Science.gov

Sample records for long-term hydrologic monitoring

  1. Long Term Hydrological (Radiological) Site Monitoring Data

    EPA Pesticide Factsheets

    Quality Data Asset includes all current and historical data on the quality of water with regard to the presence of water pollutants of all kinds regulated by the Clean Water Act. Under the new Interagency Agreement with the Department of Energy (DOE), the Radiation & Indoor Environments National Laboratory (R&IE), Office of Radiation and Indoor Air (ORIA), EPA, located in Las Vegas, NV, conducts a Long-Term Hydrological Monitoring Program (LTHMP) providing laboratory sampling/analysis and Quality Assurance and Control to measure radioactivity concentrations in the water sources near the sites of former underground nuclear explosions. The results of the LTHMP provide assurance that radioactive material from the tests have not migrated into water supplies.

  2. Long-Term Forest Hydrologic Monitoring in Coastal Carolinas

    Treesearch

    Devendra M. Amatya; Ge Sun; Carl C. Trettin; R. Wayne Skaggs

    2003-01-01

    Long-term hydrologic data are essential for understanding the hydrologic processes, as base line data for assessment of impacts and conservation of regional ecosystems, and for developing and testing eco-hydrological models. This study presents 6-year (1996-2001) of rainfall, water table and outflow data from a USDA Forest Service coastal experimental watershed on a...

  3. Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect

    2009-12-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

  4. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2010

    SciTech Connect

    2011-01-10

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 10 and 11, 2010. The U.S. Environmental Protection Agency (EPA) Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, analyzed the samples. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and for tritium using the conventional and enriched methods.

  5. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect

    2010-01-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 11 and 12, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and for tritium using the conventional and enriched methods.

  6. Gasbuggy, New Mexico Long-Term Hydrologic Monitoring Program Evaluation Report

    SciTech Connect

    2009-06-01

    This report summarizes an evaluation of the Long-Term Hydrologic Monitoring Program (LTHMP) that has been conducted since 1972 at the Gasbuggy, New Mexico underground nuclear detonation site. The nuclear testing was conducted by the U.S. Atomic Energy Commission under the Plowshare program, which is discussed in greater detail in Appendix A. The detonation at Gasbuggy took place in 1967, 4,240 feet below ground surface, and was designed to fracture the host rock of a low-permeability natural gas-bearing formation in an effort to improve gas production. The site has historically been managed under the Nevada Offsites Project. These underground nuclear detonation sites are within the United States but outside of the Nevada Test Site where most of the experimental nuclear detonations conducted by the U.S. Government took place. Gasbuggy is managed by the U.S. Department of Energy (DOE) Office of Legacy Management (LM ).

  7. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2012 at Rulison, Colorado

    SciTech Connect

    2012-12-06

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 8, 2012. The samples were shipped to GEL Laboratories in Charleston, South Carolina, for analysis. All requested analyses were successfully completed. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry; tritium was analyzed using two methods. The conventional tritium method has a detection limit on the order of 400 pCi/L, and a select set of samples was analyzed for tritium using the enriched method, which has a detection limit on the order of 3 pCi/L.

  8. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2011 at Rulison, Colorado

    SciTech Connect

    2012-05-10

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 18, 2011. The samples were shipped to the U.S. Environmental Protection Agency (EPA) Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, for analysis. All requested analyses were successfully completed, with the exception of the determination of tritium concentration by the enrichment method. The laboratory no longer provides that service. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional method. Starting in 2012, DOE will retain a different laboratory that provides the enriched tritium analysis service.

  9. Long-term hydrologic monitoring program. Rulison Event Site, Grand Valley, Colorado

    SciTech Connect

    Not Available

    1984-01-01

    The Hydrologic Program Advisory Group reviewed the Long-Term Hydrologic Monitoring Program proposed for the Rulison site at their December 12, 1971, meeting. Samples are collected annually, at about the same dates each year. The hydraulic head, temperature in /sup 0/C, pH, and electrical conductance are recorded at the time of sample collection. Prior to October 1, 1979, each sample was analyzed for gamma emitters and tritium. Gross alpha and beta radioactivity measurements were made on all samples collected. After October 1, 1979, these analyses were discontinued in favor of high-resolution gamma spectrometry using a GeLi detector. For each sample location, samples of raw water and filtered and acidified watar are collected. The raw water samples are analyzed for tritium by the conventional method. Those samples with concentrations that are below the detection level for this method are then analyzed by the enrichment method. Portions of the filtered and acidified samples are analyzed for gamma emitters.

  10. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results at Rio Blanco, Colorado

    SciTech Connect

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–21, 2015. This report documents the analytical results of the Rio Blanco annual monitoring event, the trip report, and the data validation package. The groundwater and surface water monitoring samples were shipped to the GEL Group Inc. laboratories for conventional analysis of tritium and analysis of gamma-emitting radionuclides by high-resolution gamma spectrometry. A subset of water samples collected from wells near the Rio Blanco site was also sent to GEL Group Inc. for enriched tritium analysis. All requested analyses were successfully completed. Samples were collected from a total of four onsite wells, including two that are privately owned. Samples were also collected from two additional private wells at nearby locations and from nine surface water locations. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and they were analyzed for tritium using the conventional method with a detection limit on the order of 400 picocuries per liter (pCi/L). Four locations (one well and three surface locations) were analyzed using the enriched tritium method, which has a detection limit on the order of 3 pCi/L. The enriched locations included the well at the Brennan Windmill and surface locations at CER-1, CER-4, and Fawn Creek 500 feet upstream.

  11. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results Report for Project Rulison, Co

    SciTech Connect

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–22 and 27, 2015. Several of the land owners were not available to allow access to their respective properties, which created the need for several sample collection trips. This report documents the analytical results of the Rulison monitoring event and includes the trip report and the data validation package (Appendix A). The groundwater and surface water monitoring were shipped to the GEL Group Inc. laboratories for analysis. All requested analyses were successfully completed. Samples were analyzed for gamma-emitting radionuclides by high- resolution gamma spectrometry. Tritium was analyzed using two methods, the conventional tritium method, which has a detection limit on the order of 400 picocuries per liter (pCi/L), and the enriched method (for selected samples), which has a detection limit on the order of 3 pCi/L.

  12. Impacts of ditch blocking on peatland hydrology - the benefits of long-term monitoring

    NASA Astrophysics Data System (ADS)

    Holden, Joseph; Green, Sophie; Baird, Andy; Chapman, Pippa; Evans, Chris; Grayson, Richard

    2016-04-01

    A long-term field trial was conducted on a blanket peatland in North Wales. Twelve ditches were studied. After an initial monitoring period, eight of the ditches had peat dams installed a few metres apart along their entire length (dammed), four of these ditches were also partially infilled through bank reprofiling (reprofiled). Four ditches were left open with no dams or reprofiling (open). These 12 ditches and the surrounding peat were then monitored for a further 4 years. The effect of ditch blocking on local water tables was spatially highly variable but small overall (of the order of 2-3 cm) because the site, despite having ditches, already had relatively shallow water tables (medians within the upper 10 cm of the peat profile). An initial five-fold reduction in discharge occurred in ditches that had been dammed or reprofiled. However, there was evidence of a slow change over time in ditch flow at the site in subsequent years, with the overall volume of water leaving the dammed or reprofiled ditch weirs increasing per unit of rainfall to around twice that which occurred in the first year after the restoration. These changes were not observed in the open ditches. There was therefore clear evidence of the benefits of long-term monitoring as hydrological impacts in the first year after ditch blocking were very different from those in later years as the site conditions gradually changed. The additional water that flowed in later periods of the study from the blocked ditch catchments occurred in the form of a more continuously-flowing baseflow with fewer dry periods. The cause of this increase was related to changes in subsurface flow pathways in the peat in the aftermath of re-wetting. We show that these subsurface pathways mean that even in sloping blanket peatlands, the catchment areas for peatland ditches may be very different from that expressed by surface topography alone. Therefore, peatland studies that have estimated aerially-weighted water or carbon

  13. Long-term monitoring of UK river basins: the disconnections between the timescales of hydrological processes and watershed management planning

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2016-12-01

    The UK has a wealth of hydrological monitoring data that has both good coverage in space since the early 1970s, and also a few locations where records have been kept continuously for almost 150 years. Such datasets offer unique opportunities for the hydrologist to consider how the concepts of stationarity, change, and definitions of "baseline" resources should be used to shape how we build models of these systems, and how we devise appropriate and sustainable watershed management strategies. In this paper we consider some of the UK's longest hydrological and biogeochemical records, to explore how long records can be used to shape such understanding and, in some cases, how they can be used to identify new modes of behaviour that need to be incorporated into management planning, from the scale of individual watersheds right up to the national scale. We also consider how key timescales of hydrological responses that are evident within the data may pose major problems for watershed management unless appropriate attention is paid to the potential impacts of processes that work over decadal timescales - much longer than sub-decadal water industry investment cycles or short-term projects for watershed management planning. We use our long-term records to show how key processes can be identified, and to illustrate how careful interpretation of shorter term records will improve decision-making for water resource management.

  14. Statistical analysis of long-term hydrologic records for selection of drought-monitoring sites on Long Island, New York

    USGS Publications Warehouse

    Busciolano, Ronald J.

    2005-01-01

    Ground water is the sole source of water supply for more than 3 million people on Long Island, New York. Large-scale ground-water pumpage, sewering systems, and prolonged periods of below-normal precipitation have lowered ground-water levels and decreased stream-discharge in western and central Long Island. No method is currently (2004) available on Long Island that can assess data from the ground-water-monitoring network to enable water managers and suppliers with the ability to give timely warning of severe water-level declines.This report (1) quantifies past drought- and human-induced changes in the ground-water system underlying Long Island by applying statistical and graphical methods to precipitation, stream-discharge, and ground-water-level data from selected monitoring sites; (2) evaluates the relation between water levels in the upper glacial aquifer and those in the underlying Magothy aquifer; (3) defines trends in stream discharge and ground-water levels that might indicate the onset of drought conditions or the effects of excessive pumping; and (4) discusses the long-term records that were used to select sites for a Long Island drought-monitoring network.Long Island’s long-term hydrologic records indicated that the available data provide a basis for development of a drought-monitoring network. The data from 36 stations that were selected as possible drought-monitoring sites—8 precipitation-monitoring stations, 8 streamflow-gaging (discharge) stations, 15 monitoring wells screened in the upper glacial aquifer under water-table (unconfined) conditions, and 5 monitoring wells screened in the underlying Magothy aquifer under semi-confined conditions—indicate that water levels in western parts of Long Island have fallen and risen markedly (more than 15 ft) in response to fluctuations in pumpage, and have declined from the increased use of sanitary- and storm-sewer systems. Water levels in the central and eastern parts, in contrast, remain relatively

  15. Contradictory hydrological impacts of afforestation in the humid tropics evidenced by long-term field monitoring and simulation modelling

    NASA Astrophysics Data System (ADS)

    Lacombe, Guillaume; Ribolzi, Olivier; de Rouw, Anneke; Pierret, Alain; Latsachak, Keoudone; Silvera, Norbert; Pham Dinh, Rinh; Orange, Didier; Janeau, Jean-Louis; Soulileuth, Bounsamai; Robain, Henri; Taccoen, Adrien; Sengphaathith, Phouthamaly; Mouche, Emmanuel; Sengtaheuanghoung, Oloth; Tran Duc, Toan; Valentin, Christian

    2016-07-01

    The humid tropics are exposed to an unprecedented modernisation of agriculture involving rapid and mixed land-use changes with contrasted environmental impacts. Afforestation is often mentioned as an unambiguous solution for restoring ecosystem services and enhancing biodiversity. One consequence of afforestation is the alteration of streamflow variability which controls habitats, water resources, and flood risks. We demonstrate that afforestation by tree planting or by natural forest regeneration can induce opposite hydrological changes. An observatory including long-term field measurements of fine-scale land-use mosaics and of hydrometeorological variables has been operating in several headwater catchments in tropical southeast Asia since 2000. The GR2M water balance model, repeatedly calibrated over successive 1-year periods and used in simulation mode with the same year of rainfall input, allowed the hydrological effect of land-use change to be isolated from that of rainfall variability in two of these catchments in Laos and Vietnam. Visual inspection of hydrographs, correlation analyses, and trend detection tests allowed causality between land-use changes and changes in seasonal streamflow to be ascertained. In Laos, the combination of shifting cultivation system (alternation of rice and fallow) and the gradual increase of teak tree plantations replacing fallow led to intricate streamflow patterns: pluri-annual streamflow cycles induced by the shifting system, on top of a gradual streamflow increase over years caused by the spread of the plantations. In Vietnam, the abandonment of continuously cropped areas combined with patches of mix-trees plantations led to the natural re-growth of forest communities followed by a gradual drop in streamflow. Soil infiltrability controlled by surface crusting is the predominant process explaining why two modes of afforestation (natural regeneration vs. planting) led to opposite changes in streamflow regime. Given that

  16. Understanding Biogeochemical and Hydrological Processes in a Reservoir, Kentucky Lake (USA), Using Long-term Monitoring and Real-time Sensors

    NASA Astrophysics Data System (ADS)

    Hendricks, S. P.; White, D.; Williamson, M.; Hooks, R.

    2010-12-01

    . Additional real-time monitoring sites will be located in each stream. We presently are evaluating calibration needs, issues, and performance in a continuous-measurement environment. Continuous, high-resolution water quality and meteorological data coupled with the long-term (16-day interval over 22 years) water quality monitoring program will be extremely valuable in helping us understand constituent and hydrological fluxes within Kentucky Lake and the influence of contrasting land-use watersheds in the Tennessee River basin.

  17. Roadmap to Long-Term Monitoring Optimization

    EPA Pesticide Factsheets

    This roadmap focuses on optimization of established long-term monitoring programs for groundwater. Tools and techniques discussed concentrate on methods for optimizing the monitoring frequency and spatial (three-dimensional) distribution of wells ...

  18. LONG TERM HYDROLOGICAL IMPACT ASSESSMENT (LTHIA)

    EPA Science Inventory

    LTHIA is a universal Urban Sprawl analysis tool that is available to all at no charge through the Internet. It estimates impacts on runoff, recharge and nonpoint source pollution resulting from past or proposed land use changes. It gives long-term average annual runoff for a lan...

  19. LONG TERM HYDROLOGICAL IMPACT ASSESSMENT (LTHIA)

    EPA Science Inventory

    LTHIA is a universal Urban Sprawl analysis tool that is available to all at no charge through the Internet. It estimates impacts on runoff, recharge and nonpoint source pollution resulting from past or proposed land use changes. It gives long-term average annual runoff for a lan...

  20. [Ambulatory long-term EEG monitors].

    PubMed

    John, K; Komärek, V; Lehovský, M

    1990-06-01

    Ambulatory EEG monitoring is indicated in patients with attacks of uncertain origin. The method is useful to distinguish non-epileptic and epileptic attacks and to differentiate the kind of epileptic seizures which is important for the choice of antiepileptic drugs and for prognosis. It is necessary to describe in detail behaviour and seizures of patient during monitoring. EEG long term monitoring is only useful if attacks were seen frequently, at least once or twice a week.

  1. Long-term temperature and precipitation trends at the Coweeta Hydrologic Laboratory, Otto, North Carolina, USA

    Treesearch

    Stephanie H. Laseter; Chelcy R. Ford; James M. Vose; Lloyd W. Swift

    2012-01-01

    Coweeta Hydrologic Laboratory, located in western North Carolina, USA, is a 2,185 ha basin wherein forest climate monitoring and watershed experimentation began in the early 1930s. An extensive climate and hydrologic network has facilitated research for over 75 years. Our objectives in this paper were to describe the monitoring network, present long-term air...

  2. Hydrological Interpretation of ERT Monitoring Data on active landslides by implementation of numerical modelling at sites of the LAMOND Long-Term Landslide Monitoring Network

    NASA Astrophysics Data System (ADS)

    Hoyer, Stefan; Ottowitz, David; Supper, Robert; Jochum, Birgit; Riegler, Monika; Scolobig, Anna; Pfeiler, Stefan

    2016-04-01

    Five landslides are monitored in the framework of the LAMOND Network using Electrical Resistivity Tomography (ERT), three of these are located in Austria, one in Italy and one in France. Hydrological interpretation of the collected ERT data is typically carried out qualitatively on a visual basis. In this study, numerical modelling in combination with parameter estimation is implemented to build a basis for an enhanced interpretation. Parameter estimation is carried out by Comsol Multiphysics using Richard's equation and the Optimization module. The result of the forward model (water saturation) is compared to the ERT section (resistivity) using Archies law. The study LAMOND is funded by the Austrian Academy of sciences.

  3. Development of a Long-term Sampling Network to Monitor Restoration Success in the Southwest Coastal Everglades: Vegetation, Hydrology, and Sediments

    USGS Publications Warehouse

    Smith, Thomas J.

    2004-01-01

    Introduction and History Hurricane Andrew, a Category 5 storm, crossed the southern Florida peninsula on the morning of August 24, 1992 (Fig. 1). Following the storm, the National Park Service conducted an environmental damage assessment to gauge the storm's impacts on the natural resources of south Florida Park Service holdings (Pimm et al., 1994). Although hurricanes have impacted Park Service lands such as the Everglades in the past (Houston and Powell, 2003), no systematic, permanent sampling scheme has been established to monitor long-term recovery (or lack thereof) following disturbance. In October 1992, vegetation monitoring plots were established in heavily damaged areas of mangrove forest on the southwest coast of the Everlgades, along the Lostmans and Broad Rivers (Smith et al., 1994, see Fig. 2). As the permanent plot network was being established, funding was awarded for the South Florida Global Climate Change project (SOFL-GCC). This led to the establishment of a network of hydrological monitoring stations (Anderson and Smith, 2004). Finally, sediment elevation tables (SETs) were installed at many locations. SETs provide the means to measure very small changes (2 mm) in the sediment surface elevation accurately over time (Cahoon et al., 2002). We also set up marker horizons to measure accretion of sediment at each site (Smith and Cahoon, 2003). Sampling sites were located along three transects extending from upstream freshwater wetlands to downstream saltwater wetlands along the Shark, Lostmans and Chatham Rivers in Everglades National Park (Fig. 2). While we were developing our sampling network for basic scientific research needs, concern mounted over the health of the Greater Everglades Ecosystem and in particular over the influence of decreased freshwater flows (Smith et al., 1989). Ecosystem restoration planning was begun, resulting in the multi-agency, $8 billion Comprehensive Everglades Restoration Plan (CERP). Our co-located sampling networks

  4. Long-term monitoring for closed sites

    SciTech Connect

    Golchert, N.W.; Sedlet, J.; Veluri, V.R.

    1985-01-01

    A procedure is presented for planning and implementing a long-term environmental monitoring program for closed low-level radioactive waste disposal sites. The initial task in this procedure is to collect the available information on the legal/regulatory requirements, site and area characteristics, source term, pathway analysis, and prior monitoring results. This information is coupled with parameters such as half-life and retardation factors to develop a monitoring program. As examples, programs are presented for a site that has had little or no waste migration, and for sites where waste has been moved by suface water, by ground water, and by air. Sampling techniques and practices are discussed relative to how a current program would be structured and projections are made on techniques and practices expected to be available in the future. 8 refs., 2 figs.

  5. LONG-TERM MONITORING SENSOR NETWORK

    SciTech Connect

    Stephen P. Farrington; John W. Haas; Neal Van Wyck

    2003-10-16

    Long-term monitoring (LTM) associated with subsurface contamination sites is a key element of Long Term Stewardship and Legacy Management across the Department of Energy (DOE) complex. However, both within the DOE and elsewhere, LTM is an expensive endeavor, often exceeding the costs of the remediation phase of a clean-up project. The primary contributors to LTM costs are associated with labor. Sample collection, storage, preparation, analysis, and reporting can add a significant financial burden to project expense when extended over many years. Development of unattended, in situ monitoring networks capable of providing quantitative data satisfactory to regulatory concerns has the potential to significantly reduce LTM costs. But survival and dependable operation in a difficult environment is a common obstacle to widespread use across the DOE complex or elsewhere. Deploying almost any sensor in the subsurface for extended periods of time will expose it to chemical and microbial degradation. Over the time-scales required for in situ LTM, even the most advanced sensor systems may be rendered useless. Frequent replacement or servicing (cleaning) of sensors is expensive and labor intensive, offsetting most, if not all, of the cost savings realized with unattended, in situ sensors. To enable facile, remote monitoring of contaminants and other subsurface parameters over prolonged periods, Applied Research Associates, Inc has been working to develop an advanced LTM sensor network consisting of three key elements: (1) an anti-fouling sensor chamber that can accommodate a variety of chemical and physical measurement devices based on electrochemical, optical and other techniques; (2) two rapid, cost effective, and gentle means of emplacing sensor packages either at precise locations directly in the subsurface or in pre-existing monitoring wells; and (3) a web browser-based data acquisition and control system (WebDACS) utilizing field-networked microprocessor-controlled smart

  6. Afforestation by natural regeneration or by tree planting: examples of opposite hydrological impacts evidenced by long-term field monitoring in the humid tropics

    NASA Astrophysics Data System (ADS)

    Lacombe, G.; Ribolzi, O.; de Rouw, A.; Pierret, A.; Latsachak, K.; Silvera, N.; Pham Dinh, R.; Orange, D.; Janeau, J.-L.; Soulileuth, B.; Robain, H.; Taccoen, A.; Sengphaathith, P.; Mouche, E.; Sengtaheuanghoung, O.; Tran Duc, T.; Valentin, C.

    2015-12-01

    The humid tropics are exposed to an unprecedented modernization of agriculture involving rapid and highly-mixed land-use changes with contrasted environmental impacts. Afforestation is often mentioned as an unambiguous solution for restoring ecosystem services and enhancing biodiversity. One consequence of afforestation is the alteration of streamflow variability controlling habitats, water resources and flood risks. We demonstrate that afforestation by tree planting or by natural forest regeneration can induce opposite hydrological changes. An observatory including long-term field measurements of fine-scale land-use mosaics and of hydro-meteorological variables has been operating in several headwater catchments in tropical Southeast Asia since 2001. The GR2M water balance model repeatedly calibrated over successive 1 year periods, and used in simulation mode with specific rainfall input, allowed the hydrological effect of land-use change to be isolated from that of rainfall variability in two of these catchments in Laos and Vietnam. Visual inspection of hydrographs, correlation analyses and trend detection tests allowed causality between land-use changes and changes in seasonal flows to be ascertained. In Laos, the combination of shifting cultivation system (alternation of rice and fallow) and the gradual increase of teak tree plantations replacing fallow, led to intricate flow patterns: pluri-annual flow cycles induced by the shifting system, on top of a gradual flow increase over years caused by the spread of the plantation. In Vietnam, the abandonment of continuously cropped areas mixed with patches of tree plantations led to the natural re-growth of forest communities followed by a gradual drop in streamflow. Soil infiltrability controlled by surface crusting is the predominant process explaining why two modes of afforestation (natural regeneration or planting) led to opposite changes in flow regime. Given that commercial tree plantations will continue to

  7. Robotics for Long-Term Monitoring

    SciTech Connect

    Shahin, Sarkis; Duran, Celso

    2002-07-01

    While long-term monitoring and stewardship means many things to many people, DOE has defined it as The physical controls, institutions, information, and other mechanisms needed to ensure protection of people and the environment at sites where DOE has completed or plans to complete cleanup (e.g., landfill closures, remedial actions, and facility stabilization). Across the United States, there are thousands of contaminated sites with multiple contaminants released from multiple sources where contaminants have transported and commingled. The U.S. government and U.S. industry are responsible for most of the contamination and are landowners of many of these contaminated properties. These sites must be surveyed periodically for various criteria including structural deterioration, water intrusion, integrity of storage containers, atmospheric conditions, and hazardous substance release. The surveys, however, are intrusive, time-consuming, and expensive and expose survey personnel to radioactive contamination. In long-term monitoring, there's a need for an automated system that will gather and report data from sensors without costly human labor. In most cases, a SCADA (Supervisory Control and Data Acquisition) unit is used to collect and report data from a remote location. A SCADA unit consists of an embedded computer with data acquisition capabilities. The unit can be configured with various sensors placed in different areas of the site to be monitored. A system of this type is static, i.e., the sensors, once placed, cannot be moved to other locations within the site. For those applications where the number of sampling locations would require too many sensors, or where exact location of future problems is unknown, a mobile sensing platform is an ideal solution. In many facilities that undergo regular inspections, the number of video cameras and air monitors required to eliminate the need for human inspections is very large and far too costly. HCET's remote harsh

  8. Long-Term Monitoring of Global Climate Forcings and Feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, J. (Editor); Rossow, W. (Editor); Fung, I. (Editor)

    1993-01-01

    A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.

  9. Characterizing long-term hydrologic-response and sediment-transport for the R-5 catchment.

    PubMed

    Heppner, Christopher S; Loague, Keith

    2008-01-01

    Recently there have been several calls to establish long-term data collection networks to monitor near-surface hydrologic response and landscape evolution. The focus of this paper is a long-term dataset from the International Hydrologic Decade (1965-1974). The small upland catchment, known as R-5, located near Chickasha, Olahoma, has been the subject of considerable attention within the event-based hydrologic modeling community for more than 30 yr. Here, for the first time, 8 yr of continuous near-surface hydrologic-response and sediment-transport data are analyzed to show trends in the catchment's long-term behavior. The datasets include precipitation, temperature, solar radiation, soil-water content, infiltration, water discharge, and sediment discharge. Potential and actual evapotranspiration rates were estimated and used to calculate an average annual water balance for the catchment. Findings include, for example, that rainfall intensity rarely exceeds the threshold for Horton-type runoff, soil-water content is both spatially and temporally variable, and the water and sediment discharge rates are positively correlated. The R-5 data provide a unique opportunity to test (and refine) process-based models of continuous hydrologic response and sediment transport at the catchment scale for applications in the emerging fields of hydroecology and hydrogeomorphology.

  10. Adaptive Long-Term Monitoring at Environmental Restoration Sites

    DTIC Science & Technology

    2009-11-01

    bounds value that is a potential concern. .............. 27 Figure 6. Conceptual example to illustrate temporal interpolation issue...Force Base HMSI Hazard Management Systems, Inc. IDW inverse distance weighting LTM long term monitoring LTMO long-term monitoring...provided the best representation of the plumes with Model Builder. • SO provided useful trade-off curves of sampling cost versus the interpolation

  11. A Long-Term Land Surface Hydrologic Fluxes and States Dataset for China

    NASA Astrophysics Data System (ADS)

    Zhang, Xuejun; Tang, Qiuhong; Pan, Ming

    2014-05-01

    A long-term consistent and comprehensive dataset of land surface hydrologic fluxes and states will greatly benefit the analyses of the changes and interactions for land surface variables, as well as the assessment of land-atmosphere parameterizations for climate models. While some offline model studies can provide balanced water and energy budgets at land surface, few of them have presented an evaluation of the long-term interaction of the water balance components over China. In the paper, we develop a 3-hourly, 0.25° retrospective dataset of land surface hydrologic fluxes/states for 1952-2012 over China using the Variable Infiltration Capacity (VIC) hydrologic model driven by long-term gridded observation-based meteorological forcings. In the newly developed dataset, the estimated streamflow matches quite well with the observed monthly streamflow at the large river basins in China. The simulated soil moisture reasonably reproduces the seasonal variation of the observed soil moisture at the monitoring sites with available long-term observations. As compared to the similar global product, the dataset can provide a more reliable estimate of land surface variables over China. The data product, which will be publicly available via internet, may be useful for the hydroclimatological studies in China.

  12. Long-Term Monitoring of Permeable Reactive Barriers - Progress Report

    SciTech Connect

    Liang, L.

    2001-04-12

    The purpose of this project is to conduct collaborative research to evaluate and maximize the effectiveness of permeable reactive barriers (PRBs) with a broad-based working group including representatives from the U.S. Department of Energy (DOE), U.S. Department of Defense (DoD), and the U.S. Environmental Protection Agency (EPA). The Naval Facilities Engineering Service Center (NFESC) and its project partner, Battelle, are leading the DoD effort with funding from DoD's Environmental Security Technology Certification Program (ESTCP) and Strategic Environmental Research and Development Program (SERDP). Oak Ridge National Laboratory (ORNL) is coordinating the DOE effort with support from Subsurface Contaminant Focus Area (SCFA), a research program under DOEs Office of Science and Technology. The National Risk Management Research Laboratory's Subsurface Protection and Remediation Division is leading EPA's effort. The combined effort of these three agencies allows the evaluation of a large number of sites. Documents generated by this joint project will be reviewed by the participating agencies' principal investigators, the Permeable Barriers Group of the Remediation Technologies Development Forum (RTDF), and the Interstate Technology and Regulatory Cooperation (ITRC). The technical objectives of this project are to collect and review existing field data at selected PRB sites, identify data gaps, conduct additional measurements, and provide recommendations to DOE users on suitable long-term monitoring strategies. The specific objectives are to (1) evaluate geochemical and hydraulic performance of PRBs, (2) develop guidelines for hydraulic and geochemical characterization/monitoring, and (3) devise and implement long-term monitoring strategies through the use of hydrological and geochemical models. Accomplishing these objectives will provide valuable information regarding the optimum configuration and lifetime of barriers at specific sites. It will also permit

  13. Long-Term Ecological Monitoring Field Sampling Plan for 2007

    SciTech Connect

    T. Haney R. VanHorn

    2007-07-31

    This field sampling plan describes the field investigations planned for the Long-Term Ecological Monitoring Project at the Idaho National Laboratory Site in 2007. This plan and the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions constitute the sampling and analysis plan supporting long-term ecological monitoring sampling in 2007. The data collected under this plan will become part of the long-term ecological monitoring data set that is being collected annually. The data will be used t determine the requirements for the subsequent long-term ecological monitoring. This plan guides the 2007 investigations, including sampling, quality assurance, quality control, analytical procedures, and data management. As such, this plan will help to ensure that the resulting monitoring data will be scientifically valid, defensible, and of known and acceptable quality.

  14. Using long-term lysimeter data to analyze hydrological trends

    NASA Astrophysics Data System (ADS)

    Puetz, Thomas; Hendricks-Franssen, Harrie-Jan; Roesseler, Anne-Kathrin; Vereecken, Harry

    2014-05-01

    Evapotranspiration (ET) is a major component of the terrestrial water cycle. Recent studies based on analysis of experimental and observations-based data have shown that over the last decades the magnitude of evapotranspiration (both potential and actual) has been affected by global climate change although the sign and size of the change in ET differ strongly between regions around the globe, as well as between datasets (e.g. Teuling et al. 2009, Jung et al. 2010, Sheffield et al. 2012). Basically, there are two approaches that are available to measure actual evapotranspiration in situ (e.g. Seneviratne et al. 2010): the measurement from micrometeorological approaches (in particular the Eddy Covariance method) and the determination of evapotranspiration by measuring the components of the soil water balance. Evett et al. (2012) showed that Eddy Covariance measurements of actual evapotranspiration obtained in irrigated cotton fields was 31 to 45% lower than estimates obtained from soil water balance measurements using lysimeters. Forcing the closure of the energy balance with more data than typically available at EC stations, the difference was still about 17%. Despite the fact that lysimeter systems, especially the weighing based systems, are ideal tools to determine actual evapotranspiration no global assessment has been made of available data at present that might be valuable to assess the impact of climate change on actual evapotranspiration. A screening of literature showed that many data are either not reported or made available through research reports rather than peer reviewed literature. Typically lysimeter studies have been used for well-designed experimental studies for the assessment of flow and transport processes in cropped systems that were limited in time. Still at present, we have lysimeter systems operational that have long term time series available on soil hydrological fluxes. Recently, a few studies were reported that analyzed long term series of

  15. Infrastructure and Components of a Long Term Hydrologic Observing System for the Susquehanna River Basin

    NASA Astrophysics Data System (ADS)

    Miller, D. A.; Barron, E. J.; Duffy, C. J.

    2001-12-01

    A number of recent Federal studies have expressed the need for new approaches to the study of environmental systems with an emphasis on developing regional approaches that include integrated environmental process monitoring, modeling, analysis, and information systems. Successful integrated environmental research requires a well-developed supporting infrastructure that provides a coordinated set of well-placed and well-timed observations, a carefully-designed research program focused on a the key issues in the region, and a comprehensive information system that allows access to observations and process study results. The recent formation of organizations like the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI) is indicative of this trend and provides a starting point for the development of the scientific infrastructure required to support integrated regional environmental research. CUAHSI is proposing to initiate the development of scientific infrastructure in three main areas: long term hydrologic observatories, hydrologic information systems, and hydrologic measurement technologies. This poster describes a conceptual approach for the implementation of a long-term hydrologic observatory in the Susquehanna River Basin that will combine the elements noted above into an integrated regional hydrologic science program. The SRB is the largest tributary to the Chesapeake Bay and drains an area of 27,510 square miles in New York, Pennsylvania, and Maryland. The impact of SRB water quality on the Chesapeake Bay environment as well as the unique hydrologic regime of the river basin has made it a focus of much environmental research in the past century, including a long-term study (the Susquehanna River Basin Experiment (SRBEX)) of the basin and its hydrologic and climatologic characteristics as part of the NASA Earth Observing System (EOS). The SRB is a heavily human-impacted basin with significant water quality issues arising from agricultural

  16. Hydrologic budgets across the Long-Term Agroecosystems Research network

    USDA-ARS?s Scientific Manuscript database

    Quantification of the components of the hydrologic budget at a site (precipitation, evaporation, runoff,…) gives important indications about major and minor hydrologic processes controlling field and watershed scale response. Hydrologic budgets are needed prior to assessment of potential changes att...

  17. Cascabel prescribed fire long-term watershed study: an opportunity to monitor climate change

    Treesearch

    Gerald Gottfried; Daniel Neary; Peter Ffolliott; Karen Koestner

    2012-01-01

    Experimental watershed studies can provide answers to new challenges facing land managers and society including the impacts of fires and climate change on upstream and regional hydrology. The Cascabel Watersheds long-term prescribed fire study provides a unique opportunity to monitor climate change because of its location in an oak savanna situated between deserts or...

  18. Common Calibration Source for Monitoring Long-term Ozone Trends

    NASA Technical Reports Server (NTRS)

    Kowalewski, Matthew

    2004-01-01

    Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.

  19. Long Term Resource Monitoring Program procedures: fish monitoring

    USGS Publications Warehouse

    Ratcliff, Eric N.; Glittinger, Eric J.; O'Hara, T. Matt; Ickes, Brian S.

    2014-01-01

    This manual constitutes the second revision of the U.S. Army Corps of Engineers’ Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) Long Term Resource Monitoring Program (LTRMP) element Fish Procedures Manual. The original (1988) manual merged and expanded on ideas and recommendations related to Upper Mississippi River fish sampling presented in several early documents. The first revision to the manual was made in 1995 reflecting important protocol changes, such as the adoption of a stratified random sampling design. The 1995 procedures manual has been an important document through the years and has been cited in many reports and scientific manuscripts. The resulting data collected by the LTRMP fish component represent the largest dataset on fish within the Upper Mississippi River System (UMRS) with more than 44,000 collections of approximately 5.7 million fish. The goal of this revision of the procedures manual is to document changes in LTRMP fish sampling procedures since 1995. Refinements to sampling methods become necessary as monitoring programs mature. Possible refinements are identified through field experiences (e.g., sampling techniques and safety protocols), data analysis (e.g., planned and studied gear efficiencies and reallocations of effort), and technological advances (e.g., electronic data entry). Other changes may be required because of financial necessity (i.e., unplanned effort reductions). This version of the LTRMP fish monitoring manual describes the most current (2014) procedures of the LTRMP fish component.

  20. Instrumentation of bridges for long-term performance monitoring

    NASA Astrophysics Data System (ADS)

    Feng, Maria Q.; Kim, Doo-Kie; Sheng, Li-Hong; Fiji, Leonard M.; Kim, Yoo J.

    2001-08-01

    As the state of the art in bridge design is advancing toward the performance-based design, it becomes increasingly important to monitor and evaluate the long-term structural performance of bridges, including strains in critical structural members, soil pressures on the abutment back walls and footings, accelerations on the decks and bents, etc. Such information is essential in developing new performance criteria for design. In this research, sensor systems for long-term structural performance monitoring have been installed on two new highway bridges on Orange County, California: the Jamboree Road Overcrossing and the West Street On-Ramp.

  1. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  2. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  3. Long-term Ecological Monitoring in Schools and Colleges.

    ERIC Educational Resources Information Center

    Doberski, Julian; Brodie, Iain D. S.

    1991-01-01

    The value and difficulties of long-term ecological monitoring studies undertaken in schools and colleges are reviewed. Rookeries, stream ecology, sand dune succession, fish population, and seed production and survival are presented as examples of successful studies. This is followed by a discussion of points to consider when setting up a long-term…

  4. Long-Term Monitoring Research Needs: A DOE Perspective

    NASA Astrophysics Data System (ADS)

    Moore, B.; Davis, C. B.

    2002-05-01

    The U.S. Department of Energy's Office of Environmental Management is responsible for dealing with the nation's legacy of Cold War radioactive and hazardous waste and contamination. Major efforts are underway to deal with this legacy; these are expected to last up to decades and cost up to billions of dollars at some sites. At all sites, however, active remediation must eventually cease; if hazards then remain, the site must enter into a long-term stewardship mode. In this talk we discuss aspects of long-term monitoring pertinent to DOE sites, focusing on challenges to be faced, specific goals or targets to be met, and research needs to be addressed in order to enable DOE to meet its long-term stewardship obligations. DOE LTM research needs fall into three major categories: doing what we can do now much more efficiently; doing things we cannot do now; and proving the validity of our monitoring programs. Given the enormity of the DOE obligations, it will be highly desirable to develop much more efficient monitoring paradigms. Doing so will demand developing autonomous, remote monitoring networks of in situ sensors capable of replacing (or at least supplementing to a large extent) conventional groundwater and soil gas sampling and analysis programs. The challenges involved range from basic science (e.g., inventing in situ sensors for TCE that do not demand routine maintenance) to engineering (attaining superior reliability in data reporting in remote networks) to ergonomics (developing decent ways of selecting and presenting the "right" information from the monitoring network) to regulatory affairs (presenting convincing evidence that the more efficient systems actually provide superior monitoring). We explore these challenges in some detail, focusing on the "long" in long-term monitoring as it applies to DOE sites. Monitoring system performance validation and, ultimately, regulator and stakeholder acceptance of site closure and long-term stewardship plans depend

  5. Sensors for environmental monitoring and long-term environmental stewardship.

    SciTech Connect

    Miller, David Russell; Robinson, Alex Lockwood; Ho, Clifford Kuofei; Davis, Mary Jo

    2004-09-01

    This report surveys the needs associated with environmental monitoring and long-term environmental stewardship. Emerging sensor technologies are reviewed to identify compatible technologies for various environmental monitoring applications. The contaminants that are considered in this report are grouped into the following categories: (1) metals, (2) radioisotopes, (3) volatile organic compounds, and (4) biological contaminants. Regulatory drivers are evaluated for different applications (e.g., drinking water, storm water, pretreatment, and air emissions), and sensor requirements are derived from these regulatory metrics. Sensor capabilities are then summarized according to contaminant type, and the applicability of the different sensors to various environmental monitoring applications is discussed.

  6. Detecting long-term hydrological patterns at Crater Lake, Oregon

    USGS Publications Warehouse

    Peterson, D.L.; Silsbee, D.G.; Redmond, Kelly T.

    1999-01-01

    Tree-ring chronologies for mountain hemlock (Tsuga mertensiana) were used to reconstruct the water level of Crater Lake, a high-elevation lake in the southern Cascade Range of Oregon. Reconstructions indicate that lake level since the late 1980s has been lower than at any point in the last 300 years except the early 1930s to mid 1940s. Lake level was consistently higher during the Little Ice Age than during the late 20th century; during the late 17th century, lake level was up to 9 m higher than recent (1980s and 1990s) low levels, which is consistent with paleoclimalic reconstructions of regional precipitation and atmospheric pressure. Furthermore, instrumental data available for the 20th century suggest that there are strong teleconnections among atmospheric circulation (e.g., Pacific Decadal Oscillation), tree growth, and hydrology in southern Oregon. Crater Lake is sensitive to interannual, interdecadal and intercentenary variation in precipitation and atmospheric circulation, and can be expected to track both short-term and longterm variation in regional climatic patterns that may occur in the future.

  7. Non-intrusive long-term monitoring approaches

    SciTech Connect

    Smathers, D.; Mangan, D.

    1998-08-01

    In order to promote internatinal confidence that the US and Russia are disarming per their commitments under Article 6 of the Non-Proliferation Treaty, an international verification regime may be applied to US and Russian excess fissile materials. Initially, it is envisioned that this verification regime would be applied at storage facilities; however, it should be anticipated that the verificatino regime would continue throughout any material disposition activities, should such activities be pursued. once the materials are accepted into the verification regime, it is assumed that long term monitoring will be used to maintain continuity of knowledge. The requirements for long term storage monitoring include unattended operation for extended periods of time, minimal intrusiveness on the host nation`s safety and security activities, data collection incorporating data authentication, and monitoring redundancy to allow resolution of anomalies and to continue coverage in the event of equipment failures. Additional requirements include effective data review and analysis processes, operation during storage facility loading, procedure for removal of inventory items for safety-related surveillance, and low cost, reliable equipment. A monitoring system might include both continuous monitoring of storagecontainers and continuous area monitoring. These would be complemented with periodic on-site inspections. A fissile material storage facility is not a static operation. The initial studies have shown there are a number of volid reasions why a host nation may need them to remove material from the storage facility. A practical monitoring system must be able to accommodate necessary material movements.

  8. Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes

    SciTech Connect

    Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.; Denham, Miles E.

    2014-01-08

    Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these "legacy" sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the cost of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics should lead

  9. Quantifiable long-term monitoring on parks and nature preserves

    USGS Publications Warehouse

    Beck, Scott; Moorman, Christopher; DePerno, Christopher S.; Simons, Theodore R.

    2013-01-01

    Herpetofauna have declined globally, and monitoring is a useful approach to document local and long-term changes. However, monitoring efforts often fail to account for detectability or follow standardized protocols. We performed a case study at Hemlock Bluffs Nature Preserve in Cary, NC to model occupancy of focal species and demonstrate a replicable long-term protocol useful to parks and nature preserves. From March 2010 to 2011, we documented occupancy of Ambystoma opacum(Marbled Salamander), Plethodon cinereus (Red-backed Salamander), Carphophis amoenus (Eastern Worm Snake), and Diadophis punctatus (Ringneck Snake) at coverboard sites and estimated breeding female Ambystoma maculatum (Spotted Salamander) abundance via dependent double-observer egg-mass counts in ephemeral pools. Temperature influenced detection of both Marbled and Red-backed Salamanders. Based on egg-mass data, we estimated Spotted Salamander abundance to be between 21 and 44 breeding females. We detected 43 of 53 previously documented herpetofauna species. Our approach demonstrates a monitoring protocol that accounts for factors that influence species detection and is replicable by parks or nature preserves with limited resources.

  10. Bridge condition assessment based on long-term strain monitoring

    NASA Astrophysics Data System (ADS)

    Sun, LiMin; Sun, Shouwang

    2011-04-01

    In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.

  11. Cost considerations for long-term ecological monitoring

    USGS Publications Warehouse

    Caughlan, L.; Oakley, K.L.

    2001-01-01

    For an ecological monitoring program to be successful over the long-term, the perceived benefits of the information must justify the cost. Financial limitations will always restrict the scope of a monitoring program, hence the program's focus must be carefully prioritized. Clearly identifying the costs and benefits of a program will assist in this prioritization process, but this is easier said than done. Frequently, the true costs of monitoring are not recognized and are, therefore, underestimated. Benefits are rarely evaluated, because they are difficult to quantify. The intent of this review is to assist the designers and managers of long-term ecological monitoring programs by providing a general framework for building and operating a cost-effective program. Previous considerations of monitoring costs have focused on sampling design optimization. We present cost considerations of monitoring in a broader context. We explore monitoring costs, including both budgetary costs--what dollars are spent on--and economic costs, which include opportunity costs. Often, the largest portion of a monitoring program budget is spent on data collection, and other, critical aspects of the program, such as scientific oversight, training, data management, quality assurance, and reporting, are neglected. Recognizing and budgeting for all program costs is therefore a key factor in a program's longevity. The close relationship between statistical issues and cost is discussed, highlighting the importance of sampling design, replication and power, and comparing the costs of alternative designs through pilot studies and simulation modeling. A monitoring program development process that includes explicit checkpoints for considering costs is presented. The first checkpoint occur during the setting of objectives and during sampling design optimization. The last checkpoint occurs once the basic shape of the program is known, and the costs and benefits, or alternatively the cost

  12. Long-term hydrology and water quality of a drained pine plantation in North Carolina

    Treesearch

    D.M. Amatya; R.W. Skaggs

    2011-01-01

    Long-term data provide a basis for understanding natural variability, reducing uncertainty in model inputs and parameter estimation, and developing new hypotheses. This article evaluates 21 years (1988-2008) of hydrologic data and 17 years (1988-2005) of water quality data from a drained pine plantation in eastern North Carolina. The plantation age was 14 years at the...

