Sample records for long-term experimental evolution

  1. Evolution of a short-term study of lodgepole pine dwarf mistletoe vectors that turned into a long-term study of the remarkable gray jay on the Fraser Experimental Forest,Colorado, 1982-2009

    Treesearch

    Thomas H. Nicholls

    2014-01-01

    This is a summary of a 5-year short-term study that evolved into 28 years of long-term research on the US Department of Agriculture, Forest Service's Fraser Experimental Forest in Colorado. The study was begun in 1982 by Forest Service Research Scientists Thomas H. Nicholls and Frank G. Hawksworth to determine the importance of mammal and bird vectors in the long-...

  2. Long-term phenotypic evolution of bacteria.

    PubMed

    Plata, Germán; Henry, Christopher S; Vitkup, Dennis

    2015-01-15

    For many decades comparative analyses of protein sequences and structures have been used to investigate fundamental principles of molecular evolution. In contrast, relatively little is known about the long-term evolution of species' phenotypic and genetic properties. This represents an important gap in our understanding of evolution, as exactly these proprieties play key roles in natural selection and adaptation to diverse environments. Here we perform a comparative analysis of bacterial growth and gene deletion phenotypes using hundreds of genome-scale metabolic models. Overall, bacterial phenotypic evolution can be described by a two-stage process with a rapid initial phenotypic diversification followed by a slow long-term exponential divergence. The observed average divergence trend, with approximately similar fractions of phenotypic properties changing per unit time, continues for billions of years. We experimentally confirm the predicted divergence trend using the phenotypic profiles of 40 diverse bacterial species across more than 60 growth conditions. Our analysis suggests that, at long evolutionary distances, gene essentiality is significantly more conserved than the ability to utilize different nutrients, while synthetic lethality is significantly less conserved. We also find that although a rapid phenotypic evolution is sometimes observed within the same species, a transition from high to low phenotypic similarity occurs primarily at the genus level.

  3. Dynamics of morphological evolution in experimental Escherichia coli populations.

    PubMed

    Cui, F; Yuan, B

    2016-08-30

    Here, we applied a two-stage clonal expansion model of morphological (cell-size) evolution to a long-term evolution experiment with Escherichia coli. Using this model, we derived the incidence function of the appearance of cell-size stability, the waiting time until this morphological stability, and the conditional and unconditional probabilities of morphological stability. After assessing the parameter values, we verified that the calculated waiting time was consistent with the experimental results, demonstrating the effectiveness of the two-stage model. According to the relative contributions of parameters to the incidence function and the waiting time, cell-size evolution is largely determined by the promotion rate, i.e., the clonal expansion rate of selectively advantageous organisms. This rate plays a prominent role in the evolution of cell size in experimental populations, whereas all other evolutionary forces were found to be less influential.

  4. Microstructural Evolution of Thor™ 115 Creep-Strength Enhanced Ferritic Steel

    NASA Astrophysics Data System (ADS)

    Ortolani, Matteo; D'Incau, Mirco; Ciancio, Regina; Scardi, Paolo

    2017-12-01

    A new ferritic steel branded as Thor™ 115 has been developed to enhance high-temperature resistance. The steel design combines an improved oxidation resistance with long-term microstructural stability. The new alloy, cast to different product forms such as plates and tubes, was extensively tested to assess the high-temperature time-dependent mechanical behavior (creep). The main strengthening mechanism is precipitation hardening by finely dispersed carbide and nitride phases. Information on the evolution of secondary phases and time-temperature-precipitation behavior of the alloy, essential to ensure long-term property stability, was obtained by scanning transmission electron microscopy with energy dispersive spectroscopy, and by X-ray Powder Diffraction on specimens aged up to 50,000 hours. A thermodynamic modeling supports presentation and evaluation of the experimental results. The evolution of precipitates in the new alloy confirms the retention of the strengthening by secondary phases, even after long-term exposure at high temperature. The deleterious conversion of nitrides into Z phase is shown to be in line with, or even slower than that of the comparable ASME grade 91 steel.

  5. Study of advanced techniques for determining the long-term performance of components

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A study was conducted of techniques having the capability of determining the performance and reliability of components for spacecraft liquid propulsion applications for long term missions. The study utilized two major approaches; improvement in the existing technology, and the evolution of new technology. The criteria established and methods evolved are applicable to valve components. Primary emphasis was placed on the propellants oxygen difluoride and diborane combination. The investigation included analysis, fabrication, and tests of experimental equipment to provide data and performance criteria.

  6. Experimental verification of long-term evolution radio transmissions over dual-polarization combined fiber and free-space optics optical infrastructures.

    PubMed

    Bohata, J; Zvanovec, S; Pesek, P; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2016-03-10

    This paper describes the experimental verification of the utilization of long-term evolution radio over fiber (RoF) and radio over free space optics (RoFSO) systems using dual-polarization signals for cloud radio access network applications determining the specific utilization limits. A number of free space optics configurations are proposed and investigated under different atmospheric turbulence regimes in order to recommend the best setup configuration. We show that the performance of the proposed link, based on the combination of RoF and RoFSO for 64 QAM at 2.6 GHz, is more affected by the turbulence based on the measured difference error vector magnitude value of 5.5%. It is further demonstrated the proposed systems can offer higher noise immunity under particular scenarios with the signal-to-noise ratio reliability limit of 5 dB in the radio frequency domain for RoF and 19.3 dB in the optical domain for a combination of RoF and RoFSO links.

  7. Experimental research on time-resolved evolution of cathode plasma expansion velocity in a long pulsed magnetically insulated coaxial diode

    NASA Astrophysics Data System (ADS)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Ge, Xingjun; Gao, Jingming

    2018-02-01

    Unlike planar diodes, separate research of the axial and radial plasma expansion velocities is difficult for magnetically insulated coaxial diodes. Time-resolved electrical diagnostic which is based on the voltage-ampere characteristics has been employed to study the temporal evolution of the axial and radial cathode plasma expansion velocities in a long pulsed magnetically insulated coaxial diode. Different from a planar diode with a "U" shaped profile of temporal velocity evolution, the temporal evolution trend of the axial expansion velocity is proved to be a "V" shaped profile. Apart from the suppression on the radial expansion velocity, the strong magnetic field is also conducive to slowing down the axial expansion velocity. Compared with the ordinary graphite cathode, the carbon velvet and graphite composite cathode showed superior characteristics as judged by the low plasma expansion velocity and long-term electrical stability as a promising result for applications where long-pulsed and reliable operation at high power is required.

  8. Ecological succession in long-term experimentally evolved biofilms produces synergistic communities

    PubMed Central

    Poltak, Steffen R; Cooper, Vaughn S

    2011-01-01

    Many biofilm populations are known for their exceptional biodiversity, but the relative contributions of the forces that could produce this diversity are poorly understood. This uncertainty grows in the old, well-established communities found on many natural surfaces and in long-term, chronic infections. If the prevailing interactions among species within biofilms are positive, productivity should increase with diversity, but if they tend towards competition or antagonism, productivity should decrease. Here, we describe the parallel evolution of synergistic communities derived from a clone of Burkholderia cenocepacia during ∼1500 generations of biofilm selection. This long-term evolution was enabled by a new experimental method that selects for daily cycles of colonization, biofilm assembly and dispersal. Each of the six replicate biofilm populations underwent a common pattern of adaptive morphological diversification, in which three ecologically distinct morphotypes arose in the same order of succession and persisted. In two focal populations, mixed communities were more productive than any monoculture and each variant benefited from the mixture. These gains in output resulted from asymmetrical cross-feeding between ecotypes and the expansion and partitioning of biofilm space that constructed new niches. Therefore, even in the absence of starting genetic variation, prolonged selection for surface colonization generates a dynamic of ecological succession that enhances productivity. PMID:20811470

  9. Ecological succession in long-term experimentally evolved biofilms produces synergistic communities.

    PubMed

    Poltak, Steffen R; Cooper, Vaughn S

    2011-03-01

    Many biofilm populations are known for their exceptional biodiversity, but the relative contributions of the forces that could produce this diversity are poorly understood. This uncertainty grows in the old, well-established communities found on many natural surfaces and in long-term, chronic infections. If the prevailing interactions among species within biofilms are positive, productivity should increase with diversity, but if they tend towards competition or antagonism, productivity should decrease. Here, we describe the parallel evolution of synergistic communities derived from a clone of Burkholderia cenocepacia during ~1500 generations of biofilm selection. This long-term evolution was enabled by a new experimental method that selects for daily cycles of colonization, biofilm assembly and dispersal. Each of the six replicate biofilm populations underwent a common pattern of adaptive morphological diversification, in which three ecologically distinct morphotypes arose in the same order of succession and persisted. In two focal populations, mixed communities were more productive than any monoculture and each variant benefited from the mixture. These gains in output resulted from asymmetrical cross-feeding between ecotypes and the expansion and partitioning of biofilm space that constructed new niches. Therefore, even in the absence of starting genetic variation, prolonged selection for surface colonization generates a dynamic of ecological succession that enhances productivity.

  10. Comment on ''Effects of long-term high CO2 exposure on two species of coccolithophore'' by Müller et al. (2010)

    NASA Astrophysics Data System (ADS)

    Collins, S.

    2010-07-01

    Populations can respond to environmental change over tens or hundreds of generations by shifts in phenotype that can be the result of a sustained physiological response, evolutionary (genetic) change, shifts in community composition, or some combination of these factors. Microbes evolve on human timescales, and evolution may contribute to marine phytoplankton responses to global change over the coming decades. However, it is still unknown whether evolutionary responses are likely to contribute significantly to phenotypic change in marine microbial communities under high pCO2 regimes or other aspects of global change. Recent work by Müller et al. (2010) highlights that long-term responses of marine microbes to global change must be empirically measured and the underlying cause of changes in phenotype explained. Here, I briefly discuss how tools from experimental microbial evolution may be used to detect and measure evolutionary responses in marine phytoplankton grown in high CO2 environments and other environments of interest. I outline why the particular biology of marine microbes makes conventional experimental evolution challenging right now and make a case that marine microbes are good candidates for the development of new model systems in experimental evolution. I suggest that "black box" frameworks that focus on partitioning phenotypic change, such as the Price equation, may be useful in cases where direct measurements of evolutionary responses alone are difficult, and that such approaches could be used to test hypotheses about the underlying causes of phenotypic shifts in marine microbe communities responding to global change.

  11. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Vikas

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated amore » basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.« less

  12. Results of studying creep and long-term strength of metals at the Institute of Mechanics at the Lomonosov Moscow State University (To Yu. N. Rabotnov's Anniversary)

    NASA Astrophysics Data System (ADS)

    Lokoshchenko, A. M.

    2014-01-01

    Basic results of experimental and theoretical research of creep processes and long-term strength of metals obtained by researchers of the Institute of Mechanics at the Lomonosov Moscow State University are presented. These results further develop and refine the kinetic theory of creep and long-duration strength proposed by Yu. N. Rabotnov. Some problems arising in formulating various types of kinetic equations and describing experimental data for materials that can be considered as statically homogeneous materials (in studying the process of deformation and rupture of such materials, there is no need to study the evolution of individual cracks) are considered. The main specific features of metal creep models at constant and variable stresses, in uniaxial and complex stress states, and with allowance for one or two damage parameters are described. Criterial and kinetic approaches used to determine long-term strength under conditions of a complex stress state are considered. Methods of modeling the metal behavior in an aggressive medium are described. A possibility of using these models for solving engineering problems is demonstrated.

  13. The functional basis of adaptive evolution in chemostats.

    PubMed

    Gresham, David; Hong, Jungeui

    2015-01-01

    Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  14. Using long-term experimental evolution to uncover the patterns and determinants of molecular evolution of an Escherichia coli natural isolate in the streptomycin treated mouse gut

    PubMed Central

    Ghalayini, Mohamed; Magnan, Mélanie; Glodt, Jérémy; Pintard, Coralie; Dion, Sara; Denamur, Erick; Tenaillon, Olivier

    2017-01-01

    Though microbial ecology of the gut is now a major focus of interest, little is known about the molecular determinants of microbial adaptation in the gut. Experimental evolution coupled with whole genome sequencing can provide insights of the adaptive process. In vitro experiments have revealed some conserved patterns: intermediate convergence, epistatic interactions between beneficial mutations and mutations in global regulators. To test the relevance of these patterns and to identify the selective pressures acting in vivo, we have performed a long-term adaptation of an E. coli natural isolate, the streptomycin resistant strain 536, in the digestive tract of streptomycin treated mice. After a year of evolution, a clone from 15 replicates was sequenced. Consistently with in vitro observations, the identified mutations revealed a strong pattern of convergence at the mutation, gene, operon and functional levels. Yet, the rate of molecular evolution was lower than in in vitro and no mutations in global regulators were recovered. More specific targets were observed: the dgo operon, involved in the galactonate pathway that improved growth on D-galactonate, and rluD and gidB, implicated in the maturation of the ribosomes, which mutations improved growth only in the presence of streptomycin. As in vitro, the non-random associations of mutations within the same pathways suggested a role of epistasis in shaping the adaptive landscape. Overall, we show that “evolve and sequence” approach coupled to an analysis of convergence, when applied to a natural isolate, can be used to study adaptation in vivo and uncover the specific selective pressures of that environment. PMID:27661780

  15. Practical aspects of protein co-evolution.

    PubMed

    Ochoa, David; Pazos, Florencio

    2014-01-01

    Co-evolution is a fundamental aspect of Evolutionary Theory. At the molecular level, co-evolutionary linkages between protein families have been used as indicators of protein interactions and functional relationships from long ago. Due to the complexity of the problem and the amount of genomic data required for these approaches to achieve good performances, it took a relatively long time from the appearance of the first ideas and concepts to the quotidian application of these approaches and their incorporation to the standard toolboxes of bioinformaticians and molecular biologists. Today, these methodologies are mature (both in terms of performance and usability/implementation), and the genomic information that feeds them large enough to allow their general application. This review tries to summarize the current landscape of co-evolution-based methodologies, with a strong emphasis on describing interesting cases where their application to important biological systems, alone or in combination with other computational and experimental approaches, allowed getting new insight into these.

  16. Practical aspects of protein co-evolution

    PubMed Central

    Ochoa, David; Pazos, Florencio

    2014-01-01

    Co-evolution is a fundamental aspect of Evolutionary Theory. At the molecular level, co-evolutionary linkages between protein families have been used as indicators of protein interactions and functional relationships from long ago. Due to the complexity of the problem and the amount of genomic data required for these approaches to achieve good performances, it took a relatively long time from the appearance of the first ideas and concepts to the quotidian application of these approaches and their incorporation to the standard toolboxes of bioinformaticians and molecular biologists. Today, these methodologies are mature (both in terms of performance and usability/implementation), and the genomic information that feeds them large enough to allow their general application. This review tries to summarize the current landscape of co-evolution-based methodologies, with a strong emphasis on describing interesting cases where their application to important biological systems, alone or in combination with other computational and experimental approaches, allowed getting new insight into these. PMID:25364721

  17. A case study in evolutionary contingency.

    PubMed

    Blount, Zachary D

    2016-08-01

    Biological evolution is a fundamentally historical phenomenon in which intertwined stochastic and deterministic processes shape lineages with long, continuous histories that exist in a changing world that has a history of its own. The degree to which these characteristics render evolution historically contingent, and evolutionary outcomes thereby unpredictably sensitive to history has been the subject of considerable debate in recent decades. Microbial evolution experiments have proven among the most fruitful means of empirically investigating the issue of historical contingency in evolution. One such experiment is the Escherichia coli Long-Term Evolution Experiment (LTEE), in which twelve populations founded from the same clone of E. coli have evolved in parallel under identical conditions. Aerobic growth on citrate (Cit(+)), a novel trait for E. coli, evolved in one of these populations after more than 30,000 generations. Experimental replays of this population's evolution from various points in its history showed that the Cit(+) trait was historically contingent upon earlier mutations that potentiated the trait by rendering it mutationally accessible. Here I review this case of evolutionary contingency and discuss what it implies about the importance of historical contingency arising from the core processes of evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianwei; Lian, Jie; Gao, Fei

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations;more » and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.« less

  19. De Novo Transcriptome Assembly and Identification of Gene Candidates for Rapid Evolution of Soil Al Tolerance in Anthoxanthum odoratum at the Long-Term Park Grass Experiment

    PubMed Central

    Gould, Billie; McCouch, Susan; Geber, Monica

    2015-01-01

    Studies of adaptation in the wild grass Anthoxanthum odoratum at the Park Grass Experiment (PGE) provided one of the earliest examples of rapid evolution in plants. Anthoxanthum has become locally adapted to differences in soil Al toxicity, which have developed there due to soil acidification from long-term experimental fertilizer treatments. In this study, we used transcriptome sequencing to identify Al stress responsive genes in Anthoxanhum and identify candidates among them for further molecular study of rapid Al tolerance evolution at the PGE. We examined the Al content of Anthoxanthum tissues and conducted RNA-sequencing of root tips, the primary site of Al induced damage. We found that despite its high tolerance Anthoxanthum is not an Al accumulating species. Genes similar to those involved in organic acid exudation (TaALMT1, ZmMATE), cell wall modification (OsSTAR1), and internal Al detoxification (OsNRAT1) in cultivated grasses were responsive to Al exposure. Expression of a large suite of novel loci was also triggered by early exposure to Al stress in roots. Three-hundred forty five transcripts were significantly more up- or down-regulated in tolerant vs. sensitive Anthoxanthum genotypes, providing important targets for future study of rapid evolution at the PGE. PMID:26148203

  20. De Novo Transcriptome Assembly and Identification of Gene Candidates for Rapid Evolution of Soil Al Tolerance in Anthoxanthum odoratum at the Long-Term Park Grass Experiment.

    PubMed

    Gould, Billie; McCouch, Susan; Geber, Monica

    2015-01-01

    Studies of adaptation in the wild grass Anthoxanthum odoratum at the Park Grass Experiment (PGE) provided one of the earliest examples of rapid evolution in plants. Anthoxanthum has become locally adapted to differences in soil Al toxicity, which have developed there due to soil acidification from long-term experimental fertilizer treatments. In this study, we used transcriptome sequencing to identify Al stress responsive genes in Anthoxanhum and identify candidates among them for further molecular study of rapid Al tolerance evolution at the PGE. We examined the Al content of Anthoxanthum tissues and conducted RNA-sequencing of root tips, the primary site of Al induced damage. We found that despite its high tolerance Anthoxanthum is not an Al accumulating species. Genes similar to those involved in organic acid exudation (TaALMT1, ZmMATE), cell wall modification (OsSTAR1), and internal Al detoxification (OsNRAT1) in cultivated grasses were responsive to Al exposure. Expression of a large suite of novel loci was also triggered by early exposure to Al stress in roots. Three-hundred forty five transcripts were significantly more up- or down-regulated in tolerant vs. sensitive Anthoxanthum genotypes, providing important targets for future study of rapid evolution at the PGE.

  1. An idealised study for the long term evolution of crescentic bars

    NASA Astrophysics Data System (ADS)

    Chen, W. L.; Dodd, N.; Tiessen, M. C. H.; Calvete, D.

    2018-01-01

    An idealised study that identifies the mechanisms in the long term evolution of crescentic bar systems in nature is presented. Growth to finite amplitude (i.e., equilibration, sometimes referred to as saturation) and higher harmonic interaction are hypothesised to be the leading nonlinear effects in long-term evolution of these systems. These nonlinear effects are added to a linear stability model and used to predict crescentic bar development along a beach in Duck, North Carolina (USA) over a 2-month period. The equilibration prolongs the development of bed patterns, thus allowing the long term evolution. Higher harmonic interaction enables the amplitude to be transferred from longer to shorter lengthscales, which leads to the dominance of shorter lengthscales in latter post-storm stages, as observed at Duck. The comparison with observations indicates the importance of higher harmonic interaction in the development of nearshore crescentic bar systems in nature. Additionally, it is concluded that these nonlinear effects should be included in models simulating the development of different bed patterns, and that this points a way forward for long-term morphodynamical modelling in general.

  2. Sublethal Ciprofloxacin Treatment Leads to Rapid Development of High-Level Ciprofloxacin Resistance during Long-Term Experimental Evolution of Pseudomonas aeruginosa

    PubMed Central

    Jørgensen, Karin Meinike; Wassermann, Tina; Jensen, Peter Østrup; Hengzuang, Wang; Molin, Søren; Høiby, Niels

    2013-01-01

    The dynamics of occurrence and the genetic basis of ciprofloxacin resistance were studied in a long-term evolution experiment (940 generations) in wild-type, reference strain (PAO1) and hypermutable (PAOΔmutS and PAOMY-Mgm) P. aeruginosa populations continuously exposed to sub-MICs (1/4) of ciprofloxacin. A rapid occurrence of ciprofloxacin-resistant mutants (MIC of ≥12 μg/ml, representing 100 times the MIC of the original population) were observed in all ciprofloxacin-exposed lineages of PAOΔmutS and PAOMY-Mgm populations after 100 and 170 generations, respectively, and in one of the PAO1 lineages after 240 generations. The genetic basis of resistance was mutations in gyrA (C248T and G259T) and gyrB (C1397A). Cross-resistance to beta-lactam antibiotics was observed in the bacterial populations that evolved during exposure to sublethal concentrations of ciprofloxacin. Our study shows that mutants with high-level ciprofloxacin resistance are selected in P. aeruginosa bacterial populations exposed to sub-MICs of ciprofloxacin. This can have implications for the long-term persistence of resistant bacteria and spread of antibiotic resistance by exposure of commensal bacterial flora to low antibiotic concentrations. PMID:23774442

  3. Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment

    PubMed Central

    Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M.; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M.; Gómez, Jordi; Gastaminza, Pablo

    2017-01-01

    ABSTRACT Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments. PMID:28275194

  4. Long-Term Research in Ecology and Evolution (LTREE): 2015 survey data.

    PubMed

    Bradford, Mark A; Leiserowitz, Anthony; Feinberg, Geoffrey; Rosenthal, Seth A; Lau, Jennifer A

    2017-11-01

    To systematically assess views on contributions and future activities for long-term research in ecology and evolution (LTREE), we conducted and here provide data responses and associated metadata for a survey of ecological and evolutionary scientists. The survey objectives were to: (1) Identify and prioritize research questions that are important to address through long-term, ecological field experiments; and (2) understand the role that these experiments might play in generating and applying ecological and evolutionary knowledge. The survey was developed adhering to the standards of the American Association for Public Opinion Research. It was administered online using Qualtrics Survey Software. Survey creation was a multi-step process, with questions and format developed and then revised with, for example, input from an external advisory committee comprising senior and junior ecological and evolutionary researchers. The final questionnaire was released to ~100 colleagues to ensure functionality and then fielded 2 d later (January 7 th , 2015). Two professional societies distributed it to their membership, including the Ecological Society of America, and it was posted to three list serves. The questionnaire was available through February 8th 2015 and completed by 1,179 respondents. The distribution approach targeted practicing ecologists and evolutionary biologists in the U.S. Quantitative (both ordinal and categorical) closed-ended questions used a predefined set of response categories, facilitating direct comparison across all respondents. Qualitative, open-ended questions, provided respondents the opportunity to develop their own answers. We employed quantitative questions to score views on the extent to which long-term experimental research has contributed to understanding in ecology and evolutionary biology; its role compared to other approaches (e.g., short-term experiments); justifications for and caveats to long-term experiments; and the relative importance of incentives for conducting long-term research. Qualitative questions were used to assess community views on the most important topics and questions for long-term research to address, and primary incentives and challenges to realizing this work. Finally, demographic data were collected to determine if views were conditional on such things as years of experience and field of expertise. The final questionnaire and all responses are provided for unrestricted use. © 2017 by the Ecological Society of America.

  5. An incoherent feedforward loop facilitates adaptive tuning of gene expression.

    PubMed

    Hong, Jungeui; Brandt, Nathan; Abdul-Rahman, Farah; Yang, Ally; Hughes, Tim; Gresham, David

    2018-04-05

    We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression. © 2018, Hong et al.

  6. Experimental Evolution of Antibiotic Resistance in Bacteria

    ERIC Educational Resources Information Center

    Krist, Amy C.; Showsh, Sasha A.

    2007-01-01

    Evolution is typically measured as a change in allele or genotype frequencies over one or more generations. Consequently, evolution is difficult to show experimentally in a semester-long lab course because most organisms have longer generation times than 15 weeks. In this article, the authors present an experiment to demonstrate and study…

  7. Social evolution and genetic interactions in the short and long term.

    PubMed

    Van Cleve, Jeremy

    2015-08-01

    The evolution of social traits remains one of the most fascinating and feisty topics in evolutionary biology even after half a century of theoretical research. W.D. Hamilton shaped much of the field initially with his 1964 papers that laid out the foundation for understanding the effect of genetic relatedness on the evolution of social behavior. Early theoretical investigations revealed two critical assumptions required for Hamilton's rule to hold in dynamical models: weak selection and additive genetic interactions. However, only recently have analytical approaches from population genetics and evolutionary game theory developed sufficiently so that social evolution can be studied under the joint action of selection, mutation, and genetic drift. We review how these approaches suggest two timescales for evolution under weak mutation: (i) a short-term timescale where evolution occurs between a finite set of alleles, and (ii) a long-term timescale where a continuum of alleles are possible and populations evolve continuously from one monomorphic trait to another. We show how Hamilton's rule emerges from the short-term analysis under additivity and how non-additive genetic interactions can be accounted for more generally. This short-term approach reproduces, synthesizes, and generalizes many previous results including the one-third law from evolutionary game theory and risk dominance from economic game theory. Using the long-term approach, we illustrate how trait evolution can be described with a diffusion equation that is a stochastic analogue of the canonical equation of adaptive dynamics. Peaks in the stationary distribution of the diffusion capture classic notions of convergence stability from evolutionary game theory and generally depend on the additive genetic interactions inherent in Hamilton's rule. Surprisingly, the peaks of the long-term stationary distribution can predict the effects of simple kinds of non-additive interactions. Additionally, the peaks capture both weak and strong effects of social payoffs in a manner difficult to replicate with the short-term approach. Together, the results from the short and long-term approaches suggest both how Hamilton's insight may be robust in unexpected ways and how current analytical approaches can expand our understanding of social evolution far beyond Hamilton's original work. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. The Landscape Evolution Observatory: a large-scale controllable infrastructure to study coupled Earth-surface processes

    USGS Publications Warehouse

    Pangle, Luke A.; DeLong, Stephen B.; Abramson, Nate; Adams, John; Barron-Gafford, Greg A.; Breshears, David D.; Brooks, Paul D.; Chorover, Jon; Dietrich, William E.; Dontsova, Katerina; Durcik, Matej; Espeleta, Javier; Ferré, T.P.A.; Ferriere, Regis; Henderson, Whitney; Hunt, Edward A.; Huxman, Travis E.; Millar, David; Murphy, Brendan; Niu, Guo-Yue; Pavao-Zuckerman, Mitch; Pelletier, Jon D.; Rasmussen, Craig; Ruiz, Joaquin; Saleska, Scott; Schaap, Marcel; Sibayan, Michael; Troch, Peter A.; Tuller, Markus; van Haren, Joost; Zeng, Xubin

    2015-01-01

    Zero-order drainage basins, and their constituent hillslopes, are the fundamental geomorphic unit comprising much of Earth's uplands. The convergent topography of these landscapes generates spatially variable substrate and moisture content, facilitating biological diversity and influencing how the landscape filters precipitation and sequesters atmospheric carbon dioxide. In light of these significant ecosystem services, refining our understanding of how these functions are affected by landscape evolution, weather variability, and long-term climate change is imperative. In this paper we introduce the Landscape Evolution Observatory (LEO): a large-scale controllable infrastructure consisting of three replicated artificial landscapes (each 330 m2 surface area) within the climate-controlled Biosphere 2 facility in Arizona, USA. At LEO, experimental manipulation of rainfall, air temperature, relative humidity, and wind speed are possible at unprecedented scale. The Landscape Evolution Observatory was designed as a community resource to advance understanding of how topography, physical and chemical properties of soil, and biological communities coevolve, and how this coevolution affects water, carbon, and energy cycles at multiple spatial scales. With well-defined boundary conditions and an extensive network of sensors and samplers, LEO enables an iterative scientific approach that includes numerical model development and virtual experimentation, physical experimentation, data analysis, and model refinement. We plan to engage the broader scientific community through public dissemination of data from LEO, collaborative experimental design, and community-based model development.

  9. Chromosome rearrangements and the evolution of genome structuring and adaptability.

    PubMed

    Crombach, Anton; Hogeweg, Paulien

    2007-05-01

    Eukaryotes appear to evolve by micro and macro rearrangements. This is observed not only for long-term evolutionary adaptation, but also in short-term experimental evolution of yeast, Saccharomyces cerevisiae. Moreover, based on these and other experiments it has been postulated that repeat elements, retroposons for example, mediate such events. We study an evolutionary model in which genomes with retroposons and a breaking/repair mechanism are subjected to a changing environment. We show that retroposon-mediated rearrangements can be a beneficial mutational operator for short-term adaptations to a new environment. But simply having the ability of rearranging chromosomes does not imply an advantage over genomes in which only single-gene insertions and deletions occur. Instead, a structuring of the genome is needed: genes that need to be amplified (or deleted) in a new environment have to cluster. We show that genomes hosting retroposons, starting with a random order of genes, will in the long run become organized, which enables (fast) rearrangement-based adaptations to the environment. In other words, our model provides a "proof of principle" that genomes can structure themselves in order to increase the beneficial effect of chromosome rearrangements.

  10. The long-term evolution of known resonant trans-Neptunian objects

    NASA Astrophysics Data System (ADS)

    Saillenfest, M.; Lari, G.

    2017-07-01

    Aims: Numerous trans-Neptunian objects are known to be in mean-motion resonance with Neptune. We aim to describe their long-term orbital evolution (both past and future) by means of a one-degree-of-freedom secular model. In this paper, we focus only on objects with a semi-major axis larger than 50 astronomical units (au). Methods: For each resonant object considered, a 500 000-year numerical integration is performed. The output is digitally filtered to get the parameters of the resonant secular model. Their long-term (Giga-year) orbital evolution is then represented by the level curves of the secular Hamiltonian. Results: For the majority of objects considered, the mean-motion resonance has little impact on the long-term trajectories (the secular dynamics is similar to a non-resonant one). However, a subset of objects is strongly affected by the resonance, producing moderately-high-amplitude oscillations of the perihelion distance and/or libration of the argument of perihelion around a fixed centre. Moreover, the high perihelion distance of the object 2015 FJ345 is plainly explained by long-term resonant dynamics, allowing us to also deduce its orbital elements at the time of capture in resonance (at least 15 million years ago). The same type of past evolution is expected for 2014 FZ71.

  11. Microstructure-sensitive Crystal Viscoplasticity for Ni-base Superalloys Targeting Long-term Creep-Fatigue Interaction Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Richard W.

    The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationshipmore » between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.« less

  12. Microstructure-sensitive Crystal Viscoelasticity for Ni-base Superalloys Targeting Long-term Creep-Fatigue Interaction Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neu, Richard W

    The aim of this project is to develop a microstructure-sensitive crystal viscoplasticity (CVP) model for single-crystal Ni-base superalloys to model the behavior of the material and components in the hot gas path sections of industrial gas turbines (IGT). Microstructure degradation associated with aging critical to predicting long-term creep-fatigue interactions will be embedded into the model through the γ' precipitate morphology evolution by coupling the coarsening drivers and kinetics into the constitutive equations of the CVP model. Model parameters will be determined using new experimental protocols that involve systematically artificially aging the alloy under different stress conditions to determine the relationshipmore » between the size and morphology g' precipitates on the creep and thermomechanical fatigue response.« less

  13. Short- versus long-term responses to changing CO2 in a coastal dinoflagellate bloom: implications for interspecific competitive interactions and community structure.

    PubMed

    Tatters, Avery O; Schnetzer, Astrid; Fu, Feixue; Lie, Alle Y A; Caron, David A; Hutchins, David A

    2013-07-01

    Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 . © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  14. Revealing the long-term landscape evolution of the South Atlantic passive continental margin, Brazil and Namibia, by thermokinematic numerical modeling using the software code Pecube.

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Glasmacher, Ulrich Anton; Hackspacher, Peter

    2015-04-01

    The aim of the research is to quantify the long-term landscape evolution of the South Atlantic passive continental margin (SAPCM) in SE-Brazil and NW-Namibia. Excellent onshore outcrop conditions and complete rift to post-rift archives between Sao Paulo and Porto Alegre and in the transition from Namibia to Angola (onshore Walvis ridge) allow a high precision quantification of exhumation, and uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate the published and partly published thermochronological data from Brazil and Namibia, and test lately published new concepts on causes of long-term landscape evolution at rifted margins. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE1,2 and FastScape3). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 2. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 3. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.

  15. Search for clues of life or habitability at Mars: laboratory simulation of the evolution of organic molecules at the surface of Mars

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Szopa, Cyril; Coll, Patrice; Jaber, Maguy; Georgelin, Thomas; Lambert, Jean-Francois; Stalport, Fabien

    Several lines of evidence suggest that early Mars offered favorable conditions for long-term sustaining water. As a consequence, we can assume that in those days, endogenous chemical processes, or even primitive life, may have produced organic matter on Mars. Moreover, exogenous delivery from small bodies or dust particles is likely to have brought fresh organic molecules to the surface of Mars until now. Organic matter is therefore expected to be present at the surface/subsurface of the planet. The search for these organic relics is one of the main objectives of Mars exploration missions. But current environmental conditions at the surface - UV radiation, oxidants and energetic particles - can generate physico-chemical processes that may induce organic molecules evolution. Here we present results of laboratory investigations dedicated to monitor qualitative and quantitative evolutions of several organic molecules under simulated Martian surface ultraviolet incident light, mean ground temperature and pressure, using the Mars Organic Molecules Irradiation and Evolution setup (1) . For each organic molecule studied, the nature of the evolution products (solid or gaseous) and the kinetic parameters (extrapolated half-life at Mars, quantum yields) were experimentally determined. The results show that when exposed to UV radiation, specific organic molecules lead to the formation of solid residues, probably of macromolecular nature, which could reach long term stability. On the other hand, the study of the evolution of molecules in presence of nontronite, a clay mineral detected at the surface of Mars, highlights a strong protective effect of the clay reducing dissociation rates for some molecules, whereas a possible catalytic effect is tentatively observed for one studied molecule. These results are essential to support the analyses performed in situ during the past, current and future exploration missions. Moreover, the experimentally determined kinetic parameters provide new inputs for numerical modeling of current reservoirs of organic molecules on Mars. (1) O. Poch et al., Planetary and Space Science 85, 188-197, http://dx.doi.org/10.1016/j.pss.2013.06.013

  16. Periodic collapse and long-time evolution of strong Langmuir turbulence

    NASA Astrophysics Data System (ADS)

    Cheung, P. Y.; Wong, A. Y.

    1985-10-01

    Experimental measurements on the long-time evolution of strong Langmuir turbulence in a beam-plasma system reveal a picture of periodic, short bursts of Langmuir wave collapse instead of the existence of long-lived solitons. The remnants of density cavities from burnout cavitons are observed to curtail wave growth periodically, creating time intervals of low wave activity between successive cycles of wave collapse, and establishing three regimes of wave evolution.

  17. 'Enzyme Test Bench': A biochemical application of the multi-rate modeling

    NASA Astrophysics Data System (ADS)

    Rachinskiy, K.; Schultze, H.; Boy, M.; Büchs, J.

    2008-11-01

    In the expanding field of 'white biotechnology' enzymes are frequently applied to catalyze the biochemical reaction from a resource material to a valuable product. Evolutionary designed to catalyze the metabolism in any life form, they selectively accelerate complex reactions under physiological conditions. Modern techniques, such as directed evolution, have been developed to satisfy the increasing demand on enzymes. Applying these techniques together with rational protein design, we aim at improving of enzymes' activity, selectivity and stability. To tap the full potential of these techniques, it is essential to combine them with adequate screening methods. Nowadays a great number of high throughput colorimetric and fluorescent enzyme assays are applied to measure the initial enzyme activity with high throughput. However, the prediction of enzyme long term stability within short experiments is still a challenge. A new high throughput technique for enzyme characterization with specific attention to the long term stability, called 'Enzyme Test Bench', is presented. The concept of the Enzyme Test Bench consists of short term enzyme tests conducted under partly extreme conditions to predict the enzyme long term stability under moderate conditions. The technique is based on the mathematical modeling of temperature dependent enzyme activation and deactivation. Adapting the temperature profiles in sequential experiments by optimum non-linear experimental design, the long term deactivation effects can be purposefully accelerated and detected within hours. During the experiment the enzyme activity is measured online to estimate the model parameters from the obtained data. Thus, the enzyme activity and long term stability can be calculated as a function of temperature. The results of the characterization, based on micro liter format experiments of hours, are in good agreement with the results of long term experiments in 1L format. Thus, the new technique allows for both: the enzyme screening with regard to the long term stability and the choice of the optimal process temperature. The presented article gives a successful example for the application of multi-rate modeling, experimental design and parameter estimation within biochemical engineering. At the same time, it shows the limitations of the methods at the state of the art and addresses the current problems to the applied mathematics community.

  18. Carbon dioxide evolution rate as a method to monitor and control an aerobic biological waste treatment system

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Shuler, M. L.

    1986-01-01

    An experimental system was developed to study the microbial growth kinetic of an undefined mixed culture in an erobic biological waste treatment process. The experimental results were used to develop a mathematical model that can predict the performance of a bioreactor. The bioreactor will be used to regeneratively treat waste material which is expected to be generated during a long term manned space mission. Since the presence of insoluble particles in the chemically undefined complex media made estimating biomass very difficult in the real system, a clean system was devised to study the microbial growth from the soluble substrate.

  19. Experimental macroevolution†

    PubMed Central

    Bell, Graham

    2016-01-01

    The convergence of several disparate research programmes raises the possibility that the long-term evolutionary processes of innovation and radiation may become amenable to laboratory experimentation. Ancestors might be resurrected directly from naturally stored propagules or tissues, or indirectly from the expression of ancestral genes in contemporary genomes. New kinds of organisms might be evolved through artificial selection of major developmental genes. Adaptive radiation can be studied by mimicking major ecological transitions in the laboratory. All of these possibilities are subject to severe quantitative and qualitative limitations. In some cases, however, laboratory experiments may be capable of illuminating the processes responsible for the evolution of new kinds of organisms. PMID:26763705

  20. The origin and evolution of the neural crest

    PubMed Central

    Donoghue, Philip C. J.; Graham, Anthony; Kelsh, Robert N.

    2009-01-01

    Summary Many of the features that distinguish the vertebrates from other chordates are derived from the neural crest, and it has long been argued that the emergence of this multipotent embryonic population was a key innovation underpinning vertebrate evolution. More recently, however, a number of studies have suggested that the evolution of the neural crest was less sudden than previously believed. This has exposed the fact that neural crest, as evidenced by its repertoire of derivative cell types, has evolved through vertebrate evolution. In this light, attempts to derive a typological definition of neural crest, in terms of molecular signatures or networks, are unfounded. We propose a less restrictive, embryological definition of this cell type that facilitates, rather than precludes, investigating the evolution of neural crest. While the evolutionary origin of neural crest has attracted much attention, its subsequent evolution has received almost no attention and yet it is more readily open to experimental investigation and has greater relevance to understanding vertebrate evolution. Finally, we provide a brief outline of how the evolutionary emergence of neural crest potentiality may have proceeded, and how it may be investigated. PMID:18478530

  1. Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment.

    PubMed

    Moreno, Elena; Gallego, Isabel; Gregori, Josep; Lucía-Sanz, Adriana; Soria, María Eugenia; Castro, Victoria; Beach, Nathan M; Manrubia, Susanna; Quer, Josep; Esteban, Juan Ignacio; Rice, Charles M; Gómez, Jordi; Gastaminza, Pablo; Domingo, Esteban; Perales, Celia

    2017-05-15

    Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment. IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments. Copyright © 2017 American Society for Microbiology.

  2. Genetic Drift, Not Life History or RNAi, Determine Long-Term Evolution of Transposable Elements

    PubMed Central

    Szitenberg, Amir; Cha, Soyeon; Opperman, Charles H.; Bird, David M.; Blaxter, Mark L.; Lunt, David H.

    2016-01-01

    Abstract Transposable elements (TEs) are a major source of genome variation across the branches of life. Although TEs may play an adaptive role in their host’s genome, they are more often deleterious, and purifying selection is an important factor controlling their genomic loads. In contrast, life history, mating system, GC content, and RNAi pathways have been suggested to account for the disparity of TE loads in different species. Previous studies of fungal, plant, and animal genomes have reported conflicting results regarding the direction in which these genomic features drive TE evolution. Many of these studies have had limited power, however, because they studied taxonomically narrow systems, comparing only a limited number of phylogenetically independent contrasts, and did not address long-term effects on TE evolution. Here, we test the long-term determinants of TE evolution by comparing 42 nematode genomes spanning over 500 million years of diversification. This analysis includes numerous transitions between life history states, and RNAi pathways, and evaluates if these forces are sufficiently persistent to affect the long-term evolution of TE loads in eukaryotic genomes. Although we demonstrate statistical power to detect selection, we find no evidence that variation in these factors influence genomic TE loads across extended periods of time. In contrast, the effects of genetic drift appear to persist and control TE variation among species. We suggest that variation in the tested factors are largely inconsequential to the large differences in TE content observed between genomes, and only by these large-scale comparisons can we distinguish long-term and persistent effects from transient or random changes. PMID:27566762

  3. Extinction events can accelerate evolution.

    PubMed

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term.

  4. User Acceptance of Long-Term Evolution (LTE) Services: An Application of Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Park, Eunil; Kim, Ki Joon

    2013-01-01

    Purpose: The aim of this paper is to propose an integrated path model in order to explore user acceptance of long-term evolution (LTE) services by examining potential causal relationships between key psychological factors and user intention to use the services. Design/methodology/approach: Online survey data collected from 1,344 users are analysed…

  5. Escambia Experimental Forest: A Living Laboratory for Long Term Longleaf Pine Research

    Treesearch

    Charles K. McMahon

    2000-01-01

    Experimental Forests have been used for many years by research organizations as "living laboratories" where long-term research studies can be conducted. For forestry and related natural resources research, "long term" can often mean decades of continuous study before meaningful results can be obtained. The Escambia Experimental Forest was...

  6. Evolutionary model of stock markets

    NASA Astrophysics Data System (ADS)

    Kaldasch, Joachim

    2014-12-01

    The paper presents an evolutionary economic model for the price evolution of stocks. Treating a stock market as a self-organized system governed by a fast purchase process and slow variations of demand and supply the model suggests that the short term price distribution has the form a logistic (Laplace) distribution. The long term return can be described by Laplace-Gaussian mixture distributions. The long term mean price evolution is governed by a Walrus equation, which can be transformed into a replicator equation. This allows quantifying the evolutionary price competition between stocks. The theory suggests that stock prices scaled by the price over all stocks can be used to investigate long-term trends in a Fisher-Pry plot. The price competition that follows from the model is illustrated by examining the empirical long-term price trends of two stocks.

  7. A 12 year EDF study of concrete creep under uniaxial and biaxial loading

    DOE PAGES

    Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric; ...

    2017-11-04

    This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less

  8. A 12 year EDF study of concrete creep under uniaxial and biaxial loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charpin, Laurent; Le Pape, Yann; Coustabeau, Eric

    This paper presents a 12-year-long creep and shrinkage experimental campaign on cylindrical and prismatic concrete samples under uniaxial and biaxial stress, respectively. The motivation for the study is the need for predicting the delayed strains and the pre-stress loss of concrete containment buildings of nuclear power plants. Two subjects are central in this regard: the creep strain's long-term evolution and the creep Poisson's ratio. A greater understanding of these areas is necessary to ensure reliable predictions of the long-term behavior of the concrete containment buildings.Long-term basic creep appears to evolve as a logarithm function of time in the range ofmore » 3 to 10 years of testing. Similar trends are observed for drying creep, autogenous shrinkage, and drying shrinkage testing, which suggests that all delayed strains obtained using different loading and drying conditions originate from a common mechanism.The creep Poisson's ratio derived from the biaxial tests is approximately constant over time for both the basic and drying creep tests (creep strains corrected by the shrinkage strain).It is also shown that the biaxial non-drying samples undergo a significant increase in Young's modulus after 10 years.« less

  9. Beware batch culture: Seasonality and niche construction predicted to favor bacterial adaptive diversification

    PubMed Central

    Knibbe, Carole; Schneider, Dominique; Beslon, Guillaume

    2017-01-01

    Metabolic cross-feeding interactions between microbial strains are common in nature, and emerge during evolution experiments in the laboratory, even in homogeneous environments providing a single carbon source. In sympatry, when the environment is well-mixed, the reasons why emerging cross-feeding interactions may sometimes become stable and lead to monophyletic genotypic clusters occupying specific niches, named ecotypes, remain unclear. As an alternative to evolution experiments in the laboratory, we developed Evo2Sim, a multi-scale model of in silico experimental evolution, equipped with the whole tool case of experimental setups, competition assays, phylogenetic analysis, and, most importantly, allowing for evolvable ecological interactions. Digital organisms with an evolvable genome structure encoding an evolvable metabolic network evolved for tens of thousands of generations in environments mimicking the dynamics of real controlled environments, including chemostat or batch culture providing a single limiting resource. We show here that the evolution of stable cross-feeding interactions requires seasonal batch conditions. In this case, adaptive diversification events result in two stably co-existing ecotypes, with one feeding on the primary resource and the other on by-products. We show that the regularity of serial transfers is essential for the maintenance of the polymorphism, as it allows for at least two stable seasons and thus two temporal niches. A first season is externally generated by the transfer into fresh medium, while a second one is internally generated by niche construction as the provided nutrient is replaced by secreted by-products derived from bacterial growth. In chemostat conditions, even if cross-feeding interactions emerge, they are not stable on the long-term because fitter mutants eventually invade the whole population. We also show that the long-term evolution of the two stable ecotypes leads to character displacement, at the level of the metabolic network but also of the genome structure. This difference of genome structure between both ecotypes impacts the stability of the cross-feeding interaction, when the population is propagated in chemostat conditions. This study shows the crucial role played by seasonality in temporal niche partitioning and in promoting cross-feeding subgroups into stable ecotypes, a premise to sympatric speciation. PMID:28358919

  10. Best practices for germ-free derivation and gnotobiotic zebrafish husbandry

    PubMed Central

    Melancon, E.; De La Torre Canny, S. Gomez; Sichel, S.; Kelly, M.; Wiles, T.J.; Rawls, J.F.; Eisen, J.S.; Guillemin, K.

    2017-01-01

    All animals are ecosystems with resident microbial communities, referred to as microbiota, which play profound roles in host development, physiology, and evolution. Enabled by new DNA sequencing technologies, there is a burgeoning interest in animal–microbiota interactions, but dissecting the specific impacts of microbes on their hosts is experimentally challenging. Gnotobiology, the study of biological systems in which all members are known, enables precise experimental analysis of the necessity and sufficiency of microbes in animal biology by deriving animals germ-free (GF) and inoculating them with defined microbial lineages. Mammalian host models have long dominated gnotobiology, but we have recently adapted gnotobiotic approaches to the zebrafish (Danio rerio), an important aquatic model. Zebrafish offer several experimental attributes that enable rapid, large-scale gnotobiotic experimentation with high replication rates and exquisite optical resolution. Here we describe detailed protocols for three procedures that form the foundation of zebrafish gnotobiology: derivation of GF embryos, microbial association of GF animals, and long-term, GF husbandry. Our aim is to provide sufficient guidance in zebrafish gnotobiotic methodology to expand and enrich this exciting field of research. PMID:28129860

  11. Distributed Emulation in Support of Large Networks

    DTIC Science & Technology

    2016-06-01

    Provider LTE Long Term Evolution MB Megabyte MIPS Microprocessor without Interlocked Pipeline Stages MRT Multi-Threaded Routing Toolkit NPS Naval...environment, modifications to a network, protocol, or model can be executed – and the effects measured – without affecting real-world users or services...produce their results when analyzing performance of Long Term Evolution ( LTE ) gateways [3]. Many research scenarios allow problems to be represented

  12. Chaos and unpredictability in evolution.

    PubMed

    Doebeli, Michael; Ispolatov, Iaroslav

    2014-05-01

    The possibility of complicated dynamic behavior driven by nonlinear feedbacks in dynamical systems has revolutionized science in the latter part of the last century. Yet despite examples of complicated frequency dynamics, the possibility of long-term evolutionary chaos is rarely considered. The concept of "survival of the fittest" is central to much evolutionary thinking and embodies a perspective of evolution as a directional optimization process exhibiting simple, predictable dynamics. This perspective is adequate for simple scenarios, when frequency-independent selection acts on scalar phenotypes. However, in most organisms many phenotypic properties combine in complicated ways to determine ecological interactions, and hence frequency-dependent selection. Therefore, it is natural to consider models for evolutionary dynamics generated by frequency-dependent selection acting simultaneously on many different phenotypes. Here we show that complicated, chaotic dynamics of long-term evolutionary trajectories in phenotype space is very common in a large class of such models when the dimension of phenotype space is large, and when there are selective interactions between the phenotypic components. Our results suggest that the perspective of evolution as a process with simple, predictable dynamics covers only a small fragment of long-term evolution. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  13. Effects of initial iron corrosion rate on long-term performance of iron permeable reactive barriers: column experiments and numerical simulation.

    PubMed

    suk O, Jin; Jeen, Sung-Wook; Gillham, Robert W; Gui, Lai

    2009-01-26

    Column experiments and numerical simulation were conducted to test the hypothesis that iron material having a high corrosion rate is not beneficial for the long-term performance of iron permeable reactive barriers (PRBs) because of faster passivation of iron and greater porosity loss close to the influent face of the PRBs. Four iron materials (Connelly, Gotthart-Maier, Peerless, and ISPAT) were used for the column experiments, and the changes in reactivity toward cis-dichloroethene (cis-DCE) degradation in the presence of dissolved CaCO3 were evaluated. The experimental results showed that the difference in distribution of the accumulated precipitates, resulting from differences in iron corrosion rate, caused a difference in the migration rate of the cis-DCE profiles and a significant difference in the pattern of passivation, indicating a faster passivation in the region close to the influent end for the material having a higher corrosion rate. For the numerical simulation, the accumulation of secondary minerals and reactivity loss of iron were coupled using an empirically-derived relationship that was incorporated into a multi-component reactive transport model. The simulation results provided a reasonable representation of the evolution of iron reactivity toward cis-DCE treatment and the changes in geochemical conditions for each material, consistent with the observed data. The simulations for long-term performance were also conducted to further test the hypothesis and predict the differences in performance over a period of 40 years under typical groundwater conditions. The predictions showed that the cases of higher iron corrosion rates had earlier cis-DCE breakthrough and more reduction in porosity starting from near the influent face, due to more accumulation of carbonate minerals in that region. Therefore, both the experimental and simulation results appear to support the hypothesis and suggest that reactivity changes of iron materials resulting from evolution of geochemical conditions should be considered in the design of iron PRBs.

  14. Predicting geomorphic evolution through integration of numerical-model scenarios and topographic/bathymetric-survey updates

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Long, J.; Dalyander, S.; Thompson, D.; Miselis, J. L.

    2013-12-01

    Natural resource and hazard management of barrier islands requires an understanding of geomorphic changes associated with long-term processes and storms. Uncertainty exists in understanding how long-term processes interact with the geomorphic changes caused by storms and the resulting perturbations of the long-term evolution trajectories. We use high-resolution data sets to initialize and correct high-fidelity numerical simulations of oceanographic forcing and resulting barrier island evolution. We simulate two years of observed storms to determine the individual and cumulative impacts of these events. Results are separated into cross-shore and alongshore components of sediment transport and compared with observed topographic and bathymetric changes during these time periods. The discrete island change induced by these storms is integrated with previous knowledge of long-term net alongshore sediment transport to project island evolution. The approach has been developed and tested using data collected at the Chandeleur Island chain off the coast of Louisiana (USA). The simulation time period included impacts from tropical and winter storms, as well as a human-induced perturbation associated with construction of a sand berm along the island shoreline. The predictions and observations indicated that storm and long-term processes both contribute to the migration, lowering, and disintegration of the artificial berm and natural island. Further analysis will determine the relative importance of cross-shore and alongshore sediment transport processes and the dominant time scales that drive each of these processes and subsequent island morphologic response.

  15. Extinction Events Can Accelerate Evolution

    PubMed Central

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term. PMID:26266804

  16. Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

    PubMed Central

    Schlüter, Lothar; Lohbeck, Kai T.; Gröger, Joachim P.; Riebesell, Ulf; Reusch, Thorsten B. H.

    2016-01-01

    Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 μatm partial pressure of CO2 (Pco2)] relative to control treatments (ambient CO2, 400 μatm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2–adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses. PMID:27419227

  17. Temporal variations in the potential hydrological performance of extensive green roof systems

    NASA Astrophysics Data System (ADS)

    De-Ville, Simon; Menon, Manoj; Stovin, Virginia

    2018-03-01

    Existing literature provides contradictory information about variation in potential green roof hydrological performance over time. This study has evaluated a long-term hydrological monitoring record from a series of extensive green roof test beds to identify long-term evolutions and sub-annual (seasonal) variations in potential hydrological performance. Monitoring of nine differently-configured extensive green roof test beds took place over a period of 6 years in Sheffield, UK. Long-term evolutions and sub-annual trends in maximum potential retention performance were identified through physical monitoring of substrate field capacity over time. An independent evaluation of temporal variations in detention performance was undertaken through the fitting of reservoir-routing model parameters. Aggregation of the resulting retention and detention variations permitted the prediction of extensive green roof hydrological performance in response to a 1-in-30-year 1-h summer design storm for Sheffield, UK, which facilitated the comparison of multi and sub-annual hydrological performance variations. Sub-annual (seasonal) variation was found to be significantly greater than long-term evolution. Potential retention performance increased by up to 12% after 5-years, whilst the maximum sub-annual variation in potential retention was 27%. For vegetated roof configurations, a 4% long-term improvement was observed for detention performance, compared to a maximum 63% sub-annual variation. Consistent long-term reductions in detention performance were observed in unvegetated roof configurations, with a non-standard expanded-clay substrate experiencing a 45% reduction in peak attenuation over 5-years. Conventional roof configurations exhibit stable long-term hydrological performance, but are nonetheless subject to sub-annual variation.

  18. The risk of predation favors cooperation among breeding prey

    PubMed Central

    Krama, Tatjana; Berzins, Arnis; Rantala, Markus J

    2010-01-01

    Empirical studies have shown that animals often focus on short-term benefits under conditions of predation risk, which reduces the likelihood that they will cooperate with others. However, some theoretical studies predict that animals in adverse conditions should not avoid cooperation with their neighbors since it may decrease individual risks and increase long-term benefits of reciprocal help. We experimentally tested these two alternatives to find out whether increased predation risk enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behavior, among breeding pied flycatchers, Ficedula hypoleuca. Our results show that birds attended mobs initiated by their neighbors more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. This study demonstrates a positive impact of predation risk on cooperation in breeding songbirds, which might help to explain the emergence and evolution of cooperation. PMID:20714404

  19. Multi-Scale Modeling of the Gamma Radiolysis of Nitrate Solutions.

    PubMed

    Horne, Gregory P; Donoclift, Thomas A; Sims, Howard E; Orr, Robin M; Pimblott, Simon M

    2016-11-17

    A multiscale modeling approach has been developed for the extended time scale long-term radiolysis of aqueous systems. The approach uses a combination of stochastic track structure and track chemistry as well as deterministic homogeneous chemistry techniques and involves four key stages: radiation track structure simulation, the subsequent physicochemical processes, nonhomogeneous diffusion-reaction kinetic evolution, and homogeneous bulk chemistry modeling. The first three components model the physical and chemical evolution of an isolated radiation chemical track and provide radiolysis yields, within the extremely low dose isolated track paradigm, as the input parameters for a bulk deterministic chemistry model. This approach to radiation chemical modeling has been tested by comparison with the experimentally observed yield of nitrite from the gamma radiolysis of sodium nitrate solutions. This is a complex radiation chemical system which is strongly dependent on secondary reaction processes. The concentration of nitrite is not just dependent upon the evolution of radiation track chemistry and the scavenging of the hydrated electron and its precursors but also on the subsequent reactions of the products of these scavenging reactions with other water radiolysis products. Without the inclusion of intratrack chemistry, the deterministic component of the multiscale model is unable to correctly predict experimental data, highlighting the importance of intratrack radiation chemistry in the chemical evolution of the irradiated system.

  20. Impact of surrounding environment evolution on long-term gas flux measurements in a temperate mixed forest

    NASA Astrophysics Data System (ADS)

    Hurdebise, Quentin; Rixen, Toma; De Ligne, Anne; Vincke, Caroline; Heinesch, Bernard; Aubinet, Marc

    2016-04-01

    With the development of eddy covariance networks like Fluxnet, ICOS or NEON, long-term data series of carbon dioxide, water vapor and other gas exchanges between terrestrial ecosystems and atmosphere will become more and more numerous. However, long-term analyses of such exchanges require a good understanding of measurement conditions during the investigated period. Independently of climate drivers, measurements may indeed be influenced by measurement conditions themselves subjected to long-term variability due to vegetation growth or set-up changes. The present research refers to the Vielsalm Terrestrial Observatory (VTO) where fluxes of momentum, carbon dioxide, latent and sensible heat have been continuously measured by eddy covariance during twenty years. VTO is an ICOS site installed in a mixed forest (beech, silver fir, Douglas fir, Norway spruce) in the Belgian Ardennes. A multidisciplinary approach was developed in order to investigate the spatial and temporal evolution of several site characteristics: -displacement height (d) and relative measurement height (z-d) were determined using a spectral approach that compared observed and theoretical cospectra; -turbulence statistics were analyzed in the context of Monin-Obukhov similarity theory; -tree height during the measurement period was obtained by combining tree height inventories, a LIDAR survey and tree growth models; -measurement footprint was determined by using a footprint model. A good agreement was found between the three first approaches. Results show notably that z-d was subjected to both temporal and spatial evolution. Temporal evolution resulted from continuous tree growth as well as from a tower raise, achieved in 2009. Spatial evolution, due to canopy heterogeneity, was also observed. The impacts of these changes on measurements are investigated. In particular, it was shown that they affect measurement footprint, flux spectral corrections and flux quality. All these effects must be taken into consideration in order to disentangle long-term flux evolutions due to climate or phenology from changes resulting from measurement set-up changes.

  1. Helium runaways in white dwarfs

    NASA Technical Reports Server (NTRS)

    Taam, R. E.

    1979-01-01

    The long term evolution of an accreting carbon white dwarf was studied from the onset of accretion to the ignition of helium. The variations in the details of the helium shell flash examined with respect to variations in mass accretion rate. For intermediate rates the helium flash is potentially explosive whereas for high rates the shell flash is relatively weak. The results are discussed in the context of the long term evolution of novae.

  2. Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff

    NASA Astrophysics Data System (ADS)

    Colombero, C.; Baillet, L.; Comina, C.; Jongmans, D.; Larose, E.; Valentin, J.; Vinciguerra, S.

    2018-06-01

    Monitoring the temporal evolution of resonance frequencies and velocity changes detected from ambient seismic noise recordings can help in recognizing reversible and irreversible modifications within unstable rock volumes. With this aim, the long-term ambient seismic noise data set acquired at the potentially unstable cliff of Madonna delSasso (NW Italian Alps) was analysed in this study, using both spectral analysis and cross-correlation techniques. Noise results were integrated and compared with direct displacement measurements and meteorological data, to understand the long-term evolution of the cliff. No irreversible modifications in the stability of the site were detected over the monitored period. Conversely, daily and seasonal air temperature fluctuations were found to control resonance frequency values, amplitudes and directivities and to induce reversible velocity changes within the fractured rock mass. The immediate modification in the noise parameters due to temperature fluctuations was interpreted as the result of rock mass thermal expansion and contraction, inducing variations in the contact stiffness along the fractures isolating two unstable compartments. Differences with previous case studies were highlighted in the long-term evolution of noise spectral amplitudes and directivities, due to the complex 3-D fracture setting of the site and to the combined effects of the two unstable compartments.

  3. Long-Term Interactions of Streamflow Generation and River Basin Morphology

    NASA Astrophysics Data System (ADS)

    Huang, X.; Niemann, J.

    2005-12-01

    It is well known that the spatial patterns and dynamics of streamflow generation processes depend on river basin topography, but the impact of streamflow generation processes on the long-term evolution of river basins has not drawn as much attention. Fluvial erosion processes are driven by streamflow, which can be produced by Horton runoff, Dunne runoff, and groundwater discharge. In this analysis, we hypothesize that the dominant streamflow generation process in a basin affects the spatial patterns of fluvial erosion and that the nature of these patterns changes for storm events with differing return periods. Furthermore, we hypothesize that differences in the erosion patterns modify the topography over the long term in a way that promotes and/or inhibits the other streamflow generation mechanisms. In order to test these hypotheses, a detailed hydrologic model is imbedded into an existing landscape evolution model. Precipitation events are simulated with a Poisson process and have random intensities and durations. The precipitation is partitioned between Horton runoff and infiltration to groundwater using a specified infiltration capacity. Groundwater flow is described by a two-dimensional Dupuit equation for a homogeneous, isotropic, unconfined aquifer with an irregular underlying impervious layer. Dunne runoff occurs when precipitation falls on locations where the water table reaches the land surface. The combined hydrologic/geomorphic model is applied to the WE-38 basin, an experimental watershed in Pennsylvania that has substantial available hydrologic data. First, the hydrologic model is calibrated to reproduce the observed streamflow for 1990 using the observed rainfall as the input. Then, the relative roles of Horton runoff, Dunne runoff, and groundwater discharge are controlled by varying the infiltration capacity of the soil. For each infiltration capacity, the hydrologic and geomorphic behavior of the current topography is analyzed and the long-term evolution of the basin is simulated. The results indicate that the topography can be divided into three types of locations (unsaturated, saturated, and intermittently saturated) which control the patterns of streamflow generation for events with different return periods. The results also indicate that the streamflow generation processes can produce different geomorphic effective events at upstream and downstream locations. The model also suggests that a topography dominated by groundwater discharge evolves over a long period of time to a shape that tends to inhibit the development of saturated areas and Dunne runoff.

  4. Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny.

