects of ecohydrologic systems. We construct Temporal Information Partitioning Networks (TIPNets), based on information theory measures, to identify time-dependencies between variables measured at flux towers along elevation and climate gradients in relation to their responses to moisture-related perturbations. Along a flux tower transect in the Reynolds Creek Critical Zone Observatory (CZO) in Idaho, we detect a significant network response to a large 2015 dry season rainfall event that enhances microbial respiration and latent heat fluxes. At a transect in the Southern Sierra CZO in California, we explore network properties in relation to drought responses from 2011 to 2015. We find that both high and low elevation sites exhibit decreased connectivity between atmospheric and soil variables and latent heat fluxes, but the higher elevation site is less sensitive to this altered connectivity in terms of average monthly heat fluxes. Through a novel approach to gage the responsiveness of ecosystem fluxes to shifts in connectivity, this study aids our understanding of ecohydrologic sensitivity to short-term rainfall events and longer term droughts. This study is relevant to ecosystem resilience under a changing climate, and can lead to a greater understanding of shifting behaviors in many types of complex systems.
Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998
Wickland, K.P.; Striegl, Robert G.; Mast, M.A.; Clow, D.W.
2001-01-01
Carbon dioxide (CO2) and methane (CH4) exchange between the atmosphere and a subalpine wetland located in Rocky Mountain National Park, Colorado, at 3200 m elevation were measured during 1996-1998. Respiration, net CO2 flux, and CH4 flux were measured using the closed chamber method during snow-free periods and using gas diffusion calculations during snow-covered periods. The ranges of measured flux were 1.2-526 mmol CO2 m-2 d-1 (respiration), -1056-100 mmol CO2 m-2 d-1 (net CO2 exchange), and 0.1-36.8 mmol CH4 m-2 d-1 (a positive value represents efflux to the atmosphere). Respiration and CH4 emission were significantly correlated with 5 cm soil temperature. Annual respiration and CH4 emission were modeled by applying the flux-temperature relationships to a continuous soil temperature record during 1996-1998. Gross photosynthesis was modeled using a hyperbolic equation relating gross photosynthesis, photon flux density, and soil temperature. Modeled annual flux estimates indicate that the wetland was a net source of carbon gas to the atmosphere each of the three years: 8.9 mol C m-2 yr-1 in 1996, 9.5 mol C m-2 yr-1 in 1997, and 9.6 mol C m-2 yr-1 in 1998. This contrasts with the long-term carbon accumulation of ???0.7 mol m-2 yr-1 determined from 14C analyses of a peat core collected from the wetland.
Hepatic findings in long-term clinical trials of ximelagatran.
Lee, William M; Larrey, Dominique; Olsson, Rolf; Lewis, James H; Keisu, Marianne; Auclert, Laurent; Sheth, Sunita
2005-01-01
In clinical trials, the efficacy and safety of the oral direct thrombin inhibitor ximelagatran have been evaluated in the prevention or treatment of thromboembolic conditions known to have high morbidity and mortality. In these studies, raised aminotransferase levels were observed during long-term use (>35 days). The aim of this analysis is to review the data regarding these hepatic findings in the long-term trials of ximelagatran. The prospective analysis included 6948 patients randomised to ximelagatran and 6230 patients randomised to comparator (warfarin, low-molecular weight heparin followed by warfarin or placebo). Of these, 6931 patients received ximelagatran for a mean of 357 days and 6216 patients received comparator for a mean of 389 days. An algorithm was developed for frequent testing of hepatic enzyme levels. A panel of four hepatologists analysed all cases of potential concern with regard to causal relation to ximelagatran treatment using an established evaluation tool (Roussel Uclaf Causality Assessment Method [RUCAM]). An elevated alanine aminotransferase (ALT) level of >3 x the upper limit of normal (ULN) was found in 7.9% of patients in the ximelagatran group versus 1.2% in the comparator group. The increase in ALT level occurred 1-6 months after initiation of therapy and data were available to confirm recovery of the ALT level to <2 x ULN in 96% of patients, whether they continued to receive ximelagatran or not. There was some variability in the incidence of ALT level elevation between indications, those with simultaneous acute illnesses (acute myocardial infarction or venous thromboembolism) having higher incidences. Combined elevations of ALT level of >3 x ULN and total bilirubin level of >2 x ULN (within 1 month of the ALT elevation), regardless of aetiology, were infrequent, occurring in 37 patients (0.5%) treated with ximelagatran, of whom one sustained a severe hepatic illness that appeared to be resolving when the patient died from a gastrointestinal haemorrhage. No death was observed directly related to hepatic failure caused by ximelagatran. Treatment with ximelagatran has been associated with mainly asymptomatic elevation of ALT levels in a mean of 7.9% of patients in the long-term clinical trial programme and nearly all of the cases occurred within the first 6 months of therapy. Rare symptomatic cases have been observed. An algorithm has been developed for testing ALT to ensure appropriate management of patients with elevated ALT levels. Regular ALT testing should allow the clinical benefits of ximelagatran to reach the widest population of patients while minimising the risk of hepatic adverse effects.
Hassan, Quazi K.; Bourque, Charles P.-A.; Meng, Fan-Rui; Cox, Roger M.
2007-01-01
In this paper we develop a method to estimate land-surface water content in a mostly forest-dominated (humid) and topographically-varied region of eastern Canada. The approach is centered on a temperature-vegetation wetness index (TVWI) that uses standard 8-day MODIS-based image composites of land surface temperature (TS) and surface reflectance as primary input. In an attempt to improve estimates of TVWI in high elevation areas, terrain-induced variations in TS are removed by applying grid, digital elevation model-based calculations of vertical atmospheric pressure to calculations of surface potential temperature (θS). Here, θS corrects TS to the temperature value to what it would be at mean sea level (i.e., ∼101.3 kPa) in a neutral atmosphere. The vegetation component of the TVWI uses 8-day composites of surface reflectance in the calculation of normalized difference vegetation index (NDVI) values. TVWI and corresponding wet and dry edges are based on an interpretation of scatterplots generated by plotting θS as a function of NDVI. A comparison of spatially-averaged field measurements of volumetric soil water content (VSWC) and TVWI for the 2003-2005 period revealed that variation with time to both was similar in magnitudes. Growing season, point mean measurements of VSWC and TVWI were 31.0% and 28.8% for 2003, 28.6% and 29.4% for 2004, and 40.0% and 38.4% for 2005, respectively. An evaluation of the long-term spatial distribution of land-surface wetness generated with the new θS-NDVI function and a process-based model of soil water content showed a strong relationship (i.e., r2 = 95.7%). PMID:28903212
Chen, Zhao-Ran; Huang, Bi; Lu, Hai-Song; Zhao, Zhen-Hua; Hui, Ru-Tai; Yang, Yan-Min; Fan, Xiao-Han
2017-01-01
Inflammation has been shown to be related with acute aortic dissection (AAD). The present study aimed to evaluate the association of white blood cell counts (WBCc) on admission with both in-hospital and long-term all-cause mortality in patients with uncomplicated Stanford type B AAD. From 2008 to 2010, a total of 377 consecutive patients with uncomplicated type B AAD were enrolled and then followed up. Clinical data and WBCc on admission were collected. The primary end points were in-hospital death and long-term all-cause death. The in-hospital death rate was 4.2%, and the long-term all-cause mortality rate was 6.9% during a median follow-up of 18.9 months. WBCc on admission was identified as a risk factor for in-hospital death by univariate Cox regression analysis as both a continuous variable and a categorical variable using a cut off of 11.0 × 10 9 cell/L (all P < 0.05). After adjusting for age, sex and other risk factors, elevated admission WBCc was still a significant predictor for in-hospital death as both a continuous variable [hazard ratio (HR): 1.052, 95% CI: 1.024-1.336, P = 0.002] and a categorical variable using a cut off of 11.0 × 10 9 cell/L (HR: 2.056, 95% CI: 1.673-5.253, P = 0.034). No relationship was observed between WBCc on admission and long-term all-cause death. Our results indicate that elevated WBCc upon admission might be used as a predictor for increased risk of in-hospital death in uncomplicated type B AAD. There might be no predictive value of WBCc for the long-term survival of type B AAD.
NASA Astrophysics Data System (ADS)
Harada, M.; Ozaki, K.; Tajika, E.; Sekine, Y.
2014-12-01
Rise of atmospheric oxygen in the Paleoproterozoic has been long recognized as a unidirectional, stepwise oxidation event. However, recent geochemical studies have reported the occurrences of deep-water oxygenation and sulfate accumulation in the Paleoproterozoic oceans [e.g., 1], suggesting that the oxidation was a dynamic transition associated with an overshoot of oxygen (so called, 'the Great Oxygen Transition' or GOT) [2]. During the GOT, the oxygen levels might have achieved 0.1-1 Present Atmospheric Level (PAL) over ~108 years [2]. Such an intense long-term oxygen overshoot appears to require some specific mechanism and strong oxidative forcing as a trigger. In this study, we provide the first numerical model that is capable of explaining the dynamics of the atmospheric oxygen during the GOT. We focus on a climate jump at the end of the Paleoproterozoic snowball glaciation as a trigger, and constrain the magnitude and duration of the snowball-induced oxygenation by using a biogeochemical cycle model. The results show that super greenhouse condition after the glaciation causes an increase in nutrient input from the continent to the oceans, which lead to a high rate of organic carbon burial in the oceans. This triggers a rapid jump in oxygen levels from low (<10-5 PAL) to high (~0.01 PAL) steady states within <104 years after deglaciation. The jump in oxygen levels is followed by the massive deposition of carbonate minerals, which corresponds to the "cap-carbonates". The elevated rate of organic carbon burial is prolonged over ~106 years, which results in an overshoot of atmospheric oxygen by up to ~0.1-1 PAL. The overshoot lasts for ~107-108 years because net consumption of oxygen accumulated in the atmosphere does not proceed efficiently. Such an extensive overshoot causes the oxygenation of the deep-water, and lead to the accumulation of sulfate ions by up to 1-10 mM and the deposition of sulfate minerals in the oceans. These results are in good agreement with the geological and geochemical data in the Paleoproterozoic [2, 3], implying that the Paleoproterozoic snowball glaciation would have been a sufficiently strong forcing to trigger the GOT. [1] Canfield et al. 2013, Pros. Natl. Acad. Sci. U.S.A., 110, 16736. [2] Lyons et al. 2014, Nature, 506, 307. [3] Schröder et al. 2008, Terra Nova, 20, 108.
Damman, Peter; van Geloven, Nan; Wallentin, Lars; Lagerqvist, Bo; Fox, Keith A A; Clayton, Tim; Pocock, Stuart J; Hirsch, Alexander; Windhausen, Fons; Tijssen, Jan G P; de Winter, Robbert J
2012-02-01
This study sought to investigate long-term outcomes after early or delayed angiography in patients with non-ST-segment elevation acute coronary syndrome (nSTE-ACS) undergoing a routine invasive management. The optimal timing of angiography in patients with nSTE-ACS is currently a topic for debate. Long-term follow-up after early (within 2 days) angiography versus delayed (within 3 to 5 days) angiography was investigated in the FRISC-II (Fragmin and Fast Revascularization During Instability in Coronary Artery Disease), ICTUS (Invasive Versus Conservative Treatment in Unstable Coronary Syndromes), and RITA-3 (Intervention Versus Conservative Treatment Strategy in Patients With Unstable Angina or Non-ST Elevation Myocardial Infarction) (FIR) nSTE-ACS patient-pooled database. The main outcome was cardiovascular death or myocardial infarction up to 5-year follow-up. Hazard ratios (HR) were calculated with Cox regression models. Adjustments were made for the FIR risk score, study, and the propensity of receiving early angiography using inverse probability weighting. Of 2,721 patients originally randomized to the routine invasive arm, consisting of routine angiography and subsequent revascularization if suitable, 975 underwent early angiography and 1,141 delayed angiography. No difference was observed in 5-year cardiovascular death or myocardial infarction in unadjusted (HR: 1.06, 95% confidence interval [CI]: 0.79 to 1.42, p=0.61) and adjusted (HR: 0.93, 95% CI: 0.75 to 1.16, p=0.54) Cox regression models. In the FIR database of patients presenting with nSTE-ACS, the timing of angiography was not related to long-term cardiovascular mortality or myocardial infarction. (Invasive Versus Conservative Treatment in Unstable Coronary Syndromes [ICTUS]; ISRCTN82153174. Intervention Versus Conservative Treatment Strategy in Patients With Unstable Angina or Non-ST Elevation Myocardial Infarction [the Third Randomised Intervention Treatment of Angina Trials (RITA-3)]; ISRCTN07752711). Copyright © 2012 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gladshteyn, V. I.; Troitskiy, A. I.
2017-01-01
Research of a metal of the stop valve case (SVC) of the K-300-23.5 LMZ turbine (steel grade 15Kh1M1FL), destroyed after operation for 331000 hours, is performed. It's chemical composition and properties are determined as follows: a short-term mechanical tensile stress at 20°C and at elevated temperature, critical temperature, fragility, critical crack opening at elevated temperature, and long-term strength. Furthermore, nature of the microstructure, packing density of carbide particles and their size, and chemical composition of carbide sediment are estimated. A manifestation of metal properties for the main case components by comparison with a forecast of the respective characteristics made for the operating time of 331000 hours is tested. Property-time relationships are built for the forecast using statistical treatment of the test results for the samples cut out from more than 300 parts. Representativeness of the research results is proved: the statistical treatment of their differences are within the range of ±5%. It has been found that, after 150000 hours of operation, only the tensile strength insignificantly depends on the operating time at 20°C, whereas indicators of strength at elevated temperature significantly reduce, depending on the operating time. A brittle-to-ductile transition temperature (BDTT) raises, a critical notch opening changes in a complicated way, a long-term strength reduces. It has been found empirically that the limit of a long-term strength of the SVC metal at 540°C and the operating time of 105 hours is almost 1.6 times less than the required value in the as-delivered state. It is possible to evaluate a service life of the operating valves with the operating time of more than 330000 hours with respect to the long-term strength of the metal taking into account the actual temperature and stress. Guidelines for the control of similar parts are provided.
NASA Astrophysics Data System (ADS)
Zijuan, Zhou; Peixi, Su; Rui, Shi; Tingting, Xie
2017-04-01
Increasing temperature and carbon dioxide concentration are the important aspects of global climate change. Alpine ecosystem response to global change was more sensitive and rapid than other ecosystems. Increases in temperature and atmospheric CO2concentrations have strong impacts on plant physiology. Photosynthesis is the basis for plant growth and the decisive factor for the level of productivity, and also is a very sensitive physiological process to climate change. In this study, we examined the interactive effects of elevated temperature and atmospheric CO2 concentration on the light response of photosynthesis in two alpine plants Elymus nutans and Potentilla anserine, which were widely distributed in alpine meadow in the Zoige Plateau, China. We set up as follows: the control (Ta 20˚ C, CO2 380μmolṡmol-1), elevated temperature (Ta 25˚ C, CO2 380 μmolṡmol-1), elevated CO2 concentration (Ta 20˚ C, CO2 700μmolṡmol-1), elevated temperature and CO2 concentration (Ta 25˚ C, CO2 700μmolṡmol-1). The results showed that compared to P. anserine, E. nutans had a higher maximum net photosynthetic rate (Pnmax), light saturation point (LSP) and apparent quantum yield (AQY) in the control. Elevated temperature increased the Pnmaxand LSP values in P. anserine, while Pnmaxand LSP were decreased in E. nutans. Elevated CO2 increased the Pnmaxand LSP values in E. nutans and P. anserine, while the light compensation point (LCP) decreased; Elevated both temperature and CO2, the Pnmaxand LSP were all increased for E. nutans and P. anserine, but did not significantly affect AQY. We concluded that although elevated temperature had a photoinhibition for E. nutans, the interaction of short-term elevated CO2 concentration and temperature can improve the photosynthetic capacity of alpine plants. Key Words: elevated temperature; CO2 concentration; light response; alpine plants
Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E
2015-01-01
Acute restraint stress (ARS) for 3 h causes corticosterone (CORT) elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following 7-day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1-deficient mice. However, longer periods of daily restraint (14-21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of ARS and short-term (<7 days) CRS on the hypothalamo-pituitary-adrenal (HPA) axis, the PAC1 receptor plays a prominent role in mediating PACAP-dependent HPA axis activation, and hypophagia, during long-term (>7 days) CRS.