  13. Recommended features of protocols for long-term ecological monitoring

    USGS Publications Warehouse

    Oakley, Karen L.; Boudreau, Susan L.; Humphrey, Sioux-Z

    2001-01-01

    In 1991, the National Park Service (NPS) selected seven parks to serve as prototypes for development of a long-term ecological monitoring program. Denali National Park and Preserve was one of the prototype parks selected. The principal focus of this national program was to detect and document resource changes and to understand the forces driving those changes. One of the major tasks of each prototype park was to develop monitoring protocols. In this paper, we discuss some lessons learned and what we believe to be the most important features of protocols.One of the many lessons we have learned is that monitoring protocols vary greatly in content and format. This variation leads to confusion about what information protocols should contain and how they should be formatted. Problems we have observed in existing protocols include (1) not providing enough detail, (2) omitting critical topics (such as data management), and (3) mixing explanation with instructions. Once written, protocols often sit on the shelf to collect dust, allowing methods changes to occur without being adequately considered, tested, or documented. Because a lengthy and costly research effort is often needed to develop protocols, a vision of what the final product should look like is helpful. Based on our involvement with the prototype monitoring program for Denali (Oakley and Boudreau 2000), we recommend key features of protocols, including a scheme for linking protocols to data in the data management system and for tracking protocol revisions. A protocol system is crucial for producing long-term data sets of known quality that meet program objectives.

  14. Long-term monitoring of marine gas leakage

    NASA Astrophysics Data System (ADS)

    Spickenbom, Kai; Faber, Eckhard; Poggenburg, Jürgen; Seeger, Christian; Furche, Markus

    2010-05-01

    The sequestration of CO2 in sub-seabed geological formations is one of the Carbon Capture and Storage (CCS) strategies currently under study. Although offshore operations are significantly more expensive than comparable onshore operations, the growing public resistance against onshore CCS projects makes sub-seabed storage a promising option. Even after a thorough review of the geological setting, there is always the possibility of leakage from the reservoir. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. The basic design of the monitoring system builds on our experience in volcano monitoring. Early prototypes were composed of a raft floating on the surface of a mud volcano, carrying sensors for CO2 flux and concentration, data storage and transmission, and power supply by battery-buffered solar panels. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, connected by a flexible tube. This setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. A system for unattended long-term monitoring in a marine environment has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system consists of a funnel-shaped gas collector, a sensor head and pressure housings for electronics and power supply. Since this setup is inexpensive, it can be deployed in numbers to cover larger areas. By addition of multi-channel data loggers, data

  15. Environmental Flows: Evaluating Long-Term Baselines for Hydrological Regime Change in the Southern United States

    NASA Astrophysics Data System (ADS)

    Deines, A. M.; Morrison, A. M.; Menzie, C.

    2016-12-01

    The wide variety of ecosystem services associated with running fresh waters are dependent on an assortment of flow conditions including timing and duration of seasonal floods as well as intermittent flows, such as storm peaks. Modern methods of assessing environmental flows consider hydrological regime change by comparing actual or simulated baseline flow conditions against putatively altered regime flows. These calculated flow changes are used as inputs to models of ecosystem responses such as for fish populations, inundated habitat area, or nutrient supplies. However, common and recommended tools and software used to make flow comparisons between putative regimes lack robust mechanisms for evaluating the significance of hydrological regime change in the context of long-term (multiple decades, centuries, or greater) trends, such as climatic conditions, or the facility to determine the existence and causes of regime changes when no obvious discontinuity exists, such as the construction of a dam. As such, environmental flow decisions based on short (recent) baseline records or baseline records assumed to represent stable hydrological conditions may lead to inefficient water use and ecosystem services distribution. Here we examine long-term patterns in discharge, the frequency and severity of regional droughts, and the Atlantic Multidecadal Oscillation to better understand the occurrence and causes of hydrological regime change in rivers in the Southern United States. For each river we ask: 1) Has hydrological regime change occurred? 2) To what degree is observed regime change associated with regional climatic drivers? 3) How might environmental flows suggested by current methods (e.g. the USGS Hydroecological Integrity Assessment or the Indicators of Hydrologic Alteration software) compare with flows derived by additional consideration of long-term drivers of hydrological change? We discuss the different temporal scales through which climate can influence a

  16. Monitor the Long-Term Stability of FGS 3 Revised

    NASA Astrophysics Data System (ADS)

    Jefferys, William

    1992-06-01

    THIS PROPOSAL CONTAINS A SUBSET OF THE LONG-TERM STABILITY TEST. THIS PROPOSAL IS NOT TO BE RUN ON THE SPACECRAFT IN THIS FORM. THE TARGET LIST AND EXPOSURE LOGSHEET CONTAIN THE ASTROMETRYPART OF THIS TEST. THE REMAINDER OF THE PROPOSAL IS ADUMMY TO ALLOW IT TO PASS THROUGH RPSS VALIDATION. The goal of these measurements is to monitor the internal positional stability of the FGSs by measuring many stars in the M35 check field repeatedly over a one year period. The results of these measurements are the stability characteristics of the FGS to allow an estimate of differential corrections to OFAD and Plate Scale. This is an ecliptic field. During each of two primary orientations, we will secure observations over a 130 day span, roughly every 30 days. THIS IS AN FGS 3 TEST

  17. Long-term spectropolarimetric monitoring of the cool supergiant betelgeuse

    NASA Astrophysics Data System (ADS)

    Bedecarrax, I.; Petit, P.; Aurière, M.; Grunhut, J.; Wade, G.; Chiavassa, A.; Donati, J.-F.; Konstantinova-Antova, R.; Perrin, G.

    2013-05-01

    We report on a long-term monitoring of the cool supergiant Betelgeuse, using the NARVAL and ESPaDOnS high-resolution spectropolarimeters, respectively installed at Telescope Bernard Lyot (Pic du Midi Observatory, France) and at the Canada-France-Hawaii Telescope (Mauna Kea Observatory, Hawaii). The data set, constituted of circularly polarized (Stokes V) and intensity (Stokes I) spectra, was collected between 2010 and 2012. We investigate here the temporal evolution of magnetic field, convection and temperature at photospheric level, using simultaneous measurements of the longitudinal magnetic field component, the core emission of the Ca II infrared triplet, the line-depth ratio of selected photospheric lines and the radial velocity of the star.

  18. The essential value of long-term experimental data for hydrology and water management

    NASA Astrophysics Data System (ADS)

    Tetzlaff, Doerthe; Carey, Sean K.; McNamara, James P.; Laudon, Hjalmar; Soulsby, Chris

    2017-04-01

    Observations and data from long-term experimental watersheds are the foundation of hydrology as a geoscience. They allow us to benchmark process understanding, observe trends and natural cycles, and are prerequisites for testing predictive models. Long-term experimental watersheds also are places where new measurement technologies are developed. These studies offer a crucial evidence base for understanding and managing the provision of clean water supplies, predicting and mitigating the effects of floods, and protecting ecosystem services provided by rivers and wetlands. They also show how to manage land and water in an integrated, sustainable way that reduces environmental and economic costs.

  19. Future Research Needs for Long-Term Monitoring Program Design

    NASA Astrophysics Data System (ADS)

    Minsker, B. S.; Dougherty, D. E.; Williams, G.; Davis, C. B.

    2002-05-01

    An ASCE Task Committee is preparing a manual of practice on long-term monitoring (LTM) program design for groundwater (including vadose) systems. The committee has identified several areas for future research and technology transfer that will improve LTM design. LTM is an on-going activity aimed at assessing remediation performance, containment integrity, and/or continued non-contamination of the subsurface and groundwater. LTM has different goals and needs than site characterization, so data collection, analysis, and modeling approaches must evolve to meet these new needs. Many new sensors and field measurement methods for LTM are under development, and research is needed to develop methods to integrate these data sources with more traditional samples drawn from wells to maximize the information extracted from the data. These new methods need to be able to provide information to assess performance of waste management activities and to understand long-term behavior by optimizing the collection and analysis of multiple data types. The effects of different sampling and measurement methods on monitoring results and their implications for the design of LTM programs also require study. Additional research needs include development of methods to assess flow control strategies, to identify monitoring redundancy in fractured media, and to better incorporate uncertainty into the LTM design process. Well-tested, documented, and open datasets are needed to validate and compare the performance of methods. Technology transfer activities must address the need for evolution of regulatory guidance to encompass the types of data analysis that are needed to assess remediation or containment performance, to identify appropriate LTM plans, and to incorporate novel data collection methods that may support better decision quality through the use of more extensive measurements with lower individual precisions than traditional measurements or may measure an indicator parameter rather than

  20. Long-term monitoring of western aspen--lessons learned.

    PubMed

    Strand, E K; Bunting, S C; Starcevich, L A; Nahorniak, M T; Dicus, G; Garrett, L K

    2015-08-01

    Aspen woodland is an important ecosystem in the western United States. Aspen is currently declining in western mountains; stressors include conifer expansion due to fire suppression, drought, disease, heavy wildlife and livestock use, and human development. Forecasting of tree species distributions under future climate scenarios predicts severe losses of western aspen within the next 50 years. As a result, aspen has been selected as one of 14 vital signs for long-term monitoring by the National Park Service Upper Columbia Basin Network. This article describes the development of a monitoring protocol for aspen including inventory mapping, selection of sampling locations, statistical considerations, a method for accounting for spatial dependence, field sampling strategies, and data management. We emphasize the importance of collecting pilot data for use in statistical power analysis and semi-variogram analysis prior to protocol implementation. Given the spatial and temporal variability within aspen stem size classes, we recommend implementing permanent plots that are distributed spatially within and among stands. Because of our careful statistical design, we were able to detect change between sampling periods with desired confidence and power. Engaging a protocol development and implementation team with necessary and complementary knowledge and skills is critical for success. Besides the project leader, we engaged field sampling personnel, GIS specialists, statisticians, and a data management specialist. We underline the importance of frequent communication with park personnel and network coordinators.

  1. Long-term flow monitoring of submarine gas emanations

    NASA Astrophysics Data System (ADS)

    Spickenbom, K.; Faber, E.; Poggenburg, J.; Seeger, C.

    2009-04-01

    One of the Carbon Capture and Storage (CCS) strategies currently under study is the sequestration of CO2 in sub-seabed geological formations. Even after a thorough review of the geological setting, there is the possibility of leaks from the reservoirs. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. Technically, however, these systems are not limited to CO2 but can be used for monitoring of any free gas emission (bubbles) on the seafloor. The basic design of the gas flow sensor system was derived from former prototypes developed for monitoring CO2 and CH4 on mud volcanoes in Azerbaijan. This design was composed of a raft floating on the surface above the gas vent to collect the bubbles. Sensors for CO2 flux and concentration and electronics for data storage and transmission were mounted on the raft, together with battery-buffered solar panels for power supply. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, which is then guided above water level through a flexible tube. Besides some technical problems (condensed water in the tube, movement of the buoys due to waves leading to biased measurement of flow rates), this setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. To allow unattended long-term monitoring in a submarine environment, such a system has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system

  2. Long-term optical spectral monitoring of NGC 7469

    NASA Astrophysics Data System (ADS)

    Shapovalova, Alla I.; Popović, L. Č.; Chavushyan, V. H.; Afanasiev, V. L.; Ilić, D.; Kovačević, A.; Burenkov, A. N.; Kollatschny, W.; Spiridonova, O.; Valdes, J. R.; Bochkarev, N. G.; Patino-Alvarez, V.; Carrasco, L.; Zhdanova, V. E.

    2017-01-01

    We present the results of the long-term (20-year period, from 1996 to 2015) optical spectral monitoring of the Seyfert 1 galaxy NGC 7469. The variation in the light-curves of the broad He II λ4686Å Hβ and Hα lines, and the continuum at 5100 Å and 6300 Å have been explored. The maximum of activity was in 1998, and the variability in the continuum and lines seems to have two periods of around 1200 and 2600 days, however these periodicities should be taken with caution because of the red-noise. Beside these periods, there are several short-term (1-5 days) flare-like events in the light-curves. There are good correlations between the continuum fluxes and Hα and Hβ line fluxes, but significantly smaller correlation between the He II and continuum. We found that the time-lags between the continuum and broad lines are different for Hβ (˜20 l.d.) and Hα (˜3 l.d.), and that He II also has a smaller lag (˜2-3 l.d.). The Hα and Hβ line profiles show a slight red asymmetry, and the broad line profiles did not changed in the 20-year period. Using the lags and widths of Hα and Hβ we estimated the central black hole mass and found that it is ˜(1 - 6) · 107 M⊙, which is in agreement with previous reverberation estimates.

  3. Long term landslide monitoring with Ground Based SAR

    NASA Astrophysics Data System (ADS)

    Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi

    2014-05-01

    In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D

  4. Long-term monitoring for nanomedicine implants and drugs

    NASA Astrophysics Data System (ADS)

    Kendall, Michaela; Lynch, Iseult

    2016-03-01

    Increasing globalization means that traditional occupational epidemiological approaches may no longer apply, suggesting a need for an alternative model to assess the long-term impact of nanomaterial exposure on health.

  5. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Cost

    SciTech Connect

    Eddy-Dilek, Carol A.; Looney, Brian B.; Seaman, John; Kmetz, Thomas

    2013-01-10

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the

  6. Long-term monitoring of stream bank stability under different vegetation cover

    NASA Astrophysics Data System (ADS)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  7. Long-term monitoring of river basins: strengths and weaknesses, opportunities and threats

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T. P.

    2016-12-01

    In a world where equilibrium is more and more uncommon, monitoring is an essential way to discover whether undesirable change is taking place. Monitoring requires a deliberate plan of action: the regular collection and processing of information. Long-term data reveal important patterns, allowing trends, cycles, and rare events to be identified. This is particularly important for complex systems where signals may be subtle and slow to emerge. Moreover, very long data sets are essential to test hypotheses undreamt of at the time the monitoring was started. This overview includes long time series from UK river basins showing how hydrology and water quality have changed over time - and continue to change. An important conclusion is the long time frame of system recovery, well beyond the normal lifetime of individual governments or research grants. At a time of increasing hydroclimatic variability, long time series remain crucially important; in particular, continuity of observations is vital at key benchmark sites.

  8. The long-term hydrological effect of forest stands on the stability of slopes

    NASA Astrophysics Data System (ADS)

    Bogaard, T. A.; Meng, W.; van Beek, L. P. H.

    2012-04-01

    Forest is widely known to improve slope stability as a result of mechanical and hydrological effects. While the mechanics underlying the stabilizing process of root reinforcement are well understood and quantified, the influence of forest on the occurrence of critical hydrological conditions in terms of suction or pore pressure remains uncertain. Due to seasonal and inter-annual fluctuations, the stabilizing influence of evaporation and transpiration is difficult to isolate from the overall noise of the hydrological signal. More long-term effects of forest stands on soil development are highly variable and thus difficult to observe and quantify. Often these effects are ambivalent, having potentially a stabilizing or destabilizing influence on a slope under particular conditions (e.g., more structured soils leading to both rapid infiltration and drainage). Consequently, it can be postulated that forests will hydrologically influence the magnitude-frequency distribution of landsliding, not only at the stand level but also on a regional scale through the groundwater system. The overall aim of this research is to understand and quantify the stabilizing hydrological effect of forests on potentially unstable slopes. To this end, we focus on the changes in the magnitude-frequency distribution of landsliding that arise as a result of variations in evapotranspiration losses over the life cycle of stands. Temporal variations in evapotranspiration comprise first of all the interception that can account for an important amount of evaporation from a forest, and that changes with seasonal and annual variations in the interception capacity of the canopy and forest floor. Transpiration also represents an important loss that varies over the various growth stages of a forest stand. Based on a literature review of water consumption by tree species and water balance studies of forested catchments we defined the potential transpiration for different growth stages. This information we

  9. Ambulatory long-term pH monitoring in pigs.

    PubMed

    Gawad, K A; Wachowiak, R; Rempf, C; Tiefenbacher, W J; Strate, T; Achilles, E G; Blöchle, C; Izbicki, J R

    2003-10-01

    refluxes increased significantly to 166.1 (+/-21.8) and the number of long refluxes to 17.74 (+/-3.35). The total time of pH below 4 increased to 371.3 (+/-62) min so that the fraction time pH below 4 was 14.5% ( p = 0.0006). pH monitoring should be mandatory in any investigation of antireflux therapy. Our method is easy and secure to perform. It is suitable for other gastrointestinal investigations (Bilitec, long-term manometry) that could be carried out using the same technique. The described data represent the basis for other investigations of experimental antireflux therapy.

  10. An analysis of the long term hydrological dynamics of the Careser, a rapidly retreating Alpine glacier.

    NASA Astrophysics Data System (ADS)

    Stella, Elisa; Meneghetti, Erica; Cainelli, Oscar; Bellin, Alberto

    2017-04-01

    Alpine glaciers are shrinking at a relentless pace, as an effect of the increasing temperature and the concomitant reduction of snowfall that the Alpine region experienced in the last 40 years. The impact of these changes is relevant, given the importance of the Alps from ecological and economical points of view. While the ubiquitous reduction of glaciers mass through the Alps has been reported in a number of studies, its effect on streamflow is less studied, mainly because much less data are available on streamflow emerging from glaciers. In the present work we analyze a long streamflow time series, recorded since the 70s, in the Careser creek emerging from the Careser Glacier, which mass has been monitored since 1920, first discontinuously and then continuously from 1967. Because of these long-term observations, the Careser has been classified as one of the reference glaciers by the World Glacier Monitoring Service, which provides balances data every two years. We performed a comprehensive analysis of multiscale variations of precipitation, temperature, water discharge and glacier mass. In addition we explored the correlations between streamflow and climatic drivers at monthly and subdaily scales. We observed significant changes in the timing of streamflow, with anticipated snow melting and a reduction of summer runoff, while at the annual scale the increase of ice-melting offsets runoff reduction caused by less winter precipitation falling as snow. In fact, in most years since the 1990 ice melts from beginning of May to October, thereby causing a dramatic reduction of the glacier volume. However, in the last years the significant reduction of the glacier surface, attenuated this tendency to increase the total annual runoff volume. At the sub-daily scale we observed a progressive increase of the difference between the maximum and minimum water discharge. Overall the hydrological regime changes significantly as an effect of the rise in temperature and the lower

  11. Long-term monitoring sites and trends at the Marcell Experimental Forest. Chapter 2.

    Treesearch

    Stephen D. Sebestyen; Carrie Dorrance; Donna M. Olson; Elon S. Verry; Randall K. Kolka; Art E. Elling; Richard. Kyllander

    2011-01-01

    The MEF is one of few long-term research programs on the hydrology and ecology of undrained peatlands in boreal forests. No other site in the Experimental Forest and Range Network of the Forest Service and few sites around the globe have studied the hydrology and biogeochemistry of peatland watersheds with the intensity or longevity as on the MEF. In this chapter, we...

  12. Long-term hydrologic effects on marsh plant community structure in the southern Everglades

    USGS Publications Warehouse

    Busch, David E.; Loftus, W.F.; Bass, O.L.

    1998-01-01

    Although large-scale transformation of Everglades landscapes has occurred during the past century, the patterns of association among hydrologic factors and southern Everglades freshwater marsh vegetation have not been well-defined. We used a 10-year data base on the aquatic biota of Shark Slough to classify vegetation and describe plant community change in intermediate- to long-hydroperiod Everglades marshes. Study area marsh vegetation was quantitatively grouped into associations dominated by 1) Cladium jamaicense, 2) a group of emergents including Eleocharis cellulosa, Sagittaria lancifolia, and Rhyncospora tracyi, 3) taxa associated with algal mats (Utricularia spp. and Bacopa caroliniana), and 4) the grasses Panicum hemitomon and Paspalidium geminatum. During the decade evaluated, the range of water depths that characterized our study sites approached both extremes depicted in the 40-year hydrologic record for the region. Water depths were near the long-term average during the mid-1980s, declined sharply during a late 1980s drought, and underwent a prolonged increase from 1991 through 1995. Overall macrophyte cover varied inversely with water depth, while the response of periphyton was more complex. An ordination analysis, based on plant species abundance, revealed that study area vegetation structure was associated with hydrologic patterns. Marsh plant community structure showed evidence of cyclic interannual variation corresponding to hydrologic change over the decade evaluated. Lower water depths, the occurrence of marl substrates, and high periphyton cover were correlated. These factors contributed to reduced macrophyte cover in portions of the study area from which water had been diverted.

  13. Long-Term Hydrological Reconstruction From a Beaver Meadow Using Testate Amoebae

    NASA Astrophysics Data System (ADS)

    Von Ness, K.; Loisel, J.; Karran, D. J.; Westbrook, C.; Kohlmeyer, C.

    2016-12-01

    Beaver ponds contribute up to 0.8 Tg/yr of atmospheric methane (CH4) globally (Whitfield et al., 2014) and were found to be the largest CH4 emitters among all the wetland types in boreal environments (Roulet et al., 1992). However, the sources and underlying mechanisms of carbon emission and sequestration in beaver ponds requires further elucidation. Here we present the historical development of a beaver meadow located in the Sibbald Research Wetland in the Rocky Mountains of Kananaskis Provincial Park, Alberta, Canada. We use a combination of testate amoebae, plant macrofossils, and other geochemical proxies to provide high-resolution reconstructions along three peat cores extracted in hydrologically distinct portions of the meadow. To our knowledge, this is the first attempt at reconstructing long-term hydrological conditions in these systems. Testate amoebae (Protozoa: Rhizopoda) are single-celled organisms that inhabit moist substrates and produce a decay-resistant test. As each taxon generally occupies a discrete ecological niche related to soil moisture and pH, testate amoebae are good indicators of past and ongoing hydrological change. Preliminary analysis of testate amoebae assemblages downcore suggests that this proxy is suitable to reconstruct hydrological changes in meadows, with wetter and drier communities being in good agreement with wetter and drier plant macrofossil assemblages. The nitrogen isotopic signature of peat samples (ongoing) will be used as a proxy for changes in nutrient input; it could become a proxy for past beaver activity.

  14. Long-term monitoring of temperature in the subsoil using Fiber Optic Distributed Sensing

    NASA Astrophysics Data System (ADS)

    Susanto, Kusnahadi; Malet, Jean-Philippe; Gance, Julien; Marc, Vincent

    2017-04-01

    Monitoring changes in soil water content in the vadose zone of soils is a great importance for various hydrological, agronomical, ecological and environmental studies. By using soil temperature measurements with Fiber-Optic Distributed Temperature Sensing (FO-DTS), we can indirectly document soil water changes at high spatial and temporal frequency. In this research, we installed an observatory of soil temperature on a representative black marl slope of the long-term Draix-Bléone hydrological observatory (South French Alps, Réseau de Basins-Versants / RBV). A 350 m long reinforced fiber optic cable was buried at 0.05, 0.10 and 0.15 m of depths and installed at the soil surface. The total length of the monitored profile is 60 m, and it three different soil units consisting of argillaceous weathered black marls, silty colluvium under grass and silty colluvium under forest. Soil temperature is measured every 6 minutes at a spatial resolution of 0.50 m using a double-ended configuration. Both passive and active (heating of the FO) is used to document soil water changes. We present the analysis of a period of 6 months of temperature measurements (January-July 2016). Changes in soil temperature at various temporal scales (rainfall event, season) and for the three units are discussed. These changes indicate different processes of water infiltration at different velocities in relation to the presence of roots and the soil permeability. We further test several inversion strategies to estimate soil water content from the thermal diffusivity of the soils using simple and more complex thermal models. Some limitations of using this indirect technique for long-term monitoring are also presented. The work is supported by the research project HYDROSLIDE and the large infrastructure project CRITEX funded by the French Research Agency (ANR).

  15. The Cottonwood Lake study area, a long-term wetland ecosystem monitoring site

    USGS Publications Warehouse

    Mushet, David M.; Euliss, Ned H.

    2012-01-01

    The Cottonwood Lake study area is one of only three long-term wetland ecosystem monitoring sites in the prairie pothole region of North America; the other two are Orchid Meadows in South Dakota and St. Denis in Saskatchewan. Of the three, Cottonwood Lake has, by far, the longest continuous data-collection record. Research was initiated at the study area in 1966, and intensive investigations of the hydrology, chemistry, and biology of prairie pothole wetlands continue at the site today. This fact sheet describes the study area, provides an overview of wetland ecology research that has been conducted at the site in the past, and provides an introduction to current work being conducted at the study area by USGS scientists.

  16. A long-term national-scale hydrological simulation of river flows across Great Britain

    NASA Astrophysics Data System (ADS)

    Rudd, Alison; Bell, Victoria; Kay, Alison; Davies, Helen

    2016-04-01

    The Centre for Ecology and Hydrology's national-scale hydrological model, Grid-to-Grid, can be used to estimate river flows and soil moisture across Great Britain. It is used operationally at the flood forecasting centre and there have been a number of studies on floods and climate change using this model, however to date, low flows and droughts have been comparatively neglected. The launch of a five-year NERC-funded interdisciplinary research programme "UK Droughts and Water Scarcity" is allowing us to address this. Our work on one of these projects, MaRIUS (Managing the Risks, Impacts and Uncertainties of droughts and water Scarcity), uses the model to identify drought periods. The model is driven by a new long-term (1890 - 2012) precipitation dataset (CEH-GEAR) and estimates of potential evaporation. Model performance is assessed against observed river flows for both high and low flows. Gridded time series of monthly mean river flow and soil moisture from the model have been analysed to identify historic hydrological droughts across Great Britain using concepts such as severity and duration. We also investigate how drought occurrence and severity have changed over the last 100 years and identify regions that have been particularly susceptible to drought.

  17. Monitoring change in hydrological systems.

    PubMed

    Burt, T P

    2003-07-01

    Monitoring is the process by which we keep the behaviour of the environment in view, providing essential information on how systems are changing and how fast, and allows us to learn to adjust what we are doing to get the best out of the system. This paper reviews the ways in which long-term study of the natural environment can be achieved. Three hydrological examples are then presented: nitrate leaching in a small agricultural catchment in south west England; the impact of drought on the peat-covered headwaters of the River Tees in northern England; and the impact of clear-felling on forest hydrology and nutrient export in the southern Appalachians. Monitoring programmes, if well designed and properly maintained, can provide important evidence of environmental change, revealing unexpected patterns and stimulating experimental research. The existence of long, reliable data sets considerably increases our ability to make informed decisions about the way in which we manage our river catchments.

  18. Integration of Research with Long-Term Monitoring: Breeding Wood Ducks on the Savannah River Site

    SciTech Connect

    Kennamer, R.A.; Hepp, G.R.

    2000-10-01

    In 1981, long-term monitoring of breeding wood ducks was initiated. Females were marked and recaptured for 15 years and annual population parameters were developed. Precise parameter estimates were possible due to high capture rates. The results contribute to the long-term understanding of wood duck populations.

  19. Simulating long-term landcover change and forest hydrology dynamics in a Rocky Mountain watershed

    NASA Astrophysics Data System (ADS)

    Ahl, R. S.; Zuuring, H. R.

    2008-05-01

    Snow is the dominant source of water in the Rocky Mountains. In forested watersheds, patterns of snow accumulation, melt and evapotranspiration are strongly influenced by canopy and other vegetation characteristics. Changes in the extent, composition, and configuration of the forest canopy over time due to succession or disturbance processes can lead to measurable changes in streamflow and water yield. Removal of forest cover generally increases streamflow due to reduced canopy interception and evapotranspiration. Water, yield increases and advanced peak discharge are attributed to increased snow accumulation, and enhanced melt rates in forest openings. Because knowledge of long-term watershed-level streamflow responses to landcover dynamics is limited by relatively short-term gauge data, a modeling approach that takes advantage of existing data and combines vegetation and hydrologic simulation systems to evaluate these interactions is presented. Time-series vegetation changes were simulated with the SIMPPLLE (Simulating Patterns and Processes at Landscape ScaLEs), and integrated into hydrologic simulations performed with SWAT (Soil and Water Assessment Tool). Results suggest that both vegetation and hydrologic characteristics of the research watershed are at the limits of their estimated natural ranges. Although simulated species composition remained fairly stable over time, the size and connectivity of current landcover patches are at the upper end of their estimated temporal distribution. The large proportion and continuous extent of forest cover associated with current conditions coincide with water yield, peak discharge rates, and flow variability that are at the low end of their modeled distributions. The integrated modeling approach described herein should be applicable in other ecosystems given knowledge of biophysical interactions and availability of appropriate data. By gaining an understanding of the possible range of variability due to natural

  20. Smartphone based monitoring system for long-term sleep assessment.

    PubMed

    Domingues, Alexandre

    2015-01-01

    The diagnosis of sleep disorders, highly prevalent in Western countries, typically involves sophisticated procedures and equipment that are highly intrusive to the patient. The high processing capabilities and storage capacity of current portable devices, together with a big range of available sensors, many of them with wireless capabilities, create new opportunities and change the paradigms in sleep studies. In this work, a smartphone based sleep monitoring system is presented along with the details of the hardware, software and algorithm implementation. The aim of this system is to provide a way for subjects, with no pre-diagnosed sleep disorders, to monitor their sleep habits, and on the initial screening of abnormal sleep patterns.

  1. Representativeness of shorter measurement sessions in long-term indoor air monitoring.

    PubMed

    Maciejewska, M; Szczurek, A

    2015-02-01

    Indoor air quality (IAQ) considerably influences health, comfort and the overall performance of people who spend most of their lives in confined spaces. For this reason, there is a strong need to develop methods for IAQ assessment. The fundamental issue in the quantitative determination of IAQ is the duration of measurements. Its inadequate choice may result in providing incorrect information and this potentially leads to wrong conclusions. The most complete information may be acquired through long-term monitoring. However it is typically perceived as impractical due to time and cost load. The aim of this study was to determine whether long-term monitoring can be adequately represented by a shorter measurement session. There were considered three measurable quantities: temperature, relative humidity and carbon dioxide concentration. They are commonly recognized as indicatives for IAQ and may be readily monitored. Scaled Kullback-Leibler divergence, also called relative entropy, was applied as a measure of data representativeness. We considered long-term monitoring in a range from 1 to 9 months. Based on our work, the representative data on CO2 concentration may be acquired while performing measurements during 20% of time dedicated to long-term monitoring. In the case of temperature and relative humidity the respective time demand was 50% of long-term monitoring. From our results, in indoor air monitoring strategies, there could be considered shorter measurement sessions, while still collecting data which are representative for long-term monitoring.

  2. Estimating hydrological parameters based on rainfall patterns in river basins with no long-term historical observations

    NASA Astrophysics Data System (ADS)

    Shi, Haiyun; Li, Tiejian

    2017-10-01

    Small and medium river basins may frequently suffer from the destructive hydrological extremes (e.g., floods). However, the common problem in such regions is a lack of long-term historical observations. Meteorological and hydrological station networks in some river basins in China were newly-built only a few years ago, and it is infeasible to estimate hydrological parameters from calibration and validation with a long time period directly. This paper aims to develop a method to estimate the feasible hydrological parameters based on rainfall patterns in such regions. Digital Yellow River Integrated Model (DYRIM) is adopted as the hydrological model, and the feasible hydrological parameters can be estimated based on limited rainfall-runoff events. First, for each rainfall-runoff event, the parameters are independently calibrated with the observed rainfall and hydrological data using a double-layer parallel system. Then, the performances of the simulation results are comprehensively evaluated, and the value ranges of the parameters can be obtained. Finally, the statistical relationships between hydrological parameters and rainfall patterns (i.e., amount and intensity) are established, which are expressed by the statistical equations and the distribution of hydrological parameters with the rainfall patterns. From a sample demonstration, it is concluded that this parameter estimation method will be useful to estimate the feasible hydrological parameters for future rainfall-runoff events in river basins with no long-term historical observations.

  3. Long term wireless ambient monitoring of heritage buildings

    NASA Astrophysics Data System (ADS)

    Wu, Huayong; Pozzi, Matteo; Zonta, Daniele; Zanon, Paolo; Ceriotti, Matteo; Mottola, Luca; Picco, Gian Pietro; Murphy, Amy L.; Guna, Stefan; Corrà, Michele

    2010-04-01

    Motivated by the preservation of an artistic treasure, the fresco of the "Cycle of the Months" on the second floor in an historic tower, Torre Aquila, a wireless sensor network (WSN) has been developed and installed for permanent health monitoring. The monitoring scheme covers both static and dynamic evaluation of the tower structural integrity from local to global scale and consists of 17 nodes, including 2 long length fiber optic sensors (FOS), 3 accelerometers and 12 environmental nodes. The system has been working for 1.5 years and has been debugged and updated both as to hardware and software. This paper focuses mainly on the ambient vibration analysis used to investigate the performance of the sensor nodes and structural properties of the tower. Initial ambient vibration monitoring shows that cyclic environmental factors, such as traffic flow, are not the dominant cause of tower vibration; and the vibration levels of the tower in different axes are not large enough to be a critical issue calling for attention under current conditions. It proves that the WSN is an effective tool, capable of providing information relevant to safety assessment of the tower.

  4. Long-term environmental monitoring at Hanford, Washington

    SciTech Connect

    Gray, R.H.

    1990-11-01

    Environmental monitoring has been an ongoing activity on the US Department of Energy's Hanford Site in southeastern Washington for over 45 years. Objectives are to detect and assess potential impacts of Site operations (nuclear and nonnuclear) on air, surface and ground water, foodstuffs, fish, wildlife, soils and vegetation. Data from monitoring efforts are used to calculate the overall radiological dose to humans working onsite or residing in nearby communities. In 1988, measured Hanford Site perimeter concentrations of airborne radionuclides were below applicable guidelines. In addition to monitoring radioactivity in fish and wildlife, population numbers of key species are determined. Chinook salmon (Oncorhynchus tshawytscha) spawning in the Columbia River at Hanford has increased in recent years with a concomitant increase in winter roosting activity of bald eagles (Haliaeetus leucocephalus). An elk (Cervus elaphus) herd, established by immigration in 1972, is increasing. The Hanford Site also serves as a refuge for Canada good (Branta canadensis) and great blue heron (Ardea herodias), and various plants and other animals, e.g., (Odocoileus hemionus) and coyote (Canis latrans). 32 refs., 4 figs.

  5. AMMA-CATCH a Hydrological, Meteorological and Ecological Long Term Observatory on West Africa : Some Recent Results

    NASA Astrophysics Data System (ADS)

    Galle, S.; Grippa, M.; Peugeot, C.; Bouzou Moussa, I.; Cappelaere, B.; Demarty, J.; Mougin, E.; Lebel, T.; Chaffard, V.

    2015-12-01

    AMMA-CATCH is a multi-scale observation system dedicated to long-term monitoring of the water cycle, the vegetation dynamics and their interaction with climate and water resources in West Africa. In the context of the global change, long-term observations are required to i) gain understanding in eco-hydrological processes over this highly contrasted region, ii) help their representation in Earth System Models, and iii) detect trends and infer their impacts on water resources and living conditions. It is made of three meso-scale sites (~ 1°x1°) in Mali, Niger and Benin, extending along the West African eco-climatic gradient. Within this regional window (5° by 9°), each of the three sites comprises a multi-scale set-up which helps documenting the components of the hydrologic budget and the evolutions of the surface conditions over a range of time scales: raingages, piezometers, river discharge stations, soil moisture and temperature profiles, turbulent fluxes measurements, LAI/biomass monitoring. This observation system has been continuously generating coherent datasets for 10 to 25 years depending on the datasets. It is jointly operated by French and African (Mali, Niger and Benin) research institutions. The data-base is available to the community through the website (www.amma-catch.org). AMMA-CATCH is a member of the French critical zone observatory network "Réseau des Bassins Versants", (RBV). AMMA-CATH participates to several global or regional observation networks, such as FluxNet, CarboAfrica, International Soil Moisture Networks (ISMN) and to calibration/validation campaigns for satellite missions such as SMOS (CNES, ESA), MEGHA-TROPIQUES (France/India) or SWAP(NASA). AMMA-CATCH fills a gap over a region, West Africa, where environmental data are largely lacking, and thus, it can usefully contribute to the international networking effort for environmental monitoring and research. Recent results on regional evolution of land cover, rainfall intensity and

  6. Long term monitoring of landslide: observation gravitational slope cycles

    NASA Astrophysics Data System (ADS)

    Palis, Edouard; Lebourg, Thomas; Vidal, Maurin

    2016-04-01

    Since several years of studies on landslides, we realized the role and subtle interactions that existed between the structural complexity, masses dynamics and complex internal circulation of fluids. Thus, to gain a better understanding of the processes taking place during the evolution of an unstable slope, an observational study is necessary. In this perspective, our team currently monitors slow moving landslide zones. The aim of such a monitoring is to gain a better knowledge of the links between external forcing (meteorological, seismological) and signals going out of the slope (kinematic, vibrations, electrical resistivity). In December 2000, a dramatic event affected the sandy/clayey landslide in the Southern Alpes Maritimes (France). A 10 meters high scarp appeared at the foot of the landslide and affected private yards nearby. This area then became a major concern for local authorities and understand the processes taking place, a scientific challenge. In order to understand the land-sliding reactivations and to quantify the natural cycles of deformations, we analyse the main factors of this complex system. After 10 years of observation we are now able to highlight some of the complex behaviours by the measurement of physical parameters (geophysical monitoring). A permanent 115 m ERT line (5 meters electrode spacing) has been installed and provides an acquisition daily since 2006. The daily acquisitions are now accompanied by continuous measurements from boreholes (thermometers, piezometers, tiltmeters) and pluviometry. We are able to control the whole monitoring from the lab, and all these data are transmitted in real time. The analysis of these large amounts of data over large time series allows the detection of seasonal cycles of surface activity. The deformation taking place can be assimilated to a near-elastic deformation and show a lateral decoupling on both sides of the fault cutting the landslide. These deformation cycles can be associated with the

  7. Long Term Monitoring Program: Comparative Analysis of the 2014 LTM Collection, September 23, 2015

    EPA Pesticide Factsheets

    The NBH long-term monitoring data are analyzed by EPA's Office of Research and Development, Atlantic Ecology Division, to assess spatial & temporal chemical and biological data trends & to evaluate the effects & effectiveness of Site remedial activities.

  8. Subsurface Remediation: Improving Long-Term Monitoring and Remedial Systems Performance Conference Proceedings

    EPA Pesticide Factsheets

    This document summarizes the presentations and workshops of a conference on improving long-term monitoring (LTM) and remedial systems performance that was held in St. Louis, Missouri between June 8th to 11th, 1999.

  9. 2016 RFA for Great Lakes Long-Term Biology Monitoring Program: Phytoplankton Component

    EPA Pesticide Factsheets

    This Request for Applications solicits applications from eligible entities for a cooperative agreement to be awarded for a project to continue the long-term monitoring of phytoplankton in the open waters of the Great Lakes.

  10. Long-term monitoring of Ark 120 with Swift

    NASA Astrophysics Data System (ADS)

    Gliozzi, M.; Papadakis, I. E.; Grupe, D.; Brinkmann, W. P.; Räth, C.

    2017-02-01

    We report the results of a six-month Swift monitoring campaign of Ark 120, a prototypical `bare' Seyfert 1 galaxy. The lack of intrinsic absorption combined with the nearly contemporaneous coverage of the ultraviolet (UV) and X-ray bands makes it possible to investigate the link between the accretion disc and the putative Comptonization corona. Our observations confirm the presence of substantial temporal variability, with the X-ray characterized by large-amplitude flux changes on time-scales of few days, while the variations in the UV bands are smoother and occur on time-scales of several weeks. The source also shows spectral variability with the X-ray spectrum steepening when the source is brighter. We do not detect any correlation between the UV flux and the X-ray spectral slope. A cross-correlation analysis suggests positive delays between X-rays and the UV emission, favouring a scenario of disc reprocessing. Although the strength of the correlation is moderate with a delay which is not well constrained (7.5 ± 7 d), it is nevertheless indicative of a very large disc reprocessing region, with a separation between the X-ray and the UV-emitting regions, which could be as large as 1000 rG. The Ark 120 correlation results are in agreement with those obtained in similar multiwavelength monitoring studies of active galactic nuclei (AGN). When combined together, the observations so far can be well described by a linear relation between the X-ray/UV delays and the mass of the central black hole. Within the context of the simplest scenario, where these delays correspond to light-travel times, the implied distance between the X-ray source and the optical/UV disc reprocessing region in these AGN should be of the order of many hundreds of gravitational radii.

  11. Long-term hydrological changes of the Aral Sea observed by satellites

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Wang, Menghua; Guo, Wei

    2014-06-01

    The Aral Sea has been shrinking since the former Soviet Union constructed irrigation projects to divert water from its main rivers in the 1960s. The diminishing of the Aral Sea is "one of the worst environmental disasters in the world" (from United Nations Secretary-General Ban Ki-moon). In this study, 33 years of satellite observations from Advanced Very High Resolution Radiometer (AVHRR) and 21 years of satellite altimetry sea level data from TOPEX/Poseidon, Jason-1, and Jason-2 are used to quantify the long-term hydrological changes in the Aral Sea. A simple algorithm with AVHRR channels 1 and 2 albedo is developed to identify and discriminate the water pixels from land and cloud. Thus, monthly water coverage in the region can be reliably generated. The water coverage maps since 1981 show constant decline of the Aral Sea. The coverage dropped from ˜4.7-4.8 × 104 km2 in 1981 to about ¼ of this value in the recent years. In fact, drastic hydrological change was observed in the main Aral Sea during the 2000s. In the South Aral Sea, sea level shows a steady decrease from 35 m above sea level to <26 m since 1993. Total loss of water storage since 1993 is estimated to be ˜2.0 × 102 km3 for the South Aral Sea with a rate of ˜16-20 km3/yr before 2002, and a smaller value after 2002. In 1990, the North Aral Sea was observed to separate from the main Aral Sea. Water coverage, sea level, and total water storage were kept relatively stable for the period between 1993 and 2013 in the North Aral Sea. A water level increase and coverage expansion occurred during the 2005-2006 period when a dam was built in 2005 between the North Aral Sea and the South-East Aral Sea.

  12. [Safety study of long-term video-electroencephalogram monitoring].

    PubMed

    Ley, M; Vivanco, R; Massot, A; Jiménez, J; Roquer, J; Rocamora, R

    2014-01-01

    The increased morbidity and mortality and poorer quality of life associated with drug-resistant epilepsy justify admitting patients to epilepsy monitoring units (EMU). These units employ methods that promote the occurrence of seizures, which involves a risk of secondary adverse events. The aim of our study is to characterise and quantify these adverse events in a Spanish EMU. A descriptive, longitudinal and retrospective study of patients admitted consecutively to our EMU. Patients admitted due to status epilepticus, clusters of seizures, or as participants in a clinical trial were excluded. We included 175 patients, of whom 92.1% (161) did not suffer any adverse events. Status epilepticus was present in 3.4% (6); 1.7% (3) had traumatic injury, 1.7% (3) had interictal or postictal psychosis, and 1.1% (2) had cardiorespiratory impairment. There were no risk factors associated with these adverse events. The most frequently-identified adverse events were status epilepticus, traumatic injury, interictal or postictal psychosis, and cardiorespiratory disorders. The frequency of these adverse events was similar to that seen in international literature. The complications detected do not contraindicate VEEGM. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  13. River networks dampen long-term hydrological signals of climate change

    NASA Astrophysics Data System (ADS)

    Chezik, K. A.; Anderson, S. C.; Moore, J. W.

    2017-07-01

    River networks may dampen local hydrologic signals of climate change through the aggregation of upstream climate portfolio assets. Here we examine this hypothesis using flow and climate trend estimates (1970-2007) at 55 hydrometric gauge stations and across their contributing watersheds' within the Fraser River basin in British Columbia, Canada. Using a null hypothesis framework, we compared our observed attenuation of river flow trends as a function of increasing area and climate trend diversity, with null-simulated estimates to gauge the likelihood and strength of our observations. We found the Fraser River reduced variability in downstream long-term discharge by >91%, with >3.1 times the attenuation than would be expected under null simulation. Although the strength of dampening varied seasonally, our findings indicate that large free-flowing rivers offer a powerful and largely unappreciated process of climate change mitigation. River networks that integrate a diverse climate portfolio can dampen local extremes and offer climate change relief to riverine biota.

  14. Long-term trends in climate and hydrology in an agricultural headwater watershed of central Pennsylvania, USA

    USDA-ARS?s Scientific Manuscript database

    Climate change has emerged as a key issue facing agriculture and water resources in the US. Long-term (1968-2012) temperature, precipitation and streamflow data from a small (7.3 km2) watershed in east-central Pennsylvania was used to examine climatic and hydrologic trends in the context of recent c...

  15. Long-Term Stream Monitoring Programs in U.S. Secondary Schools

    ERIC Educational Resources Information Center

    Overholt, Erin; MacKenzie, Ann Haley

    2005-01-01

    The authors surveyed 15 secondary school teachers in 5 states about how they designed and implemented long-term stream monitoring in their classrooms and the problems and benefits they encountered. The authors surveyed students involved in the stream monitoring projects to obtain their perspective. Teachers reported that stream monitoring provided…

  16. Long term monitoring system integrated in an elevational gradient in NW Argentina

    NASA Astrophysics Data System (ADS)

    Carilla, J.; Malizia, A.; Osinaga, O.; Blundo, C.; Grau, R.; Malizia, L.; Aráoz, E.