    PubMed

    Crauste, Fabien; Mafille, Julien; Boucinha, Lilia; Djebali, Sophia; Gandrillon, Olivier; Marvel, Jacqueline; Arpin, Christophe

    2017-03-22

    Primary immune responses generate short-term effectors and long-term protective memory cells. The delineation of the genealogy linking naive, effector, and memory cells has been complicated by the lack of phenotypes discriminating effector from memory differentiation stages. Using transcriptomics and phenotypic analyses, we identify Bcl2 and Mki67 as a marker combination that enables the tracking of nascent memory cells within the effector phase. We then use a formal approach based on mathematical models describing the dynamics of population size evolution to test potential progeny links and demonstrate that most cells follow a linear naive→early effector→late effector→memory pathway. Moreover, our mathematical model allows long-term prediction of memory cell numbers from a few early experimental measurements. Our work thus provides a phenotypic means to identify effector and memory cells, as well as a mathematical framework to investigate their genealogy and to predict the outcome of immunization regimens in terms of memory cell numbers generated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Evolution of collaboration within the US long term ecological research network

    Treesearch

    Jeffrey C. Johnson; Robert R. Christian; James W. Brunt; Caleb R. Hickman; Robert B. Waide

    2010-01-01

    The US Long Term Ecological Research (LTER) program began in 1980 with the mission of addressing long-term ecological phenomena through research at individual sites, as well as comparative and synthetic activities among sites. We applied network science measures to assess how the LTER program has achieved its mission using intersite publications as the measure of...

  6. Natural history collections as windows on evolutionary processes.

    PubMed

    Holmes, Michael W; Hammond, Talisin T; Wogan, Guinevere O U; Walsh, Rachel E; LaBarbera, Katie; Wommack, Elizabeth A; Martins, Felipe M; Crawford, Jeremy C; Mack, Katya L; Bloch, Luke M; Nachman, Michael W

    2016-02-01

    Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the laboratory, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short timescales in response to presumably strong selective pressures. In some instances, evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. © 2016 John Wiley & Sons Ltd.

  7. Natural history collections as windows on evolutionary processes

    PubMed Central

    Holmes, Michael W.; Hammond, Talisin T.; Wogan, Guinevere O.U.; Walsh, Rachel E.; LaBarbera, Katie; Wommack, Elizabeth A.; Martins, Felipe M.; Crawford, Jeremy C.; Mack, Katya L.; Bloch, Luke M.; Nachman, Michael W.

    2016-01-01

    Natural history collections provide an immense record of biodiversity on Earth. These repositories have traditionally been used to address fundamental questions in biogeography, systematics, and conservation. However, they also hold the potential for studying evolution directly. While some of the best direct observations of evolution have come from long-term field studies or from experimental studies in the lab, natural history collections are providing new insights into evolutionary change in natural populations. By comparing phenotypic and genotypic changes in populations through time, natural history collections provide a window into evolutionary processes. Recent studies utilizing this approach have revealed some dramatic instances of phenotypic change over short time scales in response to presumably strong selective pressures. In some instances evolutionary change can be paired with environmental change, providing a context for potential selective forces. Moreover, in a few cases, the genetic basis of phenotypic change is well understood, allowing for insight into adaptive change at multiple levels. These kinds of studies open the door to a wide range of previously intractable questions by enabling the study of evolution through time, analogous to experimental studies in the laboratory, but amenable to a diversity of species over longer timescales in natural populations. PMID:26757135

  8. On the long term evolution of white dwarfs in cataclysmic variables and their recurrence times

    NASA Technical Reports Server (NTRS)

    Sion, E. M.; Starrfield, S. G.

    1985-01-01

    The relevance of the long term quasi-static evolution of accreting white dwarfs to the outbursts of Z Andromeda-like symbiotics; the masses and accretion rates of classical nova white dwarfs; and the observed properties of white dwarfs detected optically and with IUE in low M dot cataclysmic variables is discussed. A surface luminosity versus time plot for a massive, hot white dwarf bears a remarkable similarity to the outburst behavior of the hot blue source in Z Andromeda. The long term quasi-static models of hot accreting white dwarfs provide convenient constraints on the theoretically permissible parameters to give a dynamical (nova-like) outburst of classic white dwarfs.

  9. Sedimentary links between hillslopes and channels in a dryland basin

    NASA Astrophysics Data System (ADS)

    Hollings, R.

    2016-12-01

    The interface between hillslopes and channels is recognised as playing an important role in basin evolution and functioning. However, this interaction has not been described well in landscapes such as drylands, in which the diffuse process of runoff-driven sediment transport is important for sediment communication to the channel and to the basin outlet. This paper combines field measurements of surface sediment grain sizes in channels and on hillslopes with high resolution topography, >60 years of rainfall and runoff data from the Walnut Gulch Experimental Watershed (WGEW) in Arizona, and simple calculations of spatial stress distributions for various hydrologic scenarios to explore the potential for sediment to move from hillslopes to channels and through channels across the entire basin. Here we generalise the net movement of sediment in to or out of channel reaches, at high resolution in WGEW, as the balance between hillslope sediment supply to the channel and channel evacuation, in response to a variety of storms and discharge events. Our results show that downstream of small, unit source area watersheds, the balance in the channel often switches from being supply-dominated to being evacuation dominated for all scenarios. The low frequency but high discharge event in the channel seems to control the long term evolution of the channel, as stress is far greater for this scenario than other scenarios tested. The results draw on the high variability of rainfall characteristics to drive runoff events and so provides a physical explanation for long-term evolution of the channel network in drylands.

  10. Long-Term Evolution of the Sun and our Biosphere: Causes and Effects?

    NASA Astrophysics Data System (ADS)

    Des Marais, D. J.

    2000-05-01

    The course of early biological evolution felt the environmental consequences of changes in the solar output (discussed here), as well as long-term decreases in planetary heat flow and the flux of extraterrestrial impactors. A large, early UV flux fueled the photodissociation of atmospheric water vapor, sustaining a significant hydrogen flux to space. This flux caused Earth's crust to become oxidized, relative to its mantle. Accordingly, reduced gases and aqueous solutes that were erupted volcanically into the relatively more oxidized surface environment created sources of chemical redox energy for the origin and early evolution of life. Although the solar constant has increased some 30 percent over Earth's lifetime, oceans remained remarkably stable for more than 3.8 billion years. Thus a very effective climate regulation was probably achieved by decreasing over time the atmospheric inventories of greenhouse gases such as carbon dioxide and methane. Such decreases probably had major consequences for the biosphere. Substantial early marine bicarbonate and carbon dioxide inventories sustained abundant abiotic precipitation of carbonates, with consequences for the stability and habitability of key aqueous environments. A long-term decline in carbon dioxide levels increased the bioenergetic requirements for carbon dioxide as well as other aspects of the physiology of photosynthetic microorganisms. The long-term trend of global mean surface temperature is still debated, as is the role of the sun's evolution in that trend. Future increases in the solar constant will drive atmospheric carbon dioxide levels down further, challenging plants to cope with ever-dwindling concentrations of carbon substrates. Climate regulation will be achieved by modulating an increasing abundance of high-albedo water vapor clouds. Future biological evolution defies precise predictions, however it is certain that the sun's continuing evolution will play a key role.

  11. Long-Term Evolution of Email Networks: Statistical Regularities, Predictability and Stability of Social Behaviors.

    PubMed

    Godoy-Lorite, Antonia; Guimerà, Roger; Sales-Pardo, Marta

    2016-01-01

    In social networks, individuals constantly drop ties and replace them by new ones in a highly unpredictable fashion. This highly dynamical nature of social ties has important implications for processes such as the spread of information or of epidemics. Several studies have demonstrated the influence of a number of factors on the intricate microscopic process of tie replacement, but the macroscopic long-term effects of such changes remain largely unexplored. Here we investigate whether, despite the inherent randomness at the microscopic level, there are macroscopic statistical regularities in the long-term evolution of social networks. In particular, we analyze the email network of a large organization with over 1,000 individuals throughout four consecutive years. We find that, although the evolution of individual ties is highly unpredictable, the macro-evolution of social communication networks follows well-defined statistical patterns, characterized by exponentially decaying log-variations of the weight of social ties and of individuals' social strength. At the same time, we find that individuals have social signatures and communication strategies that are remarkably stable over the scale of several years.

  12. Long-term evolution of the western South Atlantic passive continental margin in a key area of SE Brazil revealed by thermokinematic numerical modeling using the software code Pecube

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Krob, Florian; Glasmacher, Ulrich A.; Hackspacher, Peter C.

    2016-04-01

    The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. Research will integrate published1 and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones1 are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. The climate-continental margin-mantle coupled process-response system is caused by the interaction between endogenous and exogenous forces, which are related to the mantle-process driven rift - drift - passive continental margin evolution of the South Atlantic, and the climate change since the Early/Late Cretaceous climate maximum. Special emphasis will be given to the influence of long-living transform faults such as the Florianopolis Fracture Zone (FFZ) on the long-term topography evolution of the SAPCM's. A long-term landscape evolution model with process rates will be achieved by thermo-kinematic 3-D modeling (software code PECUBE2,3 and FastScape4). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameter rates, and values can be constrained. The data and models will allow separating the exogenous and endogenous forces and their process rates. References 1. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244. 2. Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. 3. Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C. 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. 4. Braun, J. and Willett, S.D., 2013. A very efficient, O(n), implicit and parallel method to solve the basic stream power law equation governing fluvial incision and landscape evolution. Geomorphology, v.180-181, 170-179.

  13. Using Decision Structures for Policy Analysis in Software Product-line Evolution - A Case Study

    NASA Astrophysics Data System (ADS)

    Sarang, Nita; Sanglikar, Mukund A.

    Project management decisions are the primary basis for project success (or failure). Mostly, such decisions are based on an intuitive understanding of the underlying software engineering and management process and have a likelihood of being misjudged. Our problem domain is product-line evolution. We model the dynamics of the process by incorporating feedback loops appropriate to two decision structures: staffing policy, and the forces of growth associated with long-term software evolution. The model is executable and supports project managers to assess the long-term effects of possible actions. Our work also corroborates results from earlier studies of E-type systems, in particular the FEAST project and the rules for software evolution, planning and management.

  14. Wind-Driven Global Evolution of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    It has been realized in the recent years that magnetized disk winds disk- likely play a decisive role in the global evolution of protoplanetary disks protoplanetary evolution (PPDs). Motivated by recent local simulations local , we first describe a global magnetized disk wind model, from which wind-driven accretion rate -rate wind-driven and wind mass loss rate can be reliably estimated. Both rates are shown to strongly depend on the amount of magnetic flux magnetic threading the disk. Wind kinematics is also affected by thermodynamics in the wind zone (particularly far UV heating/ionization), and the mass loss process loss- can be better termed as "magneto-photoevaporation." We then construct a framework of PPD global evolution global that incorporates wind-driven and viscously driven accretion viscously-driven as well as wind mass loss. For typical PPD accretion rates, the required field strength would lead to wind mass loss rate at least comparable to disk accretion rate, and mass loss is most significant in the outer disk (beyond ˜ 10 AU). Finally, we discuss the transport of magnetic flux in PPDs, which largely governs the long-term evolution long-term of PPDs.

  15. Detection of early landscape evolution through controlled experimentation, data analysis, and numerical modeling at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, Peter A.; Pangle, Luke; Niu, Guo-Yue; Dontsova, Katerina; Barron-Gafford, Greg; van Haren, Joost; Pavao-Zuckerman, Mitch

    2014-05-01

    The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand that will undergo physical, chemical, and mineralogical changes over many years. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Embedded solution and gas samplers allow for quantification of biogeochemical processes, and facilitate the use of chemical tracers to study water movement at very high spatial resolutions. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. The rain systems are capable of creating long-term steady state conditions or running complex simulations. The precipitation water supply storage system is flexibly designed to facilitate addition of tracers at constant or time-varying rates for any of the three hillslopes. This presentation will discuss detection of early landscape evolution in terms of hydrological, geochemical and microbial processes through controlled experimentation, data analysis, and numerical modeling during the commissioning phase of the first hillslope at LEO.

  16. Lot A2 test, THC modelling of the bentonite buffer

    NASA Astrophysics Data System (ADS)

    Itälä, Aku; Olin, Markus; Lehikoinen, Jarmo

    Finnish spent nuclear fuel is planned to be disposed of deep in the crystalline bedrock of the Olkiluoto island. In such a repository, the role of the bentonite buffer is considered to be central. The initially unsaturated bentonite emplaced around a spent-fuel canister will become fully saturated by the groundwater from the host rock. In order to assess the long-term safety of a deep repository, it is essential to determine how temperature influences the chemical stability of bentonite. The aim of this study was to achieve an improved understanding of the factors governing the thermo-hydro-chemical evolution of the bentonite buffer subject to heat generation from the disposed fuel and in contact with a highly permeable rock fracture intersecting a canister deposition hole. TOUGHREACT was used to model a test known as the long-term test of buffer material adverse-2, which was conducted at the Äspö hard rock laboratory in Sweden. The results on the evolution of cation-exchange equilibria, bentonite porewater chemistry, mineralogy, and saturation of the buffer are presented and discussed. The calculated model results show similarity to the experimental results. In particular, the spatial differences in the saturation and porewater chemistry of the bentonite buffer were clearly visible in the model.

  17. Short- and Long-term Evolutionary Dynamics of Bacterial Insertion Sequences: Insights from Wolbachia Endosymbionts

    PubMed Central

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52–171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes. PMID:21940637

  18. Short- and long-term evolutionary dynamics of bacterial insertion sequences: insights from Wolbachia endosymbionts.

    PubMed

    Cerveau, Nicolas; Leclercq, Sébastien; Leroy, Elodie; Bouchon, Didier; Cordaux, Richard

    2011-01-01

    Transposable elements (TE) are one of the major driving forces of genome evolution, raising the question of the long-term dynamics underlying their evolutionary success. Long-term TE evolution can readily be reconstructed in eukaryotes, thanks to many degraded copies constituting genomic fossil records of past TE proliferations. By contrast, bacterial genomes usually experience high sequence turnover and short TE retention times, thereby obscuring ancient TE evolutionary patterns. We found that Wolbachia bacterial genomes contain 52-171 insertion sequence (IS) TEs. IS account for 11% of Wolbachia wRi, which is one of the highest IS genomic coverage reported in prokaryotes to date. We show that many IS groups are currently expanding in various Wolbachia genomes and that IS horizontal transfers are frequent among strains, which can explain the apparent synchronicity of these IS proliferations. Remarkably, >70% of Wolbachia IS are nonfunctional. They constitute an unusual bacterial IS genomic fossil record providing direct empirical evidence for a long-term IS evolutionary dynamics following successive periods of intense transpositional activity. Our results show that comprehensive IS annotations have the potential to provide new insights into prokaryote TE evolution and, more generally, prokaryote genome evolution. Indeed, the identification of an important IS genomic fossil record in Wolbachia demonstrates that IS elements are not always of recent origin, contrary to the conventional view of TE evolution in prokaryote genomes. Our results also raise the question whether the abundance of IS fossils is specific to Wolbachia or it may be a general, albeit overlooked, feature of prokaryote genomes.

  19. A new dimension in space experimentation

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Space experimentation, cosmic origins, the long-term effects of the space environment on living things, the long-term effects of space environment on materials and hardware, seeds in space, power generation in space, experimentation with crystals, and thermal control are discussed.

  20. Shear-Coupled Grain Growth and Texture Development in a Nanocrystalline Ni-Fe Alloy during Cold Rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li; Ungár, Tamás; Toth, Laszlo S.

    The evolution of texture, grain size, grain shape, dislocation and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni- Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear-coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution ofmore » the microstructure parameters. Grain-growth and texture evolution are shown to proceed by the shear-coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.« less

  1. Prediction of long-term transverse creep compliance in high-temperature IM7/LaRC-RP46 composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, F.G.; Potter, B.D.

    1994-12-31

    An experimental study is performed which predicts long-term tensile transverse creep compliance of high-temperature IM7/LaRC-RP46 composites from short-term creep and recovery tests. The short-term tests were conducted for various stress levels at various fixed temperatures. Predictive nonlinear viscoelastic model developed by Schapery and experimental procedure were used to predict the long-term results in terms of master curve extrapolated from short-term tests.

  2. Evolution of neuroleptic-induced extrapyramidal syndromes under long-term neuroleptic treatment.

    PubMed

    Modestin, Jiri; Wehrli, Marianne Vogt; Stephan, Patrik Lukas; Agarwalla, Puspa

    2008-03-01

    The long-term evolution of neuroleptic-induced extrapyramidal syndromes (EPS) of Parkinsonism, akathisia and tardive dyskinesia (TD) is still a controversial issue worth exploring. A total of 200 inpatients on regular typical neuroleptics (NL) and/or clozapine were assessed in 1995 with regard to the prevalence of EPS. Altogether, 83 patients could be reassessed in 2003/04 (63 had died) using the same methods. Strict definitions of EPS were used. The complete account of NL therapy the patients were prescribed between 1995 and 2003/04 (including atypical NL other than clozapine) was considered. The prevalences found in 1995 and 2003/04 were 17% and 29% for Parkinsonism, 14% and 14% for akathisia, and 24% and 13% for TD. There were considerable intra-individual fluctuations in EPS occurrence even when the overall prevalence rate remained the same. In intra-individual comparisons of EPS ratings on both assessments, there was a tendency for worsening of Parkinsonism to be associated with a current (2003/04) therapy with typical NL; worsening of akathisia was associated with a current therapy with atypical NL other than clozapine, amelioration of akathisia with a current therapy with clozapine; and, basically, there were no significant associations found between the changes in TD ratings and the long-term therapy with typical NL, clozapine, and other atypical NL, considering cumulative doses of all these drugs. In a multivariate analysis, there was a tendency for the long-term evolution of TD to depend on illness duration as the only variable. There are intra-individual fluctuations in all EPS over longer time periods. The choice of current NL therapy has an impact on Parkinsonism and akathisia. The long-term evolution of TD appears independent of NL prescriptions.

  3. Evaluating Quality Circles in U.S. Industry: A Feasibility Study.

    DTIC Science & Technology

    1982-06-30

    are the following: whether the ,.-~. .- "i. 24 circle is cost-effective, whether it deals with long-range rather than crisis problems, whether the...Chapter 4. The evolution of the Japanese instruments took into consideration the nature of the Japanese work setting. To assist in the transculturation ...crises rather than implementing long-term change? Name____________________ Short-term, Long-Term, Title______________________ crisis on-going oriented

  4. Experimental Forests and climate change: views of long-term employees on ecological change and the role of Experimental Forests and Ranges in understanding and adapting to climate change

    Treesearch

    Laurie Yung; Mason Bradbury; Daniel R. Williams

    2012-01-01

    In this project, we examined the views of 21 long-term employees on climate change in 14 Rocky Mountain Research Station Experimental Forests and Ranges (EFRs). EFRs were described by employees as uniquely positioned to advance knowledge of climate change impacts and adaptation strategies due to the research integrity they provide for long-term studies, the ability to...

  5. 76 FR 64104 - Notice To Solicit Comments and Hold Public Scoping Meetings on the Adoption of a Long-term...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... Long-term Experimental and Management Plan (LTEMP) for the operation of Glen Canyon Dam. This Federal... and Hold Public Scoping Meetings on the Adoption of a Long-term Experimental and Management Plan for the Operation of Glen Canyon Dam AGENCY: Bureau of Reclamation and National Park Service, Interior...

  6. Symbiosis and development: the hologenome concept.

    PubMed

    Rosenberg, Eugene; Zilber-Rosenberg, Ilana

    2011-03-01

    All animals and plants establish symbiotic relationships with microorganisms; often the combined genetic information of the diverse microbiota exceeds that of the host. How the genetic wealth of the microbiota affects all aspects of the holobiont's (host plus all of its associated microorganisms) fitness (adaptation, survival, development, growth and reproduction) and evolution is reviewed, using selected coral, insect, squid, plant, and human/mouse published experimental results. The data are discussed within the framework of the hologenome theory of evolution, which demonstrates that changes in environmental parameters, for example, diet, can cause rapid changes in the diverse microbiota, which not only can benefit the holobiont in the short term but also can be transmitted to offspring and lead to long lasting cooperations. As acquired characteristics (microbes) are heritable, consideration of the holobiont as a unit of selection in evolution leads to neo-Lamarckian principles within a Darwinian framework. The potential application of these principles can be seen in the growing fields of prebiotics and probiotics. Copyright © 2011 Wiley-Liss, Inc.

  7. Mutualists and antagonists drive among-population variation in selection and evolution of floral display in a perennial herb

    PubMed Central

    Ågren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan

    2013-01-01

    Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0–100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations. PMID:24145439

  8. Mutualists and antagonists drive among-population variation in selection and evolution of floral display in a perennial herb.

    PubMed

    Agren, Jon; Hellström, Frida; Toräng, Per; Ehrlén, Johan

    2013-11-05

    Spatial variation in the direction of selection drives the evolution of adaptive differentiation. However, few experimental studies have examined the relative importance of different environmental factors for variation in selection and evolutionary trajectories in natural populations. Here, we combine 8 y of observational data and field experiments to assess the relative importance of mutualistic and antagonistic interactions for spatial variation in selection and short-term evolution of a genetically based floral display dimorphism in the short-lived perennial herb Primula farinosa. Natural populations of this species include two floral morphs: long-scaped plants that present their flowers well above the ground and short-scaped plants with flowers positioned close to the ground. The direction and magnitude of selection on scape morph varied among populations, and so did the frequency of the short morph (median 19%, range 0-100%; n = 69 populations). A field experiment replicated at four sites demonstrated that variation in the strength of interactions with grazers and pollinators were responsible for among-population differences in relative fitness of the two morphs. Selection exerted by grazers favored the short-scaped morph, whereas pollinator-mediated selection favored the long-scaped morph. Moreover, variation in selection among natural populations was associated with differences in morph frequency change, and the experimental removal of grazers at nine sites significantly reduced the frequency of the short-scaped morph over 8 y. The results demonstrate that spatial variation in intensity of grazing and pollination produces a selection mosaic, and that changes in biotic interactions can trigger rapid genetic changes in natural plant populations.

  9. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli.

    PubMed

    Tazzyman, Samuel J; Hall, Alex R

    2015-03-17

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.

  10. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli

    PubMed Central

    Tazzyman, Samuel J; Hall, Alex R

    2015-01-01

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods. PMID:25268496

  11. Procedure for Adaptive Laboratory Evolution of Microorganisms Using a Chemostat.

    PubMed

    Jeong, Haeyoung; Lee, Sang J; Kim, Pil

    2016-09-20

    Natural evolution involves genetic diversity such as environmental change and a selection between small populations. Adaptive laboratory evolution (ALE) refers to the experimental situation in which evolution is observed using living organisms under controlled conditions and stressors; organisms are thereby artificially forced to make evolutionary changes. Microorganisms are subject to a variety of stressors in the environment and are capable of regulating certain stress-inducible proteins to increase their chances of survival. Naturally occurring spontaneous mutations bring about changes in a microorganism's genome that affect its chances of survival. Long-term exposure to chemostat culture provokes an accumulation of spontaneous mutations and renders the most adaptable strain dominant. Compared to the colony transfer and serial transfer methods, chemostat culture entails the highest number of cell divisions and, therefore, the highest number of diverse populations. Although chemostat culture for ALE requires more complicated culture devices, it is less labor intensive once the operation begins. Comparative genomic and transcriptome analyses of the adapted strain provide evolutionary clues as to how the stressors contribute to mutations that overcome the stress. The goal of the current paper is to bring about accelerated evolution of microorganisms under controlled laboratory conditions.

  12. Competitive fitness during feast and famine: how SOS DNA polymerases influence physiology and evolution in Escherichia coli.

    PubMed

    Corzett, Christopher H; Goodman, Myron F; Finkel, Steven E

    2013-06-01

    Escherichia coli DNA polymerases (Pol) II, IV, and V serve dual roles by facilitating efficient translesion DNA synthesis while simultaneously introducing genetic variation that can promote adaptive evolution. Here we show that these alternative polymerases are induced as cells transition from exponential to long-term stationary-phase growth in the absence of induction of the SOS regulon by external agents that damage DNA. By monitoring the relative fitness of isogenic mutant strains expressing only one alternative polymerase over time, spanning hours to weeks, we establish distinct growth phase-dependent hierarchies of polymerase mutant strain competitiveness. Pol II confers a significant physiological advantage by facilitating efficient replication and creating genetic diversity during periods of rapid growth. Pol IV and Pol V make the largest contributions to evolutionary fitness during long-term stationary phase. Consistent with their roles providing both a physiological and an adaptive advantage during stationary phase, the expression patterns of all three SOS polymerases change during the transition from log phase to long-term stationary phase. Compared to the alternative polymerases, Pol III transcription dominates during mid-exponential phase; however, its abundance decreases to <20% during long-term stationary phase. Pol IV transcription dominates as cells transition out of exponential phase into stationary phase and a burst of Pol V transcription is observed as cells transition from death phase to long-term stationary phase. These changes in alternative DNA polymerase transcription occur in the absence of SOS induction by exogenous agents and indicate that cell populations require appropriate expression of all three alternative DNA polymerases during exponential, stationary, and long-term stationary phases to attain optimal fitness and undergo adaptive evolution.

  13. A laboratory experiment simulating the dynamics of topographic relief: methodology and results

    NASA Astrophysics Data System (ADS)

    Crave, A.; Lague, D.; Davy, P.; Bonnet, S.; Laguionie, P.

    2002-12-01

    Theoretical analysis and numerical models of landscape evolution have advanced several scenarios for the long-term evolution of terrestrial topography. These scenarios require quantitative evaluation. Analyses of topography, sediment fluxes, and the physical mechanisms of erosion and sediment transport can provide some constraints on the range of plausible models. But in natural systems the boundary conditions (tectonic uplift, climate, base level) are often not well constrained and the spatial heterogeneity of substrate, climate, vegetation, and prevalent processes commonly confounds attempts at extrapolation of observations to longer timescales. In the laboratory, boundary conditions are known and heterogeneity and complexity can be controlled. An experimental approach can thus provide valuable constraints on the dynamics of geomorphic systems, provided that (1) the elementary processes are well calibrated and (2) the topography and sediment fluxes are sufficiently well documented. We have built an experimental setup of decimeter scale that is designed to develop a complete drainage network by the growth and propagation of erosion instabilities in response to tectonic and climatic perturbations. Uplift and precipitation rates can be changed over an order of magnitude. Telemetric lasers and 3D stereo-photography allow the precise quantification of the topographic evolution of the experimental surface. In order to calibrate the principal processes of erosion and transport we have used three approaches: (1) theoretical derivation of erosion laws deduced from the geometrical properties of experimental surfaces at steady-state under different rates of tectonic uplift; (2) comparison of the experimental transient dynamics with a numerical simulation model to test the validity of the predicted erosion laws; and (3) detailed analysis of particle detachment and transport in a millimeter sheet flow on a two-meter long flume under precisely controlled water discharge, slope and flow width. The analogy with real geomorphic systems is limited by the imperfect downscaling in both time and space of the experiments. However, these simple experiments have allowed us to probe (1) the importance of a threshold for particle mobilization to the relationship between steady-state elevation and uplift rate, (2) the role of initial drainage network organization in the transient dynamics of tectonically perturbed systems and (3) the sediment flux dynamics of climatically perturbed systems.

  14. Site productivity and diversity of the Middle Mountain long-term soil productivity study, West Virginia: Pre-experimental site characterization

    Treesearch

    Mary Beth Adams

    2018-01-01

    To better understand the impacts of a changing environment and interactions with forest management options for forest resources, including soil, large long-term experiments are required. Such experiments require careful documentation of reference or pre-experimental conditions. This publication describes the Middle Mountain Long-term Soil Productivity (LTSP) Study,...

  15. Forest Service Experimental Forests and long-term data sets: stories of their meaning to station directors

    Treesearch

    A.E. Lugo; B. Eav; G.S. Foster; M. Rains; J. Reaves; D.J. Stouder

    2014-01-01

    As Forest Service Research and Development worked to prepare this book reporting important results from long-term research conducted on U.S. Department of Agriculture Forest Service Experimental Forests and Ranges, the station directors added a chapter to highlight addditional accounts of long-term research, its benefits to land managers and policy makers, and lessons...

  16. Unraveling irradiation induced grain growth with in situ transmission electron microscopy and coordinated modeling

    DOE PAGES

    Bufford, D. C.; Abdeljawad, F. F.; Foiles, S. M.; ...

    2015-11-09

    Here, nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulatedmore » grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.« less

  17. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    PubMed Central

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-01-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean. PMID:26327191

  18. Irreversibly increased nitrogen fixation in Trichodesmium experimentally adapted to elevated carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hutchins, David A.; Walworth, Nathan G.; Webb, Eric A.; Saito, Mak A.; Moran, Dawn; McIlvin, Matthew R.; Gale, Jasmine; Fu, Fei-Xue

    2015-09-01

    Nitrogen fixation rates of the globally distributed, biogeochemically important marine cyanobacterium Trichodesmium increase under high carbon dioxide (CO2) levels in short-term studies due to physiological plasticity. However, its long-term adaptive responses to ongoing anthropogenic CO2 increases are unknown. Here we show that experimental evolution under extended selection at projected future elevated CO2 levels results in irreversible, large increases in nitrogen fixation and growth rates, even after being moved back to lower present day CO2 levels for hundreds of generations. This represents an unprecedented microbial evolutionary response, as reproductive fitness increases acquired in the selection environment are maintained after returning to the ancestral environment. Constitutive rate increases are accompanied by irreversible shifts in diel nitrogen fixation patterns, and increased activity of a potentially regulatory DNA methyltransferase enzyme. High CO2-selected cell lines also exhibit increased phosphorus-limited growth rates, suggesting a potential advantage for this keystone organism in a more nutrient-limited, acidified future ocean.

  19. Absolute Paleointensity Estimates using Combined Shaw and Pseudo-Thellier Experimental Protocols

    NASA Astrophysics Data System (ADS)

    Foucher, M. S.; Smirnov, A. V.

    2016-12-01

    Data on the long-term evolution of Earth's magnetic field intensity have a great potential to advance our understanding of many aspects of the Earth's evolution. However, paleointensity determination is one of the most challenging aspects of paleomagnetic research so the quantity and quality of existing paleointensity data remain limited, especially for older epochs. While the Thellier double-heating method remains to be the most commonly used paleointensity technique, its applicability is limited for many rocks that undergo magneto-mineralogical alteration during the successive heating steps required by the method. In order to reduce the probability of alteration, several alternative methods that involve a limited number of or no heating steps have been proposed. However, continued efforts are needed to better understand the physical foundations and relative efficiency of reduced/non-heating methods in recovering the true paleofield strength and to better constrain their calibration factors. We will present the results of our investigation of synthetic and natural magnetite-bearing samples using a combination of the LTD-DHT Shaw and pseudo-Thellier experimental protocols for absolute paleointensity estimation.

  20. X-Ray Enhancement and Long-term Evolution of Swift J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Benli, Onur; Çalışkan, Ş.; Ertan, Ü.; Alpar, M. A.; Trümper, J. E.; Kylafis, N. D.

    2013-12-01

    We investigate the X-ray enhancement and the long-term evolution of the recently discovered second "low-B magnetar" Swift J1822.3-1606 in the frame of the fallback disk model. During a soft gamma burst episode, the inner disk matter is pushed back to larger radii, forming a density gradient at the inner disk. Subsequent relaxation of the inner disk could account for the observed X-ray enhancement light curve of Swift J1822.3-1606. We obtain model fits to the X-ray data with basic disk parameters similar to those employed to explain the X-ray outburst light curves of other anomalous X-ray pulsars and soft gamma repeaters. The long period (8.4 s) of the neutron star can be reached by the effect of the disk torques in the long-term accretion phase ((1-3) × 105 yr). The currently ongoing X-ray enhancement could be due to a transient accretion epoch, or the source could still be in the accretion phase in quiescence. Considering these different possibilities, we determine the model curves that could represent the long-term rotational and the X-ray luminosity evolution of Swift J1822.3-1606, which constrain the strength of the magnetic dipole field to the range of (1-2) × 1012 G on the surface of the neutron star.

  1. The Role of Deformation Energetics in Long-Term Tectonic Modeling

    NASA Astrophysics Data System (ADS)

    Ahamed, S.; Choi, E.

    2017-12-01

    The deformation-related energy budget is usually considered in the simplest form or even entirely omitted from the energy balance equation. We derive a full energy balance equation that accounts not only for heat energy but also for mechanical (elastic, plastic and viscous) work. The derived equation is implemented in DES3D, an unstructured finite element solver for long-term tectonic deformation. We verify the implementation by comparing numerical solutions to the corresponding semi-analytic solutions in three benchmarks extended from the classical oedometer test. We also investigate the long-term effects of deformation energetics on the evolution of large offset normal faults. We find that the models considering the full energy balance equation tend to produce more secondary faults and an elongated core complex. Our results for the normal fault system confirm that persistent inelastic deformation has a significant impact on the long-term evolution of faults, motivating further exploration of the role of the full energy balance equation in other geodynamic systems.

  2. Phylomedicine: An evolutionary telescope to explore and diagnose the universe of disease mutations

    PubMed Central

    Kumar, Sudhir; Dudley, Joel T.; Filipski, Alan; Liu, Li

    2011-01-01

    Modern technologies have made the sequencing of personal genomes routine. They have revealed thousands of nonsynonymous (amino-acid altering) single nucleotide variants (nSNVs) of protein coding DNA per genome. What do these variants foretell about an individual’s predisposition to diseases? The experimental technologies required to carry out such evaluations at a genomic scale are not yet available. Fortunately, the process of natural selection has lent us an almost infinite set of tests in nature. During the long-term evolution, new mutations and existing variations have been evaluated for their biological consequences in countless species, and outcomes were readily revealed by multispecies genome comparisons. We review studies that have investigated evolutionary characteristics and in silico functional diagnoses of nSNVs found in thousands of disease-associated genes. We conclude that the patterns of long-term evolutionary conservation and permissible divergence are essential and instructive modalities for functional assessment of human genetic variations. PMID:21764165

  3. Rapid response of tidal channel networks to sea-level variations (Venice Lagoon, Italy)

    NASA Astrophysics Data System (ADS)

    Rizzetto, Federica; Tosi, Luigi

    2012-07-01

    The aim of the present paper is to examine the effects of long- and short-term sea-level fluctuations (i.e. relative sea-level rise and tides) on the geomorphologic evolution of modern tidal channels through the joint interpretation of channel modifications, the 1938-2010 yearly time series of relative sea-level rise, and the variations of strength and frequency of high tides which occurred in the same period. We analyzed a salt marsh area not particularly modified by human interventions, located in the northern Venice Lagoon, Italy. The availability of a long historical record of high-resolution aerial photographs provided us the opportunity to reconstruct in detail the evolution of the drainage patterns from 1938 to the present. Results from our analyses gave us information about the degree of control of long- and short-term sea-level fluctuations on planimetric development of tidal channels and provided demonstration of the rapid response of the drainage network to these oscillations. We found that both relative sea-level rise and high tide frequency greatly influenced salt marsh margin shift and meander evolution of tidal channels in the long term, but short-term sinuosity changes of creeks were often also closely related to tide variations. Channels nearer the marsh margin were more exposed to the action of the increasing tides.

  4. Dynamics of Braided Channels, Bars, and Associated Deposits Under Experimental Density Currents

    NASA Astrophysics Data System (ADS)

    Limaye, A. B. S.; Jean-Louis, G.; Paola, C.

    2015-12-01

    Turbidity currents are the principal agents that transfer clastic sediment from continental margins to the deep ocean. The extensive sedimentary deposits that result can record influences from fluvial transport, ocean currents, and seafloor bathymetry; decoding these controls is key to understanding long-term continental denudation and the formation of hydrocarbon reservoirs. Experimental turbidity currents often use pre-formed, single-thread channels, but more recent experiments and seafloor observations suggest that braided channels also develop in submarine environments. Yet controls on the formation of submarine braided channels and relationships between these channels and stratigraphic evolution remain largely untested. We have conducted a series of experiments to determine the conditions conducive to forming braided submarine channels, and to relate channel geometry and kinematics to deposit architecture. Dissolved salt supplies the excess density of the experimental turbidity currents, which transport plastic, sand-sized sediment as bedload across a test section two meters long and one meter wide. Our experiments indicate that braided channels can form as constructional features without prior erosion for a range of input water and sediment fluxes. Channel migration, avulsion, and aggradation construct sedimentary deposits with bars at a variety of scales. Bar geometry and channel kinematics are qualitatively similar under subaerial and subaqueous experiments with other parameters fixed. We will present quantitative analyses of the relationships between channel geometry and mobility and deposit architecture, at scales from individual bars to the entire deposit, and compare these results to control experiments with subaerial braiding. These experimental results suggest parallels between subaerial and subaqueous braiding, and help to constrain forward models for stratigraphic evolution and inverse methods for estimating flow conditions from turbidites.

  5. A network of experimental forests and ranges: Providing soil solutions for a changing world

    Treesearch

    Mary Beth Adams

    2010-01-01

    The network of experimental forests and ranges of the USDA Forest Service represents significant opportunities to provide soil solutions to critical issues of a changing world. This network of 81 experimental forests and ranges encompasses broad geographic, biological, climatic and physical scales, and includes long-term data sets, and long-term experimental...

  6. Carbides Evolution in a Ni-16Mo-7Cr Base Superalloy during Long-Term Thermal Exposure

    PubMed Central

    Han, Fenfen; Jiang, Li; Ye, Xiangxi; Lu, Yanling; Li, Zhijun; Zhou, Xingtai

    2017-01-01

    The effect of long-term thermal exposure on the carbide evolution in a Ni-16Mo-7Cr base superalloy was investigated. The results show that M12C carbides are mainly precipitated on the grain boundaries during thermal exposure, and the primary massive M6C carbides can be completely transformed to M12C carbides in situ at temperatures above 750 °C for long-term thermal exposure. The transformation from M6C carbides to M12C carbides is attributed to the release of C atoms from M6C, which results in the morphology changes of massive carbides, and stabilization of the sizes of M12C carbides precipitated on the grain boundaries. PMID:28772881

  7. Unpredictable evolution in a 30-year study of Darwin's finches.

    PubMed

    Grant, Peter R; Grant, B Rosemary

    2002-04-26

    Evolution can be predicted in the short term from a knowledge of selection and inheritance. However, in the long term evolution is unpredictable because environments, which determine the directions and magnitudes of selection coefficients, fluctuate unpredictably. These two features of evolution, the predictable and unpredictable, are demonstrated in a study of two populations of Darwin's finches on the Galápagos island of Daphne Major. From 1972 to 2001, Geospiza fortis (medium ground finch) and Geospiza scandens (cactus finch) changed several times in body size and two beak traits. Natural selection occurred frequently in both species and varied from unidirectional to oscillating, episodic to gradual. Hybridization occurred repeatedly though rarely, resulting in elevated phenotypic variances in G. scandens and a change in beak shape. The phenotypic states of both species at the end of the 30-year study could not have been predicted at the beginning. Continuous, long-term studies are needed to detect and interpret rare but important events and nonuniform evolutionary change.

  8. Long-Term Evolution of a Long-Term Evolution Model

    DTIC Science & Technology

    2011-01-01

    equations for the movement of the dune toe yD and the berm crest location yB are dyD/dt=(qw-qo)/DD and dyB/dt=-(qw-qo)/(DB+DC) respectively, where qw...and sand properties, yB and yD = distances to the seaward end of the berm and the dune toe , respectively, with the y-axis pointing offshore, y50...relative to mean sea level, MSL); zD = dune toe elevation (with respect to MSL); T = swash period (taken to be the same as the wave period); and Cs

  9. The D/H ratio and the evolution of water in the terrestrial planets.

    PubMed

    de Bergh, C

    1993-02-01

    The presence of liquid water at the surface of the Earth has played a major role in the biological evolution of the Earth. None of the other terrestrial planets--Mercury, Venus and Mars--has liquid water at its surface. However, it has been suggested, since the early seventies, from both geological and atmospheric arguments that, although Venus and Mars are presently devoid of liquid water, their surfaces could have been partially or completely covered by water at some time of their evolution. There are many possible diagnostics of the long-term evolution of the planets, either from the present characteristics of their surfaces or from their present atmospheric compositions. Among them, the present value of the D/H ratio is of particular interest, although its significance in terms of long term evolution has been challenged by some authors. Recent progress has been made in this field. We now have evidence for higher D/H ratios on Mars and Venus than on Earth, with an enrichment factor of the order of 5 on Mars, and about 100 on Venus. Any scenario for the evolution of these planets must take this into The most recent models on the evolution of Mars and Venus are reviewed in light of these new measurements.

  10. Long-term associative learning predicts verbal short-term memory performance.

    PubMed

    Jones, Gary; Macken, Bill

    2018-02-01

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

  11. Evaluating Long-Term Disability Insurance Plans.

    ERIC Educational Resources Information Center

    Powell, Jan

    1992-01-01

    This report analyzes the factors involved in reviewing benefits and services of employer-sponsored group long-term disability plans for higher education institutions. Opening sections describe the evolution of disability insurance and its shape today. Further sections looks at the complex nature of "value" within a plan, relationship…

  12. The FP7 ULTimateCO2 project: a study of the long term fate of CO2

    NASA Astrophysics Data System (ADS)

    Audigane, Pascal; Waldmann, Svenja; Pearce, Jonathan; Dimier, Alain; Le Gallo, Yann; Frykman, Peter; Maurand, Nicolas; Gherardi, Fabrizio; Yalamas, Thierry; Cremer, Holger; Spiers, Chris; Nussbaum, Christophe

    2014-05-01

    The objectives of the European FP7 ULTimateCO2 project are to study specific processes that could influence the long-term fate of geologically stored CO2, mainly: the trapping mechanisms occurring in the storage reservoir, the influence of fluid-rock interactions on mechanical integrity of caprock and well vicinity, and also the modifications induced at the regional scale (brine displacement, fault reactivation, hydrogeology changes...). A comprehensive approach combining laboratory experiments, numerical modeling and natural analogue studies is developed to assess all the processes mentioned above. A collection of data has been generated from natural and industrial (oil industry) analogues on the fluid flow and mechanical properties, structure, and mineralogy of faults and fractures that could affect the long-term storage capacity of underground CO2 storage sites. To address geochemical trapping at reservoir scale, an experimental approach is developed using sandstone core materials in batch reactive mode with CO2 and impurities at reservoir pressure and temperature conditions. Three inter-related lines of laboratory experiments investigate the long-term evolution of the mechanical properties and sealing integrity of fractured and faulted caprocks using Opalinus clay of Mont Terri Gallery (Switzerland), an analogue for caprock well investigated in the past for nuclear waste disposal purpose. To evaluate the interactions between CO2 (and formation fluid) and the well environment (formation, cement, casing) and to assess the consequences of these interactions on the transport properties of well materials, a 1 to 1 scale experiment has been set in the Mont Terri Gallery Opalinus clay to reproduce classical well objects (cemented annulus, casing and cement plug) perforating caprock formations. An extensive program of numerical modeling is also developed to calibrate, to reproduce and to extrapolate the experimental results at longer time scales including uncertainty assessment methods. www.ultimateco2.eu

  13. Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes.

    PubMed

    Seligmann, Hervé

    2018-05-01

    Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa

    PubMed Central

    Johansen, Helle Krogh; Molin, Søren

    2018-01-01

    ABSTRACT Evolution by natural selection under complex and dynamic environmental conditions occurs through intricate and often counterintuitive trajectories affecting many genes and metabolic solutions. To study short- and long-term evolution of bacteria in vivo, we used the natural model system of cystic fibrosis (CF) infection. In this work, we investigated how and through which trajectories evolution of Pseudomonas aeruginosa occurs when migrating from the environment to the airways of CF patients, and specifically, we determined reduction of growth rate and metabolic specialization as signatures of adaptive evolution. We show that central metabolic pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the same environment become restructured at the cost of versatility during long-term colonization. Cell physiology changes from naive to adapted phenotypes resulted in (i) alteration of growth potential that particularly converged to a slow-growth phenotype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored preference for carbon source assimilation from CF sputum, (iv) reduced arginine and pyruvate fermentation processes, and (v) increased oxygen requirements. Interestingly, although convergence was evidenced at the phenotypic level of metabolic specialization, comparative genomics disclosed diverse mutational patterns underlying the different evolutionary trajectories. Therefore, distinct combinations of genetic and regulatory changes converge to common metabolic adaptive trajectories leading to within-host metabolic specialization. This study gives new insight into bacterial metabolic evolution during long-term colonization of a new environmental niche. PMID:29636437

  15. Evolution of double white dwarf binaries undergoing direct-impact accretion: Implications for gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Kremer, Kyle; Breivik, Katelyn; Larson, Shane L.; Kalogera, Vassiliki

    2017-01-01

    For close double white dwarf binaries, the mass-transfer phenomenon known as direct-impact accretion (when the mass transfer stream impacts the accretor directly rather than forming a disc) may play a pivotal role in the long-term evolution of the systems. In this analysis, we explore the long-term evolution of white dwarf binaries accreting through direct-impact and explore implications of such systems to gravitational wave astronomy. We cover a broad range of parameter space which includes initial component masses and the strength of tidal coupling, and show that these systems, which lie firmly within the LISA frequency range, show strong negative chirps which can last as long as several million years. Detections of double white dwarf systems in the direct-impact phase by detectors such as LISA would provide astronomers with unique ways of probing the physics governing close compact object binaries.

  16. Laboratory simulation to support the search for organic molecules at the surface of Mars

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Szopa, Cyril; Coll, Patrice; Jaber, Maguy; Georgelin, Thomas; Lambert, Jean-Francois; Stalport, Fabien

    The search for organic carbon at the surface of Mars, as clues of past habitability or remnants of life, is a major science goal of Mars’ exploration. Understanding the chemical evolution of organic molecules under current Martian environmental conditions is essential to support the analyses performed in situ. What molecule can be preserved? What is the timescale of organic evolution at the surface? Here we present results of laboratory investigations dedicated to monitor qualitative and quantitative evolutions of several organic molecules under simulated Martian surface ultraviolet incident light, mean ground temperature and pressure, using the Mars Organic Molecules Irradiation and Evolution setup (1) . For each organic molecule studied, the nature of the evolution products (solid or gaseous) and the kinetic parameters (extrapolated half-life at Mars, quantum yields) were experimentally determined. The results show that when exposed to UV radiation, specific organic molecules lead to the formation of solid residues, probably of macromolecular nature, which could reach long term stability. On the other hand, the study of the evolution of molecules in presence of nontronite, a clay mineral detected at the surface of Mars, highlights a strong protective effect of the clay reducing dissociation rates for some molecules, whereas a possible catalytic effect is tentatively observed for one studied molecule. These results are essential to support the analyses performed in situ during the past, current and future exploration missions. Moreover, the experimentally determined kinetic parameters provide new inputs for numerical modeling of current reservoirs of organic molecules on Mars. (1) O. Poch et al., Planetary and Space Science 85, 188-197, http://dx.doi.org/10.1016/j.pss.2013.06.013

  17. Leaf Evolution: Gases, Genes and Geochemistry

    PubMed Central

    BEERLING, DAVID J.

    2005-01-01

    • Aims This Botanical Briefing reviews how the integration of palaeontology, geochemistry and developmental biology is providing a new mechanistic framework for interpreting the 40- to 50-million-year gap between the origination of vascular land plants and the advent of large (megaphyll) leaves, a long-standing puzzle in evolutionary biology. • Scope Molecular genetics indicates that the developmental mechanisms required for leaf production in vascular plants were recruited long before the advent of large megaphylls. According to theory, this morphogenetic potential was only realized as the concentration of atmospheric CO2 declined during the late Palaeozoic. Surprisingly, plants effectively policed their own evolution since the decrease in CO2 was brought about as terrestrial floras evolved accelerating the rate of silicate rock weathering and enhancing sedimentary organic carbon burial, both of which are long-term sinks for CO2. • Conclusions The recognition that plant evolution responds to and influences CO2 over millions of years reveals the existence of an intricate web of vegetation feedbacks regulating the long-term carbon cycle. Several of these feedbacks destabilized CO2 and climate during the late Palaeozoic but appear to have quickened the pace of terrestrial plant and animal evolution at that time. PMID:15965270

  18. Leaf evolution: gases, genes and geochemistry.

    PubMed

    Beerling, David J

    2005-09-01

    This Botanical Briefing reviews how the integration of palaeontology, geochemistry and developmental biology is providing a new mechanistic framework for interpreting the 40- to 50-million-year gap between the origination of vascular land plants and the advent of large (megaphyll) leaves, a long-standing puzzle in evolutionary biology. Molecular genetics indicates that the developmental mechanisms required for leaf production in vascular plants were recruited long before the advent of large megaphylls. According to theory, this morphogenetic potential was only realized as the concentration of atmospheric CO2 declined during the late Palaeozoic. Surprisingly, plants effectively policed their own evolution since the decrease in CO2 was brought about as terrestrial floras evolved accelerating the rate of silicate rock weathering and enhancing sedimentary organic carbon burial, both of which are long-term sinks for CO2. The recognition that plant evolution responds to and influences CO(2) over millions of years reveals the existence of an intricate web of vegetation feedbacks regulating the long-term carbon cycle. Several of these feedbacks destabilized CO2 and climate during the late Palaeozoic but appear to have quickened the pace of terrestrial plant and animal evolution at that time.

  19. The changing flow of management information systems in long-term care facilities.

    PubMed

    Stokes, D F

    1997-08-01

    Over the past three decades, the long-term care community has seen continual increases in the complexity and sophistication of management information systems. These changes have been brought about by the ever-increasing demands on owners and managers to provide accurate and timely data to both regulators and financial investors. The evolution of these systems has increased rapidly in recent years as the nation attempts to reinvent the funding mechanisms for long-term care.

  20. Engineering Pt/Pd Interfacial Electronic Structures for Highly Efficient Hydrogen Evolution and Alcohol Oxidation.

    PubMed

    Fan, Jinchang; Qi, Kun; Zhang, Lei; Zhang, Haiyan; Yu, Shansheng; Cui, Xiaoqiang

    2017-05-31

    Tailoring the interfacial structure of Pt-based catalysts has emerged as an effective strategy to improve catalytic activity. However, little attention has been focused on investigating the relationship between the interfacial facets and their catalytic activity. Here, we design and implement Pd-Pt interfaces with controlled heterostructure features by epitaxially growing Pt nanoparticles on Pd nanosheets. On the basis of both density functional theory calculation and experimental results, we demonstrate that charge transfer from Pd to Pt is highly dependent on the interfacial facets of Pd substrates. Therefore, the Pd-Pt heterostructure with Pd(100)-Pt interface exhibits excellent activity and long-term stability for hydrogen evolution and methanol/ethanol oxidation reactions in alkaline medium, much better than that with Pd (111)-Pt interface or commercial Pt/C. Interfacial crystal facet-dependent electronic structural modulation sheds a light on the design and investigation of new heterostructures for high-activity catalysts.

  1. Long-Term Dynamics of Autonomous Fractional Differential Equations

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Xu, Wei; Xu, Yong; Han, Qun

    This paper aims to investigate long-term dynamic behaviors of autonomous fractional differential equations with effective numerical method. The long-term dynamic behaviors predict where systems are heading after long-term evolution. We make some modification and transplant cell mapping methods to autonomous fractional differential equations. The mapping time duration of cell mapping is enlarged to deal with the long memory effect. Three illustrative examples, i.e. fractional Lotka-Volterra equation, fractional van der Pol oscillator and fractional Duffing equation, are studied with our revised generalized cell mapping method. We obtain long-term dynamics, such as attractors, basins of attraction, and saddles. Compared with some existing stability and numerical results, the validity of our method is verified. Furthermore, we find that the fractional order has its effect on the long-term dynamics of autonomous fractional differential equations.

  2. Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life

    PubMed Central

    2009-01-01

    Background Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty) is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia). Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa. Results Three levels of photosynthetic activity were detected: (1) no functional retention; (2) short-term retention lasting about one week; and (3) long-term retention for over a month. Phylogenetic analysis of one nuclear and two mitochondrial loci revealed reciprocal monophyly of the shelled Oxynoacea and shell-less Plakobranchacea, the latter comprising a monophyletic Plakobranchoidea and paraphyletic Limapontioidea. Only species in the Plakobranchoidea expressed short- or long-term kleptoplasty, most belonging to a speciose clade of slugs bearing parapodia (lateral flaps covering the dorsum). Bayesian ancestral character state reconstructions indicated that functional short-term retention arose once in the last common ancestor of Plakobranchoidea, and independently evolved into long-term retention in four derived species. Conclusion We propose a sequential progression from short- to long-term kleptoplasty, with different adaptations involved in each step. Short-term kleptoplasty likely arose as a deficiency in plastid digestion, yielding additional energy via the release of fixed carbon. Functional short-term retention was an apomorphy of the Plakobranchoidea, but the subsequent evolution of parapodia enabled slugs to protect kleptoplasts against high irradiance and further prolong plastid survival. We conclude that functional short-term retention was necessary but not sufficient for an adaptive radiation in the Plakobranchoidea, especially in the genus Elysia which comprises a third of all sacoglossan species. The adaptations necessary for long-term chloroplast survival arose independently in species feeding on different algal hosts, providing a valuable study system for examining the parallel evolution of this unique trophic strategy. PMID:19951407

  3. Probabilistic Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    1997-01-01

    Probabilistic composite design is described in terms of a computational simulation. This simulation tracks probabilistically the composite design evolution from constituent materials, fabrication process, through composite mechanics and structural components. Comparisons with experimental data are provided to illustrate selection of probabilistic design allowables, test methods/specimen guidelines, and identification of in situ versus pristine strength, For example, results show that: in situ fiber tensile strength is 90% of its pristine strength; flat-wise long-tapered specimens are most suitable for setting ply tensile strength allowables: a composite radome can be designed with a reliability of 0.999999; and laminate fatigue exhibits wide-spread scatter at 90% cyclic-stress to static-strength ratios.

  4. Quantifying long-term evolution of intra-urban spatial interactions

    PubMed Central

    Sun, Lijun; Jin, Jian Gang; Axhausen, Kay W.; Lee, Der-Horng; Cebrian, Manuel

    2015-01-01

    Understanding the long-term impact that changes in a city's transportation infrastructure have on its spatial interactions remains a challenge. The difficulty arises from the fact that the real impact may not be revealed in static or aggregated mobility measures, as these are remarkably robust to perturbations. More generally, the lack of longitudinal, cross-sectional data demonstrating the evolution of spatial interactions at a meaningful urban scale also hinders us from evaluating the sensitivity of movement indicators, limiting our capacity to understand the evolution of urban mobility in depth. Using very large mobility records distributed over 3 years, we quantify the impact of the completion of a metro line extension: the Circle Line (CCL) in Singapore. We find that the commonly used movement indicators are almost identical before and after the project was completed. However, in comparing the temporal community structure across years, we do observe significant differences in the spatial reorganization of the affected geographical areas. The completion of CCL enables travellers to re-identify their desired destinations collectively with lower transport cost, making the community structure more consistent. These changes in locality are dynamic and characterized over short timescales, offering us a different approach to identify and analyse the long-term impact of new infrastructures on cities and their evolution dynamics. PMID:25551142

  5. Darwinian Evolution of Mutualistic RNA Replicators with Different Genes

    NASA Astrophysics Data System (ADS)

    Mizuuchi, R.; Ichihashi, N.

    2017-07-01

    We report a sustainable long-term replication and evolution of two distinct cooperative RNA replicators encoding different genes. One of the RNAs evolved to maintain or increase the cooperativity, despite selective advantage of selfish mutations.

  6. Long-term nitrogen addition causes the evolution of less-cooperative mutualists.

    PubMed

    Weese, Dylan J; Heath, Katy D; Dentinger, Bryn T M; Lau, Jennifer A

    2015-03-01

    Human activities have altered the global nitrogen (N) cycle, and as a result, elevated N inputs are causing profound ecological changes in diverse ecosystems. The evolutionary consequences of this global change have been largely ignored even though elevated N inputs are predicted to cause mutualism breakdown and the evolution of decreased cooperation between resource mutualists. Using a long-term (22 years) N-addition experiment, we find that elevated N inputs have altered the legume-rhizobium mutualism (where rhizobial bacteria trade N in exchange for photosynthates from legumes), causing the evolution of less-mutualistic rhizobia. Plants inoculated with rhizobium strains isolated from N-fertilized treatments produced 17-30% less biomass and had reduced chlorophyll content compared to plants inoculated with strains from unfertilized control plots. Because the legume-rhizobium mutualism is the major contributor of naturally fixed N to terrestrial ecosystems, the evolution of less-cooperative rhizobia may have important environmental consequences. © 2015 The Author(s).

  7. Mechanical properties and microstructural evolution of modified 9Cr-1Mo steel after long-term aging for 50,000 h

    NASA Astrophysics Data System (ADS)

    Baek, Jong-Hyuk; Kim, Sung-Ho; Lee, Chan-Bock; Hahn, Do-Hee

    2009-08-01

    The mechanical properties and microstructural evolution of modified 9Cr-1Mo steel have been studied to investigate steel property changes after long-term isothermal aging at 600 °C for 50,000 h. The microhardness and strength were maintained constantly after aging but the impact energy was dramatically reduced by 62 % during the aging period. From the viewpoint of microstructural evolution after the aging process, Cr-enrichment and Fe-depletion took place within the M23C6-type precipitates in the as-aged steel and V-depletion also happened within the VX-type precipitates after aging. In addition, the precipitates of the M2Mo-type Laves phase and the segregation of the impurity atoms would be formed during the long-term aging period. It was considered that the sharp reduction of the impact energy could be related to the formation of the Laves phases and the impurity segregation after aging at 600 °C. The phase stability was also verified by the specific heat results up to 950 °C from a DSC test. It was concluded from this study that the modified 9Cr-1Mo steel would keep its microstructural stability at 600 °C during the long-term aging period of 50,000 h, which was equivalent to the in-service life of the SFR fuel cladding.

  8. Long-term avian research at the San Joaquin Experimental Range: recommendations for monitoring and managing oak woodlands

    Treesearch

    Kathryn L. Purcell

    2011-01-01

    Experimental forests and ranges are living laboratories that provide opportunities for conducting scientific research and transferring research results to partners and stakeholders. They are invaluable for their long-term data and capacity to foster collaborative, interdisciplinary research. The San Joaquin Experimental Range (SJER) was established to develop...

  9. History of the Penobscot Experimental Forest, 1950-2010

    Treesearch

    Laura S. Kenefic; John C. Brissette

    2014-01-01

    Though the U.S. Department of Agriculture, Forest Service has been studying the forests of the northeastern United States since the late 1800s, long-term studies were not common until experimental forests were introduced in the 20th century. These forests were established for long-term experimentation, and research questions were defined by local forest management...

  10. Transition from positive to neutral in mutation fixation along with continuing rising fitness in thermal adaptive evolution.

    PubMed

    Kishimoto, Toshihiko; Iijima, Leo; Tatsumi, Makoto; Ono, Naoaki; Oyake, Ayana; Hashimoto, Tomomi; Matsuo, Moe; Okubo, Masato; Suzuki, Shingo; Mori, Kotaro; Kashiwagi, Akiko; Furusawa, Chikara; Ying, Bei-Wen; Yomo, Tetsuya

    2010-10-21

    It remains to be determined experimentally whether increasing fitness is related to positive selection, while stationary fitness is related to neutral evolution. Long-term laboratory evolution in Escherichia coli was performed under conditions of thermal stress under defined laboratory conditions. The complete cell growth data showed common continuous fitness recovery to every 2°C or 4°C stepwise temperature upshift, finally resulting in an evolved E. coli strain with an improved upper temperature limit as high as 45.9°C after 523 days of serial transfer, equivalent to 7,560 generations, in minimal medium. Two-phase fitness dynamics, a rapid growth recovery phase followed by a gradual increasing growth phase, was clearly observed at diverse temperatures throughout the entire evolutionary process. Whole-genome sequence analysis revealed the transition from positive to neutral in mutation fixation, accompanied with a considerable escalation of spontaneous substitution rate in the late fitness recovery phase. It suggested that continually increasing fitness not always resulted in the reduction of genetic diversity due to the sequential takeovers by fit mutants, but caused the accumulation of a considerable number of mutations that facilitated the neutral evolution.

  11. Long-term strength and damage accumulation in laminates

    NASA Astrophysics Data System (ADS)

    Dzenis, Yuris A.; Joshi, Shiv P.

    1993-04-01

    A modified version of the probabilistic model developed by authors for damage evolution analysis of laminates subjected to random loading is utilized to predict long-term strength of laminates. The model assumes that each ply in a laminate consists of a large number of mesovolumes. Probabilistic variation functions for mesovolumes stiffnesses as well as strengths are used in the analysis. Stochastic strains are calculated using the lamination theory and random function theory. Deterioration of ply stiffnesses is calculated on the basis of the probabilities of mesovolumes failures using the theory of excursions of random process beyond the limits. Long-term strength and damage accumulation in a Kevlar/epoxy laminate under tension and complex in-plane loading are investigated. Effects of the mean level and stochastic deviation of loading on damage evolution and time-to-failure of laminate are discussed. Long-term cumulative damage at the time of the final failure at low loading levels is more than at high loading levels. The effect of the deviation in loading is more pronounced at lower mean loading levels.

  12. Everolimus-eluting stents in interventional cardiology

    PubMed Central

    Townsend, Jacob C; Rideout, Phillip; Steinberg, Daniel H

    2012-01-01

    Bare metal stents have a proven safety record, but limited long-term efficacy due to in-stent restenosis. First-generation drug-eluting stents successfully countered the restenosis rate, but were hampered by concerns about their long-term safety. Second generation drug-eluting stents have combined the low restenosis rate of the first generation with improved long-term safety. We review the evolution of drug-eluting stents with a focus on the safety, efficacy, and unique characteristics of everolimus-eluting stents. PMID:22910420

  13. Space Life Sciences Research: The Importance of Long-Term Space Experiments

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report focuses on the scientific importance of long-term space experiments for the advancement of biological science and the benefit of humankind. It includes a collection of papers that explore the scientific potential provided by the capability to manipulate organisms by removing a force that has been instrumental in the evolution and development of all organisms. Further, it provides the scientific justification for why the long-term space exposure that can be provided by a space station is essential to conduct significant research.

  14. The long-term carbon cycle, fossil fuels and atmospheric composition.

    PubMed

    Berner, Robert A

    2003-11-20

    The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

  15. Non-linear hydrodynamical evolution of rotating relativistic stars: numerical methods and code tests

    NASA Astrophysics Data System (ADS)

    Font, José A.; Stergioulas, Nikolaos; Kokkotas, Kostas D.

    2000-04-01

    We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.