Linking Southwest U.S. Drought to the Hiatus in Global Warming
NASA Astrophysics Data System (ADS)
Hoerling, M. P.; Quan, X. W.; Livneh, B.
2014-12-01
Weather and climate of the new millennium has been unkind to the Southwest United States. Precipitation has been deficient, especially compared to prior decades of the late 20thCentury. Temperatures have been consistently above historical averages. And drought conditions have prevailed for a period now stretching 15 years in duration. Impacts of these dry and warm conditions have included compromised health of forests and ecosystems, more wildfires, reduced water resources most notably the declining elevations of Lake Mead and Powell and substantially diminished annual flows in the Colorado River. The question remains open concerning the extent to which this protracted drought episode is strongly a symptom of human induced climate change. While the prolonged drought, including its recent regional expression over California, has been unusually severe relative to droughts of the 20thCentury, some droughts in the paleoclimate record were more severe. To be sure, various studies have detected the consequences of warming temperatures on the hydrologic cycle over the greater western United States, but the drought's severity has principally resulted from deficient rains, the cause for which has yet to been determined. Here we present results from analysis of historical climate simulations to determine the factors contributing to a protracted reduction in Southwest regional precipitation. A parallel set of 2000 year-long equilibrium coupled ocean-atmosphere experiments, one subjected to late 19th Century radiative forcing and a second subjected to early 21st Century radiative forcing, is used to explore attributable impacts of long-term anthropogenic climate change. Historical atmospheric climate simulations are also used to address the effects of the specific observed evolution of sea surface temperatures. These are characterized by appreciable natural variations, one feature of which has been a cooling in the tropical east Pacific during the last 15 years related to the hiatus. Results are presented that demonstrate a strong link of the Southwest drought to this hiatus condition of the world oceans, and intercomparison with the equilibrium experiments permits us to disentangle that factor from impacts of long term global warming.
Sebok, Eva; Engesgaard, Peter; Duque, Carlos
2017-08-24
This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.
Carrara, Joseph E; Walter, Christopher A; Hawkins, Jennifer S; Peterjohn, William T; Averill, Colin; Brzostek, Edward R
2018-06-01
Atmospheric nitrogen (N) deposition has enhanced soil carbon (C) stocks in temperate forests. Most research has posited that these soil C gains are driven primarily by shifts in fungal community composition with elevated N leading to declines in lignin degrading Basidiomycetes. Recent research, however, suggests that plants and soil microbes are dynamically intertwined, whereby plants send C subsidies to rhizosphere microbes to enhance enzyme production and the mobilization of N. Thus, under elevated N, trees may reduce belowground C allocation leading to cascading impacts on the ability of microbes to degrade soil organic matter through a shift in microbial species and/or a change in plant-microbe interactions. The objective of this study was to determine the extent to which couplings among plant, fungal, and bacterial responses to N fertilization alter the activity of enzymes that are the primary agents of soil decomposition. We measured fungal and bacterial community composition, root-microbial interactions, and extracellular enzyme activity in the rhizosphere, bulk, and organic horizon of soils sampled from a long-term (>25 years), whole-watershed, N fertilization experiment at the Fernow Experimental Forest in West Virginia, USA. We observed significant declines in plant C investment to fine root biomass (24.7%), root morphology, and arbuscular mycorrhizal (AM) colonization (55.9%). Moreover, we found that declines in extracellular enzyme activity were significantly correlated with a shift in bacterial community composition, but not fungal community composition. This bacterial community shift was also correlated with reduced AM fungal colonization indicating that declines in plant investment belowground drive the response of bacterial community structure and function to N fertilization. Collectively, we find that enzyme activity responses to N fertilization are not solely driven by fungi, but instead reflect a whole ecosystem response, whereby declines in the strength of belowground C investment to gain N cascade through the soil environment. © 2018 John Wiley & Sons Ltd.
Shrivastava, Manish; Lou, Silja; Zelenyuk, Alla; ...
2017-01-23
Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on ecosystems and human health. Laboratory measurements show that one of the most carcinogenic PAHs, benzo(a)pyrene, which is adsorbed on surfaces of soot particles, reacts very quickly with atmospheric oxidants like ozone within ~2 hours. Yet, field observations indicate that it actually persists for much longer periods in the atmosphere, and this large discrepancy is not well understood. Driven by novel experimental understanding, we develop a new modelling approach, whereby particle-bound BaP is shielded from oxidation by a coating of viscous organic aerosol (OA). We show that application of this new approach inmore » a global climate model leads to higher atmospheric BaP concentrations that agree much better with measurements, compared to the default model, as well as stronger long-range transport and greater deposition fluxes. Here, this new approach also predicts elevated lung-cancer risk from PAHs. Predicted oxidation of BaP is highest over a tropical belt where OA is liquid-like.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shrivastava, Manish; Lou, Silja; Zelenyuk, Alla
2017-01-23
Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on ecosystems and human health. Laboratory measurements show that one of the most carcinogenic PAHs, benzo(a)pyrene, which is adsorbed on surfaces of soot particles, reacts very quickly with atmospheric oxidants like ozone within ~2 hours. Yet, field observations indicate that it actually persists for much longer periods in the atmosphere, and this large discrepancy is not well understood. Driven by novel experimental understanding, we develop a new modelling approach, whereby particle-bound BaP is shielded from oxidation by a coating of viscous organic aerosol (OA). We show that application of this new approach inmore » a global climate model leads to higher atmospheric BaP concentrations that agree much better with measurements, compared to the default model, as well as stronger long-range transport and greater deposition fluxes. This new approach also predicts elevated lung-cancer risk from PAHs. Predicted oxidation of BaP is highest over a tropical belt where OA is liquid-like.« less
Long-Term Evolution of the Sun and our Biosphere: Causes and Effects?
NASA Astrophysics Data System (ADS)
Des Marais, D. J.
2000-05-01
The course of early biological evolution felt the environmental consequences of changes in the solar output (discussed here), as well as long-term decreases in planetary heat flow and the flux of extraterrestrial impactors. A large, early UV flux fueled the photodissociation of atmospheric water vapor, sustaining a significant hydrogen flux to space. This flux caused Earth's crust to become oxidized, relative to its mantle. Accordingly, reduced gases and aqueous solutes that were erupted volcanically into the relatively more oxidized surface environment created sources of chemical redox energy for the origin and early evolution of life. Although the solar constant has increased some 30 percent over Earth's lifetime, oceans remained remarkably stable for more than 3.8 billion years. Thus a very effective climate regulation was probably achieved by decreasing over time the atmospheric inventories of greenhouse gases such as carbon dioxide and methane. Such decreases probably had major consequences for the biosphere. Substantial early marine bicarbonate and carbon dioxide inventories sustained abundant abiotic precipitation of carbonates, with consequences for the stability and habitability of key aqueous environments. A long-term decline in carbon dioxide levels increased the bioenergetic requirements for carbon dioxide as well as other aspects of the physiology of photosynthetic microorganisms. The long-term trend of global mean surface temperature is still debated, as is the role of the sun's evolution in that trend. Future increases in the solar constant will drive atmospheric carbon dioxide levels down further, challenging plants to cope with ever-dwindling concentrations of carbon substrates. Climate regulation will be achieved by modulating an increasing abundance of high-albedo water vapor clouds. Future biological evolution defies precise predictions, however it is certain that the sun's continuing evolution will play a key role.
Jupiter Climatological Database from Frequent 5-25 µm Mid-IR Spectral Mapping using IRTF/TEXES
NASA Astrophysics Data System (ADS)
Fletcher, Leigh N.; Orton, Glenn S.; Greathouse, Thomas K.; Sinclair, James; Irwin, Patrick G. J.; Giles, Rohini S.; Encrenaz, Therese; Drossart, Pierre
2015-11-01
We report on the development of a long-term Jovian Climatological Database (JCliD) to explore variability in Jupiter’s atmospheric temperatures, winds, clouds and composition- from long-term seasonal changes to short-term major upheavals. Radiometrically calibrated spectral scan maps of Jupiter have been regularly obtained using the TEXES instrument (Texas Echelon cross Echelle Spectrograph, Lacy et al. 2002, PASP 114, p153-168) between 2012 and 2015. Ten settings between 5 and 25 µm (10-20 cm-1 wide settings at spectral resolutions of 2000-10000) were selected to be sensitive to jovian temperatures (via H2, CH4 and CH3D), tropospheric phosphine and ammonia, tropospheric haze opacity and stratospheric hydrocarbons ethane and acetylene. Diffraction-limited spatial resolutions of 0.6-1.6” were achieved. Observations over consecutive nights allow the creation of full spatial maps for comparison with the visible light record, revealing ephemeral stratospheric wave activity, NEB hotspots, heating at the northern auroral oval, and complex thermal signatures associated with tropospheric vortices, waves and barges. Full spectra are inverted via the NEMESIS retrieval algorithm (Irwin et al., 2008, JSQRT 109, p1136-1150) to map temperatures at multiple altitudes (1-600 mbar), winds, aerosol opacity and gaseous composition. The spatial and spectral resolutions of the resulting maps surpass those obtained during the Cassini flyby of Jupiter in 2000, and permit temporal interpolation to understand the environmental conditions related to the emergence and evolution of discrete features. In December 2014 we find warmer temperatures in the northern stratosphere (a seasonal effect in late northern summer despite Jupiter’s small axial tilt); a hemispheric asymmetry in the tropospheric PH3 distribution due to variations in the vigour of vertical mixing and photolytic shielding; elevated PH3, aerosols and NH3 in the equatorial zone (EZ) related to equatorial uplift; elevated aerosol opacity in the northern and southern tropical zones (NTrZ and STrZ); and enhanced PH3 and aerosols over the Great Red Spot. Maps of retrieved properties will be assembled as a database (JCliD) to aid in the interpretation of Juno data during 2016-2017.
NASA Astrophysics Data System (ADS)
Farrell, E.; Lynch, K.; Wilkes Orozco, S.; Castro Camba, G.; Scullion, A.
2017-12-01
This two year field monitoring project examines the response and recovery of 1.2km of a coastal beach-dune system in the west coast of Ireland (The Maharees, Brandon Bay, Co. Kerry) to storms. The results from this project initiated a larger scale study to assess the long term evolution of Brandon Bay (12km) and patterns of meso-scale rotation. On a bay scale historic shoreline analyses were completed using historic Ordnance Survey maps, aerial photography, and DGPS surveys inputted to the Digital Shoreline Analysis System. These were coupled with a GSTA-wavemeter experiment that collected 410 sediment samples along the beach and nearshore to identify preferred sediment transport pathways along the bay. On a local scale (1.2km) geomorphological changes of the beach and nearshore were monitored using repeated monthly DGPS surveys and drone technology. Topographical data were correlated with atmospheric data obtained from a locally installed automatic weather station, oceanographic data from secondary sources, and photogrammetry using a camera installed at the site collecting pictures every 10 minutes during daylight hours. Changes in surface elevation landward of the foredune from aeolian processes were measured using five pin transects across the dune. The contribution of local blowout dynamics were measured using drone imagery and structure-from-motion technology. The results establish that the average shoreline recession along the 1.2 km site is 72 m during the past 115 years. The topographic surveys illustrate that natural beach building processes initiate system recovery post storms including elevated foreshores and backshores and nearshore sand bar migration across the entire 1.2 km stretch of coastline. In parallel with the scientific work, the local community have mobilized and are working closely with the lead scientists to implement short term coastal management strategies such as signage, information booklets, sand trap fencing, walkways, wooden revetments, dune planting in order to support the end goal of obtaining financial support from government for a larger, long term coastal protection plan.
Eurasian methoxy aromatic acid ice core record of biomass burning
NASA Astrophysics Data System (ADS)
Grieman, M. M.; Aydin, M.; Fritzsche, D.; McConnell, J. R.; Opel, T.; Sigl, M.; Saltzman, E. S.
2017-12-01
On a global basis, wildfires affect the carbon cycle, atmospheric chemistry, climate, and ecosystem dynamics. Well-dated regional proxy records can provide insight into the relationship between biomass burning and climate on millennial and centennial timescales. There is little historical information about long-term regional biomass burning variability in Siberia, the largest forested area in the Northern Hemisphere. In this study, vanillic acid and para-hydroxybenzoic acid were analyzed in the Eurasian Arctic Akademii Nauk ice core in samples covering the past 2600 years. These aromatic acids are generated during burning from the pyrolysis of lignin and transported as atmospheric aerosol. This is the first millennial-scale ice core record of these aromatic acids. Ice core meltwater samples were analyzed for vanillic acid and para-hydroxybenzoic acid using ion chromatography and electrospray tandem mass spectrometric detection. The levels of vanillic acid and para-hydroxybenzoic acid ranged from <0.05 to about 1 ppb. Three periods of strongly elevated levels were found during the preindustrial late Holocene: 650-300 BCE, 340-660 CE, and 1460-1660 CE. The most recent of these periods coincides with increased pulsing of ice-rafted debris in the North Atlantic (or Bond event) and a weakened Asian monsoon suggesting a link between Siberian burning and global patterns of climate change on centennial timescales.
Pau, Stephanie; Okamoto, Daniel K; Calderón, Osvaldo; Wright, S Joseph
2018-05-01
Mounting evidence suggests that anthropogenic global change is altering plant species composition in tropical forests. Fewer studies, however, have focused on long-term trends in reproductive activity, in part because of the lack of data from tropical sites. Here, we analyze a 28-year record of tropical flower phenology in response to anthropogenic climate and atmospheric change. We show that a multidecadal increase in flower activity is most strongly associated with rising atmospheric CO 2 concentrations using yearly aggregated data. Compared to significant climatic factors, CO 2 had on average an approximately three-, four-, or fivefold stronger effect than rainfall, solar radiation, and the Multivariate ENSO Index, respectively. Peaks in flower activity were associated with greater solar radiation and lower rainfall during El Niño years. The effect of atmospheric CO 2 on flowering has diminished over the most recent decade for lianas and canopy trees, whereas flowering of midstory trees and shrub species continued to increase with rising CO 2 . Increases in flowering were accompanied by a lengthening of flowering duration for canopy and midstory trees. Understory treelets did not show increases in flowering but did show increases in duration. Given that atmospheric CO 2 will likely continue to climb over the next century, a long-term increase in flowering activity may persist in some growth forms until checked by nutrient limitation or by climate change through rising temperatures, increasing drought frequency and/or increasing cloudiness and reduced insolation. © 2017 John Wiley & Sons Ltd.