    2013-05-01

    Ecological trends and ranges of variability are poorly known in the tropical and subtropical Andes. Long term studies are powerful tools to detect the response of vegetation dynamics, biodiversity and hydrological cycle to these trends. We present a long term monitoring system in NW Argentinean mountains, including forest permanent plots at different elevations and high elevation grasslands, encompassing more than 3.000 m elevation range. Long term studies include: 1) 66 ha of mountain forest permanent plots along the Yungas elevational gradient from c. 400 to 2500 masl , and latitudinal gradient (22-28S) with 45 plots in mature forests and 28 in secondary forests originated in grazing, agriculture and selective logging. Some of these permanent plots have achieved 20 years of monitoring and all of them are included in the "Red de Bosques Andinos" a network created recently, together with c. 10 institutions and more than 130 (c. 120 ha) forest permanent plots from Argentina to Colombia Andes. 2) Two GLORIA (Global Observation Research Initiative in Alpine Environments) sites, above 4000 masl with more than 170 species recorded, including one re-measurement. This system is included in GLORIA network (www.gloria.ac.at) and in GLORIA Andes (http://www.condesan.org/gloria), and 3) more than 15 satellite monitored high Andean lakes and a wide extension of vegas (75800 ha in Argentinean puna). A digital database is being implemented to organize and provide access to the information generated by these three systems coordinated by the Instituto de Ecología Regional (http://www.iecologia.com.ar). These monitoring data are analyzed together with instrumental and dendrochronological data to describe the dynamics of these ecosystems over an area of 20 million hectares distributed between 22 and 28°S. Some of the most significant results to date include: 1) secondary mountain forests are expanding over grasslands and agriculture lands, and tend to converge toward mature forest

  17. 2011 Updates on the Long-term Glacier Monitoring Program in Denali National Park and Preserve

    NASA Astrophysics Data System (ADS)

    Burrows, R. A.; Adema, G. W.; Herreid, S. J.; Arendt, A. A.; Larsen, C. F.

    2011-12-01

    The area of Denali National Park and Preserve (DENA) dominated by ice is vast, with glaciers covering 3,780 km^2, approximately one sixth of the park's area. They are integral components of the region's hydrologic, ecologic, and geologic systems - with changes to the glacier systems driving the dependent ecosystems. The National Park Service (NPS) conducts long term monitoring of glaciers in Denali with a variety of methods at a range of spatial and temporal scales. This includes seasonal mass balance and surface movement data collection, annual searches for surging glaciers, and decadal areal extent mapping and volume change estimates of all glaciers in the park. If a glacier surge is detected, the event is documented via photography and surface measurements, when possible. In addition, more intensive ground-based GPS surveys of termini and ice surface elevations are conducted on ten study glaciers every 5-10 years, on a rotating basis. Many of the glaciers are located in designated Wilderness, hence the use of mechanized transport is reduced as much as possible. Monitoring objectives are accomplished by park staff and with cooperative agreements with other agencies and universities. Research to understand the context of the long term data is encouraged and supported as much as possible by the NPS and has recently yielded significant results. The year 2011 marks the 20th anniversary of glacier mass balance monitoring on Kahiltna and Traleika Glaciers, located on the south and north sides of Mt. McKinley respectively. A single "index" site near the ELA of each glacier provides an index of winter, summer, and net balances each year as well as flow velocities and changes in surface elevation. Long-term net balance trends are positive from 1991-2003, and negative since 2003, including the 2009-2010 balance year. The average flow velocity at the Kahiltna index site is 200 +/- 21 m/year with a neutral to slightly negative trend, while on Traleika average velocity is 67

  18. Long-term Monitoring Plan for the Central Nevada Test Area

    SciTech Connect

    Hassan, Ahmed E.

    2003-09-01

    This report discusses the long-term monitoring strategy developed for the Central Nevada Test Area (CNTA), where the Faultless underground nuclear test was conducted. It includes a thorough literature review of monitoring well network design. A multi-staged approach for development of the long-term monitoring well network for CNTA is proposed, incorporating a number of issues, including uncertainty of the subsurface environment, cost, selection of well locations, etc. The first stage is to use hydrogeologic expertise combined with model simulations and probability based approaches to select the first set of monitoring wells. The second stage will be based on an optimum design methodology that uses a suitable statistical approach, combined with an optimization approach, to augment the initial set of wells and develop the final long-term monitoring network.

  19. Long term country-wide rainfall monitoring employing cellular communication networks

    NASA Astrophysics Data System (ADS)

    Overeem, Aart; Leijnse, Hidde; Uijlenhoet, Remko

    2013-04-01

    Accurate rainfall observations with high spatial and temporal resolutions are needed for hydrological applications, agriculture, meteorology, and climate monitoring. However, the majority of the land surface of the earth lacks accurate rainfall information and the number of rain gauges is even severely declining in Europe, South-America, and Africa. This calls for alternative sources of rainfall information. Various studies have shown that microwave links from operational cellular telecommunication networks may be employed for rainfall monitoring. Such networks cover 20% of the land surface of the earth and have a high density, especially in urban areas. The basic principle of rainfall monitoring using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated. Previous studies have shown that average rainfall intensities over the length of a link can be derived from the path-integrated attenuation. This is particularly interesting for those countries where few surface rainfall observations are available. Here we present preliminary results of long term country-wide rainfall monitoring employing cellular communication networks. A dataset from a commercial microwave link network over the Netherlands is analyzed, containing data from an unprecedented number of links (~ 2000) covering the land surface of the Netherlands (35500 square kilometres). This dataset spans from January 2011 through October 2012. Daily rainfall maps (1 km spatial resolution) are derived from the microwave link data and compared to maps from a gauge-adjusted radar dataset. The performance of the rainfall retrieval algorithm will be investigated, particularly a possible seasonal dependence.

  20. Beyond Lees Ferry: Assessing the Long-term Hydrologic Variability of the Lower Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Wade, L. C.; Rajagopalan, B.; Lukas, J. J.; Kanzer, D.

    2011-12-01

    The future reliability of Colorado River Basin water supplies depends on natural hydrologic variability, climate change impacts and other human factors. Natural variability is the dominant component at annual to decadal time scales and thus, capturing and understanding the full range of such variability is critical to assessing risks to near- and mid-term water supplies. Paleohydrologic reconstructions of annual flow using tree rings provide much longer (400+ years) records of annual flow than do historical gage records, and thus a more complete representation of potential flow sequences. While the long-term natural variability of the Upper Colorado River Basin has been well-captured by high-quality multi-century reconstructions of the annual flow of the Colorado River at Lees Ferry, AZ, there has been no equivalent effort for the whole of the Lower Colorado River Basin, including the Gila River. The contribution of the Lower Basin to overall basin flows is estimated to be 15% on average, but this percentage varies significantly from year to year, potentially impacting water supply risk and management for the entire basin. We present preliminary results from an ongoing effort to assess the hydroclimatic variability of the Lower Basin and to develop reconstructions of annual streamflows for the Gila River and Lower Colorado River near Yuma, AZ, commensurate with the existing Lees Ferry reconstructions. We model the flow of the Gila at the confluence with the Colorado River using Generalized Pareto Distribution (GPD) and a generalized linear model (GLM) using Lower Basin tributaries, including the upper Gila River and its tributaries (e.g., Salt, Tonto, and Verde Rivers). We also present preliminary reconstructions of Lower Basin streamflows from tree-ring data using different modeling approaches, including GLM and non-parametric k-nearest-neighbor (KNN). These reconstructions of the Lower Basin flows should facilitate more robust estimation of water supply risk to

  1. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from ground water monitoring ...

  2. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from ground water monitoring ...

  3. Long-term soil monitoring at U.S. Geological Survey reference watersheds

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason; Lawrence, Gregory B.; Mast, M. Alisa

    2014-01-01

    Monitoring the environment by making repeated measurements through time is essential to evaluate and track the health of ecosystems (fig. 1). Long-term datasets produced by such monitoring are indispensable for evaluating the effectiveness of environmental legislation and for designing mitigation strategies to address environmental changes in an era when human activities are altering the environment locally and globally.

  4. Early Monitoring and Long-Term College Success in Oklahoma. Issue Brief

    ERIC Educational Resources Information Center

    ACT, Inc., 2013

    2013-01-01

    This report describes the differences in early and long-term college outcomes for Oklahoma ACT-tested students between those who were monitored early with ACT Explore® and ACT Plan® and those who did not take these two assessments prior to taking the ACT® Test. Findings support that early monitoring of college and career readiness with ACT Explore…

  5. Development of an Innovative Direct Push Sensor System for Long Term Monitoring of Environmental Waste Sites

    NASA Astrophysics Data System (ADS)

    Eddy-Dilek, C. A.; Riha, B. D.; Bosze, S.; Rossabi, J.

    2001-12-01

    As the focus of environmental restoration in the federal complex moves from active characterization and remediation to long term monitoring, the costs of long-term monitoring will escalate and eventually dominate ongoing environmental restoration budgets. Most of the major DOE sites including the Savannah River Site have a documented need for some type of long term monitoring system that does not rely on the use of standard groundwater monitoring wells. We have developed and installed a prototype monitoring system that can be used to measure and/or sample multiple parameters appropriate for long term monitoring of environmental waste sites. This system is designed to function as a sentinel system that detects when a significant change in water quality parameters or contaminant concentration occurs in a well characterized system. The sensor drive configuration is flexible and the sensor system is installed using direct push methods. Site specific monitoring scenarios will be need to be developed to address the specific long term monitoring objectives at a given site. The drive point has a sample port (soil gas or groundwater) and windows/ports for additional sensors. A prototype system was installed and has been monitored at the D-area at the Savannah River Site since July. The probes are located in an area where multiple contaminant plumes dominated by volatile organic compounds, metals and tritium are currently monitored using standard groundwater wells. Currently, the prototype system measures temperature, resisitivity, ORP and pH on a continuous basis. In addition, concetrations of volatile organic compounds and tritium are measured periodically by laboratory analysis of diffusion bag samples deployed in the sample ports of the prototype system. Results will be reported from a three-month monitoring interval. The results will be compared with baseline analyses of samples collected from the adjacent groundwater well.

  6. Hyperspectral remote sensing and long term monitoring reveal watershed-estuary ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.

    2016-02-01

    Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and

  7. Long-Term Fuid Flow Measurements From Widely Varied Oceanic Settings Elucidate Near-Surface Hydrologic Environments

    NASA Astrophysics Data System (ADS)

    Tryon, M. D.; Brown, K. M.

    2003-12-01

    The quantification of aqueous flux rates from various ocean floor environments has been a goal of numerous scientific programs for more than a decade with increasing focus on gas hydrate regions. Six years ago we developed the Chemical and Aqueous Transport (CAT) meter to collect long-term temporal records of low to moderate aqueous flow rates in sedimented ocean floor environments and, more specifically, to quantify to mass flux associated with the formation of gas hydrates. Since that time thirty of these instruments have been built and over a hundred deployments accomplished in a variety of hydrate and non-hydrate settings. We present here an overview of the results of these deployments and compare and contrast the flow records from these varied hydrological environments. Specific environments include: Gas Hydrates (Hydrate Ridge and the Eel River area on the Cascadia convergent margin, and Bush Hill in northern Gulf of Mexico), Hydrothermal (Japan's Sagami Bay and the incoming plate offshore Costa Rica's Nicoya Peninsula, TicoFlux area), and the tectonically active convergent margin off Nicoya and Osa. One of the most important outcomes of this research is the realization that fluid flow across the seabed/ocean interface is often dominated by shallow subsurface and oceanographic processes which vary significantly over time. These processes can be as simple as the diurnal pressure gradients caused by the rise and fall of tides to highly complex processes associated with the formation and transport of subsurface free gas. These processes have been both a boon and a bane to our research. Tidal oscillations have tended to mask the net flow in many very low flux settings. The high degree of spatial and temporal variation in some environments have revealed the extreme difficulty of quantifying the more widespread mass flux associated with the underlying tectonic processes. Yet, the nature of these variations have allowed us to better constrain the fundamental

  8. Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat

    NASA Astrophysics Data System (ADS)

    Balagaddé, Frederick K.; You, Lingchong; Hansen, Carl L.; Arnold, Frances H.; Quake, Stephen R.

    2005-07-01

    Using an active approach to preventing biofilm formation, we implemented a microfluidic bioreactor that enables long-term culture and monitoring of extremely small populations of bacteria with single-cell resolution. We used this device to observe the dynamics of Escherichia coli carrying a synthetic ``population control'' circuit that regulates cell density through a feedback mechanism based on quorum sensing. The microfluidic bioreactor enabled long-term monitoring of unnatural behavior programmed by the synthetic circuit, which included sustained oscillations in cell density and associated morphological changes, over hundreds of hours.

  9. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat.

    PubMed

    Balagaddé, Frederick K; You, Lingchong; Hansen, Carl L; Arnold, Frances H; Quake, Stephen R

    2005-07-01

    Using an active approach to preventing biofilm formation, we implemented a microfluidic bioreactor that enables long-term culture and monitoring of extremely small populations of bacteria with single-cell resolution. We used this device to observe the dynamics of Escherichia coli carrying a synthetic "population control" circuit that regulates cell density through a feedback mechanism based on quorum sensing. The microfluidic bioreactor enabled long-term monitoring of unnatural behavior programmed by the synthetic circuit, which included sustained oscillations in cell density and associated morphological changes, over hundreds of hours.

  10. Comprehensive evaluation of long-term hydrological data sets: Constraints of the Budyko framework

    NASA Astrophysics Data System (ADS)

    Greve, Peter; Orlowsky, Boris; Seneviratne, Sonia I.

    2013-04-01

    An accurate estimate of the climatological land water balance is essential for a wide range of socio-economical issues. Despite the simplicity of the underlying water balance equation, its individual variables are of complex nature. Global estimates, either derived from observations or from models, of precipitation (P ) and especially evapotranspiration (ET) are characterized by high uncertainties. This leads to inconsistent results in determining conditions related to the land water balance and its components. In this study, we consider the Budyko framework as a constraint to evaluate long-term hydrological data sets within the period from 1984 to 2005. The Budyko framework is a well established empirically based relationsship between ET-P and Ep-P , with Ep being the potential evaporation. We use estimates of ET associated with the LandFlux-EVAL initiative (Mueller et. al., 2012), either derived from observations, CMIP5 models or land-surface models (LSMs) driven with observation-based forcing or atmospheric reanalyses. Data sets of P comprise all commonly used global observation-based estimates. Ep is determined by methods of differing complexity with recent global temperature and radiation data sets. Based on this comprehensive synthesis of data sets and methods to determine Ep, more than 2000 possible combinations for ET-P in conjunction with Ep-P are created. All combinations are validated against the Budyko curve and against physical limits within the Budyko phase space. For this purpose we develop an error measure based on the root mean square error which combines both constraints. We find that uncertainties are mainly induced by the ET data sets. In particular, reanalysis and CMIP5 data sets are characterized by low realism. The realism of LSMs is further not primarily controlled by the forcing, as different LSMs driven with the same forcing show significantly different error measures. Our comprehensive approach is thus suitable to detect uncertainties

  11. Soil physical and hydrological properties as affected by long-term addition of various organic amendments

    NASA Astrophysics Data System (ADS)

    Eden, Marie; Völkel, Jörg; Mercier, Vincent; Labat, Christophe; Houot, Sabine

    2014-05-01

    The use of organic residues as soil amendments in agriculture not only reduces the amount of waste needing to be disposed of; it may also lead to improvements in soil properties, including physical and hydrological ones. The present study examines a long-term experiment called "Qualiagro", run jointly by INRA and Veolia Environment in Feucherolles, France (near Paris). It was initiated in 1998 on a loess-derived silt loam (787 g/kg silt, 152 g/kg clay) and includes ten treatments: four types of organic amendments and a control (CNT) each at two levels of mineral nitrogen (N) addition: minimal (Nmin) and optimal (Nopt). The amendments include three types of compost and farmyard manure (FYM), which were applied every other year at a rate of ca. 4 t carbon ha-1. The composts include municipal solid waste compost (MSW), co-compost of green wastes and sewage sludge (GWS), and biowaste compost (BIO). The plots are arranged in a randomized block design and have a size of 450 m²; each treatment is replicated four times (total of 40 plots). Ca. 15 years after the start of the experiment soil organic carbon (OC) had continuously increased in the amended plots, while it remained stable or decreased in the control plots. This compost- or manure-induced increase in OC plays a key role, affecting numerous dependant soil properties like bulk density, porosity and water retention. The water holding capacity (WHC) of a soil is of particular interest to farmers in terms of water supply for plants, but also indicates soil quality and functionality. Addition of OC may affect WHC in different ways: carbon-induced aggregation may increase larger-pore volume and hence WHC at the wet end while increased surface areas may lead to an increased retention of water at the dry end. Consequently it is difficult to predict (e.g. with pedotransfer functions) the impact on the amount of water available for plants (PAW), which was experimentally determined for the soils, along with the entire range

  12. Long-term runoff forecasting by combining hydrological models and meteorological records

    NASA Astrophysics Data System (ADS)

    Yang, Tao-Chang; Yu, Pao-Shan; Chen, Chiang-Chi

    2005-06-01

    Reservoir operation is generally based on the inflows of the upstream catchment of the reservoir. If the arriving inflows can be forecasted, that can benefit reservoir operation and management. This study attempts to construct a long-term inflow-forecasting model by combining a continuous rainfall-runoff model with the long-term weather outlook from the Central Weather Bureau of Taiwan. The analytical results demonstrate that the continuous rainfall-runoff model has good inflow simulation performance by using 10-day meteorological and inflow records over a 33-year period for model calibration and verification. The long-term inflow forecasting during the dry season was further conducted by combining the continuous rainfall-runoff model and the long-term weather outlook, which was found to have good performance.

  13. Hydrologic Interpretations of Long-Term Gravity Records at Tucson, Arizona

    NASA Astrophysics Data System (ADS)

    Pool, D. R.; Kennedy, J.; MacQueen, P.; Niebauer, T. M.

    2016-12-01

    The USGS Arizona Water Science Center monitors groundwater storage using gravity methods at sites across the western United States. A site at the USGS office in Tucson serves as a test station that has been monitored since 1997 using several types of gravity meters. Prior to 2007, the site was observed twice each year by the National Geodetic Survey using an FG5 absolute gravity meter for the purpose of establishing control for local relative gravity surveys of aquifer storage change. Beginning in 2003 the site has also served as a reference to verify the accuracy of an A10 absolute gravity meter that is used for field surveys. The site is in an alluvial basin where gravity can vary with aquifer storage change caused by variable groundwater withdrawals, elevation change caused by aquifer compaction or expansion, and occasional recharge. In addition, continuous gravity records were collected for periods of several months using a super-conducting meter during 2010-2011 and using a spring-based gPhone meter during 2015-2016. The purpose of the continuous records was to provide more precise information about monthly and shorter period variations that could be related to variations in nearby groundwater withdrawals. The record of absolute gravity observations displays variations of as much as 35 microGal that correspond with local hydrologic variations documented from precipitation, streamflow, elevation, depths to water, and well pumping records. Depth to water in nearby wells display variations related to occasional local heavy precipitation events, runoff, recharge, and groundwater withdrawals. Increases in gravity that occur over periods of several months or longer correspond with occasional heavy precipitation and recharge. Periods of gravity decline occur during extended periods between recharge events and periods of increased local groundwater withdrawals. Analysis of the continuous records from both instruments indicate that groundwater drains slowly from

  14. Long-term trends in climate and hydrology in an agricultural headwater watershed of central Pennsylvania, USA

    Treesearch

    Ray B. Bryant; Haiming Lu; Kyle R. Elkin; Anthony R. Buda; Amy S. Collick; Gordon J. Folmar; Peter J. Kleinman

    2016-01-01

    Climate change has emerged as a key issue facing agriculture and water resources in the US. Long-term (1968-2012) temperature, precipitation and streamflow data from a small (7.3 km2) watershed in east-central Pennsylvania was used to examine climatic and hydrologic trends in the context of recent climate change. Annual mean temperatures increased 0.38°C per decade,...

  15. Assessing Watershed-Scale, Long-Term Hydrologic Impacts of Land-Use Change Using a GIS-NPS Model

    NASA Astrophysics Data System (ADS)

    Bhaduri, Budhendra; Harbor, Jon; Engel, Bernie; Grove, Matt

    2000-12-01

    Land-use change, dominated by an increase in urban/impervious areas, has a significant impact on water resources. This includes impacts on nonpoint source (NPS) pollution, which is the leading cause of degraded water quality in the United States. Traditional hydrologic models focus on estimating peak discharges and NPS pollution from high-magnitude, episodic storms and successfully address short-term, local-scale surface water management issues. However, runoff from small, low-frequency storms dominates long-term hydrologic impacts, and existing hydrologic models are usually of limited use in assessing the long-term impacts of land-use change. A long-term hydrologic impact assessment (L-THIA) model has been developed using the curve number (CN) method. Long-term climatic records are used in combination with soils and land-use information to calculate average annual runoff and NPS pollution at a watershed scale. The model is linked to a geographic information system (GIS) for convenient generation and management of model input and output data, and advanced visualization of model results. The L-THIA/NPS GIS model was applied to the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana, USA. Historical land-use scenarios for 1973, 1984, and 1991 were analyzed to track land-use change in the watershed and to assess impacts on annual average runoff and NPS pollution from the watershed and its five subbasins. For the entire watershed between 1973 and 1991, an 18% increase in urban or impervious areas resulted in an estimated 80% increase in annual average runoff volume and estimated increases of more than 50% in annual average loads for lead, copper, and zinc. Estimated nutrient (nitrogen and phosphorus) loads decreased by 15% mainly because of loss of agricultural areas. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios for NPS

  16. A Practical Data Recovery Technique for Long-Term Strain Monitoring of Mega Columns during Construction

    PubMed Central

    Choi, Se Woon; Kwon, EunMi; Kim, Yousok; Hong, Kappyo; Park, Hyo Seon

    2013-01-01

    A practical data recovery method is proposed for the strain data lost during the safety monitoring of mega columns. The analytical relations among the measured strains are derived to recover the data lost due to unexpected errors in long-term measurement during construction. The proposed technique is applied to recovery of axial strain data of a mega column in an irregular building structure during construction. The axial strain monitoring using the wireless strain sensing system was carried out for one year and five months between 23 July 2010 and 22 February 2012. During the long-term strain sensing, three different types of measurement errors occurred. Using the recovery technique, the strain data that could not be measured at different intervals in the measurement were successfully recovered. It is confirmed that the problems that may occur during long-term wireless strain sensing of mega columns during construction could be resolved through the proposed recovery method. PMID:23966189

  17. Data acquisition for low-temperature geothermal well tests and long-term monitoring. Final report

    SciTech Connect

    Lienau, P.J.

    1992-09-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  18. Demonstration/Validation of Long-Term Monitoring Using Wells Installed by Direct-Push Technologies

    DTIC Science & Technology

    2008-04-01

    groundwater chemistry and hydraulic measurements between HSA wells and DP wells for long-term (greater than one year ) monitoring periods. These...93043 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITORS ACRONYM(S) ESTCP 11 . SPONSOR/MONITOR’S REPORT NUMBER(S...Environmental Technology Test Site at Naval Base Ventura County, CA; Tyndall AFB, FL; and Hanscom AFB in MA. Thirteen sampling events over a five year period

  19. Data acquisition for low-temperature geothermal well tests and long-term monitoring

    SciTech Connect

    Lienau, P.J.

    1992-09-01

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  20. Linking plant ecology and long-term hydrology to improve wetland restoration success

    Treesearch

    P.V. Caldwell; M.J. Vepraskas; J.D. Gregory; R.W. Skaggs; R.L. Huffman

    2011-01-01

    Although millions of dollars are spent restoring wetlands, failures are common, in part because the planted vegetation cannot survive in the restored hydrology. Wetland restoration would be more successful if the hydrologic requirements of wetland plant communities were known so that the most appropriate plants could be selected for the range of projected hydrology at...

  1. Shifting the Paradigm for Long Term Monitoring at Legacy Sites to Improve Performance while Reducing Costs - 13422

    SciTech Connect

    Eddy-Dilek, Carol A; Looney, Brian B.; Gaughan, Thomas; Kmetz, Thomas; Seaman, John

    2013-07-01

    A major issue facing many government and private industry sites that were previously contaminated with radioactive and chemical wastes is that often the sites cannot be cleaned up enough to permit unrestricted human access. These sites will require long-term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality in a cost effective manner. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site (SRS), the larger DOE complex, and many large federal and private sites. Currently, most monitoring strategies are focused on laboratory measurements of contaminants measured in groundwater samples collected from wells. This approach is expensive, and provides limited and lagging information about the effectiveness of cleanup activities and the behavior of the residual contamination. Over the last twenty years, DOE and other federal agencies have made significant investments in the development of various types of sensors and strategies that would allow for remote analysis of contaminants in groundwater, but these approaches do not promise significant reductions in risk or cost. Scientists at SRS have developed a new paradigm to simultaneously improve the performance of long term monitoring systems while lowering the overall cost of monitoring. This alternative approach incorporates traditional point measurements of contaminant concentration with measurements of controlling variables including boundary conditions, master variables, and traditional plume/contaminant variables. Boundary conditions are the overall driving forces that control plume movement and therefore provide leading indication to changes in plume stability. These variables include metrics associated with meteorology, hydrology, hydrogeology, and land use. Master variables are the key variables that control the chemistry of the

  2. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground-water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from studies conducted over ...

  3. Geophisical Applications of Laser Interferomters: Long-Term Monitoring Crustal Deformations

    NASA Astrophysics Data System (ADS)

    Milyukov, V. C.; Kozyreva, Alexandra; Klyachko, Boris; Myasnikov, Andrey

    2003-07-01

    The wide-band laser interferometer with a measurable armlength of 75m is used for monitoring crustal deformations in the North Caucasus (Russia). Unique geo dynamical features of the region, the proximity of the Elbrus volcano and existing long-term wide-band and high-quality observed time-series of deformations allow to study a wide class of geophysical phenomenae.

  4. Long Term Ecological Monitoring Program on the Kenai National Wildlife Refuge, Alaska: An FIA adjunct inventory

    Treesearch

    Bowser John M. Morton; Edward Berg; Dawn Magness; Todd Eskelin

    2009-01-01

    Kenai National Wildlife Refuge (KENWR) has a legislative mandate "to conserve fish and wildlife populations and habitats in their natural diversity". To improve our understanding of spatial and temporal variation at the landscape level, we are developing the Long Term Ecological Monitoring Program (LTEMP) to assess change in biota on the sample frame used by...

  5. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground-water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from studies conducted over ...

  6. Long-term Metformin Therapy and Monitoring for Vitamin B12 Deficiency Among Older Veterans.

    PubMed

    Kancherla, Vijaya; Elliott, John L; Patel, Birju B; Holland, N Wilson; Johnson, Theodore M; Khakharia, Anjali; Phillips, Lawrence S; Oakley, Godfrey P; Vaughan, Camille P

    2017-05-01

    To examine the association between long-term metformin therapy and serum vitamin B12 monitoring. Retrospective cohort study. A single Veterans Affairs Medical Center (VAMC), 2002-2012. Veterans 50 years or older with either type 2 diabetes and long-term metformin therapy (n = 3,687) or without diabetes and no prescription for metformin (n = 13,258). We determined diabetes status from outpatient visits, and defined long-term metformin therapy as a prescription ≥500 mg/d for at least six consecutive months. We estimated the proportion of participants who received a serum B12 test and used multivariable logistic regression, stratified by age, to evaluate the association between metformin use and serum B12 testing. Only 37% of older adults with diabetes receiving metformin were tested for vitamin B12 status after long-term metformin prescription. The mean B12 concentration was significantly lower in the metformin-exposed group (439.2 pg/dL) compared to those without diabetes (522.4 pg/dL) (P = .0015). About 7% of persons with diabetes receiving metformin were vitamin B12 deficient (<170 pg/dL) compared to 3% of persons without diabetes or metformin use (P = .0001). Depending on their age, metformin users were two to three times more likely not to receive vitamin B12 testing compared to those without metformin exposure, after adjusting for sex, race and ethnicity, body mass index, and number of years treated at the VAMC. Long-term metformin therapy is significantly associated with lower serum vitamin B12 concentration, yet those at risk are often not monitored for B12 deficiency. Because metformin is first line therapy for type 2 diabetes, clinical decision support should be considered to promote serum B12 monitoring among long-term metformin users for timely identification of the potential need for B12 replacement. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  7. Long-term monitoring of a large landslide by using an Unmanned Aerial Vehicle (UAV)

    NASA Astrophysics Data System (ADS)

    Lindner, Gerald; Schraml, Klaus; Mansberger, Reinfried; Hübl, Johannes

    2015-04-01

    Currently UAVs become more and more important in various scientific areas, including forestry, precision farming, archaeology and hydrology. Using these drones in natural hazards research enables a completely new level of data acquisition being flexible of site, invariant in time, cost-efficient and enabling arbitrary spatial resolution. In this study, a rotary-wing Mini-UAV carrying a DSLR camera was used to acquire time series of overlapping aerial images. These photographs were taken as input to extract Digital Surface Models (DSM) as well as orthophotos in the area of interest. The "Pechgraben" area in Upper Austria has a catchment area of approximately 2 km². Geology is mainly dominated by limestone and sandstone. Caused by heavy rainfalls in the late spring of 2013, an area of about 70 ha began to move towards the village in the valley. In addition to the urgent measures, the slow-moving landslide was monitored approximately every month over a time period of more than 18 months. A detailed documentation of the change process was the result. Moving velocities and height differences were quantified and validated using a dense network of Ground Control Points (GCP). For further analysis, 14 image flights with a total amount of 10.000 photographs were performed to create multi-temporal geodata in in sub-decimeter-resolution for two depicted areas of the landslide. Using a UAV for this application proved to be an excellent choice, as it allows short repetition times, low flying heights and high spatial resolution. Furthermore, the UAV acts almost weather independently as well as highly autonomously. High-quality results can be expected within a few hours after the photo flight. The UAV system performs very well in an alpine environment. Time series of the assessed geodata detect changes in topography and provide a long-term documentation of the measures taken in order to stop the landslide and to prevent infrastructure from damage.

  8. Uncovering cyanobacteria ecological networks from long-term monitoring data using Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Munoz-Carpena, R.; Kaplan, D. A.; Phlips, E. J.

    2016-12-01

    In many aquatic systems, cyanobacteria form harmful blooms capable of producing toxins, prompting hypoxia, and/or introducing internal nitrogen loads via N2-fixation, among other impacts. Traditionally, system-specific cyanobacteria drivers are determined by performing controlled experiments and bioassays, but these approaches may neglect the influences of confounding factors and over assign importance to only those variables considered within experimental designs. For example, a bioassay may conclude that the cyanobacteria in a particular system are limited by phosphorus, but will not explicitly take into account the role of flow as a control on phosphorus delivery. This study aims to address this analytical gap by identifying environmental controls on cyanobacteria while removing the effects of potentially confounding variables. In the present work, we evaluate a unique long-term (17 year) dataset composed of monthly observations of phytoplankton and zooplankton species abundances, water quality constituents, and hydrologic variables from Lake George, a flow-through lake of the St. Johns River (FL) impacted by cyanobacterial blooms. Using conditional Granger causality analysis, a time series approach that infers causality while removing the effects of confounding variables, data were evaluated to identify biological and physicochemical drivers of cyanobacteria. The analysis was performed for three response variable sets: total cyanobacteria, N2-fixers and non-fixers, and cyanobacteria genera. Results depicted increasing levels of ecological complexity as subdivisions of cyanobacteria became more detailed; whereas causal networks produced from analyses of cyanobacteria genera provided novel insights relevant for management (i.e. nutrients, flow), the total cyanobacteria network only included water temperature as a significant driver. Additionally, the more detailed cyanobacteria subdivisions uncovered that N2-fixation was only evident with the earliest season

  9. Long-term Monitoring Plan for the Central Nevada Test Area

    SciTech Connect

    A. Hassan

    2003-09-02

    The groundwater flow and transport model of the Faultless underground nuclear test conducted at the Central Nevada Test Area (CNTA) was accepted by the state regulator and the environmental remediation efforts at the site have progressed to the stages of model validation and long-term monitoring design. This report discusses the long-term monitoring strategy developed for CNTA. Subsurface monitoring is an expensive and time-consuming process, and the design approach should be based on a solid foundation. As such, a thorough literature review of monitoring network design is first presented. Monitoring well networks can be designed for a number of objectives including aquifer characterization, parameter estimation, compliance monitoring, detection monitoring, ambient monitoring, and research monitoring, to name a few. Design methodologies also range from simple hydrogeologic intuition-based tools to sophisticated statistical- and optimization-based tools. When designing the long-term monitoring well network for CNTA, a number of issues are carefully considered. These are the uncertainty associated with the subsurface environment and its implication for monitoring design, the cost associated with monitoring well installation and operation, the design criteria that should be used to select well locations, and the potential conflict between different objectives such as early detection versus impracticality of placing wells in the vicinity of the test cavity. Given these considerations and the literature review of monitoring design studies, a multi-staged approach for development of the long-term monitoring well network for CNTA is proposed. This multi-staged approach will proceed in parallel with the validation efforts for the groundwater flow and transport model of CNTA. Two main stages are identified as necessary for the development of the final long-term monitoring well network for the site. The first stage is to use hydrogeologic expertise combined with model

  10. Andra Environmental Specimen Bank: archiving the environmental chemical quality for long-term monitoring.

    PubMed

    Leclerc, Elisabeth; d'Arbaumont, Maëlle; Verron, Jean-Patrick; Goldstein, Céline; Cesar, Frédérique; Dewonck, Sarah

    2015-02-01

    Andra Environmental Specimen Bank (ESB) was established in 2010 as a part of the Perennial Observatory of the Environment (OPE), ongoing Long-Term Environmental Research Monitoring and Testing System located next to the Underground Research Laboratory (URL) at Bure, Meuse/Haute-Marne, France. The URL is used to study the deep geological disposal of high and intermediate level radioactive waste. Andra ESB is designed to archive during at least 100 years samples collected to define the initial state of environmental quality of the local area before the construction of industrial facilities and to ensure the traceability of long-term series of samples collected by the OPE ( http://www.andra.fr/ope ), using safe long-term conservation practices. Samples archived in the bank include some local food chain products (milk, cheese, honey, cereals, grass, cherry plum…) and specimen usually archived internationally to monitor the environmental quality (soil, sediment, water, fish, tree leaves, wild life, etc.). Regarding the different samples and analytical issues, three conservation modalities and facilities were designed: dry conservation under controlled temperature and humidity, cryopreservation in liquid nitrogen (LN2) vapor phase freezers (-150 °C) and in deep-freezing at -80 °C for temporary storage and raw samples before preparation. Andra ESB is equipped with a sample preparation clean room, certified ISO Class 5, dedicated to cryopreservation. This paper describes this first French experiment of long-term chemical quality monitoring and samples cryopreservation of different ecosystems and environmental compartments.

  11. Long-term monitoring of local stress changes in 67km installed OPGW cable using BOTDA

    NASA Astrophysics Data System (ADS)

    Zou, L.; Sezerman, O.

    2015-09-01

    The initial results from continuing long-term monitoring of a 67 km of an aerial fiber optic cable installed on a 500 kV power line cable (total fiber length of 134km) using BOTDA are presented. The effects of thunderstorms and rime ice on the cable were identified by monitoring strain on OPGW fibers. Variations of strain between day and night on the OPGW cable were observed and can potentially be exploited.

  12. Integrated modeling of long-term vegetation and hydrologic dynamics in Rocky Mountain watersheds

    Treesearch

    Robert Steven Ahl

    2007-01-01

    Changes in forest structure resulting from natural disturbances, or managed treatments, can have negative and long lasting impacts on water resources. To facilitate integrated management of forest and water resources, a System for Long-Term Integrated Management Modeling (SLIMM) was developed. By combining two spatially explicit, continuous time models, vegetation...

  13. Long-term dynamics emerging in floodplains and deltas from the interactions between hydrology and society in a changing climate

    NASA Astrophysics Data System (ADS)

    Di Baldassarre, Giuliano; Viglione, Alberto; Yan, Kun; Brandimarte, Luigia; Blöschl, Günter

    2014-05-01

    Economic losses and fatalities associated to flood events have increased dramatically over the past decades. This situation might worsen in the near future because of rapid urbanization of many floodplains and deltas, along with enhancement of flood water levels as a result of human interventions, climate variability or sea level rise. To explore future dynamics, we developed a novel approach, which takes into account the dynamic nature of flood risk by an explicit treatment of the interactions and feedbacks between the hydrological and social components of flood risk (i.e. probability of flooding, and potential adverse consequences). In particular, we developed a socio-hydrological model that allows considering how the frequency and magnitude of flooding shapes the evolution of societies, while, at the same time, dynamic societies shape the frequency and magnitude of flooding. We then use this model to simulate long-term dynamics of different types of societies under hydrological change, e.g. increasing flood frequency. Based on the study of long-term dynamics of different floodplains and deltas around the world (e.g. Netherlands, Bangladesh), we identify two main typologies of flood-shaped societies: i) techno-societies, which "fight floods", and typically deal with risk by building and strengthening flood protection structures, such as levees or dikes; and ii) green-societies, which "lives with floods", and mainly cope with risk via adaptation measures, such as resettling out of flood prone areas. The outcomes of this study are relevant for the management of deltas and floodplains as they allow a comparison of long-term dynamics between diverse types of societies in terms of robustness to hydrological change.

  14. Assessing the long-term hydrological services provided by wetlands under changing climate conditions: A case study approach of a Canadian watershed

    NASA Astrophysics Data System (ADS)

    Fossey, M.; Rousseau, A. N.

    2016-10-01

    The water content of wetlands represents a key driver of their hydrological services and it is highly dependent on short- and long-term weather conditions, which will change, to some extent, under evolving climate conditions. The impact on stream flows of this critical dynamic component of wetlands remains poorly studied. While hydrodynamic modelling provide a framework to describe the functioning of individual wetland, hydrological modelling offers the opportunity to assess their services at the watershed scale with respect to their type (i.e., isolated or riparian). This study uses a novel approach combining hydrological modelling and limited field monitoring, to explore the effectiveness of wetlands under changing climate conditions. To achieve this, two isolated wetlands and two riparian wetlands, located in the Becancour River watershed within the St Lawrence Lowlands (Quebec, Canada), were monitored using piezometers and stable water isotopes (δD - δ18O) between October 2013 and October 2014. For the watershed hydrology component of this study, reference (1986-2015) and future meteorological data (2041-2070) were used as inputs to the PHYSITEL/HYDROTEL modelling platform. Results obtained from in-situ data illustrate singular hydrological dynamics for each typology of wetlands (i.e., isolated and riparian) and support the hydrological modelling approach used in this study. Meanwhile, simulation results indicate that climate change could affect differently the hydrological dynamics of wetlands and associated services (e.g., storage and slow release of water), including their seasonal contribution (i.e., flood mitigation and low flow support) according to each wetland typology. The methodological framework proposed in this paper meets the requirements of a functional tool capable of anticipating hydrological changes in wetlands at both the land management scale and the watershed management scale. Accordingly, this framework represents a starting point towards

  15. Protocols for long-term monitoring of seabird ecology in the Gulf of Alaska

    USGS Publications Warehouse

    Piatt, John F.; Byrd, G. Vernon; Harding, Ann M.A.; Kettle, Arthur B.; Kitaysky, Sasha; Litzow, Michael A.; Roseneau, David G.; Shultz, Michael T.; van Pelt, Thomas I.

    2003-01-01

    Seabird populations will need to be monitored for many years to assess both recovery and ecological conditions affecting recovery. Detailed studies of individual seabird colonies and marine ecosystems in the Gulf of Alaska have been conducted by the U.S. Geological Survey and U.S. Fish and Wildlife Service under the auspices of damage assessment and restoration programs of the Trustee Council. Much has been learned about factors influencing seabird populations and their capacity to recover from the spill in the Gulf of Alaska. As the restoration program moves toward long-term monitoring of populations, however, protocols and long-term monitoring strategies that focus on key parameters of interest and that are inexpensive, practical, and applicable over a large geographic area need to be developed.

  16. Development and Testing of a Simple Calibration Technique for Long-Term Hydrological Impact Assessment (L-THIA) Model

    NASA Astrophysics Data System (ADS)

    Muthukrishnan, S.; Harbor, J.

    2001-12-01

    Hydrological studies are significant part of every engineering, developmental project and geological studies done to assess and understand the interactions between the hydrology and the environment. Such studies are generally conducted before the beginning of the project as well as after the project is completed, such that a comprehensive analysis can be done on the impact of such projects on the local and regional hydrology of the area. A good understanding of the chain of relationships that form the hydro-eco-biological and environmental cycle can be of immense help in maintaining the natural balance as we work towards exploration and exploitation of the natural resources as well as urbanization of undeveloped land. Rainfall-Runoff modeling techniques have been of great use here for decades since they provide fast and efficient means of analyzing vast amount of data that is gathered. Though process based, detailed models are better than the simple models, the later ones are used more often due to their simplicity, ease of use, and easy availability of data needed to run them. The Curve Number (CN) method developed by the United States Department of Agriculture (USDA) is one of the most widely used hydrologic modeling tools in the US, and has earned worldwide acceptance as a practical method for evaluating the effects of land use changes on the hydrology of an area. The Long-Term Hydrological Impact Assessment (L-THIA) model is a basic, CN-based, user-oriented model that has gained popularity amongst watershed planners because of its reliance on readily available data, and because the model is easy to use (http://www.ecn.purdue.edu/runoff) and produces results geared to the general information needs of planners. The L-THIA model was initially developed to study the relative long-term hydrologic impacts of different land use (past/current/future) scenarios, and it has been successful in meeting this goal. However, one of the weaknesses of L-THIA, as well as other

  17. Flood effects on an Alaskan stream restoration project: the value of long-term monitoring

    USGS Publications Warehouse

    Densmore, Roseann V.; Karle, Kenneth F.

    2009-01-01

    On a nationwide basis, few stream restoration projects have long-term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long-term and event-based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long-term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross-sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25-year flood on the stream and floodplain geometry and riparian vegetation. The long-term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.

  18. Evaluating the long-term hydrology of an evapotranspiration-capillary barrier with a 1000 year design life

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Fred

    2016-06-01

    A surface barrier is a commonly used technology for isolation of subsurface contaminants. Surface barriers for isolating radioactive waste are expected to perform for centuries to millennia, yet there are very few data for field-scale surface barriers for periods approaching a decade or longer. The Prototype Hanford Barrier (PHB) with a design life of 1000 years was constructed over an existing radioactive waste site in 1994 to demonstrate its long-term performance. The primary element of the PHB is an evapotranspiration-capillary (ETC) barrier in which precipitation water is stored in a fine-textured soil layer and later released to the atmosphere via evapotranspiration. To address the barrier performance under extreme conditions, this study included an enhanced precipitation stress test from 1995 to 1997 to determine barrier response to extreme precipitation events. During this period a 1000 year 24 h return rainstorm was simulated in March every year. The loss of vegetation on barrier hydrology was tested with a controlled fire test in 2008. The 19 year monitoring record shows that the store-and-release mechanism worked as well as or better than the design criterion. Average drainage from the ETC barrier amounted to an average of 0.005 mm yr-1, which is well below the design criterion of 0.5 mm yr-1. After a simulated wildfire, the naturally reestablished vegetation and increased evaporation combined to release the stored water and summer precipitation to the atmosphere such that drainage did not occur in the 5 years subsequent to the fire.

  19. Using remote sensing and spatial analysis of trees characteristics for long-term monitoring in arid environments

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Blumberg, Dan G.; Rachmilevitch, Shimon; Ephrath, Jhonathan E.; Maman, Shimrit

    2016-04-01

    Trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, low humidity and small amount of precipitation. Trees In arid environments such an Acacia are considered to be `keystone species', because they have major influence over both plants and animal species. Long term monitoring of acacia tree population in those areas is thus essential tool to estimate the overall ecosystem condition. We suggest a new remote sensing data analysis technique that can be integrated with field long term monitoring of trees in arid environments and improve our understanding of the spatial and temporal changes of these populations. In this work we have studied the contribution of remote sensing methods to long term monitoring of acacia trees in hyper arid environments. In order to expand the time scope of the acacia population field survey, we implemented two different approaches: (1) Trees individual based change detection using Corona satellite images and (2) Spatial analysis of trees population, converting spatial data into temporal data. A map of individual acacia trees that was extracted from a color infra-red (CIR) aerial photographs taken at 2010 allowed us to examine the distribution pattern of the trees size and foliage health status (NDVI). Comparison of the tree sizes distribution and NDVI values distribution enabled us to differentiate between long-term (decades) and short-term (months to few years) processes that brought the population to its present state. The spatial analysis revealed that both tree size and NDVI distribution patterns were significantly clustered, suggesting that the processes responsible for tree size and tree health status (i.e., flash-floods spatial spreading) have a spatial expression. The distribution of the trees in the Wadi (ephemeral river) was divided into three distinct parts: large trees with high NDVI values, large trees with low NDVI values and small trees with

  20. Long-term monitoring of high-elevation white pine communities in Pacific West Region National Parks

    Treesearch

    Shawn T. McKinney; Tom Rodhouse; Les Chow; Penelope Latham; Daniel Sarr; Lisa Garrett; Linda Mutch

    2011-01-01

    National Park Service Inventory and Monitoring (I&M) networks conduct long-term monitoring to provide park managers information on the status and trends in key biological and environmental attributes (Vital Signs). Here we present an overview of a collaborative approach to long-term monitoring of high-elevation white pine forest dynamics among three Pacific West...