  16. Global change and the evolution of phenotypic plasticity in plants.

    PubMed

    Matesanz, Silvia; Gianoli, Ernesto; Valladares, Fernando

    2010-09-01

    Global change drivers create new environmental scenarios and selective pressures, affecting plant species in various interacting ways. Plants respond with changes in phenology, physiology, and reproduction, with consequences for biotic interactions and community composition. We review information on phenotypic plasticity, a primary means by which plants cope with global change scenarios, recommending promising approaches for investigating the evolution of plasticity and describing constraints to its evolution. We discuss the important but largely ignored role of phenotypic plasticity in range shifts and review the extensive literature on invasive species as models of evolutionary change in novel environments. Plasticity can play a role both in the short-term response of plant populations to global change as well as in their long-term fate through the maintenance of genetic variation. In new environmental conditions, plasticity of certain functional traits may be beneficial (i.e., the plastic response is accompanied by a fitness advantage) and thus selected for. Plasticity can also be relevant in the establishment and persistence of plants in novel environments that are crucial for populations at the colonizing edge in range shifts induced by climate change. Experimental studies show taxonomically widespread plastic responses to global change drivers in many functional traits, though there is a lack of empirical support for many theoretical models on the evolution of phenotypic plasticity. Future studies should assess the adaptive value and evolutionary potential of plasticity under complex, realistic global change scenarios. Promising tools include resurrection protocols and artificial selection experiments. © 2010 New York Academy of Sciences.

  17. The evolution of siderophore production as a competitive trait.

    PubMed

    Niehus, Rene; Picot, Aurore; Oliveira, Nuno M; Mitri, Sara; Foster, Kevin R

    2017-06-01

    Microbes have the potential to be highly cooperative organisms. The archetype of microbial cooperation is often considered to be the secretion of siderophores, molecules scavenging iron, where cooperation is threatened by "cheater" genotypes that use siderophores without making them. Here, we show that this view neglects a key piece of biology: siderophores are imported by specific receptors that constrain their use by competing strains. We study the effect of this specificity in an ecoevolutionary model, in which we vary siderophore sharing among strains, and compare fully shared siderophores with private siderophores. We show that privatizing siderophores fundamentally alters their evolution. Rather than a canonical cooperative good, siderophores become a competitive trait used to pillage iron from other strains. We also study the physiological regulation of siderophores using in silico long-term evolution. Although shared siderophores evolve to be downregulated in the presence of a competitor, as expected for a cooperative trait, privatized siderophores evolve to be upregulated. We evaluate these predictions using published experimental work, which suggests that some siderophores are upregulated in response to competition akin to competitive traits like antibiotics. Although siderophores can act as a cooperative good for single genotypes, we argue that their role in competition is fundamental to understanding their biology. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  18. An experimental study to support the search for organics at Mars

    NASA Astrophysics Data System (ADS)

    Poch, Olivier; Stalport, Fabien; Noblet, Audrey; Szopa, Cyril; Coll, Patrice

    2012-07-01

    Several evidences suggest that early Mars offered favorable conditions for long-term sustaining water. As a consequence, we can assume that processes related to prebiotic chemistry, and even the emergence of life, may have occurred on early Mars. In those days, organic matter may have been widespread on Mars, due to exogenous delivery from small bodies, or endogenous chemical processes. The search for these organic relics is one of the main objectives of Mars exploration missions to come. But for about 3 Gy, due to the harsh environmental conditions of the Mars surface (UV radiation, oxidants etc.), the inventory of organic compounds at the current surface or subsurface of Mars may have been narrowed. Two major questions raised by this putative evolution are: What is the evolution pattern of organics in the Martian environment? What types of molecules would have been preserved, and if so, in which conditions? We address these questions using an experimental device dedicated to simulate the processes susceptible to have an effect on organic matter in the current environmental conditions of the Mars surface and subsurface. This experimental setup is part of a project called MOMIE, for Mars Organic Molecules Irradiation and Evolution. We study the evolution of some of the most likely molecular compounds potentially synthesized or brought to Mars (amino acids, hydrocarbons, nucleobases etc.). Nanometers thin deposits of a molecular compound or of a mineral in which the molecular compound has been embedded are allowed to evolve at mean Martian pressure and temperature, under a UV radiation environment similar to the Martian one. Qualitative and quantitative changes of the sample are monitored during the simulation, especially using infrared spectroscopy. We will present and compare the evolution of several organics submitted to these conditions. These experiments will provide essential insights to guide and discuss in situ analyses at Mars, particularly during the upcoming exploration of Gale Crater by Curiosity, the rover of the NASA Mars Science Laboratory mission.

  19. Long-term effects of user preference-oriented recommendation method on the evolution of online system

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoyu; Shang, Ming-Sheng; Luo, Xin; Khushnood, Abbas; Li, Jian

    2017-02-01

    As the explosion growth of Internet economy, recommender system has become an important technology to solve the problem of information overload. However, recommenders are not one-size-fits-all, different recommenders have different virtues, making them be suitable for different users. In this paper, we propose a novel personalized recommender based on user preferences, which allows multiple recommenders to exist in E-commerce system simultaneously. We find that output of a recommender to each user is quite different when using different recommenders, the recommendation accuracy can be significantly improved if each user is assigned with his/her optimal personalized recommender. Furthermore, different from previous works focusing on short-term effects on recommender, we also evaluate the long-term effect of the proposed method by modeling the evolution of mutual feedback between user and online system. Finally, compared with single recommender running on the online system, the proposed method can improve the accuracy of recommendation significantly and get better trade-offs between short- and long-term performances of recommendation.

  20. Long-term adaptation of the influenza A virus by escaping cytotoxic T-cell recognition

    NASA Astrophysics Data System (ADS)

    Woolthuis, Rutger G.; van Dorp, Christiaan H.; Keşmir, Can; de Boer, Rob J.; van Boven, Michiel

    2016-09-01

    The evolutionary adaptation of the influenza A virus (IAV) to human antibodies is well characterised. Much less is known about the long-term evolution of cytotoxic T lymphocyte (CTL) epitopes, which are important antigens for clearance of infection. We construct an antigenic map of IAVs of all human subtypes using a compendium of 142 confirmed CTL epitopes, and show that IAV evolved gradually in the period 1932-2015, with infrequent antigenic jumps in the H3N2 subtype. Intriguingly, the number of CTL epitopes per virus decreases with more than one epitope per three years in the H3N2 subtype (from 84 epitopes per virus in 1968 to 64 in 2015), mostly attributed to the loss of HLA-B epitopes. We confirm these observations with epitope predictions. Our findings indicate that selection pressures imposed by CTL immunity shape the long-term evolution of IAV.

  1. Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology.

    PubMed

    Clutton-Brock, Tim; Sheldon, Ben C

    2010-10-01

    Many important questions in ecology and evolutionary biology can only be answered with data that extend over several decades and answering a substantial proportion of questions requires records of the life histories of recognisable individuals. We identify six advantages that long-term, individual based studies afford in ecology and evolution: (i) analysis of age structure; (ii) linkage between life history stages; (iii) quantification of social structure; (iv) derivation of lifetime fitness measures; (v) replication of estimates of selection; (vi) linkage between generations, and we review their impact on studies in six key areas of evolution and ecology. Our review emphasises the unusual opportunities and productivity of long-term, individual-based studies and documents the important role that they play in research on ecology and evolutionary biology as well as the difficulties they face. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Experimental evolution of bet hedging under manipulated environmental uncertainty in Neurospora crassa.

    PubMed

    Graham, Jeffrey K; Smith, Myron L; Simons, Andrew M

    2014-07-22

    All organisms are faced with environmental uncertainty. Bet-hedging theory expects unpredictable selection to result in the evolution of traits that maximize the geometric-mean fitness even though such traits appear to be detrimental over the shorter term. Despite the centrality of fitness measures to evolutionary analysis, no direct test of the geometric-mean fitness principle exists. Here, we directly distinguish between predictions of competing fitness maximization principles by testing Cohen's 1966 classic bet-hedging model using the fungus Neurospora crassa. The simple prediction is that propagule dormancy will evolve in proportion to the frequency of 'bad' years, whereas the prediction of the alternative arithmetic-mean principle is the evolution of zero dormancy as long as the expectation of a bad year is less than 0.5. Ascospore dormancy fraction in N. crassa was allowed to evolve under five experimental selection regimes that differed in the frequency of unpredictable 'bad years'. Results were consistent with bet-hedging theory: final dormancy fraction in 12 genetic lineages across 88 independently evolving samples was proportional to the frequency of bad years, and evolved both upwards and downwards as predicted from a range of starting dormancy fractions. These findings suggest that selection results in adaptation to variable rather than to expected environments. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. Variability analysis of the reconstructed daily global solar radiation under all-sky and cloud-free conditions in Madrid during the period 1887-1950

    NASA Astrophysics Data System (ADS)

    Antón, M.; Román, R.; Sanchez-Lorenzo, A.; Calbó, J.; Vaquero, J. M.

    2017-07-01

    This study focuses on the analysis of the daily global solar radiation (GSR) reconstructed from sunshine duration measurements at Madrid (Spain) from 1887 to 1950. Additionally, cloud cover information recorded simultaneously by human observations for the study period was also analyzed and used to select cloud-free days. First, the day-to-day variability of reconstructed GSR data was evaluated, finding a strong relationship between GSR and cloudiness. The second step was to analyze the long-term evolution of the GSR data which exhibited two clear trends with opposite sign: a marked negative trend of - 36 kJ/m2 per year for 1887-1915 period and a moderate positive trend of + 13 kJ/m2 per year for 1916-1950 period, both statistically significant at the 95% confidence level. Therefore, there is evidence of "early dimming" and "early brightening" periods in the reconstructed GSR data for all-sky conditions in Madrid from the late 19th to the mid-20th centuries. Unlike the long-term evolution of GSR data, cloud cover showed non-statistically significant trends for the two analyzed sub-periods, 1887-1915 and 1916-1950. Finally, GSR trends were analyzed exclusively under cloud-free conditions in summer by means of the determination of the clearness index for those days with all cloud cover observations equal to zero oktas. The long-term evolution of the clearness index was in accordance with the "early dimming" and "early brightening" periods, showing smaller trends but still statistically significant. This result points out that aerosol load variability could have had a non-negligible influence on the long-term evolution of GSR even as far as from the late 19th century.

  4. Evolution of neurocognitive function in long-term survivors of childhood acute lymphoblastic leukemia treated with chemotherapy only.

    PubMed

    Liu, Wei; Cheung, Yin Ting; Conklin, Heather M; Jacola, Lisa M; Srivastava, DeoKumar; Nolan, Vikki G; Zhang, Hongmei; Gurney, James G; Huang, I-Chan; Robison, Leslie L; Pui, Ching-Hon; Hudson, Melissa M; Krull, Kevin R

    2018-06-01

    The purpose of this study was to determine the evolution of neurocognitive problems from therapy completion to long-term follow-up in survivors of childhood acute lymphoblastic leukemia treated with chemotherapy only. We evaluated whether attention problems observed at therapy completion evolve into long-term executive dysfunction in 158 survivors treated on a single institution protocol. Treatment data (high-dose intravenous methotrexate exposure [serum concentration] and triple intrathecal chemotherapy injections) were collected. Parent report of behavior and direct cognitive testing of survivors was conducted at end of therapy, and survivors completed neurocognitive testing when > 5 years post-diagnosis. At the end of chemotherapy, survivors (52% female; mean age 9.2 years) demonstrated higher frequency of impairment in sustained attention (38%) and parent-reported inattention (20%) compared to population expectations (10%). At long-term follow-up, survivors (mean age 13.7 years; 7.6 years post-diagnosis) demonstrated higher impairment in executive function (flexibility 24%, fluency 21%), sustained attention (15%), and processing speed (15%). Sustained attention improved from end of therapy to long-term follow-up (p < 0.001). Higher methotrexate AUC and greater number of intrathecal injections were associated with attention problems (p = 0.009, p = 0.002, respectively) at the end of chemotherapy and executive function (p < 0.001, p = 0.02, respectively) problems at long-term follow-up. Attention problems at the end of therapy were not associated with executive function problems at long-term follow-up (p's > 0.05). The direct effect of chemotherapy exposure predicted outcomes at both time points. Survivors should be monitored for neurocognitive problems well into long-term survivorship, regardless of whether they show attention problems at the end of therapy. Treatment exposures are the best predictor of long-term complications.

  5. Experimental evolution in biofilm populations

    PubMed Central

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  6. Experimental evolution in biofilm populations.

    PubMed

    Steenackers, Hans P; Parijs, Ilse; Dubey, Akanksha; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. © FEMS 2016.

  7. The essential value of long-term experimental data for hydrology and water management

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Doerthe; Carey, Sean K.; McNamara, James P.; Laudon, Hjalmar; Soulsby, Chris

    2017-04-01

    Observations and data from long-term experimental watersheds are the foundation of hydrology as a geoscience. They allow us to benchmark process understanding, observe trends and natural cycles, and are prerequisites for testing predictive models. Long-term experimental watersheds also are places where new measurement technologies are developed. These studies offer a crucial evidence base for understanding and managing the provision of clean water supplies, predicting and mitigating the effects of floods, and protecting ecosystem services provided by rivers and wetlands. They also show how to manage land and water in an integrated, sustainable way that reduces environmental and economic costs.

  8. Revealing evolutionary pathways by fitness landscape reconstruction.

    PubMed

    Kogenaru, Manjunatha; de Vos, Marjon G J; Tans, Sander J

    2009-01-01

    The concept of epistasis has since long been used to denote non-additive fitness effects of genetic changes and has played a central role in understanding the evolution of biological systems. Owing to an array of novel experimental methodologies, it has become possible to experimentally determine epistatic interactions as well as more elaborate genotype-fitness maps. These data have opened up the investigation of a host of long-standing questions in evolutionary biology, such as the ruggedness of fitness landscapes and the accessibility of mutational trajectories, the evolution of sex, and the origin of robustness and modularity. Here we review this recent and timely marriage between systems biology and evolutionary biology, which holds the promise to understand evolutionary dynamics in a more mechanistic and predictive manner.

  9. A Case of Successful Teaching Policy: Connecticut's Long-Term Efforts To Improve Teaching and Learning. A Research Report.

    ERIC Educational Resources Information Center

    Wilson, Suzanne M.; Darling-Hammond, Linda; Berry, Barnett

    In this monograph, the authors describe Connecticut's long-term efforts to implement a comprehensive set of teaching quality policies to support improved student learning. The authors begin by describing the 15-year evolution of policies designed to recruit, prepare, and support teachers, while also creating greater accountability for the…

  10. Long-term experiments on log decomposition at the H.J. Andrews Experimental Forest.

    Treesearch

    M.E. Harmon

    1992-01-01

    A long-term decomposition experiment was established at the H.J. Andrews Experimental Forest, Oregon, during 1985to test the importance of substrate heterogeneity, colonization patterns, and invertebrates on the decomposition of logs. The duration of the study is anticipated to be 200 years. A total of 530 logs (50 centimeters in diameter and 5.5 meters long) were...

  11. Long-term experimental loss of foundation species: consequences for dynamics at ecotones across heterogeneous landscapes

    USDA-ARS?s Scientific Manuscript database

    Long-term (> 13 years) patterns in dominance and community composition were examined following the experimental removal of one of three foundation species at an arid - semiarid biome transition zone. Objectives were to identify key processes influencing these patterns, and to predict future landscap...

  12. An Approximate Markov Model for the Wright-Fisher Diffusion and Its Application to Time Series Data.

    PubMed

    Ferrer-Admetlla, Anna; Leuenberger, Christoph; Jensen, Jeffrey D; Wegmann, Daniel

    2016-06-01

    The joint and accurate inference of selection and demography from genetic data is considered a particularly challenging question in population genetics, since both process may lead to very similar patterns of genetic diversity. However, additional information for disentangling these effects may be obtained by observing changes in allele frequencies over multiple time points. Such data are common in experimental evolution studies, as well as in the comparison of ancient and contemporary samples. Leveraging this information, however, has been computationally challenging, particularly when considering multilocus data sets. To overcome these issues, we introduce a novel, discrete approximation for diffusion processes, termed mean transition time approximation, which preserves the long-term behavior of the underlying continuous diffusion process. We then derive this approximation for the particular case of inferring selection and demography from time series data under the classic Wright-Fisher model and demonstrate that our approximation is well suited to describe allele trajectories through time, even when only a few states are used. We then develop a Bayesian inference approach to jointly infer the population size and locus-specific selection coefficients with high accuracy and further extend this model to also infer the rates of sequencing errors and mutations. We finally apply our approach to recent experimental data on the evolution of drug resistance in influenza virus, identifying likely targets of selection and finding evidence for much larger viral population sizes than previously reported. Copyright © 2016 by the Genetics Society of America.

  13. Modeling the Long-term Planform Evolution of Meandering Rivers in Confined Alluvial Valleys: Etsch-Adige River, NE Italy.

    NASA Astrophysics Data System (ADS)

    Zen, S.; Bogoni, M.; Zolezzi, G.; Lanzoni, S.; Scorpio, V.

    2016-12-01

    We combine the use of a morphodynamic model for river meander planform evolution with a geological dataset to investigate the influence of external confinements on the long-term evolution of a meandering river flowing in an Alpine valley. The analysis focuses on a 100 km reach of the Adige River, NE Italy, which had several sinuous/meandering sections before being extensively channelized in the 1800s. Geological surveys and historical maps revealed that many sections of the study reach impinge on the borders of the valley during its evolution. Moreover, a marked spatial heterogeneity in floodplain vertical accretion rates likely reflects preferential positions of the river channel in the floodplain. Valley confinements are represented by bedrock outcrops and by alluvial fans created by lateral tributaries, and were extracted from the geological and historical maps to build the computational domain for the meander morphodynamic model. The model predicts the long-term planform evolution of a meandering river based on a linear solution of the 2D De St Venant-Exner differential system and can manage changes in floodplain erodibility. Model applications allow to isolate the effects of valley bedrock and of alluvial fans in constraining the lateral channel migration. Modeled river channel persistence maps are compared with the available geological information. The present work allows further insights into the role of external confinements to river meander belts, which have been conducted so far mostly assuming the channel to evolve in unconfined floodplains. Future research shall incorporate model components for floodplain vertical accretion rates and for the advancement of alluvial fans occurring at the same time scale considered for meander evolution.

  14. Chromosomal changes during experimental evolution in laboratory populations of Escherichia coli.

    PubMed

    Bergthorsson, U; Ochman, H

    1999-02-01

    Short-term rates of chromosome evolution were analyzed in experimental populations of Escherichia coli B that had been propagated for 2,000 generations under four thermal regimens. Chromosome alterations were monitored in 24 independent populations by pulsed-field gel electrophoresis of DNA treated with five rare-cutting restriction enzymes. A total of 11 changes, 8 affecting chromosome size and 3 altering restriction sites, were observed in these populations, with none occurring in strains cultured at 37 degreesC. Considering the changes detected in these experimental populations, the rate of chromosome alteration of E. coli is estimated to be half of that observed in experimental populations of yeast.

  15. Long term evolution of planetary systems with a terrestrial planet and a giant planet.

    NASA Astrophysics Data System (ADS)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2017-06-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion.

  16. Stochasticity versus determinism: consequences for realistic gene regulatory network modelling and evolution.

    PubMed

    Jenkins, Dafyd J; Stekel, Dov J

    2010-02-01

    Gene regulation is one important mechanism in producing observed phenotypes and heterogeneity. Consequently, the study of gene regulatory network (GRN) architecture, function and evolution now forms a major part of modern biology. However, it is impossible to experimentally observe the evolution of GRNs on the timescales on which living species evolve. In silico evolution provides an approach to studying the long-term evolution of GRNs, but many models have either considered network architecture from non-adaptive evolution, or evolution to non-biological objectives. Here, we address a number of important modelling and biological questions about the evolution of GRNs to the realistic goal of biomass production. Can different commonly used simulation paradigms, in particular deterministic and stochastic Boolean networks, with and without basal gene expression, be used to compare adaptive with non-adaptive evolution of GRNs? Are these paradigms together with this goal sufficient to generate a range of solutions? Will the interaction between a biological goal and evolutionary dynamics produce trade-offs between growth and mutational robustness? We show that stochastic basal gene expression forces shrinkage of genomes due to energetic constraints and is a prerequisite for some solutions. In systems that are able to evolve rates of basal expression, two optima, one with and one without basal expression, are observed. Simulation paradigms without basal expression generate bloated networks with non-functional elements. Further, a range of functional solutions was observed under identical conditions only in stochastic networks. Moreover, there are trade-offs between efficiency and yield, indicating an inherent intertwining of fitness and evolutionary dynamics.

  17. Low-cost extrapolation method for maximal LTE radio base station exposure estimation: test and validation.

    PubMed

    Verloock, Leen; Joseph, Wout; Gati, Azeddine; Varsier, Nadège; Flach, Björn; Wiart, Joe; Martens, Luc

    2013-06-01

    An experimental validation of a low-cost method for extrapolation and estimation of the maximal electromagnetic-field exposure from long-term evolution (LTE) radio base station installations are presented. No knowledge on downlink band occupation or service characteristics is required for the low-cost method. The method is applicable in situ. It only requires a basic spectrum analyser with appropriate field probes without the need of expensive dedicated LTE decoders. The method is validated both in laboratory and in situ, for a single-input single-output antenna LTE system and a 2×2 multiple-input multiple-output system, with low deviations in comparison with signals measured using dedicated LTE decoders.

  18. Population growth rates: issues and an application.

    PubMed Central

    Godfray, H Charles J; Rees, Mark

    2002-01-01

    Current issues in population dynamics are discussed in the context of The Royal Society Discussion Meeting 'Population growth rate: determining factors and role in population regulation'. In particular, different views on the centrality of population growth rates to the study of population dynamics and the role of experiments and theory are explored. Major themes emerging include the role of modern statistical techniques in bringing together experimental and theoretical studies, the importance of long-term experimentation and the need for ecology to have model systems, and the value of population growth rate as a means of understanding and predicting population change. The last point is illustrated by the application of a recently introduced technique, integral projection modelling, to study the population growth rate of a monocarpic perennial plant, its elasticities to different life-history components and the evolution of an evolutionarily stable strategy size at flowering. PMID:12396521

  19. Social Learning and Culture in Child and Chimpanzee.

    PubMed

    Whiten, Andrew

    2017-01-03

    A few decades ago, we knew next to nothing about the behavior of our closest animal relative, the chimpanzee, but long-term field studies have since revealed an undreamed-of richness in the diversity of their cultural traditions across Africa. These discoveries have been complemented by a substantial suite of experimental studies, now bridging to the wild through field experiments. These field and experimental studies, particularly those in which direct chimpanzee-child comparisons have been made, delineate a growing set of commonalities between the phenomena of social learning and culture in the lives of chimpanzees and humans. These commonalities in social learning inform our understanding of the evolutionary roots of the cultural propensities the species share. At the same time, such comparisons throw into clearer relief the unique features of the distinctive human capacity for cumulative cultural evolution, and new research has begun to probe the key psychological attributes that may explain it.

  20. Rapid evolution mitigates the ecological consequences of an invasive species (Bythotrephes longimanus) in lakes in Wisconsin.

    PubMed

    Gillis, Michael K; Walsh, Matthew R

    2017-07-12

    Invasive species have extensive negative consequences for biodiversity and ecosystem health. Novel species also drive contemporary evolution in many native populations, which could mitigate or amplify their impacts on ecosystems. The predatory zooplankton Bythotrephes longimanus invaded lakes in Wisconsin, USA, in 2009. This invasion caused precipitous declines in zooplankton prey ( Daphnia pulicaria ), with cascading impacts on ecosystem services (water clarity). Here, we tested the link between Bythotrephes invasion, evolution in Daphnia and post-invasion ecological dynamics using 15 years of long-term data in conjunction with comparative experiments. Invasion by Bythotrephes is associated with rapid increases in the body size of Daphnia Laboratory experiments revealed that such shifts have a genetic component; third-generation laboratory-reared Daphnia from 'invaded' lakes are significantly larger and exhibit greater reproductive effort than individuals from 'uninvaded' lakes. This trajectory of evolution should accelerate Daphnia population growth and enhance population persistence. We tested this prediction by comparing analyses of long-term data with laboratory-based simulations, and show that rapid evolution in Daphnia is associated with increased population growth in invaded lakes. © 2017 The Authors.

  1. Prereduction of Metal Oxides via Carbon Plasma Treatment for Efficient and Stable Electrocatalytic Hydrogen Evolution.

    PubMed

    Zhang, Yongqi; Ouyang, Bo; Xu, Kun; Xia, Xinhui; Zhang, Zheng; Rawat, Rajdeep Singh; Fan, Hong Jin

    2018-04-01

    Prereduction of transition metal oxides is a feasible and efficient strategy to enhance their catalytic activity for hydrogen evolution. Unfortunately, the prereduction via the common H 2 annealing method is unstable for nanomaterials during the hydrogen evolution process. Here, using NiMoO 4 nanowire arrays as the example, it is demonstrated that carbon plasma (C-plasma) treatment can greatly enhance both the catalytic activity and the long-term stability of transition metal oxides for hydrogen evolution. The C-plasma treatment has two functions at the same time: it induces partial surface reduction of the NiMoO 4 nanowire to form Ni 4 Mo nanoclusters, and simultaneously deposits a thin graphitic carbon shell. As a result, the C-plasma treated NiMoO 4 can maintain its array morphology, chemical composition, and catalytic activity during long-term intermittent hydrogen evolution process. This work may pave a new way for simultaneous activation and stabilization of transition metal oxide-based electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Outbursts and Gradualism: Megaflood erosion consistent with long-term landscape evolution

    NASA Astrophysics Data System (ADS)

    Garcia-Castellanos, Daniel; O'Connor, Jim

    2017-04-01

    Existing models for the development of topography and relief over geological timescales are fundamentally based on semi-empirical laws of the erosion and sediment transport performed by rivers. The prediction power of these laws is hindered by limitations in measuring river incision and by the scant knowledge of the past hydrological conditions, specifically average water flow and its variability. Consequently, models adopt 'gradualistic' (time-averaged) assumptions and the erodability values derived from modelling long-term erosion rates in rivers remain ambiguously tied not only to the lithology and nature of the bedrock but also to uncertainties in the quantification of past climate. This prevents the use of those erodabilities to predict the landscape evolution in different scenarios. Here, we apply the fundamentals of river erosion models to outburst floods triggered by overtopping lakes, for which the hydrograph is intrinsically known from the geomorphological record or from direct measures. We obtain the outlet erodability from the peak water discharge and lake area observed in 86 floods that span over 16 orders of magnitude in water volume. The obtained erodability-lithology correlation is consistent with that seen in 22 previous long-term river incision quantifications, showing that outburst floods can be used to estimate erodability values that remain valid for a wide range of hydrological regimes and for erosion timescales spanning from hours-long outburst floods to million-year-scale landscape evolution. The results constrain the conditions leading to the runaway erosion responsible for outburst floods triggered by overtopping lakes. They also call for the explicit incorporation of climate episodicity to the landscape evolution models. [Funded by CGL2014-59516].

  3. Evolution of Akaganeite in Rust Layers Formed on Steel Submitted to Wet/Dry Cyclic Tests

    PubMed Central

    Ye, Wei; Song, Xiaoping; Ma, Yuantai; Li, Ying

    2017-01-01

    The evolution of akaganeite in rust layers strongly impacts the atmospheric corrosion behavior of steel during long-term exposure; however, the factors affecting the evolution of akaganeite and its mechanism of formation are vague. In this work, wet-dry cyclic corrosion tests were conducted to simulate long-term exposure. Quantitative X-ray diffraction analysis was employed to analyze variations in the relative amounts of akaganeite; scanning electron microscopy and electron probe microanalysis were used to study the migration of relevant elements in the rust layer, which could help elucidate the mechanism of akaganeite evolution. The results indicate that the fraction of akaganeite tends to decrease as the corrosion process proceeded, which is a result of the decrease in the amount of soluble chloride available and the ability of the thick rust layer to block the migration of relevant ions. This work also explores the location of akaganeite formation within the rust layer. PMID:29099061

  4. The Place of Assisted Living in Long-Term Care and Related Service Systems

    ERIC Educational Resources Information Center

    Stone, Robyn I.; Reinhard, Susan C.

    2007-01-01

    Purpose: The purpose of this article is to describe how assisted living (AL) fits with other long-term-care services. Design and Methods: We analyzed the evolution of AL, including the populations served, the services offered, and federal and state policies that create various incentives or disincentives for using AL to replace other forms of care…

  5. Destruction of organic pollutants by cerium(IV) MEO process: a study on the influence of process conditions for EDTA mineralization.

    PubMed

    Balaji, Subramanian; Chung, Sang Joon; Matheswaran, Manickam; Vasilivich, Kokovkin Vasily; Moon, Il Shik

    2008-02-11

    The mediated electrochemical oxidation (MEO) process with cerium(IV) and nitric acid as the oxidizing medium was employed for the destruction of various model organic pollutants in continuous organic feeding mode. A near complete destruction was observed for all the organics studied. The effects of various experimental conditions were evaluated with respect to EDTA mineralization. The key parameters varied in the process were concentration of EDTA (67-268 mM), temperature (70, 80 and 95 degrees C), concentrations of Ce(IV) (0.7, 0.8 and 0.95 M), nitric acid (2, 3 and 4M) and duration of organic addition (30 and 120 min). Under the experimental conditions of 80 degrees C and 0.95 M Ce(IV) in 3 M nitric acid, nearly 90% destruction was achieved based on CO(2) production and 95% based on TOC analyses for all the organic compounds studied. The in situ regeneration of mediator ion by the electrochemical cell was found to be good during the organic destruction within the range of experimental conditions studied. In the case of long term organic feeding (120 min) the destruction was calculated after the CO(2) evolution attained the steady state and under this condition the destruction efficiency was found to be 85% based on CO(2) evolution.

  6. Evolution with Reinforcement Learning in Negotiation

    PubMed Central

    Zou, Yi; Zhan, Wenjie; Shao, Yuan

    2014-01-01

    Adaptive behavior depends less on the details of the negotiation process and makes more robust predictions in the long term as compared to in the short term. However, the extant literature on population dynamics for behavior adjustment has only examined the current situation. To offset this limitation, we propose a synergy of evolutionary algorithm and reinforcement learning to investigate long-term collective performance and strategy evolution. The model adopts reinforcement learning with a tradeoff between historical and current information to make decisions when the strategies of agents evolve through repeated interactions. The results demonstrate that the strategies in populations converge to stable states, and the agents gradually form steady negotiation habits. Agents that adopt reinforcement learning perform better in payoff, fairness, and stableness than their counterparts using classic evolutionary algorithm. PMID:25048108

  7. Evolution with reinforcement learning in negotiation.

    PubMed

    Zou, Yi; Zhan, Wenjie; Shao, Yuan

    2014-01-01

    Adaptive behavior depends less on the details of the negotiation process and makes more robust predictions in the long term as compared to in the short term. However, the extant literature on population dynamics for behavior adjustment has only examined the current situation. To offset this limitation, we propose a synergy of evolutionary algorithm and reinforcement learning to investigate long-term collective performance and strategy evolution. The model adopts reinforcement learning with a tradeoff between historical and current information to make decisions when the strategies of agents evolve through repeated interactions. The results demonstrate that the strategies in populations converge to stable states, and the agents gradually form steady negotiation habits. Agents that adopt reinforcement learning perform better in payoff, fairness, and stableness than their counterparts using classic evolutionary algorithm.

  8. Long-term trends from ecosystem research at the Hubbard Brook Experimental Forest

    Treesearch

    John L. Campbell; Charles T. Driscoll; Christopher Eagar; Gene E. Likens; Thomas G. Siccama; Chris E. Johnson; Timothy J. Fahey; Steven P. Hamburg; Richard T. Holmes; Amey S. Bailey; Donald C. Buso

    2007-01-01

    Summarizes 52 years of collaborative, long-term research conducted at the Hubbard Brook (NH) Experimental Forest on ecosystem response to disturbances such as air pollution, climate change, forest disturbance, and forest management practices. Also provides explanations of some of the trends and lists references from scientific literature for further reading.

  9. The Funding of Long-Term Care in Canada: What Do We Know, What Should We Know?

    PubMed

    Grignon, Michel; Spencer, Byron G

    2018-06-01

    ABSTRACTLong-term care is a growing component of health care spending but how much is spent or who bears the cost is uncertain, and the measures vary depending on the source used. We drew on regularly published series and ad hoc publications to compile preferred estimates of the share of long-term care spending in total health care spending, the private share of long-term care spending, and the share of residential care within long-term care. For each series, we compared estimates obtainable from published sources (CIHI [Canadian Institute for Health Information] and OECD [Organization for Economic Cooperation and Development]) with our preferred estimates. We conclude that using published series without adjustment would lead to spurious conclusions on the level and evolution of spending on long-term care in Canada as well as on the distribution of costs between private and public funders and between residential and home care.

  10. Dynamical Stability and Long-term Evolution of Rotating Stellar Systems

    NASA Astrophysics Data System (ADS)

    Varri, Anna L.; Vesperini, E.; McMillan, S. L. W.; Bertin, G.

    2011-05-01

    We present the first results of an extensive survey of N-body simulations designed to investigate the dynamical stability and the long-term evolution of two new families of self-consistent stellar dynamical models, characterized by the presence of internal rotation. The first family extends the well-known King models to the case of axisymmetric systems flattened by solid-body rotation while the second family is characterized by differential rotation. The equilibrium configurations thus obtained can be described in terms of two dimensionless parameters, which measure the concentration and the amount of rotation, respectively. Slowly rotating configurations are found to be dynamically stable and we followed their long-term evolution, in order to evaluate the interplay between collisional relaxation and angular momentum transport. We also studied the stability of rapidly rotating models, which are characterized by the presence of a toroidal core embedded in an otherwise quasi-spherical configuration. In both cases, a description in terms of the radial and global properties, such as the ratio between the ordered kinetic energy and the gravitational energy of the system, is provided. Because the role of angular momentum in the process of cluster formation is only partly understood, we also undertook a preliminary investigation of the violent relaxation of simple systems initially characterized by approximate solid-body rotation. The properties of the final equilibrium configurations thus obtained are compared with those of the above-described family of differentially rotating models.

  11. Quantitative Relationships Between Net Volume Change and Fabric Properties During Soil Evolution

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Nettleton, W. D.

    1993-01-01

    The state of soil evolution can be charted by net long-term volume and elemental mass changes for individual horizons compared with parent material. Volume collapse or dilation depends on relative elemental mass fluxes associated with losses form or additions to soil horizons.

  12. Early Precambrian Carbonate and Evapolite Sediments: Constraints on Environmental and Biological Evolution

    NASA Technical Reports Server (NTRS)

    Grotzinger, John P.

    2002-01-01

    The work accomplished under NASA Grant NAG5-6722 was very successful. Our lab was able to document the occurrence and distribution of evaporite-to-carbonate transitions in several basins during Precambrian time, to help constrain the long-term chemical evolution of seawater.

  13. Generating Personalized Web Search Using Semantic Context

    PubMed Central

    Xu, Zheng; Chen, Hai-Yan; Yu, Jie

    2015-01-01

    The “one size fits the all” criticism of search engines is that when queries are submitted, the same results are returned to different users. In order to solve this problem, personalized search is proposed, since it can provide different search results based upon the preferences of users. However, existing methods concentrate more on the long-term and independent user profile, and thus reduce the effectiveness of personalized search. In this paper, the method captures the user context to provide accurate preferences of users for effectively personalized search. First, the short-term query context is generated to identify related concepts of the query. Second, the user context is generated based on the click through data of users. Finally, a forgetting factor is introduced to merge the independent user context in a user session, which maintains the evolution of user preferences. Experimental results fully confirm that our approach can successfully represent user context according to individual user information needs. PMID:26000335

  14. Potential breeding distributions of U.S. birds predicted with both short-term variability and long-term average climate data

    Treesearch

    Brooke L. Bateman; Anna M. Pidgeon; Volker C. Radeloff; Curtis H. Flather; Jeremy VanDerWal; H. Resit Akcakaya; Wayne E. Thogmartin; Thomas P. Albright; Stephen J. Vavrus; Patricia J. Heglund

    2016-01-01

    Climate conditions, such as temperature or precipitation, averaged over several decades strongly affect species distributions, as evidenced by experimental results and a plethora of models demonstrating statistical relations between species occurrences and long-term climate averages. However, long-term averages can conceal climate changes that have occurred in...

  15. Water age and stream solute dynamics at the Hubbard Brook Experimental Forest (US)

    NASA Astrophysics Data System (ADS)

    Botter, Gianluca; Benettin, Paolo; McGuire, Kevin; Rinaldo, Andrea

    2016-04-01

    The contribution discusses experimental and modeling results from a headwater catchment at the Hubbard Brook Experimental Forest (New Hampshire, USA) to explore the link between stream solute dynamics and water age. A theoretical framework based on water age dynamics, which represents a general basis for characterizing solute transport at the catchment scale, is used to model both conservative and weathering-derived solutes. Based on the available information about the hydrology of the site, an integrated transport model was developed and used to estimate the relevant hydrochemical fluxes. The model was designed to reproduce the deuterium content of streamflow and allowed for the estimate of catchment water storage and dynamic travel time distributions (TTDs). Within this framework, dissolved silicon and sodium concentration in streamflow were simulated by implementing first-order chemical kinetics based explicitly on dynamic TTD, thus upscaling local geochemical processes to catchment scale. Our results highlight the key role of water stored within the subsoil glacial material in both the short-term and long-term solute circulation at Hubbard Brook. The analysis of the results provided by the calibrated model allowed a robust estimate of the emerging concentration-discharge relationship, streamflow age distributions (including the fraction of event water) and storage size, and their evolution in time due to hydrologic variability.

  16. Non-invasive detection and monitoring of experimental hydrocephalus with distortion product otoacoustic emissions.

    PubMed

    Ezerarslan, Hande; Beriat, Güçlü Kaan; Nurhat, Raziye Handan; Kazancı, Burak; Çelikkan, Ferda Topal; Sabuncuoğlu, Bizden; Sabuncuoğlu, Hakan

    2016-08-01

    We aimed to find out the effects of short term and long term hydrocephalus and intracranial ventricular volume changes on cochlear functions by using distortion product otoacoustic emission (DPOAE) in experimental hydrocephalus rat models for the first time in literature. This study was performed with 48 healthy, adult (8 weeks old), Sprague-Dawley rats which weighed between 200 and 240g. Six groups were formed in this study: short term control, short term sham, short term hydrocephalus, long term control, long term sham and long term hydrocephalus groups. Each group contained eight rats. Short term period was 4 weeks and long term period was 8 weeks after the study started. At the end of these periods, DPOAE measurements were performed and then rats were sacrificed to determine ventricular volumes. DPOAE values at all frequencies were significantly decreased in the short term hydrocephalus group when compared to the short term control and short term sham groups. DPOAE values at all frequencies were significantly decreased in the long term hydrocephalus group when compared to the long term control and long term sham groups. Besides, long term sham group which had higher ventricular volumes than long term control group also had lower DPOAE measurements. Significant associations were present between DPOAE measurements and ventricular volumes in hydrocephalus models. The functional disturbances in cochlear functions due to hydrocephalus have been demonstrated with DPOAE measurements in this study. DPOAE measurements may be thought as an easily applicable non-invasive method in detection and follow-up of patients with hydrocephalus. Our findings should be supported with clinical studies in humans. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Character displacement and the evolution of niche complementarity in a model biofilm community.

    PubMed

    Ellis, Crystal N; Traverse, Charles C; Mayo-Smith, Leslie; Buskirk, Sean W; Cooper, Vaughn S

    2015-02-01

    Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an alternative resource and reduce competition, or by facilitation, in which organisms change the environment and enable different genotypes or species to become established. We previously developed a model of long-term experimental evolution in which bacteria attach to a plastic bead, form a biofilm, and disperse to a new bead. Here, we focus on the evolution of coexisting mutants within a population of Burkholderia cenocepacia and how their interactions affected productivity. Adaptive mutants initially competed for space, but later competition declined, consistent with character displacement and the predicted effects of the evolved mutations. The community reached a stable equilibrium as each ecotype evolved to inhabit distinct, complementary regions of the biofilm. Interactions among ecotypes ultimately became facilitative and enhanced mixed productivity. Observing the succession of genotypes within niches illuminated changing selective forces within the community, including a fundamental role for genotypes producing small colony variants that underpin chronic infections caused by B. cenocepacia. © 2014 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  18. The role of biotic forces in driving macroevolution: beyond the Red Queen

    PubMed Central

    Voje, Kjetil L.; Holen, Øistein H.; Liow, Lee Hsiang; Stenseth, Nils Chr.

    2015-01-01

    A multitude of hypotheses claim that abiotic factors are the main drivers of macroevolutionary change. By contrast, Van Valen's Red Queen hypothesis is often put forward as the sole representative of the view that biotic forcing is the main evolutionary driver. This imbalance of hypotheses does not reflect our current knowledge: theoretical work demonstrates the plausibility of biotically driven long-term evolution, whereas empirical work suggests a central role for biotic forcing in macroevolution. We call for a more pluralistic view of how biotic forces may drive long-term evolution that is compatible with both phenotypic stasis in the fossil record and with non-constant extinction rates. Promising avenues of research include contrasting predictions from relevant theories within ecology and macroevolution, as well as embracing both abiotic and biotic proxies while modelling long-term evolutionary data. By fitting models describing hypotheses of biotically driven macroevolution to data, we could dissect their predictions and transcend beyond pattern description, possibly narrowing the divide between our current understanding of micro- and macroevolution. PMID:25948685

  19. 'Junk' DNA and long-term phenotypic evolution in Silene section Elisanthe (Caryophyllaceae).

    PubMed Central

    Meagher, Thomas R; Costich, Denise E

    2004-01-01

    Nuclear DNA content variation over orders of magnitude across species has been attributed to 'junk' repetitive DNA with limited adaptive significance. By contrast, our previous work on Silene latifolia showed that DNA content is negatively correlated with flower size, a character of clear adaptive relevance. The present paper explores this relationship in a broader phylogenetic context to investigate the long-term evolutionary impacts of DNA content variation. The relationship between nuclear DNA content and phenotype variation was determined for four closely related species of Silene section Elisanthe (Caryophyllaceae). In addition to a consistent sexual dimorphism in DNA content across all of the species, we found DNA content variation among populations within, as well as among, species. We also found a general trend towards a negative correlation between DNA content and flower and leaf size over all four species, within males and females as well as overall. These results indicate that repetitive DNA may play a role in long-term phenotypic evolution. PMID:15801614

  20. Influence of long-term thermal aging on the microstructural evolution of nuclear reactor pressure vessel materials: An atom probe study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pareige, P.; Russell, K.F.; Stoller, R.E.

    1998-03-01

    Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentrationmore » in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.« less

  1. Molecular Darwinism: The Contingency of Spontaneous Genetic Variation

    PubMed Central

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions. PMID:21979160

  2. Molecular Darwinism: the contingency of spontaneous genetic variation.

    PubMed

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  3. Long Term Evolution of Planetary Systems with a Terrestrial Planet and a Giant Planet

    NASA Technical Reports Server (NTRS)

    Georgakarakos, Nikolaos; Dobbs-Dixon, Ian; Way, Michael J.

    2016-01-01

    We study the long term orbital evolution of a terrestrial planet under the gravitational perturbations of a giant planet. In particular, we are interested in situations where the two planets are in the same plane and are relatively close. We examine both possible configurations: the giant planet orbit being either outside or inside the orbit of the smaller planet. The perturbing potential is expanded to high orders and an analytical solution of the terrestrial planetary orbit is derived. The analytical estimates are then compared against results from the numerical integration of the full equations of motion and we find that the analytical solution works reasonably well. An interesting finding is that the new analytical estimates improve greatly the predictions for the timescales of the orbital evolution of the terrestrial planet compared to an octupole order expansion. Finally, we briefly discuss possible applications of the analytical estimates in astrophysical problems.

  4. Expansion and retrenchment of the Swedish welfare state: a long-term approach.

    PubMed

    Buendía, Luis

    2015-01-01

    In this article, we will undertake a long-term analysis of the evolution of the Swedish welfare state, seeking to explain that evolution through the use of a systemic approach. That is, our approach will consider the interrelations between economic growth (EG), the sociopolitical institutional framework (IF), and the welfare state (WS)-understood as a set of institutions embracing the labor market and its regulation, the tax system, and the so-called social wage-in order to find the main variables that elucidate its evolution. We will show that the expansive phase of the Swedish welfare state can be explained by the symbiotic relationships developed in the WS-EG-IF interaction, whereas the period of welfare state retrenchment is one result of changes operating within the sociopolitical IF and EG bases. © The Author(s) 2015 Reprints and permissions:]br]sagepub.co.uk/journalsPermissions.nav.

  5. A Model of Substitution Trajectories in Sequence Space and Long-Term Protein Evolution

    PubMed Central

    Usmanova, Dinara R.; Ferretti, Luca; Povolotskaya, Inna S.; Vlasov, Peter K.; Kondrashov, Fyodor A.

    2015-01-01

    The nature of factors governing the tempo and mode of protein evolution is a fundamental issue in evolutionary biology. Specifically, whether or not interactions between different sites, or epistasis, are important in directing the course of evolution became one of the central questions. Several recent reports have scrutinized patterns of long-term protein evolution claiming them to be compatible only with an epistatic fitness landscape. However, these claims have not yet been substantiated with a formal model of protein evolution. Here, we formulate a simple covarion-like model of protein evolution focusing on the rate at which the fitness impact of amino acids at a site changes with time. We then apply the model to the data on convergent and divergent protein evolution to test whether or not the incorporation of epistatic interactions is necessary to explain the data. We find that convergent evolution cannot be explained without the incorporation of epistasis and the rate at which an amino acid state switches from being acceptable at a site to being deleterious is faster than the rate of amino acid substitution. Specifically, for proteins that have persisted in modern prokaryotic organisms since the last universal common ancestor for one amino acid substitution approximately ten amino acid states switch from being accessible to being deleterious, or vice versa. Thus, molecular evolution can only be perceived in the context of rapid turnover of which amino acids are available for evolution. PMID:25415964

  6. Post-rift magmatic evolution of the eastern North American “passive-aggressive” margin

    USGS Publications Warehouse

    Mazza, Sarah E.; Gazel, Esteban; Johnson, Elizabeth A.; Bizmis, Michael; McAleer, Ryan J.; Biryol, C. Berk

    2017-01-01

    Understanding the evolution of passive margins requires knowledge of temporal and chemical constraints on magmatism following the transition from supercontinent to rifting, to post-rifting evolution. The Eastern North American Margin (ENAM) is an ideal study location as several magmatic pulses occurred in the 200 My following rifting. In particular, the Virginia-West Virginia region of the ENAM has experienced two postrift magmatic pulses at ∼152 Ma and 47 Ma, and thus provides a unique opportunity to study the long-term magmatic evolution of passive margins. Here we present a comprehensive set of geochemical data that includes new 40Ar/39Ar ages, major and trace-element compositions, and analysis of radiogenic isotopes to further constrain their magmatic history. The Late Jurassic volcanics are bimodal, from basanites to phonolites, while the Eocene volcanics range from picrobasalt to rhyolite. Modeling suggests that the felsic volcanics from both the Late Jurassic and Eocene events are consistent with fractional crystallization. Sr-Nd-Pb systematics for the Late Jurassic event suggests HIMU and EMII components in the magma source that we interpret as upper mantle components rather than crustal interaction. Lithospheric delamination is the best hypothesis for magmatism in Virginia/West Virginia, due to tectonic instabilities that are remnant from the long-term evolution of this margin, resulting in a “passive-aggressive” margin that records multiple magmatic events long after rifting ended.

  7. Impacts of Early Childhood Education on Medium- and Long-Term Educational Outcomes

    ERIC Educational Resources Information Center

    McCoy, Dana Charles; Yoshikawa, Hirokazu; Ziol-Guest, Kathleen M.; Duncan, Greg J.; Schindler, Holly S.; Magnuson, Katherine; Yang, Rui; Koepp, Andrew; Shonkoff, Jack P.

    2017-01-01

    Despite calls to expand early childhood education (ECE) in the United States, questions remain regarding its medium- and long-term impacts on educational outcomes. We use meta-analysis of 22 high-quality experimental and quasi-experimental studies conducted between 1960 and 2016 to find that on average, participation in ECE leads to statistically…

  8. Long-term research at the USDA Forest Service's experimental forests and ranges.

    Treesearch

    Ariel D. Lugo; Frederick J. Swanson; Olga Ramos González; Mary Beth Adams; Brian Palik; Ronald E. Thill; Dale G. Brockway; Christel Kern; Richard Woodsmith; Robert Musselman

    2006-01-01

    The network of experimental forests and ranges administered by the U.S. Department of Agriculture Forest Service consists of 77 properties that are representative of most forest cover types and many ecological regions in the Nation. Established as early as 1908, these sites maintain exceptional, long-term databases on environmental dynamics and biotic responses. Early...

  9. Experimental forests and ranges as a network for for long-term data

    Treesearch

    Martin Vavra; John Mitchell

    2010-01-01

    In the new millennium, national leaders and policymakers are facing profound issues regarding people and the environment. Experimental Forests and Ranges (EFRs), managed by the Forest Service, U.S. Department of Agriculture (USDA), form a network of locations amenable to the development of long-term data collection across many major ecosystems of the continental United...

  10. On the Evolution of Human Language.

    ERIC Educational Resources Information Center

    Lieberman, Philip

    Human linguistic ability depends, in part, on the gradual evolution of man's supralaryngeal vocal tract. The anatomic basis of human speech production is the result of a long evolutionary process in which the Darwinian process of natural selection acted to retain mutations. For auditory perception, the listener operates in terms of the acoustic…

  11. [The effects of multimedia-assisted instruction on the skin care learning of nurse aides in long-term care facilities].

    PubMed

    Wu, Yu-Ling; Kao, Yu-Hsiu

    2014-08-01

    Skin care is an important responsibility of nurse aides in long-term care facilities, and the nursing knowledge, attitudes, and skills of these aides significantly affects quality of care. However, the work schedule of nurse aides often limits their ability to obtain further education and training. Therefore, developing appropriate and effective training programs for nurse aides is critical to maintaining and improving quality of care in long-term care facilities. This study investigates the effects of multimedia assisted instruction on the skin care learning of nurse aides working in long-term care facilities. A quasi-experimental design and convenient sampling were adopted in this study. Participants included 96 nurse aides recruited from 5 long-term care facilities in Taoyuan County, Taiwan. The experimental group received 3 weeks of multimedia assisted instruction. The control group did not receive this instruction. The Skin Care Questionnaire for Nurse Aides in Long-term Care Facilities and the Skin Care Behavior Checklist were used for assessment before and after the intervention. (1) Posttest scores for skin care knowledge, attitudes, behavior, and the skin care checklist were significantly higher than pretest scores for the intervention group. There was no significant difference between pretest and posttest scores for the control group. (2) A covariance analysis of pretest scores for the two groups showed that the experimental group earned significantly higher average scores than their control group peers for skin care knowledge, attitudes, behavior, and the skin care checklist. The multimedia assisted instruction demonstrated significant and positive effects on the skin care leaning of nurse aides in long-term care facilities. This finding supports the use of multimedia assisted instruction in the education and training of nurse aides in long-term care facilities in the future.

  12. Avian research on U.S. Forest Service Experimental Forests and Ranges: Emergent themes, opportunities, and challenges

    USGS Publications Warehouse

    Stoleson, Scott H.; King, D.I.; Tomosy, M.

    2011-01-01

    Since 1908, U.S. Forest Service Experimental Forests and Ranges have been dedicated to long-term interdisciplinary research on a variety of ecological and management questions. They encompass a wide diversity of life zones and ecoregions, and provide access to research infrastructure, opportunities for controlled manipulations, and integration with other types of long-term data. These features have facilitated important advances in a number of areas of avian research, including furthering our understanding of population dynamics, the effects of forest management on birds, avian responses to disturbances such as fire and hurricanes, and other aspects of avian ecology and conservation. However, despite these contributions, this invaluable resource has been underutilized by ornithologists. Most of the Experimental Forests and Ranges have had no ornithological work done on them. We encourage the ornithological community, especially graduate students and new faculty, to take advantage of this largely untapped potential for long-term work, linkage with long-term data sets, multiple disciplines, and active forest management. ?? 2010 Elsevier B.V.

  13. Chemical evolution and the origin of life: cumulative keyword subject index 1970-1986

    NASA Technical Reports Server (NTRS)

    Roy, A. C.; Powers, J. V.; Rummel, J. D. (Principal Investigator)

    1990-01-01

    This cumulative subject index encompasses the subject indexes of the bibliographies on Chemical Evolution and the Origin of Life that were first published in 1970 and have continued through publication of the 1986 bibliography supplement. Early bibliographies focused on experimental and theoretical material dealing directly with the concepts of chemical evolution and the origin of life, excluding the broader areas of exobiology, biological evolution, and geochemistry. In recent years, these broader subject areas have also been incorporated as they appear in literature searches relating to chemical evolution and the origin of life, although direct attempts have not been made to compile all of the citations in these broad areas. The keyword subject indexes have also undergone an analogous change in scope. Compilers of earlier bibliographies used the most specific term available in producing the subject index. Compilers of recent bibliographies have used a number of broad terms relating to the overall subject content of each citation and specific terms where appropriate. The subject indexes of these 17 bibliographies have, in general, been cumulatively compiled exactly as they originally appeared. However, some changes have been made in an attempt to correct errors, combine terms, and provide more meaningful terms.

  14. Adapting Digital Libraries to Continual Evolution

    NASA Technical Reports Server (NTRS)

    Barkstrom, Bruce R.; Finch, Melinda; Ferebee, Michelle; Mackey, Calvin

    2002-01-01

    In this paper, we describe five investment streams (data storage infrastructure, knowledge management, data production control, data transport and security, and personnel skill mix) that need to be balanced against short-term operating demands in order to maximize the probability of long-term viability of a digital library. Because of the rapid pace of information technology change, a digital library cannot be a static institution. Rather, it has to become a flexible organization adapted to continuous evolution of its infrastructure.

  15. Long-Term Network Experiments and Interdisciplinary Campaigns Conducted by the USDA-Agricultural Research Service

    NASA Astrophysics Data System (ADS)

    Goodrich, D. C.; Kustas, W. P.; Cosh, M. H.; Moran, S. M.; Marks, D. G.; Jackson, T. J.; Bosch, D. D.; Rango, A.; Seyfried, M. S.; Scott, R. L.; Prueger, J. H.; Starks, P. J.; Walbridge, M. R.

    2014-12-01

    The USDA-Agricultural Research Service has led, or been integrally involved in, a myriad of interdisciplinary field campaigns in a wide range of locations both nationally and internationally. Many of the shorter campaigns were anchored over the existing national network of ARS Experimental Watersheds and Rangelands. These long-term outdoor laboratories provided a critical knowledge base for designing the campaigns as well as historical data, hydrologic and meteorological infrastructure coupled with shop, laboratory, and visiting scientist facilities. This strong outdoor laboratory base enabled cost-efficient campaigns informed by historical context, local knowledge, and detailed existing watershed characterization. These long-term experimental facilities have also enabled much longer term lower intensity experiments, observing and building an understanding of both seasonal and inter-annual biosphere-hydrosphere-atmosphere interactions across a wide range of conditions. A sampling of these experiments include MONSOON'90, SGP97, SGP99, Washita'92, Washita'94, SMEX02-05 and JORNEX series of experiments, SALSA, CLASIC and longer-term efforts over the ARS Little Washita, Walnut Gulch, Little River, Reynolds Creek, and OPE3 Experimental Watersheds. This presentation will review some of the highlights and key findings of these campaigns and long-term efforts including the inclusion of many of the experimental watersheds and ranges in the Long-Term Agro-ecosystems Research (LTAR) network. The LTAR network also contains several locations that are also part of other observational networks including the CZO, LTER, and NEON networks. Lessons learned will also be provided for scientists initiating their participation in large-scale, multi-site interdisciplinary science.

  16. A numerical and experimental study on the nonlinear evolution of long-crested irregular waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goullet, Arnaud; Choi, Wooyoung; Division of Ocean Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701

    2011-01-15

    The spatial evolution of nonlinear long-crested irregular waves characterized by the JONSWAP spectrum is studied numerically using a nonlinear wave model based on a pseudospectral (PS) method and the modified nonlinear Schroedinger (MNLS) equation. In addition, new laboratory experiments with two different spectral bandwidths are carried out and a number of wave probe measurements are made to validate these two wave models. Strongly nonlinear wave groups are observed experimentally and their propagation and interaction are studied in detail. For the comparison with experimental measurements, the two models need to be initialized with care and the initialization procedures are described. Themore » MNLS equation is found to approximate reasonably well for the wave fields with a relatively smaller Benjamin-Feir index, but the phase error increases as the propagation distance increases. The PS model with different orders of nonlinear approximation is solved numerically, and it is shown that the fifth-order model agrees well with our measurements prior to wave breaking for both spectral bandwidths.« less

  17. Character displacement and the evolution of niche complementarity in a model biofilm community

    PubMed Central

    Ellis, Crystal N; Traverse, Charles C; Mayo-Smith, Leslie; Buskirk, Sean W; Cooper, Vaughn S

    2015-01-01

    Colonization of vacant environments may catalyze adaptive diversification and be followed by competition within the nascent community. How these interactions ultimately stabilize and affect productivity are central problems in evolutionary ecology. Diversity can emerge by character displacement, in which selection favors phenotypes that exploit an alternative resource and reduce competition, or by facilitation, in which organisms change the environment and enable different genotypes or species to become established. We previously developed a model of long-term experimental evolution in which bacteria attach to a plastic bead, form a biofilm, and disperse to a new bead. Here, we focus on the evolution of coexisting mutants within a population of Burkholderia cenocepacia and how their interactions affected productivity. Adaptive mutants initially competed for space, but later competition declined, consistent with character displacement and the predicted effects of the evolved mutations. The community reached a stable equilibrium as each ecotype evolved to inhabit distinct, complementary regions of the biofilm. Interactions among ecotypes ultimately became facilitative and enhanced mixed productivity. Observing the succession of genotypes within niches illuminated changing selective forces within the community, including a fundamental role for genotypes producing small colony variants that underpin chronic infections caused by B. cenocepacia. PMID:25494960

  18. Battle of the Bacteria: Characterizing the Evolutionary Advantage of Stationary Phase Growth †

    PubMed Central

    Kram, Karin E.; Yim, Kristina M.; Coleman, Aaron B.; Sato, Brian K.

    2016-01-01

    Providing students with authentic research opportunities has been shown to enhance learning and increase retention in STEM majors. Accordingly, we have developed a novel microbiology lab module, which focuses on the molecular mechanisms of evolution in E. coli, by examining the growth advantage in stationary phase (GASP) phenotype. The GASP phenotype is demonstrated by growing cells into long-term stationary phase (LTSP) and then competing them against un-aged cells in a fresh culture. This module includes learning goals related to strengthening practical laboratory skills and improving student understanding of evolution. In addition, the students generate novel data regarding the effects of different environmental stresses on GASP and the relationship between evolution, genotypic change, mutation frequency, and cell stress. Pairs of students are provided with the experimental background, select a specific aspect of the growth medium to modify, and generate a hypothesis regarding how this alteration will impact the GASP phenotype. From this module, we have demonstrated that students are able to achieve the established learning goals and have produced data that has furthered our understanding of the GASP phenotype. Journal of Microbiology & Biology Education PMID:27158307

  19. Linking brains and brawn: exercise and the evolution of human neurobiology.

    PubMed

    Raichlen, David A; Polk, John D

    2013-01-07

    The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.

  20. Utilization of PD modalities: evolution.

    PubMed

    Venkataraman, Vijaya; Nolph, Karl D

    2002-01-01

    In the early 1960s, peritoneal dialysis (PD) was introduced as a form of long-term maintenance therapy in patients with end-stage renal disease (ESRD). We have come a long way since. Increasing understanding of peritoneal kinetic behavior, its innovative manipulation to meet patient needs, critical monitoring of clinical outcomes, and parallel development in technology have all contributed to the worldwide success of the therapy over the past four decades. In this article we review the evolution of the various PD modalities in the context of these factors.

  1. Hidden long evolutionary memory in a model biochemical network

    NASA Astrophysics Data System (ADS)

    Ali, Md. Zulfikar; Wingreen, Ned S.; Mukhopadhyay, Ranjan

    2018-04-01

    We introduce a minimal model for the evolution of functional protein-interaction networks using a sequence-based mutational algorithm, and apply the model to study neutral drift in networks that yield oscillatory dynamics. Starting with a functional core module, random evolutionary drift increases network complexity even in the absence of specific selective pressures. Surprisingly, we uncover a hidden order in sequence space that gives rise to long-term evolutionary memory, implying strong constraints on network evolution due to the topology of accessible sequence space.

  2. Role of Utility and Inference in the Evolution of Functional Information

    PubMed Central

    Sharov, Alexei A.

    2009-01-01

    Functional information means an encoded network of functions in living organisms from molecular signaling pathways to an organism’s behavior. It is represented by two components: code and an interpretation system, which together form a self-sustaining semantic closure. Semantic closure allows some freedom between components because small variations of the code are still interpretable. The interpretation system consists of inference rules that control the correspondence between the code and the function (phenotype) and determines the shape of the fitness landscape. The utility factor operates at multiple time scales: short-term selection drives evolution towards higher survival and reproduction rate within a given fitness landscape, and long-term selection favors those fitness landscapes that support adaptability and lead to evolutionary expansion of certain lineages. Inference rules make short-term selection possible by shaping the fitness landscape and defining possible directions of evolution, but they are under control of the long-term selection of lineages. Communication normally occurs within a set of agents with compatible interpretation systems, which I call communication system. Functional information cannot be directly transferred between communication systems with incompatible inference rules. Each biological species is a genetic communication system that carries unique functional information together with inference rules that determine evolutionary directions and constraints. This view of the relation between utility and inference can resolve the conflict between realism/positivism and pragmatism. Realism overemphasizes the role of inference in evolution of human knowledge because it assumes that logic is embedded in reality. Pragmatism substitutes usefulness for truth and therefore ignores the advantage of inference. The proposed concept of evolutionary pragmatism rejects the idea that logic is embedded in reality; instead, inference rules are constructed within each communication system to represent reality and they evolve towards higher adaptability on a long time scale. PMID:20160960

  3. Fire feedbacks over geological time and the evolution of atmospheric oxygen concentration

    NASA Astrophysics Data System (ADS)

    Mills, B.; Belcher, C.; Lenton, T. M.