Systematic Variations of Macrospicule Properties Observed by SDO/AIA over Half a Decade
NASA Astrophysics Data System (ADS)
Kiss, T. S.; Gyenge, N.; Erdélyi, R.
2017-01-01
Macrospicules (MSs) are localized small-scale jet-like phenomena in the solar atmosphere, which have the potential to transport a considerable amount of momentum and energy from the lower solar atmospheric regions to the transition region and the low corona. A detailed statistical analysis of their temporal behavior and spatial properties is carried out in this work. Using state-of-the-art spatial and temporal resolution observations, yielded by the Atmospheric Imaging Assembly of Solar Dynamics Observatory, we constructed a database covering a 5.5 year long period, containing 301 macrospicules that occurred between 2010 June and 2015 December, detected at 30.4 nm wavelength. Here, we report the long-term variation of the height, length, average speed, and width of MS in coronal holes and Quiet Sun areas both in the northern and southern hemisphere of the Sun. This new database helps to refine our knowledge about the physical properties of MSs. Cross-correlation of these properties shows a relatively strong correlation, but not always a dominant one. However, a more detailed analysis indicates a wave-like signature in the behavior of MS properties in time. The periods of these long-term oscillatory behaviors are just under two years. Also, in terms of solar north/south hemispheres, a strong asymmetry was found in the spatial distribution of MS properties, which may be accounted for by the solar dynamo. This latter feature may then indicate a strong and rather intrinsic link between global internal and local atmospheric phenomena in the Sun.
Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokes, G.M.; Tichler, J.L.
The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the studymore » of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.« less
Aerosol Size and Chemical Composition in the Canadian High Arctic
NASA Astrophysics Data System (ADS)
Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.
2015-12-01
Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.
Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops.
Perry, Dean M; Redman, Dylan H; Widman, James C; Meseck, Shannon; King, Andrew; Pereira, Jose J
2015-09-01
Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, populations, and effects on economies. Previous studies with marine fish have documented that exposure to elevated levels of CO2 caused increased growth and larger otoliths in some species. This study was conducted to determine whether the elevated partial pressure of CO2 (pCO2) would have an effect on growth, otolith (ear bone) condition, survival, or the skeleton of juvenile scup, Stenotomus chrysops, a species that supports both important commercial and recreational fisheries. Elevated levels of pCO2 (1200-2600 μatm) had no statistically significant effect on growth, survival, or otolith condition after 8 weeks of rearing. Field data show that in Long Island Sound, where scup spawn, in situ levels of pCO2 are already at levels ranging from 689 to 1828 μatm due to primary productivity, microbial activity, and anthropogenic inputs. These results demonstrate that ocean acidification is not likely to cause adverse effects on the growth and survivability of every species of marine fish. X-ray analysis of the fish revealed a slightly higher incidence of hyperossification in the vertebrae of a few scup from the highest treatments compared to fish from the control treatments. Our results show that juvenile scup are tolerant to increases in seawater pCO2, possibly due to conditions this species encounters in their naturally variable environment and their well-developed pH control mechanisms.
The Clean Air Status and Trends Network (CASTNET) is a long-term environmental monitoring program that measures trends in ambient air quality and atmospheric dry pollutant deposition across the United States. CASTNET has been operating since 1987 and currently consists of 89 moni...
Ultraviolet emissions from the upper atmospheres of the planets
NASA Technical Reports Server (NTRS)
Moos, H. W.
1981-01-01
Some recent results on planetary upper atmospheres obtained by means of orbiting ultraviolet observatories are reviewed with emphasis on Jupiter and Io torus. Consideration is given to long-term variation in Jovian Ly alpha emission, UV polar auroras on Jupiter, and UV emission from the Io torus. Requirements for UV planetary astronomy are briefly discussed.
Higa, Claudio Cesar; Novo, Fedor Anton; Nogues, Ignacio; Ciambrone, Maria Graciana; Donato, Maria Sol; Gambarte, Maria Jimena; Rizzo, Natalia; Catalano, Maria Paula; Korolov, Eugenio; Comignani, Pablo Dino
2016-01-01
Microalbuminuria is a known risk factor for cardiovascular morbidity and mortality suggesting that it should be a marker of endothelial dysfunction. Albumin to creatinine ratio (ACR) is an available and rapid test for microalbuminuria determination, with a high correlation with the 24-h urine collection method. There is no prospective study that evaluates the prognostic value of ACR in patients with non ST-segment elevation acute coronary syndromes (NSTE-ACS). The purpose of our study was to detect the long-term prognostic value of ACR in patients with NSTE-ACS. Albumin to creatinine ratio was estimated in 700 patients with NSTE-ACS at admission. Median follow-up time was 18 months. The best cutoff point of ACR for death or acute myocardial infarction was 20 mg/g. Twenty-two percent of patients had elevated ACR. By multivariable Cox regression analysis, ACR was an independent predictor of the clinical endpoint: odds ratio 5.8 (95% confidence interval [CI] 2-16), log-rank 2 p < 0.0001 in a model including age > 65 years, female gender, diabetes mellitus, creatinine clearance, glucose levels at admission, elevated cardiac markers (troponin T/CK-MB) and ST segment depression. The addition of ACR significantly improved GRACE score C-statistics from 0.69 (95% CI 0.59-0.83) to 0.77 (95% CI 0.65-0.88), SE 0.04, 2 p = 0.03, with a good calibration with both models. Albumin to creatinine ratio is an independent and accessible predictor of long-term adverse outcomes in NSTE-ACS, providing additional value for risk stratification.
Ruder, Avima M; Hein, Misty J; Hopf, Nancy B; Waters, Martha A
2014-03-01
The objective of this analysis was to evaluate mortality among a cohort of 24,865 capacitor-manufacturing workers exposed to polychlorinated biphenyls (PCBs) at plants in Indiana, Massachusetts, and New York and followed for mortality through 2008. Cumulative PCB exposure was estimated using plant-specific job-exposure matrices. External comparisons to US and state-specific populations used standardized mortality ratios, adjusted for gender, race, age and calendar year. Among long-term workers employed 3 months or longer, within-cohort comparisons used standardized rate ratios and multivariable Poisson regression modeling. Through 2008, more than one million person-years at risk and 8749 deaths were accrued. Among long-term employees, all-cause and all-cancer mortality were not elevated; of the a priori outcomes assessed only melanoma mortality was elevated. Mortality was elevated for some outcomes of a priori interest among subgroups of long-term workers: all cancer, intestinal cancer and amyotrophic lateral sclerosis (women); melanoma (men); melanoma and brain and nervous system cancer (Indiana plant); and melanoma and multiple myeloma (New York plant). Standardized rates of stomach and uterine cancer and multiple myeloma mortality increased with estimated cumulative PCB exposure. Poisson regression modeling showed significant associations with estimated cumulative PCB exposure for prostate and stomach cancer mortality. For other outcomes of a priori interest--rectal, liver, ovarian, breast, and thyroid cancer, non-Hodgkin lymphoma, Alzheimer disease, and Parkinson disease--neither elevated mortality nor positive associations with PCB exposure were observed. Associations between estimated cumulative PCB exposure and stomach, uterine, and prostate cancer and myeloma mortality confirmed our previous positive findings. Published by Elsevier GmbH.
Ruder, Avima M.; Hein, Misty J.; Hopf, Nancy B.; Waters, Martha A.
2015-01-01
The objective of this analysis was to evaluate mortality among a cohort of 24,865 capacitor-manufacturing workers exposed to polychlorinated biphenyls (PCBs) at plants in Indiana, Massachusetts, and New York and followed for mortality through 2008. Cumulative PCB exposure was estimated using plant-specific job-exposure matrices. External comparisons to US and state-specific populations used standardized mortality ratios, adjusted for gender, race, age and calendar year. Among long-term workers employed 3 months or longer, within-cohort comparisons used standardized rate ratios and multivariable Poisson regression modeling. Through 2008, more than one million person-years at risk and 8749 deaths were accrued. Among long-term employees, all-cause and all-cancer mortality were not elevated; of the a priori outcomes assessed only melanoma mortality was elevated. Mortality was elevated for some outcomes of a priori interest among subgroups of long-term workers: all cancer, intestinal cancer and amyotrophic lateral sclerosis (women); melanoma (men); melanoma and brain and nervous system cancer (Indiana plant); and melanoma and multiple myeloma (New York plant). Standardized rates of stomach and uterine cancer and multiple myeloma mortality increased with estimated cumulative PCB exposure. Poisson regression modeling showed significant associations with estimated cumulative PCB exposure for prostate and stomach cancer mortality. For other outcomes of a priori interest – rectal, liver, ovarian, breast, and thyroid cancer, non-Hodgkin lymphoma, Alzheimer disease, and Parkinson disease – neither elevated mortality nor positive associations with PCB exposure were observed. Associations between estimated cumulative PCB exposure and stomach, uterine, and prostate cancer and myeloma mortality confirmed our previous positive findings. PMID:23707056
NASA Astrophysics Data System (ADS)
Hubert, G.; Federico, C. A.; Pazianotto, M. T.; Gonzales, O. L.
2016-02-01
In this paper are described the ACROPOL and OPD high-altitude stations devoted to characterize the atmospheric radiation fields. The ACROPOL platform, located at the summit of the Pic du Midi in the French Pyrenees at 2885 m above sea level, exploits since May 2011 some scientific equipment, including a BSS neutron spectrometer, detectors based on semiconductor and scintillators. In the framework of a IEAv and ONERA collaboration, a second neutron spectrometer was simultaneously exploited since February 2015 at the summit of the Pico dos Dias in Brazil at 1864 m above the sea level. The both high station platforms allow for investigating the long period dynamics to analyze the spectral variation of cosmic-ray- induced neutron and effects of local and seasonal changes, but also the short term dynamics during solar flare events. This paper presents long and short-term analyses, including measurement and modeling investigations considering the both high altitude stations data. The modeling approach, based on ATMORAD computational platform, was used to link the both station measurements.
The Glyphosate-Based Herbicide Roundup Does not Elevate Genome-Wide Mutagenesis of Escherichia coli.
Tincher, Clayton; Long, Hongan; Behringer, Megan; Walker, Noah; Lynch, Michael
2017-10-05
Mutations induced by pollutants may promote pathogen evolution, for example by accelerating mutations conferring antibiotic resistance. Generally, evaluating the genome-wide mutagenic effects of long-term sublethal pollutant exposure at single-nucleotide resolution is extremely difficult. To overcome this technical barrier, we use the mutation accumulation/whole-genome sequencing (MA/WGS) method as a mutagenicity test, to quantitatively evaluate genome-wide mutagenesis of Escherichia coli after long-term exposure to a wide gradient of the glyphosate-based herbicide (GBH) Roundup Concentrate Plus. The genome-wide mutation rate decreases as GBH concentration increases, suggesting that even long-term GBH exposure does not compromise the genome stability of bacteria. Copyright © 2017 Tincher et al.
Trends in polycyclic aromatic hydrocarbon concentrations in the great lakes atmosphere.
Sun, Ping; Blanchard, Pierrette; Brice, Kenneth A; Hites, Ronald A
2006-10-15
Atmospheric polycyclic aromatic hydrocarbon (PAHs) concentrations were measured in both the vapor and particle phases at seven sites near the Great Lakes as a part of the Integrated Atmospheric Deposition Network. Lower molecular weight PAHs, including fluorene, phenanthrene, fluoranthrene, and pyrene, were dominant in the vapor phase, and higher molecular weight PAHs, including chrysene, benzo[a]pyrene, and coronene, were dominant in the particle phase. The highest PAH concentrations in both the vapor and particle phases were observed in Chicago followed by the semiurban site at Sturgeon Point, NY. The spatial difference of PAH concentrations can be explained by the local population density. Long-term decreasing trends of most PAH concentrations were observed in both the vapor and particle phases at Chicago, with half-lives ranging from 3-10 years in the vapor phase and 5-15 years in the particle phase. At Eagle Harbor, Sleeping Bear Dunes, and Sturgeon Point, total PAH concentrations in the vapor phase showed significant, but slow, long-term decreasing trends. At the Sturgeon Point site, which was impacted by a nearby city, particle-phase PAH concentrations also declined. However, most particle-phase PAH concentrations did not show significant long-term decreasing trends at the remote sites. Seasonal trends were also observed for particle-phase PAH concentrations, which were higher in the winter and lower in the summer.
NASA Astrophysics Data System (ADS)
de Wachter, E.; Haefele, A.; Kaempfer, N.; Ka, S.; Oh, J.
2009-04-01
The University of Bern operates two ground based microwave radiometers to measure the water vapour content in the stratosphere and mesosphere. One instrument is located nearby Bern [47°N, 7°E], Switzerland, and has been providing data since 2002 to the "Network for the Detection of Atmospheric Composition Change", NDACC, as well as to the European project GEOmon. The second radiometer has been operational in Seoul [37°N, 126°E], S-Korea, starting November 2006. Both instruments provide water vapour profiles in the altitude range 25 to 70 km. Long-term measurements of middle atmospheric water vapour by ground-based microwave instruments are sparse. These instruments provide long-term stability and high time resolution, so are in this sense ideal for short time-scale variability studies, monitoring long-term trends and validation of satellites. An analysis between these 2-year overlapping datasets of the European and Asian continent can provide valuable input on the distribution of wave patterns. In this study, we present the measurement characteristics of the instruments, and validate our data with water vapour profiles from the Aura/MLS instrument. In addition, we investigate correlations between these two midlatitudinal stations, gathering information on the spatial distribution of water vapour, particularly for pressures from 1 to 0.03 hPa.
NASA Astrophysics Data System (ADS)
Cleverly, James R.; Dahm, Clifford N.; Thibault, James R.; McDonnell, Dianne E.; Allred Coonrod, Julie E.
2006-10-01
During the previous decade, the south-western United States has faced declining water resources and escalating forest fires due to long-term regional drought. Competing demands for water resources require a careful accounting of the basin water budget. Water lost to the atmosphere through riparian evapotranspiration (ET) is believed to rank in the top third of water budget depletions. To better manage depletions in a large river system, patterns of riparian ET must be better understood. This paper provides a general overview of the ecological, hydrological, and atmospheric issues surrounding riparian ET in the Middle Rio Grande (MRG) of New Mexico. Long-term measurements of ET, water table depth, and micro-meteorological conditions have been made at sites dominated by native cottonwood (Populus deltoides) forests and non-native saltcedar (Tamarix chinensis) thickets along the MRG. Over periods longer than one week, groundwater and leaf area index (LAI) dynamics relate well with ET rates. Evapotranspiration from P. deltoides forests was unaffected by annual drought conditions in much of the MRG where the water table is maintained within 3 m of the surface. Evapotranspiration from a dense Tamarix chinensis thicket did not decline with increasing groundwater depth; instead, ET increased by 50%, from 6 mm/day to 9 mm/day, as the water table receded at nearly 7 cm/day. Leaf area index of the T. chinensis thicket, likewise, increased during groundwater decline. Leaf area index can be manipulated as well following removal of non-native species. When T. chinensis and non-native Russian olive (Elaeagnus angustifolia) were removed from a P. deltoides understory, water salvaged through reduced ET was 26 cm/yr in relation to ET measured at reference sites. To investigate correlates to short-term variations in ET, stepwise multiple linear regression was used to evaluate atmospheric conditions under which ET is elevated or depressed. At the P. deltoides-dominated sites, ET anomalies were positively correlated to net radiation (Rn) and negatively correlated to sensible heat flux (H), cross-corridor wind speed (v), and along-corridor wind speed (u) (r2 = 0.54). At the T. chinensis-dominated sites, ET anomalies were positively correlated with Rn, u, the friction coefficient (u*), and vapour pressure deficit (VPD) and were negatively correlated to surface humidity scale (q*), daily high and low temperature, H, and precipitation (r2 = 0.66). Both Tamarix and Populus can transpire prodigious quantities of water when conditions are favourable. In the MRG, T. chinensis is preferentially found where summer flooding and cold air drainage occurs, and P. deltoides is preferentially located in areas with shallow groundwater within 2 m of the surface.