  1. Long-term real-time structural health monitoring using wireless smart sensor

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  2. Long-term environmental drivers of DOC fluxes: Linkages between management, hydrology and climate in a subtropical coastal estuary

    NASA Astrophysics Data System (ADS)

    Regier, Peter; Briceño, Henry; Jaffé, Rudolf

    2016-12-01

    Urban and agricultural development of the South Florida peninsula has disrupted historic freshwater flow in the Everglades, a hydrologically connected ecosystem stretching from central Florida to the Gulf of Mexico, USA. Current system-scale restoration efforts aim to restore natural hydrologic regimes to reestablish pre-drainage ecosystem functioning through increased water availability, quality and timing. Aquatic transport of carbon in this ecosystem, primarily as dissolved organic carbon (DOC), plays a critical role in biogeochemical cycling and food-web dynamics, and will be affected both by water management policies and climate change. To better understand DOC dynamics in South Florida estuaries and how hydrology, climate and water management may affect them, 14 years of monthly data collected in the Shark River estuary were used to examine DOC flux dynamics in a broader environmental context. Multivariate statistical methods were applied to long-term datasets for hydrology, water quality and climate to untangle the interconnected environmental drivers that control DOC export at monthly and annual scales. DOC fluxes were determined to be primarily controlled by hydrology but also by seasonality and long-term climate patterns and episodic weather events. A four-component model (salinity, rainfall, inflow, Atlantic Multidecadal Oscillation) capable of predicting DOC fluxes (R2 = 0.84, p < 0.0001, n = 155) was established and applied to potential climate change scenarios for the Everglades to assess DOC flux response to climate and restoration variables. The majority of scenario runs indicated that DOC export from the Everglades is expected to decrease due to future changes in rainfall, water management and salinity.

  3. Changes in the long-term hydrological regimes and the impacts of human activities in the main Wei River, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Huang, Qiang; Zhang, Qiang; Gu, Lei; Chen, Keyu; Yu, Qijun

    2016-03-01

    Under the combined influence of climate changes and human activities, the hydrological regime of the Wei River shows remarkable variations which have caused many issues in the Wei River in recent decades, such as a lack of freshwater, water pollution, disastrous flooding and channel sedimentation. Hence, hydrological regime changes and potential human-induced impacts have been drawing increasing attention from local government and hydrologists. This study investigates hydrological regime changes in the natural and measured runoff series at four hydrological stations on the main Wei River and quantifies features of their long-term change by analysing their historical annual and seasonal runoff data using several approaches, i.e., continuous wavelet transform, cross-wavelet, wavelet coherence, trend-free pre-whitening Mann-Kendall test and detrended fluctuation analysis. By contrasting two different analysis results between natural and measured river runoff series, the impacts of human activities on the long-term hydrological regime were investigated via the changes of spatio-temporal distribution in dominant periods, the trends and long-range memory of river runoff. The results show : (a) that periodic properties of the streamflow changes are the result of climate, referring to precipitation changes in particular, while human activities play a minor role; (b) a significant decreasing trend can be observed in the natural streamflow series along the entire main stream of the Wei River and the more serious decrease emerging in measured flow should result from human-induced influences in recent decades; and (c) continuous decreasing streamflow in the Wei River will trigger serious shortages of freshwater in the future, which may challenge the sustainability and safety of water resources development in the river basin, and should be paid great attention before 2020.

  4. Long-term gage reliability for structural health monitoring of steel bridges

    NASA Astrophysics Data System (ADS)

    Samaras, Vasilis A.; Fasl, Jeremiah; Reichenbach, Matt; Helwig, Todd; Wood, Sharon; Frank, Karl

    2012-04-01

    Real-time monitoring of fracture critical steel bridges can potentially enhance inspection practices by tracking the behavior of the bridge. Significant advances have occurred in recent years on the development of robust hardware for field monitoring applications. These systems can monitor, process, and store data from a variety of sensors (e.g. strain gages, crack propagation gages etc.) to track changes in the behavior of the bridge. Thus, for a long-term monitoring system to be successful, the reliability of gages that are to be monitored for several years is very important. This paper focuses on the results of a research study focused on developing a wireless monitoring system with a useful life of more than 10 years. An important aspect of the study is to identify strain gages and installation procedures that result in long lives as well as characterizing the effect of temperature fluctuations and other environmental factors on the sensor drift and noise. In long-term monitoring applications, slight sensor drift and noise can build up over time to produce misleading results. Thus, a wide variety of gages that can be used to monitor bridges have been tested for over a year through environmental tests. The environmental tests were developed to determine the durability of the gages and their protective coatings (e.g. zinc-based spray, wax and silicon, etc.) against humidity, sun exposure and other environmental effects that are expected in long-term bridge monitoring applications. Moreover, fatigue tests were performed to determine the fatigue category of the weldable gages and to reveal any debonding issues of the bondable gages. This paper focuses on the results of laboratory tests on gage durability that were conducted as part of a research project sponsored by the National Institute of Standards and Technology (NIST).

  5. Observing Campaign to Monitor Magnetically-Active Dwarfs for Long-Term Variability

    NASA Astrophysics Data System (ADS)

    Templeton, Matthew R.

    2009-10-01

    Dr. Styliani (Stella) Kafka of the Department of Terrestrial Magnetism, Carnegie Institute of Washington, requests AAVSO observers to perform long-term photometric monitoring on a number of magnetically active dwarf stars, with an observing frequency of one observation every three days taken with one or more filters. When multiple filters are available, the preferred observations are (in order of precedence): Rc, V, Ic, and B. Please observe such that you obtain a signal to noise of at least 50 (100 or higher is preferred). These objects are all nearby dwarfs known or suspected to have magnetic activity, primarily of the UV Ceti (flare star) or BY Draconis subtypes. Long-term photometric monitoring of these objects will be used in conjunction with other multiwavelength observations from ground-based facilities including the Magellan 6.5-meter and DuPont 2.5-meter telescopes in Chile to understand the long-term magnetic activity cycles of these stars. Such a study can reveal information about the physical natures of these stars, but also about their near space environments and habitability for life. These objects are red, and the variability amplitudes are low, often well below 0.1 magnitudes. The long-term variability due to stellar activity cycles may be much lower. Photometric accuracy rather than the number of observations are key to the success of this project. Unaccounted-for atmospheric effects such as extinction will likely overwhelm any long-term signal from these stars. Observers are strongly urged to fully calibrate their systems and to carefully reduce and transform their photometry to standard photometric passbands, including corrections for airmass/atmospheric extinction. Parameters for 40 objects are given. Observations should be submitted to the AAVSO International Database.

  6. 3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila

    NASA Astrophysics Data System (ADS)

    Kumar, S. Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong

    2016-09-01

    Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila.

  7. 3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila.

    PubMed

    Kumar, S Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong

    2016-09-08

    Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila.

  8. 3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila

    PubMed Central

    Kumar, S. Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong

    2016-01-01

    Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila. PMID:27605243

  9. A new method for monitoring long term calibration of the SBUV and TOMS instruments

    NASA Technical Reports Server (NTRS)

    Ahmad, Z.; Seftor, C.; Wellemeyer, C.

    1994-01-01

    A new method has been developed to monitor the long-term calibration of the Solar Backscatter Ultraviolet (SBUV) and Total Ozone Mapping Spectrometer (TOMS) instruments. It is based on the fact that the radiance in one channel can be expressed as a linear sum of the radiances in neighboring channels. Using simulated radiances for the SBUV and TOMS instruments, various scenarios of changes in instrument calibration are investigated. Results from sample processing of SBUV data are also presented.

  10. Long-term residual dry matter mapping for monitoring California hardwood rangelands

    Treesearch

    Norman R. Harris; William E. Frost; Neil K. McDougald; Melvin R. George; Donald L. Nielsen

    2002-01-01

    Long-term residual dry matter mapping on the San Joaquin Experimental Range provides a working example of this monitoring technique for grazing management and research. Residual dry matter (RDM) is the amount of old plant material left on the ground at the beginning of a new growing season. RDM indicates the previous season’s use and can be used to describe the health...

  11. Hydrological modelling of alpine headwaters using centurial glacier evolution, snow and long-term discharge dynamics

    NASA Astrophysics Data System (ADS)

    Kohn, Irene; Vis, Marc; Freudiger, Daphné; Seibert, Jan; Weiler, Markus; Stahl, Kerstin

    2016-04-01

    The response of alpine streamflows to long-term climate variations is highly relevant for the supply of water to adjacent lowlands. A key challenge in modelling high-elevation catchments is the complexity and spatial variability of processes, whereas data availability is rather often poor, restricting options for model calibration and validation. Glaciers represent a long-term storage component that changes over long time-scales and thus introduces additional calibration parameters into the modelling challenge. The presented study aimed to model daily streamflow as well as the contributions of ice and snow melt for all 49 of the River Rhine's glaciated headwater catchments over the long time-period from 1901 to 2006. To constrain the models we used multiple data sources and developed an adapted modelling framework based on an extended version of the HBV model that also includes a time-variable glacier change model and a conceptual representation of snow redistribution. In this study constraints were applied in several ways. A water balance approach was applied to correct precipitation input in order to avoid calibration of precipitation; glacier area change from maps and satellite products and information on snow depth and snow covered area were used for the calibration of each catchment model; and finally, specific seasonal and dynamic aspects of discharge were used for calibration. Additional data like glacier mass balances were used to evaluate the model in selected catchments. The modelling experiment showed that the long-term development of the coupled glacier and streamflow change was particularly important to constrain the model through an objective function incorporating three benchmarks of glacier retreat during the 20th Century. Modelling using only streamflow as calibration criteria had resulted in disproportionate under and over estimation of glacier retreat, even though the simulated and observed streamflow agreed well. Also, even short discharge time

  12. Using larval fish community structure to guide long-term monitoring of fish spawning activity

    USGS Publications Warehouse

    Pritt, Jeremy J.; Roseman, Edward F.; Ross, Jason E.; DeBruyne, Robin L.

    2015-01-01

    Larval fishes provide a direct indication of spawning activity and may therefore be useful for long-term monitoring efforts in relation to spawning habitat restoration. However, larval fish sampling can be time intensive and costly. We sought to understand the spatial and temporal structure of larval fish communities in the St. Clair–Detroit River system, Michigan–Ontario, to determine whether targeted larval fish sampling can be made more efficient for long-term monitoring. We found that larval fish communities were highly nested, with lower river segments and late-spring samples containing the highest genus richness of larval fish. We created four sampling scenarios for each river system: (1) using all available data, (2) limiting temporal sampling to late spring, (3) limiting spatial sampling to lower river segments only, and (4) limiting both spatial and temporal sampling. By limiting the spatial extent of sampling to lower river sites and/or limiting the temporal extent to the late-spring period, we found that effort could be reduced by more than 50% while maintaining over 75% of the observed and estimated total genus richness. Similarly, limiting the sampling effort to lower river sites and/or the late-spring period maintained between 65% and 93% of the observed richness of lithophilic-spawning genera and invasive genera. In general, community composition remained consistent among sampling scenarios. Targeted sampling offers a lower-cost alternative to exhaustive spatial and temporal sampling and may be more readily incorporated into long-term monitoring.

  13. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  14. Artifact reduction in long-term monitoring of cerebral hemodynamics using near-infrared spectroscopy

    PubMed Central

    Vinette, Sarah A.; Dunn, Jeff F.; Slone, Edward; Federico, Paolo

    2015-01-01

    Abstract. Near-infrared spectroscopy (NIRS) is a noninvasive neuroimaging technique used to assess cerebral hemodynamics. Its portability, ease of use, and relatively low operational cost lend itself well to the long-term monitoring of hemodynamic changes, such as those in epilepsy, where events are unpredictable. Long-term monitoring is associated with challenges including alterations in behaviors and motion that can result in artifacts. Five patients with epilepsy were assessed for interictal hemodynamic changes and alterations in behavior or motion. Based on this work, visual inspection was used to identify NIRS artifacts during a period of interest, specifically prior to seizures, in four patients. A motion artifact reduction algorithm (MARA, also known as the spline interpolation method) was tested on these data. Alterations in the NIRS measurements often occurred simultaneously with changes in motion and behavior. Occasionally, sharp shift artifacts were observed in the data. When artifacts appeared as sustained baseline shifts in the data, MARA reduced the standard deviation of the data and the appearance improved. We discussed motion and artifacts as challenges associated with long-term monitoring of cerebral hemodynamics in patients with epilepsy and our group’s approach to circumvent these challenges and improve the quality of the data collected. PMID:26158008

  15. Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins

    USGS Publications Warehouse

    Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa

    2017-01-01

    In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.

  16. Evaluating long-term cumulative hydrologic effects of forest management: a conceptual approach

    Treesearch

    Robert R. Ziemer

    1992-01-01

    It is impractical to address experimentally many aspects of cumulative hydrologic effects, since to do so would require studying large watersheds for a century or more. Monte Carlo simulations were conducted using three hypothetical 10,000-ha fifth-order forested watersheds. Most of the physical processes expressed by the model are transferable from temperate to...

  17. Improving Long-term Post-wildfire hydrologic simulations using ParFlow

    NASA Astrophysics Data System (ADS)

    Lopez, S. R.; Kinoshita, A. M.

    2015-12-01

    Wildfires alter the natural hydrologic processes within a watershed. After vegetation is burned, the combustion of organic material and debris settles into the soil creating a hydrophobic layer beneath the soil surface with varying degree of thickness and depth. Vegetation regrowth rates vary as a function of radiative exposure, burn severity, and precipitation patterns. Hydrologic models used by the Burned Area Emergency Response (BAER) teams use input data and model calibration constraints that are generally either one-dimensional, empirically-based models, or two-dimensional, conceptually-based models with lumped parameter distributions. These models estimate runoff measurements at the watershed outlet; however, do not provide a distributed hydrologic simulation at each point within the watershed. This work uses ParFlow, a three-dimensional, distributed hydrologic model to (1) correlate burn severity with hydrophobicity, (2) evaluate vegetation recovery rate on water components, and (3) improve flood prediction for managers to help with resource allocation and management operations in burned watersheds. ParFlow is applied to Devil Canyon (43 km2) in San Bernardino, California, which was 97% burned in the 2003 Old Fire. The model set-up uses a 30m-cell size resolution over a 6.7 km by 6.4 km lateral extent. The subsurface reaches 30 m and is assigned a variable cell thickness. Variable subsurface thickness allows users to explicitly consider the degree of recovery throughout the stages of regrowth. Burn severity maps from remotely sensed imagery are used to assign initial hydrophobic layer parameters and thickness. Vegetation regrowth is represented with satellite an Enhanced Vegetation Index. Pre and post-fire hydrologic response is evaluated using runoff measurements at the watershed outlet, and using water component (overland flow, lateral flow, baseflow) measurements.

  18. Benefits of a Biological Monitoring Program for Assessing Remediation Performance and Long-Term Stewardship - 12272

    SciTech Connect

    Peterson, Mark

    2012-07-01

    The Biological Monitoring and Abatement Program (BMAP) is a long-running program that was designed to evaluate biological conditions and trends in waters downstream of Department of Energy (DOE) facilities in Oak Ridge, Tennessee. BMAP monitoring has focused on aquatic pathways from sources to biota, which is consistent with the sites' clean water regulatory focus and the overall cleanup strategy which divided remediation areas into watershed administrative units. Specific programmatic goals include evaluating operational and legacy impacts to nearby streams and the effectiveness of implemented remediation strategies at the sites. The program is characterized by consistent, long-term sampling and analysis methods in a multidisciplinary and quantitative framework. Quantitative sampling has shown conclusively that at most Oak Ridge stream sites, fish and aquatic macro-invertebrate communities have improved considerably since the 1980s. Monitoring of mercury and PCBs in fish has shown that remedial and abatement actions have also improved stream conditions, although in some cases biological monitoring suggests further actions are needed. Follow-up investigations have been implemented by BMAP to identify sources or causes, consistent with an adaptive management approach. Biological monitoring results to date have not only been used to assess regulatory compliance, but have provided additional benefits in helping address other components of the DOE's mission, including facility operations, natural resource, and scientific goals. As a result the program has become a key measure of long-term trends in environmental conditions and of high value to the Oak Ridge environmental management community, regulators, and the public. Some of the BMAP lessons learned may be of value in the design, implementation, and application of other long-term monitoring and stewardship programs, and assist environmental managers in the assessment and prediction of the effectiveness of remedial

  19. Towards a common benchmark for long-term process control and monitoring performance evaluation.

    PubMed

    Rosen, C; Jeppsson, U; Vanrolleghem, P A

    2004-01-01

    The COST/IWA benchmark simulation model has been available for seven years. Its primary purpose has been to create a platform for control strategy benchmarking of biological wastewater treatment processes. The fact that the benchmark has resulted in more than 100 publications, not only in Europe but also worldwide, demonstrates the interest for such a tool in the research community. In this paper, an extension of the benchmark simulation model no. 1 (BSM1) is proposed. It aims at facilitating evaluation of two closely related operational tasks: long-term control strategy performance and process monitoring performance. The motivation for the extension is that these two tasks typically act on longer time scales. The extension proposed here consists of 1) prolonging the evaluation period to one year (including influent files), 2) specifying time varying process parameters and 3) including sensor and actuator failures. The prolonged evaluation period is necessary to obtain a relevant and realistic assessment of the effects of such disturbances. Also, a prolonged evaluation period allows for a number of long-term control actions/handles that cannot be evaluated in a realistic fashion in the one week BSM1 evaluation period. In the paper, models for influent file design, parameter changes and sensor failures, initialization procedure and evaluation criteria are discussed. Important remaining topics, for which consensus is required, are identified. The potential of a long-term benchmark is illustrated with an example of process monitoring algorithm benchmarking.

  20. Tuning Into Brown Dwarfs: Long-Term Radio Monitoring of Two Very Low Mass Dwarfs

    NASA Astrophysics Data System (ADS)

    Van Linge, Russell; Burgasser, Adam J.; Melis, Carl; Williams, Peter K. G.

    2017-01-01

    The very lowest-mass (VLM) stars and brown dwarfs, with effective temperatures T < 3000 K, exhibit mixed magnetic activity trends, with H-alpha and X-ray emission that declines rapidly beyond type M7/M8, but persistent radio emission in roughly 10-20% of sources. The dozen or so VLM radio emitters known show a broad range of emission characteristics and time-dependent behavior, including steady persistent emission, periodic oscillations, periodic polarized bursts, and aperiodic flares. Understanding the evolution of these variability patterns, and in particular whether they undergo solar-like cycles, requires long-term monitoring. We report the results of a long-term JVLA monitoring program of two magnetically-active VLM dwarf binaries, the young M7 2MASS 1314+1320AB and older L5 2MASS 1315-2649AB. On the bi-weekly cadence, 2MASS 1314 continues to show variability by revealing regular flaring while 2MASS 1315 continues to be a quiescent emitter. On the daily time scale, both sources show a mean flux density that can vary significantly just over a few days. These results suggest long-term radio behavior in radio-emitting VLM dwarfs is just as diverse and complex as short-term behavior.

  1. Monitoring of patients on long-term glucocorticoid therapy: a population-based cohort study.

    PubMed

    Fardet, Laurence; Petersen, Irene; Nazareth, Irwin

    2015-04-01

    About 1% of the general population receives long-term systemic glucocorticoids. The monitoring provided to these patients is unknown. We conducted a population-based cohort study using The Health Improvement Network database. A total of 100,944 adult patients prescribed systemic glucocorticoids for >3 months between January 2000 and December 2012 were studied. The monitoring done before prescribing glucocorticoid therapy and during exposure to the drug was examined. This included measurement of body weight, blood pressure, lipids, glucose and potassium levels, referrals for dual-energy X-ray absorptiometry (DEXA-scan) or to an ophthalmologist/optician, and vaccinations. We assessed factors associated with the odds of being monitored before and during exposure. Before glucocorticoid initiation, weight and blood pressure were monitored in < 20% and < 50% of patients, respectively. Glucose and lipid levels were monitored in less than one-third of the patients, while DEXA-scan and eye monitoring were offered to <15% of them. Vaccination against flu and pneumococcus was given to 57% and 46% of the patients, respectively. During exposure to the drug, <60% of patients who were prescribed the drug for more than a year had their weight, glucose, or lipid levels recorded at least once and <25% of patients were referred at least once for DEXA-scan or screening for eye diseases. Overall, the odds of being monitored were higher in older patients and in those with comorbidities. There were variations in the level of monitoring provided across the UK, but the monitoring has improved over the last 12 years. Although the extent of monitoring of people on long-term glucocorticoids has improved over time, the overall monitoring provided is not satisfactory, particularly in young patients and those without comorbidities.

  2. Monitoring programme revision highlights long-term salinity changes in selected South African rivers and the value of comprehensive long-term data sets.

    PubMed

    van Niekerk, H; Silberbauer, M J; Hohls, B C

    2009-07-01

    Determination of data adequacy for detection of long-term salinity changes was an important task in the revision of the South African National Chemical Monitoring Programme (NCMP). The NCMP has been running for more than 30 years with several hundred active monitoring sites. Twenty-five sites on major rivers had sufficient continuous data for the estimation of salinity changes over a 25-year period and statistically significant upward or downward trends occurred at 17 of the 25 sites. Most sites were too far apart for detailed analysis of whole river systems, though an upward trend is apparent in the Lower Orange River and a downward trend in the Great Fish River. Salinity in the Tugela River remained stable, well below the 70 mS m( - 1) guideline for drinking water. The results underline the importance of long-term data sets for assessing and managing aquatic systems and provide the impetus to continue building and maintaining long-term sampling programmes.

  3. Long-term monitoring dataset of fish assemblages impinged at nuclear power plants in northern Taiwan

    PubMed Central

    Chen, Hungyen; Liao, Yun-Chih; Chen, Ching-Yi; Tsai, Jeng-I; Chen, Lee-Sea; Shao, Kwang-Tsao

    2015-01-01

    The long-term species diversity patterns in marine fish communities are garnering increasing attention from ecologists and conservation biologists. However, current databases on quantitative abundance information lack consistent long-term time series, which are particularly important in exploring the possible underlying mechanism of community changes and evaluating the effectiveness of biodiversity conservation measures. Here we describe an impinged fish assemblage dataset containing 1, 283, 707 individuals from 439 taxa. Once a month over 19 years (1987–1990 and 2000–2014), we systematically collected the fish killed by impingement upon cooling water intake screens at two nuclear power plants on the northern coast of Taiwan. Because impingement surveys have low sampling errors and can be carried out over many years, they serve as an ideal sampling tool for monitoring how fish diversity and community structure vary over an extended period of time. PMID:26647085

  4. Long-term monitoring dataset of fish assemblages impinged at nuclear power plants in northern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Hungyen; Liao, Yun-Chih; Chen, Ching-Yi; Tsai, Jeng-I.; Chen, Lee-Sea; Shao, Kwang-Tsao

    2015-12-01

    The long-term species diversity patterns in marine fish communities are garnering increasing attention from ecologists and conservation biologists. However, current databases on quantitative abundance information lack consistent long-term time series, which are particularly important in exploring the possible underlying mechanism of community changes and evaluating the effectiveness of biodiversity conservation measures. Here we describe an impinged fish assemblage dataset containing 1, 283, 707 individuals from 439 taxa. Once a month over 19 years (1987-1990 and 2000-2014), we systematically collected the fish killed by impingement upon cooling water intake screens at two nuclear power plants on the northern coast of Taiwan. Because impingement surveys have low sampling errors and can be carried out over many years, they serve as an ideal sampling tool for monitoring how fish diversity and community structure vary over an extended period of time.

  5. Real-time long term measurement using integrated framework for ubiquitous smart monitoring

    NASA Astrophysics Data System (ADS)

    Heo, Gwanghee; Lee, Giu; Lee, Woosang; Jeon, Joonryong; Kim, Pil-Joong

    2007-04-01

    Ubiquitous monitoring combining internet technologies and wireless communication is one of the most promising technologies of infrastructure health monitoring against the natural of man-made hazards. In this paper, an integrated framework of the ubiquitous monitoring is developed for real-time long term measurement in internet environment. This framework develops a wireless sensor system based on Bluetooth technology and sends measured acceleration data to the host computer through TCP/IP protocol. And it is also designed to respond to the request of web user on real time basis. In order to verify this system, real time monitoring tests are carried out on a prototype self-anchored suspension bridge. Also, wireless measurement system is analyzed to estimate its sensing capacity and evaluate its performance for monitoring purpose. Based on the evaluation, this paper proposes the effective strategies for integrated framework in order to detect structural deficiencies and to design an early warning system.

  6. “State of the Estuary” - Developing a long term monitoring ...

    EPA Pesticide Factsheets

    As the lower Saint Louis River moves closer and closer to delisting as an Area of Concern, it is incumbent that we measure, assess and report on our success. Going forward, It’s equally important that we continue monitoring to protect and sustain the healthy ecosystems we’ve worked so hard to attain. We propose here the development of a long term systematic monitoring, assessment and reporting framework to help highlight and publicize the successful recovery of the lower Saint Louis River. Such a framework should outline methods for regularly measuring, monitoring and assessing the current health of the river and its ecosystems into the future followed with a periodic reporting of the “State of the Estuary”. This framework should be developed by the stakeholder community over a series of meetings, leading to a collaborative, partner-driven approach. To the extent possible, existing sampling and monitoring programs should be incorporated, along with additional metrics needed to tell the complete story on the “State of the Estuary”. These additional metrics might include economic, social science and human health indicators, contaminants of emerging concern, long term restoration effectiveness and other monitoring needs not yet recognized. Examples of other “State of the Ecosystem” efforts will be discussed as possible models to follow. This abstract is for a presentation at the St. Louis River Summit. The talk will discuss the need for a “S

  7. “State of the Estuary” - Developing a long term monitoring ...

    EPA Pesticide Factsheets

    As the lower Saint Louis River moves closer and closer to delisting as an Area of Concern, it is incumbent that we measure, assess and report on our success. Going forward, It’s equally important that we continue monitoring to protect and sustain the healthy ecosystems we’ve worked so hard to attain. We propose here the development of a long term systematic monitoring, assessment and reporting framework to help highlight and publicize the successful recovery of the lower Saint Louis River. Such a framework should outline methods for regularly measuring, monitoring and assessing the current health of the river and its ecosystems into the future followed with a periodic reporting of the “State of the Estuary”. This framework should be developed by the stakeholder community over a series of meetings, leading to a collaborative, partner-driven approach. To the extent possible, existing sampling and monitoring programs should be incorporated, along with additional metrics needed to tell the complete story on the “State of the Estuary”. These additional metrics might include economic, social science and human health indicators, contaminants of emerging concern, long term restoration effectiveness and other monitoring needs not yet recognized. Examples of other “State of the Ecosystem” efforts will be discussed as possible models to follow. This abstract is for a presentation at the St. Louis River Summit. The talk will discuss the need for a “S

  8. Gastric bypass patients' goal-strategy-monitoring networks for long-term dietary management.

    PubMed

    Lynch, Amanda; Bisogni, Carole A

    2014-10-01

    Following gastric bypass surgery, patients must make dramatic dietary changes, but little is known about patients' perspectives on long-term dietary management after this surgery. This grounded theory, qualitative study sought to advance conceptual understanding of food choice by examining how gastric bypass patients constructed personal food systems to guide food and eating behaviors 12 months post-surgery. Two in-depth interviews were conducted with each of 16 adults, purposively sampled from bariatric support groups. Using constant comparative analysis of verbatim interview transcripts, researchers identified participants' goal-strategy-monitoring networks representing how participants used specific food and eating behaviors towards their main goals of: Weight Management, Overall Health, Avoiding Negative Reactions to Eating, and Integrating Dietary Changes with Daily Life. Linked to each main goal was a hierarchy of intermediary goals, strategies, and tactics. Participants used monitoring behaviors to assess strategy effectiveness towards goal achievement. Individuals' Weight Management networks were compared to uncover similarities and differences among strategy use and monitoring methods among those who maintained weight loss and those who regained weight. The complex, multilevel goal-strategy-monitoring networks identified illustrate the "work" involved in constructing new personal food systems after surgery, as well as advance understanding of strategies as a component of people's personal food systems. These findings provide researchers and practitioners with insight into the long-term dietary issues that gastric bypass patients face and a potential method for representing how people relate deliberate dietary behaviors to their goals.

  9. Long-term, on-line monitoring of microbial biofilms using a quartz crystal microbalance

    SciTech Connect

    Nivens, D.E.; Chambers, J.Q.; Anderson, T.R.; White, D.C. )

    1993-01-01

    A quartz crystal microbalance was used to nondestructively monitor the formation of Pseudomonas cepacia biofilms. These experiments involved long-term monitoring over days. Long-term monitoring initially encountered problems associated with baseline drift which were not observed in short-term electrochemical experiments or studies performed in vacuum or air. The extent of baseline drift produced by fluctuations in hydrostatic pressure and temperature was ascertained. Results showed that 5-MHz AT-cut quartz crystals sealed into flow cells and exposed to aqueous environments were more sensitive to pressure and temperature changes than crystals exposed to air. A test system was designed to eliminate these interferences in order to monitor the frequency shift caused by the attachment and surface growth of P. cepacia cells. A calibration curve for the frequency shift corresponding to a given number of bacteria within a biofilm was generated, and the detection limit of the technique was determined to be 3 [times] 10[sup 5] cells[center dot]cm[sup [minus]2]. The calibration curve was utilized to produce graphs of the number of attached cells versus time, and the first derivative curves were used to study rates of biofilm formation. 33 refs., 7 figs.

  10. Long Term, Operational Monitoring Of Enhanced Oil Recovery In Harsh Environments With INSAR

    NASA Astrophysics Data System (ADS)

    Sato, S.; Henschel, M. D.

    2012-01-01

    Since 2004, MDA GSI has provided ground deformation measurements for an oil field in northern Alberta, Canada using InSAR technology. During this period, the monitoring has reliably shown the slow rise of the oil field due to enhanced oil recovery operations. The InSAR monitoring solution is essentially based on the observation of point and point-like targets in the field. Ground conditions in the area are almost continuously changing (in their reflectivity characteristics) making it difficult to ob- serve coherent patterns from the ground. The extended duration of the oil operations has allowed us to continue InSAR monitoring and transition from RADARSAT-1 to RADARSAT-2. With RADARSAT-2 and the enhancement of the satellite resolution capability has provided more targets of opportunity as identified by a differential coherence method. This poster provides an overview of the long term monitoring of the oil field in northern Alberta, Canada.

  11. A long-term data set for hydrologic modeling in a snow-dominated mountain catchment

    NASA Astrophysics Data System (ADS)

    Reba, Michele L.; Marks, Danny; Seyfried, Mark; Winstral, Adam; Kumar, Mukesh; Flerchinger, Gerald

    2011-07-01

    A modeling data set (meteorological forcing data, geographic information system data, and validation data) is presented for water years 1984 through 2008 for a snow-dominated mountain catchment. The forcing data include hourly precipitation, wind speed and direction, air and soil temperature, relative humidity, dew point temperature, and incoming solar and thermal radiation from two sites. Validation data include stream discharge, snow water equivalent, snow depth, soil moisture, and groundwater elevation. These data will improve the development, testing, and application of the next generation of hydrologic models.

  12. Time-series modeling of long-term weight self-monitoring data.

    PubMed

    Helander, Elina; Pavel, Misha; Jimison, Holly; Korhonen, Ilkka

    2015-08-01

    Long-term self-monitoring of weight is beneficial for weight maintenance, especially after weight loss. Connected weight scales accumulate time series information over long term and hence enable time series analysis of the data. The analysis can reveal individual patterns, provide more sensitive detection of significant weight trends, and enable more accurate and timely prediction of weight outcomes. However, long term self-weighing data has several challenges which complicate the analysis. Especially, irregular sampling, missing data, and existence of periodic (e.g. diurnal and weekly) patterns are common. In this study, we apply time series modeling approach on daily weight time series from two individuals and describe information that can be extracted from this kind of data. We study the properties of weight time series data, missing data and its link to individuals behavior, periodic patterns and weight series segmentation. Being able to understand behavior through weight data and give relevant feedback is desired to lead to positive intervention on health behaviors.

  13. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  14. Long-term post-wildfire monitoring of phenology and recovery using a MODIS time series

    NASA Astrophysics Data System (ADS)

    Norman, S.; Hargrove, W. W.; Spruce, J.

    2012-12-01

    Disturbance severity in forests or grasslands is generally conceptualized as the difference between the state before and immediately after a disturbance event. This approach fails to capture slow-acting disturbances that take years to materialize, secondary disturbance effects such as delayed mortality, or variable rates of recovery. Remotely sensed data can provide a multi-seasonal baseline and long-term post-disturbance record of recovery that also captures associated disturbances, such as post event salvage logging or restoration efforts. Here we track the MODIS satellite-based Normalized Difference Vegetation Index or NDVI of several large wildfires that occurred early in the last decade to measure fire and associated disturbance severity with multi-seasonal and multi-year contexts. Large fires analyzed included Oregon's Biscuit Fire, Colorado's Hayman Fire, Arizona's Rodeo-Chediski Fire, and Georgia's Okefenokee Fire among others. Short-term results were generally consistent with prior post-fire estimates of short-term wildfire severity, but long-term fire effects diversified. Both short and long-term severity varied by topography and vegetation types, as measured by changes in seasonal NDVI, not just single-season NDVI. This broadened monitoring technique provides a moderate resolution record of recovery that can inform questions related to cumulative impacts and ecological resilience.

  15. Establishing a Long Term High-Altitude Soil Moisture Monitoring Network at the Watershed Scale

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Osenga, E. C.; Jack-Scott, E.; Arnott, J. C.; Katzenberger, J.

    2015-12-01

    The interactive Roaring Fork Observation Network (iRON) was established in the Roaring Fork Valley of Colorado in 2012 with the vision of a long-term monitoring project of benefit to both the research community and local land managers. Long-term research on high elevation precipitation patterns and soil moisture has been limited in the intermountain West of the United States. This information can provide increasingly valuable insight into ecosystem dynamics at high elevations, especially in light of climate change projections for the region and montane areas in general. The network currently ranges in elevation from roughly 1,980m to 2,700m with additional stations slated for installation this summer that will broaden that range from 1,880m to 3,000m elevation. Stations take measurements every 20 minutes on soil moisture at three depths, air temperature, relative humidity, rain, and soil temperature. Data from these stations are publicly shared on an interactive, educational website that offers context for observed changes in the local watershed, as well as opportunities for feedback and inquiry. Not only will these data have value for local land management and restoration decisions, they also will be distributed to regional, national, and international research communities as a valuable data set on long term soil moisture trends across an elevational-gradient. Collaborators include, towns, counties, non-profits and the private sector. It is intended that this data set will be continuously collected over the span of coming decades.

  16. Climate-vegetation-soil interactions and long-term hydrologic partitioning: Signatures of catchment co-evolution (Invited)

    NASA Astrophysics Data System (ADS)

    Troch, P. A.; Carrillo, G. A.; Sivapalan, M.; Sawicz, K. A.; Wagener, T.

    2013-12-01

    Budyko (1974) postulated that long-term catchment water balance is controlled to first order by the available water and energy. This leads to the interesting question of how do landscape characteristics (soils, geology, vegetation) and climate properties (precipitation, potential evaporation, number of wet and dry days) interact at the catchment scale to produce such a simple and predictable outcome of hydrological partitioning? Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different paramterizations) are subjected to the 12 different climate forcings, resulting in 144 10-year model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates) and per climate (one climate filtered by 12 different model parameterization), and compared to water balance predictions based on Budyko's hypothesis (E/P=φ(Ep/P); E: evaporation, P: precipitation, Ep: potential evaporation). We find significant anti-correlation between average deviations of the evaporation index (E/P) computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005). Next, we analyze which model (i.e., landscape filter) characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls subsurface storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer subsurface storage

  17. Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution

    NASA Astrophysics Data System (ADS)

    Troch, P. A.; Carrillo, G.; Sivapalan, M.; Wagener, T.; Sawicz, K.

    2013-06-01

    Budyko (1974) postulated that long-term catchment water balance is controlled to first order by the available water and energy. This leads to the interesting question of how do landscape characteristics (soils, geology, vegetation) and climate properties (precipitation, potential evaporation, number of wet and dry days) interact at the catchment scale to produce such a simple and predictable outcome of hydrological partitioning? Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different paramterizations) are subjected to the 12 different climate forcings, resulting in 144 10 yr model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates) and per climate (one climate filtered by 12 different model parameterization), and compared to water balance predictions based on Budyko's hypothesis (E/P = ϕ (Ep/P); E: evaporation, P: precipitation, Ep: potential evaporation). We find significant anti-correlation between average deviations of the evaporation index (E/P) computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005). Next, we analyze which model (i.e., landscape filter) characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls subsurface storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer subsurface storage

  18. Regional and temporal differences in nitrate trends discerned from long-term water quality monitoring data

    USGS Publications Warehouse

    Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.

    2015-01-01

    Riverine nitrate (NO3) is a well-documented driver of eutrophication and hypoxia in coastal areas. The development of the elevated river NO3 concentration is linked to anthropogenic inputs from municipal, agricultural, and atmospheric sources. The intensity of these sources has varied regionally, through time, and in response to multiple causes such as economic drivers and policy responses. This study uses long-term water quality, land use, and other ancillary data to further describe the evolution of river NO3 concentrations at 22 monitoring stations in the United States (U.S.). The stations were selected for long-term data availability and to represent a range of climate and land-use conditions. We examined NO3 at the monitoring stations, using a flow-weighting scheme meant to account for interannual flow variability allowing greater focus on river chemical conditions. River NO3 concentration increased strongly during 1945-1980 at most of the stations and have remained elevated, but stopped increasing during 1981-2008. NO3 increased to a greater extent at monitoring stations in the Midwest U.S. and less so at those in the Eastern and Western U.S. We discuss 20th Century agricultural development in the U.S. and demonstrate that regional differences in NO3 concentration patterns were strongly related to an agricultural index developed using principal components analysis. This unique century-scale dataset adds to our understanding of long-term NO3 patterns in the U.S.

  19. Methodology for Using Long-Term Accelerometry Monitoring to Describe Daily Activity Patterns in COPD

    PubMed Central

    Hecht, Ariel; Ma, Shuyi; Porszasz, Janos; Casaburi, Richard

    2010-01-01

    We sought to develop procedures for computerized analysis of long-term, high-resolution activity monitoring data that allow accurate assessment of the time course of activity levels suitable for use in chronic obstructive pulmonary disease (COPD) patients. Twenty-two COPD patients utilizing long-term oxygen recruited from 5 sites of the COPD Clinical Research Network wore a triaxial accelerometer (RT3, Stayhealthy, Monrovia, CA) during waking hours over a14 day period. Computerized algorithms were composed allowing minute-by-minute activity data to be analyzed to determine, for each minute, whether the monitor was being worn. Temporal alignment allowed determination of average time course of activity level, expressed as average vector magnitude units (VMU, the vectorial sum of activity counts in three orthogonal directions) per minute, for each hour of the day. Mid-day activity was quantified as average VMU/minute between 10AM and 4PM for minutes the monitor was worn. Over the 14 day monitoring period, subjects wore the monitor an average of 11.4±3.0 hours·day−1. During midday hours, subjects wore the monitor 76.3% of the time and generated an average activity level of 112±55 VMU·min−1. Increase in precision of activity estimates with longer monitoring periods was demonstrated. This analysis scheme allows a detailed temporal pattern of activity to be defined from triaxial accelerometer recordings and has the potential to facilitate comparisons among subjects and between subject groups. This trial is registered at ClinicalTrials.gov (NCT00325754). PMID:19378225

  20. A Concept for a Long Term Hydrologic Observatory in the South Platte River Basin

    NASA Astrophysics Data System (ADS)

    Ramirez, J. A.

    2004-12-01

    patterns in the region. Government programs, to help manage natural resources in the region, have fractured jurisdiction over the area. With a detailed integration of data sets the South Platte Hydrologic Observatory will address the above water issues, which are representative of many of the scientific hydrologic issues facing the Rocky Mountain/Great Plains interface watersheds, advancing the science of hydrology and producing sound science findings to assist natural resource decision making in the region.

  1. Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent.

    PubMed

    Beal, C D; Gardner, E A; Kirchhof, G; Menzies, N W

    2006-07-01

    Soil absorption systems (SAS) are used commonly to treat and disperse septic tank effluent (STE). SAS can hydraulically fail as a result of the low permeable biomat zone that develops on the infiltrative surface. The objectives of this experiment were to compare the hydraulic properties of biomats grown in soils of different textures, to investigate the long-term acceptance rates (LTAR) from prolonged application of STE, and to assess if soils were of major importance in determining LTAR. The STE was applied to repacked sand, Oxisol and Vertisol soil columns over a period of 16 months, at equivalent hydraulic loading rates of 50, 35 and 8L/m(2)/d, respectively. Infiltration rates, soil matric potentials, and biomat hydraulic properties were measured either directly from the soil columns or calculated using established soil physics theory. Biomats 1 to 2 cm thick developed in all soils columns with hydraulic resistances of 27 to 39 d. These biomats reduced a 4 order of magnitude variation in saturated hydraulic conductivity (K(s)) between the soils to a one order of magnitude variation in LTAR. A relationship between biomat resistance and organic loading rate was observed in all soils. Saturated hydraulic conductivity influenced the rate and extent of biomat development. However, once the biomat was established, the LTAR was governed by the resistance of the biomat and the sub-biomat soil unsaturated flow regime induced by the biomat. Results show that whilst initial soil K(s) is likely to be important in the establishment of the biomat zone in a trench, LTAR is determined by the biomat resistance and the unsaturated soil hydraulic conductivity, not the K(s) of a soil. The results call into question the commonly used approach of basing the LTAR, and ultimately trench length in SAS, on the initial K(s) of soils.

  2. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

    PubMed Central

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152

  3. Long-Term Monitoring of Hydraulic Characteristics of LHD Poloidal Coils

    NASA Astrophysics Data System (ADS)

    Takahata, Kazuya; Moriuchi, Sadatomo; Ooba, Kouki; Mito, Toshiyuki; Imagawa, Shinsaku

    We present a fourteen-year data summary of the hydraulic characteristics of the large helical device (LHD) poloidal coils. The superconductors of the poloidal coils are cable-in-conduit conductors (CICC) cooled by circulated supercritical helium. The long-term operation of the LHD demonstrates that the initial hydraulic characteristics can be maintained without flow obstruction. Fine mesh filters installed at the inlet trapped impurities during cool-down of the coils, confirmed by monitoring the pressure drop of the filters. The filters have an important role in removing particles of impurities in the helium and maintaining the hydraulic characteristics of the coils.

  4. Multiple functional ECG signal is processing for wearable applications of long-term cardiac monitoring.

    PubMed

    Liu, Xin; Zheng, Yuanjin; Phyu, Myint Wai; Zhao, Bin; Je, Minkyu; Yuan, Xiaojun

    2011-02-01

    In this paper, an integrated electrocardiogram (ECG) signal-processing scheme is proposed. Using a systematic wavelet transform algorithm, this signal-processing scheme can realize multiple functions in real time, including baseline-drift removal, noise suppression, QRS detection, heart beat rate prediction and classification, and clean ECG reconstruction. Utilizing the novel low-cost hardware architecture, the proposed ECG signal-processing scheme is implemented in application-specific integrated circuits with 0.18 μ m CMOS technology. This ECG signal-processor chip achieves low area and power consumptions, and is highly suitable for wearable applications of long-term cardiac monitoring.

  5. Gained insights from combined high-frequency and long-term water quality monitoring in agricultural catchments

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Dupas, Rémi; Musolff, Andreas; Rozemeijer, Joachim; Borchardt, Dietrich; Rode, Michael

    2017-04-01

    Despite extensive efforts to reduce nitrate (NO3) transfer in agricultural areas, the NO3 concentration in rivers often changes little. To investigate the reasons for this limited response, NO3 dynamics in a 100 km2 agricultural catchment in eastern Germany was analysed from decadal to infra-hourly time scales. First, Dynamic Harmonic Regression (DHR) analysis of a 32-year (1982-2014) record of NO3 and discharge revealed that i) the long-term trend in NO3 concentration was closely related to that in discharge, suggesting that large-scale weather and climate patterns were masking the effect of improved nitrogen management on NO3 trends; ii) maximum winter and minimum summer concentrations had a persistent seasonal pattern, which was interpreted as a dynamic NO3 concentration from the soil and subsoil columns; and iii) the catchment progressively changed from chemodynamic to more chemostatic behaviour over the three decades of study, which is a sign of long-term homogenisation of NO3 concentrations in the profile. Second, infra-hourly (15 min time interval) analysis of storm-event dynamics during a typical hydrological year (2005-2006) was performed to identify periods of the year with high leaching risk and to link the latter to agricultural management practices in the catchment. Also, intra-hourly data was used to improve NO3 load estimation during storm events. An Event Response Reconstruction (ERR) model was built using NO3 concentration response descriptor variables and predictor variables deduced from discharge and precipitation records. The ERR approach significantly improved NO3 load estimates compared to linear interpolation of grab-sampling data (error was reduced from 10 to 1%). Finally, this study shows that detailed physical understanding of NO3 dynamics across time scales can be obtained only through combined analysis of long-term records and high-resolution sensor data. Hence, a joint effort is advocated between environmental authorities, who usually

  6. Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring

    PubMed Central

    Lazarescu, Mihai T.