    2017-12-01

    During the 4.5 billion year history of the Earth, the concentration of oxygen in the atmosphere has risen from trace levels to today's 21%. Yet over the last 400 million years, O2 concentration appears to have remained within a relatively narrow range (around 15% - 30%), despite dramatic changes in the nature of global biogeochemical cycling. This stability has been crucial for continued animal evolution, and is thought to have arisen through feedbacks between oxygen, wildfire and plant productivity: the strong oxygen- dependence of fire initiation and spread means that global photosynthetic primary productivity is suppressed when oxygen levels are high, and enhanced when levels are low. We present biogeochemical modelling of the long term carbon and oxygen cycles, which aims to capture the operation of the wildfire feedback alongside other key processes. We find that wildfire can effectively stabilize long term oxygen concentrations, but that the nature of this feedback has changed as plant evolution has provided different fuels. Specifically, the evolution of early angiosperms during the Cretaceous period provided new understory fuels that more easily facilitated crown and canopy fires. Adding these dynamics to our model produces a more stable system over long timescales, and the model predicts that oxygen concentration has declined towards the present day - a prediction that is supported by other independent estimates.

  4. Spatial pattern of reference evapotranspiration change and its temporal evolution over Southwest China

    NASA Astrophysics Data System (ADS)

    Sun, Shanlei; Wang, Guojie; Huang, Jin; Mu, Mengyuan; Yan, Guixia; Liu, Chunwei; Gao, Chujie; Li, Xing; Yin, Yixing; Zhang, Fangmin; Zhu, Siguang; Hua, Wenjian

    2017-11-01

    Due to the close relationship of climate change with reference evapotranspiration (ETo), detecting changes in ETo spatial distribution and its temporal evolution at local and regional levels is favorable to comprehensively understand climate change-induced impacts on hydrology and agriculture. In this study, the objective is to identify whether climate change has caused variation of ETo spatial distribution in different analysis periods [i.e., long- (20-year), medium- (10-year), and short-term (5-year)] and to investigate its temporal evolution (namely, when these changes happened) at annual and monthly scales in Southwest China (SWC). First, we estimated ETo values using the United Nations Food and Agriculture Organization (FAO) Penman-Monteith equation, based on historical climate data measured at 269 weather sites during 1973-2012. The analysis of variance (ANOVA) results indicated that the spatial pattern of annual ETo had significantly changed during the past 40 years, particularly in west SWC for the long-term analysis period, and west and southeast SWC in both medium- and short-term periods, which corresponded to the percent area of significant differences which were 21.9, 58.0, and 48.2 %, respectively. For investigating temporal evolution of spatial patterns of annual ETo, Duncan's multiple range test was used, and we found that the most significant changes appeared during 1988-2002 with the significant area of higher than 25.0 %. In addition, for long-, medium-, and short-term analysis periods, the spatial distribution has significantly changed during March, September, November, and December, especially in the corresponding periods of 1988-1997, 1983-1992, 1973-1977, and 1988-2002. All in all, climate change has resulted in significant ETo changes in SWC since the 1970s. Knowledge of climate change-induced spatial distribution of ETo and its temporal evolution would aid in formulating strategies for water resources and agricultural managements.

  5. Toward a theory of multilevel evolution: long-term information integration shapes the mutational landscape and enhances evolvability.

    PubMed

    Hogeweg, Paulien

    2012-01-01

    Most of evolutionary theory has abstracted away from how information is coded in the genome and how this information is transformed into traits on which selection takes place. While in the earliest stages of biological evolution, in the RNA world, the mapping from the genotype into function was largely predefined by the physical-chemical properties of the evolving entities (RNA replicators, e.g. from sequence to folded structure and catalytic sites), in present-day organisms, the mapping itself is the result of evolution. I will review results of several in silico evolutionary studies which examine the consequences of evolving the genetic coding, and the ways this information is transformed, while adapting to prevailing environments. Such multilevel evolution leads to long-term information integration. Through genome, network, and dynamical structuring, the occurrence and/or effect of random mutations becomes nonrandom, and facilitates rapid adaptation. This is what does happen in the in silico experiments. Is it also what did happen in biological evolution? I will discuss some data that suggest that it did. In any case, these results provide us with novel search images to tackle the wealth of biological data.

  6. Insights from long-term research on the Fernow Experimental Forest

    Treesearch

    Mary Beth Adams

    2016-01-01

    In 1951, five weirs were constructed in the mixed hardwood forests of the Fernow Experimental Forest and watershed research began. Specializing in long-term watershed scale manipulations, researchers at the Fernow have evaluated effects of various silvicultural practices on water yield, seasonal flow patterns, water quality and on ecosystem processes and ecosystem...

  7. Long-term data from silvicultural studies: interpreting and assessing old records for economic insights

    Treesearch

    Paul E. Sendak; Robert M. Frank; William B. Leak

    2006-01-01

    Long-term silvicultural studies on the Penobscot Experimental Forest in Maine and Bartlett Experimental Forest in New Hampshire offer opportunities for the patient financial analyst. The economist working with carefully collected growth and yield data can increase the value of these studies to other researchers and ultimately to forest managers. Issues related to data...

  8. The future of long-term USDA Forest Service research sites in the Northeast

    Treesearch

    Michael T. Rains

    2006-01-01

    The mission of the Northeastern Research Station is "Improving Lives and Protecting Our Earth Through Research." Our nine experimental sites are the keystone of this mission. Our experimental sites are located in major forest types from West Virginia to Maine, and in Baltimore, Maryland, where we have a long-term ecological research site representing urban...

  9. Mobility as an emergent property of biological organization: Insights from experimental evolution.

    PubMed

    Wallace, Ian J; Garland, Theodore

    2016-05-06

    Anthropologists accept that mobility is a critical dimension of human culture, one that links economy, technology, and social relations. Less often acknowledged is that mobility depends on complex and dynamic interactions between multiple levels of our biological organization, including anatomy, physiology, neurobiology, and genetics. Here, we describe a novel experimental approach to examining the biological foundations of mobility, using mice from a long-term artificial selection experiment for high levels of voluntary exercise on wheels. In this experiment, mice from selectively bred lines have evolved to run roughly three times as far per day as those from nonselected control lines. We consider three insights gleaned from this experiment as foundational principles for the study of mobility from the perspective of biological evolution. First, an evolutionary change in mobility will necessarily be associated with alterations in biological traits both directly and indirectly connected to mobility. Second, changing mobility will result in trade-offs and constraints among some of the affected traits. Third, multiple solutions exist to altering mobility, so that various combinations of adjustments to traits linked with mobility can achieve the same overall behavioral outcome. We suggest that anthropological knowledge of variation in human mobility might be improved by greater research attention to its biological dimensions. © 2016 Wiley Periodicals, Inc.

  10. Long-term changes in regular and low-frequency earthquake inter-event times near Parkfield, CA

    NASA Astrophysics Data System (ADS)

    Wu, C.; Shelly, D. R.; Johnson, P. A.; Gomberg, J. S.; Peng, Z.

    2012-12-01

    The temporal evolution of earthquake inter-event time may provide important clues for the timing of future events and underlying physical mechanisms of earthquake nucleation. In this study, we examine inter-event times from 12-yr catalogs of ~50,000 earthquakes and ~730,000 LFEs in the vicinity of the Parkfield section of the San Andreas Fault. We focus on the long-term evolution of inter-event times after the 2003 Mw6.5 San Simeon and 2004 Mw6.0 Parkfield earthquakes. We find that inter-event times decrease by ~4 orders of magnitudes after the Parkfield and San Simeon earthquakes and are followed by a long-term recovery with time scales of ~3 years and more than 8 years for earthquakes along and to the southwest of the San Andreas fault, respectively. The differing long-term recovery of the earthquake inter-event times is likely a manifestation of different aftershock recovery time scales that reflect the different tectonic loading rates in the two regions. We also observe a possible decrease of LFE inter-event times in some LFE families, followed by a recovery with time scales of ~4 months to several years. The drop in the recurrence time of LFE after the Parkfield earthquake is likely caused by a combination of the dynamic and positive static stress induced by the Parkfield earthquake, and the long-term recovery in LFE recurrence time could be due to post-seismic relaxation or gradual recovery of the fault zone material properties. Our on-going work includes better constraining and understanding the physical mechanisms responsible for the observed long-term recovery in earthquake and LFE inter-event times.

  11. On the Isolation of Halophilic Microorganisms from Salt Deposits of Great Geological Age

    NASA Technical Reports Server (NTRS)

    Stan-Lotter, Helga; Denner, Ewald; Orans, Robin (Editor)

    1993-01-01

    From salt sediments of Triassic or Permian ace from various locations in the world halophilic microorganisms were isolated. Molecular characteristics of several of the isolates suggested they belong to the archaebacteriae. One group appears to represent novel strains; several properties or one such isolate, strain BIp, are described here. The existence of viable microorganisms in ancient sediments would have great implications with respect to our notions on evolution, the search for life in extraterrestrial environments and the long- term survival of functional biological structures. Of crucial importance is thus the question if these microorganisms existed in the salt since the time of deposition or invaded at some later date. Some suggestions to address these issues experimentally are discussed.

  12. Characterization of dual-polarization LTE radio over a free-space optical turbulence channel.

    PubMed

    Bohata, J; Zvanovec, S; Korinek, T; Mansour Abadi, M; Ghassemlooy, Z

    2015-08-10

    A dual polarization (DP) radio over a free-space optical (FSO) communication link using a long-term evolution (LTE) radio signal is proposed and analyzed under different turbulence channel conditions. Radio signal transmission over the DP FSO channel is experimentally verified by means of error vector magnitude (EVM) statistics. We demonstrate that such a system, employing a 64 quadrature amplitude modulation at the frequency bands of 800 MHz and 2.6 GHz, evinces reliability with <8% of EVM in a turbulent channel. Based on the results, we show that transmitting the LTE signal over the FSO channel is a potential solution for last-mile access or backbone networks, when using multiple-input multiple-output based DP signals.

  13. Whole planet coupling between climate, mantle, and core: Implications for rocky planet evolution

    NASA Astrophysics Data System (ADS)

    Foley, Bradford J.; Driscoll, Peter E.

    2016-05-01

    Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.

  14. Speculations on the origin and evolution of the Utopia-Elysium lowlands of Mars

    NASA Technical Reports Server (NTRS)

    Frey, Herbert V.; Schultz, Richard A.

    1990-01-01

    This paper proposes a qualitative model for the origin of the Utopia-Elysium northern lowlands on eastern Mars in terms of the long-term evolution of two large overlapping impact basins. The model, which is consistent with both the observed geologic constraints and more quantitative results obtained by numerical modeling of smaller (Orientale-size) impact basins, is shown to qualitatively account for the major topographic variation seen in the Utopia-Elysium region, including the overall 'lowness' of the area and localized depressions.

  15. Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity.

    PubMed

    Costa, Rui Ponte; Padamsey, Zahid; D'Amour, James A; Emptage, Nigel J; Froemke, Robert C; Vogels, Tim P

    2017-09-27

    Long-term modifications of neuronal connections are critical for reliable memory storage in the brain. However, their locus of expression-pre- or postsynaptic-is highly variable. Here we introduce a theoretical framework in which long-term plasticity performs an optimization of the postsynaptic response statistics toward a given mean with minimal variance. Consequently, the state of the synapse at the time of plasticity induction determines the ratio of pre- and postsynaptic modifications. Our theory explains the experimentally observed expression loci of the hippocampal and neocortical synaptic potentiation studies we examined. Moreover, the theory predicts presynaptic expression of long-term depression, consistent with experimental observations. At inhibitory synapses, the theory suggests a statistically efficient excitatory-inhibitory balance in which changes in inhibitory postsynaptic response statistics specifically target the mean excitation. Our results provide a unifying theory for understanding the expression mechanisms and functions of long-term synaptic transmission plasticity. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. The Evaluation of the National Long Term Care Demonstration: Final Report. Executive Summary.

    ERIC Educational Resources Information Center

    Mathematica Policy Research, Inc., Plainsboro, NJ.

    This report describes the evaluation of the National Long-Term Care (Channeling) Demonstration, a rigorous test of comprehensive case management of community care as a way of containing long-term care costs for the impaired elderly while providing adequate care to those in need. The evaluation process is presented as an experimental design with…

  17. The increased risk of predation enhances cooperation

    PubMed Central

    Krams, Indrikis; Bērziņš, Arnis; Krama, Tatjana; Wheatcroft, David; Igaune, Kristīne; Rantala, Markus J.

    2010-01-01

    Theory predicts that animals in adverse conditions can decrease individual risks and increase long-term benefits by cooperating with neighbours. However, some empirical studies suggest that animals often focus on short-term benefits, which can reduce the likelihood that they will cooperate with others. In this experimental study, we tested between these two alternatives by evaluating whether increased predation risk (as a correlate of environmental adversity) enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behaviour, among breeding pied flycatchers Ficedula hypoleuca. We tested whether birds would join their mobbing neighbours more often and harass a stuffed predator placed near their neighbours' nests more intensely in areas with a higher perceived risk of predation. Our results show that birds attended mobs initiated by their neighbours more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. In such high-risk areas, birds also were more often involved in between-pair cooperation. This study demonstrates the positive impact of predation risk on cooperation in breeding songbirds, which might help in explaining the emergence and evolution of cooperation. PMID:19846454

  18. Sustained increase in food supplies reduces broodmate aggression in black-legged kittiwakes

    USGS Publications Warehouse

    White, J.; Leclaire, S.; Kriloff, M.; Mulard, Hervé; Hatch, Shyla A.; Danchin, E.

    2010-01-01

    The amount of food ingested by chicks has often been suggested as being the main proximate factor controlling broodmate aggression in facultatively siblicidal species. Although several experiments have demonstrated that short-term food deprivation causes a temporary increase in aggression, no study has, to our knowledge, experimentally manipulated overall food supplies and considered long-term effects on chick behaviour and life history traits. We provided supplemental food to breeding pairs of black-legged kittiwakes, Rissa tridactyla, over an entire breeding season and compared the aggressive behaviour of their chicks with that of chicks of control pairs. Control A-chicks (first to hatch) showed more frequent and intense aggression than their experimental counterparts. Furthermore, the more A-chicks begged and the lower their growth rate the more aggressive they were. The consequences of increased aggression for B-chicks (second to hatch) were lower begging rate, lower growth rate and lower survival. We thus provide evidence that a sustained increase in food availability affects broodmate aggression and chick survival at the nest and we discuss the various proximate and ultimate causes involved in the evolution of broodmate aggression. ?? 2010 The Association for the Study of Animal Behaviour.

  19. Morphosedimentary evolution of carbonate sandy beaches at decadal scale : case study in Reunion Island , Indian Ocean

    NASA Astrophysics Data System (ADS)

    Mahabot, Marie-Myriam; Pennober, Gwenaelle; Suanez, Serge; Troadec, Roland; Delacourt, Christophe

    2017-04-01

    Global change introduce a lot of uncertainties concerning future trajectory of beaches by directly or indirectly modifying major driving factors. An improved understanding of the past shoreline evolution may help for anticipate future coastline response. However, in tropical environment, studies concerning carbonate beaches dynamics are scarce compared to open sandy beaches. Consequently, coral reef protected beaches morphological adjustment is still poorly understood and long-term evolution rate are poorly quantified in these specific environment. In this context, La Reunion Island, insular department of France located in Indian Ocean, constitute a favoured laboratory. This high volcanic island possesses 25 km of carbonate beaches which experience hydrodynamic forcing specific from tropical environment: cyclonic swell during summer and long period swell during winter. Because of degraded coral reef health and high anthropogenic pressure, 50% of the beaches are in erosion since 1970s. Beach survey has been conducted since 1990s by scientist and are now encompassed as pilot site within a French observatory network which guarantee long-term survey with high resolution observational techniques. Thus, La Reunion Island is one of the rare carbonate beach to be surveyed since 20 years. This study aims to examined and quantify beach response at decadal scale on carbonate sandy beaches of Reunion Island. The study focus on 12 km of beaches from Cap Champagne to the Passe de Trois-Bassins. The analyze of 15 beach profile data originated from historical and DGPS beach topographic data confirm long term trend to erosion. Sediment lost varies between 0.5 and 2 m3.yr-1 since 1998. However longshore current have led to accretion of some part of beach compartment with rate of 0.7 to 1.6 m3.yr-1. Wave climate was examined from in-situ measurement over 15 years and show that extreme waves associated with tropical cyclones and long period swell play a major role in beach dynamics. Swell frequency and intensity are both determinant for beach evolution.

  20. Long waves in parallel flow in Hele-Shaw cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeybek, M.; Yortsos, Y.C.

    1991-09-09

    The evolution of fluid interfaces in parallel flow in Hele-Shaw cells is studied theoretically and experimentally in the limit of large capillary number. It is shown that such interfaces support wave motion, the amplitude of which for long waves is governed by a set of Korteweg--de Vries and Airy equations. Experiments conducted in a long Hele-Shaw cell validate the theory in the symmetric case.

  1. Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica

    PubMed Central

    Bouquet, Jean-Marie; Spriet, Endy; Troedsson, Christofer; Otterå, Helen; Chourrout, Daniel; Thompson, Eric M.

    2009-01-01

    The pan-global marine appendicularian, Oikopleura dioica, shows considerable promise as a candidate model organism for cross-disciplinary research ranging from chordate genetics and evolution to molecular ecology research. This urochordate, has a simplified anatomical organization, remains transparent throughout an exceptionally short life cycle of less than 1 week and exhibits high fecundity. At 70 Mb, the compact, sequenced genome ranks among the smallest known metazoan genomes, with both gene regulatory and intronic regions highly reduced in size. The organism occupies an important trophic role in marine ecosystems and is a significant contributor to global vertical carbon flux. Among the short list of bona fide biological model organisms, all share the property that they are amenable to long-term maintenance in laboratory cultures. Here, we tested diet regimes, spawn densities and dilutions and seawater treatment, leading to optimization of a detailed culture protocol that permits sustainable long-term maintenance of O. dioica, allowing continuous, uninterrupted production of source material for experimentation. The culture protocol can be quickly adapted in both coastal and inland laboratories and should promote rapid development of the many original research perspectives the animal offers. PMID:19461862

  2. Experimental Study of Porosity Changes in Shale Caprocks Exposed to CO 2-Saturated Brines I: Evolution of Mineralogy, Pore Connectivity, Pore Size Distribution, and Surface Area

    DOE PAGES

    Mouzakis, Katherine M.; Navarre-Sitchler, Alexis K.; Rother, Gernot; ...

    2016-07-18

    Carbon capture, utilization, and storage, one proposed method of reducing anthropogenic emissions of CO 2, relies on low permeability formations, such as shales, above injection formations to prevent upward migration of the injected CO 2. Porosity in caprocks evaluated for sealing capacity before injection can be altered by geochemical reactions induced by dissolution of injected CO 2 into pore fluids, impacting long-term sealing capacity. Therefore, long-term performance of CO 2 sequestration sites may be dependent on both initial distribution and connectivity of pores in caprocks, and on changes induced by geochemical reaction after injection of CO 2, which are currentlymore » poorly understood. This paper presents results from an experimental study of changes to caprock porosity and pore network geometry in two caprock formations under conditions relevant to CO 2 sequestration. Pore connectivity and total porosity increased in the Gothic Shale; while total porosity increased but pore connectivity decreased in the Marine Tuscaloosa. Gothic Shale is a carbonate mudstone that contains volumetrically more carbonate minerals than Marine Tuscaloosa. Carbonate minerals dissolved to a greater extent than silicate minerals in Gothic Shale under high CO 2 conditions, leading to increased porosity at length scales <~200 nm that contributed to increased pore connectivity. In contrast, silicate minerals dissolved to a greater extent than carbonate minerals in Marine Tuscaloosa leading to increased porosity at all length scales, and specifically an increase in the number of pores >~1 μm. Mineral reactions also contributed to a decrease in pore connectivity, possibly as a result of precipitation in pore throats or hydration of the high percentage of clays. Finally, this study highlights the role that mineralogy of the caprock can play in geochemical response to CO 2 injection and resulting changes in sealing capacity in long-term CO 2 storage projects.« less

  3. Modeling mutual feedback between users and recommender systems

    NASA Astrophysics Data System (ADS)

    Zeng, An; Yeung, Chi Ho; Medo, Matúš; Zhang, Yi-Cheng

    2015-07-01

    Recommender systems daily influence our decisions on the Internet. While considerable attention has been given to issues such as recommendation accuracy and user privacy, the long-term mutual feedback between a recommender system and the decisions of its users has been neglected so far. We propose here a model of network evolution which allows us to study the complex dynamics induced by this feedback, including the hysteresis effect which is typical for systems with non-linear dynamics. Despite the popular belief that recommendation helps users to discover new things, we find that the long-term use of recommendation can contribute to the rise of extremely popular items and thus ultimately narrow the user choice. These results are supported by measurements of the time evolution of item popularity inequality in real systems. We show that this adverse effect of recommendation can be tamed by sacrificing part of short-term recommendation accuracy.

  4. Lessons Learned from the Evolution of an Academic Community Partnership: Creating "Patient Voices".

    PubMed

    Chambers, Meghan K; Ireland, Anna; D'Aniello, Rona; Lipnicki, Stephanie; Glick, Myron; Tumiel-Berhalter, Laurene

    2015-01-01

    Long-term partners received federal funding to develop the Patient Voices Network, a partnership of safety-net family practices and their patients to develop health improvement strategies. The scope and structure of the newly funded grant presented unexpected challenges that threatened the future of the partnership.Purpose of Article: To present a case study of the evolution of an existing partnership and offer lessons learned along with recommendations for future partnerships. Federal funding formalized the partnership in a way that required looking at it through a new lens. Leadership, programmatic, personnel, and financial challenges emerged. Short-term and long-term strategies were applied to address evolving needs. This case study demonstrates how federal funding raises the bar for academic-community partnerships and how challenges can be worked through, particularly if the partnership embraces the key principles of community-based participatory research (CBPR). Recommendations have been applied successfully to future initiatives.

  5. Eastern hemlock response to even- and uneven-age management in the Acadian forest: results from the Penobscot Experimental Forest long-term silviculture study

    Treesearch

    John C. Brissette; Laura S. Kenefic

    2000-01-01

    Eastern hemlock (Tsuga canadensis (L.) Carr.) is an important tree species in the mixed-species conifer forests of northern New England and adjacent Canada. Hemlock is very tolerant of understory conditions; consequently, it responds differently to various silvicultural treatments. In a long-term study at the Penobscot Experimental Forest in east-...

  6. The stability of the international oil trade network from short-term and long-term perspectives

    NASA Astrophysics Data System (ADS)

    Sun, Qingru; Gao, Xiangyun; Zhong, Weiqiong; Liu, Nairong

    2017-09-01

    To examine the stability of the international oil trade network and explore the influence of countries and trade relationships on the trade stability, we construct weighted and unweighted international oil trade networks based on complex network theory using oil trading data between countries from 1996 to 2014. We analyze the stability of international oil trade network (IOTN) from short-term and long-term aspects. From the short-term perspective, we find that the trade volumes play an important role on the stability. Moreover, the weighted IOTN is stable; however, the unweighted networks can better reflect the actual evolution of IOTN. From the long-term perspective, we identify trade relationships that are maintained during the whole sample period to reveal the situation of the whole international oil trade. We provide a way to quantitatively measure the stability of complex network from short-term and long-term perspectives, which can be applied to measure and analyze trade stability of other goods or services.

  7. Spectral evolution of weakly nonlinear random waves: kinetic description vs direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Annenkov, Sergei; Shrira, Victor

    2016-04-01

    We study numerically the long-term evolution of water wave spectra without wind forcing, using three different models, aiming at understanding the role of different sets of assumptions. The first model is the classical Hasselmann kinetic equation (KE). We employ the WRT code kindly provided by G. van Vledder. Two other models are new. As the second model, we use the generalised kinetic equation (gKE), derived without the assumption of quasi-stationarity. Thus, unlike the KE, the gKE is valid in the cases when a wave spectrum is changing rapidly (e.g. at the initial stage of evolution of a narrow spectrum). However, the gKE employs the same statistical closure as the KE. The third model is based on the Zakharov integrodifferential equation for water waves and does not depend on any statistical assumptions. Since the Zakharov equation plays the role of the primitive equation of the theory of wave turbulence, we refer to this model as direct numerical simulation of spectral evolution (DNS-ZE). For initial conditions, we choose two narrow-banded spectra with the same frequency distribution (a JONSWAP spectrum with high peakedness γ = 6) and different degrees of directionality. These spectra are from the set of observations collected in a directional wave tank by Onorato et al (2009). Spectrum A is very narrow in angle (corresponding to N = 840 in the cosN directional model). Spectrum B is initially wider in angle (corresponds to N = 24). Short-term evolution of both spectra (O(102) wave periods) has been studied numerically by Xiao et al (2013) using two other approaches (broad-band modified nonlinear Schrödinger equation and direct numerical simulation based on the high-order spectral method). We use these results to verify the initial stage of our DNS-ZE simulations. However, the advantage of the DNS-ZE method is that it allows to study long-term spectral evolution (up to O(104) periods), which was previously possible only with the KE. In the short-term evolution, we find a good agreement between our DNS-ZE results and simulations by Xiao et al (2013), both for the evolution of frequency spectra and for the directional spreading. In the long term, all three approaches demonstrate very close evolution of integral characteristics of spectra, approaching for large time the theoretical asymptotes of the self-similar stage of evolution. However, the detailed comparison of the spectral evolution shows certain notable differences. Both kinetic equations give virtually identical evolution of spectrum B, but in the case of initially nearly one-dimensional spectrum A the KE overestimates the amplitude of the spectral peak. Meanwhile, the DNS-ZE results show considerably wider spectra with less pronounced peak. There is a striking difference for the rate of spectral broadening, which is much larger for the gKE and especially for the KE, than for the DNS-ZE. We show that the rates of change of the spectra obtained with the DNS-ZE are proportional to the fourth power of nonlinearity, corresponding to the dynamical timescale of evolution, rather than the statistical timescale of both kinetic equations.

  8. Is Earth coming out of the recent ice house age in the long-term? - constraints from probable mantle CO2-degassing reconstructions

    NASA Astrophysics Data System (ADS)

    Hartmann, Jens; Li, Gaojun; West, A. Joshua

    2017-04-01

    Enhanced partial melting of mantle material probably started when the subduction motor started around 3.2 Ga ago as evidenced by the formation history of the continental crust. Carbon is degassing due partial melting as it is an incompatible element. Therefore, mantle carbon degassing rates would change with time proportionally to the reservoir mantle concentration evolution and the ocean crust production rate, causing a distinct CO2-degassing rate change with time. The evolution of the mantle degassing rate has some implications for the reconstruction of the carbon cycle and therefore climate and Earth surface processes rates, as CO2-degassing rates are used to constrain or to balance the atmosphere-ocean-crust carbon cycle system. It will be shown that compilations of CO2-degassing from relevant geological sources are probably exceeding the established CO2-sink terrestrial weathering, which is often used to constrain long-term mantle degassing rates to close the carbon cycle on geological time scales. In addition, the scenarios for the degassing dynamics from the mantle sources suggest that the mantle is depleting its carbon content since 3 Ga. This has further implications for the long-term CO2-sink weathering. Results will be compared with geochemical proxies for weathering and weathering intensity dynamics, and will be set in context with snow ball Earth events and long-term emplacement dynamics of mafic areas as Large Igneous Provinces. Decreasing mantle degassing rates since about 2 Ga suggest a constraint for the evolution of the carbon cycle and recycling potential of the amount of subducted carbon. If the given scenarios hold further investigation, the contribution of mantle degassing to climate forcing (directly and via recycling) will decrease further.

  9. Senescence in the wild: Insights from a long-term study on Seychelles warblers.

    PubMed

    Hammers, Martijn; Kingma, Sjouke A; Bebbington, Kat; van de Crommenacker, Janske; Spurgin, Lewis G; Richardson, David S; Burke, Terry; Dugdale, Hannah L; Komdeur, Jan

    2015-11-01

    Senescence--the progressive age-dependent decline in performance--occurs in most organisms. There is considerable variation in the onset and rate of senescence between and within species. Yet the causes of this variation are still poorly understood, despite being central to understanding the evolution of senescence. Long-term longitudinal studies on wild animals are extremely well-suited to studying the impact of environmental and individual characteristics (and the interaction between the two) on senescence, and can help us to understand the mechanisms that shape the evolution of senescence. In this review, we summarize and discuss the insights gained from our comprehensive long-term individual-based study of the Seychelles warbler (Acrocephalus sechellensis). This species provides an excellent model system in which to investigate the evolution of senescence in the wild. We found that Seychelles warblers show senescent declines in survival and reproduction, and discuss how individual characteristics (body condition, body size) and environmental effects (low- versus high-quality environments) may affect the onset and rate of senescence. Further, we highlight the evidence for trade-offs between early-life investment and senescence. We describe how key cellular and physiological processes (oxidative stress and telomere shortening) underpinning senescence are affected by individual and environmental characteristics in the Seychelles warbler (e.g. food availability, reproductive investment, disease) and we discuss how such physiological variation may mediate the relationship between environmental characteristics and senescence. Based on our work using Seychelles warblers as a model system, we show how insights from long-term studies of wild animals may help unravel the causes of the remarkable variation in senescence observed in natural systems, and highlight areas for promising future research.

  10. Sensitivity analysis of a variability in rock thermal conductivity concerning implications on the thermal evolution of the Brazilian South Atlantic passive continental margin

    NASA Astrophysics Data System (ADS)

    Stippich, Christian; Krob, Florian; Glasmacher, Ulrich Anton; Hackspacher, Peter Christian

    2017-04-01

    The aim of the research is to quantify the long-term evolution of the western South Atlantic passive continental margin (SAPCM) in SE-Brazil. Excellent onshore outcrop conditions and extensive pre-rift to post-rift archives between São Paulo and Laguna allow a high precision quantification of exhumation, and rock uplift rates, influencing physical parameters, long-term acting forces, and process-response systems. The research integrates published (Karl et al., 2013) and partly published thermochronological data from Brazil, and test lately published new concepts on causes of long-term landscape and lithospheric evolution in southern Brazil. Six distinct lithospheric blocks (Laguna, Florianópolis, Curitiba, Ilha Comprida, Peruibe and Santos), which are separated by fracture zones (Karl et al., 2013) are characterized by individual thermochronological age spectra. Furthermore, the thermal evolution derived by numerical modeling indicates variable post-rift exhumation histories of these blocks. In this context, we will provide information on the causes for the complex exhumation history of the Florianópolis, and adjacent blocks. Following up on our latest publication (Braun et al., 2016) regarding the effect of variability in rock thermal conductivity on exhumation rate estimates we performed a sensitivity analysis to quantify the effect of a differentiated lithospheric crust on the thermal evolution of the Florianópolis block versus exhumation rates estimated from modelling a lithospheric uniform crustal block. The long-term landscape evolution models with process rates were computed with the software code PECUBE (Braun, 2003; Braun et al., 2012). Testing model solutions obtained for a multidimensional parameter space against the real thermochronological and geomorphological data set, the most likely combinations of parameters, values, and rates can be constrained. References Braun, J., 2003. Pecube: A new finite element code to solve the 3D heat transport equation including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, v.29, pp.787-794. Braun, J., Stippich, C., Glasmacher, U. A., 2016. The effect of variability in rock thermal conductivity on exhumation rate estimates from thermochronological data. Tectonophysics, v.690, pp.288-297 Braun, J., van der Beek, P., Valla, P., Robert, X., Herman, F., Goltzbacj, C., Pedersen, V., Perry, C., Simon-Labric, T., Prigent, C., 2012. Quantifying rates of landscape evolution and tectonic processes by thermochronology and numerical modeling of crustal heat transport using PECUBE. Tectonophysics, v.524-525, pp.1-28. Karl, M., Glasmacher, U.A., Kollenz, S., Franco-Magalhaes, A.O.B., Stockli, D.F., Hackspacher, P., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, Volume 604, Pages 224-244.

  11. Evolution of individual versus social learning on social networks

    PubMed Central

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-01-01

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of ‘cultural models’ exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. PMID:25631568

  12. Evolution of individual versus social learning on social networks.

    PubMed

    Tamura, Kohei; Kobayashi, Yutaka; Ihara, Yasuo

    2015-03-06

    A number of studies have investigated the roles played by individual and social learning in cultural phenomena and the relative advantages of the two learning strategies in variable environments. Because social learning involves the acquisition of behaviours from others, its utility depends on the availability of 'cultural models' exhibiting adaptive behaviours. This indicates that social networks play an essential role in the evolution of learning. However, possible effects of social structure on the evolution of learning have not been fully explored. Here, we develop a mathematical model to explore the evolutionary dynamics of learning strategies on social networks. We first derive the condition under which social learners (SLs) are selectively favoured over individual learners in a broad range of social network. We then obtain an analytical approximation of the long-term average frequency of SLs in homogeneous networks, from which we specify the condition, in terms of three relatedness measures, for social structure to facilitate the long-term evolution of social learning. Finally, we evaluate our approximation by Monte Carlo simulations in complete graphs, regular random graphs and scale-free networks. We formally show that whether social structure favours the evolution of social learning is determined by the relative magnitudes of two effects of social structure: localization in competition, by which competition between learning strategies is evaded, and localization in cultural transmission, which slows down the spread of adaptive traits. In addition, our estimates of the relatedness measures suggest that social structure disfavours the evolution of social learning when selection is weak. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Homogeneous data-reprocessing and full synthesis of eddy-flux measurements in French terrestrial ecosytems : 1999 - 2015

    NASA Astrophysics Data System (ADS)

    Moreaux, V.; Ceschia, E.; Delpierre, N.; Dufrêne, E.; Joffre, R.; Klumpp, K.; Berveiller, D.; Loustau, D.; Limousin, J. M.; Ourcival, J. M.; Brut, A.; Darsonville, O.; Lafont, S.; Piquemal, K.; Longdoz, B.

    2017-12-01

    The attribution of the significant inter-annual variability of long lived greenhouse gas (GHG) fluxes, between edaphic, meteorological variables and ecosystem management parameters - independently or in interaction, evolving as a long term drift or as extreme events - remains uncertain. Our research aims to quantify the potential impact of climatic drifts or anthropogenic and meteorological events on ecosystem-atmosphere exchanges of French sites by analyzing the long series (at least continuous 9 years, between 1996 and 2015) of eddy covariance (EC) fluxes. We firstly performed a homogeneously repost-processing of the raw EC data across 5 sites: three forest ecosystems (deciduous broad-leaved FR-Fon, evergreen broadleaved FR-Pue, and evergreen coniferous FR-Br), one extensive grassland (FR-Lq2) and one cropland (FR-Aur). These data, in terms of net ecosystem exchanges (NEE), gross primary production (GPP) and ecosystem respiration (Reco) were put together with the corresponding climatic and edaphic data and with the carbon stock inventory for an homogeneous statistical analysis and comparative interpretations. The standard protocol, excluding any Nakai's corrections, helped to reduce the influence of the methodology and experimental design on the temporal and spatial variability. The methodology adopted finally used 35% on average of flux data for all sites. Based on the first analysis of reprocessed data from the forests, no significant long term evolution of NEE, Reco and GPP through the studied periods despite [CO2] increase and long term change observed in environmental parameters. Combining all years, a respiration limitation at high air temperature was observed on the forest sites, with a LAI dependency for deciduous ecosystems, and REW dependency for evergreen southern sites. A dominant effect of air vapor stress, compared to edaphic stress was observed on GPP response to PPFD in the deciduous northern forest, significantly decreasing with VPD increase.

  14. Enhancing the Rehabilitation of Persons with Long-Term Mental Illness. [Proceedings of the] Institute on Rehabilitation Issues (15th, Tampa, Florida, December 1988). Report from the Study Group.

    ERIC Educational Resources Information Center

    Cato, Carol; And Others

    This report from a study group on long-term mental illness (LTMI) examines three components of the vocational rehabilitation process (the client, the counselor, and the programs) and the systems through which the three components interact. The first chapter discusses the history and evolution of the vocational rehabilitation (VR) and mental health…

  15. When Love Meets Money: Priming the Possession of Money Influences Mating Strategies.

    PubMed

    Li, Yi Ming; Li, Jian; Chan, Darius K-S; Zhang, Bo

    2016-01-01

    Money is an important factor that influences the development of romantic relationships. The current paper examines how the feeling of having relatively more or less money influences human mating strategies in long-term and short-term mating contexts under the framework of evolutionary psychology. We recruited mainland Chinese college students involved in steady, heterosexual romantic relationships to participate in two experiments. In each study, we experimentally triggered participants' feelings of having relatively more or less money and then examined their thoughts and behaviors related to mating. Results of Study 1 showed that men who were primed to feel that they had relatively more money were less satisfied with their partners' physical attractiveness than those primed to feel that they had less money, suggesting that the subjective feeling of having more or less money may affect men's preferences regarding the physical appearance of a mate in a long-term relationship. Interestingly, this difference was not significant for women. Results of Study 2 indicated that both men and women who were primed to feel that they had relatively more money exhibited a greater "behavioral approach tendency" toward an attractive member of the opposite sex than those primed to feel that they had less money. This finding suggests that people who feel they have relatively more money may have more interest in an attractive alternative than those who feel they have relatively less money. The differences in mating strategies between and within the genders brought about by money support the evolutionary hypothesis that individuals adopt conditional mating strategies in response to environmental conditions. Additionally, the results of experimental studies provide evidence for the causal effects of money on mating strategies. These findings have both conceptual and practical implications for the psychology of evolution and romantic relationships.

  16. When Love Meets Money: Priming the Possession of Money Influences Mating Strategies

    PubMed Central

    Li, Yi Ming; Li, Jian; Chan, Darius K.-S.; Zhang, Bo

    2016-01-01

    Money is an important factor that influences the development of romantic relationships. The current paper examines how the feeling of having relatively more or less money influences human mating strategies in long-term and short-term mating contexts under the framework of evolutionary psychology. We recruited mainland Chinese college students involved in steady, heterosexual romantic relationships to participate in two experiments. In each study, we experimentally triggered participants' feelings of having relatively more or less money and then examined their thoughts and behaviors related to mating. Results of Study 1 showed that men who were primed to feel that they had relatively more money were less satisfied with their partners' physical attractiveness than those primed to feel that they had less money, suggesting that the subjective feeling of having more or less money may affect men's preferences regarding the physical appearance of a mate in a long-term relationship. Interestingly, this difference was not significant for women. Results of Study 2 indicated that both men and women who were primed to feel that they had relatively more money exhibited a greater “behavioral approach tendency” toward an attractive member of the opposite sex than those primed to feel that they had less money. This finding suggests that people who feel they have relatively more money may have more interest in an attractive alternative than those who feel they have relatively less money. The differences in mating strategies between and within the genders brought about by money support the evolutionary hypothesis that individuals adopt conditional mating strategies in response to environmental conditions. Additionally, the results of experimental studies provide evidence for the causal effects of money on mating strategies. These findings have both conceptual and practical implications for the psychology of evolution and romantic relationships. PMID:27047415

  17. The evolution of sex is favoured during adaptation to new environments.

    PubMed

    Becks, Lutz; Agrawal, Aneil F

    2012-01-01

    Both theory and experiments have demonstrated that sex can facilitate adaptation, potentially yielding a group-level advantage to sex. However, it is unclear whether this process can help solve the more difficult problem of the maintenance of sex within populations. Using experimental populations of the facultatively sexual rotifer Brachionus calyciflorus, we show that rates of sex evolve to higher levels during adaptation but then decline as fitness plateaus. To assess the fitness consequences of genetic mixing, we directly compare the fitnesses of sexually and asexually derived genotypes that naturally occur in our experimental populations. Sexually derived genotypes are more fit than asexually derived genotypes when adaptive pressures are strong, but this pattern reverses as the pace of adaptation slows, matching the pattern of evolutionary change in the rate of sex. These fitness assays test the net effect of sex but cannot be used to disentangle whether selection on sex arises because highly sexual lineages become associated with different allele combinations or with different allele frequencies than less sexual lineages (i.e., "short-" or "long-term" effects, respectively). We infer which of these mechanisms provides an advantage to sex by performing additional manipulations to obtain fitness distributions of sexual and asexual progeny arrays from unbiased parents (rather than from naturally occurring, and thereby evolutionarily biased, parents). We find evidence that sex breaks down adaptive gene combinations, resulting in lower average fitness of sexual progeny (i.e., a short-term disadvantage to sex). As predicted by theory, the advantage to sex arises because sexually derived progeny are more variable in fitness, allowing for faster adaptation. This "long-term advantage" builds over multiple generations, eventually resulting in higher fitness of sexual types.

  18. Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: an integrated approach

    NASA Astrophysics Data System (ADS)

    Ponte Lira, Cristina; Nobre Silva, Ana; Taborda, Rui; Freire de Andrade, Cesar

    2016-06-01

    Regional/national-scale information on coastline rates of change and trends is extremely valuable, but these studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but it is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users.The main objective of this work is to present the first systematic, national-scale and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy coasts.The methodology used quantifies coastline evolution using a unique and robust coastline indicator (the foredune toe), which is independent of short-term changes.The dataset presented comprises (1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune system coastline, both optimized for working at 1 : 50 000 scale or smaller; (2) one polyline set representing long-term change rates between 1958 and 2010, each estimated at 250 m; and (3) a table with minimum, maximum and mean of evolution rates for sandy beach-dune system coastline. All science data produced here are openly accessible at https://doi.pangaea.de/10.1594/PANGAEA.859136 and can be used in other studies.Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m year-1 for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cells and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho-Torreira and Costa Nova-Praia de Mira, Cova da Gala-Leirosa, and Cova do Vapor-Costa da Caparica. The coastal segments Minho River-Nazaré and Costa da Caparica adjacent to the coast exhibit a history of major human interventions interfering with the coastal system, many of which originated and maintained a sediment deficit. In contrast, the coastal segments Troia-Sines and Sines-Cape S. Vicente have experienced less intervention and show stable or moderate accretion behaviour.

  19. Enhancing long-term photostability of BiVO4 photoanodes for solar water splitting by tuning electrolyte composition

    NASA Astrophysics Data System (ADS)

    Lee, Dong Ki; Choi, Kyoung-Shin

    2018-01-01

    As the performance of photoelectrodes used for solar water splitting continues to improve, enhancing the long-term stability of the photoelectrodes becomes an increasingly crucial issue. In this study, we report that tuning the composition of the electrolyte can be used as a strategy to suppress photocorrosion during solar water splitting. Anodic photocorrosion of BiVO4 photoanodes involves the loss of V5+ from the BiVO4 lattice by dissolution. We demonstrate that the use of a V5+-saturated electrolyte, which inhibits the photooxidation-coupled dissolution of BiVO4, can serve as a simple yet effective method to suppress anodic photocorrosion of BiVO4. The V5+ species in the solution can also incorporate into the FeOOH/NiOOH oxygen-evolution catalyst layer present on the BiVO4 surface during water oxidation, further enhancing water-oxidation kinetics. The effect of the V5+ species in the electrolyte on both the long-term photostability of BiVO4 and the performance of the FeOOH/NiOOH oxygen-evolution catalyst layer is systematically elucidated.

  20. Is light-induced degradation of a-Si:H/c-Si interfaces reversible?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Mhamdi, El Mahdi; Holovsky, Jakub; Demaurex, Bénédicte

    2014-06-23

    Thin hydrogenated amorphous silicon (a-Si:H) films deposited on crystalline silicon (c-Si) surfaces are sensitive probes for the bulk electronic properties of a-Si:H. Here, we use such samples during repeated low-temperature annealing and visible-light soaking to investigate the long-term stability of a-Si:H films. We observe that during annealing the electronic improvement of the interfaces follows stretched exponentials as long as hydrogen evolution in the films can be detected. Once such evolution is no longer observed, the electronic improvement occurs much faster. Based on these findings, we discuss how the reversibility of light-induced defects depends on (the lack of observable) hydrogen evolution.

  1. The essential value of long-term experimental data for hydrology and water management

    NASA Astrophysics Data System (ADS)

    Tetzlaff, D.; Carey, S. K.; McNamara, J. P.; Laudon, H.; Soulsby, C.

    2017-12-01

    Observations and data from long-term experimental watersheds are the foundation of hydrology as a geoscience. They allow us to benchmark process understanding, observe trends and natural cycles, and are pre-requisites for testing predictive models. Long-term experimental watersheds also are places where new measurement technologies are developed. These studies offer a crucial evidence base for understanding and managing the provision of clean water supplies; predicting and mitigating the effects of floods, and protecting ecosystem services provided by rivers and wetlands. They also show how to manage land and water in an integrated, sustainable way that reduces environmental and economic costs. We present a number of compelling examples illustrating how hydrologic process understanding has been generated through comparing hypotheses to data, and how this understanding has been essential for managing water supplies, floods, and ecosystem services today.

  2. Taylor dispersion in two-dimensional bacterial turbulence

    NASA Astrophysics Data System (ADS)

    Huang, Yongxiang; Ou, Wenyu; Chen, Ming; Lu, Zhiming; Jiang, Nan; Liu, Yulu; Qiu, Xiang; Zhou, Quan

    2017-05-01

    In this work, single particle dispersion was analyzed for a bacterial turbulence by retrieving the virtual Lagrangian trajectory via numerical integration of the Lagrangian equation. High-order displacement functions were calculated for cases with and without mean velocity effect. The two-regime power-law behavior for short and long time evolutions was identified experimentally, which was separated by the Lagrangian integral time. For the case with the mean velocity effect, the experimental Hurst numbers were determined to be 0.94 and 0.97 for short and long time evolutions, respectively. For the case without the mean velocity effect, the values were 0.88 and 0.58. Moreover, very weak intermittency correction was detected. All measured Hurst numbers were above 1/2, the value of the normal diffusion, which verifies the super-diffusion behavior of living fluid. This behavior increases the efficiency of bacteria to obtain food.

  3. Justifying and Proving in the Cabri Environment.

    ERIC Educational Resources Information Center

    Mariotti, Maria Alessandra

    2001-01-01

    Describes a long term teaching experiment carried out with students from grades 9 and 10. Aims at clarifying the role of the Cabri environment in teaching-learning processes. Analysis of protocols shows the possible evolution of a justification into a proof but at the same time indicates that this evolution is not expected to be simple and…

  4. Evolution of Cygnus X-3 through its Radio and X-ray States

    NASA Astrophysics Data System (ADS)

    Szostek, A.; Zdziarski, A. A.; McCollough, M. L.

    2009-05-01

    Based on X-ray spectra and studies of the long-term correlated behavior between radio and soft X-ray, we present a detailed evolution of Cyg X-3 through its radio and X-ray states. We comment on the nature of the hard X-ray tail and possible Simbol X contribution in constraining the models.

  5. Highway to Space: The Direct Connection Between the Lower and the Upper Atmosphere of Mars Sheds a New Light on the History of Water

    NASA Astrophysics Data System (ADS)

    Montmessin, F.; Lefèvre, F.; Korablev, O.; Fedorova, A.; Bertaux, J.-L.; Chaufray, J.-Y.; Chaffin, M.; Schneider, N.; Maltagliati, L.; Määttänen, A.; Trokhimovsky, A.

    2014-07-01

    We present a synthesis of the decade-long Mars Express SPICAM observations in an attempt to assemble a single, coherent picture that has implications for the long-term evolution of water and hydrogen on Mars.

  6. On the long-term fitness of cells in periodically switching environments.

    PubMed

    Pang, Ning-Ning; Tzeng, Wen-Jer

    2008-01-01

    Because all the cell populations are capable of making switches between different genetic expression states in response to the environmental change, Thattai and van Oudenaarden (Genetics 167, 523-530, 2004) have raised a very interesting question: In a constantly fluctuating environment, which type of cell population (heterogeneous or homogeneous) is fitter in the long term? This problem is very important to development and evolution biology. We thus take an extensive analysis about how the cell population evolves in a periodically switching environment either with symmetrical time-span or asymmetrical time-span. A complete picture of the phase diagrams for both cases is obtained. Furthermore, we find that the systems with time-dependent cellular transitions all collapse to the same set of dynamical equations with the modified parameters. Furthermore, we also explain in detail how the fitness problem bears much resemblance to the phenomenon, stochastic resonance, in physical sciences. Our results could be helpful for the biologists to design artificial evolution experiments and unveil the mystery of development and evolution.

  7. Evaluation of selective control information detection scheme in orthogonal frequency division multiplexing-based radio-over-fiber and visible light communication links

    NASA Astrophysics Data System (ADS)

    Dalarmelina, Carlos A.; Adegbite, Saheed A.; Pereira, Esequiel da V.; Nunes, Reginaldo B.; Rocha, Helder R. O.; Segatto, Marcelo E. V.; Silva, Jair A. L.

    2017-05-01

    Block-level detection is required to decode what may be classified as selective control information (SCI) such as control format indicator in 4G-long-term evolution systems. Using optical orthogonal frequency division multiplexing over radio-over-fiber (RoF) links, we report the experimental evaluation of an SCI detection scheme based on a time-domain correlation (TDC) technique in comparison with the conventional maximum likelihood (ML) approach. When compared with the ML method, it is shown that the TDC method improves detection performance over both 20 and 40 km of standard single mode fiber (SSMF) links. We also report a performance analysis of the TDC scheme in noisy visible light communication channel models after propagation through 40 km of SSMF. Experimental and simulation results confirm that the TDC method is attractive for practical orthogonal frequency division multiplexing-based RoF and fiber-wireless systems. Unlike the ML method, another key benefit of the TDC is that it requires no channel estimation.

  8. Sex uncovered special issue: The ecology of sexual reproduction

    PubMed Central

    LIVELY, C. M.; MORRAN, L. T.

    2014-01-01

    Sexual reproduction is widely regarded as one of the major unexplained phenomena in biology. Nonetheless, while a general answer may remain elusive, considerable progress has been made in the last few decades. Here we fist review the genesis of, and support for, the major ecological hypotheses for biparental sexual reproduction. We then focus on the idea that host-parasite coevolution can favor cross fertilization over uniparental forms of reproduction, as this hypothesis currently has the most support from natural populations. We also review the results from experimental evolution studies, which tend to show that exposure to novel environments can select for higher levels of sexual reproduction, but that sex decreases in frequency after populations become adapted to the previously novel conditions. In contrast, experimental coevolution studies suggest that host-parasite interactions can lead to the long-term persistence of sex. Taken together, the evidence from natural populations and from laboratory experiments point to antagonistic coevolution as a potent and possibly ubiquitous force of selection favoring cross-fertilization and recombination. PMID:24617324

  9. Antibiotic combination efficacy (ACE) networks for a Pseudomonas aeruginosa model

    PubMed Central

    Barbosa, Camilo; Beardmore, Robert; Jansen, Gunther

    2018-01-01

    The spread of antibiotic resistance is always a consequence of evolutionary processes. The consideration of evolution is thus key to the development of sustainable therapy. Two main factors were recently proposed to enhance long-term effectiveness of drug combinations: evolved collateral sensitivities between the drugs in a pair and antagonistic drug interactions. We systematically assessed these factors by performing over 1,600 evolution experiments with the opportunistic nosocomial pathogen Pseudomonas aeruginosa in single- and multidrug environments. Based on the growth dynamics during these experiments, we reconstructed antibiotic combination efficacy (ACE) networks as a new tool for characterizing the ability of the tested drug combinations to constrain bacterial survival as well as drug resistance evolution across time. Subsequent statistical analysis of the influence of the factors on ACE network characteristics revealed that (i) synergistic drug interactions increased the likelihood of bacterial population extinction—irrespective of whether combinations were compared at the same level of inhibition or not—while (ii) the potential for evolved collateral sensitivities between 2 drugs accounted for a reduction in bacterial adaptation rates. In sum, our systematic experimental analysis allowed us to pinpoint 2 complementary determinants of combination efficacy and to identify specific drug pairs with high ACE scores. Our findings can guide attempts to further improve the sustainability of antibiotic therapy by simultaneously reducing pathogen load and resistance evolution. PMID:29708964

  10. Effects of organic matter removal, soil compaction, and vegetation control on 5-year seedling performance: a regional comparison of long-term soil productivity sites

    Treesearch

    Robert L. Fleming; Robert F. Powers; Neil W. Foster; J. Marty Kranabetter; D. Andrew Scott; Felix Jr. Ponder; Shannon Berch; William K. Chapman; Richard D. Kabzems; Kim H. Ludovici; David M. Morris; Deborah S. Page-Dumroese; Paul T. Sanborn; Felipe G. Sanchez; Douglas M. Stone; Allan E. Tiarks

    2006-01-01

    We examined fifth-year seedling response to soil disturbance and vegetation control at 42 experimental locations representing 25 replicated studies within the North American Long-Term Soil Productivity (LTSP) program. These studies share a common experimental design while encompassing a wide range of climate, site conditions, and forest types. Whole-tree harvest had...

  11. Changing forest water yields in response to climate warming: results from long-term experimental watershed sites across North America

    Treesearch

    Irena F. Creed; Adam T. Spargo; Julia A. Jones; Jim M. Buttle; Mary B. Adams; Fred D. Beall; Eric G. Booth; John L. Campbell; Dave Clow; Kelly Elder; Mark B. Green; Nancy B. Grimm; Chelcy Miniat; Patricia Ramlal; Amartya Saha; Stephen Sebestyen; Dave Spittlehouse; Shannon Sterling; Mark W. Williams; Rita Winkler; Huaxia Yao

    2014-01-01

    Climate warming is projected to affect forest water yields but the effects are expected to vary.We investigated how forest type and age affect water yield resilience to climate warming. To answer this question, we examined the variability in historical water yields at long-term experimental catchments across Canada and the United States over 5-year cool and warm...

  12. Investigation of in-vivo skin autofluorescence lifetimes under long-term cw optical excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lihachev, A; Ferulova, I; Vasiljeva, K

    2014-08-31

    The main results obtained during the last five years in the field of laser-excited in-vivo human skin photobleaching effects are presented. The main achievements and results obtained, as well as methods and experimental devices are briefly described. In addition, the impact of long-term 405-nm cw low-power laser excitation on the skin autofluorescence lifetime is experimentally investigated. (laser biophotonics)

  13. Long-term monitoring sites and trends at the Marcell Experimental Forest. Chapter 2.

    Treesearch

    Stephen D. Sebestyen; Carrie Dorrance; Donna M. Olson; Elon S. Verry; Randall K. Kolka; Art E. Elling; Richard Kyllander

    2011-01-01

    The MEF is one of few long-term research programs on the hydrology and ecology of undrained peatlands in boreal forests. No other site in the Experimental Forest and Range Network of the Forest Service and few sites around the globe have studied the hydrology and biogeochemistry of peatland watersheds with the intensity or longevity as on the MEF. In this chapter, we...

  14. Long-term calcium addition increases growth release, wound closure, and health of sugar maple (Acer saccharum) trees at the Hubbard Brook Experimental Forest

    Treesearch

    Brett A. Huggett; Paul G. Schaberg; Gary J. Hawley; Christopher Eager

    2007-01-01

    We surveyed and wounded forest-grown sugar maple (Acer saccharum Marsh.) trees in a long-term, replicated Ca manipulation study at the Hubbard Brook Experimental Forest in New Hampshire, USA. Plots received applications of Ca (to boost Ca availability above depleted ambient levels) or A1 (to compete with Ca uptake and further reduce Ca availability...

  15. Intensified agriculture favors evolved resistance to biological control.

    PubMed

    Tomasetto, Federico; Tylianakis, Jason M; Reale, Marco; Wratten, Steve; Goldson, Stephen L

    2017-04-11

    Increased regulation of chemical pesticides and rapid evolution of pesticide resistance have increased calls for sustainable pest management. Biological control offers sustainable pest suppression, partly because evolution of resistance to predators and parasitoids is prevented by several factors (e.g., spatial or temporal refuges from attacks, reciprocal evolution by control agents, and contrasting selection pressures from other enemy species). However, evolution of resistance may become more probable as agricultural intensification reduces the availability of refuges and diversity of enemy species, or if control agents have genetic barriers to evolution. Here we use 21 y of field data from 196 sites across New Zealand to show that parasitism of a key pasture pest ( Listronotus bonariensis ; Argentine stem weevil) by an introduced parasitoid ( Microctonus hyperodae ) was initially nationally successful but then declined by 44% (leading to pasture damage of c. 160 million New Zealand dollars per annum). This decline was not attributable to parasitoid numbers released, elevation, or local climatic variables at sample locations. Rather, in all locations the decline began 7 y (14 host generations) following parasitoid introduction, despite releases being staggered across locations in different years. Finally, we demonstrate experimentally that declining parasitism rates occurred in ryegrass Lolium perenne , which is grown nationwide in high-intensity was significantly less than in adjacent plots of a less-common pasture grass ( Lolium multiflorum ), indicating that resistance to parasitism is host plant-dependent. We conclude that low plant and enemy biodiversity in intensive large-scale agriculture may facilitate the evolution of host resistance by pests and threaten the long-term viability of biological control.

  16. On the simple random-walk models of ion-channel gate dynamics reflecting long-term memory.

    PubMed

    Wawrzkiewicz, Agata; Pawelek, Krzysztof; Borys, Przemyslaw; Dworakowska, Beata; Grzywna, Zbigniew J

    2012-06-01

    Several approaches to ion-channel gating modelling have been proposed. Although many models describe the dwell-time distributions correctly, they are incapable of predicting and explaining the long-term correlations between the lengths of adjacent openings and closings of a channel. In this paper we propose two simple random-walk models of the gating dynamics of voltage and Ca(2+)-activated potassium channels which qualitatively reproduce the dwell-time distributions, and describe the experimentally observed long-term memory quite well. Biological interpretation of both models is presented. In particular, the origin of the correlations is associated with fluctuations of channel mass density. The long-term memory effect, as measured by Hurst R/S analysis of experimental single-channel patch-clamp recordings, is close to the behaviour predicted by our models. The flexibility of the models enables their use as templates for other types of ion channel.

  17. Workstation Segment Specification for the World-Wide Military Command and Control (WWMCCS) Information System (WIS)

    DTIC Science & Technology

    1989-07-01

    software eventually, and which indicate the general thrust of evolution and growth capabilities required of the workstation segment. These GRAY sections...configuration control over the evolution of the system. (" - The transition from the WWMCCS Standard ADP system to WIS will be gradual and will be...has been designed to support the workstation needs required for most WIS users, and is the workstation that will support the long-term evolution of

  18. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution

    PubMed Central

    Covert, Arthur W.; Lenski, Richard E.; Wilke, Claus O.; Ofria, Charles

    2013-01-01

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions. PMID:23918358

  19. Experiments on the role of deleterious mutations as stepping stones in adaptive evolution.

    PubMed

    Covert, Arthur W; Lenski, Richard E; Wilke, Claus O; Ofria, Charles

    2013-08-20

    Many evolutionary studies assume that deleterious mutations necessarily impede adaptive evolution. However, a later mutation that is conditionally beneficial may interact with a deleterious predecessor before it is eliminated, thereby providing access to adaptations that might otherwise be inaccessible. It is unknown whether such sign-epistatic recoveries are inconsequential events or an important factor in evolution, owing to the difficulty of monitoring the effects and fates of all mutations during experiments with biological organisms. Here, we used digital organisms to compare the extent of adaptive evolution in populations when deleterious mutations were disallowed with control populations in which such mutations were allowed. Significantly higher fitness levels were achieved over the long term in the control populations because some of the deleterious mutations served as stepping stones across otherwise impassable fitness valleys. As a consequence, initially deleterious mutations facilitated the evolution of complex, beneficial functions. We also examined the effects of disallowing neutral mutations, of varying the mutation rate, and of sexual recombination. Populations evolving without neutral mutations were able to leverage deleterious and compensatory mutation pairs to overcome, at least partially, the absence of neutral mutations. Substantially raising or lowering the mutation rate reduced or eliminated the long-term benefit of deleterious mutations, but introducing recombination did not. Our work demonstrates that deleterious mutations can play an important role in adaptive evolution under at least some conditions.

  20. Modeling of Long-Term Evolution of Hydrophysical Fields of the Black Sea

    NASA Astrophysics Data System (ADS)

    Dorofeyev, V. L.; Sukhikh, L. I.

    2017-11-01

    The long-term evolution of the Black Sea dynamics (1980-2020) is reconstructed by numerical simulation. The model of the Black Sea circulation has 4.8 km horizontal spatial resolution and 40 levels in z-coordinates. The mixing processes in the upper layer are parameterized by Mellor-Yamada turbulent model. For the sea surface boundary conditions, atmospheric forcing functions were used, provided for the Black Sea region by the Euro mediterranean Center on Climate Change (CMCC) from the COSMO-CLM regional climate model. These data have a spatial resolution of 14 km and a daily temporal resolution. To evaluate the quality of the hydrodynamic fields derived from the simulation, they were compared with in-situ hydrological measurements and similar results from physical reanalysis of the Black Sea.

  1. Diet and the evolution of the earliest human ancestors

    PubMed Central

    Teaford, Mark F.; Ungar, Peter S.

    2000-01-01

    Over the past decade, discussions of the evolution of the earliest human ancestors have focused on the locomotion of the australopithecines. Recent discoveries in a broad range of disciplines have raised important questions about the influence of ecological factors in early human evolution. Here we trace the cranial and dental traits of the early australopithecines through time, to show that between 4.4 million and 2.3 million years ago, the dietary capabilities of the earliest hominids changed dramatically, leaving them well suited for life in a variety of habitats and able to cope with significant changes in resource availability associated with long-term and short-term climatic fluctuations. PMID:11095758

  2. Resolving Key Uncertainties in Subsurface Energy Recovery: One Role of In Situ Experimentation and URLs (Invited)

    NASA Astrophysics Data System (ADS)

    Elsworth, D.

    2013-12-01

    Significant uncertainties remain and influence the recovery of energy from the subsurface. These uncertainties include the fate and transport of long-lived radioactive wastes that result from the generation of nuclear power and have been the focus of an active network of international underground research laboratories dating back at least 35 years. However, other nascent carbon-free energy technologies including conventional and EGS geothermal methods, carbon-neutral methods such as carbon capture and sequestration and the utilization of reduced-carbon resources such as unconventional gas reservoirs offer significant challenges in their effective deployment. We illustrate the important role that in situ experiments may play in resolving behaviors at extended length- and time-scales for issues related to chemical-mechanical interactions. Significantly, these include the evolution of transport and mechanical characteristics of stress-sensitive fractured media and their influence of the long-term behavior of the system. Importantly, these interests typically relate to either creating reservoirs (hydroshearing in EGS reservoirs, artificial fractures in shales and coals) or maintaining seals at depth where the permeating fluids may include mixed brines, CO2, methane and other hydrocarbons. Critical questions relate to the interaction of these various fluid mixtures and compositions with the fractured substrate. Important needs are in understanding the roles of key processes (transmission, dissolution, precipitation, sorption and dynamic stressing) on the modification of effective stresses and their influence on the evolution of permeability, strength and induced seismicity on the resulting development of either wanted or unwanted fluid pathways. In situ experimentation has already contributed to addressing some crucial issues of these complex interactions at field scale. Important contributions are noted in understanding the fate and transport of long-lived wastes. Future potential is noted in addressing critical questions related to creating and sustaining reservoirs in shales and coals.