NASA Astrophysics Data System (ADS)
Carbone, F.; Bruno, A. G.; Naccarato, A.; De Simone, F.; Gencarelli, C. N.; Sprovieri, F.; Hedgecock, I. M.; Landis, M. S.; Skov, H.; Pfaffhuber, K. A.; Read, K. A.; Martin, L.; Angot, H.; Dommergue, A.; Magand, O.; Pirrone, N.
2018-01-01
The probability density function (PDF) of the time intervals between subsequent extreme events in atmospheric Hg0 concentration data series from different latitudes has been investigated. The Hg0 dynamic possesses a long-term memory autocorrelation function. Above a fixed threshold Q in the data, the PDFs of the interoccurrence time of the Hg0 data are well described by a Tsallis q-exponential function. This PDF behavior has been explained in the framework of superstatistics, where the competition between multiple mesoscopic processes affects the macroscopic dynamics. An extensive parameter μ, encompassing all possible fluctuations related to mesoscopic phenomena, has been identified. It follows a χ2 distribution, indicative of the superstatistical nature of the overall process. Shuffling the data series destroys the long-term memory, the distributions become independent of Q, and the PDFs collapse on to the same exponential distribution. The possible central role of atmospheric turbulence on extreme events in the Hg0 data is highlighted.
Long-Term Biological Consequences of Nuclear War.
ERIC Educational Resources Information Center
Ehrlich, Paul R.; And Others
1983-01-01
Presents evidence suggesting that the longer-term biological effects resulting from climactic changes may be at least as serious as the immediate ones. Primarily considers results of a nuclear war in which sufficient dust/soot are injected into the atmosphere to attenuate most incident solar radiation. (JN)
SPATIO-TEMPORAL MODELING OF FINE PARTICULATE MATTER
Studies indicate that even short-term exposure to high concentrations of fine atmospheric particulate matter (PM2.5) can lead to long-term health effects. In this paper, we propose a random effects model for PM2.5 concentrations. In particular, we anticipa...
Atmospheric effects on the underground muon intensity
NASA Technical Reports Server (NTRS)
Fenton, A. G.; Fenton, K. B.; Humble, J. E.; Hyland, G. B.
1985-01-01
It has previously been reported that the barometric pressure coefficient observed for muons at Poatina (vertical absorber depth 357 hg/sq cm) appears to be appreciably higher than would be expected from atmospheric absorption alone. There is a possibility that the effect is due to an upper atmospheric temperature effect arising from an inverse correlation of surface pressure with stratospheric temperature. A new proportional telescope is discussed which has been operating at Poatina since about the beginning of 83 and which has a long term stability suitable for studying variations of atmospheric origin.
NASA Astrophysics Data System (ADS)
Montmessin, F.; Lefèvre, F.; Korablev, O.; Fedorova, A.; Bertaux, J.-L.; Chaufray, J.-Y.; Chaffin, M.; Schneider, N.; Maltagliati, L.; Määttänen, A.; Trokhimovsky, A.
2014-07-01
We present a synthesis of the decade-long Mars Express SPICAM observations in an attempt to assemble a single, coherent picture that has implications for the long-term evolution of water and hydrogen on Mars.
Long-Term Periodicity of the Mars Exospheric Density from MRO and Mars Odyssey Radio Tracking Data
NASA Astrophysics Data System (ADS)
Genova, A.; Goossens, S. J.; Lemoine, F. G.; Mazarico, E.; Smith, D. E.; Zuber, M. T.
2014-12-01
The Mars Odyssey and Mars Reconnaissance Orbiter (MRO) missions have collected more than 11 years of continuous tracking data of spacecraft in orbit around Mars. The radio science data are generally used to determine the static and seasonal gravity field of the central body. However, these two spacecraft are in different sun-synchronous orbits that cover a wide range of altitudes (250-410 km) where investigation of the atmosphere and climate of Mars so far have not been supported by in situ and remote sensing measurements. The drag perturbation acting on the probes provides indirect measurements of the Martian atmospheric density. Therefore, we focused our work on the determination of the long-term periodicity of the atmospheric constituents in the Mars exosphere with Mars Odyssey and MRO radio tracking data. We implemented the Drag Temperature Model (DTM) -Mars model into our Precise Orbit Determination (POD) program GEODYN-II to adequately reproduce variations in temperature and (partial) density along ODY and MRO trajectories. The recovery of Mars' atmospheric dynamics using Doppler tracking data requires the accurate modeling of all forces acting on the spacecraft. The main non-conservative force, apart from drag, is solar radiation pressure. Spacecraft panel reflectivities and the radiation pressure-scaling factor are not estimated, but we adjusted empirical once-per-revolution along-track periodic accelerations (cosine and sine) over each orbital arc to mitigate solar radiation pressure mismodeling. After converging the orbital data arcs, and editing out all the data during superior conjunctions, we combined the MRO and Mars Odyssey arcs in a global solution where we estimated spacecraft initial states, time-correlated drag scale factors, and annual and semi-annual variability of the major constituents in the Mars upper atmosphere. We will show that the updated DTM-Mars model provides a better prediction of the long-term variability of the dominant species, which are CO2, O, and He at the MRO and ODY orbit altitudes. The indirect measurements of atmospheric density profiles at those altitudes provide additional information to improve general circulation models, which already suitably represent lower altitudes in the atmosphere.
Bing, Haijian; Wu, Yanhong; Zhou, Jun; Li, Rui; Luo, Ji; Yu, Dong
2016-01-01
Trace metals adsorbed onto fine particles can be transported long distances and ultimately deposited in Polar Regions via the cold condensation effect. This study indicated the possible sources of silver (Ag), cadmium (Cd), copper (Cu), lead (Pb), antimony (Sb) and zinc (Zn) in soils on the eastern slope of Mt. Gongga, eastern Tibetan Plateau, and deciphered the effects of vegetation and mountain cold condensation on their distributions with elevation. The metal concentrations in the soils were comparable to other mountains worldwide except the remarkably high concentrations of Cd. Trace metals with high enrichment in the soils were influenced from anthropogenic contributions. Spatially, the concentrations of Cu and Zn in the surface horizons decreased from 2000 to 3700 m a.s.l., and then increased with elevation, whereas other metals were notably enriched in the mid-elevation area (approximately 3000 m a.s.l.). After normalization for soil organic carbon, high concentrations of Cd, Pb, Sb and Zn were observed above the timberline. Our results indicated the importance of vegetation in trace metal accumulation in an alpine ecosystem and highlighted the mountain cold trapping effect on trace metal deposition sourced from long-range atmospheric transport. PMID:27052807
Tidal dynamics and mangrove carbon sequestration during the Oligo–Miocene in the South China Sea
Collins, Daniel S.; Avdis, Alexandros; Allison, Peter A.; Johnson, Howard D.; Hill, Jon; Piggott, Matthew D.; Hassan, Meor H. Amir; Damit, Abdul Razak
2017-01-01
Modern mangroves are among the most carbon-rich biomes on Earth, but their long-term (≥106 years) impact on the global carbon cycle is unknown. The extent, productivity and preservation of mangroves are controlled by the interplay of tectonics, global sea level and sedimentation, including tide, wave and fluvial processes. The impact of these processes on mangrove-bearing successions in the Oligo–Miocene of the South China Sea (SCS) is evaluated herein. Palaeogeographic reconstructions, palaeotidal modelling and facies analysis suggest that elevated tidal range and bed shear stress optimized mangrove development along tide-influenced tropical coastlines. Preservation of mangrove organic carbon (OC) was promoted by high tectonic subsidence and fluvial sediment supply. Lithospheric storage of OC in peripheral SCS basins potentially exceeded 4,000 Gt (equivalent to 2,000 p.p.m. of atmospheric CO2). These results highlight the crucial impact of tectonic and oceanographic processes on mangrove OC sequestration within the global carbon cycle on geological timescales. PMID:28643789
Nanophase-separated Ni3Nb as an automobile exhaust catalyst.
Tanabe, Toyokazu; Imai, Tsubasa; Tokunaga, Tomoharu; Arai, Shigeo; Yamamoto, Yuta; Ueda, Shigenori; Ramesh, Gubbala V; Nagao, Satoshi; Hirata, Hirohito; Matsumoto, Shin-Ichi; Fujita, Takeshi; Abe, Hideki
2017-05-01
Catalytic remediation of automobile exhaust has relied on precious metals (PMs) including platinum (Pt). Herein, we report that an intermetallic phase of Ni and niobium (Nb) ( i.e. , Ni 3 Nb) exhibits a significantly higher activity than that of Pt for the remediation of the most toxic gas in exhaust ( i.e. , nitrogen monoxide (NO)) in the presence of carbon monoxide (CO). When subjected to the exhaust-remediation atmosphere, Ni 3 Nb spontaneously evolves into a catalytically active nanophase-separated structure consisting of filamentous Ni networks (thickness < 10 nm) that are incorporated in a niobium oxide matrix ( i.e. , NbO x ( x < 5/2)). The exposure of the filamentous Ni promotes NO dissociation, CO oxidation and N 2 generation, and the NbO x matrix absorbs excessive nitrogen adatoms to retain the active Ni 0 sites at the metal/oxide interface. Furthermore, the NbO x matrix immobilizes the filamentous Ni at elevated temperatures to produce long-term and stable catalytic performance over hundreds of hours.
Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes
NASA Astrophysics Data System (ADS)
Scott, Russell L.; Biederman, Joel A.
2017-07-01
The separate components of evapotranspiration (ET) elucidate the pathways and time scales over which water is returned to the atmosphere, but ecosystem-scale measurements of transpiration (
NASA Technical Reports Server (NTRS)
Dreschel, Thomas W.; Madsen, Brooks C.; Maull, Lee A.; Hinkle, C. R.; Knott, William M., III
1990-01-01
Rain volume and chemistry monitoring as part of the Kennedy Space Center Long Term Environmental Monitoring Program included the years 1984-1987 as part of the National Atmospheric Deposition Program. Atmospheric deposition in rainfall consisted primarily of sea salt and hydrogen ion, sulfate, nitrate, and ammonium ions. The deposition of nitrogen (a principal plant nutrient) was on the order of 200-300 metric tons per year to the surface waters.
Nanus, Leora; Campbell, Donald H.; Williams, Mark W.
2005-01-01
The sensitivity of 400 lakes in Grand Teton and Yellowstone National Parks to acidification from atmospheric deposition of nitrogen and sulfur was estimated based on statistical relations between acid-neutralizing capacity concentrations and basin characteristics to aid in the design of a long-term monitoring plan for Outstanding Natural Resource Waters. Acid-neutralizing capacity concentrations that were measured at 52 lakes in Grand Teton and 23 lakes in Yellowstone during synoptic surveys were used to calibrate the statistical models. Three acid-neutralizing capacity concentration bins (bins) were selected that are within the U.S. Environmental Protection Agency criteria of sensitive to acidification; less than 50 microequivalents per liter (?eq/L) (0-50), less than 100 ?eq/L (0-100), and less than 200 ?eq/L (0-200). The development of discrete bins enables resource managers to have the ability to change criteria based on the focus of their study. Basin-characteristic information was derived from Geographic Information System data sets. The explanatory variables that were considered included bedrock type, basin slope, basin aspect, basin elevation, lake area, basin area, inorganic nitrogen deposition, sulfate deposition, hydrogen ion deposition, basin precipitation, soil type, and vegetation type. A logistic regression model was developed and applied to lake basins greater than 1 hectare in Grand Teton (n = 106) and Yellowstone (n = 294). A higher percentage of lakes in Grand Teton than in Yellowstone were predicted to be sensitive to atmospheric deposition in all three bins. For Grand Teton, 7 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-50 bin, 36 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-100 bin, and 59 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-200 bin. The elevation of the lake outlet and the area of the basin with northeast aspects were determined to be statistically significant and were used as the explanatory variables in the multivariate logistic regression model for the 0-100 bin. For Yellowstone, results indicated that 13 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-100 bin, and 27 percent of lakes had a greater than 60-percent probability of having acid-neutralizing capacity concentrations in the 0-200 bin. Only the elevation of the lake outlet was determined to be statistically significant and was used as the explanatory variable for the 0-100 bin. The lakes that exceeded 60-percent probability of having an acid-neutralizing capacity concentration in the 0-100 bin, and therefore had the greatest sensitivity to acidification from atmospheric deposition, are located at elevations greater than 2,790 meters in Grand Teton, and greater than 2,590 meters in Yellowstone.
NASA Astrophysics Data System (ADS)
Rhodes, Rachael H.; Faïn, Xavier; Stowasser, Christopher; Blunier, Thomas; Chappellaz, Jérôme; McConnell, Joseph R.; Romanini, Daniele; Mitchell, Logan E.; Brook, Edward J.
2013-04-01
Ancient air trapped inside bubbles in ice cores can now be analysed for methane concentration utilising a laser spectrometer coupled to a continuous melter system. We present a new ultra-high resolution record of atmospheric methane variability over the last 1800 yr obtained from continuous analysis of a shallow ice core from the North Greenland Eemian project (NEEM-2011-S1) during a 4-week laboratory-based measurement campaign. Our record faithfully replicates the form and amplitudes of multi-decadal oscillations previously observed in other ice cores and demonstrates the detailed depth resolution (5.3 cm), rapid acquisition time (30 m day-1) and good long-term reproducibility (2.6%, 2σ) of the continuous measurement technique. In addition, we report the detection of high frequency ice core methane signals of non-atmospheric origin. Firstly, measurements of air from the firn-ice transition region and an interval of ice core dating from 1546-1560 AD (gas age) resolve apparently quasi-annual scale methane oscillations. Traditional gas chromatography measurements on discrete ice samples confirm these signals and indicate peak-to-peak amplitudes of ca. 22 parts per billion (ppb). We hypothesise that these oscillations result from staggered bubble close-off between seasonal layers of contrasting density during time periods of sustained multi-year atmospheric methane change. Secondly, we report the detection of abrupt (20-100 cm depth interval), high amplitude (35-80 ppb excess) methane spikes in the NEEM ice that are reproduced by discrete measurements. We show for the first time that methane spikes present in thin and infrequent layers in polar, glacial ice are accompanied by elevated concentrations of carbon- and nitrogen-based chemical impurities, and suggest that biological in-situ production may be responsible.
Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle
NASA Astrophysics Data System (ADS)
McNeil, B.
2016-02-01
Elevated carbon dioxide concentrations in seawater (hypercapnia) can induce neurological, physiological and behavioural deficiencies in marine animals. Prediction of the onset and evolution of hypercapnia in the ocean requires a good understanding of annual oceanic carbon dioxide variability, but relevant global observational data are sparse. Here we diagnose global ocean patterns of monthly carbon variability based on observations that allow us to examine the evolution of surface ocean CO2 levels over the entire annual cycle under increasing atmospheric CO2 concentrations. We find that some oceanic regions undergo an up to 10-fold amplification of the natural cycle of CO2 by 2100, if atmospheric carbon dioxide concentrations continue to rise throughout this century (RCP8.5). Projections from a suite of Earth System Climate Models are broadly consistent with the findings from our data based approach. Our predicted amplification in the annual CO2 cycle displays distinct global patterns that may expose major fisheries in the Southern, Pacific and North Atlantic Oceans to high CO2 events many decades earlier than expected from average atmospheric CO2 concentrations. We suggest that these ocean 'CO2 hotspots' evolve as a combination of the strong seasonal dynamics of CO2 and the long-term effective storage of anthropogenic CO2 that lowers the buffer capacity in those regions, causing a non-linear CO2 amplification over the annual cycle. The onset of ocean hypercapnia events (pCO2 >1000 µatm) is forecast for atmospheric CO2 concentrations that exceed 650 ppm, with hypercapnia spreading to up to one half of the surface ocean by the year 2100 under a high-emissions scenario (RCP8.5) with potential implications for fisheries over the coming century.
Arnone, J A; Zaller, J G; Körner, Ch; Ziegler, C; Zandt, H
1995-09-01
Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO 2 . Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO 2 -induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 μl CO 2 l -1 or to 610 μl CO 2 l -1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO 2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO 2 . Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO 2 under relatively low nutrient conditions. Hence, the potential importance of CO 2 -induced shifts in leaf nutritional quality, as determinants of herbivory, may be overestimated for many plant communities growing on nutrient-poor sites if estimates are based on traditional laboratory feeding studies. Finally, slight shifts in the abundance of leaf tissue of various species occurring under elevated CO 2 will probably not significantly affect herbivory by generalist insects. However, generalist insect herbivores appear to become more dependent on less-preferred plant species in cases where elevated CO 2 results in reduced availability of leaves of a favoured plant species, and this greater dependency may eventually affect insect populations adversely.
Comparison of long-term trends from reanalyses
NASA Astrophysics Data System (ADS)
Kozubek, M.
2017-12-01
The long-term trend of different atmospheric parameters has been studied separately during previous years in many papers. This study is focused on the temperature, wind (u and v component), geopotential height and water vapour trends during 1979-2016. We present the trend for each month with respect to ozone turnaround during mid 1990s. The different reanalyses (MERRA, ERA-Interim, JRA-55 and NCEP-NOE) are used for comparison. We analyzed every grid point to reduce the problem with zonal averages in different pressure levels. The results will show the complex view on the trend in the middle atmosphere (troposphere, stratosphere and lower mesosphere). This comparison can give us the clue which reanalysis is better for studying different phenomena (QBO, NAO, ENSO, etc.) and which one has some issues.
Ray W. Brown; Michael C. Amacher; Walter F. Mueggler; Janice Kotuby-Amacher
2003-01-01
Methods for restoring native plant communities on acidic mine spoils at high elevations were evaluated in a "demonstration area" in the New World Mining District of southern Montana. Research plots installed in 1976 were assessed for 22 years and compared with adjacent native reference plant communities. A 1.5-acre (0.61-ha) area of mine spoils was shaped and...
Barbara J. Bentz; Sharon A. Hood; Matt Hansen; Jim Vandygriff; Karen E. Mock
2016-01-01
Mountain pine beetle (MPB, Dendroctonus ponderosae) is a significant mortality agent of Pinus, and climate-driven range expansion is occurring. Pinus defenses in recently invaded areas, including high elevations, are predicted to be lower than in areas with longer term MPB presence. MPB was recently observed in high-elevation forests of the Great Basin (GB)...
S.M. Jepsen; T.C. Harmon; M.W. Meadows; C.T. Hunsaker
2016-01-01
The role of hydrogeology in mediating long-term changes in mountain streamflow, resulting from reduced snowfall in a potentially warmer climate, is currently not well understood. We explore this by simulating changes in stream discharge and evapotranspiration from a mid-elevation, 1-km2 catchment in the southern Sierra Nevada of California (USA)...
NASA Astrophysics Data System (ADS)
Mackay, D. S.
2001-05-01
Recent efforts to measure and model the interacting influences of climate, soil, and vegetation on soil water and nutrient dynamics have identified numerous important feedbacks that produce nonlinear responses. In particular, plant physiological factors that control rates of transpiration respond to soil water deficits and vapor pressure deficits (VPD) in the short-term, and to climate, nutrient cycling and disturbance in the long-term. The starting point of this presentation is the observation that in many systems, in particular forest ecosystems, conservative water use emerges as a result of short-term closure of stomata in response to high evaporative demand, and long-term vegetative canopy development under nutrient limiting conditions. Evidence for important short-term controls is presented from sap flux measurements of stand transpiration, remote sensing, and modeling of transpiration through a combination of physically-based modeling and Monte Carlo analysis. A common result is a strong association between stomatal conductance (gs) and the negative evaporative gain (∂ gs/∂ VPD) associated with the sensitivity of stomatal closure to rates of water loss. The importance of this association from the standpoint of modeling transpiration depends on the degree of canopy-atmosphere coupling. This suggests possible simplifications to future canopy component models for use in watershed and larger-scale hydrologic models for short-term processes. However, further results are presented from theoretical modeling, which suggest that feedbacks between hydrology and vegetation in current long-term (inter-annual to century) models may be too simple, as they do not capture the spatially variable nature of slow nutrient cycling in response to soil water dynamics and site history. Memory effects in the soil nutrient pools can leave lasting effects on more rapid processes associated with soil, vegetation, atmosphere coupling.
NASA Astrophysics Data System (ADS)
Moser, Gerald; Brenzinger, Kristof; Gorenflo, Andre; Clough, Tim; Braker, Gesche; Müller, Christoph
2017-04-01
To reduce the emissions of greenhouse gases (CO2, CH4 & N2O) it is important to quantify main sources and identify the respective ecosystem processes. While the main sources of N2O emissions in agro-ecosystems under current conditions are well known, the influence of a projected higher level of CO2 on the main ecosystem processes responsible for N2O emissions has not been investigated in detail. A major result of the Giessen FACE in a managed temperate grassland was that a +20% CO2 level caused a positive feedback due to increased emissions of N2O to 221% related to control condition. To be able to trace the sources of additional N2O emissions a 15N tracing study was conducted. We measured the N2O emission and its 15N signature, together with the 15N signature of soil and plant samples. The results were analyzed using a 15N tracing model which quantified the main changes in N transformation rates under elevated CO2. Directly after 15N fertilizer application a much higher dynamic of N transformations was observed than in the long run. Absolute mineralisation and DNRA rates were lower under elevated CO2 in the short term but higher in the long term. During the one year study period beginning with the 15N labelling a 1.8-fold increase of N2O emissions occurred under elevated CO2. The source of increased N2O was associated with NO3- in the first weeks after 15N application. Elevated CO2 affected denitrification rates, which resulted in increased N2O emissions due to a change of gene transcription rates (nosZ/(nirK+nirS)) and resulting enzyme activity (see: Brenzinger et al.). Here we show that the reported enhanced N2O emissions for the first 8 FACE years do prevail even in the long-term (> 15 years). The effect of elevated CO2 on N2O production/emission can be explained by altered activity ratios within a stable microbial community.
Hines, Jes; Eisenhauer, Nico; Drake, Bert G
2015-12-01
Elevated atmospheric CO2 generally enhances plant growth, but the magnitude of the effects depend, in part, on nutrient availability and plant photosynthetic pathway. Due to their pivotal role in nutrient cycling, changes in abundance of detritivores could influence the effects of elevated atmospheric CO2 on essential ecosystem processes, such as decomposition and primary production. We conducted a field survey and a microcosm experiment to test the influence of changes in detritus-based food chains on litter mass loss and plant growth response to elevated atmospheric CO2 using two wetland plants: a C3 sedge (Scirpus olneyi) and a C4 grass (Spartina patens). Our field study revealed that organism's sensitivity to climate increased with trophic level resulting in strong inter-annual variation in detritus-based food chain length. Our microcosm experiment demonstrated that increased detritivore abundance could not only enhance decomposition rates, but also enhance plant growth of S. olneyi in elevated atmospheric CO2 conditions. In contrast, we found no evidence that changes in the detritus-based food chains influenced the growth of S. patens. Considered together, these results emphasize the importance of approaches that unite traditionally subdivided food web compartments and plant physiological processes to understand inter-annual variation in plant production response to elevated atmospheric CO2. © 2015 John Wiley & Sons Ltd.
Relating GRACE terrestrial water storage variations to global fields of atmospheric forcing
NASA Astrophysics Data System (ADS)
Humphrey, Vincent; Gudmundsson, Lukas; Isabelle Seneviratne, Sonia
2015-04-01
Synoptic, seasonal and inter-annual fluctuations in atmospheric dynamics all influence terrestrial water storage, with impacts on ecosystems functions, human activities and land-climate interactions. Here we explore to which degree atmospheric variables can explain GRACE estimates of terrestrial water storage on different time scales. Since 2012, the most recent GRACE gravity field solutions (Release 05) can be used to monitor global changes in terrestrial water storage with an unprecedented level of accuracy over more than a decade. In addition, the release of associated gridded and post-processed products facilitates comparisons with other global datasets such as land surface model outputs or satellite observations. We investigate how decadal trends, inter-annual fluctuations as well as monthly anomalies of the seasonal cycle of terrestrial water storage can be related to fields of atmospheric forcing, including e.g. precipitation and temperature as estimated in global reanalysis products using statistical techniques. In the majority of the locations with high signal to noise ratio, both short and long-term fluctuations of total terrestrial water storage can be reconstructed to a large degree based on available atmospheric forcing. However, in some locations atmospheric forcing alone is not sufficient to explain the total change in water storage, suggesting strong influence of other processes. Within that framework, the question of an amplification or attenuation of atmospheric forcing through land-surface feedbacks and changes in long term water storage is discussed, also with respect to uncertainties and potential systematic biases in the results.
Periphyton response to long-term nutrient enrichment in a shaded headwater stream
Jennifer L. Greenwood; Amy D. Rosemond
2009-01-01
We maintained elevated but moderate concentrations of nitrogen and phosphorus continuously for 2 years in a heavily shaded headwater stream and compared effects on stream periphyton with a reference...
Atmospheric Science Data Center
2014-05-15
... Terrain Elevation Model from the United States Geological Survey. Among the prominent features are the snow-capped Rocky Mountains ... is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, ...
Low latitude ice core evidence for dust deposition on high altitude glaciers
NASA Astrophysics Data System (ADS)
Gabrielli, P.; Thompson, L. G.
2017-12-01
Polar ice cores from Antarctica and Greenland have provided a wealth of information on dust emission, transport and deposition over glacial to interglacial timescales. These ice cores mainly entrap dust transported long distances from source areas such as Asia for Greenland and South America for Antarctica. Thus, these dust records provide paleo-information about the environmental conditions at the source and the strength/pathways of atmospheric circulation at continental scales. Ice cores have also been extracted from high altitude glaciers in the mid- and low-latitudes and provide dust records generally extending back several centuries and in a few cases back to the last glacial period. For these glaciers the potential sources of dust emission include areas that are close or adjacent to the drilling site which facilitates the potential for a strong imprinting of local dust in the records. In addition, only a few high altitude glaciers allow the reconstruction of past snow accumulation and hence the expression of the dust records in terms of fluxes. Due to their extreme elevation, a few of these high altitude ice cores offer dust histories with the potential to record environmental conditions at remote sources. Dust records (in terms of dust concentration/size, crustal trace elements and terrigenous cations) from Africa, the European Alps, South America and the Himalayas are examined over the last millennium. The interplay of the seasonal atmospheric circulation (e.g. westerlies, monsoons and vertical convection) is shown to play a major role in determining the intensity and origin of dust fallout to the high altitude glaciers around the world.
Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone
Kurt Pregitzer; Wendy Loya; Mark Kubiske; Donald Zak
2006-01-01
The aspen free-air CO2 and O3 enrichment (FACTS II-FACE) study in Rhinelander, Wisconsin, USA, is designed to understand the mechanisms by which young northern deciduous forest ecosystems respond to elevated atmospheric carbon dioxide (CO2) and elevated tropospheric ozone (O3)...
NASA Technical Reports Server (NTRS)
Fung, Inez Y.; Tucker, C. J.; Prentice, Katharine C.
1985-01-01
The 'normalized difference vegetation indices' (NVI) derived from AVHRR radiances are combined with field data of soil respiration and a global map of net primary productivity to prescribe, for the globe, the seasonal exchange of CO2 between the atmosphere and the terrestrial biosphere. The monthly fluxes of CO2 thus obtained are used as inputs to a 3-D tracer transport model which uses winds generated by a 3-D atmospheric general circulation model to advect CO2 as an inert constituent. Analysis of the 3-D model results shows reasonable agreement between the simulated and observed annual cycles of atmospheric CO2 at the locations of the remote monitoring stations. The application is shown of atmospheric CO2 distributions to calibrate the NVI in terms of carbon fluxes. The approach suggests that the NVI may be used to provide quantitative information about long term and global scale variations of photosynthetic activity and of atmospheric CO2 concentrations provided that variations in the atmospheric circulation and in atmospheric composition are known.
False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth.
Reinhard, Christopher T; Olson, Stephanie L; Schwieterman, Edward W; Lyons, Timothy W
2017-04-01
Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth-oxygen (O 2 ), ozone (O 3 ), and methane (CH 4 ). We suggest that the canonical O 2 -CH 4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O 2 /O 3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH 4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures-Oxygen-Methane-Ozone-Exoplanets-Planetary habitability. Astrobiology 17, 287-297.
False Negatives for Remote Life Detection on Ocean-Bearing Planets: Lessons from the Early Earth
Olson, Stephanie L.; Schwieterman, Edward W.; Lyons, Timothy W.
2017-01-01
Abstract Ocean-atmosphere chemistry on Earth has undergone dramatic evolutionary changes throughout its long history, with potentially significant ramifications for the emergence and long-term stability of atmospheric biosignatures. Though a great deal of work has centered on refining our understanding of false positives for remote life detection, much less attention has been paid to the possibility of false negatives, that is, cryptic biospheres that are widespread and active on a planet's surface but are ultimately undetectable or difficult to detect in the composition of a planet's atmosphere. Here, we summarize recent developments from geochemical proxy records and Earth system models that provide insight into the long-term evolution of the most readily detectable potential biosignature gases on Earth—oxygen (O2), ozone (O3), and methane (CH4). We suggest that the canonical O2-CH4 disequilibrium biosignature would perhaps have been challenging to detect remotely during Earth's ∼4.5-billion-year history and that in general atmospheric O2/O3 levels have been a poor proxy for the presence of Earth's biosphere for all but the last ∼500 million years. We further suggest that detecting atmospheric CH4 would have been problematic for most of the last ∼2.5 billion years of Earth's history. More broadly, we stress that internal oceanic recycling of biosignature gases will often render surface biospheres on ocean-bearing silicate worlds cryptic, with the implication that the planets most conducive to the development and maintenance of a pervasive biosphere will often be challenging to characterize via conventional atmospheric biosignatures. Key Words: Biosignatures—Oxygen—Methane—Ozone—Exoplanets—Planetary habitability. Astrobiology 17, 287–297. PMID:28418704
Auroral effects in the D region of the ionosphere. [solar and corpuscular radiation
NASA Technical Reports Server (NTRS)
Akasofu, S. I.