    2015-01-01

    Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery. PMID:25912349

  7. Long-term ecosystem monitoring and assessment of the Detroit River and Western Lake Erie.

    PubMed

    Hartig, J H; Zarull, M A; Ciborowski, J J H; Gannon, J E; Wilke, E; Norwood, G; Vincent, A N

    2009-11-01

    Over 35 years of US and Canadian pollution prevention and control efforts have led to substantial improvements in environmental quality of the Detroit River and western Lake Erie. However, the available information also shows that much remains to be done. Improvements in environmental quality have resulted in significant ecological recovery, including increasing populations of bald eagles (Haliaeetus leucocephalus), peregrine falcons (Falco columbarius), lake sturgeon (Acipenser fulvescens), lake whitefish (Coregonus clupeaformis), walleye (Sander vitreus), and burrowing mayflies (Hexagenia spp.). Although this recovery is remarkable, many challenges remain, including population growth, transportation expansion, and land use changes; nonpoint source pollution; toxic substances contamination; habitat loss and degradation; introduction of exotic species; and greenhouse gases and global warming. Research/monitoring must be sustained for effective management. Priority research and monitoring needs include: demonstrating and quantifying cause-effect relationships; establishing quantitative endpoints and desired future states; determining cumulative impacts and how indicators relate; improving modeling and prediction; prioritizing geographic areas for protection and restoration; and fostering long-term monitoring for adaptive management. Key management agencies, universities, and environmental and conservation organizations should pool resources and undertake comprehensive and integrative assessments of the health of the Detroit River and western Lake Erie at least every 5 years to practice adaptive management for long-term sustainability.

  8. The Role of Global Hydrologic Processes in Interannual and Long-Term Climate Variability

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.

    1997-01-01

    The earth's climate and its variability is linked inextricably with the presence of water on our planet. El Nino / Southern Oscillation-- the major mode of interannual variability-- is characterized by strong perturbations in oceanic evaporation, tropical rainfall, and radiation. On longer time scales, the major feedback mechanism in CO2-induced global warming is actually that due to increased water vapor holding capacity of the atmosphere. The global hydrologic cycle effects on climate are manifested through influence of cloud and water vapor on energy fluxes at the top of atmosphere and at the surface. Surface moisture anomalies retain the "memory" of past precipitation anomalies and subsequently alter the partitioning of latent and sensible heat fluxes at the surface. At the top of atmosphere, water vapor and cloud perturbations alter the net amount of radiation that the earth's climate system receives. These pervasive linkages between water, radiation, and surface processes present major complexities for observing and modeling climate variations. Major uncertainties in the observations include vertical structure of clouds and water vapor, surface energy balance, and transport of water and heat by wind fields. Modeling climate variability and change on a physical basis requires accurate by simplified submodels of radiation, cloud formation, radiative exchange, surface biophysics, and oceanic energy flux. In the past, we m safely say that being "data poor' has limited our depth of understanding and impeded model validation and improvement. Beginning with pre-EOS data sets, many of these barriers are being removed. EOS platforms with the suite of measurements dedicated to specific science questions are part of our most cost effective path to improved understanding and predictive capability. This talk will highlight some of the major questions confronting global hydrology and the prospects for significant progress afforded by EOS-era measurements.

  9. The Role of Global Hydrologic Processes in Interannual and Long-Term Climate Variability

    NASA Technical Reports Server (NTRS)

    Robertson, Franklin R.

    1997-01-01

    The earth's climate and its variability is linked inextricably with the presence of water on our planet. El Nino / Southern Oscillation-- the major mode of interannual variability-- is characterized by strong perturbations in oceanic evaporation, tropical rainfall, and radiation. On longer time scales, the major feedback mechanism in CO2-induced global warming is actually that due to increased water vapor holding capacity of the atmosphere. The global hydrologic cycle effects on climate are manifested through influence of cloud and water vapor on energy fluxes at the top of atmosphere and at the surface. Surface moisture anomalies retain the "memory" of past precipitation anomalies and subsequently alter the partitioning of latent and sensible heat fluxes at the surface. At the top of atmosphere, water vapor and cloud perturbations alter the net amount of radiation that the earth's climate system receives. These pervasive linkages between water, radiation, and surface processes present major complexities for observing and modeling climate variations. Major uncertainties in the observations include vertical structure of clouds and water vapor, surface energy balance, and transport of water and heat by wind fields. Modeling climate variability and change on a physical basis requires accurate by simplified submodels of radiation, cloud formation, radiative exchange, surface biophysics, and oceanic energy flux. In the past, we m safely say that being "data poor' has limited our depth of understanding and impeded model validation and improvement. Beginning with pre-EOS data sets, many of these barriers are being removed. EOS platforms with the suite of measurements dedicated to specific science questions are part of our most cost effective path to improved understanding and predictive capability. This talk will highlight some of the major questions confronting global hydrology and the prospects for significant progress afforded by EOS-era measurements.

  10. Long-term linkages between glaciers, permafrost and hydrology at two glacierized watersheds in Alaska

    NASA Astrophysics Data System (ADS)

    Gaedeke, A.; Liljedahl, A. K.; Gatesman, T.; Campbell, S. W.; Hock, R.; Oneel, S.

    2015-12-01

    Climate warming is expected to have considerable impact on the regional water balance of high latitude Arctic and sub-Arctic glacerized watersheds. In this study we combine field observations and the physically based Water Balance Simulation Model WaSiM to refine our understanding of the linkages between glaciers, permafrost and hydrology at two nearby basins with contrasting precipitation regimes: Jarvis Cr. watershed (630 km2) on the north (rain-shadow) side of Eastern Alaska Range and the south facing Phelan Cr. (32 km2), which include the US Geological Survey benchmark site Gulkana Glacier. Both are characterized by a semi-arid climate and are sub-watersheds of the Tanana River basin (12,000 km2). Our research questions include: How has glacier water storage and release varied in the past and how are they expected to change in the future? And what are the subsequent effects on lowland runoff and regional groundwater recharge? Our analyses show i) an increase in air temperature and summer warmth index (the sum of all mean monthly air temperature above 0 °C) in recent decades and ii) a continued negative glacier mass balance. Our findings suggest that, on the larger spatial scale (Tanana River basin), the reduced glacier coverage and increased glacier wastage has, in combination with limited changes in precipitation, lead to (i) increased mean annual and (ii) late winter (March) runoff. We postulate that this is due to increased groundwater recharge, which has been fueled by the 20% reduction in glacier coverage of the Tanana River basin. Here we aim to assess the combined effect of climate change, glacier shrinkage and thawing permafrost on the regional sub-arctic mountain- to lowland hydrologic system, which may transition into a regime with less surface and more subsurface water availability.

  11. Structural condition assessment of long-span suspension bridges using long-term monitoring data

    NASA Astrophysics Data System (ADS)

    Yang, Deng; Youliang, Ding; Aiqun, Li

    2010-03-01

    This paper focuses on developing an online structural condition assessment technique using long-term monitoring data measured by a structural health monitoring system. The seasonal correlations of frequency-temperature and beam-end displacement-temperature for the Runyang Suspension Bridge are performed, first. Then, a statistical modeling technique using a six-order polynomial is further applied to formulate the correlations of frequency-temperature and displacement-temperature, from which abnormal changes of measured frequencies and displacements are detected using the mean value control chart. Analysis results show that modal frequencies of higher vibration modes and displacements have remarkable seasonal correlations with the environmental temperature and the proposed method exhibits a good capability for detecting the micro damage-induced changes of modal frequencies and displacements. The results demonstrate that the proposed method can effectively eliminate temperature complications from frequency and displacement time series and is well suited for online condition monitoring of long-span suspension bridges.

  12. Long-term synchronized electrophysiological and behavioral wireless monitoring of freely moving animals

    PubMed Central

    Grand, Laszlo; Ftomov, Sergiu; Timofeev, Igor

    2012-01-01

    Parallel electrophysiological recording and behavioral monitoring of freely moving animals is essential for a better understanding of the neural mechanisms underlying behavior. In this paper we describe a novel wireless recording technique, which is capable of synchronously recording in vivo multichannel electrophysiological (LFP, MUA, EOG, EMG) and activity data (accelerometer, video) from freely moving cats. The method is based on the integration of commercially available components into a simple monitoring system and is complete with accelerometers and the needed signal processing tools. LFP activities of freely moving group-housed cats were recorded from multiple intracortical areas and from the hippocampus. EMG, EOG, accelerometer and video were simultaneously acquired with LFP activities 24-h a day for 3 months. These recordings confirm the possibility of using our wireless method for 24-h long-term monitoring of neurophysiological and behavioral data of freely moving experimental animals such as cats, ferrets, rabbits and other large animals. PMID:23099345

  13. Long-term monitoring of Sacramento Shade program trees: tree survival, growth and energy-saving performance

    Treesearch

    Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman

    2015-01-01

    Long-term survival and growth of urban forests are critical to achieve the targeted benefits of urban tree planting programs, such as building energy savings from tree shade. However, little is known about how trees perform in the long-term, especially in residential areas. Given this gap in the literature, we monitored 22-years of post-planting survival, growth, and...

  14. Estimating mean long-term hydrologic budget components for watersheds and counties: An application to the commonwealth of Virginia, USA

    USGS Publications Warehouse

    Sanford, Ward E.; Nelms, David L.; Pope, Jason P.; Selnick, David L.

    2015-01-01

    Mean long-term hydrologic budget components, such as recharge and base flow, are often difficult to estimate because they can vary substantially in space and time. Mean long-term fluxes were calculated in this study for precipitation, surface runoff, infiltration, total evapotranspiration (ET), riparian ET, recharge, base flow (or groundwater discharge) and net total outflow using long-term estimates of mean ET and precipitation and the assumption that the relative change in storage over that 30-year period is small compared to the total ET or precipitation. Fluxes of these components were first estimated on a number of real-time-gaged watersheds across Virginia. Specific conductance was used to distinguish and separate surface runoff from base flow. Specific-conductance (SC) data were collected every 15 minutes at 75 real-time gages for approximately 18 months between March 2007 and August 2008. Precipitation was estimated for 1971-2000 using PRISM climate data. Precipitation and temperature from the PRISM data were used to develop a regression-based relation to estimate total ET. The proportion of watershed precipitation that becomes surface runoff was related to physiographic province and rock type in a runoff regression equation. A new approach to estimate riparian ET using seasonal SC data gave results consistent with those from other methods. Component flux estimates from the watersheds were transferred to flux estimates for counties and independent cities using the ET and runoff regression equations. Only 48 of the 75 watersheds yielded sufficient data, and data from these 48 were used in the final runoff regression equation. Final results for the study are presented as component flux estimates for all counties and independent cities in Virginia. The method has the potential to be applied in many other states in the U.S. or in other regions or countries of the world where climate and stream flow data are plentiful.

  15. Long-term forest monitoring in Switzerland: Assessing climate change impacts

    SciTech Connect

    Kraeuchi, N.

    1996-09-01

    This paper discusses successional characteristics of forest ecosystems as influenced by a changing environment, and it focuses on the potential risks resulting from this change. In the early 90`s, a long-term forest monitoring program was established in Switzerland. The primary aim of this program is to identify and evaluate changes in the composition, structure and function of selected forest ecosystems. To assess the potential risks arising with changing weather patterns, a total of 15 monitoring plots were chosen according to specific selection criteria, namely site homogeneity and site sensitivity to climate change and air pollution. Transition characteristics from one mature forest community type to another is strongly modified by different environmental factors such as temperature and precipitation. During climate change, the transition depends on the rate and extent of the forcing factors, the speed of migration and the stability of the communities as they become increasingly maladapted to local climates. It is unknown whether all systems will stabilize in a new equilibrium, and, some forest species may be unable to keep pace with shifts in climatic zones. To assess these risks, FORSUM, a forest succession model for Central Europe, is applied to explain the forest succession on the Long-term Forest Ecosystem Research plots based on the new IPCC 95 climate scenarios. Continuous model improvement based on an increasing number of site specific data-series for model parameterization will help to identify high and low risk forest areas in Switzerland and to evaluate the long-term sustainability of Swiss forests, currently at risk from a number of anthropogenic and biogenic stresses.

  16. The value of long-term environmental monitoring programs: an Ohio River case study.

    PubMed

    Lohner, Timothy W; Dixon, Douglas A

    2013-11-01

    As a subset of environmental monitoring, fish sampling programs have been an important part of assessing the potential impacts of water withdrawals and effluent discharges on fish populations for many years. New environmental regulations often require that adverse environmental impacts to fish populations be minimized. Without long-term field data, population evaluations may incorrectly indicate adverse impacts where none exist or no impact where one is likely to occur. Several electric utility companies have funded the Ohio River Ecological Research Program, which has been in existence for over 40 years and consists of fish, habitat, and water quality studies at multiple power plant sites on the mainstem Ohio River. Sampling includes seasonal night-time electrofishing and daytime beach seining at three upstream and three downstream locations near each plant. The long-term nature of the program allows for the establishment of aquatic community indices to support evaluations of technology performance, the collaborative development of compliance metrics, and the assessment of fish population trends. Studies have concluded that the Ohio River fish community has improved in response to better water quality and that power plant fish entrainment and impingement and thermal discharges have had little or no measureable impact. Through collaboration and the use of long-term data, $6.3 million in monitoring costs have been saved during recent fish impingement studies. The ability to access a multiyear fish abundance database, with its associated data on age, growth, and fecundity, improves the quality of such evaluations and reduces the need for extensive field sampling at individual locations.

  17. Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin

    NASA Astrophysics Data System (ADS)

    Tucci, Carlos Eduardo Morelli; Clarke, Robin Thomas; Collischonn, Walter; da Silva Dias, Pedro Leite; de Oliveira, Gilvan Sampaio

    2003-07-01

    This paper describes a procedure for predicting seasonal flow in the Rio Uruguay drainage basin (area 75,000 km2, lying in Brazilian territory), using sequences of future daily rainfall given by the global climate model (GCM) of the Brazilian agency for climate prediction (Centro de Previsão de Tempo e Clima, or CPTEC). Sequences of future daily rainfall given by this model were used as input to a rainfall-runoff model appropriate for large drainage basins. Forecasts of flow in the Rio Uruguay were made for the period 1995-2001 of the full record, which began in 1940. Analysis showed that GCM forecasts underestimated rainfall over almost all the basin, particularly in winter, although interannual variability in regional rainfall was reproduced relatively well. A statistical procedure was used to correct for the underestimation of rainfall. When the corrected rainfall sequences were transformed to flow by the hydrologic model, forecasts of flow in the Rio Uruguay basin were better than forecasts based on historic mean or median flows by 37% for monthly flows and by 54% for 3-monthly flows.

  18. Highly Resolved Long-term 3D Hydrological Simulation of a Forested Catchment with Litter Layer and Fractured Bedrock

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Bogena, H. R.; Kollet, S. J.; Vereecken, H.

    2014-12-01

    Soil water content plays a key role in the water and energy balance in soil, vegetation and atmosphere systems. According to Wood et al. (2011) there is a grand need to increase global-scale hyper-resolution water-energy-biogeochemistry land surface modelling capabilities. However, such a model scheme should also recognize the epistemic uncertainties, as well as the nonlinearity and hysteresis in its dynamics. Unfortunately, it is not clear how to parameterize hydrological processes as a function of scale and how to test deterministic models with regard to epistemic uncertainties. In this study, high resolution long-term simulations were conducted in the highly instrumented TERENO hydrological observatory, the Wüstebach catchment. Soil hydraulic parameters were derived using inverse modeling with the Hydrus-1D model using the global optimization scheme SCE-UA and soil moisture data from a wireless soil moisture sensor network. The estimated parameters were then used for 3D simulations using the integrated parallel simulation platform ParFlow-CLM. The simulated soil water content, as well as evapotranspiration and runoff, were compared with long-term field observations to illustrate how well the model was able to reproduce the water budget dynamics. With variable model setup scenarios in boundary conditions and anisotropy of hydraulic conductivity, we investigated how lateral flow processes above the underlying fractured bedrock affects the simulation results. Furthermore, we explored the importance of the litter layer and the heterogeneity of the forest soil in the simulation of flow processes and model performance. For the analysis of spatial patterns of simulated and observed soil water content we applied the method of empirical orthogonal function (EOF). The results suggest that strong anisotropy in the hydraulic conductivity may be the reason for the fast lateral flow observed in Wüstebach. Introduction of heterogeneity in the hydraulic properties in the

  19. Solid transport in mountain rivers: monitoring techniques and long term assessment as flood prevention tools

    NASA Astrophysics Data System (ADS)

    Longoni, Laura; Brambilla, Davide; Ivanov, Vladislav; Messa, Giacomo; Veronelli, Andrea; Radice, Alessio; Papini, Monica

    2017-04-01

    Floods are calamitous phenomena with an ever-increasing frequency around the globe, that often result in socio-economic damage and casualties. The role of the solid fraction in the river dynamic has been widely debated in the last decade and its importance is recognized as critical and not negligible in flood simulations as it has been evidenced that the severity of an event is often the result of the coupling of a flood wave with elevated solid transport rates. Nevertheless, assessing the quantity of sediment mobilized in a particular event is not feasible without a long term analysis of the river's dynamics and its morphological evolution since it is defined by past events. This work is focused on the techniques to improve knowledge about sediment production and transport through hydrological networks as a necessary component of a wise flood prevention planning. In particular, a multidisciplinary approach that combines hydraulic and geological knowledge is required in order to understand the evolution of the river sediment and how it will influence the following critical event. The methods are presented through a case study in Italy where a series of different approaches have been integrated to gain a comprehensive understanding of the problem: the sediment movement has been studied by a Eulerian as well as a Lagrangian approaches while hydraulic properties of the stream have been measured. The research started with an attempt to monitor sediment movements: in June 2016 300 sample pebbles, equipped with RFID (Radio Frequency IDentification) transponders, have been deployed in the river and tracked after every major rainfall event. The obtained data-set has been combined with a morphological analysis and a river flow discharge computed through PIV (Particle Image Velocimetry) method in order to identify the relation between a given rainfall event and sediment transport. Moreover, critical sediment size has been estimated from field data using three approaches: two

  20. Long-Term Biological Monitoring of an Impaired Stream: Implications for Environmental Management [Special Issue

    SciTech Connect

    Adams, Marshall; Brandt, Craig C; Christensen, Sigurd W; Efroymson, Rebecca Ann; Greeley Jr, Mark Stephen; Ham, Kenneth; Kszos, Lynn A; Loar, James M; McCracken, Kitty; Morris, Gail Wright; Peterson, Mark J; Ryon, Michael G; Smith, John G; Southworth, George R; Stewart, Arthur J

    2011-01-01

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream in Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.

  1. Long-term Biological Monitoring of an Impaired Stream: Synthesis and Environmental Management Implications

    SciTech Connect

    Peterson, Mark J; Efroymson, Rebecca Ann; Adams, Marshall

    2011-01-01

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream in Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.

  2. Long-Term Biological Monitoring of an Impaired Stream: Synthesis and Environmental Management Implications

    NASA Astrophysics Data System (ADS)

    Peterson, Mark J.; Efroymson, Rebecca A.; Adams, S. Marshall

    2011-06-01

    The long-term ecological recovery of an impaired stream in response to an industrial facility's pollution abatement actions and the implications of the biological monitoring effort to environmental management is the subject of this special issue of Environmental Management. This final article focuses on the synthesis of the biological monitoring program's components and methods, the efficacy of various biological monitoring techniques to environmental management, and the lessons learned from the program that might be applicable to the design and application of other programs. The focus of the 25-year program has been on East Fork Poplar Creek, an ecologically impaired stream in Oak Ridge, Tennessee with varied and complex stressors from a Department of Energy facility in its headwaters. Major components of the long-term program included testing and monitoring of invertebrate and fish toxicity, bioindicators of fish health, fish contaminant accumulation, and instream communities (including periphyton, benthic macroinvertebrate, and fish). Key parallel components of the program include water chemistry sampling and data management. Multiple lines of evidence suggested positive ecological responses during three major pollution abatement periods. Based on this case study and the related literature, effective environmental management of impaired streams starts with program design that is consistent across space and time, but also adaptable to changing conditions. The biological monitoring approaches used for the program provided a strong basis for assessments of recovery from remedial actions, and the likely causes of impairment. This case study provides a unique application of multidisciplinary and quantitative techniques to address multiple and complex regulatory and programmatic goals, environmental stressors, and remedial actions.

  3. Long-term forest monitoring in Switzerland: Assessing climate, climate change impacts

    SciTech Connect

    Kraeuchi, N.

    1996-12-31

    This paper discusses successional characteristics of forest ecosystems as influenced by a changing environment, and it focuses on the potential risks resulting from this change. In the early 90`s, a long-term forest monitoring program has been established in Switzerland. The primary aim of this program is to identify and evaluate changes in the structure and function of selected forest ecosystems. To assess the potential risks arising with changing weather patterns, a total of 15 monitoring plots have been chosen according to different selection criteria, namely site homogeneity and site sensitivity to climate change and air pollution. To assess these risks, FORSUM a forest succession model for Central Europe is applied to analyze the forest succession on the LTFER plots based on the new IPCC 95 climate scenarios. Forest succession models can be used to evaluate climate change impacts on forest ecosystems, even though some parameters are highly uncertain or are even unknown. Detailed analysis of the 15 case studies will help to identify high and low risk forest areas in Switzerland and to evaluate the long-term sustainability of Swiss forest, currently at a risk from a number of anthropogenic and biogenic stresses.

  4. Analysis options for estimating status and trends in long-term monitoring

    USGS Publications Warehouse

    Bart, Jonathan; Beyer, Hawthorne L.

    2012-01-01

    This chapter describes methods for estimating long-term trends in ecological parameters. Other chapters in this volume discuss more advanced methods for analyzing monitoring data, but these methods may be relatively inaccessible to some readers. Therefore, this chapter provides an introduction to trend analysis for managers and biologists while also discussing general issues relevant to trend assessment in any long-term monitoring program. For simplicity, we focus on temporal trends in population size across years. We refer to the survey results for each year as the “annual means” (e.g. mean per transect, per plot, per time period). The methods apply with little or no modification, however, to formal estimates of population size, other temporal units (e.g. a month), to spatial or other dimensions such as elevation or a north–south gradient, and to other quantities such as chemical or geological parameters. The chapter primarily discusses methods for estimating population-wide parameters rather than studying variation in trend within the population, which can be examined using methods presented in other chapters (e.g. Chapters 7, 12, 20). We begin by reviewing key concepts related to trend analysis. We then describe how to evaluate potential bias in trend estimates. An overview of the statistical models used to quantify trends is then presented. We conclude by showing ways to estimate trends using simple methods that can be implemented with spreadsheets.

  5. Long term monitoring of biogenic gasses in peat soils using electromagnetic (EM) measurements

    NASA Astrophysics Data System (ADS)

    Comas, X.; Slater, L.; Reeve, A.

    2007-05-01

    Peatlands are a critical component of the global carbon cycle and play a major role in atmospheric fluxes. Peat soils are considered one of the largest natural sources for greenhouse gas emissions (e.g. methane and carbon dioxide) to the atmosphere, but the mechanisms of formation and spatial distribution of these gasses within the soil matrix still remain uncertain. In this work we investigate the use of ground penetrating radar (GPR) as a geophysical tool to estimate the long term temporal evolution and spatial variability of biogenic gasses at the field scale. We performed high resolution EM measurements over a large section (4m x 4m x 6m) of a northern peatland (Caribou Bog, Maine) for almost an entire year. Methane emissions and surface peat deformation were concurrently monitored. All measurements were performed along a platform built to avoid disturbance of the peat surface and consistently revealed large shifts in gas content. Our results demonstrate that GPR measurements are a totally non-invasive way of investigating long term gas evolution without any disturbance to the natural gas regime (such as inserting monitoring probes), and provide unique information on the spatial distribution of biogenic gasses in peat soils. These findings also have implications for climate modeling efforts as related to biogenic gas emissions in peat soils and its impact on global warming.

  6. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.

    PubMed

    Jung, Ha-Chul; Moon, Jin-Hee; Baek, Dong-Hyun; Lee, Jae-Hee; Choi, Yoon-Young; Hong, Joung-Sook; Lee, Sang-Hoon

    2012-05-01

    We fabricated a carbon nanotube (CNT)/ polydimethylsiloxane (PDMS) composite-based dry ECG electrode that can be readily connected to conventional ECG devices, and showed its long-term wearable monitoring capability and robustness to motion and sweat. While the dispersion of CNTs in PDMS is challenging, we optimized the process to disperse untreated CNTs within PDMS by mechanical force only. The electrical and mechanical characteristics of the CNT/PDMS electrode were tested according to the concentration of CNTs and its thickness. The performances of ECG electrodes were evaluated by using 36 types of electrodes which were fabricated with different concentrations of CNTs, and with a differing diameter and thickness. The ECG signals were obtained by using electrodes of diverse sizes to observe the effects of motion and sweat, and the proposed electrode was shown to be robust to both factors. The CNT concentration and diameter of the electrodes were critical parameters in obtaining high-quality ECG signals. The electrode was shown to be biocompatible from the cytotoxicity test. A seven-day continuous wearability test showed that the quality of the ECG signal did not degrade over time, and skin reactions such as itching or erythema were not observed. This electrode could be used for the long-term measurement of other electrical biosignals for ubiquitous health monitoring including EMG, EEG, and ERG.

  7. Automatic modal identification of cable-supported bridges instrumented with a long-term monitoring system

    NASA Astrophysics Data System (ADS)

    Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.

    2003-08-01

    An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.

  8. An ultra-high input impedance ECG amplifier for long-term monitoring of athletes

    PubMed Central

    Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Ruffo, Mariano; Romano, Maria; Calvo, Rafael A; Jin, Craig; van Schaik, André

    2010-01-01

    We present a new, low-power electrocardiogram (ECG) recording system with an ultra-high input impedance that enables the use of long-lasting, dry electrodes. The system incorporates a low-power Bluetooth module for wireless connectivity and is designed to be suitable for long-term monitoring during daily activities. The new system using dry electrodes was compared with a clinically approved ECG reference system using gelled Ag/AgCl electrodes and performance was found to be equivalent. In addition, the system was used to monitor an athlete during several physical tasks, and a good quality ECG was obtained in all cases, including when the athlete was totally submerged in fresh water. PMID:22915916

  9. Low-power wireless electronic capsule for long-term gastrointestinal monitoring.

    PubMed

    Zhao, Kai; Yan, Guozheng; Lu, Li; Xu, Fei

    2015-02-01

    Combining ASIC and multiple microsensors low-power wireless electronic capsule was developed for the long-term monitoring of the entire human gastro-intestinal (GI) tract. To meet the system requirements, several low-power designs were used in the wireless electronic capsule. The capsule measured 11 × 22 mm including batteries (45mAh). The capsule system's lifetime was 233 h, and it could meet the requirements of almost all clinical applications. A wireless electronic capsule, portable data recorder, and workstation comprised the human GI physiological parameters monitoring system. In this paper, this system was used in a clinical trial to compare colon peristaltic pressure between patients with constipation and healthy people.

  10. Long-term monitoring of social behavior in a grouping of six female tigers (Panthera tigris).

    PubMed

    Miller, Angela; Kuhar, Christopher W

    2008-03-01

    Although literature on the reproduction of captive tigers is plentiful, there is little information on other social behaviors, particularly within large social groupings. Here we report on the long-term monitoring of social behaviors in six female tigers (Panthera tigris). Over a period of 6 years, behavioral data were collected on spraying, vocalizations, non-contact aggression, and contact aggression during outdoor observations, as well as nearest neighbors in the morning, as a proxy measure of affiliation. Regression analyses showed that non-contact aggression and vocalizing were increasing, whereas spraying and social proximity were decreasing over the 6 years of the study. Paired t-tests showed no seasonal differences in aggression, but animals had higher social proximity scores during the mornings of the colder winter months. Correlations showed that spraying was positively related to contact aggression whereas social proximity was negatively correlated with non-contact aggression. In addition to documenting levels of contact and non-contact aggression over time, this study showed these behaviors correlated with behaviors that were more easily scored (spraying and social proximity). Behavioral monitoring has played a key role in the management and husbandry of this large social grouping of female tigers. In addition to providing keepers with the opportunity to observe their animals in regularly scheduled sessions, behavioral monitoring has provided baseline information on social relationships in this grouping over time. If future research validates the relationship between aggression and spraying/social proximity, this can be a valuable tool for long-term monitoring of groups of tigers. Zoo Biol 27:89-99, 2008. (c) 2007 Wiley-Liss, Inc.

  11. Long-term Monitoring Plan for the Shoal Underground Nuclear Test

    SciTech Connect

    Ahmed Hassan

    2005-02-01

    The flow and transport model of Shoal is used to design a three-well monitoring network to be part of the long-term monitoring network for the site and achieve two objectives: (1) detect the presence of radionuclides in case they migrate to the monitoring well locations, and (2) provide field data to compare with model predictions as part of the model validation process. Using three different quantitative approaches and the numerical groundwater flow and transport model developed for Shoal, three new monitoring well locations were identified from 176 different networks. In addition to the quantitative analyses using the numerical model, the development of the monitoring network for Shoal will also be subject to qualitative hydrogeologic interpretation during implementation. information will only be available during the fieldwork, it will be incorporated in the monitoring well design at the time of well installation. Finally, it should be noted that the CADD-CAP for Shoal, including the compliance boundary, is not yet approved. Should the compliance boundary change from the 1,000-year MCL contaminant boundary, well locations may also need to change. However, the analysis reported here provides a number of alternatives with reasonable detection efficiency.

  12. Linking archival and remotely sensed data for long-term environmental monitoring

    NASA Astrophysics Data System (ADS)

    Hamandawana, Hamisai; Eckardt, Frank; Chanda, Raban

    2005-12-01

    The broad objective of this paper is to illustrate how archival, historical and remotely sensed data can be used to complement each other for long-term environmental monitoring. One of the major constraints confronting scientific investigation in the area of long-term environmental monitoring is lack of data at the required temporal and spatial scales. While remotely sensed data have provided dependable change detection databases since 1972, long-term changes such as those associated with typical climate scenarios often require longer time series data. The lack of data in readily accessible and usable formats for periods predating commercial satellite products has for a long time restricted the scope of environmental studies to temporally brief, synoptic overviews covering short time scales, thereby compromising our understanding of complex environmental processes. One way to improve this understanding is by cross-linking different forms of data at different temporal scales. However, most remote sensing based change research has tended to marginalize the utility of archival and historical sources in environmental monitoring. While the accuracy of data from non-instrumental records is often source-specific and varies from place to place, carefully conducted searches can yield useful information that can be effectively used to extend the temporal coverage of projects dependant on time series data. This paper is based on an ongoing project on environmental monitoring in the world's largest Ramsar site, the Okavango Delta, located on the northeastern fringes of Southern Africa's Kalahari-Namib desert in northern Botswana. With a database covering over 150 years between 1849 and 2001, the primary objectives of this paper are to: (1) outline how modern remotely sensed data (i.e., CORONA and Landsat) can be complemented by historical in situ observations (i.e., travellers' records and archival maps) to extend temporal coverage into the historical past, (2) illustrate that

  13. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    EPA Pesticide Factsheets

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  14. 2009 DOE-EM LONG-TERM MONITORING TECHNICAL FORUM SUMMARY REPORT

    SciTech Connect

    Mayer, J.

    2009-09-30

    The U. S. Department of Energy's (DOE) Office of Environmental Management (EM) has the responsibility for cleaning up 60 sites in 22 states that were associated with the legacy of the nation's nuclear weapons program and other research and development activities. These sites are unique and many of the technologies needed to successfully disposition the associated wastes have yet to be developed or would require significant re-engineering to be adapted for future EM cleanup efforts. In 2008, the DOE-EM Engineering and Technology Program (EM-22) released the Engineering and Technology Roadmap in response to Congressional direction and the need to focus on longer term activities required for the completion of the aforementioned cleanup program. One of the strategic initiatives included in the Roadmap was to enhance long term performance monitoring as defined by 'Develop and deploy cost effective long-term strategies and technologies to monitor closure sites (including soil, groundwater, and surface water) with multiple contaminants (organics, metals and radionuclides) to verify integrated long-term cleanup performance'. To support this long-term monitoring (LTM) strategic initiative, EM 22 and the Savannah River National Laboratory (SRNL) organized and held an interactive symposia, known as the 2009 DOE-EM Long-Term Monitoring Technical Forum, to define and prioritize LTM improvement strategies and products that could be realized within a 3 to 5 year investment time frame. This near-term focus on fundamental research would then be used as a foundation for development of applied programs to improve the closure and long-term performance of EM's legacy waste sites. The Technical Forum was held in Atlanta, GA on February 11-12, 2009, and attended by 57 professionals with a focus on identifying those areas of opportunity that would most effectively advance the transition of the current practices to a more effective strategy for the LTM paradigm. The meeting format

  15. On the need to manage long-term diffuse memory controls of hydrological mass loads and water quality

    NASA Astrophysics Data System (ADS)

    Destouni, G.; Cvetkovic, V.

    2011-12-01

    Water management requires understanding and handling of water quality changes and their cause-effect relations, including the source inputs in and hydrological mass transport through catchments that load tracers, nutrients, pollutants and other anthropogenic and geogenic constituents to downstream waters and ecosystems. Costly abatement is often required to protect water resources and ecosystems from excessive nutrient and pollutant loads, and to maintain and restore good ecological status and vital ecosystem services of water systems. But what controls then the magnitudes and dynamics of the hydrological mass loads to the downstream waters and ecosystems? Erroneous understanding of these controls may undermine and mislead resource demanding water management efforts. To support and improve this understanding we have analyzed data from 15-23 year time series of chloride, commonly used as an effective chemical tracer of water movement, in daily rainfall and runoff of two comparative Swedish catchments. We show that long-term catchment memory in form of diffuse internal subsurface sources that have developed from earlier mass inputs controls current load dynamics. In the chloride tracer example the internal memory sources contribute 75-90% of the total stream load, while contemporary source inputs at the surface contribute only 10-25%, with these ranges being consistently determined from scenario analysis of chloride travel time distributions in both catchment cases. While the loading from contemporary surface inputs is hydrologically controlled and dependent on the variability of transport pathways and travel times through a catchment, the average net mass release rate from internal memory sources depends primarily on mean travel time. For the chloride tracer example the release rate is in the range of 1.3*10E-4 - 4.5*10E-3 g/m2/day in both catchment cases. The present quantification approach provides a relatively simple, testable and general management tool for

  16. Long-Term Monitoring of Dolphin Biosonar Activity in Deep Pelagic Waters of the Mediterranean Sea.

    PubMed

    Caruso, Francesco; Alonge, Giuseppe; Bellia, Giorgio; De Domenico, Emilio; Grammauta, Rosario; Larosa, Giuseppina; Mazzola, Salvatore; Riccobene, Giorgio; Pavan, Gianni; Papale, Elena; Pellegrino, Carmelo; Pulvirenti, Sara; Sciacca, Virginia; Simeone, Francesco; Speziale, Fabrizio; Viola, Salvatore; Buscaino, Giuseppa

    2017-06-28

    Dolphins emit short ultrasonic pulses (clicks) to acquire information about the surrounding environment, prey and habitat features. We investigated Delphinidae activity over multiple temporal scales through the detection of their echolocation clicks, using long-term Passive Acoustic Monitoring (PAM). The Istituto Nazionale di Fisica Nucleare operates multidisciplinary seafloor observatories in a deep area of the Central Mediterranean Sea. The Ocean noise Detection Experiment collected data offshore the Gulf of Catania from January 2005 to November 2006, allowing the study of temporal patterns of dolphin activity in this deep pelagic zone for the first time. Nearly 5,500 five-minute recordings acquired over two years were examined using spectrogram analysis and through development and testing of an automatic detection algorithm. Echolocation activity of dolphins was mostly confined to nighttime and crepuscular hours, in contrast with communicative signals (whistles). Seasonal variation, with a peak number of clicks in August, was also evident, but no effect of lunar cycle was observed. Temporal trends in echolocation corresponded to environmental and trophic variability known in the deep pelagic waters of the Ionian Sea. Long-term PAM and the continued development of automatic analysis techniques are essential to advancing the study of pelagic marine mammal distribution and behaviour patterns.

  17. Long-term bridge health monitoring focusing on the Mahalanobis Distance of modal parameters

    NASA Astrophysics Data System (ADS)

    Kim, Chul-Woo; Morita, Tomoaki; Wang, Ziran; Sugiura, Kunitomo

    2015-07-01

    Maintaining civil infrastructure, including bridges, has been a keen technical issue in developed countries and will surely be one in developing countries in the near future. An effective maintenance strategy strongly depends on timely decisions on the health condition of the structure. Bridge health monitoring (BHM) using vibration data is widely recognized to be one of the effective technologies that aid decision-making on bridge maintenance. This research focuses on long-term BHM expecting that changes in physical properties of the bridge subject to aged-deterioration progress slowly. In the practical application of the long-term BHM, one of the difficulties is that the observed vibration data includes environmental influences such as temperature change. In order to achieve high accuracy in evaluating modal parameters of the bridge, other influencing variables have to be taken into consideration. In this study, temperature is considered as the main environmental factor by means of a regression analysis. The Mahalanobis distance (MD), a multivariate statistical distance, is adopted to emphasize potential changes in the identified modal parameters. The validity of the proposed approach is investigated utilizing vibration data measured at a real bridge in service.

  18. Long-term effective population size dynamics of an intensively monitored vertebrate population

    PubMed Central

    Mueller, A-K; Chakarov, N; Krüger, O; Hoffman, J I

    2016-01-01

    Long-term genetic data from intensively monitored natural populations are important for understanding how effective population sizes (Ne) can vary over time. We therefore genotyped 1622 common buzzard (Buteo buteo) chicks sampled over 12 consecutive years (2002–2013 inclusive) at 15 microsatellite loci. This data set allowed us to both compare single-sample with temporal approaches and explore temporal patterns in the effective number of parents that produced each cohort in relation to the observed population dynamics. We found reasonable consistency between linkage disequilibrium-based single-sample and temporal estimators, particularly during the latter half of the study, but no clear relationship between annual Ne estimates () and census sizes. We also documented a 14-fold increase in between 2008 and 2011, a period during which the census size doubled, probably reflecting a combination of higher adult survival and immigration from further afield. Our study thus reveals appreciable temporal heterogeneity in the effective population size of a natural vertebrate population, confirms the need for long-term studies and cautions against drawing conclusions from a single sample. PMID:27553455

  19. Large-area, long-term monitoring of mineral barrier materials

    SciTech Connect

    Brandelik, A.; Huebner, C.

    1997-12-31

    Clay-type mineral layers are used for bottom and surface barriers in environmental containment, such as landfill designs. Their performance in terms of isolation depends on the water content and its variation with the time. Sensitive long-term areal mapping of the moisture content can detect in time drying or shearing failures that will have a negative impact on the performance of the barrier. Based on the measurement of the dielectric coefficient (not of the unpredictable electric conductivity as proposed by others), we use the combination of two sensors; the cryo-moisture sensor and the cable network sensor in the clay-type mineral layer. The cryo-moisture sensor measures the depth profile of the absolute water content and the change of density on a small area (diameter approx. 0.2 m). It is selfcalibrating and very accurate. The cable network sensor is a net of moisture sensitive radiofrequency cables. It is buried in the barrier layer and determines variations of the water content of approximately 3% (by volume) with a spatial accuracy of approx. 4 meters. We have used the cryo-sensor since 1992 and already started installing the cable network on an area of approx. 2000 m{sup 2} within a waste disposal surface barrier at Karlsruhe. This system is non-destructive and allows long-term monitoring. It is predicted to operate for longer than 20 years. The calculated costs of acquisition, installation and operation are $ 4.-/m{sup 2} in the first year.

  20. Long-term limnological research and monitoring at Crater Lake, Oregon

    USGS Publications Warehouse

    Larson, G.L.; Collier, R.; Buktenica, M.

    2007-01-01

    Crater Lake is located in the caldera of Mount Mazama in Crater Lake National Park, Oregon. The lake has a surface area of about 53 km2at an elevation of 1882 m and a maximum depth of 594 m. Limited studies of this ultraoligotrophic lake conducted between 1896 and 1981, lead to a 10-year limnological study to evaluate any potential degradation of water quality. No long-term variations in water quality were observed that could be attributed to anthropogenic activity. Building on the success of this study, a permanent limnological program has been established with a long-term monitoring program to insure a reliable data base for use in the future. Of equal importance, this program serves as a research platform to develop and communicate to the public a better understanding of the coupled biological, physical, and geochemical processes in the lake and its surrounding environment. This special volume represents our current state of knowledge of the status of this pristine ecosystem including its special optical properties, algal nutrient limitations, pelagic bacteria, and models of the inter-relationships of thermal properties, nutrients, phytoplankton, deep-water mixing, and water budgets. ?? 2007 Springer Science+Business Media B.V.

  1. Rangeland monitoring reveals long-term plant responses to precipitation and grazing at the landscape scale

    USGS Publications Warehouse

    Munson, Seth M.; Duniway, Michael C.; Johanson, Jamin K.

    2015-01-01

    Managers of rangeland ecosystems require methods to track the condition of natural resources over large areas and long periods of time as they confront climate change and land use intensification. We demonstrate how rangeland monitoring results can be synthesized using ecological site concepts to understand how climate, site factors, and management actions affect long-term vegetation dynamics at the landscape-scale. Forty-six years of rangeland monitoring conducted by the Bureau of Land Management (BLM) on the Colorado Plateau reveals variable responses of plant species cover to cool-season precipitation, land type (ecological site groups), and grazing intensity. Dominant C3 perennial grasses (Achnatherum hymenoides, Hesperostipa comata), which are essential to support wildlife and livestock on the Colorado Plateau, had responses to cool-season precipitation that were at least twice as large as the dominant C4 perennial grass (Pleuraphis jamesii) and woody vegetation. However, these C3 perennial grass responses to precipitation were reduced by nearly one-third on grassland ecological sites with fine- rather than coarse-textured soils, and there were no detectable C3 perennial grass responses to precipitation on ecological sites dominated by a dense-growing shrub, Coleogyne ramosissima. Heavy grazing intensity further reduced the responses of C3 perennial grasses to cool-season precipitation on ecological sites with coarse-textured soils and surprisingly reduced the responses of shrubs as well. By using ecological site groups to assess rangeland condition, we were able to improve our understanding of the long-term relationships between vegetation change and climate, land use, and site characteristics, which has important implications for developing landscape-scale monitoring strategies.

  2. Continuous fatigue crack monitoring of bridges: Long-Term Electrochemical Fatigue Sensor (LTEFS)

    NASA Astrophysics Data System (ADS)

    Moshier, Monty A.; Nelson, Levi; Brinkerhoff, Ryan; Miceli, Marybeth

    2016-04-01

    Fatigue cracks in steel bridges degrade the load-carrying capacity of these structures. Fatigue damage accumulation caused by the repetitive loading of everyday truck traffic can cause small fatigue cracks initiate. Understanding the growth of these fatigue cracks is critical to the safety and reliability of our transportation infrastructure. However, modeling fatigue in bridges is difficult due to the nature of the loading and variations in connection integrity. When fatigue cracks reach critical lengths failures occur causing partial or full closures, emergency repairs, and even full structural failure. Given the aging US highway and the trend towards asset management and life extension, the need for reliable, cost effective sensors and monitoring technologies to alert bridge owners when fatigue cracks are growing is higher than ever. In this study, an innovative Long-Term Electrochemical Fatigue Sensor (LTEFS) has been developed and introduced to meet the growing NDT marketplace demand for sensors that have the ability to continuously monitor fatigue cracks. The performance of the LTEFS has been studied in the laboratory and in the field. Data was collected using machined specimens with different lengths of naturally initiated fatigue cracks, applied stress levels, applied stress ratios, and for both sinusoidal and real-life bridge spectrum type loading. The laboratory data was evaluated and used to develop an empirically based algorithm used for crack detection. Additionally, beta-tests on a real bridge structure has been completed. These studies have conclusively demonstrated that LTEFS holds great potential for long-term monitoring of fatigue cracks in steel structures

  3. New challenges and opportunities in the eddy-covariance methodology for long-term monitoring networks

    NASA Astrophysics Data System (ADS)

    Papale, Dario; Fratini, Gerardo

    2013-04-01

    Eddy-covariance is the most direct and most commonly applied methodology for measuring exchange fluxes of mass and energy between ecosystems and the atmosphere. In recent years, the number of environmental monitoring stations deploying eddy-covariance systems increased dramatically at the global level, exceeding 500 sites worldwide and covering most climatic and ecological regions. Several long-term environmental research infrastructures such as ICOS, NEON and AmeriFlux selected the eddy-covariance as a method to monitor GHG fluxes and are currently collaboratively working towards defining common measurements standards, data processing approaches, QA/QC procedures and uncertainty estimation strategies, to the aim of increasing defensibility of resulting fluxes and intra and inter-comparability of flux databases. In the meanwhile, the eddy-covariance research community keeps identifying technical and methodological flaws that, in some cases, can introduce - and can have introduced to date - significant biases in measured fluxes or increase their uncertainty. Among those, we identify three issues of presumably greater concern, namely: (1) strong underestimation of water vapour fluxes in closed-path systems, and its dependency on relative humidity; (2) flux biases induced by erroneous measurement of absolute gas concentrations; (3) and systematic errors due to underestimation of vertical wind variance in non-orthogonal anemometers. If not properly addressed, these issues can reduce the quality and reliability of the method, especially as a standard methodology in long-term monitoring networks. In this work, we review the status of the art regarding such problems, and propose new evidences based on field experiments as well as numerical simulations. Our analyses confirm the potential relevance of these issues but also hint at possible coping approaches, to minimize problems during setup design, data collection and post-field flux correction. Corrections are under

  4. Long-term Monitoring Crustal Deformations In The North Caucasus By The Laser Interferrometer

    NASA Astrophysics Data System (ADS)

    Milyukov, V.; Gusev, A.; Kopaev, A.; Kozyreva, A.; Klyachko, B.; Myasnikov, A.