  3. Selection by consequences, behavioral evolution, and the price equation.

    PubMed

    Baum, William M

    2017-05-01

    Price's equation describes evolution across time in simple mathematical terms. Although it is not a theory, but a derived identity, it is useful as an analytical tool. It affords lucid descriptions of genetic evolution, cultural evolution, and behavioral evolution (often called "selection by consequences") at different levels (e.g., individual vs. group) and at different time scales (local and extended). The importance of the Price equation for behavior analysis lies in its ability to precisely restate selection by consequences, thereby restating, or even replacing, the law of effect. Beyond this, the equation may be useful whenever one regards ontogenetic behavioral change as evolutionary change, because it describes evolutionary change in abstract, general terms. As an analytical tool, the behavioral Price equation is an excellent aid in understanding how behavior changes within organisms' lifetimes. For example, it illuminates evolution of response rate, analyses of choice in concurrent schedules, negative contingencies, and dilemmas of self-control. © 2017 Society for the Experimental Analysis of Behavior.

  4. Long-term evolution of 1991 DA: A dynamically evolved extinct Halley-type comet

    NASA Technical Reports Server (NTRS)

    Hahn, Gerhard; Bailey, M. E.

    1992-01-01

    The long-term dynamical evolution of 21 variational orbits for the intermediate-period asteroid 1991 DA was followed for up to +/-10(exp 5) years from the present. 1991 DA is close to the 2:7 resonance with Jupiter; it has avoided close encounters, within 1 AU, with this planet for at least the past 30,000 years, even at the node crossing. The future evolution typically shows no close encounters with Jupiter within at least 50,000 years. This corresponds to the mean time between node crossings with either Jupiter or Saturn. Close encounters with Saturn and Jupiter lead to a chaotic evolution for the whole ensemble, while secular perturbations cause large-amplitude swings in eccentricity and inclination (the latter covering the range 15 deg approximately less than i approximately less than 85 deg) which correlate with deep excursions of the perihelion distance to values much less than 1 AU. These variations are similar to those found in P/Machholz and a variety of other high-inclination orbits, e.g., P/Hartley-IRAS. We emphasize the connection between the orbital evolution of 1991 DA and that of Halley-type comets. If 1991 DA was once a comet, it is not surprising that it is now extinct.

  5. Long term acroecosystem research in the Southern Plains

    Treesearch

    Jean L. Steiner; Patrick J. Starks; Jurgen Garbrecht; Daniel Moriasi; Paul Bartholomew; Jim Neel; Kenneth E. Turner; Brian Northup

    2016-01-01

    The Southern Plains (SP) site of the Long Term Agroecosystem Research (LTAR) network is headquartered at the USDA-ARS Grazinglands Research Laboratory (GRL) in El Reno, Oklahoma. The GRL was established in 1948. A long-term watershed and climate research program was established in the Little Washita River Experimental Watershed (LWREW) in 1961 and in the Fort Cobb...

  6. Large-scale, long-term silvicultural experiments in the United States: historical overview and contemporary examples.

    Treesearch

    R. S. Seymour; J. Guldin; D. Marshall; B. Palik

    2006-01-01

    This paper provides a synopsis of large-scale, long-term silviculture experiments in the United States. Large-scale in a silvicultural context means that experimental treatment units encompass entire stands (5 to 30 ha); long-term means that results are intended to be monitored over many cutting cycles or an entire rotation, typically for many decades. Such studies...

  7. The coevolution of long-term pair bonds and cooperation.

    PubMed

    Song, Z; Feldman, M W

    2013-05-01

    The evolution of social traits may not only depend on but also change the social structure of the population. In particular, the evolution of pairwise cooperation, such as biparental care, depends on the pair-matching distribution of the population, and the latter often emerges as a collective outcome of individual pair-bonding traits, which are also under selection. Here, we develop an analytical model and individual-based simulations to study the coevolution of long-term pair bonds and cooperation in parental care, where partners play a Snowdrift game in each breeding season. We illustrate that long-term pair bonds may coevolve with cooperation when bonding cost is below a threshold. As long-term pair bonds lead to assortative interactions through pair-matching dynamics, they may promote the prevalence of cooperation. In addition to the pay-off matrix of a single game, the evolutionarily stable equilibrium also depends on bonding cost and accidental divorce rate, and it is determined by a form of balancing selection because the benefit from pair-bond maintenance diminishes as the frequency of cooperators increases. Our findings highlight the importance of ecological factors affecting social bonding cost and stability in understanding the coevolution of social behaviour and social structures, which may lead to the diversity of biological social systems. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  8. Using machine learning to explore the long-term evolution of GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela; Heil, Lucy M.; Hogg, David W.; Mueller, Andreas

    2017-04-01

    Among the population of known Galactic black hole X-ray binaries, GRS 1915+105 stands out in multiple ways. It has been in continuous outburst since 1992, and has shown a wide range of different states that can be distinguished by their timing and spectral properties. These states, also observed in IGR J17091-3624, have in the past been linked to accretion dynamics. Here, we present the first comprehensive study into the long-term evolution of GRS 1915+105, using the entire data set observed with Rossi X-ray Timing Explorer over its 16-yr lifetime. We develop a set of descriptive features allowing for automatic separation of states, and show that supervised machine learning in the form of logistic regression and random forests can be used to efficiently classify the entire data set. For the first time, we explore the duty cycle and time evolution of states over the entire 16-yr time span, and find that the temporal distribution of states has likely changed over the span of the observations. We connect the machine classification with physical interpretations of the phenomenology in terms of chaotic and stochastic processes.

  9. Monitoring California Hardwood Rangeland Resources: An Adaptive Approach

    Treesearch

    Raul Tuazon

    1991-01-01

    This paper describes monitoring hardwood rangelands in California within the context of an adaptive or anticipatory approach. A heuristic process of policy evolution under conditions of complexity and uncertainty is presented. Long-term, short-term and program effectiveness monitoring for hardwood rangelands are discussed relative to the process described. The...

  10. Loess deposits since early Pleistocene in northeast China and implications for desert evolution in east China

    NASA Astrophysics Data System (ADS)

    Sun, Miao; Zhang, Xujiao; Tian, Mingzhong; Liu, Ru; He, Zexin; Qi, Lin; Qiao, Yansong

    2018-04-01

    Loess deposits and deserts are regarded as coupled geological systems and loess deposits on the periphery of deserts can often be used to reconstruct desert evolution. Previous studies of desert evolution in Asia are mainly concentrated in northwest China and the China Loess Plateau, and little is known about long-term desert evolution in east China. In this study, we selected the Sishijiazi loess section in the Chifeng area in northeast China to study the long-term evolution of the desert in east China. A high-resolution magnetostratigraphy combined with optically stimulated luminescence dating indicated that the age of the section base is approximately 1.02 Ma. The Brunhes-Matuyama boundary is at the depth of 39.8 m in loess unit L8, and the upper boundary of the Jaramillo Subchron is at the depth of 60.8 m in paleosol S10. The results of grain-size analysis indicate a coarsening grain-size trend in the past 1.0 Ma. In addition, based on grain-size variations, the desert evolution in east China since ∼1.0 Ma can be divided into three stages: stability from 1.0 to 0.8 Ma, desert recession from 0.8 to 0.5 Ma, and gradual expansion since 0.5 Ma. Our results further indicate that the evolution of desert in east China was mainly controlled by changes in global ice volume, and that the uplift of the Tibetan Plateau may have had an additional effect.

  11. Holocene evolution of Apalachicola Bay, Florida

    USGS Publications Warehouse

    Osterman, Lisa E.; Twichell, David C.

    2011-01-01

    A program of geophysical mapping and vibracoring was conducted in 2007 to better understand the geologic evolution of Apalachicola Bay and its response to sea-level rise. A detailed geologic history could help better understand how this bay may respond to both short-term (for example, storm surge) and long-term sea-level rise. The results of this study were published (Osterman and others, 2009) as part of a special issue of Geo-Marine Letters that documents early results from the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project.

  12. The Glyphosate-Based Herbicide Roundup Does not Elevate Genome-Wide Mutagenesis of Escherichia coli.

    PubMed

    Tincher, Clayton; Long, Hongan; Behringer, Megan; Walker, Noah; Lynch, Michael

    2017-10-05

    Mutations induced by pollutants may promote pathogen evolution, for example by accelerating mutations conferring antibiotic resistance. Generally, evaluating the genome-wide mutagenic effects of long-term sublethal pollutant exposure at single-nucleotide resolution is extremely difficult. To overcome this technical barrier, we use the mutation accumulation/whole-genome sequencing (MA/WGS) method as a mutagenicity test, to quantitatively evaluate genome-wide mutagenesis of Escherichia coli after long-term exposure to a wide gradient of the glyphosate-based herbicide (GBH) Roundup Concentrate Plus. The genome-wide mutation rate decreases as GBH concentration increases, suggesting that even long-term GBH exposure does not compromise the genome stability of bacteria. Copyright © 2017 Tincher et al.

  13. A new experimental method for the accelerated characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.; Morris, D. H.; Brinson, H. F.

    1978-01-01

    The use of composite materials for a variety of practical structural applications is presented and the need for an accelerated characterization procedure is assessed. A new experimental and analytical method is presented which allows the prediction of long term properties from short term tests. Some preliminary experimental results are presented.

  14. Long-term conditioning of deep-seated rockslides in deglaciated valleys: the Spriana case study

    NASA Astrophysics Data System (ADS)

    Agliardi, Federico; Crosta, Giovanni B.

    2015-04-01

    Deep-seated rockslides in alpine valleys evolve over long time under the action of multiple triggers. Early Warning based on monitoring is often the only effective approach to cope with these landslides, but it requires an improved understanding of mechanisms interplaying over long time. Deep-seated rockslides are often characterized by long-term 'creep' and seasonal displacement components, contributing to measured displacement patterns which are often modelled as rockslide responses to hydrologic perturbations. Although this hydro-mechanical modelling approach fits the behaviour of disrupted rockslide masses with well-developed shear zones, it is often insufficient to explain the initial onset and the long-term components of creep movements of deep-seated rockslides. This outlines the need to link long-term evolution of rock slopes and their sensitivity to triggers. We discuss the Spriana rockslide, affecting the steep left-hand flank of Val Malenco (italian Central Alps). Documented instabilities date back to 1912, whereas the rockslide underwent major acceleration stages in 1960 and 1977-78 and later minor reactivations. We reviewed a large amount of data collected since 1978 by extensive geotechnical site investigation (borehole drilling, exploratory adits, and seismic refraction) and monitoring activities (ground surface and deep displacements, pore pressures) motivated by potential catastrophic collapse threatening the city of Sondrio area. We performed rock mass characterization based on laboratory studies on intact rock samples, field surveys and drillcore logging. These data allowed re-evaluating the geological model of the Spriana rockslide, which is a compound slide of up to 50 Mm3 of slope debris and fractured gneiss, with multiple shear failure zones up to 90 m deep. Two main scarps developed in different stages, suggesting progressive failure processes. The rockslide creeps at slow rates of 0.4-3 cm/a, and undergoes acceleration stages (weeks to months) during increased water recharge periods. Heavily fractured rock masses occur below rockslide base up to 150 m in depth, suggesting extensive rock mass damage pre-dating rockslide onset. Groundwater monitoring shows that this fractured layer hosts a perched water table characterized by annual fluctuations up to 3 m. To gain insights in the long-term slope evolution we performed 2D Finite-Element multi-stage stress-strain and seepage modelling, accounting for post-LGM deglaciation, damage and related changes in slope strength and hydrology. Results validated using investigation data show that rockslide onset would have been unlikely without the strong preconditioning of long-term damage related to deglaciation. This led to a two-layer hydro-mechanical slope differentiation, with a fractured upper layer hosting a perched water table that favoured rockslide onset. Once structured, the rockslide became more sensitive to short-term hydrologic triggers, with displacement rates increasing in response to groundwater recharge related to critical values of antecedent (7 to 30 days) rainfall. Our results outline the importance of accounting for long-term slope evolution when dealing with rockslides evolving over 102-103 year timescales, and point to the need of modelling approaches able to relate changing hydro-mechanical properties of slopes to long-term damage processes.

  15. DaDyn-RS: a tool for the time-dependent simulation of damage, fluid pressure and long-term instability in alpine rock slopes

    NASA Astrophysics Data System (ADS)

    Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.

    2017-04-01

    Large mountain slopes in alpine environments undergo a complex long-term evolution from glacial to postglacial environments, through a transient period of paraglacial readjustment. During and after this transition, the interplay among rock strength, topographic relief, and morpho-climatic drivers varying in space and time can lead to the development of different types of slope instability, from sudden catastrophic failures to large, slow, long-lasting yet potentially catastrophic rockslides. Understanding the long-term evolution of large rock slopes requires accounting for the time-dependence of deglaciation unloading, permeability and fluid pressure distribution, displacements and failure mechanisms. In turn, this is related to a convincing description of rock mass damage processes and to their transition from a sub-critical (progressive failure) to a critical (catastrophic failure) character. Although mechanisms of damage occurrence in rocks have been extensively studied in the laboratory, the description of time-dependent damage under gravitational load and variable external actions remains difficult. In this perspective, starting from a time-dependent model conceived for laboratory rock deformation, we developed Dadyn-RS, a tool to simulate the long-term evolution of real, large rock slopes. Dadyn-RS is a 2D, FEM model programmed in Matlab, which combines damage and time-to-failure laws to reproduce both diffused damage and strain localization meanwhile tracking long-term slope displacements from primary to tertiary creep stages. We implemented in the model the ability to account for rock mass heterogeneity and property upscaling, time-dependent deglaciation, as well as damage-dependent fluid pressure occurrence and stress corrosion. We first tested DaDyn-RS performance on synthetic case studies, to investigate the effect of the different model parameters on the mechanisms and timing of long-term slope behavior. The model reproduces complex interactions between topography, deglaciation rate, mechanical properties and fluid pressure occurrence, resulting in different kinematics, damage patterns and timing of slope instabilities. We assessed the role of groundwater on slope damage and deformation mechanisms by introducing time-dependent pressure cycling within simulations. Then, we applied DaDyn-RS to real slopes located in the Italian Central Alps, affected by an active rockslide and a Deep Seated Gravitational Slope Deformation, respectively. From Last Glacial Maximum to present conditions, our model allows reproducing in an explicitly time-dependent framework the progressive development of damage-induced permeability, strain localization and shear band differentiation at different times between the Lateglacial period and the Mid-Holocene climatic transition. Different mechanisms and timings characterize different styles of slope deformations, consistently with available dating constraints. DaDyn-RS is able to account for different long-term slope dynamics, from slow creep to the delayed transition to fast-moving rockslides.

  16. Long Term Performance Metrics of the GD SDR on the SCaN Testbed: The First Year on the ISS

    NASA Technical Reports Server (NTRS)

    Nappier, Jennifer; Wilson, Molly C.

    2014-01-01

    The General Dynamics (GD) S-Band software defined radio (SDR) in the Space Communications and Navigation (SCaN) Testbed on the International Space Station (ISS) provides experimenters an opportunity to develop and demonstrate experimental waveforms in space. The SCaN Testbed was installed on the ISS in August of 2012. After installation, the initial checkout and commissioning phases were completed and experimental operations commenced. One goal of the SCaN Testbed is to collect long term performance metrics for SDRs operating in space in order to demonstrate long term reliability. These metrics include the time the SDR powered on, the time the power amplifier (PA) is powered on, temperature trends, error detection and correction (EDAC) behavior, and waveform operational usage time. This paper describes the performance of the GD SDR over the first year of operations on the ISS.

  17. New Technology Trends in Education: Seven Years of Forecasts and Convergence

    ERIC Educational Resources Information Center

    Martin, Sergio; Diaz, Gabriel; Sancristobal, Elio; Gil, Rosario; Castro, Manuel; Peire, Juan

    2011-01-01

    Each year since 2004, a new Horizon Report has been released. Each edition attempts to forecast the most promising technologies likely to impact on education along three horizons: the short term (the year of the report), the mid-term (the next 2 years) and the long term (the next 4 years). This paper analyzes the evolution of technology trends…

  18. Replaying the tape of life in the twenty-first century.

    PubMed

    Orgogozo, Virginie

    2015-12-06

    Should the tape of life be replayed, would it produce similar living beings? A classical answer has long been 'no', but accumulating data are now challenging this view. Repeatability in experimental evolution, in phenotypic evolution of diverse species and in the genes underlying phenotypic evolution indicates that despite unpredictability at the level of basic evolutionary processes (such as apparition of mutations), a certain kind of predictability can emerge at higher levels over long time periods. For instance, a survey of the alleles described in the literature that cause non-deleterious phenotypic differences among animals, plants and yeasts indicates that similar phenotypes have often evolved in distinct taxa through independent mutations in the same genes. Does this mean that the range of possibilities for evolution is limited? Does this mean that we can predict the outcomes of a replayed tape of life? Imagining other possible paths for evolution runs into four important issues: (i) resolving the influence of contingency, (ii) imagining living organisms that are different from the ones we know, (iii) finding the relevant concepts for predicting evolution, and (iv) estimating the probability of occurrence for complex evolutionary events that occurred only once during the evolution of life on earth.

  19. Environment overwhelms both nature and nurture in a model spin glass

    NASA Astrophysics Data System (ADS)

    Middleton, A. Alan; Yang, Jie

    We are interested in exploring what information determines the particular history of the glassy long term dynamics in a disordered material. We study the effect of initial configurations and the realization of stochastic dynamics on the long time evolution of configurations in a two-dimensional Ising spin glass model. The evolution of nearest neighbor correlations is computed using patchwork dynamics, a coarse-grained numerical heuristic for temporal evolution. The dependence of the nearest neighbor spin correlations at long time on both initial spin configurations and noise histories are studied through cross-correlations of long-time configurations and the spin correlations are found to be independent of both. We investigate how effectively rigid bond clusters coarsen. Scaling laws are used to study the convergence of configurations and the distribution of sizes of nearly rigid clusters. The implications of the computational results on simulations and phenomenological models of spin glasses are discussed. We acknowledge NSF support under DMR-1410937 (CMMT program).

  20. Predicting evolutionary rescue via evolving plasticity in stochastic environments

    PubMed Central

    Baskett, Marissa L.

    2016-01-01

    Phenotypic plasticity and its evolution may help evolutionary rescue in a novel and stressful environment, especially if environmental novelty reveals cryptic genetic variation that enables the evolution of increased plasticity. However, the environmental stochasticity ubiquitous in natural systems may alter these predictions, because high plasticity may amplify phenotype–environment mismatches. Although previous studies have highlighted this potential detrimental effect of plasticity in stochastic environments, they have not investigated how it affects extinction risk in the context of evolutionary rescue and with evolving plasticity. We investigate this question here by integrating stochastic demography with quantitative genetic theory in a model with simultaneous change in the mean and predictability (temporal autocorrelation) of the environment. We develop an approximate prediction of long-term persistence under the new pattern of environmental fluctuations, and compare it with numerical simulations for short- and long-term extinction risk. We find that reduced predictability increases extinction risk and reduces persistence because it increases stochastic load during rescue. This understanding of how stochastic demography, phenotypic plasticity, and evolution interact when evolution acts on cryptic genetic variation revealed in a novel environment can inform expectations for invasions, extinctions, or the emergence of chemical resistance in pests. PMID:27655762

  1. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: An example from the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-05-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constraints on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  2. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: an example from the Ethiopian Highlands.

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-04-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constrains on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  3. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2010-09-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  4. Heliophysics: Evolving Solar Activity and the Climates of Space and Earth

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Siscoe, George L.

    2012-01-01

    Preface; 1. Interconnectedness in heliophysics Carolus J. Schrijver and George L. Siscoe; 2. Long-term evolution of magnetic activity of Sun-like stars Carolus J. Schrijver; 3. Formation and early evolution of stars and proto-planetary disks Lee W. Hartmann; 4. Planetary habitability on astronomical time scales Donald E. Brownlee; 5. Solar internal flows and dynamo action Mark S. Miesch; 6. Modeling solar and stellar dynamos Paul Charbonneau; 7. Planetary fields and dynamos Ulrich R. Christensen; 8. The structure and evolution of the 3D solar wind John T. Gosling; 9. The heliosphere and cosmic rays J. Randy Jokipii; 10. Solar spectral irradiance: measurements and models Judith L. Lean and Thomas N. Woods; 11. Astrophysical influences on planetary climate systems Juerg Beer; 12. Evaluating the drivers of Earth's climate system Thomas J. Crowley; 13. Ionospheres of the terrestrial planets Stanley C. Solomon; 14. Long-term evolution of the geospace climate Jan J. Sojka; 15. Waves and transport processes in atmospheres and oceans Richard L. Walterscheid; 16. Solar variability, climate, and atmospheric photochemistry Guy P. Brasseur, Daniel Marsch and Hauke Schmidt; Appendix I. Authors and editors; List of illustrations; List of tables; Bibliography; Index.

  5. Coupling SPH and thermochemical models of planets: Methodology and example of a Mars-sized body

    NASA Astrophysics Data System (ADS)

    Golabek, G. J.; Emsenhuber, A.; Jutzi, M.; Asphaug, E. I.; Gerya, T. V.

    2018-02-01

    Giant impacts have been suggested to explain various characteristics of terrestrial planets and their moons. However, so far in most models only the immediate effects of the collisions have been considered, while the long-term interior evolution of the impacted planets was not studied. Here we present a new approach, combining 3-D shock physics collision calculations with 3-D thermochemical interior evolution models. We apply the combined methods to a demonstration example of a giant impact on a Mars-sized body, using typical collisional parameters from previous studies. While the material parameters (equation of state, rheology model) used in the impact simulations can have some effect on the long-term evolution, we find that the impact angle is the most crucial parameter for the resulting spatial distribution of the newly formed crust. The results indicate that a dichotomous crustal pattern can form after a head-on collision, while this is not the case when considering a more likely grazing collision. Our results underline that end-to-end 3-D calculations of the entire process are required to study in the future the effects of large-scale impacts on the evolution of planetary interiors.

  6. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide

    NASA Astrophysics Data System (ADS)

    Cabán-Acevedo, Miguel; Stone, Michael L.; Schmidt, J. R.; Thomas, Joseph G.; Ding, Qi; Chang, Hung-Chih; Tsai, Meng-Lin; He-Hau, Jr.; Jin, Song

    2015-12-01

    The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to further improvements in catalytic activity. Here we present a combined theoretical and experimental study to establish ternary pyrite-type cobalt phosphosulphide (CoPS) as a high-performance Earth-abundant catalyst for electrochemical and photoelectrochemical hydrogen production. Nanostructured CoPS electrodes achieved a geometrical catalytic current density of 10 mA cm-2 at overpotentials as low as 48 mV, with outstanding long-term operational stability. Integrated photocathodes of CoPS on n+-p-p+ silicon micropyramids achieved photocurrents up to 35 mA cm-2 at 0 V versus the reversible hydrogen electrode (RHE), onset photovoltages as high as 450 mV versus RHE, and the most efficient solar-driven hydrogen generation from Earth-abundant systems.

  7. Surfactant-Assisted Phase-Selective Synthesis of New Cobalt MOFs and Their Efficient Electrocatalytic Hydrogen Evolution Reaction.

    PubMed

    Wu, Ya-Pan; Zhou, Wei; Zhao, Jun; Dong, Wen-Wen; Lan, Ya-Qian; Li, Dong-Sheng; Sun, Chenghua; Bu, Xianhui

    2017-10-09

    Reported herein are two new polymorphic Co-MOFs (CTGU-5 and -6) that can be selectively crystallized into the pure 2D or 3D net using an anionic or neutral surfactant, respectively. Each polymorph contains a H 2 O molecule, but differs dramatically in its bonding to the framework, which in turn affects the crystal structure and electrocatalytic performance for hydrogen evolution reaction (HER). Both experimental and computational studies find that 2D CTGU-5 which has coordinates water and more open access to the cobalt site has higher electrocatalytic activity than CTGU-6 with the lattice water. The integration with co-catalysts, such as acetylene black (AB) leads to a composite material, AB&CTGU-5 (1:4) with very efficient HER catalytic properties among reported MOFs. It exhibits superior HER properties including a very positive onset potential of 18 mV, low Tafel slope of 45 mV dec -1 , higher exchange current density of 8.6×10 -4  A cm -2 , and long-term stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. EXTRAPOLATION METHOD FOR MAXIMAL AND 24-H AVERAGE LTE TDD EXPOSURE ESTIMATION.

    PubMed

    Franci, D; Grillo, E; Pavoncello, S; Coltellacci, S; Buccella, C; Aureli, T

    2018-01-01

    The Long-Term Evolution (LTE) system represents the evolution of the Universal Mobile Telecommunication System technology. This technology introduces two duplex modes: Frequency Division Duplex and Time Division Duplex (TDD). Despite having experienced a limited expansion in the European countries since the debut of the LTE technology, a renewed commercial interest for LTE TDD technology has recently been shown. Therefore, the development of extrapolation procedures optimised for TDD systems becomes crucial, especially for the regulatory authorities. This article presents an extrapolation method aimed to assess the exposure to LTE TDD sources, based on the detection of the Cell-Specific Reference Signal power level. The method introduces a βTDD parameter intended to quantify the fraction of the LTE TDD frame duration reserved for downlink transmission. The method has been validated by experimental measurements performed on signals generated by both a vector signal generator and a test Base Transceiver Station installed at Linkem S.p.A facility in Rome. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Animal evolution during domestication: the domesticated fox as a model

    PubMed Central

    Trut, Lyudmila; Oskina, Irina; Kharlamova, Anastasiya

    2009-01-01

    Summary We review the evolution of domestic animals, emphasizing the effect of the earliest steps of domestication on its course. Using the first domesticated species, the dog (Canis familiaris) as an illustration, we describe the evolutionary specificities of the historical domestication, such as the high level and wide range of diversity. We suggest that the process of earliest domestication via unconscious and later conscious selection of human-defined behavioral traits may accelerate phenotypic variations. The review is based on the results of the long-term experiment designed to reproduce early mammalian domestication in the silver fox (Vulpes vulpes) selected for tameability, or amenability to domestication. We describe changes in behavior, morphology and physiology that appeared in the fox during its selection for tameability and that were similar to those observed in the domestic dog. Based on the experimental fox data and survey of relevant data, we discuss the developmental, genetic and possible molecular-genetic mechanisms of these changes. We assign the causative role in evolutionary transformation of domestic animals to selection for behavior and to the neurospecific regulatory genes it affects. PMID:19260016

  10. Holocene Evolution of Incised Coastal Channels on the Isle of Wight, UK: Interpretation via Numerical Simulation.

    NASA Astrophysics Data System (ADS)

    Leyland, J.; Darby, S. E.

    2006-12-01

    Incised coastal channels are found in numerous locations around the world where the shoreline morphology consists of cliffs. The incised coastal channels found on the Isle of Wight, UK, are known locally as `Chines' and debouche (up to 45m) through the soft cliffs of the south west coast, maintaining steep side walls subject to deep-seated mass wasting. These canyons offer sheltered locations and bare substrate, providing habitat for plant (Philonotis marchica, Anthoceros punctatos) and invertebrate (Psen atratinus, Baris analis, Melitaea cinxi) species of international importance. The base level of the Chines is highly dynamic, with episodes of sea cliff erosion causing the rejuvenation of the channel network. Consequently a key factor in Chine evolution is the relative balance between rates of cliff retreat and headwards incision caused by knickpoint migration. Specifically, there is concern that if contemporary coastal retreat rates are higher than the corresponding rates of knickpoint recession, there will be long-term a reduction in the overall extent of the Chines and their associated habitats. In an attempt to provide a long-term context for these issues, in this poster we explore the Holocene erosional history of the Chines using a numerical landscape evolution model. The model includes a stochastic cliff recession function that controls the position of the outlet boundary. Knickpoint recession rates are simulated using a detachment-limited channel erosion law wherein erosion rate is a power function of drainage area and stream gradient with model parameters defined using empirically- derived data. Simulations are undertaken for a range of imposed boundary conditions representing different scenarios of long-term cliff retreat forced by Holocene sea-level rise, plausible scenarios corresponding to cases where simulated and observed Chine and landscape forms match. The study provides an example of how a landscape evolution model could be used to reconstruct Holocene coastal processes, as well as providing the long-term context necessary to manage Chine habitats appropriately. In particular a critical threshold drainage area is defined that provides knickpoint recession rates that are sufficient to generate self- sustaining Chines in relation to cliff recession rates.

  11. Long-term evolution of the force-free twisted magnetosphere of a magnetar

    NASA Astrophysics Data System (ADS)

    Akgün, T.; Cerdá-Durán, P.; Miralles, J. A.; Pons, J. A.

    2017-12-01

    We study the long-term quasi-steady evolution of the force-free magnetosphere of a magnetar coupled to its internal magnetic field. We find that magnetospheric currents can be maintained on long time-scales of the order of thousands of years. Meanwhile, the energy, helicity and twist stored in the magnetosphere all gradually increase over the course of this evolution, until a critical point is reached, beyond which a force-free magnetosphere cannot be constructed. At this point, some large-scale magnetospheric rearrangement, possibly resulting in an outburst or a flare, must occur, releasing a large fraction of the stored energy, helicity and twist. After that, the quasi-steady evolution should continue in a similar manner from the new initial conditions. The time-scale for reaching this critical point depends on the overall magnetic field strength and on the relative fraction of the toroidal field. The energy stored in the force-free magnetosphere is found to be up to ∼30 per cent larger than the corresponding vacuum energy. This implies that for a 1014 G field at the pole, the energy budget available for fast magnetospheric events is of the order of a few 1044 erg. The spin-down rate is estimated to increase by up to ∼60 per cent, since the dipole content in the magnetosphere is enhanced by the currents present there. A rough estimate of the braking index n reveals that it is systematically n < 3 for the most part of the evolution, consistent with actual measurements for pulsars and early estimates for several magnetars.

  12. Differing Presynaptic Contributions to LTP and Associative Learning in Behaving Mice

    PubMed Central

    Madroñal, Noelia; Gruart, Agnès; Delgado-García, José M.

    2009-01-01

    The hippocampal CA3-CA1 synapse is an excellent experimental model for studying the interactions between short- and long-term plastic changes taking place following high-frequency stimulation (HFS) of Schaffer collaterals and during the acquisition and extinction of a classical eyeblink conditioning in behaving mice. Input/output curves and a full-range paired-pulse study enabled determining the optimal intensities and inter-stimulus intervals for evoking paired-pulse facilitation (PPF) or depression (PPD) at the CA3-CA1 synapse. Long-term potentiation (LTP) induced by HFS lasted ≈10 days. HFS-induced LTP evoked an initial depression of basal PPF. Recovery of PPF baseline values was a steady and progressive process lasting ≈20 days, i.e., longer than the total duration of the LTP. In a subsequent series of experiments, we checked whether PPF was affected similarly during activity-dependent synaptic changes. Animals were conditioned using a trace paradigm, with a tone as a conditioned stimulus (CS) and an electrical shock to the trigeminal nerve as an unconditioned stimulus (US). A pair of pulses (40 ms interval) was presented to the Schaffer collateral-commissural pathway to evoke field EPSPs (fEPSPs) during the CS-US interval. Basal PPF decreased steadily across conditioning sessions (i.e., in the opposite direction to that during LTP), reaching a minimum value during the 10th conditioning session. Thus, LTP and classical eyeblink conditioning share some presynaptic mechanisms, but with an opposite evolution. Furthermore, PPF and PPD might play a homeostatic role during long-term plastic changes at the CA3-CA1 synapse. PMID:19636387

  13. Qualitative analysis of anatomopathological changes of gastric mucosa due to long term therapy with proton pump inhibitors: experimental studies x clinical studies.

    PubMed

    de Souza, Iure Kalinine Ferraz; da Silva, Alcino Lázaro; de Araújo, Alex; Santos, Fernanda Carolina Barbosa; Mendonça, Bernardo Pinto Coelho Keuffer

    2013-01-01

    For a few decades the long-term use of proton pump inhibitors has had wide application in the treatment of several gastrointestinal diseases. Since then, however, several studies have called attention to the possible development of anatomical and pathological changes of gastric mucosa, resulting from the long term use of this therapeutic modality. Recent experimental and clinical studies suggest that these changes have connection not only to the development of precancerous lesions, but also of gastric tumors. To present a qualitative analysis of anatomical and pathological changes of gastric mucosa resulting from the long-term use of proton pump inhibitors. The headings used were: proton pump inhibitors, precancerous lesions and gastric neoplasms for a non systematic review of the literature, based on Medline, Lillacs and Scielo. Twelve articles were selected from clinical (9) and experimental (3) studies, for qualitative analysis of the results. The gastric acid suppression by high doses of proton pump inhibitors induces hypergastrinemia and the consequent emergence of neuroendocrine tumors in animal models. Morphological changes most often found in these experimental studies were: enterochromaffin-like cell hyperplasia, neuroendocrine tumor, atrophy, metaplasia and adenocarcinoma. In the studies in humans, however, despite enterochromaffin-like cell hyperplasia, the other effects, neuroendocrine tumor and gastric atrophy, gastric metaplasia and or adenocarcinoma, were not identified. Although it is not possible to say that the long-term treatment with proton pump inhibitors induces the appearance or accelerates the development of gastric cancer in humans, several authors have suggested that prolonged administration of this drug could provoke the development of gastric cancer. Thus, the evidence demonstrated in the animal model as well as the large number of patients who do or will do a long-term treatment with proton pump inhibitors, justifies the maintenance of this important line of research.

  14. The Effects of Elaboration and Rehearsal on Long-Term Retention of Shape Names by Kindergarteners

    ERIC Educational Resources Information Center

    Gallimore, Ronald; And Others

    1977-01-01

    Elaboration and overt rehearsal are compared as instructional paradigms for memory retention. Superior long-term retention was produced in the elaboration condition when the initial acquisition effects were statistically removed. Short-term data suggest acquisition was complexly affected by experimental condition, I.Q., and task. Elaboration…

  15. Rapid divergence and convergence of life-history in experimentally evolved Drosophila melanogaster.

    PubMed

    Burke, Molly K; Barter, Thomas T; Cabral, Larry G; Kezos, James N; Phillips, Mark A; Rutledge, Grant A; Phung, Kevin H; Chen, Richard H; Nguyen, Huy D; Mueller, Laurence D; Rose, Michael R

    2016-09-01

    Laboratory selection experiments are alluring in their simplicity, power, and ability to inform us about how evolution works. A longstanding challenge facing evolution experiments with metazoans is that significant generational turnover takes a long time. In this work, we present data from a unique system of experimentally evolved laboratory populations of Drosophila melanogaster that have experienced three distinct life-history selection regimes. The goal of our study was to determine how quickly populations of a certain selection regime diverge phenotypically from their ancestors, and how quickly they converge with independently derived populations that share a selection regime. Our results indicate that phenotypic divergence from an ancestral population occurs rapidly, within dozens of generations, regardless of that population's evolutionary history. Similarly, populations sharing a selection treatment converge on common phenotypes in this same time frame, regardless of selection pressures those populations may have experienced in the past. These patterns of convergence and divergence emerged much faster than expected, suggesting that intermediate evolutionary history has transient effects in this system. The results we draw from this system are applicable to other experimental evolution projects, and suggest that many relevant questions can be sufficiently tested on shorter timescales than previously thought. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  16. Dancing the Two-Step in Ontario's Long-term Care Sector: More Deterrence-oriented Regulation = Ownership and Management Consolidation.

    PubMed

    Daly, Tamara

    2015-03-01

    This paper explores shifts in public and private delivery over time through an analysis of Ontario's approach to LTC funding and regulation in relation to other jurisdictions in Canada and abroad. The case of Ontario's long-term care (LTC) policy evolution - from the 1940s until early 2013 -- shows how moving from compliance to deterrence oriented regulation can support consolidation of commercial providers' ownership and increase the likelihood of non-profit and public providers outsourcing their management.

  17. An experimental model for the study of cognitive disorders: the hippocampus and associative learning in mice.

    PubMed

    Delgado-García, José M; Gruart, Agnès

    2008-12-01

    The availability of transgenic mice mimicking selective human neurodegenerative and psychiatric disorders calls for new electrophysiological and microstimulation techniques capable of being applied in vivo in this species. In this article, we will concentrate on experiments and techniques developed in our laboratory during the past few years. Thus we have developed different techniques for the study of learning and memory capabilities of wild-type and transgenic mice with deficits in cognitive functions, using classical conditioning procedures. These techniques include different trace (tone/SHOCK and shock/SHOCK) conditioning procedures ? that is, a classical conditioning task involving the cerebral cortex, including the hippocampus. We have also developed implantation and recording techniques for evoking long-term potentiation (LTP) in behaving mice and for recording the evolution of field excitatory postsynaptic potentials (fEPSP) evoked in the hippocampal CA1 area by the electrical stimulation of the commissural/Schaffer collateral pathway across conditioning sessions. Computer programs have also been developed to quantify the appearance and evolution of eyelid conditioned responses and the slope of evoked fEPSPs. According to the present results, the in vivo recording of the electrical activity of selected hippocampal sites during classical conditioning of eyelid responses appears to be a suitable experimental procedure for studying learning capabilities in genetically modified mice, and an excellent model for the study of selected neuropsychiatric disorders compromising cerebral cortex functioning.

  18. The Mars water cycle at other epochs: History of the polar caps and layered terrain

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1992-01-01

    The atmospheric water cycle at the present epoch involves summertime sublimation of water from the north polar cap, transport of water through the atmosphere, and condensation on one or both winter CO2 caps. Exchange with the regolith is important seasonally, but the water content of the atmosphere appears to be controlled by the polar caps. The net annual transport through the atmosphere, integrated over long timescales, must be the driving force behind the long-term evolution of the polar caps; clearly, this feeds back into the evolution of the layered terrain. We have investigated the behavior of the seasonal water cycle and the net integrated behavior at the pole for the last 10 exp 7 years. Our model of the water cycle includes the solar input, CO2 condensation and sublimation, and summertime water sublimation through the seasonal cycles, and incorporates the long-term variations in the orbital elements describing the Martian orbit.

  19. Residual Viremia in Treated HIV+ Individuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, Jessica M.; Perelson, Alan S.

    Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. Furthermore, the source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Our observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. The phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived frommore » activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir re-seeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy.« less

  20. Residual Viremia in Treated HIV+ Individuals

    DOE PAGES

    Conway, Jessica M.; Perelson, Alan S.

    2016-01-06

    Antiretroviral therapy (ART) effectively controls HIV infection, suppressing HIV viral loads. However, some residual virus remains, below the level of detection, in HIV-infected patients on ART. Furthermore, the source of this viremia is an area of debate: does it derive primarily from activation of infected cells in the latent reservoir, or from ongoing viral replication? Our observations seem to be contradictory: there is evidence of short term evolution, implying that there must be ongoing viral replication, and viral strains should thus evolve. The phylogenetic analyses, and rare emergent drug resistance, suggest no long-term viral evolution, implying that virus derived frommore » activated latent cells must dominate. We use simple deterministic and stochastic models to gain insight into residual viremia dynamics in HIV-infected patients. Our modeling relies on two underlying assumptions for patients on suppressive ART: that latent cell activation drives viral dynamics and that the reproductive ratio of treated infection is less than 1. Nonetheless, the contribution of viral replication to residual viremia in patients on ART may be non-negligible. However, even if the portion of viremia attributable to viral replication is significant, our model predicts (1) that latent reservoir re-seeding remains negligible, and (2) some short-term viral evolution is permitted, but long-term evolution can still be limited: stochastic analysis of our model shows that de novo emergence of drug resistance is rare. Thus, our simple models reconcile the seemingly contradictory observations on residual viremia and, with relatively few parameters, recapitulates HIV viral dynamics observed in patients on suppressive therapy.« less

  1. Solar radiation and landscape evolution: co-evolution of topography, vegetation, and erosion rates in a semi-arid ecosystem

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, Erkan; Yetemen, Omer

    2016-04-01

    In this study CHILD landscape evolution model (LEM) is used to study the role of solar radiation on the co-evolution of landscape morphology, vegetation patterns, and erosion rates in a central New Mexico catchment. In the study site north facing slopes (NFS) are characterized by steep diffusion-dominated planar hillslopes covered by co-exiting juniper pine and grass vegetation. South facing slopes (SFS) are characterized by shallow slopes and covered by sparse shrub vegetation. Measured short-term and Holocene-averaged erosion rates show higher soil loss on SFS than NFS. In this study CHILD LEM is first confirmed with ecohydrologic field data and used to systematically examine the co-evolution of topography, vegetation pattern, and erosion rates. Aspect- and network-control are identified as the two main topographic drivers of soil moisture and vegetation organization on the landscape. Landscape-scale and long-term implications of solar radiation driven ecohdrologic patterns emerged in modeled landscape: NFS supported denser vegetation cover and became steeper and planar, while on SFS vegetation grew sparser and slopes declined with more fluvial activity. At the landscape scale, these differential erosion processes led to asymmetric development of catchment forms, consistent with regional observations. While the general patterns of vegetation and topography were reproduced by the model using a stationary representation of the current climate, the observed differential Holocene erosion rates were captured by the model only when cyclic climate is used. This suggests sensitivity of Holocene erosion rates to long-term climate fluctuations.

  2. The impact of experimental measurement errors on long-term viscoelastic predictions. [of structural materials

    NASA Technical Reports Server (NTRS)

    Tuttle, M. E.; Brinson, H. F.

    1986-01-01

    The impact of flight error in measured viscoelastic parameters on subsequent long-term viscoelastic predictions is numerically evaluated using the Schapery nonlinear viscoelastic model. Of the seven Schapery parameters, the results indicated that long-term predictions were most sensitive to errors in the power law parameter n. Although errors in the other parameters were significant as well, errors in n dominated all other factors at long times. The process of selecting an appropriate short-term test cycle so as to insure an accurate long-term prediction was considered, and a short-term test cycle was selected using material properties typical for T300/5208 graphite-epoxy at 149 C. The process of selection is described, and its individual steps are itemized.

  3. Functional and evolutionary trade-offs co-occur between two consolidated memory phases in Drosophila melanogaster

    PubMed Central

    Lagasse, Fabrice; Moreno, Celine; Preat, Thomas; Mery, Frederic

    2012-01-01

    Memory is a complex and dynamic process that is composed of different phases. Its evolution under natural selection probably depends on a balance between fitness benefits and costs. In Drosophila, two separate forms of consolidated memory phases can be generated experimentally: anaesthesia-resistant memory (ARM) and long-term memory (LTM). In recent years, several studies have focused on the differences between these long-lasting memory types and have found that, at the functional level, ARM and LTM are antagonistic. How this functional relationship will affect their evolutionary dynamics remains unknown. We selected for flies with either improved ARM or improved LTM over several generations, and found that flies selected specifically for improvement of one consolidated memory phase show reduced performance in the other memory phase. We also found that improved LTM was linked to decreased longevity in male flies but not in females. Conversely, males with improved ARM had increased longevity. We found no correlation between either improved ARM or LTM and other phenotypic traits. This is, to our knowledge, the first evidence of a symmetrical evolutionary trade-off between two memory phases for the same learning task. Such trade-offs may have an important impact on the evolution of cognitive capacities. On a neural level, these results support the hypothesis that mechanisms underlying these forms of consolidated memory are, to some degree, antagonistic. PMID:22859595

  4. Experimental Watershed Study Designs: A Tool for Advancing Process Understanding and Management of Mixed-Land-Use Watersheds

    NASA Astrophysics Data System (ADS)

    Hubbart, J. A.; Kellner, R. E.; Zeiger, S. J.

    2016-12-01

    Advancements in watershed management are both a major challenge, and urgent need of this century. The experimental watershed study (EWS) approach provides critical baseline and long-term information that can improve decision-making, and reduce misallocation of mitigation investments. Historically, the EWS approach was used in wildland watersheds to quantitatively characterize basic landscape alterations (e.g. forest harvest, road building). However, in recent years, EWS is being repurposed in contemporary multiple-land-use watersheds comprising a mosaic of land use practices such as urbanizing centers, industry, agriculture, and rural development. The EWS method provides scalable and transferrable results that address the uncertainties of development, while providing a scientific basis for total maximum daily load (TMDL) targets in increasing numbers of Clean Water Act 303(d) listed waters. Collaborative adaptive management (CAM) programs, designed to consider the needs of many stakeholders, can also benefit from EWS-generated information, which can be used for best decision making, and serve as a guidance tool throughout the CAM program duration. Of similar importance, long-term EWS monitoring programs create a model system to show stakeholders how investing in rigorous scientific research initiatives improves decision-making, thereby increasing management efficiencies through more focused investments. The evolution from classic wildland EWS designs to contemporary EWS designs in multiple-land-use watersheds will be presented while illustrating how such an approach can encourage innovation, cooperation, and trust among watershed stakeholders working to reach the common goal of improving and sustaining hydrologic regimes and water quality.

  5. The effects of light therapy on depression and sleep disruption in older adults in a long-term care facility.

    PubMed

    Wu, Mann-Chian; Sung, Huei-Chuan; Lee, Wen-Li; Smith, Graeme D

    2015-10-01

    This study aims to evaluate the effect of light therapy on depression and sleep disruption in older adults residing in a long-term care facility. Psychological morbidity is a problem commonly seen in older adults residing in long-term care facilities. Limited research has addressed the effect of light therapy on depression in this population. A quasi-experimental pretest and posttest design was used. Thirty-four participants in the experimental group received light therapy by sitting in front of a 10000-lux light box 30 min in the morning, three times a week for 4 weeks. Thirty-one participants in the control group received routine care without light therapy. Depression was measured by Geriatric Depression Scale-Short Form at baseline and week 4. After receiving 4 weeks of light therapy, the mean depression score in the experimental group decreased from 7.24 (SD3.42) at pretest to 5.91 (SD 3.40) at posttest, and had a significant reduction (t = 2.22, P = 0.03). However, there was no significant difference in depression score and sleep disruption between the experimental group and control group. Light therapy might have the potential to reduce depressive symptoms and sleep disruption and may be a viable intervention to improve mental health of older adults in the long-term care facilities. © 2014 Wiley Publishing Asia Pty Ltd.

  6. [Various methods of overcoming secondary resistance to treatment developing in relation to adaptation to psychotropic drugs during long-term treatment (clinico-experimental study)].

    PubMed

    Avrutskiĭ, G Ia; Allikmets, L Kh; Neduva, A A; Zharkovskiĭ, A M; Beliakov, A V

    1984-01-01

    Clinical and experimental studies into the phenomenon of adaptation to neuroleptic agents and into the methods of its overcoming were carried out. An experimental study of the long-term administrations of haloperidol revealed the formation of adaptation to the drug which can be overcome by a zigzag-like sharp elevation of the dosage followed by rapid reduction to the baseline level. The trial of this method under clinical conditions showed that it was expedient to use on a large scale the experimental findings on the specific features of the formation and prevention of the secondary therapeutic resistance.

  7. Long-term implications of forest harvesting on nutrient cycling in central hardwood forests

    Treesearch

    J.A. Lynch; E.S. Corbett

    1991-01-01

    Fourteen years of streamflow and water quality data from the Leading Ridge Experimental Watersheds in central Pennsylvania were analyzed to determine the long-term impacts of a commercial forest harvest on stream water chemistry and nutrient loss.

  8. Simulated response and effects to oil exposure in an estuarine fish species

    EPA Science Inventory

    Experimental toxicity data alone lack ecological relevance to assess more realistic situations, such as variable exposure to a contaminant and long-term impact. Evaluating the implications of sublethal effects or behavioral response to exposure requires long-term, population-leve...

  9. Methods of geometrical integration in accelerator physics

    NASA Astrophysics Data System (ADS)

    Andrianov, S. N.

    2016-12-01

    In the paper we consider a method of geometric integration for a long evolution of the particle beam in cyclic accelerators, based on the matrix representation of the operator of particles evolution. This method allows us to calculate the corresponding beam evolution in terms of two-dimensional matrices including for nonlinear effects. The ideology of the geometric integration introduces in appropriate computational algorithms amendments which are necessary for preserving the qualitative properties of maps presented in the form of the truncated series generated by the operator of evolution. This formalism extends both on polarized and intense beams. Examples of practical applications are described.

  10. Experimental and numerical investigations of temporally and spatially periodic modulated wave trains

    NASA Astrophysics Data System (ADS)

    Houtani, H.; Waseda, T.; Tanizawa, K.

    2018-03-01

    A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.

  11. Windows into the forest: extending long-term small-watershed research

    Treesearch

    Sally Duncan

    2004-01-01

    Interactions among forests, forestry, and water remain a critical aspect of Forest Service land stewardship. Small, experimental watershed studies managed by Forest Service Research and Development have a long history of advancing science and management and have resulted in a rich collection of long-term data. Early work addressed effects of forestry practices in...

  12. The use of Forest Service experimental forests and ranges for long-term research on invasive species

    Treesearch

    Ralph Holiday Crawford; Gary W. Miller

    2010-01-01

    The 81 experimental forests and ranges (EFRs) research sites make the U.S. Department of Agriculture (USDA), Forest Service unique among land management agencies. The EFRs were established for conducting applied research that serves as a basis for managing forests and rangelands. Most EFR research sites have long histories of experimentation and research that provide...

  13. Accelerated long-term forgetting in children with temporal lobe epilepsy.

    PubMed

    Gascoigne, Michael B; Smith, Mary Lou; Barton, Belinda; Webster, Richard; Gill, Deepak; Lah, Suncica

    2014-07-01

    Adults with temporal lobe epilepsy (TLE) have been found to have accelerated long-term forgetting, but this phenomenon has not yet been investigated in children. Although deficits in recall of materials after short (20- to 30-minute) delays have been shown to slowly emerge from childhood to adolescence in patients with TLE, it is unknown whether such a trend will also be found in recall of materials after long delays. This study examined the presence of accelerated long-term forgetting in children with TLE and how it relates to chronological age. Twenty-three children with TLE and 58 healthy controls of similar age, sex distribution and socioeconomic status completed a battery of neuropsychological tests, including standardised tests of story recall and design location, as well as two experimental tests requiring the learning of words and design locations to a criterion, both of which assessed recall after short (30-min) and long (7-day) delays. Word recall at the 7-day delay (relative to the 30-min recall) was significantly poorer in the TLE group, compared to the control group. The TLE group also exhibited worse 30-min recall performance on a standardised test of story recall. Individual patient analyses revealed dissociation between performance on the experimental and standardised verbal memory tests; children who were impaired on the experimental test (7-day delay) were not impaired on the standardised test (30-min delay). Compared to controls, patients with a left-hemisphere seizure focus recalled fewer words at short and long delays while patients with an abnormal hippocampus recalled fewer words at the long delay. No between-group differences were found with respect to the design location task. Age negatively correlated with the recall of words after short- and long-term delays within the TLE group, where older age was associated with worse memory. This association was not present in the control group. To our knowledge, this is the first study to show evidence of accelerated long-term forgetting in children with TLE, which could not be explained by poor performance on standardised memory tests. Additionally, these results suggest that the developmental trajectory of long-term memory in children with TLE is similar to that of short-term memory: deficits emerge gradually, therefore older children are more likely to present with long-term memory deficits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Structure and Evolution of the Foreign Exchange Networks

    NASA Astrophysics Data System (ADS)

    Kwapień, J.; Gworek, S.; Drożdż, S.

    2009-01-01

    We investigate topology and temporal evolution of the foreign currency exchange market viewed from a weighted network perspective. Based on exchange rates for a set of 46 currencies (including precious metals), we construct different representations of the FX network depending on a choice of the base currency. Our results show that the network structure is not stable in time, but there are main clusters of currencies, which persist for a long period of time despite the fact that their size and content are variable. We find a long-term trend in the network's evolution which affects the USD and EUR nodes. In all the network representations, the USD node gradually loses its centrality, while, on contrary, the EUR node has become slightly more central than it used to be in its early years. Despite this directional trend, the overall evolution of the network is noisy.

  15. Frozen storage effects on anthocyanins and volatile compounds of raspberry fruit.

    PubMed

    de Ancos, B; Ibañez, E; Reglero, G; Cano, M P

    2000-03-01

    The quantitative and qualitative evolution of the anthocyanins and volatile compounds of four raspberry cultivars (cvs. Heritage, Autumn Bliss, Zeva, and Rubi) growing in Spain were analyzed raw, just frozen, and during long-term frozen storage at -20 degrees C for a 1 year period. HS-SPME coupled with GC-MS and HPLC techniques were employed to study the evolution of the volatile compounds and the individual anthocyanins, respectively. The volatile aroma composition changes produced by the freezing process and long-term frozen storage were minimal. Only a significant increase in extraction capacity was obtained for alpha-ionone (27%) and for caryophyllene (67%) in Heritage at 12 months of storage. The stability of anthocyanins to freezing and frozen storage depends on the seasonal period of harvest. Heritage and Autumn Bliss (early cultivars) were less affected by processing and long-term frozen storage (1 year), and the total pigment extracted showed the tendency to increase 17 and 5%, respectively. Rubi and Zeva (late cultivars) suffered a decreased trend on the total anthocyanin content of 4% for Rubi and 17.5% for Zeva. Cyanidin 3-glucoside most easily suffered the degradative reactions that take place during processing and the storage period.

  16. Long-Term Environmental Research Programs - Evolving Capacity for Discovery

    NASA Astrophysics Data System (ADS)

    Swanson, F. J.

    2008-12-01

    Long-term forestry, watershed, and ecological research sites have become critical, productive nodes for environmental science research and in some cases for work in the social sciences and humanities. The Forest Service's century-old Experimental Forests and Ranges and the National Science Foundation's 28- year-old Long-Term Ecological Research program have been remarkably productive in both basic and applied sciences, including characterization of acid rain and old-growth ecosystems and development of forest, watershed, and range management systems for commercial and other land use objectives. A review of recent developments suggests steps to enhance the function of collections of long-term research sites as interactive science networks. The programs at these sites have evolved greatly, especially over the past few decades, as the questions addressed, disciplines engaged, and degree of science integration have grown. This is well displayed by small, experimental watershed studies, which first were used for applied hydrology studies then more fundamental biogeochemical studies and now examination of complex ecosystem processes; all capitalizing on the legacy of intensive studies and environmental monitoring spanning decades. In very modest ways these collections of initially independent sites have functioned increasingly as integrated research networks addressing inter-site questions by using common experimental designs, being part of a single experiment, and examining long-term data in a common analytical framework. The network aspects include data sharing via publicly-accessible data-harvester systems for climate and streamflow data. The layering of one research or environmental monitoring network upon another facilitates synergies. Changing climate and atmospheric chemistry highlight a need to use these networks as continental-scale observatory systems for assessing the impacts of environmental change on ecological services. To better capitalize on long-term research sites and networks, agencies and universities 1) need to encourage collaboration among sites and between science and land manager communities while 2) maintaining long- term studies and monitoring efforts, and staffing the collaboration in each partner organization, including positions specifically designated as liaisons among the participating communities.

  17. A new experimental method for the accelerated characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Morris, D. H.; Yeow, Y. T.

    1978-01-01

    A method which permits the prediction of long-term properties of graphite/epoxy laminates on the basis of short-term (15 min) laboratory tests is described. Demonstration of delayed viscoelastic fracture in one laminate configuration, and data on the time and temperature response of a matrix-dominated unidirectional laminate contributed to a characterization of the viscoelastic process in the graphite/epoxy composites. Master curves from short-term tests of certain laminate configurations can be employed to generate long-term master curves. In addition, analytical predictions from short-term results can be used to predict long-term (25-hour) laminate properties.

  18. Vaccine-derived poliovirus from long term excretors and the end game of polio eradication.

    PubMed

    Martín, Javier

    2006-06-01

    Seven cases of long-term poliovirus excretion in the UK and Ireland are reviewed in this paper. They include a rare case of long-term virus excretion by a healthy child recently found in Ireland and the case with the longest period of vaccine-derived poliovirus excretion by an immunodeficient individual ever known, 18 years. The evolution of viral properties such as antigenic structure, neurovirulence, sensitivity for growth at high temperatures, and differences in nucleotide sequence from the Sabin vaccine strains were studied in detail. The relevance of these cases in the context of the global polio eradication initiative and the design of vaccination strategies for the last stages of eradication and the post-eradication era are discussed.

  19. A dissolution model that accounts for coverage of mineral surfaces by precipitation in core floods

    NASA Astrophysics Data System (ADS)

    Pedersen, Janne; Jettestuen, Espen; Madland, Merete V.; Hildebrand-Habel, Tania; Korsnes, Reidar I.; Vinningland, Jan Ludvig; Hiorth, Aksel

    2016-01-01

    In this paper, we propose a model for evolution of reactive surface area of minerals due to surface coverage by precipitating minerals. The model is used to interpret results from an experiment where a chalk core was flooded with MgCl2 for 1072 days, giving rise to calcite dissolution and magnesite precipitation. The model successfully describes both the long-term behavior of the measured effluent concentrations and the more or less homogeneous distribution of magnesite found in the core after 1072 days. The model also predicts that precipitating magnesite minerals form as larger crystals or aggregates of smaller size crystals, and not as thin flakes or as a monomolecular layer. Using rate constants obtained from literature gave numerical effluent concentrations that diverged from observed values only after a few days of flooding. To match the simulations to the experimental data after approximately 1 year of flooding, a rate constant that is four orders of magnitude lower than reported by powder experiments had to be used. We argue that a static rate constant is not sufficient to describe a chalk core flooding experiment lasting for nearly 3 years. The model is a necessary extension of standard rate equations in order to describe long term core flooding experiments where there is a large degree of textural alteration.

  20. Mate competition and evolutionary outcomes in genetically modified zebrafish (Danio rerio).

    PubMed

    Howard, Richard D; Rohrer, Karl; Liu, Yiyang; Muir, William M

    2015-05-01

    Demonstrating relationships between sexual selection mechanisms and trait evolution is central to testing evolutionary theory. Using zebrafish, we found that wild-type males possessed a significant advantage in mate competition over transgenic RFP Glofish® males. In mating trials, wild-type males were aggressively superior to transgenic males in male-male chases and male-female chases; as a result, wild-type males sired 2.5× as many young as did transgenic males. In contrast, an earlier study demonstrated that female zebrafish preferred transgenic males as mates when mate competition was excluded experimentally. We tested the evolutionary consequence of this conflict between sexual selection mechanisms in a long-term study. The predicted loss of the transgenic phenotype was confirmed. More than 18,500 adults collected from 18 populations across 15 generations revealed that the frequency of the transgenic phenotype declined rapidly and was eliminated entirely in all but one population. Fitness component data for both sexes indicated that only male mating success differed between wild-type and transgenic individuals. Our predictive demographic model based on fitness components closely matched the rate of transgenic phenotype loss observed in the long-term study, thereby supporting its utility for studies assessing evolutionary outcomes of escaped or released genetically modified animals. © 2015 The Author(s).

  1. Experimental characterization and modeling of isothermal and nonisothermal physical aging in glassy polymer films

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong

    This dissertation focuses on nonisothermal physical aging of polymers from both experimental and theoretical aspects. The study concentrates on pure polymers rather than fiber-reinforced composites; this step removes several complicating factors to simplify the study. It is anticipated that the findings of this work can then be applied to composite materials applications. The physical aging tests in this work are performed using a dynamic mechanical analyzer (DMA). The viscoelastic response of glassy polymers under various loading and thermal histories are observed as stress-strain data at a series of time points. The first stage of the experimental work involves the characterization of the isothermal physical aging behavior of two advanced thermoplastics. The second stage conducts tests on the same materials with varying thermal histories and with long-term test duration. This forms the basis to assess and modify a nonisothermal physical aging model (KAHR-ate model). Based on the experimental findings, the KAHR-ate model has been revised by new correlations between aging shift factors and volume response; this revised model performed well in predicting the nonisothermal physical aging behavior of glassy polymers. In the work on isothermal physical aging, short-term creep and stress relaxation tests were performed at several temperatures within 15-35°C below the glass transition temperature (Tg) at various aging times, using the short-term test method established by Struik. Stress and strain levels were such that the materials remained in the linear viscoelastic regime. These curves were then shifted together to determine momentary master curves and shift rates. In order to validate the obtained isothermal physical aging behavior, the results of creep and stress relaxation testing were compared and shown to be consistent with one another using appropriate interconversion of the viscoelastic material functions. Time-temperature superposition of the master curves was also performed. The temperature shift factors and aging shift rates for both PEEK and PPS were consistent for both creep and stress relaxation test results. Nonisothermal physical aging was monitored by sequential short-term creep tests after a series of temperature jumps; the resulting strain histories were analyzed to determine aging shift factors (ate) for each of the creep tests. The nonisothermal aging response was predicted using the KAHR-ate model, which combines the KAHR model of volume recovery with a suitable linear relationship between aging shift factors and specific volume. The KAHR-ate model can be utilized to both predict aging response and to determine necessary model parameters from a set of aging shift factor data. For the PEEK and PPS materials considered in the current study, predictions of mechanical response were demonstrated to be in good agreement with the experimental results for several complicated thermal histories. In addition to short-term nonisothermal aging, long-term creep tests under identical thermal conditions were also analyzed. Effective time theory was unitized to predict long-term response under both isothermal and nonisothermal temperature histories. The long-term compliance after a series of temperature changes was predicted by the KAHR- ate model, and the theoretical predictions and experimental data showed good agreement for various thermal histories. Lastly, physical aging behavior of PPS near the glass transition temperature was investigated, in order to observe the mechanical response in the process of the evolution of the material into equilibrium. At several temperatures near Tg, the time need to reach equilibrium were determined by the creep test results at various aging times. In addition to isothermal physical aging, mechanical shift factors in the period of approaching equilibrium at a common temperature after temperature up-jumps and down-jumps are monitored from creep tests; prior to these temperature jumps, the materials were aged to reach equilibrium states. From these tests, asymmetry of approaching equilibrium phenomenon in ate was observed, which is first-time reported in the literature. This finding shows the similarity between the thermodynamic and mechanical properties during structural relaxation. This work will lead to improved understanding of the viscoelastic behavior of glassy polymers, which is important for better understanding and design of PMCs in elevated temperature applications. With the above findings, this dissertation deals with nonisothermal physical aging of glassy polymers, including both experimental characterization and constructing a framework for predictions of mechanical behavior of polymeric materials under complicated thermal conditions. (Abstract shortened by UMI.)

  2. Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet.