1975-01-01
The possible effects are discussed of radiations and corpuscles on relatively short-term changes in the circulation of the atmosphere (the development of cellular patterns in the zonal westerly flow, leading to the formation of cyclones) and relatively long-term changes in climate.
Thermal adaptation of heterotrophic soil respiration in laboratory microcosms.
Mark A. Bradford; Brian W. Watts; Christian A. Davies
2010-01-01
Respiration of heterotrophic microorganisms decomposing soil organic carbon releases carbon dioxide from soils to the atmosphere. In the short term, soil microbial respiration is strongly dependent on temperature. In the long term, the response of heterotrophic soil respiration to temperature is uncertain. However, following established evolutionary tradeoffs, mass-...
NASA Astrophysics Data System (ADS)
Braban, Christine; Tang, Sim; Poskitt, Janet; Van Dijk, Netty; Leeson, Sarah; Dragosits, Ulli; Hutchings, Torben; Twigg, Marsailidh; Di Marco, Chiara; Langford, Ben; Tremper, Anja; Nemitz, Eiko; Sutton, Mark
2017-04-01
Emissions of ammonia affect both rural and urban air quality primarily via reaction of ammonia in the atmosphere forming secondary ammonium salts in particulate matter (PM). Urban ammonia emissions come from a variety of sources including biological decomposition, human waste, industrial processes and combustion engines. In the UK, the only long-term urban ammonia measurement is a UK National Ammonia Monitoring Network site at London Cromwell Road, recording monthly average concentrations. Short term measurements have also been made in the past decade at Marylebone Road, North Kensington and on the BT Tower. Cromwell Road is a kerbside site operational since 1999. The Cromwell Road data indicates that ammonia concentrations may be increasing since 2010-2012 after a long period of decreasing. Data from the National Atmospheric Emissions Inventory indicates ammonia emissions from diesel fleet exhausts increasing over this time period but an overall net decrease in ammonia emissions. With changes in engine and exhaust technology to minimise pollutant emissions and the importance of ammonia as a precursor gas for secondary PM, there is a challenge to understand urban ammonia concentrations and subsequent impacts on urban air quality. In this paper the long term measurements are assessed in conjunction with the short-term measurements.The challenges to assess the relative importance of local versus long range ammonia emission are discussed.
Solar cycle and long term variations of mesospheric ice layers
NASA Astrophysics Data System (ADS)
Lübken, Franz-Josef; Berger, Uwe; Kiliani, Johannes; Baumgarten, Gerd; Fiedler, Jens; Gerding, Michael
2010-05-01
Ice layers in the summer mesosphere at middle and polar latitudes, frequently called `noctilucent clouds' (NLC) or `polar mesosphere clouds'(PMC), are considered to be sensitive indicators of long term changes in the middle atmosphere. We present a summary of long term observations from the ground and from satellites and compare with results from the LIMA model (Leibniz Institute Middle Atmosphere Model). LIMA nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere and thereby the morphology of ice clouds. A strong correlation between temperatures and PMC altitudes is observed. Applied to historical measurements this give s negligible temperature trends at PMC altitudes (approximately 0.01-0.02 K/y). Trace gas concentrations are kept constant in LIMA except for water vapor which is modified by variable solar radiation. Still, long term trends in temperatures and ice layer parameters are observed, consistent with observations. As will be shown, these trends originate in the stratosphere. Solar cycle effects are expected in ice layers due to variations in background temperatures and water paper. We will present results from LIMA regarding solar cycle variations and compare with NLC observations at our lidar stations in Kühlungsborn (54°N) and ALOMAR (69°N), and also with satellite measurements.
Helicity in the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Kurgansky, Michael; Koprov, Boris; Koprov, Victor; Chkhetiani, Otto
2017-04-01
An overview is presented of recent direct field measurements at the Tsimlyansk Scientific Station of A.M. Obukhov Institute of Atmospheric Physics in Moscow of turbulent helicity (and potential vorticity) using four acoustic anemometers positioned, within the atmospheric surface-adjacent boundary layer, in the vertices of a rectangular tetrahedron, with an approximate 5 m distance between the anemometers and a 5.5 m elevation of the tetrahedron base above the ground surface (Koprov, Koprov, Kurgansky and Chkhetiani. Izvestiya, Atmospheric and Oceanic Physics, 2015, Vol.51, 565-575). The same ideology was applied in a later field experiment in Tsimlyansk with the tetrahedron's size of 0.7 m and variable elevation over the ground from 3.5 to 25 m. It is illustrated with examples of the statistical distribution of instantaneous (both positive and negative) turbulent helicity values. A theory is proposed that explains the measured mean turbulent helicity sign, including the sign of contribution to helicity from the horizontal and vertical velocity & vorticity components, respectively, and the sign of helicity buoyant production term. By considering a superposition of the classic Ekman spiral solution and a jet-like wind profile that mimics a shallow breeze circulation over a non-uniformly heated Earth surface, a possible explanation is provided, why the measured mean turbulent helicity sign is negative. The pronounced breeze circulation over the Tsimlyansk polygon which is located nearby the Tsimlyansk Reservoir was, indeed, observed during the measurements period. Whereas, essentially positive helicity is injected into the boundary layer from the free atmosphere in the Northern Hemisphere.
NASA Astrophysics Data System (ADS)
Morabito, David D.; D'Addario, Larry; Finley, Susan
2016-02-01
Phased arrays of reflector antennas can be used to obtain effective area and gain that are much larger than is practical with a single antenna. This technique is routinely used by NASA for receiving weak signals from deep space. Phase alignment of the signals can be disrupted by turbulence in the troposphere, which causes fluctuations in the differences of signal delays among the antennas. At the Deep Space Network stations, site test interferometers (STIs) are being used for long-term monitoring of these delay fluctuations using signals from geostationary satellites. In this paper, we compare the STI measurements with the phase variations seen by a nearby two-element array of 34 m diameter antennas tracking 8.4 GHz and 32 GHz signals from the Cassini spacecraft in orbit around Saturn. It is shown that the statistics of the STI delay fluctuations, after appropriate scaling for differences in antenna separation and elevation angle and conversion to phase at the spacecraft frequencies, provide reliable estimates of the phase fluctuations seen by the large antennas on the deep space signal. Techniques for adaptive compensation of the phase fluctuations are available when receiving a sufficiently strong signal, but compensation is often impractical or impossible when using the array for transmitting. These results help to validate the use of long-term STI data for assessing the feasibility of large transmitting arrays at various sites.
NASA Astrophysics Data System (ADS)
Cooke, Colin A.; Kirk, Jane L.; Muir, Derek C. G.; Wiklund, Johan A.; Wang, Xiaowa; Gleason, Amber; Evans, Marlene S.
2017-12-01
The mining and processing of the Athabasca oil sands (Alberta, Canada) has been occurring for decades; however, a lack of consistent regional monitoring has obscured the long-term environmental impact. Here, we present sediment core results to reconstruct spatial and temporal patterns in trace element deposition to lakes in the Athabasca oil sands region. Early mining operations (during the 1970s and 1980s) led to elevated V and Pb inputs to lakes located <50 km from mining operations. Subsequent improvements to mining and upgrading technologies since the 1980s have reduced V and Pb loading to near background levels at many sites. In contrast, Hg deposition increased by a factor of ~3 to all 20 lakes over the 20th century, reflecting global-scale patterns in atmospheric Hg emissions. Base cation deposition (from fugitive dust emissions) has not measurably impacted regional lake sediments. Instead, results from a principal components analysis suggest that the presence of carbonate bedrock underlying lakes located close to development appears to exert a first-order control over lake sediment base cation concentrations and overall lake sediment geochemical composition. Trace element concentrations generally did not exceed Canadian sediment quality guidelines, and no spatial or temporal trends were observed in the frequency of guideline exceedence. Our results demonstrate that early mining efforts had an even greater impact on trace element cycling than has been appreciated previously, placing recent monitoring efforts in a critical long-term context.
Long-term observation of aerosol-cloud relationships in the Mid-Atlantic of the United States
NASA Astrophysics Data System (ADS)
Li, S.; Joseph, E.; Min, Q.; Yin, B.
2014-07-01
Long-term ground-based observations (2006 to 2010) of aerosol and cloud properties derived from passive radiometric sensors deployed at an atmospheric measurement field station in the Baltimore-Washington corridor operated by Howard University were used to examine aerosol indirect effect on cloud optical depth (COD), liquid water path (LWP), cloud droplets effective radius (Re) and cloud droplets number concentration (Nd). A higher frequency of clouds with large COD (> 20) and small Re (< 7 m) was found during summer of 2006 and 2007 along with higher frequency of abundant aerosol loading. The five-year data are screened for summer months only and are separated into clean and polluted cases based on aerosol particulate matter with aerodynamic diameter ≤ 2.5 m (PM2.5) value. Evidence of aerosol indirect effect is found where for polluted cases the mean and median values of COD and Nd distributions were elevated while the mean and median values of Re were decreased. Further reinforcing this conclusion is the result that the mean and median values of LWP distributions did not show prominent difference between clean and polluted cases, this implies that differences between the two cases of influential factors on cloud properties were relatively controlled. Moreover aerosol indirect effects were found insignificant when LWP was small but significant when LWP was large through the analysis of sensitivity of Nd to LWP under different aerosol loading and the measurements of aerosol size distribution.
Plant safety margin against frost damages has declined in Switzerland over the last four decades
NASA Astrophysics Data System (ADS)
Vitasse, Yann; Schneider, Léonard; Klein, Geoffrey; Rixen, Christian; Rebetez, Martine
2017-04-01
Winters and early springs have become warmer over the last decades which has in turn promoted earlier plant development in temperate regions. While temperatures will on average continue to increase in the coming decades due to the rise of greenhouse gases concentration in the atmosphere, there is no consensus about how the occurrence of late spring frosts will change. If the frequency and the severity of late spring frosts remain unchanged in the future or advance less than vegetation onset, vulnerable plant organs (young leaves, flowers or dehardened buds) may be more exposed to frost damage. Here we analyzed long-term series of temperature data during the period 1975-2016 at 50 locations in Switzerland. We used different thresholds of growing degree days (GDD) as a proxy for spring phenology of fruit trees based on long-term series of phenological observations. Finally, we tested whether the time lag between the date when the GDD is reached and the latest occurrence of frost has changed over the study period. Overall we found that the safety margin against potential frost damage to plants has slightly decreased during the study period, irrespective of elevation (from 203 to 2283 m). Our results suggest that the cost for preventing frost damages on fruit trees could increase in the coming decades and the introduction of new varieties of fruit trees adapted to warmer climate should be carefully considered as they generally exhibit earlier spring phenology.
Chua, Su-Kiat; Shyu, Kou-Gi; Hung, Huei-Fong; Cheng, Jun-Jack; Lo, Huey-Ming; Liu, Shih-Chi; Chen, Lung-Ching; Chiu, Chiung-Zuan; Chang, Che-Ming; Lin, Shen-Chang; Liou, Jer-Young; Lee, Shih-Huang
2014-07-01
Studies have reported that women with ST elevation myocardial infarction (STEMI) have worse short- and long-term outcomes than men. It has not yet been confirmed whether these differences reflect differences in age between men and women. We retrospectively enrolled 1035 consecutive STEMI patients treated with primary percutaneous coronary intervention (PCI). Baseline clinical characteristics, coronary anatomy, and outcome were compared between young (< 65 years old) and older patients (≥ 65 years old) of both sexes. Younger women presented with a lower incidence of typical angina (83% vs. 93%, p = 0.03), single-vessel disease (21% vs. 35%, p = 0.03), and total occlusion of infarct-related artery (65% vs. 83%, p = 0.001) than younger men, with no gender difference noted in the older group. Younger women in the study had a higher incidence of reinfarction, heart failure requiring admission, or mortality (23% vs. 6%, p < 0.001) during follow-up, compared with younger men, with no gender difference in the older group. Using the Kaplan-Meier analysis, younger women had lower rates of event-free survival (p < 0.001 by log-rank test) than younger men, with no gender difference in the older group. In multivariate analysis, age could predict long-term outcome in men (Hazard ratio 4.43, 95% confidence interval: 2.89-6.78, p < 0.001) but not in women. In STEMI patients receiving primary PCI, sex-related long-term outcome differences were age-dependent, with younger women likely to have a worse long-term outcome when compared with younger men. Coronary heart disease; Gender; Myocardial infarction.
Compostella, Leonida; Lorenzi, Sonia; Russo, Nicola; Setzu, Tiziana; Compostella, Caterina; Vettore, Elia; Isabella, Giambattista; Tarantini, Giuseppe; Iliceto, Sabino; Bellotto, Fabio
2017-02-01
The presence of major depressive symptoms is usually considered a negative long-term prognostic factor after an acute myocardial infarction (AMI); however, most of the supporting research was conducted before the era of immediate reperfusion by percutaneous coronary intervention. The aims of this study are to evaluate if depression still retains long-term prognostic significance in our era of immediate coronary reperfusion, and to study possible correlations with clinical parameters of physical performance. In 184 patients with recent ST-elevated AMI (STEMI), treated by immediate reperfusion, moderate or severe depressive symptoms (evaluated by Beck Depression Inventory version I) were present in 10 % of cases. Physical performance was evaluated by two 6-min walk tests and by a symptom-limited cardiopulmonary exercise test: somatic/affective (but not cognitive/affective) symptoms of depression and perceived quality of life (evaluated by the EuroQoL questionnaire) are worse in patients with lower levels of physical performance. Follow-up was performed after a median of 29 months by means of telephone interviews; 32 major adverse cardiovascular events (MACE) occurred. The presence of three vessels disease and low left ventricle ejection fraction are correlated with a greater incidence of MACE; only somatic/affective (but not cognitive/affective) symptoms of depression correlate with long-term outcomes. In patients with recent STEMI treated by immediate reperfusion, somatic/affective but not cognitive/affective symptoms of depression show prognostic value on long-term MACE. Depression symptoms are not predictors "per se" of adverse prognosis, but seem to express an underlying worse cardiac efficiency, clinically reflected by poorer physical performance.