    During several years SAI MSU carries out the long-term observation of crustal de- formations in the North Caucasus, in one of the most active in geodynamic respect region of Russia. On the whole this region is characterized by the complex system of active faults, intensive movements of the EarthSs crust and high seismicity. The wide-band laser interferometer strainmeter with a measurable armlength of 75 m is disposed in an underground tunnel. The optical scheme of the interferometer is the two passes (N = 2) Michelson-type interferometer with unequal arms. The long-term monitoring strains of the Earth is provided in tree frequency bands: below 0.1 Hz (low frequency channel), in the bandwidth of 1 Hz around frequency of 30 Hz (seismic channel) and in the bandwidth of 0.5 Hz around frequency of 1.62 kHz (acoustic chan- nel). Pressure and temperature are monitored too. The instrument possesses unique capabilities with respect to sensitivity and both the frequency and the dynamic ranges. Unique geodynamical features of the region, the proximity of the Elbrus volcanic structure and existing long-term wide-band and high-quality observed timeseries of deformations allow to study a wide class of geophysical phenomenae. Time variation of the tidal deformation parameters indicates the correlation with local seismicity of the region. Litospheric deformations exited by the global earthquakes contain the in- formation about free oscillations of the Earth and dynamic features of the Elbrus vol- cano inhomogeneous structure (magmatic chamber and magmatic center). The data are used for estimating the parameters of the free oscillations of the Earth and res- onances of the Elbrus volcano magmatic formations. The comparison experimental data with mechanical-mathematical models gives the high probability to suppose the existence of the magmatic chamber and the magmatic center in the structure of the Elbrus volcano. The unique property of the laser strainmeter - wide frequency band

  5. Long-term monitoring crustal deformations in the North Caucasus by the laser interferometer

    NASA Astrophysics Data System (ADS)

    Milyukov, V.; Kopaev, A.; Kozyreva, A.; Klyachko, B.; Myasnikov, A.

    2003-04-01

    During several years SAI MSU carries out the long-term observation of crustal deformations in the North Caucasus, in one of the most active in geodynamic respect region of Russia. On the whole this region is characterized by the complex system of active faults, intensive movements of the Earth's crust and high seismicity. The wide-band laser interferometer strainmeter with a measurable armlength of 75 m is disposed in an underground tunnel. The optical scheme of the interferometer is the two passes (N=2) Michelson-type interferometer with unequal arms. The long-term monitoring strains of the Earth is provided in tree frequency bands: below 0.1 Hz (low frequency channel), in the bandwidth of 1 Hz around frequency of 30 Hz (seismic channel) and in the bandwidth of 0.5 Hz around frequency of 1.62 kHz (acoustic channel). Pressure and temperature are monitored too. Unique geodynamical features of the region, the proximity of the Elbrus volcanic structure and existing long-term wide-band and high-quality observed timeseries of deformations allow to study a wide class of geophysical phenomenae. Time variation of the tidal deformation parameters indicates the correlation with local seismicity of the region. The large number of global earthquakes recorded by the Baksan interferometer during several years where analyzed. The data are used for estimating the parameters of the free oscillations of the Earth (FOE) and resonances of the Elbrus volcano magma source. After subtraction of FOE from the experimental spectrums the additional resonance peaks were interpreted as the eigen frequencies of the magma source of the Elbrus volcano. Slight changes of these frequencies may certainly indicate changes of magma state, its temperature and saturation by volcanic gases. Continuous monitoring over the spectra of eigen frequencies of the magma source provide additional data for the general warning system for volcanic hazard assessment. This work is supported by the Russian Foundation

  6. Distributed simulation of long-term hydrological processes in a medium-sized periurban catchment under changing land use and rainwater management.

    NASA Astrophysics Data System (ADS)

    Labbas, Mériem; Braud, Isabelle; Branger, Flora; Kralisch, Sven

    2013-04-01

    Growing urbanization and related anthropogenic processes have a high potential to influence hydrological process dynamics. Typical consequences are an increase of surface imperviousness and modifications of water flow paths due to artificial channels and barriers (combined and separated system, sewer overflow device, roads, ditches, etc.). Periurban catchments, at the edge of large cities, are especially affected by fast anthropogenic modifications. They usually consist of a combination of natural areas, rural areas with dispersed settlements and urban areas mostly covered by built zones and spots of natural surfaces. In the context of the European Water Framework Directive (2000) and the Floods Directive (2007), integrated and sustainable solutions are needed to reduce flooding risks and river pollution at the scale of urban conglomerations or whole catchments. Their thorough management requires models able to assess the vulnerability of the territory and to compare the impact of different rainwater management options and planning issues. To address this question, we propose a methodology based on a multi-scale distributed hydrological modelling approach. It aims at quantifying the impact of ongoing urbanization and stormwater management on the long-term hydrological cycle in medium-sized periurban watershed. This method focuses on the understanding and formalization of dominant periurban hydrological processes from small scales (few ha to few km2) to larger scales (few hundred km2). The main objectives are to 1) simulate both urban and rural hydrological processes and 2) test the effects of different long-term land use and water management scenarios. The method relies on several tools and data: a distributed hydrological model adapted to the characteristics of periurban areas, land use and land cover maps from different dates (past, present, future) and information about rainwater management collected from local authorities. For the application of the method, the

  7. Climate-vegetation-soil interactions and long-term hydrologic partitioning: signatures of catchment co-evolution

    NASA Astrophysics Data System (ADS)

    Troch, P. A.; Carrillo, G.; Sivapalan, M.; Wagener, T.; Sawicz, K.

    2013-03-01

    Catchment hydrologic partitioning, regional vegetation composition and soil properties are strongly affected by climate, but the effects of climate-vegetation-soil interactions on river basin water balance are still poorly understood. Here we use a physically-based hydrologic model separately parameterized in 12 US catchments across a climate gradient to decouple the impact of climate and landscape properties to gain insight into the role of climate-vegetation-soil interactions in long-term hydrologic partitioning. The 12 catchment models (with different parameterizations) are subjected to the 12 different climate forcings, resulting in 144 10-yr model simulations. The results are analyzed per catchment (one catchment model subjected to 12 climates) and per climate (one climate filtered by 12 different model parameterization), and compared to water balance predictions based on Budyko's hypothesis (E/P = φ (EP/P); E: evaporation, P: precipitation, EP: potential evaporation). We find significant anti-correlation between average deviations of the evaporation index (E/P) computed per catchment vs. per climate, compared to that predicted by Budyko. Catchments that on average produce more E/P have developed in climates that on average produce less E/P, when compared to Budyko's prediction. Water and energy seasonality could not explain these observations, confirming previous results reported by Potter et al. (2005). Next, we analyze which model (i.e., landscape filter) characteristics explain the catchment's tendency to produce more or less E/P. We find that the time scale that controls perched aquifer storage release explains the observed trend. This time scale combines several geomorphologic and hydraulic soil properties. Catchments with relatively longer aquifer storage release time scales produce significantly more E/P. Vegetation in these catchments have longer access to this additional groundwater source and thus are less prone to water stress. Further analysis

  8. Long-term monitoring of soil gas radon and permeability at two reference sites.

    PubMed

    Chen, Jing; Falcomer, Renato; Ly, Jim; Wierdsma, Jessica; Bergman, Lauren

    2008-01-01

    The long-term monitoring of soil radon variations was conducted at two reference sites in Ottawa. The purpose of this study was to determine whether a single soil radon survey could provide a representative soil radon characteristic of the site. Results showed that during the normal field survey period from June to September in Canada, a single field survey with multiple measurements of soil gas radon concentrations at a depth of 80 cm can characterise the soil radon level of a site within a deviation of +/-30%. Direct in situ soil permeability measurements exhibited, however, large variations even within an area of only 10 x 10 m(2). Considering such large variations and the weight of the equipment, soil permeability can be determined by direct measurements whenever possible or by other qualitative evaluation methods for sites that are hard to access with heavy equipment.

  9. Long-term monitoring of the Sedlec Ossuary - Analysis of hygrothermal conditions

    NASA Astrophysics Data System (ADS)

    Pavlík, Zbyšek; Balík, Lukáš; Maděra, Jiří; Černý, Robert

    2016-07-01

    The Sedlec Ossuary is one of the twelve UNESCO World Heritage Sites in the Czech Republic. Although the ossuary is listed among the most visited Czech tourist attractions, its technical state is almost critical and a radical renovation is necessary. On this account, hygrothermal performance of the ossuary is experimentally researched in the presented paper in order to get information on moisture sources and to get necessary data for optimized design of renovation treatments and reconstruction solutions that will allow preserve the historical significance of this attractive heritage site. Within the performed experimental analysis, the interior and exterior climatic conditions are monitored over an almost three year period together with relative humidity and temperature profiles measured in the most damage parts of the ossuary chapel. On the basis of measured data, the long-term hygrothermal state of the ossuary building is accessed and the periods of possible surface condensation are identified.

  10. Long-term monitoring of diversity and structure of two stands of an Atlantic Tropical Forest.

    PubMed

    Diniz, Écio Souza; Carvalho, Warley Augusto Caldas; Santos, Rubens Manoel; Gastauer, Markus; Garcia, Paulo Oswaldo; Fontes, Marco Aurélio Leite; Coelho, Polyanne Aparecida; Moreira, Aline Martins; Menino, Gisele Cristina Oliveira; Oliveira-Filho, Ary Teixeira

    2017-01-01

    This study aimed to report the long-term monitoring of diversity and structure of the tree community in a protected semideciduous Atlantic Forest in the South of Minas Gerais State, Southeast Brazil. The study was conducted in two stands (B and C), each with 26 and 38 10 m x 30 m plots. Censuses of stand B were conducted in 2000, 2005 and 2011, and stand C in 2001, 2006 and 2011. In both stands, the most abundant and important species for biomass accumulation over the inventories were trees larger than 20 cm of diameter, which characterize advanced successional stage within the forest. The two surveyed stands within the studied forest presented differences in structure, diversity and species richness over the time.

  11. An RFID-based on-lens sensor system for long-term IOP monitoring.

    PubMed

    Hsu, Shun-Hsi; Chiou, Jin-Chern; Liao, Yu-Te; Yang, Tzu-Sen; Kuei, Cheng-Kai; Wu, Tsung-Wei; Huang, Yu-Chieh

    2015-01-01

    In this paper, an RFID-based on-lens sensor system is proposed for noninvasive long-term intraocular pressure monitoring. The proposed sensor IC, fabricated in a 0.18um CMOS process, consists of capacitive sensor readout circuitry, RFID communication circuits, and digital processing units. The sensor IC is integrated with electroplating capacitive sensors and a receiving antenna on the contact lens. The sensor IC can be wirelessly powered, communicate with RFID compatible equipment, and perform IOP measurement using on-lens capacitive sensor continuously from a 2cm distance while the incident power from an RFID reader is 20 dBm. The proposed system is compatible to Gen2 RFID protocol, extending the flexibility and reducing the self-developed firmware efforts.

  12. A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment.

    PubMed

    Luke, Chung Sze; Selimkhanov, Jangir; Baumgart, Leo; Cohen, Susan E; Golden, Susan S; Cookson, Natalie A; Hasty, Jeff

    2016-01-15

    Culturing cells in microfluidic "lab-on-a-chip" devices for time lapse microscopy has become a valuable tool for studying the dynamics of biological systems. Although microfluidic technology has been applied to culturing and monitoring a diverse range of bacterial and eukaryotic species, cyanobacteria and eukaryotic microalgae present several challenges that have made them difficult to culture in a microfluidic setting. Here, we present a customizable device for the long-term culturing and imaging of three well characterized strains of cyanobacteria and microalgae. This platform has several advantages over agarose pads and demonstrates great potential for obtaining high quality, single-cell gene expression data of cyanobacteria and algae in precisely controlled, dynamic environments over long time periods.

  13. Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast

    SciTech Connect

    Ueno, K.; Loomis, H.

    2015-06-01

    Transformations, Inc. has extensive experience building their high performance housing at a variety of Massachusetts locations, in both a production and custom home setting. The majority of their construction uses mini-split heat pumps (MSHPs) for space conditioning. This research covered the long-term performance of MSHPs in Zone 5A; it is the culmination of up to 3 years' worth of monitoring in a set of eight houses. This research examined electricity use of MSHPs, distributions of interior temperatures and humidity when using simplified (two-point) heating systems in high-performance housing, and the impact of open-door/closed-door status on temperature distributions. The use of simplified space conditioning distribution (through use of MSHPs) provides significant first cost savings, which are used to offset the increased investment in the building enclosure.

  14. INTEGRAL long-term monitoring results on persistently bright NS LMXBs

    NASA Astrophysics Data System (ADS)

    Savolainen, P.; Hannikainen, D. C.; Paizis, A.; Farinelli, R.; Kuulkers, E.; Vilhu, O.

    2010-07-01

    We present long-term spectral and timing results from an INTEGRAL monitoring program of persistently bright neutron star Low-Mass X-ray Binaries, i.e. the three bright Atoll sources GX 3+1, GX 9+1 and GX 9+9, and the Z sources GX 5-1, GX 17+2, GX 340+0 and GX 349+2. From the available observing periods between 2003 and 2009, each lasting ~2 months, we have selected a few sample periods for each source, and analyzed all JEM-X and IBIS/ISGRI data with offsets <4 degrees. We seek an explanation for the dichotomy between the hard X-ray tails or lack thereof in the (otherwise very similar) X-ray spectra of Z sources and bright Atolls, respectively.

  15. Fault tree analysis for data-loss in long-term monitoring networks.

    PubMed

    Dirksen, J; ten Veldhuis, J A E; Schilperoort, R P S

    2009-01-01

    Prevention of data-loss is an important aspect in the design as well as the operational phase of monitoring networks since data-loss can seriously limit intended information yield. In the literature limited attention has been paid to the origin of unreliable or doubtful data from monitoring networks. Better understanding of causes of data-loss points out effective solutions to increase data yield. This paper introduces FTA as a diagnostic tool to systematically deduce causes of data-loss in long-term monitoring networks in urban drainage systems. In order to illustrate the effectiveness of FTA, a fault tree is developed for a monitoring network and FTA is applied to analyze the data yield of a UV/VIS submersible spectrophotometer. Although some of the causes of data-loss cannot be recovered because the historical database of metadata has been updated infrequently, the example points out that FTA still is a powerful tool to analyze the causes of data-loss and provides useful information on effective data-loss prevention.

  16. Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests

    NASA Astrophysics Data System (ADS)

    Yang, Yuting; Donohue, Randall J.; McVicar, Tim R.; Roderick, Michael L.; Beck, Hylke E.

    2016-08-01

    Understanding how tropical rainforests respond to elevated atmospheric CO2 concentration (eCO2) is essential for predicting Earth's carbon, water, and energy budgets under future climate change. Here we use long-term (1982-2010) precipitation (P) and runoff (Q) measurements to infer runoff coefficient (Q/P) and evapotranspiration (E) trends across 18 unimpaired tropical rainforest catchments. We complement that analysis by using satellite observations coupled with ecosystem process modeling (using both "top-down" and "bottom-up" perspectives) to examine trends in carbon uptake and relate that to the observed changes in Q/P and E. Our results show there have been only minor changes in the satellite-observed canopy leaf area over 1982-2010, suggesting that eCO2 has not increased vegetation leaf area in tropical rainforests and therefore any plant response to eCO2 occurs at the leaf level. Meanwhile, observed Q/P and E also remained relatively constant in the 18 catchments, implying an unchanged hydrological partitioning and thus approximately conserved transpiration under eCO2. For the same period, using a top-down model based on gas exchange theory, we predict increases in plant assimilation (A) and light use efficiency (ɛ) at the leaf level under eCO2, the magnitude of which is essentially that of eCO2 (i.e., 12% over 1982-2010). Simulations from 10 state-of-the-art bottom-up ecosystem models over the same catchments also show that the direct effect of eCO2 is to mostly increase A and ɛ with little impact on E. Our findings add to the current limited pool of knowledge regarding the long-term eCO2 impacts in tropical rainforests.

  17. Deformations of Pournari I dam (Greece) based on long-term geodetic monitoring data

    NASA Astrophysics Data System (ADS)

    Michalis, Panagiotis; Pytharouli, Stella

    2014-05-01

    A big number of large earth fill dams worldwide are expected to exceed their design lifespan until 2020. This number is becoming larger when taking into account predictions that dam infrastructure is not expected to withstand future natural disasters, with severe consequences to public safety and significant economic losses. Systematic monitoring and analysis is an important tool that enables the evaluation of the on-going performance of a dam, the validation of laboratory models and the assessment of different engineering designs. Currently, relationships describing the long-term evolution of dam deformations are based on only a few studies and mainly focused on the magnitude of crest settlements and the downstream horizontal deflections of the dam. This study presents the post-construction analysis of the behaviour of one of the largest earth fill dams in Greece, based on long-term monitoring data. The 29 year long dataset consisted of geodetic measurements of vertical and horizontal deformations from the crest and the body of the dam, reservoir level fluctuations, in addition to rainfall records of the dam area. Our analysis shows that the settlement of the crest remains within normal limits while the rate of deformations was stabilised almost seven years after the completion of the dam, which is longer than the period suggested by previous studies. The impoundment of the reservoir had a significant effect on the horizontal deflections of the body of the dam: an upwards and upstream movement in part of the downstream shoulder was detected. We compare our results with those obtained from the analysis of one of the highest earth fill dams in Europe, the Kremasta dam. We suggest that this pattern, though rarely mentioned in the international literature, is neither uncommon nor abnormal (when the horizontal deflections are still within safety limits) and is related to changes in the water pressure within the dam along with the on-going consolidation of the dam clay

  18. In vivo wireless biodiagnosis system for long-term bioactivity monitoring network

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuang; Wu, Wen-Jong; Yu, Shih-An; Huang, Jhen-Gang; Lin, Yun-Han; Chen, Yih-Fan; Jin, Ming-Hui; Wen, Chih-Min; Kao, Cheng-Yan; Lin, Shi-Ming; Lu, Shey-Shi; Lin, Chii-Wann; Yen, Jia-Yush; Jaw, Fu-Shan; Chen, Chi-An; Liao, Fang-Jen; Chiu, Nan-Fu; Chien, Chia-Nan; Lee, Chih-Kung

    2004-07-01

    Attempts to develop a Wireless Health Advanced Mobile Bio-diagnostic System (abbreviated as WHAM-BioS) have arisen from the need to monitor the health status of patients under long-term care programs. The proposed WHAM-BioS as presented here was developed by integrating various technologies: nano/MEMS technology, biotechnology, network/communication technology, and information technology. The biochips proposed not only detect certain diseases but will also report any abnormal status readings on the patient to the medical personnel immediately through the network system. Since long-term home care is typically involved, the parameters monitored must be analyzed and traced continuously over a long period of time. To minimize the intrusion to the patients, a wireless sensor embedded within a wireless network is highly recommended. To facilitate the widest possible use of various biochips, a smart sensor node concept was implemented. More specifically, various technologies and components such as built-in micro power generators, energy storage devices, initialization processes, no-waste bio-detection methodologies, embedded controllers, wireless warning signal transmissions, and power/data management were merged and integrated to create this novel technology. The design methodologies and the implementation schemes are detailed. Potential expansions of this newly developed technology to other applications regimes will be presented as well.

  19. Long-term monitoring of gully erosion in Udmurt Republic, Russia

    NASA Astrophysics Data System (ADS)

    Rysin, Ivan; Grigoriev, Ivan; Zaytseva, Mariya; Golosov, Valentin; Sharifullin, Aidar

    2017-03-01

    This article presents results from the long term-monitoring of gully headcut retreat rates (GHRR) between 1959 and 2015 in different parts of the Udmurt Republic and is based on the use of historical aerial photographs and field observations (measuring the distance from the gully head to a fixed reference point) (Vanmaercke et al., 2016). It was determined that GHRR decreased from 2.4 to 0.3 m yr-1 during the 1959-1997 observation period and the 1998-2015 period, respectively. Measurements of GHRR were made once per year for most of the monitoring sites, and twice per year (after snow-melt in May, and after the rainy season, October-November) for gullies located in the eastern part of the study area that contain high proportions of arable land. 80 % of GHRR occurred during the snowmelt period (1978-1997), and decreased to 53 % since 1997. Spatial patterns of GHRR resulting from changing hydro-climatic factors for different regions of the Udmurt Republic, as a whole, were determined based on the analysis of long-term observations at 6 meteorological stations and 4 gauging stations. The main reason for decreasing GHRR appears to be due to reductions in winter frozen soil depth. The influence of stormwater runoff more clearly occurred within the east and north parts of the Vyatka-Kama interfluve, whereas higher correlations between GHRR and frozen soil depth were found for the western parts of the Republic. The most significant increases in GHRR appear to have occurred during the warm part of the year (June-July), after > 40 mm rainstorms.

  20. Wilson Corners SWMU 001 2014 Annual Long Term Monitoring Report Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Langenbach, James

    2015-01-01

    This document presents the findings of the 2014 Long Term Monitoring (LTM) that was completed at the Wilson Corners site, located at the National Aeronautics and Space Administration (NASA) John F. Kennedy Space Center (KSC), Florida. The goals of the 2014 annual LTM event were to evaluate the groundwater flow direction and gradient and to monitor the vertical and downgradient horizontal extent of the volatile organic compounds (VOCs) in groundwater at the site. The LTM activities consisted of an annual groundwater sampling event in December 2014, which included the collection of water levels from the LTM wells. During the annual groundwater sampling event, depth to groundwater was measured and VOC samples were collected using passive diffusion bags (PDBs) from 30 monitoring wells. In addition to the LTM sampling, additional assessment sampling was performed at the site using low-flow techniques based on previous LTM results and assessment activities. Assessment of monitoring well MW0052DD was performed by collecting VOC samples using low-flow techniques before and after purging 100 gallons from the well. Monitoring well MW0064 was sampled to supplement shallow VOC data north of Hot Spot 2 and east of Hot Spot 4. Monitoring well MW0089 was sampled due to its proximity to MW0090. MW0090 is screened in a deeper interval and had an unexpected detection of trichloroethene (TCE) during the 2013 LTM, which was corroborated during the March 2014 verification sampling. Monitoring well MW0130 was sampled to provide additional VOC data beneath the semi-confining clay layer in the Hot Spot 2 area.

  1. Lessons learned from long-term ecosystem research and monitoring in alpine and subalpine basins of the Colorado Rocky Mountains, USA

    USGS Publications Warehouse

    Baron, J.S.

    2001-01-01

    Long-term ecosystem research and monitoring was begun in the Loch Vale watershed of Rocky Mountain National Park in 1983, after extensive survey work to identify the best location. Then, as now, our scientific objectives were to understand natural biogeochemical cycles and variability, so that we could differentiate ecosystem changes from human-caused disturbances, such as atmospheric deposition of pollutants and climate change. We have learned many lessons, often through our mistakes, that are worth passing on. Clear scientific objectives, even for long-term monitoring, are essential. Standardized methods, including rigorous quality assurance procedures should be adhered to from the beginning of the program. All data, even those collected routinely for background records, should be scrutinized and summarized at least once a year. Freely share basic information such as weather, hydrologic, chemical, and descriptive records with other researchers who can build upon your efforts. Use many tools when asking complex ecological questions, in order to minimize bias toward specific results. Publish frequently; long-term studies do not imply there are no interim conclusions or interesting findings. Interpret findings frequently to policy makers and citizens; increased understanding of the environment and human-caused changes may improve natural resource management, and build support for ecological research. And finally, be persistent. Long-term ecological research can be frustrating and difficult to maintain, yet is often the best way to observe and understand ecological change on a meaningful time scale.

  2. Long Term Geoelectrical Monitoring of Deep-water Horizon Oil Spill in the Gulf Coast

    NASA Astrophysics Data System (ADS)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.; Atekwana, E. A.; Ross, C.; Nolan, J. T.; Atekwana, E. A.

    2011-12-01

    In the aftermath of the catastrophic Deep-water Horizon (DWH) spill in the Gulf Coast, opportunities exist to study the evolution of fresh crude oil contamination in beach sediments and marshes. Grand Terre 1 Island, off the coast of Grand Isle in southern Louisiana, is an uninhabited barrier island, heavily impacted by the DWH spill, and ideal for undisturbed long term monitoring of crude oil degradation processes. A 10 channel Syscal-Pro resistivity / IP instrument (IRIS Instruments, France) is the heart of the fully autonomous geoelectrical monitoring system; the system, which is housed in a weatherproof container, relies solely on solar power, is controlled by an energy efficient PC and can be accessed remotely via web tools. The monitoring scheme involves collecting bi-daily resistivity measurements from surface and shallow boreholes, ranging from January 2011 to the present; environmental parameters, such as T, are continuously recorded at several depths. During regular field trips we perform larger scale geophysical surveys, and geochemical measurements (pH, DO, T, fluid C) to support the continuous geophysical monitoring. The contaminated layer on site is a visually distinctive layer of crude oil, isolated by cleaner sands above and below which is identified by a clear and obvious resistive anomaly in preliminary surveys. Early results show a decrease in average of the resistance values of each dataset over time. Further processing of the data yields a linearly shaped resistive anomaly, which coincides with the location of the oil layer. The changes in subsurface resistivity appear to be focused within this anomaly. Time filtering of the data by the time that they were collected, morning or evening, reveals a diurnal variation. While both time frames follow the same overall trend, the measurements in the morning are slightly more resistive than those in the evening. This indicates that there are environmental factors, such as temperature, that need to be

  3. Simulating future uncertainty to guide the selection of survey designs for long-term monitoring

    USGS Publications Warehouse

    Garman, Steven L.; Schweiger, E. William; Manier, Daniel J.; Gitzen, Robert A.; Millspaugh, Joshua J.; Cooper, Andrew B.; Licht, Daniel S.

    2012-01-01

    A goal of environmental monitoring is to provide sound information on the status and trends of natural resources (Messer et al. 1991, Theobald et al. 2007, Fancy et al. 2009). When monitoring observations are acquired by measuring a subset of the population of interest, probability sampling as part of a well-constructed survey design provides the most reliable and legally defensible approach to achieve this goal (Cochran 1977, Olsen et al. 1999, Schreuder et al. 2004; see Chapters 2, 5, 6, 7). Previous works have described the fundamentals of sample surveys (e.g. Hansen et al. 1953, Kish 1965). Interest in survey designs and monitoring over the past 15 years has led to extensive evaluations and new developments of sample selection methods (Stevens and Olsen 2004), of strategies for allocating sample units in space and time (Urquhart et al. 1993, Overton and Stehman 1996, Urquhart and Kincaid 1999), and of estimation (Lesser and Overton 1994, Overton and Stehman 1995) and variance properties (Larsen et al. 1995, Stevens and Olsen 2003) of survey designs. Carefully planned, “scientific” (Chapter 5) survey designs have become a standard in contemporary monitoring of natural resources. Based on our experience with the long-term monitoring program of the US National Park Service (NPS; Fancy et al. 2009; Chapters 16, 22), operational survey designs tend to be selected using the following procedures. For a monitoring indicator (i.e. variable or response), a minimum detectable trend requirement is specified, based on the minimum level of change that would result in meaningful change (e.g. degradation). A probability of detecting this trend (statistical power) and an acceptable level of uncertainty (Type I error; see Chapter 2) within a specified time frame (e.g. 10 years) are specified to ensure timely detection. Explicit statements of the minimum detectable trend, the time frame for detecting the minimum trend, power, and acceptable probability of Type I error (

  4. Monitored natural attenuation of a long-term petroleum hydrocarbon contaminated sites: a case study.

    PubMed

    Naidu, Ravi; Nandy, Subhas; Megharaj, Mallavarapu; Kumar, R P; Chadalavada, Sreenivasulu; Chen, Zuliang; Bowman, Mark

    2012-11-01

    This study evaluated the potential of monitored natural attenuation (MNA) as a remedial option for groundwater at a long-term petroleum hydrocarbon contaminated site in Australia. Source characterization revealed that total petroleum hydrocarbons (TPH) as the major contaminant of concern in the smear zone and groundwater. Multiple lines of evidence involving the geochemical parameters, microbiological analysis, data modelling and compound-specific stable carbon isotope analysis all demonstrated natural attenuation of hydrocarbons occurring in the groundwater via intrinsic biodegradation. Groundwater monitoring data by Mann-Kendall trend analysis using properly designed and installed groundwater monitoring wells shows the plume is stable and neither expanding nor shrinking. The reason for stable plume is due to the presence of both active source and natural attenuation on the edge of the plume. Assuming no retardation and no degradation the contaminated plume would have travelled a distance of 1,096 m (best case) to 11,496 m (worst case) in 30 years. However, the plume was extended only up to about 170 m from its source. The results of these investigations provide strong scientific evidence for natural attenuation of TPH in this contaminated aquifer. Therefore, MNA can be applied as a defensible management option for this site following significant reduction of TPH in the source zone.

  5. Long-term and transient forcing of the low ionosphere monitored by SAVNET

    SciTech Connect

    Raulin, Jean-Pierre; Bertoni, Fernando C. P.; Gavilan, Hernan R.; Samanes, Jorge C.

    2010-10-20

    In this paper we present the main findings obtained by the South America VLF NETwork since its installation in the South America territory. In particular we show the capability of the VLF technique to monitor the long-term solar activity and transient solar and geomagnetic disturbances. On long timescales they are indices on the possibility of monitoring the Lyman-{alpha} solar radiation. On shorter timescales we show that the VLF technique is a very sensitive mean of detecting solar X-ray flares. Those small events with a peak power {>=}5x10{sup -7} W/m{sup 2} are detected with a 100% probability. A lower limit for the X-ray power of {approx}2.7 10{sup -7} W/m{sup 2} has been found in order to produce a ionospheric disturbance, and we confirm the important role of the Lyman-{alpha} radiation to form and maintain the low ionospheric D-region. SAVNET has also observed for the first time the ionospheric disturbances produced by outbursts from the magnetar SGR 1550-5408. This genuine detection suggests the possibility of monitoring on a routine basis these objects of fundamental importance in high-energy astrophysics. Finally, we show that SAVNET is well suited for participating to the search for seismo-ionospheric disturbances in order to study the possibility of earthquake events prediction.

  6. Long-term and transient forcing of the low ionosphere monitored by SAVNET

    NASA Astrophysics Data System (ADS)

    Raulin, Jean-Pierre; Bertoni, Fernando C. P.; Gavilán, Hernan R.; Samanes, Jorge C.

    2010-10-01

    In this paper we present the main findings obtained by the South America VLF NETwork since its installation in the South America territory. In particular we show the capability of the VLF technique to monitor the long-term solar activity and transient solar and geomagnetic disturbances. On long timescales they are indices on the possibility of monitoring the Lyman-α solar radiation. On shorter timescales we show that the VLF technique is a very sensitive mean of detecting solar X-ray flares. Those small events with a peak power ⩾5×10-7 W/m2 are detected with a 100% probability. A lower limit for the X-ray power of ˜2.7 10-7 W/m2 has been found in order to produce a ionospheric disturbance, and we confirm the important role of the Lyman-α radiation to form and maintain the low ionospheric D-region. SAVNET has also observed for the first time the ionospheric disturbances produced by outbursts from the magnetar SGR 1550-5408. This genuine detection suggests the possibility of monitoring on a routine basis these objects of fundamental importance in high-energy astrophysics. Finally, we show that SAVNET is well suited for participating to the search for seismo-ionospheric disturbances in order to study the possibility of earthquake events prediction.

  7. Long-term monitoring and field testing of an innovative multistory timber building

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; Morris, Hugh; Worth, Margaret; Kohli, Varun; Uma, S. R.

    2011-04-01

    An innovative three-story timber building, using self-centering, post-tensioned timber shear walls as the main horizontal load resisting system and lightweight composite timber-concrete floors, has recently been completed in Nelson, New Zealand. It is expected to be the trailblazer for similar but taller structures to be more widely adopted. Performance based standards require an advanced understanding of building responses and in order to meet the need for in-situ performance data the building has been subjected to forced vibration testing and instrumented for continuous monitoring using a total of about 90 data channels to capture its dynamic and long-term responses. The first part of the paper presents a brief discussion of the existing research on the seismic performance of timber frame buildings and footfall induced floor vibrations. An outline of the building structural system, focusing on the novel design solutions, is then discussed. This is followed by the description of the monitoring system. The paper emphasizes the need for optimal placement of a limited number of sensors and demonstrates how this was achieved for monitoring floor vibrations with the help of the effective independence-driving point residue (EfI-DPR) technique. A novel approach to the EfI-DPR method proposed here uses a combinatorial search algorithm that increases the chances of obtaining the globally optimal solution. Finally, the results from the forced vibration tests conducted on the whole building at different construction stages are reviewed.

  8. Stable microwave radiometry system for long term monitoring of deep tissue temperature

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.

    2013-02-01

    Background: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain onaxis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of +0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface

  9. Stable Microwave Radiometry System for Long Term Monitoring of Deep Tissue Temperature

    PubMed Central

    Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.

    2013-01-01

    Background There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain on-axis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3–5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of ∓0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface

  10. Long-term autonomous resistivity monitoring of oil-contaminated sediments from the Deepwater Horizon spill

    NASA Astrophysics Data System (ADS)

    Heenan, J. W.; Slater, L. D.; Ntarlagiannis, D.; Atekwana, E. A.; Ross, C.; Nolan, J. T.; Atekwana, E. A.; Werkema, D. D.; Fathepure, B.

    2012-12-01

    outside of the contaminated location exhibit relatively uniform resistivity or show clear evidence of seasonal effect. Temperature-corrected resistivity changes show no direct correlation with pore fluid specific conductance changes, suggesting that specific conductance changes (e.g. due to tides) have little influence on imaged resistivity structure. Microbial data suggest that resistivity changes within the contaminated location resulted from biodegradation, showing the presence of native populations capable of degrading aromatic hydrocarbons at salinities ranging from 6 to 15 % NaCl within the contaminated location. Aqueous geochemical measurements performed on samples from the site further indicate that at depth intervals coincident with the resistivity anomaly, marked increases in the concentration of dissolved inorganic carbon (DIC) were observed suggesting biodegradation of petroleum hydrocarbon although other DIC generating processes such as organic matter degradation coupled to sulfate and iron reduction were also prominent. This experiment demonstrates the potential viability of long-term autonomous electrical monitoring as a means of decreasing the frequency of more costly and invasive chemical analysis of natural attenuation.

  11. Long-term crustal deformation monitored by gravity and space geodetic techniques at Medicina

    NASA Astrophysics Data System (ADS)

    Richter, B.; Zerbini, S.; Lago, L.; Romagnoli, C.; Simon, D.

    2003-04-01

    In the framework of an international collaboration, during 1996, at Medicina, Italy, a continuous GPS (CGPS) and a superconducting gravimeter (SG) were installed by the University of Bologna and the Bundesamt fuer Kartographie und Geodaesie, Frankfurt, respectively. The main purpose of the research was the establishment and the demonstration of an observational procedure leading to a reliable estimate of height variations and to interpret gravity variations/changes in conjunction with mass variations/changes within and above the Earth's crust. To fulfill the stated objectives, additional information is needed. In particular, continuous registrations of meteoclimatic parameters such as sacrificial water table level, electrical conductivity and temperature, deep well levels, rainfall, air pressure and temperature and balloon radio sonde data. A comparison, performed over a period of more than six years of data, between the CGPS and SG series has shed light on the existence of relevant seasonal fluctuations in both data sets, quite similar in amplitude and phase. They were interpreted and modeled as the sum of various environmental loadings for the height and gravity series and the Newtonian attraction components for gravity alone. The removal of the observed oscillations is most important in order to estimate properly the long-term trends, which characterize the CGPS and SG series. Moreover, the combination of SG and repeated absolute gravity measurements shows the capability of both techniques to determine the long-term trend in gravity. Just the combined view allows a significant trend analysis. In addition, the CGPS measurements are compared with other geodetic space techniques available at the Medicina station. In total, a strategy has been developed demonstrating how the present day available techniques should be combined to monitor crustal deformations and achieve relevant information for possible causes.

  12. Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments.

    PubMed

    Foulquier, Arnaud; Volat, Bernadette; Neyra, Marc; Bornette, Gudrun; Montuelle, Bernard

    2013-08-01

    In a context of global change, alterations in the water cycle may impact the structure and function of terrestrial and aquatic ecosystems. Wetlands are particularly at risk because hydrological regime has a major influence on microbially mediated biogeochemical processes in sediments. While the influence of water availability on wetland biogeochemical processes has been comprehensively studied, the influence of hydrological regime on microbial community structure has been overlooked. We tested for the effect of hydrological regime on the structure and functions of microbial communities by comparing sediments collected at multiple sites in the Ain département (Eastern France). Each site consisted of two plots, one permanently and one seasonally inundated. At the time of sampling, all plots were continuously inundated for more than 6 months but still harboured distinct bacterial communities. This change in community structure was not associated with marked modifications in the rates of microbial activities involved in the C and N cycles. These results suggest that the observed structural change could be related to bacterial taxa responding to the environmental variations associated with different hydrological regimes, but not strongly associated with the biogeochemical processes monitored here.

  13. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in

  14. Individual based, long term monitoring of acacia trees in hyper arid zone: Integration of a field survey and a remote sensing approach

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Blumberg, Dan G.; Ginat, Hanan; Shalmon, Benny

    2013-04-01

    Vegetation in hyper arid zones is very sparse as is. Monitoring vegetation changes in hyper arid zones is important because any reduction in the vegetation cover in these areas can lead to a considerable reduction in the carrying capacity of the ecological system. This study focuses on the impact of climate fluctuations on the acacia population in the southern Arava valley, Israel. The period of this survey includes a sequence of dry years with no flashfloods in most of the plots that ended in two years with vast floods. Arid zone acacia trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, humidity and precipitation. The trees also provide nutrients for the desert dwellers. Therefore, acacia trees in arid zones are considered to be `keystone species', because they have major influence over both plants and animal species, i.e., biodiversity. Long term monitoring of the acacia tree population in this area can provide insights into long term impacts of climate fluctuations on ecosystems in arid zones. Since 2000, a continuous yearly based survey on the three species of acacia population in seven different plots is conducted in the southern Arava (established by Shalmon, ecologist of the Israel nature and parks authority). The seven plots representing different ecosystems and hydrological regimes. A yearly based population monitoring enabled us to determine the mortality and recruitment rate of the acacia populations as well as growing rates of individual trees. This survey provides a unique database of the acacia population dynamics during a sequence of dry years that ended in a vast flood event during the winter of 2010. A lack of quantitative, nondestructive methods to estimate and monitor stress status of the acacia trees, led us to integrate remote sensing tools (ground and air-based) along with conventional field measurements in order to develop a long term monitoring of acacia

  15. Long-term monitoring of stable isotopic compositions of precipitation over volcanic island, Jeju, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Young-Hee; Koh, Dong-Chan; Park, Won-Bae; Bong, Yeon-Sik; Lee, Kwang-Sik; Lee, Jeonghoon

    2015-04-01

    Stable isotopic compositions of precipitation can be widely used to understand moisture transport in the atmosphere, proxies for paleoclimate and interactions between groundwater and precipitation. Over Jeju volcanic island, located southwest of the Korean Peninsula, precipitation penetrated directly into the highly permeable aquifer is the main source of groundwater. In this study, long-term stable isotopic compositions of precipitation over Jeju Island are characterized to describe spatial and temporal patterns for hydrology and paleoclimate. At fifteen sites from September 2000 to December 2003, precipitation samples were collected and analyzed by Isotope Ratio Mass Spectrometer at the Korea Basic Science Institute. Compared to Lee et al. (2003), the two seasonal local meteoric water lines widen, which may change the relative contributions of winter and summer season precipitation to the groundwater recharge. The precipitation isotopes are inversely correlated with precipitation amount in summer, whereas they do not show a strong correlation with surface air temperature. The precipitation isotopes monthly averaged relatively show a periodic function (R2=0.63 and 0.40 for hydrogen and oxygen, respectively), and deuterium excess (d-excess=δD-8×δ18O) shows a strong pattern of quadratic function (R2=0.97), which is related to a seasonal change of air masses. Altitude effect of precipitation isotopes, which can be a clue to reveal sources of groundwater, can be observed in every aspect of the volcanic island (for the oxygen isotope, -0.14‰ for east and west, -0.18‰ for north and -0.085‰ for south per 100 m). Our analysis of precipitation isotopes will be helpful to provide limitations and opportunities for paleoclimate reconstruction using isotopic proxies and water movement from atmosphere to subsurface.

  16. Long-term home monitoring of hypermotor seizures by patient-worn accelerometers.

    PubMed

    Van de Vel, Anouk; Cuppens, Kris; Bonroy, Bert; Milosevic, Milica; Van Huffel, Sabine; Vanrumste, Bart; Lagae, Lieven; Ceulemans, Berten

    2013-01-01

    Long-term home monitoring of epileptic seizures is not feasible with the gold standard of video/electro-encephalography (EEG) monitoring. The authors developed a system and algorithm for nocturnal hypermotor seizure detection in pediatric patients based on an accelerometer (ACM) attached to extremities. Seizure detection is done using normal movement data, meaning that the system can be installed in a new patient's room immediately as prior knowledge on the patient's seizures is not needed for the patient-specific model. In this study, the authors compared video/EEG-based seizure detection with ACM data in seven patients and found a sensitivity of 95.71% and a positive predictive value of 57.84%. The authors focused on hypermotor seizures given the availability of this seizure type in the data, the typical occurrence of these seizures during sleep, i.e., when the measurements were done, and the importance of detection of hypermotor seizures given their often refractory nature and the possible serious consequences. To our knowledge, it is the first detection system focusing on this type of seizure in pediatric patients.

  17. Assessing airborne pollution effects on bryophytes: lessons learned through long-term integrated monitoring in Austria.

    PubMed

    Zechmeister, H G; Dirnböck, T; Hülber, K; Mirtl, M

    2007-06-01

    The study uses measured and calculated data on airborne pollutants, particularly nitrogen (ranges between 28 to 43kgN*ha(-1)*yr(-1)) and sulphur (10 to 18kgSO(4)-S*ha(-1)*yr(-1)), in order to assess their long-term (1992 to 2005) effects on bryophytes at the UN-ECE Integrated Monitoring site 'Zöbelboden' in Austria. Bryophytes were used as reaction indicators on 20 epiphytic plots using the IM monitoring method and on 14 terrestrial plots using standardised photography. The plots were recorded in the years 1992, 1993, 1998, and 2004/2005. Most species remained stable in terms of their overall population size during the observed period, even though there were rapid turnover rates of a large percentage of species on all investigated plots. Only a few bryophytes (Hypnum cupressiforme, Leucodon sciuroides) responded unambiguously to N and S deposition. Nitrogen deposition had a weak but significant effect on the distribution of bryophyte communities. However, the time shifts in bryophyte communities did not depend on total deposition of N and S.

  18. Long Term Remote Monitoring of TCE Contaminated Groundwater at Savannah River Site

    SciTech Connect

    Duran, C.; Gudavalli, R.; Lagos, L.; Tansel, B.; Varona, J.; Allen, M.

    2004-10-06

    The purpose of this study was to develop a mobile self powered remote monitoring system enhanced for field deployment at Savannah River Site (SRS). The system used a localized power source with solar recharging and has wireless data collection, analysis, transmission, and data management capabilities. The prototype was equipped with a Hydrolab's DataSonde 4a multi-sensor array package managed by a Supervisory Control and Data Acquisition (SCADA) system, with an adequate pumping capacity of water samples for sampling and analysis of Trichloroethylene (TCE) in contaminated groundwater wells at SRS. This paper focuses on a study and technology development efforts conducted at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) to automate the sampling of contaminated wells with a multi-sensor array package developed using COTS (Commercial Off The shelf) parts. Bladder pumps will pump water from different wells to the sensors array, water quality TCE indicator parameters are measured (i.e. pH, redox, ORP, DO, NO3 -, Cl-). In order to increase user access and data management, the system was designed to be accessible over the Internet. Remote users can take sample readings and collect data remotely over a web. Results obtained at Florida International University in-house testing and at a field deployment at the Savannah River Site indicate that this long term monitoring technique can be a feasible solution for the sampling of TCE indicator parameters at remote contaminated sites.