    PubMed

    Yu, Shan; Zhong, Yun-Qian; Yu, Bao-Quan; Cai, Shi-Yi; Wu, Li-Zhu; Zhou, Ying

    2016-07-27

    Hydrogen evolution through photocatalysis is promising with respect to the environmental problems and challenges of energy shortage that we encounter today. In this paper, we have combined graphene quantum dots (GQDs) and {001} faceted anatase TiO2 (with an exposed percentage of 65-75%) together for effective photocatalytic hydrogen evolution. A series of characterizations including X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and UV-visible absorption spectroscopy have been carried out to study the structure of the as-prepared GQDs/{001}TiO2 composite. It turns out that GQDs could be effectively decorated on {001}TiO2 sheet without changing its intrinsic structure. With an optimum loading amount of GQDs (0.5 wt% to {001}TiO2), GQDs/{001}TiO2 exhibits a hydrogen evolution efficiency 8 times higher than that of bare {001}TiO2, which is a significantly more obvious improvement than many other photocatalytic systems relevant to GQDs and TiO2 hybrids. In addition, GQDs/{001}TiO2 could stand long-term photocatalytic experiments. Photocurrent tests show that such an improvement of the photocatalytic efficiency over GQDs/{001}TiO2 may originate from a higher charge separation efficiency. The present study could offer reference for the construction of photocatalytic hydrogen evolution systems with low cost and long term stability.

  3. A model for the hydrologic and climatic behavior of water on Mars

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1993-01-01

    An analysis is carried out of the hydrologic response of a water-rich Mars to climate change and to the physical and thermal evolution of its crust, with particular attention given to the potential role of the subsurface transport, assuming that the current models of insolation-driven change describe reasonably the atmospheric leg of the planet's long-term hydrologic cycle. Among the items considered are the thermal and hydrologic properties of the crust, the potential distribution of ground ice and ground water, the stability and replenishment of equatorial ground ice, basal melting and the polar mass balance, the thermal evolution of the early cryosphere, the recharge of the valley networks and outflow, and several processes that are likely to drive the large-scale vertical and horizontal transport of H2O within the crust. The results lead to the conclusion that subsurface transport has likely played an important role in the geomorphic evolution of the Martian surface and the long-term cycling of H2O between the atmosphere, polar caps, and near-surface crust.

  4. Rotational and X-ray luminosity evolution of high-B radio pulsars

    NASA Astrophysics Data System (ADS)

    Benli, Onur; Ertan, Ünal

    2018-05-01

    In continuation of our earlier work on the long-term evolution of the so-called high-B radio pulsars (HBRPs) with measured braking indices, we have investigated the long-term evolution of the remaining five HBRPs for which braking indices have not been measured yet. This completes our source-by-source analyses of HBRPs in the fallback disc model that was also applied earlier to anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), and dim isolated neutron stars (XDINs). Our results show that the X-ray luminosities and the rotational properties of these rather different neutron star populations can be acquired by neutron stars with fallback discs as a result of differences in their initial conditions, namely the initial disc mass, initial period and the dipole field strength. For the five HBRPs, unlike for AXPs, SGRs and XDINs, our results do not constrain the dipole field strengths of the sources. We obtain evolutionary paths leading to the properties of HBRPs in the propeller phase with dipole fields sufficiently strong to produce pulsed radio emission.

  5. Splanchnic-aortic inflammatory axis in experimental portal hypertension

    PubMed Central

    Aller, Maria-Angeles; de las Heras, Natalia; Nava, Maria-Paz; Regadera, Javier; Arias, Jaime; Lahera, Vicente

    2013-01-01

    Splanchnic and systemic low-grade inflammation has been proposed to be a consequence of long-term prehepatic portal hypertension. This experimental model causes minimal alternations in the liver, thus making a more selective study possible for the pathological changes characteristic of prehepatic portal hypertension. Low-grade splanchnic inflammation after long-term triple partial portal vein ligation could be associated with liver steatosis and portal hypertensive intestinal vasculopathy. In fact, we have previously shown that prehepatic portal hypertension in the rat induces liver steatosis and changes in lipid and carbohydrate metabolism similar to those produced in chronic inflammatory conditions described in metabolic syndrome in humans. Dysbiosis and bacterial translocation in this experimental model suggest the existence of a portal hypertensive intestinal microbiome implicated in both the splanchnic and systemic alterations related to prehepatic portal hypertension. Among the systemic impairments, aortopathy characterized by oxidative stress, increased levels of proinflammatory cytokines and profibrogenic mediators stand out. In this experimental model of long-term triple portal vein ligated-rats, the abdominal aortic proinflammatory response could be attributed to oxidative stress. Thus, the increased aortic reduced-nicotinamide-adenine dinucleotide phosphate [NAD(P)H] oxidase activity could be associated with reactive oxygen species production and promote aortic inflammation. Also, oxidative stress mediated by NAD(P)H oxidase has been associated with risk factors for inflammation and atherosclerosis. The splanchnic and systemic pathology that is produced in the long term after triple partial portal vein ligation in the rat reinforces the validity of this experimental model to study the chronic low-grade inflammatory response induced by prehepatic portal hypertension. PMID:24307792

  6. Photospheric and coronal magnetic fields in six magnetographs. I. Consistent evolution of the bashful ballerina

    NASA Astrophysics Data System (ADS)

    Virtanen, Ilpo; Mursula, Kalevi

    2016-06-01

    Aims: We study the long-term evolution of photospheric and coronal magnetic fields and the heliospheric current sheet (HCS), especially its north-south asymmetry. Special attention is paid to the reliability of the six data sets used in this study and to the consistency of the results based on these data sets. Methods: We use synoptic maps constructed from Wilcox Solar Observatory (WSO), Mount Wilson Observatory (MWO), Kitt Peak (KP), SOLIS, SOHO/MDI, and SDO/HMI measurements of the photospheric field and the potential field source surface (PFSS) model. Results: The six data sets depict a fairly similar long-term evolution of magnetic fields and the heliospheric current sheet, including polarity reversals and hemispheric asymmetry. However, there are time intervals of several years long, when first KP measurements in the 1970s and 1980s, and later WSO measurements in the 1990s and early 2000s, significantly deviate from the other simultaneous data sets, reflecting likely errors at these times. All of the six magnetographs agree on the southward shift of the heliospheric current sheet (the so-called bashful ballerina phenomenon) in the declining to minimum phase of the solar cycle during a few years of the five included cycles. We show that during solar cycles 20-22, the southward shift of the HCS is mainly due to the axial quadrupole term, reflecting the stronger magnetic field intensity at the southern pole during these times. During cycle 23 the asymmetry is less persistent and mainly due to higher harmonics than the quadrupole term. Currently, in the early declining phase of cycle 24, the HCS is also shifted southward and is mainly due to the axial quadrupole as for most earlier cycles. This further emphasizes the special character of the global solar field during cycle 23.

  7. The Development and Evaluation of a Life Skills Programme for Young Adult Offenders.

    PubMed

    Jordaan, Jacques; Beukes, Roelf; Esterhuyse, Karel

    2017-10-01

    The purpose of this research project was to develop, implement, and evaluate a Life Skills programme for young adult male long-term offenders with the aim of improving their life skills that, in turn, could enable them to adjust more effectively in the correctional environment. Experimental research was used to investigate the effectiveness of the programme. In this study, 96 literate young adult male offenders between the ages of 21 and 25 years, with long sentences, were selected randomly. The participants were assigned randomly into an experimental and a control group. The Solomon four-group design was utilized to control for the effect of pretest sensitization. The measurements of the effectiveness of the programme were conducted before the programme commenced, directly (short term) after, 3 months (medium term) after, and 6 months (long term) after. The findings indicated that the programme had limited success in equipping the offenders with the necessary skills crucial to their survival in a correctional centre. The programme did, however, have significant effects, especially on problem solving and anger management in the short and medium term. These improvements were not long lived.

  8. Unraveling the controls on biogeomorphic succession: the influence of groundwater, soil and geomorphic setting on bio-geomorphic channel evolution

    NASA Astrophysics Data System (ADS)

    Bätz, Nico; Verrecchia, Eric P.; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of biogeomorphic succession. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through biogeomorphic succession, that may determine the long-term geomorphic and biogeomorphic evolution of the river. Research has addressed how changes in disturbance frequency affect river channel pattern, but much less has been done to understand what influences the rate of biogeomorphic succession and how it affects river morphodynamics. This study explores the complex pattern of ambient conditions in braided river systems driving the rate of biogeomorphic succession. In particular, we focus on the interplay between groundwater access, soil formation, disturbance frequency and geomorphic setting, in defining what drives vegetation succession rates and its long-term implications on channel pattern evolution. We studied these feedbacks in a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Results show that, at the beginning of the succession, humification plays a negative role on local ambient conditions necessary for sprouting. Successful vegetation establishment is then related positively to humification, but also to higher disturbance rates. The third biogeomorphic phase, with the highest feedbacks on river morphology, appears to be mainly driven by groundwater access, which in turn defines the rates of humification in this gravelly environment. This in turn defines the decadal morphological response of the channel after a reduction in disturbance frequency over the last 50 years. Overall, these results show how the functioning and the developing ecosystem at local scale affect the ecosystem resilience at a larger scale, and thus affects the long-term geomorphological river response.

  9. Accelerated testing of module-level power electronics for long-term reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flicker, Jack David; Tamizhmani, Govindasamy; Moorthy, Mathan Kumar

    This work has applied a suite of long-term-reliability accelerated tests to a variety of module-level power electronics (MLPE) devices (such as microinverters and optimizers) from five different manufacturers. This dataset is one of the first (only the paper by Parker et al. entitled “Dominant factors affecting reliability of alternating current photovoltaic modules,” in Proc. 42nd IEEE Photovoltaic Spec. Conf., 2015, is reported for reliability testing in the literature), as well as the largest, experimental sets in public literature, both in the sample size (five manufacturers including both dc/dc and dc/ac units and 20 units for each test) and the numbermore » of experiments (six different experimental test conditions) for MLPE devices. The accelerated stress tests (thermal cycling test per IEC 61215 profile, damp heat test per IEC 61215 profile, and static temperature tests at 100 and 125 °C) were performed under powered and unpowered conditions. The first independent long-term experimental data regarding damp heat and grid transient testing, as well as the longest term (>9 month) testing of MLPE units reported in the literature for thermal cycling and high-temperature operating life, are included in these experiments. Additionally, this work is the first to show in situ power measurements, as well as periodic efficiency measurements over a series of experimental tests, demonstrating whether certain tests result in long-term degradation or immediate catastrophic failures. Lastly, the result of this testing highlights the performance of MLPE units under the application of several accelerated environmental stressors.« less

  10. Accelerated testing of module-level power electronics for long-term reliability

    DOE PAGES

    Flicker, Jack David; Tamizhmani, Govindasamy; Moorthy, Mathan Kumar; ...

    2016-11-10

    This work has applied a suite of long-term-reliability accelerated tests to a variety of module-level power electronics (MLPE) devices (such as microinverters and optimizers) from five different manufacturers. This dataset is one of the first (only the paper by Parker et al. entitled “Dominant factors affecting reliability of alternating current photovoltaic modules,” in Proc. 42nd IEEE Photovoltaic Spec. Conf., 2015, is reported for reliability testing in the literature), as well as the largest, experimental sets in public literature, both in the sample size (five manufacturers including both dc/dc and dc/ac units and 20 units for each test) and the numbermore » of experiments (six different experimental test conditions) for MLPE devices. The accelerated stress tests (thermal cycling test per IEC 61215 profile, damp heat test per IEC 61215 profile, and static temperature tests at 100 and 125 °C) were performed under powered and unpowered conditions. The first independent long-term experimental data regarding damp heat and grid transient testing, as well as the longest term (>9 month) testing of MLPE units reported in the literature for thermal cycling and high-temperature operating life, are included in these experiments. Additionally, this work is the first to show in situ power measurements, as well as periodic efficiency measurements over a series of experimental tests, demonstrating whether certain tests result in long-term degradation or immediate catastrophic failures. Lastly, the result of this testing highlights the performance of MLPE units under the application of several accelerated environmental stressors.« less

  11. Multimethod Behavioral Treatment of Long-Term Selective Mutism.

    ERIC Educational Resources Information Center

    Watson, T. Steuart; Kramer, Jack J.

    1992-01-01

    Conducted single-subject, experimental research to examine efficacy of treating severe, long-term selective mutism in nine-year-old male using shaping, multiple reinforcers, natural consequences, stimulus fading, and mild aversives. Implemented different treatment regimens in home and school environments. Home intervention resulted in increase in…

  12. Effects of harvesting forest biomass on water and climate regulation services: A synthesis of long-term ecosystem experiments in eastern North America

    USGS Publications Warehouse

    Caputo, Jesse; Beier, Colin D; Groffman, Peter M; Burns, Douglas A.; Beall, Frederick D; Hazlett, Paul W.; Yorks, Thad E

    2016-01-01

    Demand for woody biomass fuels is increasing amidst concerns about global energy security and climate change, but there may be negative implications of increased harvesting for forest ecosystem functions and their benefits to society (ecosystem services). Using new methods for assessing ecosystem services based on long-term experimental research, post-harvest changes in ten potential benefits were assessed for ten first-order northern hardwood forest watersheds at three long-term experimental research sites in northeastern North America. As expected, we observed near-term tradeoffs between biomass provision and greenhouse gas regulation, as well as tradeoffs between intensive harvest and the capacity of the forest to remediate nutrient pollution. In both cases, service provision began to recover along with the regeneration of forest vegetation; in the case of pollution remediation, the service recovered to pre-harvest levels within 10 years. By contrast to these two services, biomass harvesting had relatively nominal and transient impacts on other ecosystem services. Our results are sensitive to empirical definitions of societal demand, including methods for scaling societal demand to ecosystem units, which are often poorly resolved. Reducing uncertainty around these parameters can improve confidence in our results and increase their relevance for decision-making. Our synthesis of long-term experimental studies provides insights on the social-ecological resilience of managed forest ecosystems to multiple drivers of change.

  13. Long-term geochemical evolution of the near field repository: Insights from reactive transport modelling and experimental evidences

    NASA Astrophysics Data System (ADS)

    Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M.; Villar, María V.; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro

    2008-12-01

    The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution-precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.

  14. Long-term geochemical evolution of the near field repository: insights from reactive transport modelling and experimental evidences.

    PubMed

    Arcos, David; Grandia, Fidel; Domènech, Cristina; Fernández, Ana M; Villar, María V; Muurinen, Arto; Carlsson, Torbjörn; Sellin, Patrik; Hernán, Pedro

    2008-12-12

    The KBS-3 underground nuclear waste repository concept designed by the Swedish Nuclear Fuel and Waste Management Co. (SKB) includes a bentonite buffer barrier surrounding the copper canisters and the iron insert where spent nuclear fuel will be placed. Bentonite is also part of the backfill material used to seal the access and deposition tunnels of the repository. The bentonite barrier has three main safety functions: to ensure the physical stability of the canister, to retard the intrusion of groundwater to the canisters, and in case of canister failure, to retard the migration of radionuclides to the geosphere. Laboratory experiments (< 10 years long) have provided evidence of the control exerted by accessory minerals and clay surfaces on the pore water chemistry. The evolution of the pore water chemistry will be a primordial factor on the long-term stability of the bentonite barrier, which is a key issue in the safety assessments of the KBS-3 concept. In this work we aim to study the long-term geochemical evolution of bentonite and its pore water in the evolving geochemical environment due to climate change. In order to do this, reactive transport simulations are used to predict the interaction between groundwater and bentonite which is simulated following two different pathways: (1) groundwater flow through the backfill in the deposition tunnels, eventually reaching the top of the deposition hole, and (2) direct connection between groundwater and bentonite rings through fractures in the granite crosscutting the deposition hole. The influence of changes in climate has been tested using three different waters interacting with the bentonite: present-day groundwater, water derived from ice melting, and deep-seated brine. Two commercial bentonites have been considered as buffer material, MX-80 and Deponit CA-N, and one natural clay (Friedland type) for the backfill. They show differences in the composition of the exchangeable cations and in the accessory mineral content. Results from the simulations indicate that pore water chemistry is controlled by the equilibrium with the accessory minerals, especially carbonates. pH is buffered by precipitation/dissolution of calcite and dolomite, when present. The equilibrium of these minerals is deeply influenced by gypsum dissolution and cation exchange reactions in the smectite interlayer. If carbonate minerals are initially absent in bentonite, pH is then controlled by surface acidity reactions in the hydroxyl groups at the edge sites of the clay fraction, although its buffering capacity is not as strong as the equilibrium with carbonate minerals. The redox capacity of the bentonite pore water system is mainly controlled by Fe(II)-bearing minerals (pyrite and siderite). Changes in the groundwater composition lead to variations in the cation exchange occupancy, and dissolution-precipitation of carbonate minerals and gypsum. The most significant changes in the evolution of the system are predicted when ice-melting water, which is highly diluted and alkaline, enters into the system. In this case, the dissolution of carbonate minerals is enhanced, increasing pH in the bentonite pore water. Moreover, a rapid change in the population of exchange sites in the smectite is expected due to the replacement of Na for Ca.

  15. Evolution from Packet Utilisation to Mission Operation Services

    NASA Astrophysics Data System (ADS)

    Cooper, Sam; Forwell, Stuart D.

    2012-08-01

    The ECSS Packet Utilisation Standard (PUS) and the forthcoming CCSDS Mission Operations (MO) Services occupy a very similar domain. This paper discusses the history of the two standards, their relationship and how the two can co-exist in the near term and long terms. It also covers implications with implementing MO services in current and future on-board architectures.

  16. Convergent Metabolic Specialization through Distinct Evolutionary Paths in Pseudomonas aeruginosa.

    PubMed

    La Rosa, Ruggero; Johansen, Helle Krogh; Molin, Søren

    2018-04-10

    Evolution by natural selection under complex and dynamic environmental conditions occurs through intricate and often counterintuitive trajectories affecting many genes and metabolic solutions. To study short- and long-term evolution of bacteria in vivo , we used the natural model system of cystic fibrosis (CF) infection. In this work, we investigated how and through which trajectories evolution of Pseudomonas aeruginosa occurs when migrating from the environment to the airways of CF patients, and specifically, we determined reduction of growth rate and metabolic specialization as signatures of adaptive evolution. We show that central metabolic pathways of three distinct Pseudomonas aeruginosa lineages coevolving within the same environment become restructured at the cost of versatility during long-term colonization. Cell physiology changes from naive to adapted phenotypes resulted in (i) alteration of growth potential that particularly converged to a slow-growth phenotype, (ii) alteration of nutritional requirements due to auxotrophy, (iii) tailored preference for carbon source assimilation from CF sputum, (iv) reduced arginine and pyruvate fermentation processes, and (v) increased oxygen requirements. Interestingly, although convergence was evidenced at the phenotypic level of metabolic specialization, comparative genomics disclosed diverse mutational patterns underlying the different evolutionary trajectories. Therefore, distinct combinations of genetic and regulatory changes converge to common metabolic adaptive trajectories leading to within-host metabolic specialization. This study gives new insight into bacterial metabolic evolution during long-term colonization of a new environmental niche. IMPORTANCE Only a few examples of real-time evolutionary investigations in environments outside the laboratory are described in the scientific literature. Remembering that biological evolution, as it has progressed in nature, has not taken place in test tubes, it is not surprising that conclusions from our investigations of bacterial evolution in the CF model system are different from what has been concluded from laboratory experiments. The analysis presented here of the metabolic and regulatory driving forces leading to successful adaptation to a new environment provides an important insight into the role of metabolism and its regulatory mechanisms for successful adaptation of microorganisms in dynamic and complex environments. Understanding the trajectories of adaptation, as well as the mechanisms behind slow growth and rewiring of regulatory and metabolic networks, is a key element to understand the adaptive robustness and evolvability of bacteria in the process of increasing their in vivo fitness when conquering new territories. Copyright © 2018 La Rosa et al.

  17. Numerical simulation of gender differences in a long-term microgravity exposure

    NASA Astrophysics Data System (ADS)

    Perez-Poch, Antoni

    The objective of this work is to analyse and simulate gender differences when individuals are exposed to long-term microgravity. Risk probability of a health impairment which may put in jeopardy a long-term mission is also evaluated. Computer simulations are becoming a promising research line of work, as physiological models become more and more sophisticated and reliable. Technological advances in state-of-the-art hardware technology and software allow nowadays for better and more accurate simulations of complex phenomena, such as the response of the human cardiovascular system to long-term exposure to microgravity. Experimental data for long-term missions are difficult to achieve and reproduce, therefore the predictions of computer simulations are of a major importance in this field. Our approach is based on a previous model developed and implemented in our laboratory (NELME: Numerical Evaluation of Long-term Microgravity Effects). The software simulates the behaviour of the cardiovascular system and different human organs, has a modular architecture, and allows to introduce perturbations such as physical exercise or countermeasures. The implementation is based on a complex electricallike model of this control system, using inexpensive software development frameworks, and has been tested and validated with the available experimental data. Gender differences have been implemented for this specific work, as an adjustment of a number of parameters that are included in the model. Women versus men physiological differences have been therefore taken into account, based upon estimations from the physiology bibliography. A number of simulations have been carried out for long-term exposure to microgravity. Gravity varying from Earth-based to zero, and time exposure are the two main variables involved in the construction of results, including responses to patterns of physical aerobical exercise, and also thermal stress simulating an extra-vehicular activity. Results show that significant differences appear between men and women physiological response after long-term exposure (more than three months) to microgravity. Risk evaluation for every gender, and specific risk thresholds are provided. Initial results are compatible with the existing data, and provide unique information regarding different patterns of microgravity exposure. We conclude that computer-based models such us NELME are a promising line of work to predict health risks in long-term missions. More experimental work is needed to adjust some parameters of the model. This work may be seen as another contribution to a better understanding of the underlying processes involved for both women in man adaptation to long-term microgravity.

  18. Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts

    PubMed Central

    Lin, Zhenguo; Wang, Tzi-Yuan; Tsai, Bing-Shi; Wu, Fang-Ting; Yu, Fu-Jung; Tseng, Yu-Jung; Sung, Huang-Mo; Li, Wen-Hsiung

    2013-01-01

    Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution. PMID:23650209

  19. Possible Long-Term Health Effects of Short-Term Exposure to Chemical Agents. Volume 3. Current Health Status of Test Subjects

    DTIC Science & Technology

    1985-12-31

    AtMfh.D y) S. PAai COUNTFinal FROM B2/11/1 "rS/1 9l/1 85/12/31 104 i. URNOTATION Report prepared under contracts titled " Study of Possible Long-Term...Effects of Chemical Agents Used in Human Testing--Morbidity Studies " (DAMD17-83-C-3185-- (over) _____________________ CODSS. SUBJECT TERMS (ConteW an en e... study that investigated possible € delayed ’and long-term effects of experimental chemicals administered to soldiers at the U.S. SArmy Laboratories

  20. Deficits in long-term recognition memory reveal dissociated subtypes in congenital prosopagnosia.

    PubMed

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-25

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception.

  1. Deficits in Long-Term Recognition Memory Reveal Dissociated Subtypes in Congenital Prosopagnosia

    PubMed Central

    Stollhoff, Rainer; Jost, Jürgen; Elze, Tobias; Kennerknecht, Ingo

    2011-01-01

    The study investigates long-term recognition memory in congenital prosopagnosia (CP), a lifelong impairment in face identification that is present from birth. Previous investigations of processing deficits in CP have mostly relied on short-term recognition tests to estimate the scope and severity of individual deficits. We firstly report on a controlled test of long-term (one year) recognition memory for faces and objects conducted with a large group of participants with CP. Long-term recognition memory is significantly impaired in eight CP participants (CPs). In all but one case, this deficit was selective to faces and didn't extend to intra-class recognition of object stimuli. In a test of famous face recognition, long-term recognition deficits were less pronounced, even after accounting for differences in media consumption between controls and CPs. Secondly, we combined test results on long-term and short-term recognition of faces and objects, and found a large heterogeneity in severity and scope of individual deficits. Analysis of the observed heterogeneity revealed a dissociation of CP into subtypes with a homogeneous phenotypical profile. Thirdly, we found that among CPs self-assessment of real-life difficulties, based on a standardized questionnaire, and experimentally assessed face recognition deficits are strongly correlated. Our results demonstrate that controlled tests of long-term recognition memory are needed to fully assess face recognition deficits in CP. Based on controlled and comprehensive experimental testing, CP can be dissociated into subtypes with a homogeneous phenotypical profile. The CP subtypes identified align with those found in prosopagnosia caused by cortical lesions; they can be interpreted with respect to a hierarchical neural system for face perception. PMID:21283572

  2. Glacier foreland colonisation: distinguishing between short-term and long-term effects of climate change.

    PubMed

    Kaufmann, Rüdiger

    2002-02-01

    By comparing short-term (6 years) observations with long-term (>100 years) community changes reconstructed from the chronosequence along a glacier foreland, I show that the colonisation of recently deglaciated terrain by invertebrates may constitute a process reacting sensitively to temperature fluctuations. Early colonising stages (<30 years old) currently develop faster, and intermediate successional stages (30-50 years old) slower, than would be indicated by the long-term chronosequence pattern. These differences between the chronosequence approach and direct observation can be explained by a simple model relating the rate of community evolution to the temperature record. It would mean that an increase of 0.6°C in summer temperatures approximately doubled the speed of initial colonisation, whereas later successional stages were less sensitive to climate change. The present situation appears to result from unusually warm summers around 1950 and a warm period accelerating glacier retreat since 1980. In contrast to the long-term trend, all except the youngest communities have suffered a loss in diversity in recent years.

  3. The lost research of early northeastern spruce-fir experimental forests: a tale of lost opportunities

    Treesearch

    Kate Berven; Laura Kenefic; Aaron Weiskittel; Mark Twery; Jeremy. Wilson

    2013-01-01

    Long-term research is critical to our understanding of forest dynamics. Observations made over decades or centuries provide valuable insight into the effects of natural and anthropogenic disturbances, and allow scientists and forest managers to determine which management regimes succeed and which ones fail in terms of desired objectives. Unfortunately, many long-term...

  4. Recharge processes and vertical transfer investigated through long-term monitoring of dissolved gases in shallow groundwater

    NASA Astrophysics Data System (ADS)

    de Montety, V.; Aquilina, L.; Labasque, T.; Chatton, E.; Fovet, O.; Ruiz, L.; Fourré, E.; de Dreuzy, J. R.

    2018-05-01

    We investigated temporal variations and vertical evolution of dissolved gaseous tracers (CFC-11, CFC-12, SF6, and noble gases), as well as 3H/3He ratio to determine groundwater recharge processes of a shallow unconfined, hard-rock aquifer in an agricultural catchment. We sampled dissolved gas concentration at 4 locations along the hillslope of a small experimental watershed, over 6 hydrological years, between 2 and 6 times per years, for a total of 20 field campaigns. We collected groundwater samples in the fluctuation zone and the permanently saturated zone using piezometers from 5 to 20 m deep. The purpose of this work is i) to assess the benefits of using gaseous tracers like CFCs and SF6 to study very young groundwater with flows suspected to be heterogeneous and variable in time, ii) to characterize the processes that control dissolved gas concentrations in groundwater during the recharge of the aquifer, and iii) to understand the evolution of recharge flow processes by repeated measurement campaigns, taking advantage of a long monitoring in a site devoted to recharge processes investigation. Gas tracer profiles are compared at different location of the catchment and for different hydrologic conditions. In addition, we compare results from CFCs and 3H/3He analysis to define the flow model that best explains tracer concentrations. Then we discuss the influence of recharge events on tracer concentrations and residence time and propose a temporal evolution of residence times for the unsaturated zone and the permanently saturated zone. These results are used to gain a better understanding of the conceptual model of the catchment and flow processes especially during recharge events.

  5. Constraining the fault slip rate using morphology of normal fault footwalls: insights from analog and numerical models (Invited)

    NASA Astrophysics Data System (ADS)

    Strak, V.; Dominguez, S.; Petit, C.; Meyer, B.; Loget, N.

    2013-12-01

    Relief evolution in active tectonic areas is controlled by the interactions between tectonics and surface processes (erosion, transport and sedimentation). These interactions lead to the formation of geomorphologic markers that remain stable during the equilibrium reached in the long-term between tectonics and erosion. In regions experiencing active extension, drainage basins and faceted spurs (triangular facets) are such long-lived morphologic markers and they can help in quantifying the competing effects between tectonics, erosion and sedimentation. We performed analog and numerical models simulating the morphologic evolution of a mountain range bounded by a normal fault. In each approach we imposed identical initial conditions. We carried out several models by varying the fault slip rate (V) and keeping a constant rainfall rate allowing us to study the effect of V on morphology. Both approaches highlight the main control of V on the topographic evolution of the footwall. The experimental approach shows that V controls erosion rates (incision rate, erosion rate of slopes and regressive erosion rate) and possibly the height of triangular facets. This approach indicates likewise that the parameter K of the stream power law depends on V even for non-equilibrium topography. The numerical approach corroborates the control of V on erosion rates and facet height. It also shows a correlation between the shape of drainage basins and V (slope-area relationship) and it suggests the same for the parameters of the stream power law. Therefore both approaches suggest the possibility of using the height of triangular facets and the slope-area relationship to infer the fault slip rate of normal faults situated in a given climatic context.

  6. Insects as test systems for assessing the potential role of microgravity in biological development and evolution

    NASA Astrophysics Data System (ADS)

    Vernós, I.; Carratalá, M.; González-Jurado, J.; Valverde, J. R.; Calleja, M.; Domingo, A.; Vinós, J.; Cervera, M.; Marco, R.

    Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological development and evolution.

  7. Insects as test systems for assessing the potential role of microgravity in biological development and evolution.

    PubMed

    Vernós, I; Carratalá, M; González-Jurado, J; Valverde, J R; Calleja, M; Domingo, A; Vinós, J; Cervera, M; Marco, R

    1989-01-01

    Gravity and radiation are undoubtedly the two major environmental factors altered in space. Gravity is a weak force, which creates a permanent potential field acting on the mass of biological systems and their cellular components, strongly reduced in space flights. Developmental systems, particularly at very early stages, provide the larger cellular compartments known, where the effects of alterations in the size of the gravity vector on living organisms can be more effectively tested. The insects, one of the more highly evolved classes of animals in which early development occurs in a syncytial embryo, are systems particularly well suited to test these effects and the specific developmental mechanisms affected. Furthermore, they share some basic features such as small size, short life cycles, relatively high radio-resistance, etc. and show a diversity of developmental strategies and tempos advantageous in experiments of this type in space. Drosophila melanogaster, the current biological paradigm to study development, with so much genetic and evolutionary background available, is clearly the reference organism for these studies. The current evidence on the effects of the physical parameters altered in space flights on insect development indicate a surprising correlation between effects seen on the fast developing and relatively small Drosophila embryo and the more slowly developing and large Carausius morosus system. In relation to the issue of the importance of developmental and environmental constraints in biological evolution, still the missing link in current evolutionary thinking, insects and space facilities for long-term experiments could provide useful experimental settings where to critically assess how development and evolution may be interconnected. Finally, it has to be pointed out that since there are experimental data indicating a possible synergism between microgravity and space radiation, possible effects of space radiation should be taken into account in the planning and evaluation of experiments designed to test the potential role of microgravity on biological developmental and evolution.

  8. Interactions between Private Health and Long-term Care Insurance and the Effects of the Crisis: Evidence for Spain.

    PubMed

    Jiménez-Martín, Sergi; Labeaga-Azcona, José M; Vilaplana-Prieto, Cristina

    2016-11-01

    This paper analyzes the reasons for the scarce development of the private long-term care insurance market in Spain, and its relationship with health insurance. We are also interested in the effects the crisis has had both on the evolution of the demand for long-term care insurance and on the existence of regional disparities. We estimate bivariate probit models with endogenous variables using Spanish data from the Survey on Health and Retirement in Europe. Our results confirm that individuals wishing to purchase long-term care insurance are, in a sense, forced to subscribe a health insurance policy. In spite of this restriction in the supply of long-term care insurance contracts, we find its demand has grown in recent years, which we attribute to the budget cuts affecting the implementation of Spain's System of Autonomy and Attention to Dependent People. Regional differences in its implementation, as well as the varying effects the crisis has had across Spanish regions, lead to the existence of a crowding-in effect in the demand for long-term care insurance in those regions where co-payment is based on income and wealth, those that have a lower percentage of public long-term care beneficiaries, or those with a smaller share of cash benefits over total public benefits. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Experimental tests of coherence and entanglement conservation under unitary evolutions

    NASA Astrophysics Data System (ADS)

    Černoch, Antonín; Bartkiewicz, Karol; Lemr, Karel; Soubusta, Jan

    2018-04-01

    We experimentally demonstrate the migration of coherence between composite quantum systems and their subsystems. The quantum systems are implemented using polarization states of photons in two experimental setups. The first setup is based on a linear optical controlled-phase quantum gate and the second scheme utilizes effects of nonlinear optics. Our experiment allows one to verify the relation between correlations of the subsystems and the coherence of the composite system, which was given in terms of a conservation law for maximal accessible coherence by Svozilík et al. [J. Svozilík et al., Phys. Rev. Lett. 115, 220501 (2015), 10.1103/PhysRevLett.115.220501]. We observe that the maximal accessible coherence is conserved for the implemented class of global evolutions of the composite system.

  10. Experimental Induction of Genome Chaos.

    PubMed

    Ye, Christine J; Liu, Guo; Heng, Henry H

    2018-01-01

    Genome chaos, or karyotype chaos, represents a powerful survival strategy for somatic cells under high levels of stress/selection. Since the genome context, not the gene content, encodes the genomic blueprint of the cell, stress-induced rapid and massive reorganization of genome topology functions as a very important mechanism for genome (karyotype) evolution. In recent years, the phenomenon of genome chaos has been confirmed by various sequencing efforts, and many different terms have been coined to describe different subtypes of the chaotic genome including "chromothripsis," "chromoplexy," and "structural mutations." To advance this exciting field, we need an effective experimental system to induce and characterize the karyotype reorganization process. In this chapter, an experimental protocol to induce chaotic genomes is described, following a brief discussion of the mechanism and implication of genome chaos in cancer evolution.

  11. Experimental Traumatic Brain Injury Results in Long-Term Recovery of Functional Responsiveness in Sensory Cortex but Persisting Structural Changes and Sensorimotor, Cognitive, and Emotional Deficits.

    PubMed

    Johnstone, Victoria P A; Wright, David K; Wong, Kendrew; O'Brien, Terence J; Rajan, Ramesh; Shultz, Sandy R

    2015-09-01

    Traumatic brain injury (TBI) is a leading cause of death worldwide. In recent studies, we have shown that experimental TBI caused an immediate (24-h post) suppression of neuronal processing, especially in supragranular cortical layers. We now examine the long-term effects of experimental TBI on the sensory cortex and how these changes may contribute to a range of TBI morbidities. Adult male Sprague-Dawley rats received either a moderate lateral fluid percussion injury (n=14) or a sham surgery (n=12) and 12 weeks of recovery before behavioral assessment, magnetic resonance imaging, and electrophysiological recordings from the barrel cortex. TBI rats demonstrated sensorimotor deficits, cognitive impairments, and anxiety-like behavior, and this was associated with significant atrophy of the barrel cortex and other brain structures. Extracellular recordings from ipsilateral barrel cortex revealed normal neuronal responsiveness and diffusion tensor MRI showed increased fractional anisotropy, axial diffusivity, and tract density within this region. These findings suggest that long-term recovery of neuronal responsiveness is owing to structural reorganization within this region. Therefore, it is likely that long-term structural and functional changes within sensory cortex post-TBI may allow for recovery of neuronal responsiveness, but that this recovery does not remediate all behavioral deficits.

  12. Adaptive Precoded MIMO for LTE Wireless Communication

    NASA Astrophysics Data System (ADS)

    Nabilla, A. F.; Tiong, T. C.

    2015-04-01

    Long-Term Evolution (LTE) and Long Term Evolution-Advanced (ATE-A) have provided a major step forward in mobile communication capability. The objectives to be achieved are high peak data rates in high spectrum bandwidth and high spectral efficiencies. Technically, pre-coding means that multiple data streams are emitted from the transmit antenna with independent and appropriate weightings such that the link throughput is maximized at the receiver output thus increasing or equalizing the received signal to interference and noise (SINR) across the multiple receiver terminals. However, it is not reliable enough to fully utilize the information transfer rate to fit the condition of channel according to the bandwidth size. Thus, adaptive pre-coding is proposed. It applies pre-coding matrix indicator (PMI) channel state making it possible to change the pre-coding codebook accordingly thus improving the data rate higher than fixed pre-coding.

  13. Short- and long-term memory contributions to immediate serial recognition: evidence from serial position effects.

    PubMed

    Purser, Harry; Jarrold, Christopher

    2010-04-01

    A long-standing body of research supports the existence of separable short- and long-term memory systems, relying on phonological and semantic codes, respectively. The aim of the current study was to measure the contribution of long-term knowledge to short-term memory performance by looking for evidence of phonologically and semantically coded storage within a short-term recognition task, among developmental samples. Each experimental trial presented 4-item lists. In Experiment 1 typically developing children aged 5 to 6 years old showed evidence of phonologically coded storage across all 4 serial positions, but evidence of semantically coded storage at Serial Positions 1 and 2. In a further experiment, a group of individuals with Down syndrome was investigated as a test case that might be expected to use semantic coding to support short-term storage, but these participants showed no evidence of semantically coded storage and evidenced phonologically coded storage only at Serial Position 4, suggesting that individuals with Down syndrome have a verbal short-term memory capacity of 1 item. Our results suggest that previous evidence of semantic effects on "short-term memory performance" does not reflect semantic coding in short-term memory itself, and provide an experimental method for researchers wishing to take a relatively pure measure of verbal short-term memory capacity, in cases where rehearsal is unlikely.

  14. Dancing the Two-Step in Ontario’s Long-term Care Sector: More Deterrence-oriented Regulation = Ownership and Management Consolidation

    PubMed Central

    Daly, Tamara

    2016-01-01

    This paper explores shifts in public and private delivery over time through an analysis of Ontario’s approach to LTC funding and regulation in relation to other jurisdictions in Canada and abroad. The case of Ontario’s long-term care (LTC) policy evolution – from the 1940s until early 2013 -- shows how moving from compliance to deterrence oriented regulation can support consolidation of commercial providers’ ownership and increase the likelihood of non-profit and public providers outsourcing their management. PMID:27777495

  15. LTAR linkages with other research networks: Capitalizing on network interconnections

    USDA-ARS?s Scientific Manuscript database

    The USDA ARS Research Unit based at the Jornada Experimental Range outside of Las Cruces, NM, is a member of the USDA’s Long Term Agro-ecosystem Research (LTAR) Network, the National Science Foundation’s Long Term Ecological Research (LTER) Network, the National Ecological Observation Network (NEON)...

  16. Agroecosystem research with big data and a modified scientific method using machine learning concepts

    USDA-ARS?s Scientific Manuscript database

    Long-term studies of agro-ecosystems at the continental scale are providing an extraordinary understanding of regional environmental dynamics. The new Long-Term Agro-ecosystem Research (LTAR) network (established in 2013) has designed an explicit research program with multiple USDA experimental wat...

  17. Investigation of the Behavior of Hardening Masonry Exposed to Variable Stresses

    PubMed Central

    Šlivinskas, Tomas; Jonaitis, Bronius; Marčiukaitis, Jonas Gediminas

    2018-01-01

    This paper analyzes the behavior of masonry under variable loads during execution (construction stage). It specifies the creep coefficient for calcium silicate brick masonry, presenting the research data of masonry deformation under variable and constant long-term loads. The interaction of separate layers of composite material in masonry is introduced and the formulae for determining long-term deformations are offered. The research results of masonry’s compressive strength and deformation properties under variable and constant long-term loads are presented. These are then compared to calculated ones. According to the presented comparison, the calculated long-term deformations coincide quite well with those determined experimentally. PMID:29710802

  18. Investigation of the Behavior of Hardening Masonry Exposed to Variable Stresses.

    PubMed

    Šlivinskas, Tomas; Jonaitis, Bronius; Marčiukaitis, Jonas Gediminas; Zavalis, Robertas

    2018-04-28

    This paper analyzes the behavior of masonry under variable loads during execution (construction stage). It specifies the creep coefficient for calcium silicate brick masonry, presenting the research data of masonry deformation under variable and constant long-term loads. The interaction of separate layers of composite material in masonry is introduced and the formulae for determining long-term deformations are offered. The research results of masonry’s compressive strength and deformation properties under variable and constant long-term loads are presented. These are then compared to calculated ones. According to the presented comparison, the calculated long-term deformations coincide quite well with those determined experimentally.

  19. Changes in the genetic diversity of eastern hemlock as a result of different forest management practices

    Treesearch

    Gary J. Hawley; Donald H. DeHayes; John C. Brissette

    2000-01-01

    Loss of populations and individuals within species to human-induced selective forces can result in loss of specific genes and overall genetic diversity upon which productivity, ecosystem stability, long-term survival, and evolution depend. This is particularly true for long-lived organisms, such as forest trees, because genetic diversity confers adaptability necessary...

  20. LightForce Photon-pressure Collision Avoidance: Efficiency Analysis in the Current Debris Environment and Long-Term Simulation Perspective

    NASA Technical Reports Server (NTRS)

    Yang, Fan Y.; Nelson, Bron; Carlino, Roberto; Perez, Andres D.; Faber, Nicolas; Henze, Chris; Karacahoglu, Arif G.; O'Toole, Conor; Swenson, Jason; Stupl, Jan

    2015-01-01

    This work provides an efficiency analysis of the LightForce space debris collision avoidance scheme in the current debris environment and describes a simulation approach to assess its impact on the long-term evolution of the space debris environment. LightForce aims to provide just-in-time collision avoidance by utilizing photon pressure from ground-based industrial lasers. These ground stations impart minimal accelerations to increase the miss distance for a predicted conjunction between two objects. In the first part of this paper we will present research that investigates the short-term effect of a few systems consisting of 10kW class lasers directed by 1.5 m diameter telescopes using adaptive optics. The results found such a network of ground stations to mitigate more than 85 percent of conjunctions and could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. While these are impressive numbers that indicate LightForce's utility in the short-term, the remaining 15 percent of possible collisions contain (among others) conjunctions between two massive objects that would add large amount of debris if they collide. Still, conjunctions between massive objects and smaller objects can be mitigated. Hence we choose to expand the capabilities of the simulation software to investigate the overall effect of a network of LightForce stations on the long-term debris evolution. In the second part of this paper, we will present the planed simulation approach for that effort.

  1. Carcinogenicity bioassays of vinyl chloride monomer: a model of risk assessment on an experimental basis.

    PubMed Central

    Maltoni, C; Lefemine, G; Ciliberti, A; Cotti, G; Carretti, D

    1981-01-01

    Data are presented regarding the final results of the Bentivoglio (Bologna) project on long-term carcinogenicity bioassays of vinyl chloride (VC). The experimental project studied the effects of the monomer, administered by different routes, concentrations and schedules of treatment, to animals (near 7000) of different species, strains, sex and age. To our knowledge this is the largest experimental carcinogenicity study performed on a single compound by a single institution. The results indicate that VC is a multipotential carcinogen, affecting a variety of organs and tissues. In the experimental conditions studied, the neoplastic effects of the monomer were also detected at low doses. The experimental and biological factors greatly affect the neoplastic response to VC. Long-term carcinogenicity bioassays are, at present, a unique tool for the identification and quantification of environmental and occupational risks. Precise and highly standardized experimental procedures are needed to obtain data for risk assessment. PMID:6800782

  2. The role of short- and long-term cognitive empathy activation in preventing cyberbystander reinforcing cyberbullying behavior.

    PubMed

    Barlińska, Julia; Szuster, Anna; Winiewski, Mikołaj

    2015-04-01

    The long- versus short-term effectiveness of empathy activation on reducing bystander behavior reinforcing cyberbullying was tested. The focus was on limiting the frequency of forwarding a message ridiculing a peer. Experimental research on adolescent students was conducted in conditions simulating online contact. The results confirmed the significance of cognitive empathy activated immediately prior to decision making on limiting involvement in reinforcing cyberbullying behavior. The long-term impact of empathy was markedly limited.

  3. Experimental evidence for the evolution of indirect genetic effects: changes in the interaction effect coefficient, psi (Psi), due to sexual selection.

    PubMed

    Chenoweth, Stephen F; Rundle, Howard D; Blows, Mark W

    2010-06-01

    Indirect genetics effects (IGEs)--when the genotype of one individual affects the phenotypic expression of a trait in another--may alter evolutionary trajectories beyond that predicted by standard quantitative genetic theory as a consequence of genotypic evolution of the social environment. For IGEs to occur, the trait of interest must respond to one or more indicator traits in interacting conspecifics. In quantitative genetic models of IGEs, these responses (reaction norms) are termed interaction effect coefficients and are represented by the parameter psi (Psi). The extent to which Psi exhibits genetic variation within a population, and may therefore itself evolve, is unknown. Using an experimental evolution approach, we provide evidence for a genetic basis to the phenotypic response caused by IGEs on sexual display traits in Drosophila serrata. We show that evolution of the response is affected by sexual but not natural selection when flies adapt to a novel environment. Our results indicate a further mechanism by which IGEs can alter evolutionary trajectories--the evolution of interaction effects themselves.

  4. Short- and long-term consequences of early developmental conditions: a case study on wild and domesticated zebra finches.

    PubMed

    Tschirren, B; Rutstein, A N; Postma, E; Mariette, M; Griffith, S C

    2009-02-01

    Divergent selection pressures among populations can result not only in significant differentiation in morphology, physiology and behaviour, but also in how these traits are related to each other, thereby driving the processes of local adaptation and speciation. In the Australian zebra finch, we investigated whether domesticated stock, bred in captivity over tens of generations, differ in their response to a life-history manipulation, compared to birds taken directly from the wild. In a 'common aviary' experiment, we thereto experimentally manipulated the environmental conditions experienced by nestlings early in life by means of a brood size manipulation, and subsequently assessed its short- and long-term consequences on growth, ornamentation, immune function and reproduction. As expected, we found that early environmental conditions had a marked effect on both short- and long-term morphological and life-history traits in all birds. However, although there were pronounced differences between wild and domesticated birds with respect to the absolute expression of many of these traits, which are indicative of the different selection pressures wild and domesticated birds were exposed to in the recent past, manipulated rearing conditions affected morphology and ornamentation of wild and domesticated finches in a very similar way. This suggests that despite significant differentiation between wild and domesticated birds, selection has not altered the relationships among traits. Thus, life-history strategies and investment trade-offs may be relatively stable and not easily altered by selection. This is a reassuring finding in the light of the widespread use of domesticated birds in studies of life-history evolution and sexual selection, and suggests that adaptive explanations may be legitimate when referring to captive bird studies.

  5. In silico prediction of pharmaceutical degradation pathways: a benchmarking study.

    PubMed

    Kleinman, Mark H; Baertschi, Steven W; Alsante, Karen M; Reid, Darren L; Mowery, Mark D; Shimanovich, Roman; Foti, Chris; Smith, William K; Reynolds, Dan W; Nefliu, Marcela; Ott, Martin A

    2014-11-03

    Zeneth is a new software application capable of predicting degradation products derived from small molecule active pharmaceutical ingredients. This study was aimed at understanding the current status of Zeneth's predictive capabilities and assessing gaps in predictivity. Using data from 27 small molecule drug substances from five pharmaceutical companies, the evolution of Zeneth predictions through knowledge base development since 2009 was evaluated. The experimentally observed degradation products from forced degradation, accelerated, and long-term stability studies were compared to Zeneth predictions. Steady progress in predictive performance was observed as the knowledge bases grew and were refined. Over the course of the development covered within this evaluation, the ability of Zeneth to predict experimentally observed degradants increased from 31% to 54%. In particular, gaps in predictivity were noted in the areas of epimerizations, N-dealkylation of N-alkylheteroaromatic compounds, photochemical decarboxylations, and electrocyclic reactions. The results of this study show that knowledge base development efforts have increased the ability of Zeneth to predict relevant degradation products and aid pharmaceutical research. This study has also provided valuable information to help guide further improvements to Zeneth and its knowledge base.

  6. Characteristics and evolution of the ecosystem of software tools supporting research in molecular biology.

    PubMed

    Pazos, Florencio; Chagoyen, Monica

    2018-01-16

    Daily work in molecular biology presently depends on a large number of computational tools. An in-depth, large-scale study of that 'ecosystem' of Web tools, its characteristics, interconnectivity, patterns of usage/citation, temporal evolution and rate of decay is crucial for understanding the forces that shape it and for informing initiatives aimed at its funding, long-term maintenance and improvement. In particular, the long-term maintenance of these tools is compromised because of their specific development model. Hundreds of published studies become irreproducible de facto, as the software tools used to conduct them become unavailable. In this study, we present a large-scale survey of >5400 publications describing Web servers within the two main bibliographic resources for disseminating new software developments in molecular biology. For all these servers, we studied their citation patterns, the subjects they address, their citation networks and the temporal evolution of these factors. We also analysed how these factors affect the availability of these servers (whether they are alive). Our results show that this ecosystem of tools is highly interconnected and adapts to the 'trendy' subjects in every moment. The servers present characteristic temporal patterns of citation/usage, and there is a worrying rate of server 'death', which is influenced by factors such as the server popularity and the institutions that hosts it. These results can inform initiatives aimed at the long-term maintenance of these resources. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Phylogenetic approach to the evolution of color term systems

    PubMed Central

    Haynie, Hannah J.

    2016-01-01

    The naming of colors has long been a topic of interest in the study of human culture and cognition. Color term research has asked diverse questions about thought and communication, but no previous research has used an evolutionary framework. We show that there is broad support for the most influential theory of color term development (that most strongly represented by Berlin and Kay [Berlin B, Kay P (1969) (Univ of California Press, Berkeley, CA)]); however, we find extensive evidence for the loss (as well as gain) of color terms. We find alternative trajectories of color term evolution beyond those considered in the standard theories. These results not only refine our knowledge of how humans lexicalize the color space and how the systems change over time; they illustrate the promise of phylogenetic methods within the domain of cognitive science, and they show how language change interacts with human perception. PMID:27849594

  8. Numerical simulation of long-duration blast wave evolution in confined facilities

    NASA Astrophysics Data System (ADS)

    Togashi, F.; Baum, J. D.; Mestreau, E.; Löhner, R.; Sunshine, D.

    2010-10-01

    The objective of this research effort was to investigate the quasi-steady flow field produced by explosives in confined facilities. In this effort we modeled tests in which a high explosive (HE) cylindrical charge was hung in the center of a room and detonated. The HEs used for the tests were C-4 and AFX 757. While C-4 is just slightly under-oxidized and is typically modeled as an ideal explosive, AFX 757 includes a significant percentage of aluminum particles, so long-time afterburning and energy release must be considered. The Lawrence Livermore National Laboratory (LLNL)-produced thermo-chemical equilibrium algorithm, “Cheetah”, was used to estimate the remaining burnable detonation products. From these remaining species, the afterburning energy was computed and added to the flow field. Computations of the detonation and afterburn of two HEs in the confined multi-room facility were performed. The results demonstrate excellent agreement with available experimental data in terms of blast wave time of arrival, peak shock amplitude, reverberation, and total impulse (and hence, total energy release, via either the detonation or afterburn processes.

  9. Evolution: drift will tear us apart.

    PubMed

    Maderspacher, Florian

    2012-11-06

    That the widely scattered geographical distribution of some animals could be due to continental drift is a neat idea. Now, cave animals provide evidence for extreme long-term persistence on continents drifting apart. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Cyberinfrastructure for Fusarium (CiF)

    USDA-ARS?s Scientific Manuscript database

    The rapidly increasing number of genome sequences from diverse fungal species and expanding phylogenetic data necessitate highly integrated informatics platforms to adequately support the use of these resources for studying fungal biology and evolution. The long-term goal of Cyberinfrastructure for...

  11. Noninvasive methods for dynamic mapping of microbial populations across the landscape

    NASA Astrophysics Data System (ADS)

    Meredith, L. K.; Sengupta, A.; Troch, P. A.; Volkmann, T. H. M.

    2017-12-01

    Soil microorganisms drive key ecosystem processes, and yet characterizing their distribution and activity in soil has been notoriously difficult. This is due, in part, to the heterogeneous nature of their response to changing environmental and nutrient conditions across time and space. These dynamics are challenging to constrain in both natural and experimental systems because of sampling difficulty and constraints. For example, soil microbial sampling at the Landscape Evolution Observatory (LEO) infrastructure in Biosphere 2 is limited in efforts to minimize soil disruption to the long term experiment that aims to characterize the interacting biological, hydrological, and geochemical processes driving soil evolution. In this and other systems, new methods are needed to monitor soil microbial communities and their genetic potential over time. In this study, we take advantage of the well-defined boundary conditions on hydrological flow at LEO to develop a new method to nondestructively characterize in situ microbial populations. In our approach, we sample microbes from the seepage flow at the base of each of three replicate LEO hillslopes and use hydrological models to `map back' in situ microbial populations. Over the course of a 3-month periodic rainfall experiment we collected samples from the LEO outflow for DNA and extraction and microbial community composition analysis. These data will be used to describe changes in microbial community composition over the course of the experiment. In addition, we will use hydrological flow models to identify the changing source region of discharge water over the course of periodic rainfall pulses, thereby mapping back microbial populations onto their geographic origin in the slope. These predictions of in situ microbial populations will be ground-truthed against those derived from destructive soil sampling at the beginning and end of the rainfall experiment. Our results will show the suitability of this method for long-term, non-destructive monitoring of the microbial communities that contribute to soil evolution in this large-scale model system. Furthermore, this method may be useful for other study systems with limitations to destructive sampling including other model infrastructures and natural landscapes.

  12. Accreting, highly magnetized neutron stars at the Eddington limit: a study of the 2016 outburst of SMC X-3

    NASA Astrophysics Data System (ADS)

    Koliopanos, Filippos; Vasilopoulos, Georgios

    2018-06-01

    Aims: We study the temporal and spectral characteristics of SMC X-3 during its recent (2016) outburst to probe accretion onto highly magnetized neutron stars (NSs) at the Eddington limit. Methods: We obtained XMM-Newton observations of SMC X-3 and combined them with long-term observations by Swift. We performed a detailed analysis of the temporal and spectral behavior of the source, as well as its short- and long-term evolution. We have also constructed a simple toy-model (based on robust theoretical predictions) in order to gain insight into the complex emission pattern of SMC X-3. Results: We confirm the pulse period of the system that has been derived by previous works and note that the pulse has a complex three-peak shape. We find that the pulsed emission is dominated by hard photons, while at energies below 1 keV, the emission does not pulsate. We furthermore find that the shape of the pulse profile and the short- and long-term evolution of the source light-curve can be explained by invoking a combination of a "fan" and a "polar" beam. The results of our temporal study are supported by our spectroscopic analysis, which reveals a two-component emission, comprised of a hard power law and a soft thermal component. We find that the latter produces the bulk of the non-pulsating emission and is most likely the result of reprocessing the primary hard emission by optically thick material that partly obscures the central source. We also detect strong emission lines from highly ionized metals. The strength of the emission lines strongly depends on the phase. Conclusions: Our findings are in agreement with previous works. The energy and temporal evolution as well as the shape of the pulse profile and the long-term spectra evolution of the source are consistent with the expected emission pattern of the accretion column in the super-critical regime, while the large reprocessing region is consistent with the analysis of previously studied X-ray pulsars observed at high accretion rates. This reprocessing region is consistent with recently proposed theoretical and observational works that suggested that highly magnetized NSs occupy a considerable fraction of ultraluminous X-ray sources.

  13. From forest fires to fisheries management: anthropology, conservation biology, and historical ecology.

    PubMed

    Braje, Todd J; Rick, Torben C

    2013-01-01

    Human-environmental relationships have long been of interest to a variety of scientists, including ecologists, biologists, anthropologists, and many others. In anthropology, this interest was especially prevalent among cultural ecologists of the 1970s and earlier, who tended to explain culture as the result of techno-environmental constraints. More recently researchers have used historical ecology, an approach that focuses on the long-term dialectical relationship between humans and their environments, as well as long-term prehuman ecological datasets. An important contribution of anthropology to historical ecology is that anthropological datasets dealing with ethnohistory, traditional ecological knowledge, and human skeletal analysis, as well as archeological datasets on faunal and floral remains, artifacts, geochemistry, and stratigraphic analysis, provide a deep time perspective (across decades, centuries, and millennia) on the evolution of ecosystems and the place of people in those larger systems. Historical ecological data also have an applied component that can provide important information on the relative abundances of flora and fauna, changes in biogeography, alternations in food webs, landscape evolution, and much more. Copyright © 2013 Wiley Periodicals, Inc.

  14. CD4+ T-cell recovery with suppressive ART-induced rapid sequence evolution in hepatitis C virus envelope but not NS3.

    PubMed

    Liu, Lin; Nardo, David; Li, Eric; Wang, Gary P

    2016-03-13

    CD4 T-cell depletion from HIV infection leads to a global decline in anti-hepatitis C virus (HCV) envelope neutralizing antibody (nAb) response, which may play a role in accelerating liver fibrosis. An increase in anti-HCV nAb titers has been reported during antiretroviral therapy (ART) but its impact on HCV remains poorly understood. The objective of this study is to determine the effects of ART on long-term HCV evolution. We examined HCV quasispecies structure and long-term evolution in HIV/HCV coinfected patients with ART-induced CD4 T-cell recovery, and compared with patients with CD4 T-cell depletion from delayed ART. We applied a single-variant sequencing (SVS) method to construct authentic viral quasispecies and compared sequence evolution in HCV envelope, the primary target for humoral immune responses, and NS3, a target for cellular immunity, between the two cohorts. The SVS method corrected biases known to skew the proportions of viral variants, revealing authentic HCV quasispeices structures. We observed higher rates of HCV envelope sequence evolution in patients with ART-induced CD4 T-cell recovery, compared with patients with CD4 T-cell depletion from delayed ART (P = 0.03). Evolutionary rates for NS3 were considerably lower than the rates for envelope (P < 0.01), with no significant difference observed between the two groups. ART-induced CD4 T-cell recovery results in rapid sequence evolution in HCV envelope, but not in NS3. These results suggest that suppressive ART disproportionally enhances HCV-specific humoral responses more than cellular responses, resulting in rapid sequence evolution in HCV envelope but not NS3.

  15. Long-Term Evolution of the Electrical Stimulation Levels for Cochlear Implant Patients

    PubMed Central

    Vargas, Jose Luis; Sainz, Manuel; Roldan, Cristina; de la Torre, Angel

    2012-01-01

    Objectives The stimulation levels programmed in cochlear implant systems are affected by an evolution since the first switch-on of the processor. This study was designed to evaluate the changes in stimulation levels over time and the relationship between post-implantation physiological changes and with the hearing experience provided by the continuous use of the cochlear implant. Methods Sixty-two patients, ranging in age from 4 to 68 years at the moment of implantation participated in this study. All subjects were implanted with the 12 channels COMBI 40+ cochlear implant at San Cecilio University Hospital, Granada, Spain. Hearing loss etiology and progression characteristics varied across subjects. Results The analyzed programming maps show that the stimulation levels suffer a fast evolution during the first weeks after the first switch-on of the processor. Then, the evolution becomes slower and the programming parameters tend to be stable at about 6 months after the first switch-on. The evolution of the stimulation levels implies an increment of the electrical dynamic range, which is increased from 15.4 to 20.7 dB and improves the intensity resolution. A significant increment of the sensitivity to acoustic stimuli is also observed. For some patients, we have also observed transitory changes in the electrode impedances associated to secretory otitis media, which cause important changes in the programming maps. Conclusion We have studied the long-term evolution of the stimulation levels in cochlear implant patients. Our results show the importance of systematic measurements of the electrode impedances before the revision of the programming map. This report also highlights that the evolution of the programming maps is an important factor to be considered in order to determine an adequate calendar fitting of the cochlear implant processor. PMID:23205223

  16. Microstructure and Property Evolution in Advanced Cladding and Duct Materials Under Long-Term and Elevated Temperature Irradiation: Modeling and Experimental Investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wirth, Brian; Morgan, Dane; Kaoumi, Djamel

    2013-12-01

    The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, theirmore » evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.« less

  17. Effect of changes in periodic limb movements under cpap on adherence and long term compliance in obstructive sleep apnea.

    PubMed

    Mwenge, Gimbada B; Rougui, Ihsan; Rodenstein, Daniel

    2017-11-20

    Purpose of the study Periodic leg movements (PLMs) are found in 30% of patients suffering from OSA. Under CPAP, we observed that PLMs can increase, decrease, or remain unchanged. The predictors of these changes are not well established. Objective To determine the predictors of PLMs change under CPAP and its impact on long-term adherence. Materials and method The patients were referred to the sleep laboratory for snoring or sleepiness. A single PSG night has been performed before and after CPAP treatment. Data on medication used, comorbidities and ferritin level were collected. Results A total of 160 patients were recruited with a severe OSA. About 32.5% (52/160) patients had emerging PLM i.e. that appeared after the disappearance of respiratory events. By comparing patients with emerging-PLMs to others, we found that only the blood ferritin level was significantly different between groups. Moreover, after one-year follow-up, a significant difference in adherence and long-term compliance was observed between patients without PLM at both screening and CPAP polysomnographies or emerging PLM at the second study (56%) vs. patients with baseline PLM, whether PLM remained stable or decreased under CPAP treatment (75%) (p-value 0.028). Serum ferritin and presence of diabetes mellitus predicted the evolution of PLM observed. Patients with low ferritin levels demonstrated an increase of PLM after initiation of nasal CPAP treatment. Conclusion The emergence of PLM negatively impacts long-term adherence to nasal CPAP treatment in OSA. Blood ferritin level is a predictor of the evolution of PLM under CPAP therapy.

  18. Impact of Isothermal Aging on Long-Term Reliability of Fine-Pitch Ball Grid Array Packages with Sn-Ag-Cu Solder Interconnects: Surface Finish Effects

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Ma, Hongtao; Liu, Kuo-Chuan; Xue, Jie

    2010-12-01

    The interaction between isothermal aging and the long-term reliability of fine-pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt.%) solder ball interconnects was investigated. In this study, 0.4-mm fine-pitch packages with 300- μm-diameter Sn-Ag-Cu solder balls were used. Two different package substrate surface finishes were selected to compare their effects on the final solder composition, especially the effect of Ni, during thermal cycling. To study the impact on thermal performance and long-term reliability, samples were isothermally aged and thermally cycled from 0°C to 100°C with 10 min dwell time. Based on Weibull plots for each aging condition, package lifetime was reduced by approximately 44% by aging at 150°C. Aging at 100°C showed a smaller impact but similar trend. The microstructure evolution was observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and organic solderability preservative (OSP) surface finishes, focusing on the microstructure evolution near the package-side interface. Different mechanisms after aging at various conditions were observed, and their impacts on the fatigue lifetime of solder joints are discussed.