Sin, Thomas K; Yu, Angus P; Yung, Benjamin Y; Yip, Shea P; Chan, Lawrence W; Wong, Cesar S; Rudd, John A; Siu, Parco M
2015-12-01
Activation of Foxo1 is known to promote apoptosis and disturbances to insulin signalling. However, their modulating roles in aged skeletal muscle are not clear. The present study tested the hypothesis that long-term (i.e. 8 month) resveratrol supplementation would improve physical traits including exercise capacity and basal voluntary activity of aged mice and modulate insulin/apoptotic signalling in aged skeletal muscle. This study also examined whether these resveratrol-associated alterations would involve orchestration of the SIRT1-Foxo1 signalling axis. Two-month-old SAMP8 mice were randomly assigned to young, aged and aged with resveratrol treatment (AR) groups. The AR mice were supplemented with 4.9 mg(-1) kg(-1) day(-1) resveratrol for 8 months. All animals were subject to endurance capacity test and voluntary motor behaviour assessment. The lateral gastrocnemius muscle tissues were harvested for further analyses. Long-term resveratrol treatment significantly alleviated the age-associated reductions in exercise capacity and voluntary motor behaviour. The protein content, but not the deacetylase activity of SIRT1 was increased with concomitant elevations of p300 acetylase and acetylation of Foxo1 in aged muscle. The aged muscle also manifested signs of impaired insulin signalling including attenuated phosphorylation of Akt, activity of pyruvate dehydrogenase and membrane trafficking of GLUT4 and elevated levels of phosphorylated IRS1 and iNOS and apoptotic activation measured as Bim, p53 and apoptotic DNA fragmentation. Intriguingly, all these age-related adverse changes were mitigated with the activation of SIRT1 deacetylase activity after long-term resveratrol treatment. These data suggest that modulation of the SIRT1-Foxo1 axis by long-term resveratrol treatment enhances physical traits and alleviates the unfavourable changes in insulin and apoptotic signalling in aged muscle.
Andrew D. Richardson; David Y. Hollinger; John D. Aber; Scott V. Ollinger; Bobby H. Braswell
2007-01-01
Tower-based eddy covariance measurements of forest-atmosphere carbon dioxide (CO2) exchange from many sites around the world indicate that there is considerable year-to-year variation in net ecosystem exchange (NEE). Here, we use a statistical modeling approach to partition the interannual variability in NEE (and its component fluxes, ecosystem...
NASA Astrophysics Data System (ADS)
Mulyukin, Andrei L.; Soina, Vera S.; Demkina, Elena V.; Kozlova, Alla N.; Suzina, Natalia E.; Dmitriev, Vladimir V.; Duda, Vitalii I.; El'-Registan, Galina I.
2003-01-01
Non-spore-forming bacteria of the genera Micrococcus and Arthrobacter, including the isolates from permafrost sediments, were found to be able to form cystlike cells under special conditions. Cystlike cells maintained the viability during long-term storage (for up to several years), had undetectable respiratory activity and the elevated resistance to heating and other unfavorable conditions, possessed the specific fine structure and morphology, and were formed in the life cycles of the microorganism. These properties allow cystlike cells to be attributed to a new type of resting microbial forms. Furthermore, the distinctive feature of resting cystlike cells was their low P/S ratios and high Ca/K ratios in comparison to vegetative cells as shown by X-ray microanalysis. The experimentally obtained bacterial cystlike cells with thickened and laminated cell walls and altered texture of the cytoplasm were similar to the cells abundant in native microbial populations isolated from permafrost sediments and ancient soils of the Kolyma lowland (Siberia, Russia). Due to the inherent elevated resistance to adverse conditions and maintenance of viability for prolonged periods, resting cystlike cells are likely to ensure long-term survival of non-spore-forming bacteria in cold environments.
Sugawara, Masayuki; Sadowsky, Michael J
2013-01-01
Elevated atmospheric CO2 can influence the structure and function of rhizoplane and rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizoplane and rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizoplane of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that elevated atmospheric CO2 concentration indirectly influenced the expression of a large number of genes in Bradyrhizobium attached to soybean roots. In addition, relative to plants and bacteria grown under ambient CO2 growth conditions, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere. The expression profile of genes involved in lipochitooligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, the results of these studies indicate that the growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizoplane, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency.
Sugawara, Masayuki; Sadowsky, Michael J.
2013-01-01
Elevated atmospheric CO2 can influence the structure and function of rhizoplane and rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizoplane and rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizoplane of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that elevated atmospheric CO2 concentration indirectly influenced the expression of a large number of genes in Bradyrhizobium attached to soybean roots. In addition, relative to plants and bacteria grown under ambient CO2 growth conditions, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere. The expression profile of genes involved in lipochitooligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, the results of these studies indicate that the growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizoplane, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency. PMID:23666536
Fuel retention under elevated wall temperature in KSTAR with a carbon wall
NASA Astrophysics Data System (ADS)
Cao, B.; Hong, S. H.
2018-03-01
The fuel retention during KSTAR discharges with elevated wall temperature (150 °C) has been studied by using the method of global particle balance. The results show that the elevated wall temperature could reduce the dynamic retention via implantation and absorption, especially for the short pulse shots with large injected fuel particles. There is no signature changing of long-term retention, which related to co-deposition, under elevated wall temperature. For soft-landing shots (normal shots), the exhausted fuel particles during discharges is larger with elevated wall temperature than without, but the exhausted particles after discharges within 90 s looks similar. The outgassing particles because of disruption could be exhausted within 15 s.
NASA Technical Reports Server (NTRS)
Lau, William K.; Kim, Maeng-Ki; Kim, Kyu-Myong; Lee, Woo-Seop
2010-01-01
Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (approx.5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.
Factors Controlling the Distribution of Atmospheric Mercury in the East Asian Free Troposphere
NASA Astrophysics Data System (ADS)
Sheu, G.; Lee, C.; Lin, N.; Wang, J.; Ouyang, C.
2008-12-01
Taiwan is located to the downwind side of both East and Southeast Asia, which are the major anthropogenic mercury (Hg) source region worldwide. Also, it has been suggested that mountain-top monitoring sites, which are frequently in the free troposphere, are essential to the understanding of the global Hg transport. Accordingly, continuous measurements of atmospheric Hg have been conducting at Lulin Atmospheric Background Station (LABS, 2862 m a.s.l.) in Taiwan since April 13, 2006 to study the trans-boundary transport and transformation of Hg in the free troposphere. Three types of atmospheric Hg, including gaseous elemental Hg (GEM), reactive gaseous Hg (RGM), and particulate Hg (PHg), are measured using the Tekran 2537A/1130/1135 speciation system. Diurnal variations in the concentrations of GEM, RGM, ozone, and water vapor (WV) mixing ratio indicated the influence of boundary layer air in daytime and the subsidence of free tropospheric air masses from higher altitudes at night. Seasonal variation in GEM concentrations was evident with elevated concentrations usually observed between fall and spring when air masses were more or less under the influence of Asian continent. Low summer GEM values were associated with marine air masses. Spikes of RGM were frequently detected between midnight and early morning with concurrent decreases in GEM and WV mixing ratio and increases in ozone concentrations, suggesting the oxidation of GEM and formation of RGM in free troposphere. Concentrations of PHg were usually low; however, elevated concentrations were detected in spring when the Southeast Asian biomass burning plumes affected the LABS. Analysis of the collected data indicate that at LABS the distribution of atmospheric Hg is dynamically controlled by background atmosphere, exchange and mixing of free troposphere/boundary layer air, chemical transformation, and long-range transport from East and Southeast Asia.
Dominguez-Rodriguez, A; Juarez-Prera, R A; Rodríguez, S; Abreu-Gonzalez, P; Avanzas, P
2016-05-01
Evaluate whether the meterological parameters affecting revenues in patients with ST-segment and non-ST-segment elevation ACS. A prospective cohort study was carried out. Coronary Care Unit of Hospital Universitario de Canarias We studies a total of 307 consecutive patients with a diagnosis of ST-segment and non-ST-segment elevation ACS. We analyze the average concentrations of particulate smaller than 10 and 2.5μm diameter, particulate black carbon, the concentrations of gaseous pollutants and meteorological parameters (wind speed, temperature, relative humidity and atmospheric pressure) that were exposed patients from one day up to 7 days prior to admission. None. Demographic, clinical, atmospheric particles, concentrations of gaseous pollutants and meterological parameters. A total of 138 (45%) patients were classified as ST-segment and 169 (55%) as non-ST-segment elevation ACS. No statistically significant differences in exposure to atmospheric particles in both groups. Regarding meteorological data, we did not find statistically significant differences, except for higher atmospheric pressure in ST-segment elevation ACS (999.6±2.6 vs. 998.8±2.5 mbar, P=.008). Multivariate analysis showed that atmospheric pressure was significant predictor of ST-segment elevation ACS presentation (OR: 1.14, 95% CI: 1.04-1.24, P=.004). In the patients who suffer ACS, the presence of higher number of atmospheric pressure during the week before the event increase the risk that the ST-segment elevation ACS. Copyright © 2015 Elsevier España, S.L.U. and SEMICYUC. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Min; Kang, Shichang; Wu, Hao; Yuan, Xu
2018-05-01
As abundant distribution of glaciers and snow, the Tianshan Mountains are highly vulnerable to changes in climate. Based on meteorological station records during 1960-2016, we detected the variations of air temperature and precipitation by using non-parametric method in the different sub-regions and different elevations of the Tianshan Mountains. The mutations of climate were investigated by Mann-Kendall abrupt change test in the sub-regions. The periodicity is examined by wavelet analysis employing a chi-square test and detecting significant time sections. The results show that the Tianshan Mountains experienced an overall rapid warming and wetting during study period, with average warming rate of 0.32 °C/10a and wet rate of 5.82 mm/10a, respectively. The annual and seasonal spatial variation of temperature showed different scales in different regions. The annual precipitation showed non-significant upward trend in 20 stations, and 6 stations showed a significant upward trend. The temperatures in the East Tianshan increased most rapidly at rates of 0.41 °C/10a. The increasing magnitudes of annual precipitation were highest in the Boertala Vally (8.07 mm/10a) and lowest in the East Tianshan (2.64 mm/10a). The greatest and weakest warming was below 500 m (0.42 °C/10a) and elevation of 1000-1500 m (0.23 °C/10a), respectively. The increasing magnitudes of annual precipitation were highest in the elevation of 1500 m-2000 m (9.22 mm/10a) and lowest in the elevation of below 500 m (3.45 mm/10a). The mutations of annual air temperature and precipitation occurred in 1995 and 1990, respectively. The large atmospheric circulation influenced on the mutations of climate. The significant periods of air temperature were 2.4-4.1 years, and annual precipitation was 2.5-7.4 years. Elevation dependency of temperature trend magnitude was not evidently in the Tianshan Mountains. The annual precipitation wetting trend was amplified with elevation in summer and autumn. The strong elevation dependence of precipitation increasing trend appeared in summer.
Elevation Gradients and Climatic Consequences
NASA Astrophysics Data System (ADS)
Redmond, K. T.
2006-12-01
Steep topography usually results in gradients in surface meteorological elements. Sometimes these gradients are extremely sharp. Frequent or persistent gradients are expressed in climatic statistics as well. Most commonly, higher elevations are wetter and cooler than lower elevations. The magnitude of these climate gradients vary both spatially and temporally, generally on smaller scales for the former and on a greater variety of scales for the latter. Orographic contributions to precipitation vary on hourly to annual scales, and temperature inversions of different durations can alter or reverse the vertical temperature lapse rate normally found in the atmosphere. The presence of these factors affects the probability distributions of climate elements as a function of elevation. This leads in turn to consequences for ecology, resource management, and data. Orographic enhancement of Sierra precipitation varies by a factor of about three on seasonal time scales, and more on shorter scales. Particularly strong gradients in temperature climate are observed along the California coast, resulting in large changes in long-term climatological probability distributions over quite short distances in elevation. These have significant implications for plant life. For specific noteworthy events, such as the California heat wave of July 2006, striking differences were seen over a horizontal distance of merely 2-3 km along the Big Sur Coast, related entirely to elevation. There is evidence of differential warming with elevation between California's Central Valley and the Sierra Nevada. As a practical matter, the three-dimensional correlation fields of weather and climate elements in topographically diverse regions, on differing time scales, have complex structure, but also have certain regularities. This makes quality control of weather and climate data sets in highly diverse topography much more challenging. Quality control decisions that do not properly take this correlation structure (which varies in time) into account can result in degraded data sets, a variety of Type I and Type II errors, and paradoxically, hinder or prevent the discovery and description of the effects of climate gradients by incorrectly altering the data sets needed to uncover and quantify the relationships.
Szemerszky, Renáta; Zelena, Dóra; Barna, István; Bárdos, György
2010-01-15
It is believed that different electromagnetic fields do have beneficial and harmful biological effects. The aim of the present work was to study the long-term consequences of 50 Hz electromagnetic field (ELF-EMF) exposure with special focus on the development of chronic stress and stress-induced psychopathology. Adult male Sprague-Dawley rats were exposed to ELF-EMF (50 Hz, 0.5 mT) for 5 days, 8h daily (short) or for 4-6 weeks, 24h daily (long). Anxiety was studied in elevated plus maze test, whereas depression-like behavior of the long-treated group was examined in the forced swim test. Some days after behavioral examination, the animals were decapitated among resting conditions and organ weights, blood hormone levels as well as proopiomelanocortin mRNA level from the anterior lobe of the pituitary gland were measured. Both treatments were ineffective on somatic parameters, namely none of the changes characteristic to chronic stress (body weight reduction, thymus involution and adrenal gland hypertrophy) were present. An enhanced blood glucose level was found after prolonged ELF-EMF exposure (p=0.013). The hormonal stress reaction was similar in control and short-term exposed rats, but significant proopiomelanocortin elevation (p<0.000) and depressive-like behavior (enhanced floating time; p=0.006) were found following long-term ELF-EMF exposure. Taken together, long and continuous exposure to relatively high intensity electromagnetic field may count as a mild stress situation and could be a factor in the development of depressive state or metabolic disturbances. Although we should stress that the average intensity of the human exposure is normally much smaller than in the present experiment.
NASA Astrophysics Data System (ADS)
Zhao, Tianbao; Wang, Juanhuai; Dai, Aiguo
2015-10-01
Many multidecadal atmospheric reanalysis products are available now, but their consistencies and reliability are far from perfect. In this study, atmospheric precipitable water (PW) from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR), NCEP/Department of Energy (DOE), Modern Era Retrospective-Analysis for Research and Applications (MERRA), Japanese 55 year Reanalysis (JRA-55), JRA-25, ERA-Interim, ERA-40, Climate Forecast System Reanalysis (CFSR), and 20th Century Reanalysis version 2 is evaluated against homogenized radiosonde observations over China during 1979-2012 (1979-2001 for ERA-40). Results suggest that the PW biases in the reanalyses are within ˜20% for most of northern and eastern China, but the reanalyses underestimate the observed PW by 20%-40% over western China and by ˜60% over the southwestern Tibetan Plateau. The newer-generation reanalyses (e.g., JRA25, JRA55, CFSR, and ERA-Interim) have smaller root-mean-square error than the older-generation ones (NCEP/NCAR, NCEP/DOE, and ERA-40). Most of the reanalyses reproduce well the observed PW climatology and interannual variations over China. However, few reanalyses capture the observed long-term PW changes, primarily because they show spurious wet biases before about 2002. This deficiency results mainly from the discontinuities contained in reanalysis relative humidity fields in the middle-lower troposphere due to the wet bias in older radiosonde records that are assimilated into the reanalyses. An empirical orthogonal function (EOF) analysis revealed two leading modes that represent the long-term PW changes and El Niño-Southern Oscillation-related interannual variations with robust spatial patterns. The reanalysis products, especially the MERRA and JRA-25, roughly capture these EOF modes, which account for over 50% of the total variance. The results show that even during the post-1979 satellite era, discontinuities in radiosonde data can still induce large spurious long-term changes in reanalysis PW and other related fields. Thus, more efforts are needed to remove spurious changes in input data for future long-term reanalyses.