  19. Long-term monitoring of change in Tropical grasslands- GLORIA network in the Andes

    NASA Astrophysics Data System (ADS)

    Cuesta, F. X.; Muriel, P.; Halloy, S.; Beck, S.; Meneses, R. I.; Irazabal, J.; Aguirre, N.; Viñas, P.; Suarez, D.; Becerra, M. T.; Gloria-Andes Network

    2013-05-01

    It has been shown that predicted warming and increased frequency of extreme weather events increase with altitude in the Andean mountains. Combined with enormous topographic (and hence precipitation) heterogeneity, poverty and intensive land use, creates in the region a situation of high vulnerability to global change. Since 2005 the network Global Research Initiative in Alpine Environment (GLORIA) sites have been progressively installed in Andean countries to monitor changes, document the type and magnitude of impacts and provide guidance to develop adaptation strategies for biodiversity, humans, and productive systems. We report the preliminary results from 10 of those sites, in addition to new sites planned in South America. These sites provide baseline data and identify processes and patterns in plant biodiversity across different geographic contexts. These preliminary results show the tremendous singularity of the vegetation and flora patterns in the study sites, suggesting high sensitivity of these ecosystems to climate anomalies. It is expected that the consolidation of this network will support and strengthen long-term observation and monitoring research programs to enable the documentation and understanding of climate change impacts on the Andean biota. Our research considers complementary modules of investigation (e.g. carbon stocks and fluxes, plant responses to experimental manipulation) that contextualize the challenges and opportunities of adaptation for biodiversity and socio-economic components, providing measures of trends as well as effectiveness of adaptive management strategies.

  20. Long-term monitoring studies of pollutants on public lands: Bald Eagles in the Midwest

    SciTech Connect

    Bowerman, W.W.

    1995-12-31

    The role of public agencies to monitor the populations of wildlife species with protected status is paramount to the recovery of these species. Since the early 1960s, the bald eagle (Haliaeetus leucocephalus) populations within the Midwest have been monitored to determine number of breeding pairs, nest occupancy, and success rates. In addition to the reproductive outcome studies, abandoned eggs, blood samples, and feather samples have been collected to determine concentrations of organochlorine pesticides, PCBs, and heavy metals. These surveys give an actual measure of population dynamics of a top-predator species in aquatic systems that integrates the effects of many different environmental pollutants. As concentrations of the organochlorine compounds have declined, bald eagle populations have increased in numbers and their reproductive success has improved. The recovery of this species has not been uniform however. In regions where DDT and PCB concentrations are still above thresholds associated with reproductive impairment, eagles still have impaired reproduction. These areas include the shorelines of the Great Lakes and Voyageurs National Park. Some areas such as the Chippewa National Forest have begun to show declines in reproduction due to density dependent factors. Recent proposals for ecosystem management and reclassification of the bald eagle have led to reduced emphasis for maintaining these long-term data sets. The utility and importance of maintaining surveys of top-predators that can give a measure of population-level effects of pollutants rather than an index will be discussed using examples from the Midwest.

  1. A New Framework for Adaptive Sampling and Analysis During Long- Term Monitoring and Remedial Action Management

    SciTech Connect

    Minsker, Barbara

    2003-06-01

    The Argonne team has gathered available data on monitoring wells and measured hydraulic heads from the Argonne 317/319 site and sent it to UIUC. Xiaodong Li, a research assistant supported by the project, has reviewed the data and is beginning to fit spatiotemporal statistical models to it. Another research assistant, Yonas Demissie, has gotten the site's Modflow model working and is developing a transport model that will be used to generate artificial data. Abhishek Singh, a third research assistant supported by the project, has performed a literature review on inverse modeling and is receiving training on the software that will be used in this project (D2K). He has also created two models of user preferences and successfully implemented them with an interactive genetic algorithm on test functions. Meghna Babbar, the fourth research assistant supported by the project, has created an interactive genetic algorithm code and initial user interface in D2K. Gayathri Gopalakrishnan, the last research assistant who is partially supported by the project, has collected and analyzed data from the phytoremediation systems at the 317/319 site. She has found good correlations between concentrations in the ground water and in branches of the trees, which indicates excellent promise for using the trees as cost-effective long-term monitoring of the contaminants.

  2. Measuring brain activity cycling (BAC) in long term EEG monitoring of preterm babies.

    PubMed

    Stevenson, Nathan J; Palmu, Kirsi; Wikström, Sverre; Hellström-Westas, Lena; Vanhatalo, Sampsa

    2014-07-01

    Measuring fluctuation of vigilance states in early preterm infants undergoing long term intensive care holds promise for monitoring their neurological well-being. There is currently, however, neither objective nor quantitative methods available for this purpose in a research or clinical environment. The aim of this proof-of-concept study was, therefore, to develop quantitative measures of the fluctuation in vigilance states or brain activity cycling (BAC) in early preterm infants. The proposed measures of BAC were summary statistics computed on a frequency domain representation of the proportional duration of spontaneous activity transients (SAT%) calculated from electroencephalograph (EEG) recordings. Eighteen combinations of three statistics and six frequency domain representations were compared to a visual interpretation of cycling in the SAT% signal. Three high performing measures (band energy/periodogram: R = 0.809, relative band energy/nonstationary frequency marginal: R = 0.711, g-statistic/nonstationary frequency marginal: R = 0.638) were then compared to a grading of sleep wake cycling based on the visual interpretation of the amplitude-integrated EEG trend. These measures of BAC are conceptually straightforward, correlate well with the visual scores of BAC and sleep wake cycling, are robust enough to cope with the technically compromised monitoring data available in intensive care units, and are recommended for further validation in prospective studies.

  3. Long-term neutron monitor observations and the 2009 cosmic ray maximum

    NASA Astrophysics Data System (ADS)

    Moraal, H.; Stoker, P. H.

    2010-12-01

    The solar minimum of 2009 was characterized by a prolonged increase toward the maximum cosmic ray intensity, which was higher than it was during the maxima of 22 and 44 years ago. In the previous two so-called qA <0 (solar dipole moment facing South) magnetic cycles, these increases were more sharply peaked than in 2009. The observations of the Sanae, Hermanus, Potchefstroom, and Tsumeb neutron monitors are used to investigate this behavior in terms of propagation conditions due to solar activity, the heliospheric magnetic field, and the profile of the wavy current sheet in the field. This 2009 cosmic ray maximum can only be understood after an investigation of the long-term cosmic ray record. This study is augmented by observations of eight other neutron monitors. During 2009, solar activity parameters were significantly different from previous solar minima: The sun was much quieter, and the the heliospheric magnetic field was more than 20% weaker than during other recent minima. Both of these parameters imply a higher cosmic ray diffusion coefficient, which provides a natural explanation for both the higher galactic cosmic ray intensities that were observed and the absence of such an effect for anomalous cosmic rays.

  4. Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2007-11-10

    Long-term calibration monitoring of the bidirectional reflectance distribution function (BRDF) of Spectralon diffusers in the air-ultraviolet is presented. Four Spectralon diffusers were monitored in this study. Three of the diffusers, designated as H1, H2, and H3, were used in the prelaunch radiance calibration of the Solar Backscatter Ultraviolet/2 (SBUV/2) satellite instruments on National Oceanic and Atmospheric Administration (NOAA) 14 and 16. A fourth diffuser, designated as the 400 diffuser, was used in the prelaunch calibration of the Ozone Mapping and Profiler Suite (OMPS) instrument scheduled for initial flight in 2009 on the National Polar Orbiting Environmental Satellite System Preparatory Project. The BRDF data of this study were obtained between 1994 and 2005 using the scatterometer located in the National Aeronautics and Space Administration Goddard Space Flight Center Diffuser Calibration Laboratory. The diffusers were measured at 13 wavelengths between 230 and 425 nm at the incident and scatter angles used in the prelaunch calibrations of SBUV/2 and OMPS. Spectral features in the BRDF of Spectralon are also discussed. The comparison shows how the air-ultraviolet BRDF of these Spectralon samples changed over time under clean room deployment conditions.

  5. Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet

    NASA Astrophysics Data System (ADS)

    Georgiev, Georgi T.; Butler, James J.

    2007-11-01

    Long-term calibration monitoring of the bidirectional reflectance distribution function (BRDF) of Spectralon diffusers in the air-ultraviolet is presented. Four Spectralon diffusers were monitored in this study. Three of the diffusers, designated as H1, H2, and H3, were used in the prelaunch radiance calibration of the Solar Backscatter Ultraviolet/2 (SBUV/2) satellite instruments on National Oceanic and Atmospheric Administration (NOAA) 14 and 16. A fourth diffuser, designated as the 400 diffuser, was used in the prelaunch calibration of the Ozone Mapping and Profiler Suite (OMPS) instrument scheduled for initial flight in 2009 on the National Polar Orbiting Environmental Satellite System Preparatory Project. The BRDF data of this study were obtained between 1994 and 2005 using the scatterometer located in the National Aeronautics and Space Administration Goddard Space Flight Center Diffuser Calibration Laboratory. The diffusers were measured at 13 wavelengths between 230 and 425 nm at the incident and scatter angles used in the prelaunch calibrations of SBUV/2 and OMPS. Spectral features in the BRDF of Spectralon are also discussed. The comparison shows how the air-ultraviolet BRDF of these Spectralon samples changed over time under clean room deployment conditions.

  6. Blood Glucose Self-Monitoring with a Long-Term Subconjunctival Glucose Sensor

    PubMed Central

    Müller, Achim Josef; Knuth, Monika; Nikolaus, Katharina Sibylle; Krivánek, Roland; Küster, Frank; Hasslacher, Christoph; Auffarth, Gerd Uwe

    2013-01-01

    Background To evaluate the feasibility of an implantable subconjunctival glucose monitoring system (SGMS) for long-term glucose monitoring, we investigated the in vivo performance of the system. Method The SGMS consists of an implantable ocular mini implant (OMI) and a handheld fluorescence photometer. A clinical study was performed on 47 diabetes patients split into two cohorts. Two different types of OMI were used, with and without a biocompatible surface coating. Duration of the study was 1 year. Correlation between capillary blood glucose and SGMS-derived interstitial fluid glucose was investigated during the first 6 months of the study. Results Both OMI types were tolerated well in the eyes of the patients. At the beginning of the study, the SGMS of both cohorts revealed a high accuracy with mean absolute relative difference (MARD) values of 7–12%. The performance of the uncoated OMIs deteriorated within 3 months of wearing time, exhibiting a MARD value of 20%. The performance of the surface-coated OMIs was preserved longer. Glucose correlation measurement with reasonable results (MARD of 14%) could be performed for up to 6 months of wear. Conclusions The biocompatible surface coating on the OMIs enabled a longer duration of action of up to 6 months compared with 3 months for uncoated implants in a clinical trial. PMID:23439157

  7. Hydrodynamic trapping of Tetrahymena thermophila for the long-term monitoring of cell behaviors.

    PubMed

    Kumano, Itsuka; Hosoda, Kazufumi; Suzuki, Hiroaki; Hirata, Katsuki; Yomo, Tetsuya

    2012-09-21

    Microfluidic trapping technology has been widely applied for single-cell observation in order to reveal characteristic cell behaviors. However, this strategy has yet to be tested for monitoring highly motile cells, which are often biologically important. In this paper, we seek the conditions that enable effective and long-term trapping of a prominent model ciliate Tetrahymena thermophila within a hydrodynamic microfluidic device. Although motility and flexibility of T. thermophila make it difficult to avoid escaping from the trap, we show that tuning some key parameters in the hydrodynamic circuit was effective to achieve approximately 40 h cell retention, which is long enough to monitor cell behaviors over several generations. Here, we demonstrate the real-time observation of cell division and phagocytic digestion, revealing interesting phenomena such as a wide distribution in doubling time in a poor synthetic medium and heterogeneous time courses in digestion processes. Our results present a strategy for trapping highly motile ciliate cells in order to study the dynamic behaviors of single cells.

  8. VizieR Online Data Catalog: V899 Mon long-term monitoring (Ninan+, 2015)

    NASA Astrophysics Data System (ADS)

    Ninan, J. P.; Ojha, D. K.; Baug, T.; Bhatt, B. C.; Mohan, V.; Ghosh, S. K.; Men'shchikov, A.; Anupama, G. C.; Tamura, M.; Henning, Th.

    2016-03-01

    Our long-term optical monitoring of V899 Mon started on 2009 November 30. The observations were carried out using the 2m Himalayan Chandra Telescope (HCT) at the Indian Astronomical Observatory, Hanle (Ladakh), belonging to the Indian Institute of Astrophysics (IIA), India, and the 2m telescope at the IUCAA (Inter-University Centre for Astronomy and Astrophysics) Girawali Observatory (IGO), Girawali (Pune), India. Near-infrared (NIR) photometric monitoring of the source in J, H, and K/KS bands was carried out using the HCT NIR camera (NIRCAM), the TIFR Near Infrared Spectrometer and Imager (TIRSPEC) mounted on HCT, and the TIFR Near Infrared Imaging Camera-II (TIRCAM2) mounted on the IGO telescope. Our medium-resolution (R~1000) optical spectroscopic monitoring of V899 Mon also started on 2009 November 30. The spectroscopic observations were carried out using both HCT/HFOSC and IGO/IFOSC. These observations were done in the effective wavelength range of 3700-9000Å. We acquired a high-resolution (R~37000) spectrum of V899 Mon during its second outburst phase on 2014 December 22 using the Southern African Large Telescope High Resolution Spectrograph (SALT-HRS). NIR (1.02-2.35um) spectroscopic monitoring of V899 Mon started on 2013 September 25 using TIRSPEC mounted on HCT. Continuum interferometric observation of V899 Mon at 1280MHz with 33.3MHz bandwidth was carried out on 2014 October 17 using the Giant Metrewave Radio Telescope (GMRT), Pune, India. (3 data files).

  9. Monitoring and long-term assessment of the Mediterranean Sea physical state

    NASA Astrophysics Data System (ADS)

    Simoncelli, Simona; Fratianni, Claudia; Clementi, Emanuela; Drudi, Massimiliano; Pistoia, Jenny; Grandi, Alessandro; Del Rosso, Damiano

    2017-04-01

    The near real time monitoring and long-term assessment of the physical state of the ocean are crucial for the wide CMEMS user community providing a continuous and up to date overview of key indicators computed from operational analysis and reanalysis datasets. This constitutes an operational warning system on particular events, stimulating the research towards a deeper understanding of them and consequently increasing CMEMS products uptake. Ocean Monitoring Indicators (OMIs) of some Essential Ocean Variables have been identified and developed by the Mediterranean Monitoring and Forecasting Centre (MED-MFC) under the umbrella of the CMEMS MYP WG (Multi Year Products Working Group). These OMIs have been operationally implemented starting from the physical reanalysis products and then they have been applied to the operational analyses product. Sea surface temperature, salinity, height as well as heat, water and momentum fluxes at the air-sea interface have been operationally implemented since the reanalysis system development as a real time monitoring of the data production. Their consistency analysis against available observational products or budget values recognized in literature guarantees the high quality of the numerical dataset. The results of the reanalysis validation procedures are yearly published in the QUality Information Document since 2014 available through the CMEMS catalogue (http://marine.copernicus.eu), together with the yearly dataset extension. New OMIs of the winter mixed layer depth, the eddy kinetic energy and the heat content will be presented, in particular we will analyze their time evolution and trends starting from 1987, then we will focus on the recent time period 2013-2016 when reanalysis and analyses datasets overlap to show their consistency beside their different system implementation (i.e. atmospheric forcing, wave coupling, nesting). At the end the focus will be on 2016 sea state and circulation of the Mediterranean Sea and its

  10. Wilson Corners SWMU 001 2015 Annual Long Term Monitoring Report Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Lawson, Emily M.

    2016-01-01

    This document presents the findings of the 2015 Long Term Monitoring (LTM) that was completed at the Wilson Corners site, located at the National Aeronautics and Space Administration John F. Kennedy Space Center, Florida. The objectives of the 2015 LTM event were to evaluate the groundwater flow direction and gradient, to monitor the vertical and horizontal extent of the volatile organic compounds (VOCs; including the upgradient and sidegradient extents, which are monitored every five years), and to monitor select locations internal to the dissolved groundwater plume. The 2015 LTM event included several upgradient and sidegradient monitoring wells that are not sampled annually to verify the extent of VOCs in this portion of the site. The December 2015 LTM groundwater sampling event included, depth to groundwater measurements, 40 VOC samples collected using passive diffusion bags, and one VOC sample collected using low-flow techniques. Additionally, monitoring well MW0052DD was overdrilled and abandoned using rotasonic drilling techniques. The following conclusions can be made based on the 2015 LTM results: groundwater flow is generally to the west with northwest and southwest flow components from the water table to approximately 55 feet below land surface (ft BLS); peripheral monitoring wells generally delineate VOCs to groundwater cleanup target levels (GCTLs) except for monitoring wells MW0088, MW0090, MW0095, and NPSHMW0039, which had vinyl chloride (VC) concentrations near the GCTL and MW0062, which had trichloroethene (TCE), cis-1,2-dichloroethenen (cDCE), and VC concentrations above natural attenuation default concentrations (NADCs); VOCs in interior downgradient wells generally fluctuate within historic ranges except for monitoring wells in the north-northwest portion of the site, which have increasing VC concentrations indicating potential plume migration and expansion; Historically, the vertical extents of the VOCs were delineated by monitoring wells

  11. The contribution of the Coweeta Hydrologic Laboratory to developing and understanding of long-term (1934-2008) changes in managed and unmanaged forests

    Treesearch

    Katherine J. Elliott; James Vose

    2010-01-01

    Long-term records from USDA Forest Service Experimental Forests and Ranges (EF&Rs) are exceptionally valuable scientific resources and common ground for research in natural resource management. Coweeta Hydrologic Laboratory, Southern Appalachian Mountains in western North Carolina, is one of 82 EF&Rs located throughout the United States and Puerto Rico. Since...

  12. From hydrodynamic to hydrological modelling: Investigating long-term hydrological regimes of key wetlands in the Macquarie Marshes, a semi-arid lowland floodplain in Australia

    NASA Astrophysics Data System (ADS)

    Wen, Li; Macdonald, Rohan; Morrison, Tim; Hameed, Tahir; Saintilan, Neil; Ling, Joanne

    2013-09-01

    The Macquarie Marshes is an intermittently flooded wetland complex covering nearly 200,000 ha. It is one of the largest semi-permanent wetland systems in the Murray-Darling Basin, Australia, and portions of the Marshes are listed as internationally important under the Ramsar Convention. Previous studies indicate that the Marshes have undergone accelerated ecological degradation since the 1980s. The ecological degradation is documented in declining biodiversity, encroaching of terrestrial species, colonisation of exotic species, and deterioration of floodplain forests. There is strong evidence that reduction in river flows is the principal cause of the decrease in ecological values. Although the streams are relatively well gauged and modelled, the lack of hydrological records within the Marshes hampers any attempts to quantitatively investigate the relationship between hydrological variation and ecosystem integrity. To enable a better understanding of the long-term hydrological variations within the key wetland systems, and in particular, to investigate the impacts of the different water management policies (e.g. environmental water) on wetlands, a river system model including the main wetland systems was needed. The morphological complex nature of the Marshes means that the approximation of hydrological regimes within wetlands using stream hydrographs would have been difficult and inaccurate. In this study, we built a coupled 1D/2D MIKE FLOOD floodplain hydrodynamic model based on a 1 m DEM derived from a LiDAR survey. Hydrological characteristics of key constituent wetlands such as the correlation between water level and inundation area, relationships between stream and wetlands and among wetlands were estimated using time series extracted from hydrodynamic simulations. These relationships were then introduced into the existing river hydrological model (IQQM) to represent the wetlands. The model was used in this study to simulate the daily behaviours of inflow

  13. Ultrahigh sensitivity heavy noble gas detectors for long-term monitoring and monitoring air. 1998 annual progress report

    SciTech Connect

    Valentine, J.D.; Gross, K.

    1998-06-01

    'The primary objective of this research project is to develop heavy noble gas (krypton, xenon, and radon) detectors for: (1) long-term monitoring of transuranic waste, spent fuel, and other uranium and thorium bearing wastes, and (2) alpha particle air monitors that discriminate between radon emissions and other alpha emitters. A University of Cincinnati/Argonne National Laboratory (UC/ANL) Team has been assembled to complete this detector development project. DOE needs that are addressed by this project include improved long-term monitoring capability and improved air monitoring capability during remedial activities. Successful development and implementation of the proposed detection systems could significantly improve current capabilities with relatively simple and inexpensive equipment. As of June 1, 1998, the UC/ANL Team has: (1) made significant progress toward characterizing the fluid transfer process which is the basis for this detector development project and (2) evaluated several radiation detectors and several potential pulse processing schemes. The following discussion describes the progress made during the first year of this project and the implications of this progress.'

  14. Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring

    NASA Astrophysics Data System (ADS)

    Tong, D. Q.; Dan, M.; Wang, T.; Lee, P.

    2012-06-01

    This study introduces an observation-based dust identification approach and applies it to reconstruct long-term dust climatology in the western United States. Long-term dust climatology is important for quantifying the effects of atmospheric aerosols on regional and global climate. Although many routine aerosol monitoring networks exist, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population) or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose an approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1) high PM10 concentrations; (2) low PM2.5/PM10 ratio; (3) higher concentrations and percentage of crustal elements; (4) lower percentage of anthropogenic pollutants; and (5) low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado). During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000-2003 and the other in 2004-2007). The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24 recorded dust events, respectively, while the years

  15. Highly Sensitive and Long Term Stable Electrochemical Microelectrodes for Implantable Glucose Monitoring Devices

    NASA Astrophysics Data System (ADS)

    Qiang, Liangliang

    A miniature wireless implantable electrochemical glucose system for continuous glucose monitoring with good selectivity, sensitivity, linearity and long term stability was developed. First, highly sensitive, long-term stable and reusable planar H2O2 microelectrodes have been fabricated by microlithography. These electrodes composed of a 300 nm Pt black layer situated on a 5 um thick Au layer, provide effective protection to the underlying chromium adhesion layer. Using repeated cyclic voltammetric sweeps in flowing buffer solution, highly sensitive Pt black working electrodes were realized with five-decade linear dynamic range and low detection limit (10 nM) for H2O2 at low oxidation potentials. Second, a highly sensitive, low cost and flexible microwire biosensor was described using 25-mum thick gold wire as working electrode together with 125-mum thick Pt/Ir and Ag wires as counter and reference electrode, embedded within a PDMS-filled polyethylene tube. Surface area and activity of sensor was enhanced by converting gold electrode to nanoporous configuration followed by electrodeposition of platinum black. Glucose oxidase based biosensors by electrodeposition of poly(o-phenylenediamine) and glucose oxidase on the working electrode, displayed a higher glucose sensitivity (1.2 mA mM-1 cm-2) than highest literature reported. In addition it exhibits wide detection range (up to 20 mM) and selectivity (>95%). Third, novel miniaturized and flexible microelectrode arrays with 8 of 25 mum electrodes displayed the much needed 3D diffusion profiles similar to a single 25 mum microelectrode, but with one order increase in current levels. These microelectrode arrays displayed a H2O2 sensitivity of 13 mA mM-1 cm-2, a wide dynamic range of 100 nM to 10 mM, limit of detection of 10 nM. These microwire based edge plane microsensors incorporated flexibility, miniaturization and low operation potential are an promising approach for continuous in vivo metabolic monitoring. Fourth

  16. Searching for a Relationship Between Forest Water Use and Increasing Atmospheric CO2 Concentration with Long-Term Hydrologic Data from the Hubbard Brook Experimental Forest

    SciTech Connect

    Amthor, J.S.

    1998-11-01

    Increases in atmospheric C02 concentration from mid-1956 through mid-1997 were compared with hydrologic records from five forested, gaged watersheds in the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, U.S.A. The purpose of the comparison was to assess whether a relationship between increasing atmospheric CO2 concentration and whole-ecosystem evapotranspiration (ET) could be determined. The HBEF is particularly well suited to this type of study because of the length of the hydrologic record and the physical properties of the watersheds. This analysis is based on HBEF water years (which begin 1 June and end the following 31 May) rather than calendar years. Hydrologic records from individual watersheds used in this analysis ranged from 28 to 41 water years. During the full 41-water-year period, it is estimated that water-year mean atmospheric CO2 concentration increased more than 15% (from about 314 to 363 ppm). In one south-facing watershed (i.e., HBEF watershed 3), there was a statistically significant negative relationship between atmospheric C02 concentration and ET. This translated into a nearly 77 rnndyear reduction in ET as a result of a 50 ppm increase in atmospheric C02 concentration, a result of practical significance. Evapotranspiration from the other watersheds was also negatively related to atmospheric CO2 concentration, but with smaller (and statistically insignificant) magnitudes. Evapotranspiration from the three south-facing (but not the two north-facing) watersheds included in the analysis was "abnormally" low during the most recent 2 years (i.e., water years beginning in 1995 and 1996), and this affected the trends in ET. This recent and abrupt, reduction in ET deserves further analysis, most importantly by an extension of the hydrologic record through continued long-term monitoring in the HBEF (which is ongoing). If ET remains relatively low during the coming years in south-facing watersheds, studies of the physical and/or biological

  17. Long-term monitoring experiences at the HADES underground lab and its relevance for radwaste repository monitoring

    SciTech Connect

    Verstricht, Jan

    2013-07-01

    In the frame of its radwaste disposal research programme, SCK-CEN started the construction of the HADES underground research facility in 1980. Including several extensions and a comprehensive experimental programme, it has provided a lot of experience on monitoring. Monitoring is performed for many reasons: construction follow-up, field characterisation, investigation of phenomena, and model validations - in which the underground lab offers the opportunity for up-scaling conventional laboratory set-ups. Construction monitoring has allowed to develop and optimise the underground construction techniques in a previously poorly known environment, resulting in a well-mastered application of mechanised methods for gallery construction with minimal damage to the host formation. Access to this formation also allows its characterisation, both geotechnical, geological and geochemical, and the detailed investigation of phenomena such as fracturing and oxidation. Finally, instrumented set-ups allow to test various numerical models by comparing the observations with the predicted behaviour. The specific conditions of the underground laboratory put particular requirements to the sensors. These conditions include the long-term nature of many set-ups - typically several years to decades, the inaccessibility of many sensors after installation, high mechanical and water pressures, and corrosion. Combined with the fact that many sensors are custom made, obtaining and maintaining a fully functional instrumented set-up can be challenging. A lot of experience has therefore been gained which is very valuable when designing the monitoring of radwaste repositories - and it has allowed us to determine the critical success factors for monitoring. Engineers tend to look at this first from a technical viewpoint - and there are many technical aspects indeed that determine the reliability of monitoring. A first one is the combination of different observations ('redundancy') which can be

  18. Life+ EnvEurope DEIMS - improving access to long-term ecosystem monitoring data in Europe

    NASA Astrophysics Data System (ADS)

    Kliment, Tomas; Peterseil, Johannes; Oggioni, Alessandro; Pugnetti, Alessandra; Blankman, David

    2013-04-01

    Long-term ecological (LTER) studies aim at detecting environmental changes and analysing its related drivers. In this respect LTER Europe provides a network of about 450 sites and platforms. However, data on various types of ecosystems and at a broad geographical scale is still not easily available. Managing data resulting from long-term observations is therefore one of the important tasks not only for an LTER site itself but also on the network level. Exchanging and sharing the information within a wider community is a crucial objective in the upcoming years. Due to the fragmented nature of long-term ecological research and monitoring (LTER) in Europe - and also on the global scale - information management has to face several challenges: distributed data sources, heterogeneous data models, heterogeneous data management solutions and the complex domain of ecosystem monitoring with regard to the resulting data. The Life+ EnvEurope project (2010-2013) provides a case study for a workflow using data from the distributed network of LTER-Europe sites. In order to enhance discovery, evaluation and access to data, the EnvEurope Drupal Ecological Information Management System (DEIMS) has been developed. This is based on the first official release of the Drupal metadata editor developed by US LTER. EnvEurope DEIMS consists of three main components: 1) Metadata editor: a web-based client interface to manage metadata of three information resource types - datasets, persons and research sites. A metadata model describing datasets based on Ecological Metadata Language (EML) was developed within the initial phase of the project. A crosswalk to the INSPIRE metadata model was implemented to convey to the currently on-going European activities. Person and research site metadata models defined within the LTER Europe were adapted for the project needs. The three metadata models are interconnected within the system in order to provide easy way to navigate the user among the related

  19. An Optical Oxygen Sensor for Long-Term Continuous Monitoring of Dissolved Oxygen in Perfused Bioreactors

    NASA Technical Reports Server (NTRS)

    Gao, F. G.; Jeevarajan, A. S.; Anderson, M. M.

    2002-01-01

    For long-term growth of man1ITlalian cells in perfused bioreactors, it is essential to monitor the concentration of dissolved oxygen (DO) present in the culture medium to quantitate and control level of DO. Continuous measurement of the amount of DO in the cell culture medium in-line under sterile conditions in NASA's perfused bioreactor requires that the oxygen sensor provide increased sensitivity and be sterilizable and nontoxic. Additionally, long-term cell culture experiments require that the calibration be maintained several weeks or months. Although there are a number of sensors for dissolved oxygen on the market and under development elsewhere, very few meet these stringent conditions. An optical oxygen sensor (BOXY) based on dynamic fluorescent quenching and a pulsed blue LED light source was developed in our laboratory to address these requirements. Tris( 4,7 -diphenyl-l, 1 O-phenanthroline )ruthenium(II) chloride is employed as the fluorescent dye indicator. The sensing element consists of a glass capillary (OD 4.0 mm; ID 2.0 mm) coated internally with a thin layer of the fluorescent dye in silicone matrix and overlayed with a black shielding layer. Irradiation of the sensing element with blue light (blue LED with emission maximum at 475 nm) generates a red fluorescence centered at 626 nm. The fluorescence intensity is correlated to the concentration of DO present in the culture medium, following the modified non-linear Stern-Volmer equation. By using a pulsed irradiating light source, the problem of dye-bleaching, which is often encountered in long-term continuous measurements of tIns type, 'is minimized. To date we achieved sensor resolution of 0.3 mmHg at 50 mmHg p02, and 0.6 mmHg at 100 mmHg p02, with a response time of about one minute. Calibration was accomplished in sterile phosphate-buffered saline with a blood-gas analyzer (BGA) measurement as reference. Stand-alone software was also developed to control the sensor and bioreactor as well as to

  20. [Ophthalmological monitoring protocol for patients treated with long-term antimalarials or vigabatrin].

    PubMed

    Ingster-Moati, I; Orssaud, C

    2009-01-01

    Treatment with the antimalarials chloroquine or hydroxychloroquine rarely causes retinopathy. Chloroquine and hydroxychloroquine toxicity are untreatable and can progress to legal blindness. Since 1957, there has been a consensus on the need to monitor patients on long-term chloroquine or hydroxychloroquine therapy. Currently, the procedure for follow-up includes collection of patient information, complete ophthalmological exam with automated central perimetry, and retinal electrophysiology. Screening should take place before treatment or no more than 6 months after initiation of antimalarial therapy. During treatment, monitoring relative to the baseline should be at a frequency determined by whether there are risk factors for development of toxicity, such as a cumulative dose greater than 1.8 kg, a daily dose greater than 6.5mg of hydroxychloroquine/kg/day, concurrent or past ophthalmological diseases, hepatic or renal insufficiency, age older than 65 years, and chloroquine intake. Retinopathy can occur in the absence of risk factors. The risk/benefit ratio favors therapy despite the time and expense of screening. Vigabatrin (VGB) is an effective drug for treatment of epilepsy and has been used in the treatment of West syndrome and epilepsy resistant to other drugs. VGB treatment improves quality of life, but it can induce characteristic bilateral nasal visual field defects and changes in retinal electrophysiology. Currently, the recommended procedure is to screen these patients before treatment, if possible, with a complete ophthalmological exam including perimetry and retinal electrophysiology every 6 months. It may be necessary to rely on retinal electrophysiology since some patients may not be able to undergo perimetry. The risk/benefit ratio sill clearly favors VGB treatment. Patients whose seizure incidence is reduced and have only minimal visual changes could continue VGB with strict monitoring. The others must discontinue VGB.

  1. Re-establishment of long-term glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia

    NASA Astrophysics Data System (ADS)

    Hoelzle, M.; Azisov, E.; Barandun, M.; Hagg, W.; Huss, M.; Kriegel, D.; Machguth, H.; Mandychev, A.; Merkushkin, A.; Moldobekov, B.; Schöne, T.; Thoss, H.; Vorogushyn, S.; Zemp, M.

    2012-04-01

    Glacier mass balance is an important indicator of climate change. The internationally recommended multi-level strategy for monitoring mountain glaciers combines in-situ measurements (mass balance, front variations) with remote sensing (inventories) and numerical modelling. This helps to bridge the gap between detailed local process-oriented studies and global coverage. Several glaciers in Central Asia, i.e. Abramov and Golubina Glacier were some of the most important reference glaciers in the world-wide glacier monitoring program representing important mountain ranges, such as the Pamir-Alay and the Tien Shan mountains. For these glaciers long-term series of more than 20 years are available. After the break-down of the former Soviet Union, most of the measurements were abandoned. In a cooperative effort between the countries Kyrgyzstan, Uzbekistan, Germany and Switzerland, the measurement series are currently re-initiated and will be continued within the next years. This study shows the measurement strategy and network, and discusses new installations, which have been set up at Abramov in summer 2011 and Golubina Glacier in summer 2010. The research strategy is composed of three main components. The first component is based on mass balance measurements using the glaciological method, the second relies on snow line observations with installed automatic cameras taking several pictures per day in order to document the snow line evolution on the glaciers during the summer months. The third is the application of a mass balance model driven by a nearby automatic weather station. The advantage of this strategy is that the three different components can be used to test them against each other, or to use them for calibration purposes. A second objective of the re-established glacier monitoring programs is to reconstruct the mass balance for the time period, where no measurements are available. Continuous mass balance series for each glacier will be derived based on a well

  2. Long-term air quality monitoring at the South Pole by the NOAA program Geophysical Monitoring for Climatic Change

    SciTech Connect

    Robinson, E.; Rodhaine, B.A.; Komhyr, W.D.; Oltmans, S.J.; Steele, L.P.

    1988-02-01

    The objectives of the NOAA program of Geophysical Monitoring for Climatic Change (GMCC) for the South Pole include measurements of atmospheric changes which can potentially impact climate. This paper discusses the long-term GMCC South Pole air chemistry data for carbon dioxide, total ozone, surface ozone, methane, halocarbons, nitrous oxide, and aerosol concentrations, comparing the findings with GMCC data for other regions. Special consideration is given to the results of recent GMCC ozonesonde operations and to an asessment of Dobson ozone spectrophotometer data taken at South Pole by NOAA since 1964. Data are discussed in the framework of Antarctic ozone hole phenomenon. 49 references.

  3. Long term monitoring for oil in the Exxon Valdez spill region.

    PubMed

    Payne, James R; Driskell, William B; Short, Jeffrey W; Larsen, Marie L

    2008-12-01

    In the aftermath of the 1989 Exxon Valdez oil spill, a Long Term Environmental Monitoring Program (LTEMP) has been regularly sampling mussels (and some sediments) for polycyclic aromatic and saturated hydrocarbons (PAH and SHC) at sites in Port Valdez, Prince William Sound, and the nearby Gulf of Alaska region. After 1999, a decreasing trend appears in total PAH (TPAH) in tissues at all sites with current values below 100 ng/g dry weight (many below 50 ng/g). Currently, most samples reflect a predominantly dissolved-phase signal. This new low in TPAH likely represents ambient background levels. Synchrony in TPAH time-series and similarities in the hydrocarbon signatures portray regional-scale dynamics. The five inner Prince William Sound sites show similar composition and fluctuations that are different from the three Gulf of Alaska sites. The two Port Valdez sites represent a unique third region primarily influenced by the treated ballast water discharge from the Alyeska Marine Terminal. Prince William Sound has reverted to a stable environment of extremely low level contamination in which local perturbations are easily detected.

  4. The value of long-term monitoring in the development of ground-water-flow models

    USGS Publications Warehouse

    Feinstein, Daniel T.; Hart, David J.; Krohelski, James T.

    2004-01-01

    As environmental issues have come to the forefront of public concern, so has the awareness of the importance of ground water in the overall water cycle and as a source of the Nation’s drinking water. Heightened interest has spawned a host of scientific enterprises (Taylor and Alley, 2001). Some activities are directed toward collection of water-level data and related information to monitor the physical and chemical state of the resource. Other activities are directed at interpretive studies undertaken, for example, to optimize the location of new water-supply wells or to protect rivers and lakes fed by ground water. An important type of interpretive study is the computer ground-water-flow model that inte- grates field data in a mathematical framework. Long-term, systematic collection of hydro- logic data is crucial to the construction and testing of ground-water models so that they can reproduce the evolution of flow systems and forecast future conditions. 

  5. Developing a Long-term Monitoring Program with Undergraduate Students in Marine Sciences

    NASA Astrophysics Data System (ADS)

    Anders, T. M.; Boryta, M. D.

    2015-12-01

    A goal of our growing marine geoscience program at Mt. San Antonio College is to involve our students in all stages of developing and running an undergraduate research project. During the initial planning phase, students develop and test their proposals. Instructor-set parameters were chosen carefully to help guide students toward manageable projects but to not limit their creativity. Projects should focus on long-term monitoring of a coastal area in southern California. During the second phase, incoming students will critique the initial proposals, modify as necessary and continue to develop the project. We intend for data collection opportunities to grow from geological and oceanographic bases to eventually include other STEM topics in biology, chemistry, math and GIS. Questions we will address include: What makes this a good research project for a community college? What are the costs and time commitments involved? How will the project benefit students and society? Additionally we will share our initial results, challenges, and unexpected pitfalls and benefits.

  6. Wireless blood pressure monitoring with a novel implantable device: long-term in vivo results.

    PubMed

    Cleven, Nina J; Isfort, Peter; Penzkofer, Tobias; Woitok, Anna; Hermanns-Sachweh, Benita; Steinseifer, Ulrich; Schmitz-Rode, Thomas

    2014-12-01

    Devices constantly tracking the blood pressure (BP) of hypertensive patients are highly desired to facilitate effective patient management and to reduce hospitalization. We report on experiences gathered in a pilot study that was designed to evaluate the prototype of a newly developed, minimally invasive implantable sensor system for long-term BP monitoring. The device was implanted in the femoral artery (FA) of 12 sheep via standard FA catheterization under fluoroscopic control. Accuracy of the recorded blood pressure was determined by comparison with a reference catheter, which was positioned in the contralateral FA immediately after implantation. Regular follow-up included angiography, computed tomography (CT), and control of functionality and position of the BP sensor. Animals were euthanized after 6 months. FA segments with in situ pressure sensor underwent macroscopic and histopathologic examinations. All implantations of the novel sensor device in the FA were successful and uneventful. High-quality BP recordings were documented. Bland-Altman plots indicate very good agreement. Comparison with measurements taken from the reference sensor revealed mean differences and standard deviations of -0.56 ± 0.85, 0.29 ± 1.44, and 0.85 ± 2.27 mmHg (diastolic, systolic, and pulse pressure, respectively) after exclusion of one outlier. CT uncovered deficiencies in cable stability that were addressed in a redesign. No thrombus formation, necrosis, or apoptosis were detected. The pilot study proved the technical feasibility of wireless BP measurement in the FA via a novel miniature sensor device.

  7. Long-term X-ray and Optical Monitoring of RZ2109

    NASA Astrophysics Data System (ADS)

    Dage, Kristen C.; Zepf, Steve E.; Maccarone, Thomas J.; Peacock, Mark; Kundu, Arunav

    2017-01-01

    We present the results of a long-term monitoring of the X-ray and optical emission from the black hole in the extragalactic globular cluster RZ2109 aimed at determining the origin and nature of this accreting globular cluster black hole. We include analysis of three years of new Chandra X-ray data and Gemini and SOAR optical spectroscopy, along with archival X-ray and optical data. Previous work has shown that RZ2109 hosts a bright (L$_X \\simeq 4 \\times 10^{39}$ ergs/s) and moderately variable X-ray source, along with strong, broad [OIII] 5007 line emission. We use the extensive new data to quantify the variability in both the X-rays and bright [OIII]5007 emission line, and any potential relationship between these two.It is possible this should give (L$_{5007} X \\times 10^{37}$ ergs/s, with a velocity FWHM of $\\simeq X$ km/s).

  8. Long-Term Marine Traffic Monitoring for Environmental Safety in the Aegean Sea

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, T.; Gyftakis, S.; Charou, E.; Perantonis, S.; Nivolianitou, Z.; Koromila, I.; Makrygiorgos, A.

    2015-04-01

    The Aegean Sea is characterized by an extremely high marine safety risk, mainly due to the significant increase of the traffic of tankers from and to the Black Sea that pass through narrow straits formed by the 1600 Greek islands. Reducing the risk of a ship accident is therefore vital to all socio-economic and environmental sectors. This paper presents an online long-term marine traffic monitoring work-flow that focuses on extracting aggregated vessel risks using spatiotemporal analysis of multilayer information: vessel trajectories, vessel data, meteorological data, bathymetric / hydrographic data as well as information regarding environmentally important areas (e.g. protected high-risk areas, etc.). A web interface that enables user-friendly spatiotemporal queries is implemented at the frontend, while a series of data mining functionalities extracts aggregated statistics regarding: (a) marine risks and accident probabilities for particular areas (b) trajectories clustering information (c) general marine statistics (cargo types, etc.) and (d) correlation between spatial environmental importance and marine traffic risk. Towards this end, a set of data clustering and probabilistic graphical modelling techniques has been adopted.

  9. A wearable wireless ECG monitoring system with dynamic transmission power control for long-term homecare.

    PubMed

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2015-03-01

    This paper presents a wearable wireless ECG monitoring system based on novel 3-Lead electrode placements for long-term homecare. The experiment for novel 3-Lead electrode placements is carried out, and the results show that the distance between limb electrodes can be significantly reduced. Based on the new electrode position, a small size sensor node, which is powered by a rechargeable battery, is designed to detect, amplify, filter and transmit the ECG signals. The coordinator receives the data and sends it to PC. Finally the signals are displayed on the GUI. In order to control the power consumption of sensor node, a dynamic power adjustment method is applied to automatically adjust the transmission power of the sensor node according to the received signal strength indicator (RSSI), which is related to the distance and obstacle between sensor node and coordinator. The system is evaluated when the user, who wears the sensor, is walking and running. A promising performance is achieved even under body motion. The power consumption can be significantly reduced with this dynamic power adjustment method.

  10. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring

    NASA Astrophysics Data System (ADS)

    Estilow, T. W.; Young, A. H.; Robinson, D. A.

    2015-06-01

    This paper describes the long-term, satellite-based visible snow cover extent National Oceanic and Atmospheric Administration (NOAA) climate data record (CDR) currently available for climate studies, monitoring, and model validation. This environmental data product is developed from weekly Northern Hemisphere snow cover extent data that have been digitized from snow cover maps onto a Cartesian grid draped over a polar stereographic projection. The data have a spatial resolution of 190.6 km at 60° latitude, are updated monthly, and span the period from 4 October 1966 to the present. The data comprise the longest satellite-based CDR of any environmental variable. Access to the data is provided in Network Common Data Form (netCDF) and archived by NOAA's National Climatic Data Center (NCDC) under the satellite Climate Data Record Program (doi:10.7289/V5N014G9). The basic characteristics, history, and evolution of the data set are presented herein. In general, the CDR provides similar spatial and temporal variability to its widely used predecessor product. Key refinements included in the CDR improve the product's grid accuracy and documentation and bring metadata into compliance with current standards for climate data records.

  11. Long-term arsenic monitoring with an Enterobacter cloacae microbial fuel cell.

    PubMed

    Rasmussen, Michelle; Minteer, Shelley D

    2015-12-01

    A microbial fuel cell was constructed with biofilms of Enterobacter cloacae grown on the anode. Bioelectrocatalysis was observed when the biofilm was grown in media containing sucrose as the carbon source and methylene blue as the mediator. The presence of arsenic caused a decrease in bioelectrocatalytic current. Biofilm growth in the presence of arsenic resulted in lower power outputs whereas addition of arsenic showed no immediate result in power output due to the short term arsenic resistance of the bacteria and slow transport of arsenic across cellular membranes to metabolic enzymes. Calibration curves plotted from the maximum current and maximum power of power curves after growth show that this system is able to quantify both arsenate and arsenate with low detection limits (46 μM for arsenate and 4.4 μM for arsenite). This system could be implemented as a method for long-term monitoring of arsenic concentration in environments where arsenic contamination could occur and alter the metabolism of the organisms resulting in a decrease in power output of the self-powered sensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Monitoring Greater Yellowstone Ecosystem wetlands: Can long-term monitoring help us understand their future?