  19. Quantitative characterization of the Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Ito, T.; Sakoda, Y.; Matsubara, K.; Takao, T.; Akagi, K.; Watanabe, Y.; Shibata, S.; Naganuma, H.

    1994-01-01

    The long-term evolution of the Antarctic ozone hole is studied based on the TOMS data and the JMA data-set of stratospheric temperature in relation with the possible role of polar stratospheric clouds (PSC's). The effective mass of depleted ozone in the ozone hole at its annual mature stage reached a historical maximum of 55 Mt in 1991, 4.3 times larger than in 1981. The ozone depletion rate during 30 days before the mature ozone hole does not show any appreciable long-term trend but the interannual fluctuations do, ranging from 0.169 to 0.689 Mt/day with the average of 0.419 Mt/day for the period of 1979 - 1991. The depleted ozone mass has the highest correlation with the region below 195 K on the 30 mb surface in June, whereas the ozone depletion rate correlates most strongly with that in August. The present result strongly suggests that the long-term evolution of the mature ozone hole is caused both by the interannual change of the latitudinal coverage of the early PSC's, which may control the latitude and date of initiation of ozone decrease, and by that of the spatial coverage of the mature PSC's which may control the ozone depletion rate in the Antarctic spring.

  20. Nonlocal effects in nonisothermal hydrodynamics from the perspective of beyond-equilibrium thermodynamics.

    PubMed

    Hütter, Markus; Brader, Joseph M

    2009-06-07

    We examine the origins of nonlocality in a nonisothermal hydrodynamic formulation of a one-component fluid of particles that exhibit long-range correlations, e.g., due to a spherically symmetric, long-range interaction potential. In order to furnish the continuum modeling with physical understanding of the microscopic interactions and dynamics, we make use of systematic coarse graining from the microscopic to the continuum level. We thus arrive at a thermodynamically admissible and closed set of evolution equations for the densities of momentum, mass, and internal energy. From the consideration of an illustrative special case, the following main conclusions emerge. There are two different source terms in the momentum balance. The first is a body force, which in special circumstances can be related to the functional derivative of a nonlocal Helmholtz free energy density with respect to the mass density. The second source term is proportional to the temperature gradient, multiplied by the nonlocal entropy density. These two source terms combine into a pressure gradient only in the absence of long-range effects. In the irreversible contributions to the time evolution, the nonlocal contributions arise since the self-correlations of the stress tensor and heat flux, respectively, are nonlocal as a result of the microscopic nonlocal correlations. Finally, we point out specific points that warrant further discussions.

  1. The Evolution of Sex Is Favoured During Adaptation to New Environments

    PubMed Central

    Becks, Lutz; Agrawal, Aneil F.

    2012-01-01

    Both theory and experiments have demonstrated that sex can facilitate adaptation, potentially yielding a group-level advantage to sex. However, it is unclear whether this process can help solve the more difficult problem of the maintenance of sex within populations. Using experimental populations of the facultatively sexual rotifer Brachionus calyciflorus, we show that rates of sex evolve to higher levels during adaptation but then decline as fitness plateaus. To assess the fitness consequences of genetic mixing, we directly compare the fitnesses of sexually and asexually derived genotypes that naturally occur in our experimental populations. Sexually derived genotypes are more fit than asexually derived genotypes when adaptive pressures are strong, but this pattern reverses as the pace of adaptation slows, matching the pattern of evolutionary change in the rate of sex. These fitness assays test the net effect of sex but cannot be used to disentangle whether selection on sex arises because highly sexual lineages become associated with different allele combinations or with different allele frequencies than less sexual lineages (i.e., “short-” or “long-term” effects, respectively). We infer which of these mechanisms provides an advantage to sex by performing additional manipulations to obtain fitness distributions of sexual and asexual progeny arrays from unbiased parents (rather than from naturally occurring, and thereby evolutionarily biased, parents). We find evidence that sex breaks down adaptive gene combinations, resulting in lower average fitness of sexual progeny (i.e., a short-term disadvantage to sex). As predicted by theory, the advantage to sex arises because sexually derived progeny are more variable in fitness, allowing for faster adaptation. This “long-term advantage” builds over multiple generations, eventually resulting in higher fitness of sexual types. PMID:22563299

  2. Systematic detection of long-term slow slip events along Hyuga-nada to central Shikoku, Nankai subduction zone, using GNSS data

    NASA Astrophysics Data System (ADS)

    Takagi, R.; Obara, K.; Uchida, N.

    2017-12-01

    Understanding slow earthquake activity improves our knowledge of slip behavior in brittle-ductile transition zone and subduction process including megathrust earthquakes. In order to understand overall picture of slow slip activity, it is important to make a comprehensive catalog of slow slip events (SSEs). Although short-term SSEs have been detected by GNSS and tilt meter records systematically, analysis of long-term slow slip events relies on individual slip inversions. We develop an algorism to systematically detect long-term SSEs and estimate source parameters of the SSEs using GNSS data. The algorism is similar to GRiD-MT (Tsuruoka et al., 2009), which is grid-based automatic determination of moment tensor solution. Instead of moment tensor fitting to long period seismic records, we estimate parameters of a single rectangle fault to fit GNSS displacement time series. First, we make a two dimensional grid covering possible location of SSE. Second, we estimate best-fit parameters (length, width, slip, and rake) of the rectangle fault at each grid point by an iterative damped least square method. Depth, strike, and dip are fixed on the plate boundary. Ramp function with duration of 300 days is used for expressing time evolution of the fault slip. Third, a grid maximizing variance reduction is selected as a candidate of long-term SSE. We also search onset of ramp function based on the grid search. We applied the method to GNSS data in southwest Japan to detect long-term SSEs in Nankai subduction zone. With current selection criteria, we found 13 events with Mw6.2-6.9 in Hyuga-nada, Bungo channel, and central Shikoku from 1998 to 2015, which include unreported events. Key finding is along strike migrations of long-term SSEs from Hyuga-nada to Bungo channel and from Bungo channel to central Shikoku. In particular, three successive events migrating northward in Hyuga-nada preceded the 2003 Bungo channel SSE, and one event in central Shikoku followed the 2003 SSE in Bungo channel. The space-time dimensions of the possible along-strike migration are about 300km in length and 6 years in time. Systematic detection with assumptions of various durations in the time evolution of SSE may improve the picture of SSE activity and possible interaction with neighboring SSEs.

  3. Can forest watershed management mitigate climate change effects on water resources

    Treesearch

    James M. Vose; Chelcy R. Ford; Stephanie Laseter; Salli Dymond; Ge Sun; Mary Beth Adams; Stephen Sebestyen; John Campbell; Charlie Luce; Devendra Amatya; Kelly Elder; Tamara Heartsill Scalley

    2012-01-01

    Long-term hydrology and climate data from United States Forest Service Experimental Forests and Ranges (EFR) provide critical information on the interactions among climate, streamflow, and forest management practices. We examined the relationships among streamflow responses to climate variation and forest management using long-term data. Analysis of climate data from a...

  4. Can forest watershed management mitigate climate change impacts on water resources?

    Treesearch

    James M. Vose; Chelcy R. Ford; Stephanie Laseter; Salli Dymond; GE Sun; Mary Beth Adams; Stephen Sebestyen; John Campbell; Charles Luce; Devendra Amatya; Kelly Elder; Tamara. Heartsill-Scalley

    2012-01-01

    Long-term hydrology and climate data from United States Forest Service Experimental Forests and Ranges (EFR) provide critical information on the interactions among climate, streamflow, and forest management practices. We examined the relationships among streamflow responses to climate variation and forest management using long-term data. Analysis of climate data from a...

  5. Long-term soil changes from forest harvesting and residue management in the northern Rocky Mountains

    Treesearch

    Woongsoon Jang; Deborah S. Page-Dumroese; Christopher R. Keyes

    2016-01-01

    Soil changes associated with forest harvesting, differing utilization levels, and post-harvest prescribed burning were determined using an empirical study to investigate the long-term impacts on soil physical and chemical properties at Coram Experimental Forest in northwestern Montana. In 1974, two replications of three regeneration cuttings (shelterwood,...

  6. Restoring old-growth southern pine ecosystems: strategic lessons from long-term silvicultural research

    Treesearch

    Don C. Bragg; Michael G. Shelton; James M. Guldin

    2008-01-01

    The successful restoration of old-growth-like loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated forests requires the integration of ecological information with long-term silvicultural research from places such as the Crossett Experimental Forest (CEF). Conventional management practices such as timber harvesting or competition control have supplied...

  7. Necessarily Cumbersome, Messy, and Slow: Community Collaborative Work within Art Institutions

    ERIC Educational Resources Information Center

    Filipovic, Yaël

    2013-01-01

    Building relationships and community collaborations--especially on an institutional level--is a slow and long-term process. These types of innovative, experimental, and long-term collaborations with community organizations and groups often lead art institutions to reflect on the value and place of their institutional structures when engaging in…

  8. THE EVOLUTION OF THE ELECTRIC CURRENT DURING THE FORMATION AND ERUPTION OF ACTIVE-REGION FILAMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jincheng; Yan, Xiaoli; Qu, Zhongquan

    We present a comprehensive study of the electric current related to the formation and eruption of active region filaments in NOAA AR 11884. The vertical current on the solar surface was investigated by using vector magnetograms (VMs) observed by HMI on board the Solar Dynamics Observatory. To obtain the electric current along the filament's axis, we reconstructed the magnetic fields above the photosphere by using nonlinear force-free field extrapolation based on photospheric VMs. Spatio-temporal evolutions of the vertical current on the photospheric surface and the horizontal current along the filament's axis were studied during the long-term evolution and eruption-related period,more » respectively. The results show that the vertical currents of the entire active region behaved with a decreasing trend and the magnetic fields also kept decreasing during the long-term evolution. For the eruption-related evolution, the mean transverse field strengths decreased before two eruptions and increased sharply after two eruptions in the vicinity of the polarity inversion lines underneath the filament. The related vertical current showed different behaviors in two of the eruptions. On the other hand, a very interesting feature was found: opposite horizontal currents with respect to the current of the filament's axis appeared and increased under the filament before the eruptions and disappeared after the eruptions. We suggest that these opposite currents were carried by the new flux emerging from the photosphere bottom and might be the trigger mechanism for these filament eruptions.« less

  9. Evolution of Martian polar landscapes - Interplay of long-term variations in perennial ice cover and dust storm intensity

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.; Blasius, K. R.; Roberts, W. J.

    1979-01-01

    The discovery of a new type of Martian polar terrain, called undulating plain, is reported and the evolution of the plains and other areas of the Martian polar region is discussed in terms of the trapping of dust by the perennial ice cover. High-resolution Viking Orbiter 2 observations of the north polar terrain reveal perennially ice-covered surfaces with low relief, wavelike, regularly spaced, parallel ridges and troughs (undulating plains) occupying areas of the polar terrain previously thought to be flat, and associated with troughs of considerable local relief which exhibit at least partial annual melting. It is proposed that the wavelike topography of the undulating plains originates from long-term periodic variations in cyclical dust precipitation at the margin of a growing or receding perennial polar cap in response to changes in insolation. The troughs are proposed to originate from areas of steep slope in the undulating terrain which have lost their perennial ice cover and have become incapable of trapping dust. The polar landscape thus appears to record the migrations, expansions and contractions of the Martian polar cap.

  10. Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction.

    PubMed

    Gao, Daqiang; Xia, Baorui; Wang, Yanyan; Xiao, Wen; Xi, Pinxian; Xue, Desheng; Ding, Jun

    2018-04-01

    Although transition metal dichalcogenide MoSe 2 is recognized as one of the low-cost and efficient electrocatalysts for the hydrogen evolution reaction (HER), its thermodynamically stable basal plane and semiconducting property still hamper the electrocatalytic activity. Here, it is demonstrated that the basal plane and edges of 2H-MoSe 2 toward HER can be activated by introducing dual-native vacancy. The first-principle calculations indicate that both the Se and Mo vacancies together activate the electrocatalytic sites in the basal plane and edges of MoSe 2 with the optimal hydrogen adsorption free energy (ΔG H* ) of 0 eV. Experimentally, 2D MoSe 2 nanosheet arrays with a large amount of dual-native vacancies are fabricated as a catalytic working electrode, which possesses an overpotential of 126 mV at a current density of 100 mV cm -2 , a Tafel slope of 38 mV dec -1 , and an excellent long-term durability. The findings pave a rational pathway to trigger the activity of inert MoSe 2 toward HER and also can be extended to other layered dichalcogenide. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. CO 2 Leakage Into Shallow Aquifers: Modeling CO 2 Gas Evolution and Accumulation at Interfaces of Heterogeneity

    DOE PAGES

    Porter, Mark L.; Plampin, Michael; Pawar, Rajesh; ...

    2014-12-31

    The physicochemical processes associated with CO 2 leakage into shallow aquifer systems are complex and span multiple spatial and time scales. Continuum-scale numerical models that faithfully represent the underlying pore-scale physics are required to predict the long-term behavior and aid in risk analysis regarding regulatory and management decisions. This study focuses on benchmarking the numerical simulator, FEHM, with intermediate-scale column experiments of CO 2 gas evolution in homogeneous and heterogeneous sand configurations. Inverse modeling was conducted to calibrate model parameters and determine model sensitivity to the observed steady-state saturation profiles. It is shown that FEHM is a powerful tool thatmore » is capable of capturing the experimentally observed out ow rates and saturation profiles. Moreover, FEHM captures the transition from single- to multi-phase flow and CO 2 gas accumulation at interfaces separating sands. We also derive a simple expression, based on Darcy's law, for the pressure at which CO 2 free phase gas is observed and show that it reliably predicts the location at which single-phase flow transitions to multi-phase flow.« less

  12. Understanding Geomorphological Processes on the Earth's Surface from Laboratory Experiments and the Role of Communities of Practice in Generating Reusable Data

    NASA Astrophysics Data System (ADS)

    Hsu, L.

    2016-12-01

    Geomorphological processes move masses of sediment across the face of the Earth, from mountain tops to hillslopes, rivers, flood plains, and coastlines, on a range of temporal and spatial scales that span many orders of magnitude. These processes, sometimes spanning millennia and sometimes occurring catastrophically, affect human communities that live on and near these surface landforms. Experiments conveniently scale these processes to time and space that can be observed and measured in the laboratory. As a result, the research community has produced remarkable experimental datasets for processes such as particle transport, hillslope erosion, channel migration, and coastline evolution. These datasets build a collection that quantifies a wide range of environmental processes and contributes to hazards mitigation and the understanding of long-term effects of climate and tectonics on landscape evolution. However, technology and data acquisition rates are outgrowing capabilities for storing, maintaining, and serving the data. Solutions that improve preservation, reuse, and attribution of geomorphological data from unique experimental set-ups are germinating at different research centers. These solutions allow the cross-disciplinary data integration that is often necessary to achieving a mechanistic and holistic understanding of the processes that shape the Earth's surface. Communities of practice such as the Sediment Experimentalist Network (SEN) and the U.S. Geological Survey's Community for Data Integration (USGS CDI) play a critical role in effectively facilitating information exchange about tools, methods, and results that accelerate experimental success. Through community interactions and a culture change to generate data more fit for reuse, broad challenges in reproducibility, scaling, and integration may be addressed, leading to more rapid progress in Earth surface process research.

  13. Predictive characterization of aging and degradation of reactor materials in extreme environments. Final report, December 20, 2013 - September 20, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jianmin

    Understanding of reactor material behavior in extreme environments is vital not only to the development of new materials for the next generation nuclear reactors, but also to the extension of the operating lifetimes of the current fleet of nuclear reactors. To this end, this project conducted a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on material microstructures and their macroscopic behavior. The experimental techniques and computational tools were demonstrated on two distinctive types of reactor materials, namely, Zr alloys and high-Cr martensitic steels. Thesemore » materials are chosen as the test beds because they are the archetypes of high-performance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.). To fill the knowledge gaps, and to meet the technology needs, a suite of innovative in situ transmission electron microscopy (TEM) characterization techniques (heating, heavy ion irradiation, He implantation, quantitative small-scale mechanical testing, and various combinations thereof) were developed and used to elucidate and map the fundamental mechanisms of microstructure evolution in both Zr and Cr alloys for a wide range environmental boundary conditions in the thermal-mechanical-irradiation input space. Knowledge gained from the experimental observations of the active mechanisms and the role of local microstructural defects on the response of the material has been incorporated into a mathematically rigorous and comprehensive three-dimensional mesoscale framework capable of accounting for the compositional variation, microstructural evolution and localized deformation (radiation damage) to predict aging and degradation of key reactor materials operating in extreme environments. Predictions from this mesoscale framework were compared with the in situ TEM observations to validate the model.« less

  14. Human migration to space: Alternative technological approaches for long-term adaptation to extraterrestrial environments and the implications for human evolution

    NASA Astrophysics Data System (ADS)

    Lockard, Elizabeth Song

    As humans embark upon the next phase of Space exploration---establishing human outposts in low-Earth orbit, on the Moon, and on Mars---the scope of human factors must expand beyond the meager requirements for short-term missions to Space to include issues of comfort and well-being necessary for long-term durations. However, to habitate---to dwell in a place---implies more than creature comforts in order to adapt. Human factors research must also include a phenomenological perspective---an understanding of how we experience the places we live in---in order for a community to be robust and to thrive. The first phase of migration will be an especially tenuous one requiring intensive technological intervention. The modes by which those technologies are implemented will have significant bearing on the process of human adaptation: the nature of the mediation can be either one of domination, subordination, avoidance, or integration. Ultimately, adaptation is best ensured if symbiotic processes of negotiation and cooperation between subject and environment are espoused over acts of conquest or acquiescence. The adaptive mechanisms we choose to develop and employ will have wider implications for long-range human evolution. The transformations we will undergo will be influenced by both the initial decision to migrate to Space (technological), as well as the actual conditions of Space (environmental). Migration to extraterrestrial environments will be unequivocally the most profound catalyst for evolution in the history of humankind---not only for the human species itself but also for the new environments we will eventually inhabit. At the same time, we also find ourselves---via a new generation of bio-, nano-, and digital technologies---in the position to consciously and willfully direct our own evolution. Technology has always been transformative, but in the not-so-distant future, we will soon possess the capacity to radically re-invent ourselves in almost any way conceivable. The discourse on human evolution in Space must be situated in the confluence of these two variables.

  15. Accelerated characterization of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Griffith, W. I.; Morris, D. H.; Brinson, H. F.

    1980-01-01

    A method to predict the long term compliance of unidirectional off-axis laminates from short term laboratory tests is presented. The method uses an orthotropic transformation equation and the time-stress-temperature superposition principle. Short term tests are used to construct master curves for two off-axis unidirectional laminates with fiber angles of 10 and 90 degrees. Analytical predictions of long term compliance for 30 and 60 degrees laminates are made. Comparisons with experimental data are also given.

  16. Avian research on Experimental Forests and Ranges: Emergent themes, opportunities, and challenges

    Treesearch

    Scott H. Stoleson; David I. King; Monica. Tomosy

    2011-01-01

    Since 1908, U.S. Forest Service Experimental Forests and Ranges have been dedicated to long-term inter-disciplinary research on a variety of ecological and management questions. They encompass a wide diversity of life zones and ecoregions, and provide access to research infrastructure, opportunities for controlled manipulations, and integration with other types of long...

  17. Dynamics of a localized spin excitation close to the spin-helix regime

    NASA Astrophysics Data System (ADS)

    Salis, Gian; Walser, Matthias; Altmann, Patrick; Reichl, Christian; Wegscheider, Werner

    2014-03-01

    The time evolution of a local spin excitation in a (001)-confined two-dimensional electron gas subjected to Rashba and Dresselhaus spin-orbit interactions of similar strength is investigated theoretically and compared with experimental data. Specifically, the consequences of a finite spatial extension of the initial spin polarization are studied for non-balanced Rashba and Dresselhaus terms and for finite cubic Dresselhaus spin-orbit interaction. We show that the initial out-of-plane spin polarization evolves into a helical spin pattern with a wave number that gradually approaches the value q0 of the persistent spin helix mode. In addition to an exponential decay of the spin polarization that is proportional to both the spin-orbit imbalance and the cubic Dresselhaus term, the finite width w of the spin excitation reduces the spin polarization by a factor that approaches exp(-q02w2 / 2) at longer times. This result bridges the gap between the formation of a long-lived helical spin mode and a spatially homogeneous spin decay described by the Dyakonov-Perel mechanism. This work is financially supported by NCCR QSIT.

  18. Form and function relationships revealed by long-term research in a semiarid mountain catchment

    NASA Astrophysics Data System (ADS)

    McNamara, J. P.; Benner, S. G.; Chandler, D. G.; Flores, A. N.; Marshall, H. P.; Seyfried, M. S.; Poulos, M. J.; Pierce, J. L.

    2017-12-01

    Fifteen years of cumulative research in the Dry Creek Experimental Watershed in southwest Idaho, USA has revealed relationships between catchment form and function and contributed to improved fundamental understanding of Critical Zone structure, function, and evolution that would not have been possible through independent short term projects alone. The impacts of aspect and elevation on incident energy and water, coupled with climate seasonality, has produced tightly connected landforms properties and hydrologic processes. North-facing hillslopes have steeper slopes, thicker soil mantles, and finer soil texture than their south-facing counterparts. Finer soils enable higher water holding capacities on north facing slopes, which when coupled with thicker soils produces higher soil water storage capacity. The storage of water first as snow, then as soil moisture determines how upland ecosystems survive the seasonal and persistent water stress that happens each year, and sustains streamflow throughout the year. The cumulative body of local knowledge has improved general understanding of catchment science, serves as a resource for developing, evaluating, and improving conceptual and numerical of process-based models, and for data-driven hydrologic education.

  19. Investigation on temporal evolution of the grain refinement in copper under high strain rate loading via in-situ synchrotron measurement and predictive modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao

    Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less

  20. Investigation on temporal evolution of the grain refinement in copper under high strain rate loading via in-situ synchrotron measurement and predictive modeling

    DOE PAGES

    Shah, Pooja Nitin; Shin, Yung C.; Sun, Tao

    2017-10-03

    Synchrotron X-rays are integrated with a modified Kolsky tension bar to conduct in situ tracking of the grain refinement mechanism operating during the dynamic deformation of metals. Copper with an initial average grain size of 36 μm is refined to 6.3 μm when loaded at a constant high strain rate of 1200 s -1. The synchrotron measurements revealed the temporal evolution of the grain refinement mechanism in terms of the initiation and rate of refinement throughout the loading test. A multiscale coupled probabilistic cellular automata based recrystallization model has been developed to predict the microstructural evolution occurring during dynamic deformationmore » processes. The model accurately predicts the initiation of the grain refinement mechanism with a predicted final average grain size of 2.4 μm. As a result, the model also accurately predicts the temporal evolution in terms of the initiation and extent of refinement when compared with the experimental results.« less

  1. Stirling engine - Approach for long-term durability assessment

    NASA Technical Reports Server (NTRS)

    Tong, Michael T.; Bartolotta, Paul A.; Halford, Gary R.; Freed, Alan D.

    1992-01-01

    The approach employed by NASA Lewis for the long-term durability assessment of the Stirling engine hot-section components is summarized. The approach consists of: preliminary structural assessment; development of a viscoplastic constitutive model to accurately determine material behavior under high-temperature thermomechanical loads; an experimental program to characterize material constants for the viscoplastic constitutive model; finite-element thermal analysis and structural analysis using a viscoplastic constitutive model to obtain stress/strain/temperature at the critical location of the hot-section components for life assessment; and development of a life prediction model applicable for long-term durability assessment at high temperatures. The approach should aid in the provision of long-term structural durability and reliability of Stirling engines.

  2. Long-term Ecosystem Experiments, Data Assimilation, and Meta-Analysis

    NASA Astrophysics Data System (ADS)

    Hungate, B. A.; Van Groenigen, K. J.; Osenberg, C. W.; van Gestel, N.

    2015-12-01

    Land ecosystems affect climate and the atmosphere, and climate and atmospheric change affects ecosystems. Syntheses of ecosystem experiments investigating their responses to environmental change holds promise for understanding how to model these interactions, and thereby gain insight into Earth's future biosphere, atmosphere, and climate. Long-term experiments examining ecosystem responses are thought to be especially important in this effort, for their potential to reveal cumulative and progressive effects, subtle effects initially undetectable experimentally, but manifest more clearly over time, often with stronger implications for modeled responses than the more dramatic, short-term experimental responses. Here, we present new analyses of long-term experiments manipulating temperature, CO2 concentration, and precipitation, testing the general hypothesis that there are common temporal patterns of responses that reveal general biogeochemical characterizing ecosystem responses to these environmental changes. For example, we show that increased carbon input with elevated CO2 stimulates emissions of nitrous oxide and methane, important greenhouse gases, and that effects show no signs of diminishing over the duration of experiments that have documented responses. At the same time, we show that the temporal resolution for this response is limited, pointing to a potential limitation in the ability of experiments to address clearly long-term hypotheses. We also show that warming tends to have limited cumulative effects on total soil carbon stocks in long-term experiments, and explore the mechanisms underlying this response. Finally, we discuss the implications of these findings for models used to simulate long-term ecosystem responses to these environmental forcings, as well as the implications of these findings for the next generation of terrestrial ecosystem experiments.

  3. Inlet Geomorphology Evolution Work Unit

    DTIC Science & Technology

    2015-10-30

    Research Facility in Duck , North Carolina in coming years. In collaboration with the CMS work unit, an analysis of long-term inlet morphology...the expected behavior and benefits of nearshore placement. Nearshore placement studies have been documented in two journal papers, one technical

  4. Deteriorating water clarity in shallow waters: Evidence from long term MODIS and in-situ observations

    NASA Astrophysics Data System (ADS)

    Shi, Kun; Zhang, Yunlin; Zhu, Guangwei; Qin, Boqiang; Pan, Delu

    2018-06-01

    Water clarity (Secchi disk depth: SDD), as a proxy of water transparency, provides important information on the light availability to the water or lake ecosystem. Shallow lakes have been experienced dramatic environmental and climatic change. This study demonstrated using combination of long-term MODIS and in-situ measurements to track the dynamics of SDD with these environmental and climate changes in shallow water environments. We selected a typical turbid shallow Lake Taihu as our case study. Based on MODIS-Aqua data, an empirical model for estimating SDD was developed and validated. Subsequently, we employed the proposed model to derive the spatial and temporal SDD distribution patterns of Lake Taihu from 2003 to 2015. Combining MODIS-derived SDD time series of 2003-2015 and long-term in-situ SDD observations dated back to 1993, we elucidated SDD long-term variation trends and driving mechanism. Deteriorating water clarity from the long-term SDD observations indicated that Lake Taihu became more and more turbid and water quality was decreasing. Increasing in cyanobacterial bloom area, as a result of decreasing in wind speed and eutrophication, may partially be responsible for the decreasing trend. A predicted future decrease in the wind speed in Lake Taihu region could enhance the formation of cyanobacterial blooms and consequently lead to a further decrease in water clarity. This study suggested that coupling remote sensing monitoring and long-term in-situ observations could provide robust evidence and new insights to elucidate long-term dynamics in aquatic ecosystem evolution.

  5. [Urine metabonomic study on long-term use of total ginsenosides in rats].

    PubMed

    Xie, Xie; Chen, Shao-Qiu; Lv, Ying-Fang; Wang, Xiao-Yan; Jia, Wei

    2014-12-01

    Due to its effect of systems regulation and promotion on body, Ginseng is always referred to be long-term used as a dietary supplement. But it was still unclear about its target of the tonic effects and also the side-effects long-term use may bring. Urine metabolomic method is suitable for long-term studies of pharmaco-dynamics, pharmacology and toxicology of traditional Chinese medicine because of its characteristics of non-invasive and monitoring the whole-body metabolism. This study was designed to detect the dynamic variation of rat urine metabolome along with a long-term administration of total ginsenosides using GC-TOF based metabolomic technology. Our result showed that either short-term or chronic administration of ginsenosides did not impact the rat urine metabolome significantly (as the PCA subgroup was not successful). By comparison, the short-term (1-3 w) dose of ginsenosides had the biggest metabolic influence including TCA cycle, catecholamines and neurotransmitter amino acids. Medium-term (6-10 w) dose had a gradually lower effect and long-term (27 w) dose almost had no effect. Our study indicates that both short and long-term administration of ginsenosides showed almost no obvious side-effect on the experimental animals.

  6. Reconstructing solar magnetic fields from historical observations. II. Testing the surface flux transport model

    NASA Astrophysics Data System (ADS)

    Virtanen, I. O. I.; Virtanen, I. I.; Pevtsov, A. A.; Yeates, A.; Mursula, K.

    2017-07-01

    Aims: We aim to use the surface flux transport model to simulate the long-term evolution of the photospheric magnetic field from historical observations. In this work we study the accuracy of the model and its sensitivity to uncertainties in its main parameters and the input data. Methods: We tested the model by running simulations with different values of meridional circulation and supergranular diffusion parameters, and studied how the flux distribution inside active regions and the initial magnetic field affected the simulation. We compared the results to assess how sensitive the simulation is to uncertainties in meridional circulation speed, supergranular diffusion, and input data. We also compared the simulated magnetic field with observations. Results: We find that there is generally good agreement between simulations and observations. Although the model is not capable of replicating fine details of the magnetic field, the long-term evolution of the polar field is very similar in simulations and observations. Simulations typically yield a smoother evolution of polar fields than observations, which often include artificial variations due to observational limitations. We also find that the simulated field is fairly insensitive to uncertainties in model parameters or the input data. Due to the decay term included in the model the effects of the uncertainties are somewhat minor or temporary, lasting typically one solar cycle.

  7. Effect of metoprolol administration on renal sodium handling in experimental congestive heart failure.

    PubMed

    DiBona, G F; Sawin, L L

    1999-07-06

    Long-term metoprolol therapy improves cardiac performance and decreases mortality in patients with chronic congestive heart failure (CHF). This study examined the effect of long-term metoprolol therapy on renal sodium handling in an experimental rat model of CHF. Rats with left coronary ligation and myocardial infarction-induced CHF were treated with metoprolol (1.5 mg. kg-1. h-1) or vehicle for 3 weeks by osmotic minipump. They were then evaluated for their ability to excrete a short-term sodium load (5% body weight isotonic saline infusion over 30 minutes) and a long-term sodium load (change from low- to high-sodium diet over 8 days). All CHF rats had left ventricular end-diastolic pressure >10 mm Hg, and heart weight/body weight ratios averaged 0.68+/-0.02% (versus control of approximately 0.40%). Compared with vehicle CHF rats (n=19), metoprolol CHF rats (n=18) had lower basal values of mean arterial pressure (122+/-3 versus 112+/-3 mm Hg) and heart rate (373+/-14 versus 315+/-9 bpm) and decreased heart rate responses to intravenous doses of isoproterenol. During short-term isotonic saline volume loading, metoprolol CHF rats excreted 54+/-4% more of the sodium load than vehicle CHF rats. During long-term dietary sodium loading, metoprolol CHF rats retained 28+/-3% less sodium than vehicle CHF rats. Metoprolol treatment of rats with CHF results in an improved ability to excrete both short- and long-term sodium loads.

  8. SSBUV and NOAA-11 SBUV/2 Solar Variability Measurements

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    1998-01-01

    The Shuttle SBUV (SSBUV) and NOAA-11 SBUV/2 instruments measured solar spectral UV irradiance during the maximum and declining phase of solar cycle 22. The SSB UV data accurately represent the absolute solar UV irradiance between 200-405 nm, and also show the long-term variations during eight flights between October 1989 and January 1996. These data have been used to correct long-term sensitivity changes in the NOAA-11 SBUV/2 data, which provide a near-daily record of solar UV variations over the 170-400 nm region between December 1988 and October 1994. The NOAA-11 data demonstrate the evolution of short-term solar UV activity during solar cycle 22.

  9. Monitoring and modeling of long-term settlements of an experimental landfill in Brazil.

    PubMed

    Simões, Gustavo Ferreira; Catapreta, Cícero Antônio Antunes

    2013-02-01

    Settlement evaluation in sanitary landfills is a complex process, due to the waste heterogeneity, time-varying properties and influencing factors and mechanisms, such as mechanical compression due to load application and creep, and physical-chemical and biological processes caused by the wastes decomposition. Many empirical models for the analysis of long-term settlement in landfills are reported in the literature. This paper presents the results of a settlement monitoring program carried out during 6 years in Belo Horizonte experimental landfill. Different sets of field data were used to calibrate three long-term settlement prediction models (rheological, hyperbolic and composite). The parameters obtained in the calibration were used to predict the settlements and to compare with actual field data. During the monitoring period of 6 years, significant vertical strains were observed (of up to 31%) in relation to the initial height of the experimental landfill. The results for the long-term settlement prediction obtained by the hyperbolic and rheological models significantly underestimate the settlements, regardless the period of data used in the calibration. The best fits were obtained with the composite model, except when 1 year field data were used in the calibration. The results of the composite model indicate settlements stabilization at larger times and with larger final settlements when compared to the hyperbolic and rheological models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours.

    PubMed

    Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas

    2014-02-01

    The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial.

  11. Anthropogenic selection enhances cancer evolution in Tasmanian devil tumours

    PubMed Central

    Ujvari, Beata; Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; Pyecroft, Stephen; Taylor, Robyn; Hamede, Rodrigo; Jones, Menna; Belov, Katherine; Madsen, Thomas

    2014-01-01

    The Tasmanian Devil Facial Tumour Disease (DFTD) provides a unique opportunity to elucidate the long-term effects of natural and anthropogenic selection on cancer evolution. Since first observed in 1996, this transmissible cancer has caused local population declines by >90%. So far, four chromosomal DFTD variants (strains) have been described and karyotypic analyses of 253 tumours showed higher levels of tetraploidy in the oldest strain. We propose that increased ploidy in the oldest strain may have evolved in response to effects of genomic decay observed in asexually reproducing organisms. In this study, we focus on the evolutionary response of DFTD to a disease suppression trial. Tumours collected from devils subjected to the removal programme showed accelerated temporal evolution of tetraploidy compared with tumours from other populations where no increase in tetraploid tumours were observed. As ploidy significantly reduces tumour growth rate, we suggest that the disease suppression trial resulted in selection favouring slower growing tumours mediated by an increased level of tetraploidy. Our study reveals that DFTD has the capacity to rapidly respond to novel selective regimes and that disease eradication may result in novel tumour adaptations, which may further imperil the long-term survival of the world's largest carnivorous marsupial. PMID:24567746

  12. MAGNETIC FLUX TRANSPORT AND THE LONG-TERM EVOLUTION OF SOLAR ACTIVE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ugarte-Urra, Ignacio; Upton, Lisa; Warren, Harry P.

    2015-12-20

    With multiple vantage points around the Sun, Solar Terrestrial Relations Observatory (STEREO) and Solar Dynamics Observatory imaging observations provide a unique opportunity to view the solar surface continuously. We use He ii 304 Å data from these observatories to isolate and track ten active regions and study their long-term evolution. We find that active regions typically follow a standard pattern of emergence over several days followed by a slower decay that is proportional in time to the peak intensity in the region. Since STEREO does not make direct observations of the magnetic field, we employ a flux-luminosity relationship to infermore » the total unsigned magnetic flux evolution. To investigate this magnetic flux decay over several rotations we use a surface flux transport model, the Advective Flux Transport model, that simulates convective flows using a time-varying velocity field and find that the model provides realistic predictions when information about the active region's magnetic field strength and distribution at peak flux is available. Finally, we illustrate how 304 Å images can be used as a proxy for magnetic flux measurements when magnetic field data is not accessible.« less

  13. Short and long term evolution of deep giant submarine dunes in continental shelf environment: the example of the 'Banc du Four' (Western Brittany, France)

    NASA Astrophysics Data System (ADS)

    Franzetti, M.; Le Roy, P.; Garlan, T.; Delacourt, C.; Thibaud, R.; Cancouet, R.; Graindorge, D.; Prunier, C.; Sukhovich, A.; Deschamps, A.

    2013-12-01

    The deep sandwave dynamics is still in debate. Understanding the migration processes and the resulting evolution of their 3D internal architecture are scientifically challenging. To address these questions we realized two swath bathymetry surveys complemented with seismic reflection across the large sandwaves field named 'Banc du Four'. It is located offshore the Western Brittany and is composed of more 500 dunes. Some of the dunes' wavelengths and heights exceed 1000m and 30m respectively placing them among the largest dunes ever described. Equilibrium laws obtained from our morphological analysis are not completely in agreement with those described in previous studies of similar structures in shallow waters. Relatively high migration velocities on deep continental shelves (from 3 to 20m.yr-1) attest of their still present dynamical equilibrium. Internal-external morphological and kinematical analyses show the existence of two different dynamic regimes. Interpretation of the seismic reflection data allowed reconstructing long-term evolution of the sandbank and the establishment of progressive connections between stepped submarine channels and tidal dynamics during the last sea-level rise.

  14. Extended Kalman Filter framework for forecasting shoreline evolution

    USGS Publications Warehouse

    Long, Joseph; Plant, Nathaniel G.

    2012-01-01

    A shoreline change model incorporating both long- and short-term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model-data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non-observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position).

  15. Science synergism study for EOS on evolution of desert surfaces

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.

    1987-01-01

    The effectiveness of EOS data as a basis for the study of desert surfaces' evolution is presently evaluated for both long and short term geomorphic evolution. Attention is given to the usefulness of such sensor systems planned for EOS as MODIS for regional vegetation distribution/variability monitoring, HIRIS for visible-near IR observations, TIMS for lithological identification, HMMR and SSMI for soil characteristics, LASA for atmospheric profiles, SAR for surface roughness, ALT for two-dimensional topography, ACR for the calibration of imaging sensors, and ERBE for climate modeling and regional surface albedo variation determinations.

  16. Chromosomes on the move: The educational and neurological advantages of using body movement to teach cellular division

    NASA Astrophysics Data System (ADS)

    Baumwoll, Alma Aron

    As education and neuroscience begin to merge, creating the new field of brain-based education, teachers are working to integrate scientific research into the classroom. While working to improve my own teaching, I developed a lesson plan to teach mitosis and meiosis through movement. My thesis reviews education theory and neuroscience to support using movement as a teaching tool in high-level, subject-based classrooms. I then outline my lesson plan and present my investigations of its effectiveness as demonstrated through short-term memory, long-term memory, and students' personal responses to the class. Two experiments were completed with biology lab sections at Northeastern University between 2009 and 2012; I taught my lesson to experimental groups while control groups learned through video-based lessons. The short-term study showed significant improvement in both the grades and enjoyment of the experimental groups. The long-term, retroactive study yielded no significant data, possibly due to weaknesses in the experimental design.

  17. A systematic methodology for creep master curve construction using the stepped isostress method (SSM): a numerical assessment

    NASA Astrophysics Data System (ADS)

    Miranda Guedes, Rui

    2018-02-01

    Long-term creep of viscoelastic materials is experimentally inferred through accelerating techniques based on the time-temperature superposition principle (TTSP) or on the time-stress superposition principle (TSSP). According to these principles, a given property measured for short times at a higher temperature or higher stress level remains the same as that obtained for longer times at a lower temperature or lower stress level, except that the curves are shifted parallel to the horizontal axis, matching a master curve. These procedures enable the construction of creep master curves with short-term experimental tests. The Stepped Isostress Method (SSM) is an evolution of the classical TSSP method. Higher reduction of the required number of test specimens to obtain the master curve is achieved by the SSM technique, since only one specimen is necessary. The classical approach, using creep tests, demands at least one specimen per each stress level to produce a set of creep curves upon which TSSP is applied to obtain the master curve. This work proposes an analytical method to process the SSM raw data. The method is validated using numerical simulations to reproduce the SSM tests based on two different viscoelastic models. One model represents the viscoelastic behavior of a graphite/epoxy laminate and the other represents an adhesive based on epoxy resin.

  18. Influence of the dynamic Stark effect on long-term frequency stability of a self-oscillating magnetometer with laser-pumped alkali atoms

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.

    2017-11-01

    This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.

  19. Variability of ribosomal RNA genes in Rauwolfia species: parallelism between tissue culture-induced rearrangements and interspecies polymorphism.

    PubMed

    Andreev, I O; Spiridonova, K V; Solovyan, V T; Kunakh, V A

    2005-01-01

    An analysis of 18S-25S and 5S rRNA genes in intact plants and cultured tissues of some Rauwolfia species was performed to compare these sequences variability occurred as a result of the species evolution in nature and that induced by tissue culture. The restriction fragment length polymorphism of 18S-25S and 5S rDNA was found both in intact plants of various Rauwolfia species and in long-term Rauwolfia serpentina tissue cultures. In addition, changes in the amount of 18S-25S rRNA genes were observed in long-term R. serpentina tissue cultures. The results demonstrate that rDNA variability observed in intact plants as well as in long-term cultures is attributed to differences in the same regions of ribosomal RNA genes.

  20. Static and Dynamic Behaviour Assessment of the Trajan Arch by Means of New Monitoring Technologies

    NASA Astrophysics Data System (ADS)

    Petti, L.; Barone, F.; Mammone, A.; Giordano, G.

    2017-08-01

    An effective assessment of the static and dynamic structural behavior of historical monuments requires the development and validation of suitable adaptive structural models using high-quality experimental data acquired with an effectively continuous and distributed monitoring. Furthermore, the adaptive strategy allows an efficient evaluation of the health status and of the evolution along the time of a historical monument, providing relevant information to plan appropriate actions for its long-term preservation. The Trajan Arch in Benevento chosen as a case of study to develop and apply this new adaptive strategy in cultural heritage conservation. The paper, after a description of the innovative monitoring system, based on state-of-the-art mechanical sensors, presents and discusses the results of two tests, comparing the measurements with the predictions of an adaptive structural FEM model developed for the dynamical simulation of the Trajan Arch.

  1. Immunity in a variable world

    PubMed Central

    Lazzaro, Brian P.; Little, Tom J.

    2008-01-01

    Immune function is likely to be a critical determinant of an organism's fitness, yet most natural animal and plant populations exhibit tremendous genetic variation for immune traits. Accumulating evidence suggests that environmental heterogeneity may retard the long-term efficiency of natural selection and even maintain polymorphism, provided alternative host genotypes are favoured under different environmental conditions. ‘Environment’ in this context refers to abiotic factors such as ambient temperature or availability of nutrient resources, genetic diversity of pathogens or competing physiological demands on the host. These factors are generally controlled in laboratory experiments measuring immune performance, but variation in them is likely to be very important in the evolution of resistance to infection. Here, we review some of the literature emphasizing the complexity of natural selection on immunity. Our aim is to describe how environmental and genetic heterogeneities, often excluded from experimentation as ‘noise’, may determine the evolutionary potential of populations or the potential for interacting species to coevolve. PMID:18926975

  2. Stability of Mixed-Strategy-Based Iterative Logit Quantal Response Dynamics in Game Theory

    PubMed Central

    Zhuang, Qian; Di, Zengru; Wu, Jinshan

    2014-01-01

    Using the Logit quantal response form as the response function in each step, the original definition of static quantal response equilibrium (QRE) is extended into an iterative evolution process. QREs remain as the fixed points of the dynamic process. However, depending on whether such fixed points are the long-term solutions of the dynamic process, they can be classified into stable (SQREs) and unstable (USQREs) equilibriums. This extension resembles the extension from static Nash equilibriums (NEs) to evolutionary stable solutions in the framework of evolutionary game theory. The relation between SQREs and other solution concepts of games, including NEs and QREs, is discussed. Using experimental data from other published papers, we perform a preliminary comparison between SQREs, NEs, QREs and the observed behavioral outcomes of those experiments. For certain games, we determine that SQREs have better predictive power than QREs and NEs. PMID:25157502

  3. Biogeomorphic feedback between plant growth and flooding causes alternative stable states in an experimental floodplain

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Wang, Qiao; Meire, Dieter; Ma, Wandong; Wu, Chuanqing; Meng, Zhen; Van de Koppel, Johan; Troch, Peter; Verhoeven, Ronny; De Mulder, Tom; Temmerman, Stijn

    2016-07-01

    It is important to understand the mechanisms of vegetation establishment on bare substrate in a disturbance-driven ecosystem because of many valuable ecosystem services. This study tested for empirical indications of local alternative stable states controlled by biogeomorphic feedbacks using flume experiments with alfalfa: (1) single flood experiments different in flood intensity and plant growth, (2) long-term evolution experiments with repeated flooding and seeding. We observed: (1) a combination of thresholds in plant growth and flooding magnitude for upgrowing seedlings to survive; (2) bimodality in vegetation biomass after floods indicating the existence of two alternative states, either densely vegetated or bare; (3) facilitation of vegetation establishment by the spatial pattern formation of channels and sand bars. In conclusion, empirical indicators were demonstrated for local alternative stable states in a disturbance-driven ecosystem associated with biogeomorphic feedbacks, which could contribute to the protection and restoration of vegetation in such ecosystems.

  4. Frost-weathering on Mars - Experimental evidence for peroxide formation

    NASA Technical Reports Server (NTRS)

    Huguenin, R. L.; Miller, K. J.; Harwood, W. S.

    1979-01-01

    The weathering of silicates by frost is investigated in relation to the formation of surface peroxides to which Viking biology experiment results have been attributed. Samples of the minerals olivine and pyroxene were exposed to water vapor at -11 to -22 C and resultant gas evolution and pH were monitored. Experiments reveal the formation of an acidic oxidant upon interaction of the mineral and H2O frost at subfreezing temperatures, which chemical indicators have suggested to be chemisorbed hydrogen peroxide. A model for the formation of chemisorbed peroxide based on the chemical reduction of the mineral by surface frost is proposed, and it is predicted that the perioxide would decay at high temperatures to H2O and adsorbed O, consistent with the long-term storage and sterilization behavior of the soil oxidants observed in the Viking Gas Exchange and Labeled Release experiments.

  5. Experimental postseismic recovery of fractured rocks assisted by calcite sealing

    NASA Astrophysics Data System (ADS)

    Aben, F. M.; Doan, M.-L.; Gratier, J.-P.; Renard, F.

    2017-07-01

    Postseismic recovery within fault damage zones involves slow healing of coseismic fractures leading to permeability reduction and strength increase with time. To better understand this process, experiments were performed by long-term fluid percolation with calcite precipitation through predamaged quartz-monzonite samples subjected to upper crustal conditions of stress and temperature. This resulted in a P wave velocity recovery of 50% of its initial drop after 64 days. In contrast, the permeability remained more or less constant for the duration of the experiment. Microstructures, fluid chemistry, and X-ray microtomography demonstrate that incipient calcite sealing and asperity dissolution are responsible for the P wave velocity recovery. The permeability is unaffected because calcite precipitates outside of the main flow channels. The highly nonparallel evolution of strength recovery and permeability suggests that fluid conduits within fault damage zones can remain open fluid conduits after an earthquake for much longer durations than suggested by the seismic monitoring of fault healing.

  6. Critical neural networks with short- and long-term plasticity.

    PubMed

    Michiels van Kessenich, L; Luković, M; de Arcangelis, L; Herrmann, H J

    2018-03-01

    In recent years self organized critical neuronal models have provided insights regarding the origin of the experimentally observed avalanching behavior of neuronal systems. It has been shown that dynamical synapses, as a form of short-term plasticity, can cause critical neuronal dynamics. Whereas long-term plasticity, such as Hebbian or activity dependent plasticity, have a crucial role in shaping the network structure and endowing neural systems with learning abilities. In this work we provide a model which combines both plasticity mechanisms, acting on two different time scales. The measured avalanche statistics are compatible with experimental results for both the avalanche size and duration distribution with biologically observed percentages of inhibitory neurons. The time series of neuronal activity exhibits temporal bursts leading to 1/f decay in the power spectrum. The presence of long-term plasticity gives the system the ability to learn binary rules such as xor, providing the foundation of future research on more complicated tasks such as pattern recognition.

  7. Lowering of blood pressure by chronic suppression of central sympathetic outflow: insight from prolonged baroreflex activation

    PubMed Central

    Iliescu, Radu

    2012-01-01

    Device-based therapy for resistant hypertension by electrical activation of the carotid baroreflex is currently undergoing active clinical investigation, and initial findings from clinical trials have been published. The purpose of this mini-review is to summarize the experimental studies that have provided a conceptual understanding of the mechanisms that account for the long-term lowering of arterial pressure with baroreflex activation. The well established mechanisms mediating the role of the baroreflex in short-term regulation of arterial pressure by rapid changes in peripheral resistance and cardiac function are often extended to long-term pressure control, and the more sluggish actions of the baroreflex on renal excretory function are often not taken into consideration. However, because clinical, experimental, and theoretical evidence indicates that the kidneys play a dominant role in long-term control of arterial pressure, this review focuses on the mechanisms that link baroreflex-mediated reductions in central sympathetic outflow with increases in renal excretory function that lead to sustained reductions in arterial pressure. PMID:22797307

  8. Critical neural networks with short- and long-term plasticity

    NASA Astrophysics Data System (ADS)

    Michiels van Kessenich, L.; Luković, M.; de Arcangelis, L.; Herrmann, H. J.

    2018-03-01

    In recent years self organized critical neuronal models have provided insights regarding the origin of the experimentally observed avalanching behavior of neuronal systems. It has been shown that dynamical synapses, as a form of short-term plasticity, can cause critical neuronal dynamics. Whereas long-term plasticity, such as Hebbian or activity dependent plasticity, have a crucial role in shaping the network structure and endowing neural systems with learning abilities. In this work we provide a model which combines both plasticity mechanisms, acting on two different time scales. The measured avalanche statistics are compatible with experimental results for both the avalanche size and duration distribution with biologically observed percentages of inhibitory neurons. The time series of neuronal activity exhibits temporal bursts leading to 1 /f decay in the power spectrum. The presence of long-term plasticity gives the system the ability to learn binary rules such as xor, providing the foundation of future research on more complicated tasks such as pattern recognition.

  9. Global issues of genetic diversity.

    PubMed

    Vida, G

    1994-01-01

    Genetic diversity within species is highly significant during their adaptation to environmental changes and, consequently, for their long-term survival. The genetic variability of species is also the basis for the evolution of higher levels of biodiversity, the evolution of species, and it might be an indispensible prerequisite for the functioning of our biosphere. Studies which promote understanding of the maintenance and the functional aspects of biodiversity at any level are therefore essential for the future welfare of mankind.

  10. Recombination and phenotype evolution dynamics of Helicobacter pylori in colonized hosts.

    PubMed

    Shafiee, Ahmad; Amini, Massoud; Emamirad, Hassan; Abadi, Amin Talebi Bezmin

    2016-07-01

    The ample genetic diversity and variability of Helicobater pylori, and therefore its phenotypic evolution, relate not only to frequent mutation and selection but also to intra-specific recombination. Webb and Blaser applied a mathematical model to distinguish the role of selection and mutation for Lewis antigen phenotype evolution during long-term gastric colonization in infected animal hosts (mice and gerbils). To investigate the role of recombination in Lewis antigen phenotype evolution, we have developed a prior population dynamic by adding recombination term to the model. We simulate and interpret the new model simulation's results with a comparative analysis of biological aspects. The main conclusions are as follows: (i) the models and consequently the hosts with higher recombination rate require a longer time for stabilization; and (ii) recombination and mutation have opposite effects on the size of H. pylori populations with phenotypes in the range of the most-fit ones (i.e. those that have a selective advantage) due to natural selection, although both can increase phenotypic diversity.

  11. Long-Term Forest Hydrologic Monitoring in Coastal Carolinas

    Treesearch

    Devendra M. Amatya; Ge Sun; Carl C. Trettin; R. Wayne Skaggs

    2003-01-01

    Long-term hydrologic data are essential for understanding the hydrologic processes, as base line data for assessment of impacts and conservation of regional ecosystems, and for developing and testing eco-hydrological models. This study presents 6-year (1996-2001) of rainfall, water table and outflow data from a USDA Forest Service coastal experimental watershed on a...

  12. Guide to effective research-management collaboration at long-term environmental research sites

    Treesearch

    Frederick J. Swanson; Steve Eubanks; Mary Beth Adams; John C. Brissette

    2010-01-01

    The Forest Service system of experimental forests and ranges (EFRs) and other sites of long-term silvicultural, watershed, and ecological research have contributed to science and natural resource management for more than a century. An important aspect of the success of EFR programs is strong collaboration between the research and land manager communities. This guide...

  13. Long-term sedimentation effects of different patterns of timber harvesting

    Treesearch

    R. R. Ziemer; J. Lewis; T. E. Lisle; Rice. R. M.

    1991-01-01

    Abstract - It is impractical to address the long-term effect of forest management strategies on erosion, sedimentation, and the resultant damage to fish habitat experimentally because to do so would require studying large watersheds for a century or more. Monte Carlo simulations were conducted on three hypothetical 10 000 ha, fifth-order forested watersheds. One...

  14. Long-Term Effects of the Realfit Intervention on Self-Esteem and Food Craving

    ERIC Educational Resources Information Center

    Bartelink, Nina H. M.; Mulkens, Sandra; Mujakovic, Suhreta; Jansen, Maria W. J.

    2018-01-01

    Background: RealFit is a 13-week weight-reduction programme for adolescents. This study investigated the programme's long-term effectiveness regarding the psychological outcomes of self-esteem and food craving. Methods: The study had a quasi-experimental design. Body mass index, self-esteem and food craving were assessed at baseline (T[subscript…

  15. Long-term soil moisture patterns in a northern Minnesota forest

    Treesearch

    Salli F. Dymond; Randall K. Kolka; Paul V. Bolstad; Stephen D. Sebestyen

    2014-01-01

    Forest hydrological and biogeochemical processes are highly dependent on soil water. At the Marcell Experimental Forest, seasonal patterns of soil moisture have been monitored at three forested locations since 1966. This unique, long-term data set was used to analyze seasonal trends in soil moisture as well as the influence of time-lagged precipitation and modified...

  16. Description of the Fork Mountain long-term soil productivity study: site characterization

    Treesearch

    Mary Beth Adams; James Burger; Lucian Zelazny; John Baumgras

    2004-01-01

    The effects of air pollution and timber harvesting on soil resources continue to be an important issue in eastern hardwood forests. This publication describes the Fork Mountain Long-term Soil Productivity Study (LTSP), located on the Fernow Experimental Forest, WV, and the pretreatment stand, soil and climatic conditions. Extensive vegetation surveys, biomass...

  17. Mutational Pathway Determines Whether Drug Gradients Accelerate Evolution of Drug-Resistant Cells

    NASA Astrophysics Data System (ADS)

    Greulich, Philip; Waclaw, Bartłomiej; Allen, Rosalind J.

    2012-08-01

    Drug gradients are believed to play an important role in the evolution of bacteria resistant to antibiotics and tumors resistant to anticancer drugs. We use a statistical physics model to study the evolution of a population of malignant cells exposed to drug gradients, where drug resistance emerges via a mutational pathway involving multiple mutations. We show that a nonuniform drug distribution has the potential to accelerate the emergence of resistance when the mutational pathway involves a long sequence of mutants with increasing resistance, but if the pathway is short or crosses a fitness valley, the evolution of resistance may actually be slowed down by drug gradients. These predictions can be verified experimentally, and may help to improve strategies for combating the emergence of resistance.

  18. Accelerated characterization of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Griffith, W. I.; Morris, D. H.; Brinson, H. F.

    1980-01-01

    A method to predict the long-term compliance of unidirectional off-axis laminates from short-term laboratory tests is presented. The method uses an orthotropic transformation equation and the time-stress-temperature superposition principle. Short-term tests are used to construct master curves for two off-axis unidirectional laminates with fiber angles of 10 deg and 90 deg. In addition, analytical predictions of long-term compliance for 30 deg and 60 deg laminates are made. Comparisons with experimental data are also given.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malashin, M. V.; Moshkunkov, S. I.; Khomich, V. Yu.

    The spatiotemporal dynamics of a nanosecond atmospheric-pressure dielectric barrier discharge in 1- to 3-mm-long air gaps was studied experimentally. By using a segmented electrode, data on the time evolution of the discharge in different regions of the discharge gap were obtained. The uniformity of the discharge over the cross section is estimated by analyzing the spatial distribution of its glow.

  20. Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity

    PubMed Central

    Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R.; Baldelli, Pietro; Benfenati, Fabio

    2013-01-01

    Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows. PMID:23970852

  1. Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity.

    PubMed

    Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R; Baldelli, Pietro; Benfenati, Fabio

    2013-01-01

    Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows.

  2. Early Life Exposure to Fructose and Offspring Phenotype: Implications for Long Term Metabolic Homeostasis

    PubMed Central

    Sloboda, Deborah M.; Li, Minglan; Patel, Rachna; Clayton, Zoe E.; Yap, Cassandra; Vickers, Mark H.

    2014-01-01

    The consumption of artificially sweetened processed foods, particularly high in fructose or high fructose corn syrup, has increased significantly in the past few decades. As such, interest into the long term outcomes of consuming high levels of fructose has increased significantly, particularly when the exposure is early in life. Epidemiological and experimental evidence has linked fructose consumption to the metabolic syndrome and associated comorbidities—implicating fructose as a potential factor in the obesity epidemic. Yet, despite the widespread consumption of fructose-containing foods and beverages and the rising incidence of maternal obesity, little attention has been paid to the possible adverse effects of maternal fructose consumption on the developing fetus and long term effects on offspring. In this paper we review studies investigating the effects of fructose intake on metabolic outcomes in both mother and offspring using human and experimental studies. PMID:24864200

  3. Thermal Evolution of the Earth from a Plate Tectonics Point of View

    NASA Astrophysics Data System (ADS)

    Grigne, C.; Combes, M.; Le Yaouanq, S.; Husson, L.; Conrad, C. P.; Tisseau, C.

    2011-12-01

    Earth's thermal history is classically studied using scaling laws that link the surface heat loss to the temperature and viscosity of the convecting mantle. When such a parameterization is used in the global heat budget of the Earth to integrate the mantle temperature backwards in time, a runaway increase of temperature is obtained, leading to the so-called "thermal catastrophe". We propose a new approach that does not rely on convective scaling laws but instead considers the dynamics of plate tectonics, including temperature-dependent surface processes. We use a multi-agent system to simulate time-dependent plate tectonics in a 2D cylindrical geometry with evolutive plate boundaries. Plate velocities are computed using local force balance and explicit parameterizations for plate boundary processes such as trench migration, subduction initiation, continental breakup and plate suturing. The number of plates is not imposed but emerges naturally. At a given time step, heat flux is integrated from the seafloor age distribution and a global heat budget is used to compute the evolution of mantle temperature. This approach has a very low computational cost and allows us to study the effect of a wide range of input parameters on the long-term thermal evolution of the system. For Earth-like parameters, an average cooling rate of 60-70K per billion years is obtained, which is consistent with petrological and rheological constraints. Two time scales arise in the evolution of the heat flux: a linear long-term decrease and high-amplitude short-term fluctuations due to tectonic rearrangements. We show that the viscosity of the mantle is not a key parameter in the thermal evolution of the system and that no thermal catastrophe occurs when considering tectonic processes. The cooling rate of the Earth depends mainly on its ability to replace old insulating seafloor by young thin oceanic lithosphere. Therefore, the main controlling factors are parameters such as the resistance of continental lithosphere to breakup or the critical age for subduction initiation. We infer that simple convective considerations alone cannot account for the complex nature of mantle heat loss and that tectonic processes dictate the thermal evolution of the Earth.

  4. Critical zone evolution and the origins of organised complexity in watersheds

    NASA Astrophysics Data System (ADS)

    Harman, C.; Troch, P. A.; Pelletier, J.; Rasmussen, C.; Chorover, J.

    2012-04-01

    The capacity of the landscape to store and transmit water is the result of a historical trajectory of landscape, soil and vegetation development, much of which is driven by hydrology itself. Progress in geomorphology and pedology has produced models of surface and sub-surface evolution in soil-mantled uplands. These dissected, denuding modeled landscapes are emblematic of the kinds of dissipative self-organized flow structures whose hydrologic organization may also be understood by low-dimensional hydrologic models. They offer an exciting starting-point for examining the mapping between the long-term controls on landscape evolution and the high-frequency hydrologic dynamics. Here we build on recent theoretical developments in geomorphology and pedology to try to understand how the relative rates of erosion, sediment transport and soil development in a landscape determine catchment storage capacity and the relative dominance of runoff process, flow pathways and storage-discharge relationships. We do so by using a combination of landscape evolution models, hydrologic process models and data from a variety of sources, including the University of Arizona Critical Zone Observatory. A challenge to linking the landscape evolution and hydrologic model representations is the vast differences in the timescales implicit in the process representations. Furthermore the vast array of processes involved makes parameterization of such models an enormous challenge. The best data-constrained geomorphic transport and soil development laws only represent hydrologic processes implicitly, through the transport and weathering rate parameters. In this work we propose to avoid this problem by identifying the relationship between the landscape and soil evolution parameters and macroscopic climate and geological controls. These macroscopic controls (such as the aridity index) have two roles: 1) they express the water and energy constraints on the long-term evolution of the landscape system, and 2) they bound the range of plausible short-term hydroclimatic regimes that may drive a particular landscape's hydrologic dynamics. To ensure that the hydrologic dynamics implicit in the evolutionary parameters are compatible with the dynamics observed in the hydrologic modeling, a set of consistency checks based on flow process dominance are developed.

  5. Experimental evidence for adaptive personalities in a wild passerine bird

    PubMed Central

    Nicolaus, Marion; Tinbergen, Joost M.; Bouwman, Karen M.; Michler, Stephanie P. M.; Ubels, Richard; Both, Christiaan; Kempenaers, Bart; Dingemanse, Niels J.