The effects of short- and long-term air pollutants on plant phenology and leaf characteristics.
Jochner, Susanne; Markevych, Iana; Beck, Isabelle; Traidl-Hoffmann, Claudia; Heinrich, Joachim; Menzel, Annette
2015-11-01
Pollution adversely affects vegetation; however, its impact on phenology and leaf morphology is not satisfactorily understood yet. We analyzed associations between pollutants and phenological data of birch, hazel and horse chestnut in Munich (2010) along with the suitability of leaf morphological parameters of birch for monitoring air pollution using two datasets: cumulated atmospheric concentrations of nitrogen dioxide and ozone derived from passive sampling (short-term exposure) and pollutant information derived from Land Use Regression models (long-term exposure). Partial correlations and stepwise regressions revealed that increased ozone (birch, horse chestnut), NO2, NOx and PM levels (hazel) were significantly related to delays in phenology. Correlations were especially high when rural sites were excluded suggesting a better estimation of long-term within-city pollution. In situ measurements of foliar characteristics of birch were not suitable for bio-monitoring pollution. Inconsistencies between long- and short-term exposure effects suggest some caution when interpreting short-term data collected within field studies. Copyright © 2015 Elsevier Ltd. All rights reserved.
Present state of knowledge of the upper atmosphere: An assessment report
NASA Technical Reports Server (NTRS)
1984-01-01
A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.
Plans for an Enhanced Terrestrial and Freshwater Environmental Observation Network in South Africa
NASA Astrophysics Data System (ADS)
Everson, C. S.; Bond, W. J.; Moncrieff, G. R.; Everson, T. M.
2015-12-01
There is currently little information in South Africa concerning the influence of terrestrial ecosystems on biosphere-atmosphere interactions and their impact on the earth system. Climate modellers require data on energy exchanges between the soil-plant-atmosphere continuum to develop surface models of carbon, energy and water to scale up from the different biomes in South Africa, to regional and, ultimately, global scales. Atmospheric exchanges of South African biomes (ecosystems) are important due to the large and varied pant diversity they represent. The important ecosystem services (including water) delivered by these natural systems and their potential role in the long-term CO2 uptake from the atmosphere and carbon storage is a key gap in South African research. South Africa is already a water-scarce country so the predicted impacts of climate change on water resources are likely to have devastating effects. It is against this diminishing water supply that the South African government must develop innovative investments in water technologies and infrastructure to mitigate the impacts of growing water shortages due to climate change. The Department of Science and Technology of South Africa is planning a multi-million rand investment in long-term ecological infrastructure with a focus on carbon, water and energy. The terrestrial programme will comprise six to seven landscape-scale 'climate change observatories', some in urban and agricultural situations, with eddy covariance flux towers for carbon water and energy measurements, regular remote sensing, for the long-term collection of environmental, ecological and social data. The South African flux network measurement programme aims to become a key role player in the assessment of the consequences of rapid land use change and future impacts of climate change both regionally and internationally. Key words: flux towers, eddy co-variance, carbon, water and energy
Climate change effects on soil microarthropod abundance and community structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardol, Paul; Reynolds, W. Nicholas; Norby, Richard J
2011-01-01
Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but notmore » in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil microarthropod abundance and community composition may have important impacts on ecosystem functions, such as decomposition, under future climatic change.« less
Li, Weibin; Hartmann, Henrik; Adams, Henry D; Zhang, Hongxia; Jin, Changjie; Zhao, Chuanyan; Guan, Dexin; Wang, Anzhi; Yuan, Fenghui; Wu, Jiabing
2018-06-11
Non-structural carbohydrates (NSC) play a central role in plant functioning as energy carriers and building blocks for primary and secondary metabolism. Many studies have investigated how environmental and anthropogenic changes, like increasingly frequent and severe drought episodes, elevated CO2 and atmospheric nitrogen (N) deposition, influence NSC concentrations in individual trees. However, this wealth of data has not been analyzed yet to identify general trends using a common statistical framework. A thorough understanding of tree responses to global change is required for making realistic predictions of vegetation dynamics. Here we compiled data from 57 experimental studies on 71 tree species and conducted a meta-analysis to evaluate general responses of stored soluble sugars, starch and total NSC (soluble sugars + starch) concentrations in different tree organs (foliage, above-ground wood and roots) to drought, elevated CO2 and N deposition. We found that drought significantly decreased total NSC in roots (-17.3%), but not in foliage and above-ground woody tissues (bole, branch, stem and/or twig). Elevated CO2 significantly increased total NSC in foliage (+26.2%) and roots (+12.8%), but not in above-ground wood. By contrast, total NSC significantly decreased in roots (-17.9%), increased in above-ground wood (+6.1%), but was unaffected in foliage from N fertilization. In addition, the response of NSC to three global change drivers was strongly affected by tree taxonomic type, leaf habit, tree age and treatment intensity. Our results pave the way for a better understanding of general tree function responses to drought, elevated CO2 and N fertilization. The existing data also reveal that more long-term studies on mature trees that allow testing interactions between these factors are urgently needed to provide a basis for forecasting tree responses to environmental change at the global scale.
Forum for discussion and debate
NASA Technical Reports Server (NTRS)
1981-01-01
The application of statistical methods to meteorological data for which there are long, compatible series, and where known trend changes took place were suggested. The effects of optical wedge deterioration, atmospheric aerosol variation, solar irradiance variations, etc., are evaluated. It is recommended that coupled satellite ground based observational system is required to determine global long term trends.
Cutting, Kyle A.; Cross, Wyatt F.; Anderson, Michelle L.; Reese, Elizabeth G.
2016-01-01
Introduction of non-native species is a leading threat to global aquatic biodiversity. Competition between native and non-native species is often influenced by changes in suitable habitat or food availability. We investigated diet breadth and degree of trophic niche overlap for a fish assemblage of native and non-native species inhabiting a shallow, high elevation lake system. This assemblage includes one of the last remaining post-glacial endemic populations of adfluvial Arctic grayling (Thymallus arcticus) in the contiguous United States. We examined gut contents and stable isotope values of fish taxa in fall and spring to assess both short- (days) and long-term (few months) changes in trophic niches. We incorporate these short-term (gut contents) data into a secondary isotope analysis using a Bayesian statistical framework to estimate long-term trophic niche. Our data suggest that in this system, Arctic grayling share both a short- and long-term common food base with non-native trout of cutthroat x rainbow hybrid species (Oncorhynchus clarkia bouvieri x Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). In addition, trophic niche overlap among Arctic grayling, hybrid trout, and brook trout appeared to be stronger during spring than fall. In contrast, the native species of Arctic grayling, burbot (Lota lota), and suckers (Catostomus spp.) largely consumed different prey items. Our results suggest strong seasonal differences in trophic niche overlap among Arctic grayling and non-native trout, with a potential for greatest competition for food during spring. We suggest that conservation of endemic Arctic grayling in high-elevation lakes will require recognition of the potential for coexisting non-native taxa to impede well-intentioned recovery efforts. PMID:27205901
NASA Technical Reports Server (NTRS)
Chin, Mian; Diehl, Thomas; Bian, Huisheng; Yu, Hongbin
2008-01-01
We present a global model study on the role aerosols play in the change of solar radiation at Earth's surface that transitioned from a decreasing (dimming) trend to an increasing (brightening) trend. Our primary objective is to understand the relationship between the long-term trends of aerosol emission, atmospheric burden, and surface solar radiation. More specifically, we use the recently compiled comprehensive global emission datasets of aerosols and precursors from fuel combustion, biomass burning, volcanic eruptions and other sources from 1980 to 2006 to simulate long-term variations of aerosol distributions and optical properties, and then calculate the multi-decadal changes of short-wave radiative fluxes at the surface and at the top of the atmosphere by coupling the GOCART model simulated aerosols with the Goddard radiative transfer model. The model results are compared with long-term observational records from ground-based networks and satellite data. We will address the following critical questions: To what extent can the observed surface solar radiation trends, known as the transition from dimming to brightening, be explained by the changes of anthropogenic and natural aerosol loading on global and regional scales? What are the relative contributions of local emission and long-range transport to the surface radiation budget and how do these contributions change with time?
Rimmer, Ruth Brubaker; Alam, Now Bahar; Bay, R Curt; Sadler, Ian J; Foster, Kevin N; Caruso, Daniel M
2015-01-01
Unresolved pediatric pain, both acute and chronic, has been associated with negative short- and long-term physical and mental health outcomes. This study sought to determine whether an association existed between self-reported pain coping skills and anxiety levels in a cohort of pediatric burn patients, and whether gender would influence their responses. The sample comprised burn-injured children in attendance at one of three mature burn camp sites. The self-report measures utilized included the 41-item Screen for Child Anxiety Related Disorders Child Version and the 39-item Pain Coping Questionnaire. Parental consent was obtained. A psychologist administered the measures. Participants included 187 youth, mean age 12.4 ± 2.4 years, girls (n = 89) boys (n = 98) with 67% reporting visible burn scars. Among boys, the use of Internalizing Coping Strategies was moderately correlated with elevated scores on Panic Disorder symptoms (r = .42, P < .001). Among girls, the use of Internalizing Coping Strategies was associated with elevated Generalized Anxiety (r = .51, P < .001), Panic Disorder (r = .46, P < .001), and Total Anxiety Symptom Scores (r = .49, P < .001). Those children who reported using Behavioral Distraction Strategies did not have any elevated anxiety scores. These findings suggest that burn-injured children, who employ Internalization as their pain coping strategy, may be more vulnerable to the development of long-term anxiety disorder, which, if left untreated may result in a negative psycho/social outcome. Applicability to Practice: Assessment of in-patient pediatric patients with the Pain Coping Questionnaire may help to identify children who are more likely to experience long-term anxiety. Future studies should seek to confirm these findings and determine whether improved pain management and early treatment of anxiety can help to diminish the long-term implications of unhelpful pain strategies and increased anxiety in burn-injured children.
Hashimoto, Tadafumi; Osawa, Yusuke; Itoh, Shinsuke; Mochizuki, Masahito; Nishimoto, Kazutoshi
2013-06-01
To prevent primary water stress corrosion cracking (PWSCC), water jet peening (WJP) has been used on the welds of Ni-based alloys in pressurized water reactors (PWRs). Before WJP, the welds are machined and buffed in order to conduct a penetrant test (PT) to verify the weld qualities to access, and microstructure evolution takes place in the target area due to the severe plastic deformation. The compressive residual stresses induced by WJP might be unstable under elevated temperatures because of the high dislocation density in the compressive stress layer. Therefore, the stability of the compressive residual stresses caused by WJP was investigated during long-term operation by considering the microstructure evolution due to the working processes. The following conclusions were made: The compressive residual stresses were slightly relaxed in the surface layers of the thermally aged specimens. There were no differences in the magnitude of the relaxation based on temperature or time. The compressive residual stresses induced by WJP were confirmed to remain stable under elevated temperatures. The stress relaxation at the surface followed the Johnson-Mehl equation, which states that stress relaxation can occur due to the recovery of severe plastic strain, since the estimated activation energy agrees very well with the self-diffusion energy for Ni. By utilizing the additivity rule, it was indicated that stress relaxation due to recovery is completed during the startup process. It was proposed that the long-term stability of WJP under elevated temperatures must be assessed based on compressive stresses with respect to the yield stress. Thermal elastic-plastic creep analysis was performed to predict the effect of creep strain. After 100 yr of simulated continuous operation at 80% capacity, there was little change in the WJP compressive stresses under an actual operating temperature of 623 K. Therefore, the long-term stability of WJP during actual operation was analytically predicted.
NASA Astrophysics Data System (ADS)
Pohlmann, M. A.; Root, R.; Abrell, L.; Schwartz, C. J.; Chorover, J.
2017-12-01
Wildfire represents a disturbance that is becoming more prevalent as climate shifts to hotter and drier conditions in the southwestern US. It has profound and potentially long-term effects on the physical, chemical and microbiological properties of soil, including immediate surface deposition of lithogenic elements and incompletely combusted organic matter (i.e., black carbon or BC) previously held in biomass. The long residence time of BC mitigates oxidative release of carbon to the atmosphere and thus has implications for long-term climate forcing. Immediately following the 2013 Thompson Ridge wildfire in the Jemez River Basin Critical Zone Observatory, we sampled 22 soil profiles across a zero order basin at finely resolved depth intervals to 40 cm. Samples were collected again 12 and 24 months following the fire to assess redistribution of solutes and BC in the two years following fire. Water extractable anions, cations and carbon were measured for each sample and maps were generated by geostatistical interpolation. Additionally, the benzene polycarboxylic acid (BPCA) molecular marker method was employed for a selection of samples to quantify and characterize the BC content of the existing soil organic carbon pool as a function of landscape position and time. The `pulsed' deposition of water-soluble ions and BC followed pre-fire vegetation structure as indicated by solution chemistry data for years one and two displaying elevated solute concentrations in surface depths proximal to dense vegetation. Vertical and lateral redistribution of the water extractable elements and BC were consistent with wetting front propagation and topographic trends (driven by erosion, overland flow and lateral subsurface flow). BC depth profiles indicate vertical infiltration and lateral transport with burial, the latter associated with surface erosion of sediment, as mechanisms for redistribution.
Ocean acidification buffering effects of seagrass in Tampa Bay
Yates, Kimberly K.; Moyer, Ryan P.; Moore, Christopher; Tomasko, David A.; Smiley, Nathan A.; Torres-Garcia, Legna; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana; Smiley, Nathan; Torres-Garcia, Legna M.; Powell, Christina E.; Chappel, Amanda R.; Bociu, Ioana
2016-01-01
The Intergovernmental Panel on Climate Change has identified ocean acidification as a critical threat to marine and estuarine species in ocean and coastal ecosystems around the world. However, seagrasses are projected to benefit from elevated atmospheric pCO2, are capable of increasing seawater pH and carbonate mineral saturation states through photosynthesis, and may help buffer against the chemical impacts of ocean acidification. Additionally, dissolution of carbonate sediments may also provide a mechanism for buffering seawater pH. Long-term water quality monitoring data from the Environmental Protection Commission of Hillsborough County indicates that seawater pH has risen since the 1980‘s as seagrass beds have continued to recover since that time. We examined the role of seagrass beds in maintaining and elevating pH and carbonate mineral saturation state in northern and southern Tampa Bay where the percent of carbonate sediments is low (<3%) and high (>40%), respectively. Basic water quality and carbonate system parameters (including pH, total alkalinity, dissolved inorganic carbon, partial pressure of CO2, and carbonate mineral saturation state) were measured over diurnal time periods along transects (50-100 m) including dense and sparse Thalassia testudinum. seagrass beds, deep edge seagrass, and adjacent bare sand bottom. Seagrass density and productivity, sediment composition and hydrodynamic parameters were also measured, concurrently. Results indicate that seagrass beds locally elevate pH by up to 0.5 pH unit and double carbonate mineral saturation states relative to bare sand habitats. Thus, seagrass beds in Tampa Bay may provide refuge for marine organisms from the impacts of ocean acidification.