    2012-01-01

    Individuals of the same species differ consistently in risky actions. Such ‘animal personality’ variation is intriguing because behavioural flexibility is often assumed to be the norm. Recent theory predicts that between-individual differences in propensity to take risks should evolve if individuals differ in future fitness expectations: individuals with high long-term fitness expectations (i.e. that have much to lose) should behave consistently more cautious than individuals with lower expectations. Consequently, any manipulation of future fitness expectations should result in within-individual changes in risky behaviour in the direction predicted by this adaptive theory. We tested this prediction and confirmed experimentally that individuals indeed adjust their ‘exploration behaviour’, a proxy for risk-taking behaviour, to their future fitness expectations. We show for wild great tits (Parus major) that individuals with experimentally decreased survival probability become faster explorers (i.e. increase risk-taking behaviour) compared to individuals with increased survival probability. We also show, using quantitative genetics approaches, that non-genetic effects (i.e. permanent environment effects) underpin adaptive personality variation in this species. This study thereby confirms a key prediction of adaptive personality theory based on life-history trade-offs, and implies that selection may indeed favour the evolution of personalities in situations where individuals differ in future fitness expectations. PMID:23097506

  6. Comparing long-term projections of the space debris environment to real world data - Looking back to 1990

    NASA Astrophysics Data System (ADS)

    Radtke, Jonas; Stoll, Enrico

    2016-10-01

    Long-term projections of the space debris environment are commonly used to assess the trends within different scenarios for the assumed future development of spacefaring. General scenarios investigated include business-as-usual cases in which spaceflight is performed as today and mitigation scenarios, assuming the implementation of Space Debris Mitigation Guidelines at different advances or the effectiveness of more drastic measures, such as active debris removal. One problem that always goes along with the projection of a system's behaviour in the future is that affecting parameters, such as the launch rate, are unpredictable. It is common to look backwards and re-model the past in other fields of research. This is a rather difficult task for spaceflight as it is still quite young, and furthermore mostly influenced by drastic politic changes, as the break-down of the Soviet Union in the end of the 1980s. Furthermore, one major driver of the evolution of the number of on-orbit objects turn out to be collisions between objects. As of today, these collisions are, fortunately, very rare and therefore, a real-world-data modelling approach is difficult. Nevertheless, since the end of the cold war more than 20 years of a comparably stable evolution of spaceflight activities have passed. For this study, this period is used in a comparison between the real evolution of the space debris environment and that one projected using the Institute of Space System's in-house tool for long-term assessment LUCA (Long-Term Utility for Collision Analysis). Four different scenarios are investigated in this comparison; all of them have the common starting point of using an initial population for 1st May 1989. The first scenario, which serves as reference, is simply taken from MASTER-2009. All launch and mission related objects from the Two Line Elements (TLE) catalogue and other available sources are included. All events such as explosion and collision events have been re-modelled as close to the reality as possible and included in the corresponding population. They furthermore have been correlated with TLE catalogue objects. As the latest available validated population snapshot for MASTER is May 2009, this epoch is chosen as endpoint for the simulations. The second scenario uses the knowledge of the past 25 years to perform a Monte-Carlo simulation of the evolution of the space debris environment. Necessary input parameters such as explosions per year, launch rates, and the evolution of the solar cycle are taken from their real evolutions. The third scenario goes a step further by only extracting mean numbers and trends from inputs such as launch and explosion rates and applying them. The final and fourth scenario aims to disregarding all knowledge of the time frame under investigation and inputs are determined based on data available in 1989 only. Results are compared to the reference scenario of the space debris environment.

  7. Evaluation of a Consistent LES/PDF Method Using a Series of Experimental Spray Flames

    NASA Astrophysics Data System (ADS)

    Heye, Colin; Raman, Venkat

    2012-11-01

    A consistent method for the evolution of the joint-scalar probability density function (PDF) transport equation is proposed for application to large eddy simulation (LES) of turbulent reacting flows containing evaporating spray droplets. PDF transport equations provide the benefit of including the chemical source term in closed form, however, additional terms describing LES subfilter mixing must be modeled. The recent availability of detailed experimental measurements provide model validation data for a wide range of evaporation rates and combustion regimes, as is well-known to occur in spray flames. In this work, the experimental data will used to investigate the impact of droplet mass loading and evaporation rates on the subfilter scalar PDF shape in comparison with conventional flamelet models. In addition, existing model term closures in the PDF transport equations are evaluated with a focus on their validity in the presence of regime changes.

  8. Breaking the power law: Multiscale simulations of self-ion irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Jin, Miaomiao; Permann, Cody; Short, Michael P.

    2018-06-01

    The initial stage of radiation defect creation has often been shown to follow a power law distribution at short time scales, recently so with tungsten, following many self-organizing patterns found in nature. The evolution of this damage, however, is dominated by interactions between defect clusters, as the coalescence of smaller defects into clusters depends on the balance between transport, absorption, and emission to/from existing clusters. The long-time evolution of radiation-induced defects in tungsten is studied with cluster dynamics parameterized with lower length scale simulations, and is shown to deviate from a power law size distribution. The effects of parameters such as dose rate and total dose, as parameters affecting the strength of the driving force for defect evolution, are also analyzed. Excellent agreement is achieved with regards to an experimentally measured defect size distribution at 30 K. This study provides another satisfactory explanation for experimental observations in addition to that of primary radiation damage, which should be reconciled with additional validation data.

  9. Persistent recovery of normal left ventricular function and dimension in idiopathic dilated cardiomyopathy during long‐term follow‐up: does real healing exist?

    PubMed

    Merlo, Marco; Stolfo, Davide; Anzini, Marco; Negri, Francesco; Pinamonti, Bruno; Barbati, Giulia; Ramani, Federica; Lenarda, Andrea Di; Sinagra, Gianfranco

    2015-01-13

    An important number of patients with idiopathic dilated cardiomyopathy have dramatically improved left ventricular function with optimal treatment; however, little is known about the evolution and long-term outcome of this subgroup, which shows apparent healing. This study assesses whether real healing actually exists in dilated cardiomyopathy. Persistent apparent healing was evaluated among 408 patients with dilated cardiomyopathy receiving tailored medical treatment and followed over the very long-term. Persistent apparent healing was defined as left ventricular ejection fraction ≥50% and indexed left ventricular end-diastolic diameter ≤33 mm/m(2) at both mid-term (19±4 months) and long-term (103±9 months) follow-up. At mid-term, 63 of 408 patients (15%) were apparently healed; 38 (60%; 9%of the whole population) showed persistent apparent healing at long-term evaluation. No predictors of persistent apparent healing were found. Patients with persistent apparent healing showed better heart transplant–free survival at very long-term follow-up (95% versus 71%; P=0.014) compared with nonpersistently normalized patients. Nevertheless, in the very longterm, 37% of this subgroup experienced deterioration of left ventricular systolic function, and 5% died or had heart transplantation. Persistent long-term apparent healing was evident in a remarkable proportion of dilated cardiomyopathy patients receiving optimal medical treatment and was associated with stable normalization of main clinical and laboratory features. This condition can be characterized by a decline of left ventricular function over the very long term, highlighting the relevance of serial nd individualized follow-up in all patients with dilated cardiomyopathy, especially considering the absence of predictors for longterm apparent healing.

  10. Yardang evolution from maturity to demise

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2015-07-01

    Yardangs are enigmatic wind-parallel ridges sculpted by aeolian processes that are found extensively in arid environments on Earth and Mars. No general theory exists to explain the long-term evolution of yardangs, curtailing modeling of landscape evolution and dynamics of suspended sediment release. We present a hypothesis of yardang evolution using relative rates of sediment flux, interyardang corridor downcutting, yardang denudation, substrate erodibility, and substrate clast content. To develop and sustain yardangs, corridor downcutting must exceed yardang vertical denudation and deflation. However, erosion of substrate yields considerable quantities of sediment that shelters corridors, slowing downcutting. We model the evolution of yardangs through various combinations of rates and substrate compositions, demonstrating the life span, suspended sediment release, and resulting landscape evolution. We find that yardangs have a distinct and predictable evolution, with inevitable demise and unexpectedly dynamic and autogenic erosion rates driven by subtle differences in substrate clast composition.

  11. The orbital evolution of NEA 30825 1900 TG1

    NASA Astrophysics Data System (ADS)

    Timoshkova, E. I.

    2008-02-01

    The orbital evolution of the near-Earth asteroid (NEA) 30825 1990 TG1 has been studied by numerical integration of the equations of its motion over the 100 000-year time interval with allowance for perturbations from eight major planets and Pluto, and the variations in its osculating orbit over this time interval were determined. The numerical integrations were performed using two methods: the Bulirsch-Stoer method and the Everhart method. The comparative analysis of the two resulting orbital evolutions of motion is presented for the time interval examined. The evolution of the asteroid motion is qualitatively the same for both variants, but the rate of evolution of the orbital elements is different. Our research confirms the known fact that the application of different integrators to the study of the long-term evolution of the NEA orbit may lead to different evolution tracks.

  12. Theory connecting nonlocal sediment transport, earth surface roughness, and the Sadler effect

    NASA Astrophysics Data System (ADS)

    Schumer, Rina; Taloni, Alessandro; Furbish, David Jon

    2017-03-01

    Earth surface evolution, like many natural phenomena typified by fluctuations on a wide range of scales and deterministic smoothing, results in a statistically rough surface. We present theory demonstrating that scaling exponents of topographic and stratigraphic statistics arise from long-time averaging of noisy surface evolution rather than specific landscape evolution processes. This is demonstrated through use of "elastic" Langevin equations that generically describe disturbance from a flat earth surface using a noise term that is smoothed deterministically via sediment transport. When smoothing due to transport is a local process, the geologic record self organizes such that a specific Sadler effect and topographic power spectral density (PSD) emerge. Variations in PSD slope reflect the presence or absence and character of nonlocality of sediment transport. The range of observed stratigraphic Sadler slopes captures the same smoothing feature combined with the presence of long-range spatial correlation in topographic disturbance.

  13. Long-term evolution of a small ice cap in Greenland: a dynamic perspective from numerical flow modelling

    NASA Astrophysics Data System (ADS)

    Vieli, Andreas; Lane, Timothy; Adamson, Kathryn

    2017-04-01

    Small ice caps at the periphery of the Greenland ice sheet are often close to the limit of existence and are therefore expected to respond more sensitively to climate change than the land-margin of the neighboring ice sheet. However, their past evolution and dynamic behavior is poorly understood and their use as climate indicators therefore remains so far limited. We here aim to provide a long-term dynamic reconstruction of Lyngmarksbraeen, a small (32km2) ice cap on Disko Island in West Greenland, with a particular focus on the little ice age (LIA, since 1200AD). We use a 2-dim. time-dependent numerical flow model (SIA) and a PDD-mass balance model in combination with historical observations, geomorphological mapping and exposure dating to simulate its long-term evolution and dynamic behaviour. We specifically focus on retreat since the LIA, which is well constrained by geomorphological evidence and historical maps and length records of several small outlet glaciers and data from local and regional climate stations (Qeqertarssuaq and Ilulisat). We also explore aspects related to flow dynamics and find that the dynamic state of this ice cap is, at any time, far from being balanced and is highly sensitive to the surface elevation mass balance feedback and results in an asynchronous response of the different outlets and hysteresis-type behaviour. The modelling is able to reproduce the observed LIA-extent and the almost continuous retreat over the last hundred years well. It further indicates that the ice cap was already dynamically inert since the 1960s. Today, the ice cap has lost almost its entire accumulation area and even without any further warming in the future, the ice cap is expected to vanish within a couple of decades.

  14. The effects of growth and collapse on the magmatic system below Mt Taranaki, New Zealand.

    NASA Astrophysics Data System (ADS)

    Procter, Jonathan; Marcroft, Grace; Zellmer, Georg; Zernack, Anke

    2017-04-01

    Mt. Taranaki exhibits one of the best long-term records of volcanic growth and destruction of any volcano worldwide, making it ideal for understanding the long-term effects of changing lithostatic pressure, or loading and unloading, on the magma chamber and magma supply. The ring-plain around Mt. Taranaki houses volcaniclastic deposits that provide a near continuous record of the evolution of the volcano, yet these records have remained relatively unexploited when investigating the interrelated cyclical phases of volcano collapse and growth, the geochemical evolution of the centre, and the consequent time-varying hazard potential. In this study, we systematically sampled pumice-rich tephra and pumice-rich mass flow deposits that were stratigraphically immediately before and after the 24,801 ± 268 years BP Pungarehu Formation debris avalanche ( 7.5 km3). Crystals (clinopyroxene and plagioclase) were characterised in detail. Mg and Fe zoning across selected crystals from samples pre-and post-debris avalanche were found to have completely equilibrated, yet zoning patterns in Al remained intact and showed major differences in their formation, allowing for the calculation of diffusion rates. These have enabled the determination of maximum residence times (depths and pressure regimes) of the magma system. It is intended that this technique will be applied across the stratigraphic record, which contains 14 collapse events. This will provide insights into crustal magma transport and residence times, and the propagation of fissures and the buoyancy of the magma pre- and post-collapse, in order to characterise the evolution of the centre and quantify the long-term relationship between magmatic rise and volcano growth and destruction.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl

    Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{supmore » 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.« less

  16. Experimental Studies on the Efficiency of Musical Emotions for the Reconciliation of Conceptual Dissonances

    DTIC Science & Technology

    2012-08-20

    Final Report for AOARD Grant FA2386-11-1-4103 “Experimental studies on the efficiency of musical emotions for the reconciliation of conceptual...Performance: 01/09/2011 – 10/08/2012 Abstract: Debates on the origin and function of music have a long history. While some scientists argue that... music itself plays no adaptive role in human evolution, others suggest that music clearly has an evolutionary role, and point to music’s universality1

  17. Creating self-formed meandering channels in laboratory flumes (Invited)

    NASA Astrophysics Data System (ADS)

    Braudrick, C. A.

    2009-12-01

    Our ability to construct predictive numerical models for meandering rivers is hampered by the inability to create meandering channels in the laboratory where individual variables can be isolated and controlled. Typically, experimental channels braid, straighten, or cease migration once they develop curvature. By using alfalfa sprouts to provide bank strength and fine sediment to attach point bars to the floodplain, we have successfully created and maintained meandering morphology in a laboratory flume. The 6.1 by 17 m flume has a floodplain slope of approximately 0.005 with a sandy bed and banks that scales as a gravel bed river. The alfalfa sprouts slow bank erosion allowing time for the bars to create new floodplain deposits. The sprouts also increase floodplain roughness, armor new bar deposits, and promote deposition of overbank sediment. The fine sediment, a lightweight plastic that scaled as sand, was crucial for blocking chutes formed between the bar and the floodplain, isolating cut-off channels from the main flow, and creating levees. During this 136-hour long experiment, the channel width stabilized as the channel migrated across the floodplain, and the curvature was recreated following cutoffs. Although the sinuosity (about 1.2) was low relative to meandering channels observed in the field, the spacing of bends was within the upper bounds of field examples. Subsequent experiments with higher bank strength had more limited chute development were able to generate a sinuosity of about 1.4. Scaling analysis indicates that the bank migration rates in the lower sinuosity experiment were approximately 10 times faster than migration rates in the field. A particular challenge in these experiments is maintaining a healthy alfalfa crop. After 15-20 hours of flood flows, the alfalfa begins to die off and new emergent bars need to be seeded. It then takes about 7 days for the alfalfa to grow to the size used in these experiments. The 15-20 hours scale to about one year of flood flows in the field. Therefore experiments that replicate the long-term evolution of meandering rivers would be prohibitively long with alfalfa. Future experiments should therefore focus on developing and testing models that to examine longer-term channel evolution.

  18. Simulation of the initial stage of the Mt. Pinatubo eruption using the coupled meteorology-chemistry WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Stenchikov, Georgiy; Ukhov, Alexander; Ahmadov, Ravan

    2017-04-01

    Big explosive volcanic eruptions emit in the atmosphere, among other species, millions of tons of SO2, water vapor, and solid particles, volcanic ash. SO2 is oxidized to produce sulfate aerosols that are transported globally and cause widespread long-term climate effects. Ash particles deposit within a few months, as they are relatively large, and, it is believed, do not produce long-term climate effects. However, at the initial stage of the evolution of a volcanic cloud SO2, volcanic water, sulfate, and ash coexist and their chemical, microphysical, and radiation interaction might be important to precondition the long-term formation and transport of a volcanic aerosol cloud. To better understand this initial stage of a volcanic impact we simulate the aerosol plume from the largest 20th-century eruption of Mt. Pinatubo in the Philippines in June 1991 using the specifically modified Weather Research and Forecasting model coupled with chemistry (WRF-Chem). Ash, SO2, and sulfate emission, transport, dispersion, chemical transformation and deposition are calculated using the GOCART aerosol and chemistry scheme. Effect of volcanic aerosol interaction with radiation (short and long wave) is assessed using RRTMG radiative transfer model. The simulations are conducted for two months in the equatorial belt (45S, 45N) with the periodic boundary conditions in longitude and imposing aerosols and chemicals from the MERRA2, and meteorology from the ERA-Interim along the belt's borders in latitude. The simulations reveal the vertical separation of the aerosol plume due to aerosol (both ash and sulfate) gravitational settling and a complex dynamic evolution of the multi-layer cloud with sharp gradients of radiative heating within the plume that affects the cloud dispersion and the equilibrium altitude that are crucially important for the further large-scale plume evolution.

  19. Cascade Defect Evolution Processes: Comparison of Atomistic Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Haixuan; Stoller, Roger E; Osetskiy, Yury N

    2013-11-01

    Determining the defect evolution beyond the molecular dynamics (MD) time scale is critical in bridging the gap between atomistic simulations and experiments. The recently developed self-evolving atomistic kinetic Monte Carlo (SEAKMC) method provides new opportunities to simulate long-term defect evolution with MD-like fidelity. In this study, SEAKMC is applied to investigate the cascade defect evolution in bcc iron. First, the evolution of a vacancy rich region is simulated and compared with results obtained using autonomous basin climbing (ABC) +KMC and kinetic activation-relaxation technique (kART) simulations. Previously, it is found the results from kART are orders of magnitude faster than ABC+KMC.more » The results obtained from SEAKMC are similar to kART but the time predicted is about one order of magnitude faster than kART. The fidelity of SEAKMC is confirmed by statistically relevant MD simulations at multiple higher temperatures, which proves that the saddle point sampling is close to complete in SEAKMC. The second is the irradiation-induced formation of C15 Laves phase nano-size defect clusters. In contrast to previous studies, which claim the defects can grow by capturing self-interstitials, we found these highly stable clusters can transform to <111> glissile configuration on a much longer time scale. Finally, cascade-annealing simulations using SEAKMC is compared with traditional object KMC (OKMC) method. SEAKMC predicts substantially fewer surviving defects compared with OKMC. The possible origin of this difference is discussed and a possible way to improve the accuracy of OKMC based on SEAKMC results is outlined. These studies demonstrate the atomistic fidelity of SEAKMC in comparison with other on-the-fly KMC methods and provide new information on long-term defect evolution in iron.« less

  20. Evolution, epigenetics and cooperation.

    PubMed

    Bateson, Patrick

    2014-04-01

    Explanations for biological evolution in terms of changes in gene frequencies refer to outcomes rather than process. Integrating epigenetic studies with older evolutionary theories has drawn attention to the ways in which evolution occurs. Adaptation at the level of the gene is givingway to adaptation at the level of the organism and higher-order assemblages of organisms. These ideas impact on the theories of how cooperation might have evolved. Two of the theories, i.e. that cooperating individuals are genetically related or that they cooperate for self-interested reasons, have been accepted for a long time. The idea that adaptation takes place at the level of groups is much more controversial. However, bringing together studies of development with those of evolution is taking away much of the heat in the debate about the evolution of group behaviour.

  1. Calculating the spatio-temporal variability of bedrock exposure on seasonal hydrograph timescales as a prerequisite to modeling bedrock river evolution

    NASA Astrophysics Data System (ADS)

    Hurst, A. A.; Anderson, R. S.; Tucker, G. E.

    2017-12-01

    Erosion of bedrock river channels exerts significant control on landscape evolution because it communicates climatic and tectonic signals across a landscape by setting the lower erosional boundaries for hillslopes. Hillslope erosion delivers sediment to the channels, which then either store or transport the sediment. At times of high storage, access to the bedrock floor of the channel is limited, inhibiting bedrock erosion. This affects the timescale of channel response to imposed base-level lowering, which in turn affects hillslope erosion. Because occasional exposure of the bedrock bed is a minimum prerequisite for bedrock erosion, we seek to understand the evolution of sediment cover, or scour history, with sufficient resolution to answer when and where the bed is exposed. The scour history at a site is governed by grain size, bed and channel morphology, sediment concentration in the water, and seasonal flow conditions (hydrograph). The transient nature of bedrock exposure during high-flow events implies that short-term sediment cover dynamics are important for predicting long-term bedrock incision rates. Models of channel profile evolution, or of landscape evolution, generally ignore evolution of sediment cover on the hydrograph timescale. To develop insight into the necessary and sufficient conditions for bedrock exposure followed by reburial, we have developed a 1-D model of the evolution of alluvial cover thickness in a long channel profile in response to a seasonal hydrograph. This model tracks erosion, deposition, and the concentration of sediment in the water column separately, and generates histories of scour and fill over the course of the hydrograph. We compare the model's predictions with net-scour measurements in tributaries of the Grand Canyon and with scour-chain and accelerometer measurements in the Cedar River, Washington. By addressing alluvial scour on short timescales, we acknowledge the processes required to allow bedrock incision and landscape evolution over longer timescales.

  2. Temperature and food mediate long-term thermotactic behavioral plasticity by association-independent mechanisms in C. elegans.

    PubMed

    Chi, Cynthia A; Clark, Damon A; Lee, Stella; Biron, David; Luo, Linjiao; Gabel, Christopher V; Brown, Jeffrey; Sengupta, Piali; Samuel, Aravinthan D T

    2007-11-01

    Thermotactic behavior in the nematode Caenorhabditis elegans exhibits long-term plasticity. On a spatial thermal gradient, C. elegans tracks isotherms near a remembered set-point (T(S)) corresponding to its previous cultivation temperature. When navigating at temperatures above its set-point (T>T(S)), C. elegans crawls down spatial thermal gradients towards the T(S) in what is called cryophilic movement. The T(S) retains plasticity in the adult stage and is reset by approximately 4 h of sustained exposure to a new temperature. Long-term plasticity in C. elegans thermotactic behavior has been proposed to represent an associative learning of specific temperatures conditioned in the presence or absence of bacterial food. Here, we use quantitative behavioral assays to define the temperature and food-dependent determinants of long-term plasticity in the different modes of thermotactic behavior. Under our experimental conditions, we find that starvation at a specific temperature neither disrupts T(S) resetting toward the starvation temperature nor induces learned avoidance of the starvation temperature. We find that prolonged starvation suppresses the cryophilic mode of thermotactic behavior. The hen-1 and tax-6 genes have been reported to affect associative learning between temperature and food-dependent cues. Under our experimental conditions, mutation in the hen-1 gene, which encodes a secreted protein with an LDL receptor motif, does not significantly affect thermotactic behavior or long-term plasticity. Mutation in the tax-6 calcineurin gene abolishes thermotactic behavior altogether. In summary, we do not find evidence that long-term plasticity requires association between temperature and the presence or absence of bacterial food.

  3. Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate-soil carbon feedback.

    PubMed

    Harte, John; Saleska, Scott R; Levy, Charlotte

    2015-06-01

    Ecosystem responses to climate change can exert positive or negative feedbacks on climate, mediated in part by slow-moving factors such as shifts in vegetation community composition. Long-term experimental manipulations can be used to examine such ecosystem responses, but they also present another opportunity: inferring the extent to which contemporary climate change is responsible for slow changes in ecosystems under ambient conditions. Here, using 23 years of data, we document a shift from nonwoody to woody vegetation and a loss of soil carbon in ambient plots and show that these changes track previously shown similar but faster changes under experimental warming. This allows us to infer that climate change is the cause of the observed shifts in ambient vegetation and soil carbon and that the vegetation responses mediate the observed changes in soil carbon. Our findings demonstrate the realism of an experimental manipulation, allow attribution of a climate cause to observed ambient ecosystem changes, and demonstrate how a combination of long-term study of ambient and experimental responses to warming can identify mechanistic drivers needed for realistic predictions of the conditions under which ecosystems are likely to become carbon sources or sinks over varying timescales. © 2014 John Wiley & Sons Ltd.

  4. The coevolution of bed roughness, grain clustering, surface armoring, hydraulic roughness, and sediment transport rate in experimental coarse alluvial channels: implications for long-term effects of gravel augmentation

    NASA Astrophysics Data System (ADS)

    Johnson, J. P.; Aronovitz, A. C.

    2012-12-01

    We conducted laboratory flume experiments to quantify changes in multiple factors leading to mountain river bed stability (i.e., minimal bed changes in space and time), and to understand how stable beds respond to perturbations in sediment supply. Experiments were run in a small flume 4 m long by 0.1 m wide. We imposed an initial well-graded size distribution of sediment (from coarse sand to up to 4 cm clasts), a steady water discharge (0.9 L/s), and initial bed surface slopes (8% and 12%). We measured outlet sediment flux and size distribution, bed topography and surface size distributions, and water depths; from these we calculated total shear stress, form drag and skin friction stress partitioning, and hydraulic roughness. The bed was initially allowed to stabilize with no imposed upstream sediment flux. This stabilization occurred due to significant changes in all of the factors listed in the title, and resulted in incipient step-pool like bed morphologies. In addition, this study was designed to explore possible long-term effects of gravel augmentation on mountain channel morphology and surface grain size. While the short-term goal of gravel augmentation is usually to cause fining of surface sediment patches, we find that the long-term effects may be opposite. We perturbed the stabilized channels by temporarily imposing an upstream sediment flux of the finest sediment size fraction (sand to granules). Median surface sizes initially decreased due to fine sediment deposition, although transport rates of intermediate-sized grains increased. When the fine sediment supply was stopped, beds evolved to be both rougher and coarser than they had been previously, because the largest grains remained on the bed but intermediate-sized grains were preferentially transported out, leaving higher fractions of larger grains on the surface. Existing models for mixed grain size transport actually predict changes in mobilization reasonably well, but do not explicity account for surface roughness evolution. Our results indicate a nonlinear relationship between surface median grain size and bed roughness.

  5. Secular orbital evolution of Jupiter family comets

    NASA Astrophysics Data System (ADS)

    Rickman, H.; Gabryszewski, R.; Wajer, P.; Wiśniowski, T.; Wójcikowski, K.; Szutowicz, S.; Valsecchi, G. B.; Morbidelli, A.

    2017-02-01

    Context. The issue of the long term dynamics of Jupiter family comets (JFCs) involves uncertain assumptions about the physical evolution and lifetimes of these comets. Contrary to what is often assumed, real effects of secular dynamics cannot be excluded and therefore merit investigation. Aims: We use a random sample of late heavy bombardment cometary projectiles to study the long-term dynamics of JFCs by a Monte Carlo approach. In a steady-state picture of the Jupiter family, we investigate the orbital distribution of JFCs, including rarely visited domains like retrograde orbits or orbits within the outer parts of the asteroid main belt. Methods: We integrate 100 000 objects over a maximum of 100 000 orbital revolutions including the Sun, a comet, and four giant planets. Considering the steady-state number of JFCs to be proportional to the total time spent in the respective orbital domain, we derive the capture rate based on observed JFCs with small perihelia and large nuclei. We consider a purely dynamical model and one where the nuclei are eroded by ice sublimation. Results: The JFC inclination distribution is incompatible with our erosional model. This may imply that a new type of comet evolution model is necessary. Considering that comets may live for a long time, we show that JFCs can evolve into retrograde orbits as well as asteroidal orbits in the outer main belt or Cybele regions. The steady-state capture rate into the Jupiter family is consistent with 1 × 109 scattered disk objects with diameters D > 2 km. Conclusions: Our excited scattered disk makes it difficult to explain the JFC inclination distribution, unless the physical evolution of JFCs is more intricate than assumed in standard, erosional models. Independent of this, the population size of the Jupiter family is consistent with a relatively low-mass scattered disk.

  6. Aridity and hominin environments

    NASA Astrophysics Data System (ADS)

    Blumenthal, Scott A.; Levin, Naomi E.; Brown, Francis H.; Brugal, Jean-Philip; Chritz, Kendra L.; Harris, John M.; Jehle, Glynis E.; Cerling, Thure E.

    2017-07-01

    Aridification is often considered a major driver of long-term ecological change and hominin evolution in eastern Africa during the Plio-Pleistocene; however, this hypothesis remains inadequately tested owing to difficulties in reconstructing terrestrial paleoclimate. We present a revised aridity index for quantifying water deficit (WD) in terrestrial environments using tooth enamel δ18O values, and use this approach to address paleoaridity over the past 4.4 million years in eastern Africa. We find no long-term trend in WD, consistent with other terrestrial climate indicators in the Omo-Turkana Basin, and no relationship between paleoaridity and herbivore paleodiet structure among fossil collections meeting the criteria for WD estimation. Thus, we suggest that changes in the abundance of C4 grass and grazing herbivores in eastern Africa during the Pliocene and Pleistocene may have been decoupled from aridity. As in modern African ecosystems, other factors, such as rainfall seasonality or ecological interactions among plants and mammals, may be important for understanding the evolution of C4 grass- and grazer-dominated biomes.

  7. Complex response of a midcontinent north America drainage system to late Wisconsinan sedimentation

    USGS Publications Warehouse

    Bettis, E. Arthur; Autin, W.J.

    1997-01-01

    The geomorphic evolution of Mud Creek basin in eastern Iowa, U.S.A. serves to illustrate how geomorphic influences such as sediment supply, valley gradient, climate, and vegetation are recorded in the alluvial stratigraphic record. Sediment supply to the fluvial system increased significantly during the late Wisconsinan through a combination of periglacial erosion and loess accumulation. Subsequent evolution of the Holocene alluvial stratigraphic record reflects long-term routing of the late Wisconsinan sediment through the drainage basin in a series of cut-and-fill cycles whose timing was influenced by hydrologic response to change in climate and vegetation. When viewed in a regional context, the alluvial stratigraphic record appears to reflect a long-term complex response of the fluvial system to increased sediment supply during the late Wisconsinan. Hydrologic and sediment-supply changes accompanying the spread of Euroamerican agriculture to the basin in the 180Os dramatically upset trends in sedimentation and channel behavior established during the Holocene. Copyright ?? 1997, SEPM (Society for Sedimentary Geology).

  8. The effect of topography on the evolution of unstable disturbances in a baroclinic atmosphere

    NASA Technical Reports Server (NTRS)

    Clark, J. H. E.

    1985-01-01

    A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, their stability, and the long term evolution of incipient unstable waves. The flow is forced by latitudinally dependent radiative heating. Dissipation is in the form of Rayleigh friction. An analytical solution is found for the propagating finite amplitude waves which result from baroclinic instability of the zonal winds when topography is absent. The appearance of this solution for wavelengths just longer than the Rossby radius of deformation and disappearance of ultra-long wavelengths is interpreted in terms of the Hopf bifurcation theory. Simple dynamic and thermodynamic criteria for the existence of periodic Rossby solutions are presented. A Floquet stability analysis shows that the waves are neutral. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance.

  9. Medical management of neurocysticercosis.

    PubMed

    Takayanagui, Osvaldo Massaiti; Odashima, Newton Satoru; Bonato, Pierina S; Lima, Jose Eduardo; Lanchote, Vera Lucia

    2011-12-01

    Neurocysticercosis (NCC) is considered to be the most common cause of acquired epilepsy worldwide. Formerly restricted to palliative measures, therapy for NCC has advanced with the advent of two drugs that are considered to be effective: praziquantel (PZQ) and albendazole (ALB). All available articles regarding research related to the treatment of NCC were searched. Relevant articles were then reviewed and used as sources of information for this review. Anticysticercal therapy has been marked by intense controversy. Recent descriptions of spontaneous resolution of parenchymal cysticercosis with benign evolution, risks of complications and reports of no long-term benefits have reinforced the debate over the usefulness and safety of anticysticercal therapy. High interindividual variability and complex pharmacological interactions will require the close monitoring of plasma concentrations of ALB and PZQ metabolites in future trials. Given the relative scarcity of clinical trials, more comparative interventional studies - especially randomized controlled trials in long-term clinical evolution - are required to clarify the controversy over the validity of parasitic therapy in patients with NCC.

  10. Coexistence Analysis of Adjacent Long Term Evolution (LTE) Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aulama, Mohannad M.; Olama, Mohammed M

    As the licensing and deployment of Long term evolution (LTE) systems are ramping up, the study of coexistence of LTE systems is an essential topic in civil and military applications. In this paper, we present a coexistence study of adjacent LTE systems aiming at evaluating the effect of inter-system interference on system capacity and performance as a function of some of the most common mitigation techniques: frequency guard band, base station (BS) antenna coupling loss, and user equipment (UE) antenna spacing. A system model is constructed for two collocated macro LTE networks. The developed model takes into consideration the RFmore » propagation environment, power control scheme, and adjacent channel interference. Coexistence studies are performed for a different combination of time/frequency division duplex (TDD/FDD) systems under three different guard-bands of 0MHz, 5MHz, and 10MHz. Numerical results are presented to advice the minimum frequency guard band, BS coupling loss, and UE antenna isolation required for a healthy system operation.« less

  11. Genome dynamics and evolution in yeasts: A long-term yeast-bacteria competition experiment

    PubMed Central

    Katz, Michael; Knecht, Wolfgang; Compagno, Concetta; Piškur, Jure

    2018-01-01

    There is an enormous genetic diversity evident in modern yeasts, but our understanding of the ecological basis of such diversifications in nature remains at best fragmented so far. Here we report a long-term experiment mimicking a primordial competitive environment, in which yeast and bacteria co-exist and compete against each other. Eighteen yeasts covering a wide phylogenetic background spanning approximately 250 million years of evolutionary history were used to establish independent evolution lines for at most 130 passages. Our collection of hundreds of modified strains generated through such a rare two-species cross-kingdom competition experiment re-created the appearance of large-scale genomic rearrangements and altered phenotypes important in the diversification history of yeasts. At the same time, the methodology employed in this evolutionary study would also be a non-gene-technological method of reprogramming yeast genomes and then selecting yeast strains with desired traits. Cross-kingdom competition may therefore be a method of significant value to generate industrially useful yeast strains with new metabolic traits. PMID:29624585

  12. Recommendation in evolving online networks

    NASA Astrophysics Data System (ADS)

    Hu, Xiao; Zeng, An; Shang, Ming-Sheng

    2016-02-01

    Recommender system is an effective tool to find the most relevant information for online users. By analyzing the historical selection records of users, recommender system predicts the most likely future links in the user-item network and accordingly constructs a personalized recommendation list for each user. So far, the recommendation process is mostly investigated in static user-item networks. In this paper, we propose a model which allows us to examine the performance of the state-of-the-art recommendation algorithms in evolving networks. We find that the recommendation accuracy in general decreases with time if the evolution of the online network fully depends on the recommendation. Interestingly, some randomness in users' choice can significantly improve the long-term accuracy of the recommendation algorithm. When a hybrid recommendation algorithm is applied, we find that the optimal parameter gradually shifts towards the diversity-favoring recommendation algorithm, indicating that recommendation diversity is essential to keep a high long-term recommendation accuracy. Finally, we confirm our conclusions by studying the recommendation on networks with the real evolution data.

  13. A modeling framework for optimal long-term care insurance purchase decisions in retirement planning.

    PubMed

    Gupta, Aparna; Li, Lepeng

    2004-05-01

    The level of need and costs of obtaining long-term care (LTC) during retired life require that planning for it is an integral part of retirement planning. In this paper, we divide retirement planning into two phases, pre-retirement and post-retirement. On the basis of four interrelated models for health evolution, wealth evolution, LTC insurance premium and coverage, and LTC cost structure, a framework for optimal LTC insurance purchase decisions in the pre-retirement phase is developed. Optimal decisions are obtained by developing a trade-off between post-retirement LTC costs and LTC insurance premiums and coverage. Two-way branching models are used to model stochastic health events and asset returns. The resulting optimization problem is formulated as a dynamic programming problem. We compare the optimal decision under two insurance purchase scenarios: one assumes that insurance is purchased for good and other assumes it may be purchased, relinquished and re-purchased. Sensitivity analysis is performed for the retirement age.

  14. Linking Short and Long Term Sediment Delivery to Morphology and Seascape Evolution of Continental Margins

    DTIC Science & Technology

    1999-09-30

    history. OBJECTIVES 1) Is the variability in a river’s sediment load, observed over the last 100 years or less, adequate to provide a proxy for longer-term...experiments, small basins are able to capture in terms of textural proxies , both the natural variability associated with precipitation and temperature...as well as realistic scenarios of abrupt climate change. Open ocean basins, like the Eel River, are less likely to record the proxy record of ambient

  15. Tidal evolution of close binary asteroid systems

    NASA Astrophysics Data System (ADS)

    Taylor, Patrick A.; Margot, Jean-Luc

    2010-12-01

    We provide a generalized discussion of tidal evolution to arbitrary order in the expansion of the gravitational potential between two spherical bodies of any mass ratio. To accurately reproduce the tidal evolution of a system at separations less than 5 times the radius of the larger primary component, the tidal potential due to the presence of a smaller secondary component is expanded in terms of Legendre polynomials to arbitrary order rather than truncated at leading order as is typically done in studies of well-separated system like the Earth and Moon. The equations of tidal evolution including tidal torques, the changes in spin rates of the components, and the change in semimajor axis (orbital separation) are then derived for binary asteroid systems with circular and equatorial mutual orbits. Accounting for higher-order terms in the tidal potential serves to speed up the tidal evolution of the system leading to underestimates in the time rates of change of the spin rates, semimajor axis, and mean motion in the mutual orbit if such corrections are ignored. Special attention is given to the effect of close orbits on the calculation of material properties of the components, in terms of the rigidity and tidal dissipation function, based on the tidal evolution of the system. It is found that accurate determinations of the physical parameters of the system, e.g., densities, sizes, and current separation, are typically more important than accounting for higher-order terms in the potential when calculating material properties. In the scope of the long-term tidal evolution of the semimajor axis and the component spin rates, correcting for close orbits is a small effect, but for an instantaneous rate of change in spin rate, semimajor axis, or mean motion, the close-orbit correction can be on the order of tens of percent. This work has possible implications for the determination of the Roche limit and for spin-state alteration during close flybys.

  16. Modeling Long-term Creep Performance for Welded Nickel-base Superalloy Structures for Power Generation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Chen; Gupta, Vipul; Huang, Shenyan

    The goal of this project is to model long-term creep performance for nickel-base superalloy weldments in high temperature power generation systems. The project uses physics-based modeling methodologies and algorithms for predicting alloy properties in heterogeneous material structures. The modeling methodology will be demonstrated on a gas turbine combustor liner weldment of Haynes 282 precipitate-strengthened nickel-base superalloy. The major developments are: (1) microstructure-property relationships under creep conditions and microstructure characterization (2) modeling inhomogeneous microstructure in superalloy weld (3) modeling mesoscale plastic deformation in superalloy weld and (4) a constitutive creep model that accounts for weld and base metal microstructure and theirmore » long term evolution. The developed modeling technology is aimed to provide a more efficient and accurate assessment of a material’s long-term performance compared with current testing and extrapolation methods. This modeling technology will also accelerate development and qualification of new materials in advanced power generation systems. This document is a final technical report for the project, covering efforts conducted from October 2014 to December 2016.« less

  17. A multiscale climate emulator for long-term morphodynamics (MUSCLE-morpho)

    NASA Astrophysics Data System (ADS)

    Antolínez, José Antonio A.; Méndez, Fernando J.; Camus, Paula; Vitousek, Sean; González, E. Mauricio; Ruggiero, Peter; Barnard, Patrick

    2016-01-01

    Interest in understanding long-term coastal morphodynamics has recently increased as climate change impacts become perceptible and accelerated. Multiscale, behavior-oriented and process-based models, or hybrids of the two, are typically applied with deterministic approaches which require considerable computational effort. In order to reduce the computational cost of modeling large spatial and temporal scales, input reduction and morphological acceleration techniques have been developed. Here we introduce a general framework for reducing dimensionality of wave-driver inputs to morphodynamic models. The proposed framework seeks to account for dependencies with global atmospheric circulation fields and deals simultaneously with seasonality, interannual variability, long-term trends, and autocorrelation of wave height, wave period, and wave direction. The model is also able to reproduce future wave climate time series accounting for possible changes in the global climate system. An application of long-term shoreline evolution is presented by comparing the performance of the real and the simulated wave climate using a one-line model. This article was corrected on 2 FEB 2016. See the end of the full text for details.

  18. Was the Watchmaker Blind? Or Was She One-Eyed?

    PubMed Central

    Noble, Raymond; Noble, Denis

    2017-01-01

    The question whether evolution is blind is usually presented as a choice between no goals at all (‘the blind watchmaker’) and long-term goals which would be external to the organism, for example in the form of special creation or intelligent design. The arguments either way do not address the question whether there are short-term goals within rather than external to organisms. Organisms and their interacting populations have evolved mechanisms by which they can harness blind stochasticity and so generate rapid functional responses to environmental challenges. They can achieve this by re-organising their genomes and/or their regulatory networks. Epigenetic as well as DNA changes are involved. Evolution may have no foresight, but it is at least partially directed by organisms themselves and by the populations of which they form part. Similar arguments support partial direction in the evolution of behavior. PMID:29261138

  19. Prognostics

    NASA Technical Reports Server (NTRS)

    Goebel, Kai; Vachtsevanos, George; Orchard, Marcos E.

    2013-01-01

    Knowledge discovery, statistical learning, and more specifically an understanding of the system evolution in time when it undergoes undesirable fault conditions, are critical for an adequate implementation of successful prognostic systems. Prognosis may be understood as the generation of long-term predictions describing the evolution in time of a particular signal of interest or fault indicator, with the purpose of estimating the remaining useful life (RUL) of a failing component/subsystem. Predictions are made using a thorough understanding of the underlying processes and factor in the anticipated future usage.

  20. Nonlinearity Role in Long-Term Interaction of the Ocean Gravity Waves

    DTIC Science & Technology

    2012-09-30

    3 4 =s We found that in the fetch-limited case the wind forcing index s is similar to the time domain situation, and the wind forcing is given by...of its evolution. Fig.5 gives a graphical summary of four reference cases of self-similar evolution of wind-driven waves. These cases are shown as...different R, tangents of one-parametric dependencies H~TR height-to-period in logarithmic axes. Reference cases of growing wind sea are shown as

  1. Dynamical Evolution and Spin-Orbit Resonances of Potentially Habitable Exoplanets. The Case of GJ 667C

    DTIC Science & Technology

    2014-01-10

    observed trend is consistent with a gravitational acceleration exerted by the inner pair of stars (A and B) in this multiple star system. Our planet...the other hand, the observed trend in the RV of the C component can be caused by its orbital acceleration around the AB pair. 3. LONG-TERM EVOLUTION...polar torque acting on a rotating planet is the sum of the gravitational torque, caused by the triaxial permanent shape and the corresponding quadrupole

  2. Coastal Evolution Modeling at Multiple Scales in Regional Sediment Management Applications

    DTIC Science & Technology

    2011-05-01

    run-up height (including setup), ∆h is the surge level (including tide elevation relative to mean sea level (MSL)); zD is the dune toe elevation...interactive shoreline, dune , and inlet evolution, on the scale of hundreds of years, a regional and long-term perspective. The regional model...side by subscript r. Dune Erosion As waves run up on the beach and reach the foot of the dune , the dune will be subject to erosion. If it is assumed

  3. Shoreline Evolution and Coastal Resiliency at Two Military Installations: Investigating the Potential for and Impacts of Loss of Protecting Barriers

    DTIC Science & Technology

    2014-05-01

    control barrier morphology and migration (and potentially drowning). We have developed a numerical model of barrier evolution over the centennial ...required to maintain barrier geometries over centennial timescales. Long-term storm histories for each region show a consistent picture of...landward of the flood tidal delta is an area of over 40km2 that is over 9m deep, with some depressions as deep as 12m. During periods of rising sea-level

  4. Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis

    PubMed Central

    2011-01-01

    Background Rescuing amphibian diversity is an achievable conservation challenge. Disease mitigation is one essential component of population management. Here we assess existing disease mitigation strategies, some in early experimental stages, which focus on the globally emerging chytrid fungus Batrachochytrium dendrobatidis. We discuss the precedent for each strategy in systems ranging from agriculture to human medicine, and the outlook for each strategy in terms of research needs and long-term potential. Results We find that the effects of exposure to Batrachochytrium dendrobatidis occur on a spectrum from transient commensal to lethal pathogen. Management priorities are divided between (1) halting pathogen spread and developing survival assurance colonies, and (2) prophylactic or remedial disease treatment. Epidemiological models of chytridiomycosis suggest that mitigation strategies can control disease without eliminating the pathogen. Ecological ethics guide wildlife disease research, but several ethical questions remain for managing disease in the field. Conclusions Because sustainable conservation of amphibians in nature is dependent on long-term population persistence and co-evolution with potentially lethal pathogens, we suggest that disease mitigation not focus exclusively on the elimination or containment of the pathogen, or on the captive breeding of amphibian hosts. Rather, successful disease mitigation must be context specific with epidemiologically informed strategies to manage already infected populations by decreasing pathogenicity and host susceptibility. We propose population level treatments based on three steps: first, identify mechanisms of disease suppression; second, parameterize epizootiological models of disease and population dynamics for testing under semi-natural conditions; and third, begin a process of adaptive management in field trials with natural populations. PMID:21496358

  5. Long Term Follow-Through of Participants in the Vermont Experimental and Demonstration Project.

    ERIC Educational Resources Information Center

    Cashman, John R.; Mattson, Robert E.

    The report describes a Vermont project begun in 1970 and designed to assess the long term value of the Special Work Project (SWP), or Public Service Employment, as a vehicle for providing transitional employment to unemployed members of low income families with children receiving public aid. The study attempted to contact and interview the 609…

  6. Long-term integrated studies show complex and surprising effects of climate change in northern hardwood forests

    Treesearch

    Peter M. Groffman; Lindsey Rustad; Pamela H. Templer; John Campbell; Lynn M. Christenson; Nina K. Lany; Anne M. Socci; Matthew A. Vadeboncoeur; Paul Schaberg; Geoffrey F. Wilson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Christine L. Goodale; Mark B. Green; Steven P. Hamburg; Chris E. Johnson; Myron J. Mitchell; Jennifer L. Morse; Linda H. Pardo; Nicholas L. Rodenhouse

    2012-01-01

    Evaluations of the local effects of global change are often confounded by the interactions of natural and anthropogenic factors that overshadow the effects of climate changes on ecosystems. Long-term watershed and natural elevation gradient studies at the Hubbard Brook Experimental Forest and in the surrounding region show surprising results demonstrating the effects...

  7. Cascabel prescribed fire long-term watershed study: an opportunity to monitor climate change

    Treesearch

    Gerald Gottfried; Daniel Neary; Peter Ffolliott; Karen Koestner

    2012-01-01

    Experimental watershed studies can provide answers to new challenges facing land managers and society including the impacts of fires and climate change on upstream and regional hydrology. The Cascabel Watersheds long-term prescribed fire study provides a unique opportunity to monitor climate change because of its location in an oak savanna situated between deserts or...

  8. Long-term ecological reflections: writers, philosophers, and scientists meet in the forest.

    Treesearch

    Jonathan Thompson

    2008-01-01

    Over the past 7 years, a strong collaboration has emerged between the H.J. Andrews Experimental Forest ecosystem research group and the Spring Creek Project for Ideas, Nature, and the Written Word, an independently funded program for nature writing based in the Department of Philosophy, Oregon State University. The program is called Long-Term Ecological Reflections and...

  9. Long-term stream chemistry monitoring on the fernow experiment forest: implications for sustainable management of hardwood forests

    Treesearch

    Mary Beth Adams; James N. Kochenderfer

    2007-01-01

    Long-term monitoring of stream chemistry of forested watersheds on the Fernow Experimental Forest in West Virginia has been conducted to determine the effects of both human induced and natural disturbances on nutrient cycling and stream chemistry. We compare mean annual stream water pH, and nitrate (NO3), sulfate (SO4), and...

  10. The Hill plots: A rare long-term vegetation study (P-53)

    Treesearch

    Jonathan D. Bakker; Margaret M. Moore; Daniel C. Laughlin

    2008-01-01

    One legacy of the Fort Valley Experimental Forest is the number and quality of long-term studies associated with it. One such study is the "Hill plots," which began in 1912 and is still being actively studied. Livestock exclosures were built at five sites to examine vegetation recovery when protected from livestock grazing. Sites span a range of soil types...

  11. The Hill plots: A rare long-term vegetation study

    Treesearch

    Jonathan D. Bakker; Margaret M. Moore; Daniel C. Laughlin

    2008-01-01

    One legacy of the Fort Valley Experimental Forest is the number and quality of long-term studies associated with it. One such study is the "Hill plots," which began in 1912 and is still being actively studied. Livestock exclosures were built at five sites to examine vegetation recovery when protected from livestock grazing. Sites span a range of soil types...

  12. [Effects of aroma massage on pruritus, skin pH, skin hydration and sleep in elders in long-term care hospitals].

    PubMed

    Roh, So Young; Kim, Kye Ha

    2013-12-01

    The purpose of this study was to examine the effects of aroma massage on pruritus, skin pH, skin hydration and sleep in elders in long-term care hospitals. The participants were elders over 65 years old admitted to long-term care. They were assigned to the experimental group (26) or control group (28). Data were collected from May to August, 2012. Visual Analogue Scale and Verran and Snyder-Halpern Sleep scale were used to identify levels of pruritus and sleep. A skin-pH meter and moisture checker were used to measure skin pH and skin hydration. Aroma massage was performed three times a week for 4 weeks for elders in the experimental group. The data were analyzed using the SPSS Win 17.0 program. There were significant differences in pruritus, skin pH and skin hydration between the two groups. However there was no significant difference in sleep. The results indicate that aroma massage is effective in reducing pruritus, skin pH and increasing skin hydration in elders. Therefore, this intervention can be utilized in clinical practice as an effective nursing intervention to reduce pruritus in elders in long-term care hospitals.

  13. How does a tidal embayment morphodynamically react on sea level rise?

    NASA Astrophysics Data System (ADS)

    van der Wegen, Mick

    2010-05-01

    Conditions for (assumed) equilibrium in tidal embayments have been studied extensively in the past years with morphodynamic 1D models (Van Dongeren and De Vriend, 1994; Schuttelaars and de Swart, 1996, 2000; Lanzoni and Seminara, 2002) and 2D models (Hibma et al. [2003], Van der Wegen and Roelvink [2008]) Van der Wegen et al 2008). The current research addresses the impact of sea level rise on tidal embayments. Although effects of sea level rise may only become apparent after decades, the character of the embayment can change considerably. Examples are the (dis)appearance or re-allocation of intertidal flats, increased tidal resonance, shift from sediment export to import, deepening of channel area and other related (ecological) parameters. The research applies a 2D morphodynamic model (Delft3D) in an idealized environment. The model is based on the 2 D shallow water equations, the Engelund -Hansen transport formula and includes bed slope effects, drying and flooding procedures and an advanced morphodynamic update scheme (Roelvink 2006). The initial condition of the bathymetry is generated by 3000 years of morphodynamic calculations in a 80 km long and 2.5 km wide rectangular tidal embayment under constant M2 tidal forcing conditions (Van der Wegen and Roelvink [2008]). After this period sea level rise gradually developing towards a rate of 0.4 m/century is added to the boundary conditions. Model results describe development towards less intertidal area and a transition from an exporting system to a importing system. Model results are evaluated in terms of M2, M4 and M6 tidal constituents as well as against Vs/Vc (shoal volume over channel volume) versus a/h (amplitude over water depth) relationship as proposed by Friedrichs and Aubrey (1988). Although the model describes morphodynamic development in a strongly idealized environment the results can provide an excellent tool to systematically study the impact of sea level rise in tidal embayments as well as the time scales of dominant underlying resulting transport mechanisms and processes. DISSANAYAKE, D.M.P.K; RANASINGHE, R. and ROELVINK, J.A., 2009. Effect of Sea Level Rise in tidal inlet evolution: a numerical modelling approach. Journal of Coastal Research, SI 56 (Proceedings of the 10th International Coastal Symposium), pg - pg. Lisbon, Portugal. Friedrichs, C. T., and D. G. Aubrey (1988), Non-linear tidal distortion in shallow well mixed estuaries: A synthesis, Estuarine Coastal Shelf Sci.,27, 521- 545, doi:10.1016/0272-7714(88)90082-0. Hibma, A., H.M. Schuttelaars, and H. J. de Vriend (2003b), Initial formation and long-term evolution of channel-shoal patterns in estuaries, in Proc. 3rd RCEM conf.edited by A. Sánchez -Acrilla and A. Bateman, pp. 740-760, IAHR., Barcelona, Spain. Lanzoni, S., and G. Seminara (2002), Long-term evolution and morphodynamic equilibrium of tidal channels, J. Geophys. Res., 107(C1), 3001, doi:10.1029/2000JC000468. Roelvink, J. A. (2006), Coastal morphodynamic evolution techniques, J. Coastal Eng., 53, 177-187. Schuttelaars, H. M., and H. E. De Swart (1996), An idealized long termmorphodynamic model of a tidal embayment, Eur. J. Mech. B Fluids, 15(1), 55-80. Schuttelaars, H. M., and H. E. De Swart (2000), Multiple morphodynamic equilibria in tidal embayments, J. Geophys. Res., 105(C10), 24,105 - 24,118. Van Dongeren, A. D., and H. J. De Vriend (1994), A model of morphological behaviour of tidal basins, Coastal Eng., 22, 287- 310. van der Wegen, M., and J. A. Roelvink (2008), Long-term morphodynamic evolution of a tidal embayment using a twodimensional, process-based model, J. Geophys. Res., 113, C03016, doi:10.1029/2006JC003983 van der Wegen, M., Z. B. Wang, H. H. G. Savenije, and J. A. Roelvink (2008), Long-term morphodynamic evolution and energy dissipation in a coastal plain, tidal embayment, J. Geophys. Res., 113, F03001, doi:10.1029/2007JF000898

  14. A Field Experimental Design of a Strengths-Based Training to Overcome Academic Procrastination: Short- and Long-Term Effect.

    PubMed

    Visser, Lennart; Schoonenboom, Judith; Korthagen, Fred A J

    2017-01-01

    This study reports on the effect of a newly developed 4-week strengths-based training approach to overcome academic procrastination, given to first-year elementary teacher education students ( N = 54). The training was based on a strengths-based approach, in which elements of the cognitive behavioral approach were also used. The purpose of the training was to promote awareness of the personal strengths of students who experience academic procrastination regularly and to teach them how to use their personal strengths in situations in which they usually tend to procrastinate. With a pretest-posttest control group design (two experimental groups: n = 31, control group: n = 23), the effect of the training on academic procrastination was studied after 1, 11, and 24 weeks. Results of a one-way analysis of covariance revealed a significant short-term effect of the training. In the long term (after 11 and 24 weeks), the scores for academic procrastination for the intervention groups remained stable, whereas the scores for academic procrastination for the control group decreased to the same level as those of the intervention groups. The findings of this study suggest that a strengths-based approach can be helpful to students at an early stage of their academic studies to initiate their individual process of dealing with academic procrastination. The findings for the long term show the importance of measuring the outcomes of an intervention not only shortly after the intervention but also in the long term. Further research is needed to find out how the short-term effect can be maintained in the long-term.

  15. Sex that moves mountains: The influence of spawning fish on river profiles over geologic timescales

    NASA Astrophysics Data System (ADS)

    Fremier, Alexander K.; Yanites, Brian J.; Yager, Elowyn M.

    2018-03-01

    A key component of resilience is to understand feedbacks among components of biophysical systems, such as physical drivers, ecological responses and the subsequent feedbacks onto physical process. While physically based explanations of biological speciation are common (e.g., mountains separating a species can lead to speciation), less common is the inverse process examined: can a speciation event have significant influence on physical processes and patterns in a landscape? When such processes are considered, such as with 'ecosystem engineers', many studies have focused on the short-term physical and biological effects rather than the long-term impacts. Here, we formalized the physical influence of salmon spawning on stream beds into a model of channel profile evolution by altering the critical shear stress required to move stream bed particles. We then asked if spawning and an adaptive radiation event (similar to the one that occurred in Pacific salmon species) could have an effect on channel erosion processes and stream profiles over geological timescales. We found that spawning can profoundly influence the longitudinal profiles of stream beds and thereby the evolution of entire watersheds. The radiation of five Pacific salmon from a common ancestor, additionally, could also cause significant geomorphic change by altering a wider section of the profile for a given distribution of grain sizes. This modeling study suggests that biological evolution can impact landscape evolution by increasing the sediment transport and erosion efficiency of mountain streams. Moreover, the physical effects of a species on its environment might be a complementary explanation for rapid radiation events in species through the creation of new habitat types. This example provides an illustrative case for thinking about the long- and short-term coupling of biotic and abiotic systems.

  16. On the timing properties of SAX J1808.4-3658 during its 2015 outburst

    NASA Astrophysics Data System (ADS)

    Sanna, A.; Di Salvo, T.; Burderi, L.; Riggio, A.; Pintore, F.; Gambino, A. F.; Iaria, R.; Tailo, M.; Scarano, F.; Papitto, A.

    2017-10-01

    We present a timing analysis of the 2015 outburst of the accreting millisecond X-ray pulsar SAX J1808.4-3658, using non-simultaneous XMM-Newton and NuSTAR observations. We estimate the pulsar spin frequency and update the system orbital solution. Combining the average spin frequency from the previous observed, we confirm the long-term spin-down at an average rate \\dot{ν }_{SD}=1.5(2)× 10^{-15} Hz s-1. We also discuss possible corrections to the spin-down rate accounting for mass accretion on to the compact object when the system is X-ray active. Finally, combining the updated ephemerides with those of the previous outbursts, we find a long-term orbital evolution compatible with a binary expansion at a mean rate \\dot{P}_{orb}=3.6(4)× 10^{-12} s s-1, in agreement with previously reported values. This fast evolution is incompatible with an evolution driven by angular momentum losses caused by gravitational radiation under the hypothesis of conservative mass transfer. We discuss the observed orbital expansion in terms of non-conservative mass transfer and gravitational quadrupole coupling mechanism. We find that the latter can explain, under certain conditions, small fluctuations (of the order of few seconds) of the orbital period around a global parabolic trend. At the same time, a non-conservative mass transfer is required to explain the observed fast orbital evolution, which likely reflects ejection of a large fraction of mass from the inner Lagrangian point caused by the irradiation of the donor by the magnetodipole rotator during quiescence (radio-ejection model). This strong outflow may power tidal dissipation in the companion star and be responsible of the gravitational quadrupole change oscillations.

  17. Studies of long-term noopept and afobazol treatment in rats with learned helplessness neurosis.

    PubMed

    Uyanaev, A A; Fisenko, V P

    2006-08-01

    Long-lasting effects of new Russian psychotropic drugs Noopept and Afobazol on active avoidance conditioning and formation of learned helplessness neurosis were studied on an original experimental model in rats. Noopept eliminated the manifestations of learned helplessness after long-term (21-day) treatment by increasing the percent of trained animals. Afobazol was low effective in preventing manifestations of learned helplessness, but if used for a long time, it reduced the incidence of learned helplessness development by increasing the percent of untrained animals.

  18. Evaluation of a gully headcut retreat model using multitemporal aerial photographs and digital elevation models

    NASA Astrophysics Data System (ADS)

    Campo-Bescós, M. A.; Flores-Cervantes, J. H.; Bras, R. L.; Casalí, J.; Giráldez, J. V.

    2013-12-01

    large fraction of soil erosion in temperate climate systems proceeds from gully headcut growth processes. Nevertheless, headcut retreat is not well understood. Few erosion models include gully headcut growth processes, and none of the existing headcut retreat models have been tested against long-term retreat rate estimates. In this work the headcut retreat resulting from plunge pool erosion in the Channel Hillslope Integrated Landscape Development (CHILD) model is calibrated and compared to long-term evolution measurements of six gullies at the Bardenas Reales, northeast Spain. The headcut retreat module of CHILD was calibrated by adjusting the shape factor parameter to fit the observed retreat and volumetric soil loss of one gully during a 36 year period, using reported and collected field data to parameterize the rest of the model. To test the calibrated model, estimates by CHILD were compared to observations of headcut retreat from five other neighboring gullies. The differences in volumetric soil loss rates between the simulations and observations were less than 0.05 m3 yr-1, on average, with standard deviations smaller than 0.35 m3 yr-1. These results are the first evaluation of the headcut retreat module implemented in CHILD with a field data set. These results also show the usefulness of the model as a tool for simulating long-term volumetric gully evolution due to plunge pool erosion.

  19. Mass transfer in white dwarf-neutron star binaries

    NASA Astrophysics Data System (ADS)

    Bobrick, Alexey; Davies, Melvyn B.; Church, Ross P.

    2017-05-01

    We perform hydrodynamic simulations of mass transfer in binaries that contain a white dwarf and a neutron star (WD-NS binaries), and measure the specific angular momentum of material lost from the binary in disc winds. By incorporating our results within a long-term evolution model, we measure the long-term stability of mass transfer in these binaries. We find that only binaries containing helium white dwarfs (WDs) with masses less than a critical mass of MWD, crit = 0.2 M⊙ undergo stable mass transfer and evolve into ultracompact X-ray binaries. Systems with higher mass WDs experience unstable mass transfer, which leads to tidal disruption of the WD. Our low critical mass compared to the standard jet-only model of mass-loss arises from the efficient removal of angular momentum in the mechanical disc winds, which develop at highly super-Eddington mass-transfer rates. We find that the eccentricities expected for WD-NS binaries when they come into contact do not affect the loss of angular momentum, and can only affect the long-term evolution if they change on shorter time-scales than the mass-transfer rate. Our results are broadly consistent with the observed numbers of both ultracompact X-ray binaries and radio pulsars with WD companions. The observed calcium-rich gap transients are consistent with the merger rate of unstable systems with higher mass WDs.

  20. Contribution diversity and incremental learning promote cooperation in public goods games

    NASA Astrophysics Data System (ADS)

    Liu, Penghui; Liu, Jing

    2017-11-01

    Understanding the evolution of cooperation in nature has long been a challenge and how to promote cooperation in public goods games (PGG) has attracted lots of attention recently. Social diversity has been found helpful to explain the emergence of cooperation in the absence of reputation and punishment. However, further refinement on how individuals reallocate their contribution to each PGG remains an open question. Moreover, individuals in existing works mostly teach or learn from neighbors according to their payoff in the last generation only. However, individuals in reality are preferred to learn from others with a long-term good performance. Therefore, in this paper, a new contribution diversity (CD) is designed and incremental learning (IL) is introduced. We investigate how these two may influence the evolution of cooperation in PGG. Based on the simulation results, we found that both the CD and IL can promote the cooperation in PGGs. Moreover, when cooperators are shaken in their strategy, CD may fail in reallocating contribution of individuals properly. However, IL is found effective to stabilize faith of cooperators and cooperators under IL reflect a long-term advantage over defectors in terms of benefits. Therefore, we further find IL and CD can mutually benefit each other in promoting cooperation, as CD can reasonably adjust the investment of cooperators while IL can provide more information to CD.

Top