    USGS Publications Warehouse

    Ray, Andrew M.; Sepulveda, Adam; Hossack, Blake R.; Patla, Debra; Thoma, David; Al-Chokhachy, Robert K.; Litt, Andrea R.

    2015-01-01

    In the Greater Yellowstone Ecosystem (GYE), changes in the drying cycles of wetlands have been documented. Wetlands are areas where the water table is at or near the land surface and standing shallow water is present for much or all of the growing season. We discuss how monitoring data can be used to document variation in annual flooding and drying patterns of wetlands monitored across Yellowstone and Grand Teton national parks, investigate how these patterns are related to a changing climate, and explore how drying of wetlands may impact amphibians. The documented declines of some amphibian species are of growing concern to scientists and land managers alike, in part because disappearances have occurred in some of the most protected places. These disappearances are a recognized component of what is being described as Earth’s sixth mass extinction.

  13. Technical implementation and clinical findings/results of monitoring oxygen saturation in patients referred for long-term EEG monitoring.

    PubMed

    Ives, J R; Mainwaring, N R; Krishnamurthy, K B; Blum, A S; Drislane, F W; Schachter, S C; Schomer, D L

    1996-11-01

    Recent technical developments allow the recording of a patient's oxygen saturation (SpO2) simultaneously with intensive long-term EEG monitoring (LTM). Clinically significant information from this enhanced multi-system physiological monitoring device can contribute to more accurate diagnoses in patients referred for LTM. This report covers the technical usage of combined SpO2/EEG recordings in a small group of patients. Clinically, the findings on the SpO2 monitor helped to define the diagnosis in many of these patients. In a few, the SpO2 changes were diagnostic in their own right and prompted referral to our Sleep Disorders Laboratory. From a research aspect, the details of the morphology and timing of the oxygen desaturations and EEG show several interesting relationships with respect to the dynamics of seizure semiology and respiratory physiology.

  14. Assem : Array of Sensors For Long Term Seabed Monitoring of Geohazards

    NASA Astrophysics Data System (ADS)

    Blandin, J.; Person, R.; Strout, J. M.; Briole, P.; Etiope, G.; Masson, M.; Golightly, C. R.; Lykousis, V.; Ferentinos, G.

    The European continental margins are the focus of increasing human activities that are moving towards deeper waters. They are witnessing the greatest technological ad- vances in the world for deep-water development, in which European industries and academic institutions are at the forefront. Some of these margins are also a place where drastic phenomena like slope failures occur, hence questioning the safety of people and installations. Long term monitoring of gashydrate deposits is required. In other respects, some shallow water areas in Europe, surrounded by densely populated belts and associated infrastructures are located in seismic zones where the seafloor is also unstable. In both cases, there is a need to better understand the phenomena lead- ing to these instabilities. This understanding can be widely enabled by measuring a set of geotechnical, geodetic or chemical parameters of the sediment and seafloor. A site must be surveyed in several locations along failure lines, near a fluid expulsion zone or on a line of change of slope or a possible presence of gas hydrates. In addition, long term slow variations of the measured parameters must be detected, making nec- essary to have access to both spatial and temporal variability. This project proposes to develop, deploy and assess a seafloor monitoring system, aiming at watching areas of up to one kilometer by one kilometer, or up to 200 meters down an existing borehole, during at most two years. The proposed system will be modular enough to fit the par- ticular topology of a given site of interest. It will allow near real time data retrieval. The basic principle of the ASSEM project is to deploy instrument packages at differ- ent locations, the sensors being either installed in available boreholes, or pushed into the unconsolidated sediment, or simply laid down on the seafloor. The various sensors of a package are linked to a local data logging and communication unit, forming a monitoring node. The various

  15. Implementing CUAHSI and SWE observation data models in the long-term monitoring infrastructure TERENO

    NASA Astrophysics Data System (ADS)

    Klump, J. F.; Stender, V.; Schroeder, M.

    2013-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. The contribution by the participating research centers is organized as regional observatories. The challenge for TERENO and its observatories is to integrate all aspects of data management, data workflows, data modeling and visualizations into the design of a monitoring infrastructure. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR. TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes the data available through standard web services. Data are stored following the CUAHSI observation data model in combination with the 52° North Sensor Observation Service data model. The data model was implemented using the PostgreSQL/PostGIS DBMS. Especially in a long-term project, such as TERENO, care has to be taken in the data model. We chose to adopt the CUAHSI observational data model because it is designed to store observations and descriptive information (metadata

  16. Connecting process to high resolution paleorecords: long term investigations of linked Arctic climate-hydrology-lacustrine sedimentary processes

    NASA Astrophysics Data System (ADS)

    Lamoureux, S. F.; Normandeau, A.

    2015-12-01

    High resolution lacustrine sedimentary sequences hold substantial potential for paleoenvironmental analyses, particularly in regions where few alternatives are available. Increased attention to quantifying processes that generate sedimentary facies has yielded increasingly detailed environmental interpretations but these efforts have been limited by available field data. The Cape Bounty Arctic Watershed Observatory (CBAWO) was initiated in 2003 to develop a long term site to evaluate the controls over sediment transport and the formation of clastic sedimentary records. This program in the Canadian Arctic has supported 13 years of research in paired watersheds and lakes, both of which contain clastic varves. Results from 2003-14 demonstrate how multiple climatic factors delivery sediment in a complex manner. This comparatively simple hydroclimatic system is dominated by runoff and sediment transport from spring snowmelt, with clear associations between catchment snow water equivalence (or total runoff) and sediment yield, with discharge limited by snow exhaustion as the season progresses. Major rainfall can constitute a dominant contribution to seasonal sediment yield, but antecedent conditions can significantly reduce runoff markedly. Hence, these results indicate two primary competing hydroclimatic factors that control catchment sediment yield, both with independent climatic and hydrological factors. Additionally, the impact of landscape disturbance on downstream sediment yield has been evaluated following a major episode of permafrost thaw in 2007. Results show that localized slope disturbances resulted in enhanced erosion but downstream fluvial storage reduced the magnitude of transport. Sediment from disturbances will be gradually released and may generate decadal-scale sediment delivery changes in the downstream record. Collectively, this research indicates multiple controls over the formation of clastic varves. Advances in high resolution sedimentary

  17. Long term monitoring of leachate flux into drainage pipes of MSW landfills.

    PubMed

    Münnich, Kai; Bauer, Jan; Fricke, Klaus

    2012-01-01

    The measurement of leachate quality and quantity is an essential part of the monitoring of landfills in the different phases during their lifespan. These measurements allow the evaluation of the decomposition processes in the landfill and the efficiency of technical installations for the reduction of the leachate generation. Normally the measurements are made at the outlet of larger sections of the landfill or at the overall landfill. An identification of smaller parts with different biological or hydraulic behaviour within the landfill section is not possible in that case. In the framework of a long-term research project concerning the monitoring of landfills, different devices for small-scale identification of the leachate discharge were developed at the Technical University of Braunschweig. The device allows a measurement of the leachate discharge inside a single drainage pipe having a length up to 375  m. The measurements showed the influence of changes in operation. It was found that the discharge in the pipes and the efficiency of the drainage system was strongly influenced by deformations and torsion of the high-density polyethylene pipes and unequal settlements of the subsoil. The discharge of leachate in the drainage system was, as expected, very non-uniform and in parts the leachate was not flowing inside the pipes, but rather in the surrounding gravel layer. Furthermore, large differences in leachate quality may occur, whereas the differences in discharge volume are small. With the developed system it is possible to control the efficiency and the functioning of top cover systems for landfills.

  18. Long-term stability of a TLD-based individual monitoring system.

    PubMed

    Alves, J G; Abrantes, J N; Margo, O; Rangel, S; Santos, L

    2006-01-01

    The thermoluminescence dosemeter (TLD) system at the Individual Monitoring Service (IMS) of the Nuclear Technology Institute (ITN) at the Radiological Protection and Nuclear Safety Department (DPRSN) comprises two 6600 Harshaw readers and the Harshaw 8814 TL card and the holder containing two LiF:Mg,Ti (TLD-100) dosemeters for the evaluation of H(p)(10) and H(p)(0.07). The readers are calibrated on a monthly basis and as part of the quality assurance programme implemented at the IMS a set of dosemeters is issued monthly to the DPRSN's Standard Dosimetry Laboratory for linearity measurements. The results obtained since November 2001 are presented. Fading and sensitivity change experiments are carried out every month covering 8 week periods so that enough time is given to simulate issuing, integrating and receiving times and respective delays. A set of 96 dosemeters organised in eight subsets of 12 are used. In each subset, four dosemeters are irradiated and stored at room temperature (RT), four are not irradiated at all and the last four are irradiated after storage. The 12 dosemeters of each subset are readout at the same time, one per week, covering the 8 week period. The results from the sets irradiated and stored at different periods allowed for the evaluation of fading and sensitivity changes experienced over the whole monitoring period and respective preparation time and readout delays. Time evolution charts of the reader calibration factors, of the linearity parameters and of the evolution of the integrated area in the region of dosimetric interest with storage at RT were obtained. This paper aims to quantify the long-term stability of the TLD system in use at the IMS.

  19. Clinical and ictal characteristics of infantile seizures: EEG correlation via long-term video EEG monitoring.

    PubMed

    Yu, Hee Joon; Lee, Cha Gon; Nam, Sook Hyun; Lee, Jeehun; Lee, Munhyang

    2013-09-01

    The semiology of infantile seizures often shows different characteristics from that of adults. We performed this study to describe clinical and ictal characteristics of infantile seizures at less than two years of age. A retrospective study was done for infants with epilepsy (ages: 1-24months) who underwent long-term video electroencephalography (EEG) monitoring at Samsung medical center between November 1994 and February 2012. We analyzed the clinical and ictal characteristics of the 56 cases from 51 patients. In 69% of the patients, the seizure onset was before six months of age and the etiology was symptomatic in one third of the patients. Twelve seizure types were identified; spasms (24%), unilateral motor seizures (18%), and generalized tonic seizures (15%) were the three frequent types of seizure. All partial seizures were well correlated with the partial-onset ictal EEG, however 19.4% (7/36) of clinically generalized seizures revealed partial-onset ictal EEG. About one-thirds (4/11) of generalized tonic seizures had its ictal onset on unilateral or bilateral frontal areas and two out of seven generalized myoclonic seizures showed unilateral frontal rhythmic activities. Hypomotor seizures mainly arose from the temporal areas and hypermotor seizures from the frontal regions. Even though most of the seizure semiology of infants is well correlated with ictal EEG, some of the generalized tonic seizures or myoclonic seizures revealed partial-onset ictal EEG suggesting localized epileptic focus. Accurate definition of seizures via video EEG monitoring is necessary for proper management of seizures in infancy, especially in some clinically generalized seizures. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Stability and long term continuity of satellite data for rapid land surface monitoring of vegetation condition

    NASA Astrophysics Data System (ADS)

    Brown, J. F.; Howard, D. M.

    2014-12-01

    Satellite-based normalized difference vegetation index, or NDVI, is a commonly used index in applications that require consistent and timely data, including monitoring drought, tracking vegetation phenological transitions, and assessing crop progress and condition. Although many other indices have been developed, the NDVI remains popular in the monitoring community. One reason is the value of NDVI for use in long-term studies necessitating multiple sensor data sources. It is calculated using a standard formula, red minus near-infrared divided by red plus near-infrared. But, this does not mean that all NDVI data are the same. Many factors, ranging from sensor design and raw satellite data ingest to initial data manipulation and post-processing, influence end-product quality and consistency. The purpose of this study was to perform a statistical scientific comparison between multiple NDVI data sources. The NDVI data analyzed in this study were derived from 8-day 250 meter (m) standard Moderate Resolution Imaging Spectroradiometer (MODIS) Terra and Aqua surface reflectance composites (Collection 5, MOD09Q1), 7-day 250 m expedited MODIS (eMODIS) Terra and Aqua NDVI products, and 14-day 1000 m Advanced Very High Resolution Radiometer (AVHRR) NDVI products of central U.S. over the 2003 - 2012 timeframe. Only composites falling within the growing season (between April and October) and temporally coincident were included. All composites were consistently post-processed using standard MODIS quality assurance data and evaluated to calculate spatial statistics (e.g. means and standard deviations) for 160 uniform 150 kilometer2 tiles. The results for seasonal, period-specific and overall correlations indicated the highest agreement was between standard MODIS Terra and Aqua composites, with a Pearson's coefficient of determination of R2 = 0.98, and the lowest agreement was between eMODIS Terra and AVHRR, with a R2 value of 0.84. There was evidence of slight Terra sensor

  1. Long term monitoring of water basin of an abandoned copper open pit mine

    NASA Astrophysics Data System (ADS)

    Nikolov, H.; Borisova, D.

    2012-04-01

    Nonoperating open pit mines, very often as a matter of fact abandoned, create serious ecological risk for the region of their location especially for the quality of the water since the rainfall fills the bottom of the pit forming water body having different depth. This water as a rule has very high concentration of the metals in it and is highly toxic. One example for such opencast, idle copper mine is Medet located in the central part of Bulgaria who was started for exploitation in 1964 and at that moment being the largest in Europe for production of copper concentrate. In the vicinity of it after autumn and spring rains there are many cases reported for water contamination by heavy metals such as arsenic, copper, cadmium in the rivers running close to this open pit mine. This justifies the need for long term and sustainable monitoring of the area of the water basin of this idle mine in order to estimate its acid drainage and imaging spectroscopy combined with is-situ investigations is proved to provide reliable results about the area of the water table. In the course of this study we have investigated historical data gathered by remote sensing which allowed us to make conclusions about the year behavior of this area. Our expectations are that the results of this research will help in the rehabilitation process of this idle mine and will provide the local authorities engaged in water quality monitoring with a tool to estimate the possible damage caused to the local rivers and springs. With this research we also would like to contribute to the fulfillment of the following EU Directives: Directive 2006/21/°C on the Management of Waste from the Extractive Industries and Directive 2004/35/ °C on Environmental Liability with regard to the Prevention and Remedying of Environmental Damage.

  2. Long-term monitoring of Dzanga Bai forest elephants: forest clearing use patterns.

    PubMed

    Turkalo, Andrea K; Wrege, Peter H; Wittemyer, George

    2013-01-01

    Individual identification of the relatively cryptic forest elephant (Loxodonta cyclotis) at forest clearings currently provides the highest quality monitoring data on this ecologically important but increasingly threatened species. Here we present baseline data from the first 20 years of an individually based study of this species, conducted at the Dzanga Clearing, Central African Republic. A total of 3,128 elephants were identified over the 20-year study (1,244 adults; 675 females, 569 males). It took approximately four years for the majority of elephants visiting the clearing to be identified, but new elephants entered the clearing every year of the study. The study population was relatively stable, varying from 1,668 to 1,864 individuals (including juveniles and infants), with increasingly fewer males than females over time. The age-class distribution for females remained qualitatively unchanged between 1995 and 2010, while the proportion of adult males decreased from 20% to 10%, likely reflecting increased mortality. Visitation patterns by individuals were highly variable, with some elephants visiting monthly while others were ephemeral users with visits separated by multiple years. The number of individuals in the clearing at any time varied between 40 and 100 individuals, and there was little evidence of a seasonal pattern in this variation. The number of elephants entering the clearing together (defined here as a social group) averaged 1.49 (range 1-12) for males and 2.67 (range 1-14) for females. This collation of 20 years of intensive forest elephant monitoring provides the first detailed, long term look at the ecology of bai visitation for this species, offering insight to the ecological significance and motivation for bai use, social behavior, and threats to forest elephants. We discuss likely drivers (rainfall, compression, illegal killing, etc.) influencing bai visitation rates. This study provides the baseline for future demographic and behavioral

  3. Long-Term Monitoring of Dzanga Bai Forest Elephants: Forest Clearing Use Patterns

    PubMed Central

    Turkalo, Andrea K.; Wrege, Peter H.; Wittemyer, George

    2013-01-01

    Individual identification of the relatively cryptic forest elephant (Loxodonta cyclotis) at forest clearings currently provides the highest quality monitoring data on this ecologically important but increasingly threatened species. Here we present baseline data from the first 20 years of an individually based study of this species, conducted at the Dzanga Clearing, Central African Republic. A total of 3,128 elephants were identified over the 20-year study (1,244 adults; 675 females, 569 males). It took approximately four years for the majority of elephants visiting the clearing to be identified, but new elephants entered the clearing every year of the study. The study population was relatively stable, varying from 1,668 to 1,864 individuals (including juveniles and infants), with increasingly fewer males than females over time. The age-class distribution for females remained qualitatively unchanged between 1995 and 2010, while the proportion of adult males decreased from 20% to 10%, likely reflecting increased mortality. Visitation patterns by individuals were highly variable, with some elephants visiting monthly while others were ephemeral users with visits separated by multiple years. The number of individuals in the clearing at any time varied between 40 and 100 individuals, and there was little evidence of a seasonal pattern in this variation. The number of elephants entering the clearing together (defined here as a social group) averaged 1.49 (range 1–12) for males and 2.67 (range 1–14) for females. This collation of 20 years of intensive forest elephant monitoring provides the first detailed, long term look at the ecology of bai visitation for this species, offering insight to the ecological significance and motivation for bai use, social behavior, and threats to forest elephants. We discuss likely drivers (rainfall, compression, illegal killing, etc.) influencing bai visitation rates. This study provides the baseline for future demographic and behavioral

  4. Long-term monitoring of rock mass properties in the underground excavation

    NASA Astrophysics Data System (ADS)

    Vilhelm, Jan; Jirků, Jaroslav; Slavík, Lubomír; Bárta, Jaroslav

    2015-04-01

    It is generally agreed today that hazardous waste should be placed in repositories hundreds of meters below the Earth's surface. In our research we deal with the long-term monitoring of the underground excavation by seismic and electrical resistivity measurements. Permanent measuring system was developed and installed at the Bedřichov gallery test site (northern Bohemia). The gallery was excavated using TBM (Tunnel Boring Machine) in granitic rocks. Realized repeated measurements include ultrasonic time of flight measurement and electrical resistivity tomography (ERT). The seismic measurements are performed by pulse-transmission technique directly on the rock wall using one seismic source and three receivers in the distances of 1, 2 and 3 m. The main emphasis is devoted to P-waves; however, recording of full waveform enables analyzing of S- waves and other types of waves as well. The comparison of repeated measurements is used for an assessment of changes in seismic velocities with very high-accuracy. The repetition rate of measurements can be selected from seconds; however such fast changes in the rock mass are unexpected. The ERT measurement is performed on the same rock wall using 48 electrodes. The spacing between electrodes is 20 centimeters. The conductivity of undisturbed granitic rocks is extremely low. Therefore the observed local increase of conductivity can be associated with joints and fractures saturated with water, resulting in their ionic conductivity. Repeated ERT measurement can reveal some changes in the rock mass. Due to time requirements of ERT measurement the repetition rate can be about three hours. The data collected by measuring system is transferred by means of computer network and can be accessed via internet. This contribution deals with preliminary results gained so far during the testing of developed monitoring system. Acknowledgments: This work was partially supported by the Technology Agency of the Czech Republic, project No. TA

  5. Long-Term Monitoring of Utility-Scale Solar Energy Development and Application of Remote Sensing Technologies: Summary Report

    SciTech Connect

    Hamada, Yuki; Grippo, Mark A.; Smith, Karen P.

    2014-09-30

    In anticipation of increased utility-scale solar energy development over the next 20 to 50 years, federal agencies and other organizations have identified a need to develop comprehensive long-term monitoring programs specific to solar energy development. Increasingly, stakeholders are requesting that federal agencies, such as the U.S. Department of the Interior Bureau of Land Management (BLM), develop rigorous and comprehensive long-term monitoring programs. Argonne National Laboratory (Argonne) is assisting the BLM in developing an effective long-term monitoring plan as required by the BLM Solar Energy Program to study the environmental effects of solar energy development. The monitoring data can be used to protect land resources from harmful development practices while at the same time reducing restrictions on utility-scale solar energy development that are determined to be unnecessary. The development of a long-term monitoring plan that incorporates regional datasets, prioritizes requirements in the context of landscape-scale conditions and trends, and integrates cost-effective data collection methods (such as remote sensing technologies) will translate into lower monitoring costs and increased certainty for solar developers regarding requirements for developing projects on public lands. This outcome will support U.S. Department of Energy (DOE) Sunshot Program goals. For this reason, the DOE provided funding for the work presented in this report.

  6. Long-term benthic monitoring programs for the mesohaline Chesapeake Bay. Interim report

    SciTech Connect

    Hiegel, M.H.; Fisher, K.; Johnson, G.F.

    1982-04-01

    This report presents a summary of data collected and an updated progress report for a long-term benthic study conducted to measure the long-term effects of power plant operations on benthic populations and to identify long-term trends and annual cycles in these populations. Benthic organisms and the physical/chemical characteristics of sediments and water were sampled between July 1981 and May 1982 in the mesohaline portion of the Chesapeake Bay and the Potomac estuary. The surveys were concentrated near the Morgantown and Calvert Cliffs, Maryland power plant. Salinities during 1981-1982 were high relative to long-term salinity records with the deviation from average salinities being larger in the Potomac than the mainstem of the Bay.

  7. Groundwater Recharge in Juniper Woodlands: Insights from Long-Term Monitoring of Cave Drip Rates

    NASA Astrophysics Data System (ADS)

    Wilcox, B. P.; Sun, Z.; Munster, C.; Owens, K.

    2011-12-01

    The Edwards Plateau in Central Texas covers some 230,000 square kilometers. It is underlain by limestone and dolomite, and these karst parent materials give the region its distinct hydrologic character. Although the climate is semiarid, springs are abundant and support many perennial rivers. In particular, the Edwards Plateau is the source area for the prolific and regionally important Edwards Aquifer, the main water source for much of central Texas. Compared with other semiarid regions, the Edwards Plateau has abundant water resources; but an expanding population is now taxing those resources, and ways are being sought to increase groundwater recharge. Over the past 150 years, the expansion of juniper and oak have turned the Plateau into a shrub-dominated semiarid rangeland-a legacy of the historical overgrazing that took place from around 1880 to 1950. Many believe that reducing this woodland cover would lead to higher groundwater recharge. We undertook our study to try to understand the influence of juniper on groundwater recharge. For six years, we monitored drip rates in caves underlying juniper forests (these rates are surrogate measurements for groundwater recharge). After four years of monitoring, we removed the juniper from the study site and continued monitoring. Surprisingly, our results indicate that removing the trees had a negative effect on recharge. Several mechanisms may contribute to the reduction in recharge: for example, surface runoff increased following removal of the trees; and it is possible that the trees assist recharge by funneling water to their roots, hastening its movement through the substrate.

  8. Short-term and long-term Vadose zone monitoring: Current technologies, development, and applications

    SciTech Connect

    Faybishenko, Boris

    1999-05-01

    At Hanford, Savannah River, Oak Ridge, Idaho National Engineering and Environmental Laboratory (INEEL), and other DOE sites, field vadose zone observations have shown complex water seepage and mass transport behavior in a highly heterogeneous, thick vadose zone on a variety of scales. Recent investigation showed that severe contamination of soils and groundwater by organic contaminant and nuclear waste occurred because of water seepage and contaminant transport along localized, preferential, fast flow within the heterogeneous vadose zone. However, most of the existing characterization and monitoring methods are not able to locate these localized and persistent preferential pathways associated with specific heterogeneous geologic features, such as clastic dikes, caliche layers, or fractures. In addition, changes in the chemical composition of moving and indigenous solutes, particularly sodium concentration, redox conditions, biological transformation of organic materials, and high temperature, may significantly alter water, chemicals, and bio-transformation exchange between the zones of fast flow and the rest of the media. In this paper, using the data from Hanford and INEEL sites, we will (1) present evidence that central problems of the vadose zone investigations are associated with preferential, fast flow phenomena and accelerated migration of organic and radioactive elements, (2) identify gaps in current characterization and monitoring technologies, and (3) recommend actions for the development of advanced vadose zone characterization and monitoring methods using a combination of hydrologic, geochemical, and geophysical techniques.

  9. Strategy for Long-Term Stewardship and Monitoring of Amchitka Island - 12190

    SciTech Connect

    Kautsky, Mark; Nguyen, Jason; Darr, Paul S.; Picel, Mary

    2012-07-01

    The Long-Term Surveillance and Maintenance Plan (LTSMP) for Amchitka details how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at and around the sites on Amchitka Island. The LTSMP calls for monitoring to be performed every 5 years, at least in the initial phase of the project. The purpose of the monitoring is to develop a baseline of activity concentrations for selected radionuclides in biota, water, and soil, both on Amchitka and at the reference location on Adak Island, approximately 322 km (200 miles) northeast of Amchitka. Data compiled by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP, 2006) are being included as part of the baseline data set. The specific biological, water, and sediment samples collected during the 2011 sampling event were developed through close coordination with the primary stakeholders, including the Alaska Department of Environmental Conservation, the Aleutian Pribilof Island Association, and the U.S. Fish and Wildlife Service (USFWS). Amchitka is managed by the USFWS as part of the Alaska Maritime National Wildlife Refuge. Two plans were developed to address specific needs of the biological- and the terrestrial-monitoring programs. Results from these monitoring programs will help determine whether the environment is being impacted by radionuclide migration and uptake, and if subsistence and commercial-catch seafood is safe for human consumption. The RESRAD-BIOTA code is being used to evaluate ecological health relative to the radionuclide levels determined from this sampling event. The samples were sent to three laboratories for analysis. With the exception of the seawater samples, most of the samples were sent to the Center for Accelerator Mass Spectrometry at the Lawrence Livermore National Laboratory. A smaller subset of rock-weed samples, Star reindeer lichen samples, and soil samples collected from beneath the lichen were sent

  10. The Utility of Continuous Temperature Monitoring of Refrigerators in a Long-Term Care Facility.

    PubMed

    Worz, Chad; Postolski, Josh; Williams, Kevin

    2017-04-01

    It is the current practice in most long-term care facilities to use manual logs when documenting refrigerator temperatures. This process is commonly associated with poor or fabricated compliance, little oversight, and documentation errors, both because of overt omissions and unsubstantiated values. It is also well-established that medication storage requirements are mandated by the Centers for Medicare & Medicaid Services (CMS). This analysis demonstrates the potential risk of poor cold-chain management of medications and establishes the possible utility of digitally recorded continuous temperature monitoring over manual logs. This small case-oriented review of a large nursing facility's storage process attempts to expose the risk associated with improper medication storage. The primary outcome of the study was to determine if a difference existed between temperature logs completed manually compared with those done with a continuous monitor. American Thermal Instruments (ATI) thermometers were placed into each of the existing refrigerators in a 147-bed nursing facility. Through a mobile app, the data recorded in each refrigerator were compiled into daily reports. Data were collected from a total of 12 refrigerators, 3 of which were medication refrigerators. Logging intervals were done over a 263-minute period and compiled the lowest recorded temperature, highest recorded temperature, and the average temperature for each refrigerator. In addition, reports showing the real-time results were compiled using the ATI DataNow service. All of the refrigerators analyzed had highest temperature recorded readings exceeding the maximum allowable temperature (50°F for refrigerator). All of the refrigerators had lowest temperature recorded readings below the minimum allowable temperature (32°F for refrigerators). All of the refrigerators also reported average temperatures outside of the allowable temperature range. The results necessitated the replacement of a refrigerator and

  11. The Salcher landslide observatory: a new long-term monitoring site in Austria

    NASA Astrophysics Data System (ADS)

    Canli, Ekrem; Engels, Alexander; Glade, Thomas; Schweigl, Joachim; Bertagnoli, Michael

    2016-04-01

    Landslides pose a significant hazard in the federal district of Lower Austria. The Geological Survey of Lower Austria is responsible for detailed site investigations as well as the planning and installation of protective measures. The most landslide prone area in Lower Austria is within the Rhenodanubian Flyschzone whose materials consist of alterations of fine grained layers (clayey shales, silty shales, marls) and sandstones. It exhibits over 6200 landslides within an area of approx. 1300 km². For areas susceptible to landsliding, protection works are not feasible or simply too costly. Therefore, monitoring systems have been installed in the past, most of them, however, are not operated automatically and require field visits for data readouts. Thus, it is difficult to establish any relation between initiating and controlling factors to gain a comprehensive understanding of the underlying process mechanism that is essential for any early warning applications. In this presentation, we present the design and first results of an automated landslide monitoring system in Gresten (Lower Austria). The deep-seated, slow moving Salcher landslide extends over approx. 8000 m² and is situated adjacent to residential buildings and infrastructure. This monitoring setup is designed to run for at least a decade to account for investigations of long term sliding dynamics and pattern. Historically the Salcher landslide has shown shorter phases with accelerated movements followed by longer phases with barely any movements. Those periods of inactivity commonly exceed regular project durations, thus it is important to cover longer periods. Such slope dynamics can be investigated throughout many parts in the world, thus this monitoring might allow to understand better also landslides with infrequent movement patterns. The monitoring setup consists of surface as well as subsurface installations. All installations are connected to permanent power supply, are taking the respective

  12. Landslide detection and long-term monitoring in urban area by means of advanced interferometric techniques

    NASA Astrophysics Data System (ADS)

    Cigna, Francesca; Del Ventisette, Chiara; Liguori, Vincenzo; Casagli, Nicola

    2010-05-01

    This work aims at illustrating the potential of advanced interferometric techniques for detection and long-term monitoring of landslide ground deformations at local scale. Space-born InSAR (Synthetic Aperture Radar Interferometry) has been successfully exploited in recent years to measure ground deformations associated to processes with slow kinematics, such as landslides, tectonic motions, subsidence or volcanic activity, thanks to both the standard single-interferogram approach (centimeter accuracy) and advanced time-series analyses of long temporal radar satellite data stacks (millimeter accuracy), such as Persistent Scatterers Interferometry (PSI) techniques. In order to get a complete overview and an in-depth knowledge of an investigated landslide, InSAR satellite measures can support conventional in situ data. This methodology allows studying the spatial pattern and the temporal evolution of ground deformations, improving the spatial coverage and overcoming issues related to installation of ground-based instrumentation and data acquisition in unstable areas. Here we describe the application of the above-mentioned methodology on the test area of Agrigento, Sicily (Italy), affected by hydrogeological risk. The town is located in Southern Sicily, at edge of the Apennine-Maghrebian thrust belt, on the Plio-Pleistocene and Miocene sediments of the Gela Nappe. Ground instabilities affect the urban area and involve the infrastructures of its NW side, such as the Cathedral, the Seminary and many private buildings. An integration between InSAR analyses and conventional field investigations (e.g. structural damages and fractures surveys) was therefore carried out, to support Regional Civil Protection authorities for emergency management and risk mitigation. The results of InSAR analysis highlighted a general stability of the whole urban area between 1992 and 2007. However, very high deformation rates (up to 10-12 mm/y) were identified in 1992-2000 in the W slope of the

  13. Documenting the Use of the Long Term Resource Monitoring Element’s Fish Monitoring Methodologies Throughout the Midwest

    USGS Publications Warehouse

    Solomon, Levi E.; Casper, Andrew F.

    2016-08-16

    The Upper Mississippi River Restoration (UMRR) Program’s Long Term Resource Monitoring (LTRM) element is designed to monitor and assess long term trends in the Upper Mississippi River System (UMRS). To accomplish this, standardized methods are used that allow for comparisons across pools and rivers. In recent years, other projects and other agencies have adopted the LTRM fish methodologies for use outside the UMRR. To determine how widespread the use of the Fish Component’s methods are, a twelve question survey was delivered via SurveyMonkey.com through the states comprising the American Fisheries Society (AFS) North Central Division and the Upper Mississippi River Conservation Committee. Approximately 2,000 professionals were reached with ≈11 percent participating. Results indicate that nearly all (95 percent) respondents use standardized methods in their sampling and 48 percent are familiar with the LTRM fish methodologies. Roughly one-third (35 percent) of all respondents have used the methods in the past and most (78 percent) of those have modified the methods to suit the information needs specific to their fishery. Results indicate that the LTRM methods have indeed spread outside the UMRR and are now a well-known and potentially widely used technique to sample fish communities.

  14. Long-term Monitoring Program Optimization for Chlorinated Volatile Organic Compound Plume, Naval Air Station Brunswick, Maine

    NASA Astrophysics Data System (ADS)

    Calderone, G. M.

    2006-12-01

    A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a

  15. Long-term, high-frequency water quality monitoring in an agricultural catchment: insights from spectral analysis

    NASA Astrophysics Data System (ADS)

    Aubert, Alice; Kirchner, James; Faucheux, Mikael; Merot, Philippe; Gascuel-Odoux, Chantal

    2013-04-01

    The choice of sampling frequency is a key issue in the design and operation of environmental observatories. The choice of sampling frequency creates a spectral window (or temporal filter) that highlights some timescales and processes, and de-emphasizes others (1). New online measurement technologies can monitor surface water quality almost continuously, allowing the creation of very rich time series. The question of how best to analyze such detailed temporal datasets is an important issue in environmental monitoring. In the present work, we studied water quality data from the AgrHys long-term hydrological observatory (located at Kervidy-Naizin, Western France) sampled at daily and 20-minute time scales. Manual sampling has provided 12 years of daily measurements of nitrate, dissolved organic carbon (DOC), chloride and sulfate (2), and 3 years of daily measurements of about 30 other solutes. In addition, a UV-spectrometry probe (Spectrolyser) provides one year of 20-minute measurements for nitrate and DOC. Spectral analysis of the daily water quality time series reveals that our intensively farmed catchment exhibits universal 1/f scaling (power spectrum slope of -1) for a large number of solutes, confirming and extending the earlier discovery of universal 1/f scaling in the relatively pristine Plynlimon catchment (3). 1/f time series confound conventional methods for assessing the statistical significance of trends. Indeed, conventional methods assume that there is a clear separation of scales between the signal (the trend line) and the noise (the scatter around the line). This is not true for 1/f noise, since it overestimates the occurrence of significant trends. Our results raise the possibility that 1/f scaling is widespread in water quality time series, thus posing fundamental challenges to water quality trend analysis. Power spectra of the 20-minute nitrate and DOC time series show 1/f scaling at frequencies below 1/day, consistent with the longer-term daily

  16. Long-term monitoring of geodynamic surface deformation using SAR interferometry

    NASA Astrophysics Data System (ADS)

    Gong, Wenyu

    Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure surface deformation and is well suited for surveying active volcanoes using historical and existing satellites. However, the value and applicability of InSAR for geodynamic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations in the atmosphere, both of which reduce the sensitivity and accuracy of the technique. The aim of this PhD thesis research is: how to optimize the quantity and quality of deformation signals extracted from InSAR stacks that contain only a low number of images in order to facilitate volcano monitoring and the study of their geophysical signatures. In particular, the focus is on methods of mitigating atmospheric artifacts in interferograms by combining time-series InSAR techniques and external atmospheric delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model for InSAR data correction has been studied extensively. Forecasted atmospheric delays derived from operational High Resolution Rapid Refresh for the Alaska region (HRRR-AK) products have been compared to radiosonding measurements in the first chapter. The result suggests that the HRRR-AK operational products are a good data source for correcting atmospheric delays in spaceborne geodetic radar observations, if the geophysical signal to be observed is larger than 20 mm. In the second chapter, an advanced method for integrating NWP products into the time series InSAR workflow is developed. The efficiency of the algorithm is tested via simulated data experiments, which demonstrate the method outperforms other more conventional methods. In Chapter 3, a geophysical case study is performed by applying the developed algorithm to the active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long term volcano deformation

  17. Long-term population monitoring: Lessons learned from an endangered passerine in Hawai‘i

    USGS Publications Warehouse

    Johnson, Luanne; Camp, Richard J.; Brinck, Kevin W.; Banko, Paul C.

    2006-01-01

    interpretation were regeneration of trees in response to reduced numbers of introduced browsing mammals, seasonally variable rates of vocalization, non-territoriality, and resource-tracking along an elevation gradient. We believe our adaptive approach to analysis and interpretation of 25 years of annual variable circular plot data could help guide similar long-term monitoring efforts.

  18. Long-Term Monitoring of Post-Aquifer Flushing With Cyclodextrin

    NASA Astrophysics Data System (ADS)

    Blanford, W. J.; Hinrichs, R. M.; Brusseau, M. L.; McCray, J. E.; Boving, T.

    2003-12-01

    Cyclodextrins are benign sugar solutions that have been shown at numerous DoD sites to be effective in removing many different types of organic compounds from aquifers through flushing. Cyclodextrins enhance the solubility of many organic contaminants because the interior cavity of the toroidal shaped molecule has favorable conditions for inclusion of low-polarity compounds. They are also effective for aquifer flushing because the outside of the molecule is highly polar resulting in a high aqueous solubility. Their feasibility as a remedial alternative for many sites is dependent on whether unrecovered cyclodextrin mass left in the aquifer after active remediation leads to adverse results. The potential adverse results could include enhanced potential for spreading of hydrophobic contaminant and complications resulting from biodegradation of large quantities of cyclodextrin altering geochemical conditions. In the summer of 2002, a pilot test was performed at a military base in the Norfolk area of Virginia. Through funding by the Environmental Security Technology Certification Program within the DoD, hydroxyl-propyl-beta-cyclodextrin (HPCD) flushing was evaluated as a remedial technique for a chlorinated solvent contaminated aquifer. At the hazardous waste site there is a trichloroethylene (TCE) and sewage contaminated surficial sand aquifer. During the four months of field activities, tens of thousands of gallons of 20 percent wt./vol. HPCD solution were flushed through the aquifer. During and for 1.5 years after the cessation of flushing activities, the concentration of HPCD, TCE, dissolved oxygen (DO), nitrate, sulfate, and iron were monitored within the aquifer by sampling from the high density of monitoring wells at the site. The results of long-term monitoring have found that HPCD concentration continues to linger above 0.5 percent wt./vol. at the site. But, TCE levels have rebounded only slightly from post-flushing levels. Background dissolved oxygen is low

  19. Long-Term Monitoring of Water Dynamics in the Sahel Region Using the Multi-Sar

    NASA Astrophysics Data System (ADS)

    Bertram, A.; Wendleder, A.; Schmitt, A.; Huber, M.

    2016-06-01

    Fresh water is a scarce resource in the West-African Sahel region, seasonally influenced by droughts and floods. Particularly in terms of climate change, the importance of wetlands increases for flora, fauna, human population, agriculture, livestock and fishery. Hence, access to open water is a key factor. Long-term monitoring of water dynamics is of great importance, especially with regard to the spatio-temporal extend of wetlands and drylands. It can predict future trends and facilitate the development of adequate management strategies. Lake Tabalak, a Ramsar wetland of international importance, is one of the most significant ponds in Niger and a refuge for waterbirds. Nevertheless, human population growth increased the pressure on this ecosystem, which is now degrading for all uses. The main objective of the study is a long-term monitoring of the Lake Tabalak's water dynamics to delineate permanent and seasonal water bodies, using weather- and daytime-independent multi-sensor and multi-temporal Synthetic Aperture Radar (SAR) data available for the study area. Data of the following sensors from 1993 until 2016 are used: Sentinel-1A, TerraSARX, ALOS PALSAR-1/2, Envisat ASAR, RADARSAT-1/2, and ERS-1/2. All SAR data are processed with the Multi-SAR-System, unifying the different characteristics of all above mentioned sensors in terms of geometric, radiometric and polarimetric resolution to a consistent format. The polarimetric representation in Kennaugh elements allows fusing single-polarized data acquired by older sensors with multi-polarized data acquired by current sensors. The TANH-normalization guarantees a consistent and therefore comparable description in a closed data range in terms of radiometry. The geometric aspect is solved by projecting all images to an earth-fixed coordinate system correcting the brightness by the help of the incidence angle. The elevation model used in the geocoding step is the novel global model produced by the TanDEM-X satellite

  20. Understanding Ecosystem Response to Perturbation: The Need to Combine Long-Term Monitoring with Process-Based Research Across Spatial and Temporal Scales

    NASA Astrophysics Data System (ADS)

    Laudon, H.

    2014-12-01

    The societal needs for understanding ecosystems response to environmental perturbation have never been greater. Most research on the mechanisms that regulate long-term changes in water quality is based either on individual well-studied catchments, or regional monitoring datasets. While the advantage of research catchments often is the large amount of ancillary information that can provide mechanistic explanations, the results are often difficult to extrapolate because of limited statistical and geographic representation. Conversely, environmental monitoring sites often lack the process-based designed data collection, which instead makes it difficult to infer causal relationships. Here I will discuss the value of field research infrastructures sites that combine the best of long-term monitoring time-series with the exclusivity of process-based research infrastructures across multiple spatial and temporal scales. The basis for this presentation will be on the Krycklan Catchment Study (www.slu.se/Krycklan) located in northern Sweden that provides a unique field experimental platform for hillslope to landscape-scale research on long-term ecosystem dynamics in the boreal landscape. The site is designed for processes-based research needed to assess the role of external drivers such as forest management, climate change, and long-range transport of pollutants on forests, mires, soils, streams, lakes and groundwater. In my presentation I will discuss some examples of how Krycklan has succeeded to construct a state-of-the-art field infrastructure for experimental and hypothesis driven research, maintain the long-term climatic, biogeochemical, hydrological and environmental data collection of highest quality, and how this has supported the development of new models and guidelines for research, policy and management.

  1. Usefulness of Long-term Urban Greenhouse Gas monitoring: the London record

    NASA Astrophysics Data System (ADS)

    Nisbet, E. G.; Lowry, D.; Fisher, R. E.

    2010-12-01

    Long-term monitoring of CH4 at Egham, SW London, shows reduction in the source input since the mid 1990s. There is a distinct seasonal cycle, in part reflecting background variation, tracked by comparison with the Mace Head Atlantic record. Local emissions, led by higher fossil fuel consumption in the winter months, also contribute to the cycle. Inter-annual variability is in part meteorological. The urban increment can be estimated by comparing specific wind sectors (e.g. incoming SSW Atlantic air compared to easterly urban air). Ratios of CH4 to CO2, calculated from the continuous records, allow relative emissions of CH4 and CO2 to be quantified, providing immediate tests of inventories. Ratios of excess over background of CH4 to CO2 for periods of 7 consecutive days of easterly air flow to the Egham site (from London) indicate a reduction in CH4 emissions of 11% relative to CO2 over the period 1999-2007. Isotopes discriminate sharply between methane sources. Diurnal (Keeling plot) δ13CCH4 campaigns identify source mixes. For London, both CO2 and CH4 annual emissions are cited to 0.1 ton (i.e. to 9 significant figures of CO2, and to 6 figures for methane). However, it can be difficult to reconcile isotopic measurements of local methane increments with declared emissions budgets (Lowry et al., 2001). Rapid, inexpensive, small-sample isotopic techniques (Fisher et al., 2006) allow simple tests of the veracity of emissions declarations. Local emissions can be detected, by geographic location, given known background patterns. Moreover, seasonal variation can be tracked. This makes it potentially possible cheaply to audit emissions in populated areas. Lowry, D., et al. (2001) J. Geophys. Res., 106, 7427-48 Fisher, R., et al. (2006) Rapid Comm. Mass Spectrometry, 20, 200-208.

  2. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination

    NASA Astrophysics Data System (ADS)

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as

  3. The New Bedford Harbor Superfund site long-term monitoring program (1993-2009).

    PubMed

    Nelson, William G; Bergen, Barbara J

    2012-12-01

    New Bedford Harbor (NBH), located in southeastern Massachusetts, was designated as a marine Superfund site in 1983 due to sediment contamination by polychlorinated biphenyls (PCBs). Based on risks to human health and the environment, the first two phases of the site cleanup involved dredging PCB-contaminated sediments from the harbor. Therefore, a long-term monitoring program (LTM) was developed to measure spatial and temporal chemical and biological changes in sediment, water, and biota to assess the effects and effectiveness of the remedial activities. A systematic, probabilistic sampling design was used to select sediment sampling stations. This unbiased design allowed the three segments of the harbor to be compared spatially and temporally to quantify changes resulting from dredging the contaminated sediments. Sediment was collected at each station, and chemical (e.g., PCBs and metals), physical (e.g., grain size), and biological (e.g., benthic community) measurements were conducted on all samples. This paper describes the overall NBH-LTM approach and the results from the five rounds of sample collections. There is a decreasing spatial gradient in sediment PCB concentrations from the northern boundary (upper harbor) to the southern boundary (outer harbor) of the site. Along this same transect, there is an increase in biological condition (e.g., benthic community diversity). Temporally, the contaminant and biological gradients have been maintained since the 1993 baseline collection; however, since the onset of full-scale remediation, PCB concentrations have decreased throughout the site, and one of the benthic community indices has shown significant improvement in the lower and outer harbor areas.

  4. Long-Term Monitoring of Glacier Change at GÖSSNITZKEES (austria) Using Terrestrial Photogrammetry

    NASA Astrophysics Data System (ADS)

    Kaufmann, V.; Seier, G.

    2016-06-01

    Gössnitzkees is a small heavily debris-covered cirque glacier (49.8 ha) located in the Schober Mountains, Hohe Tauern Range, Austrian Alps. Glacier nourishment is mainly due to avalanches descending from its surrounding headwalls. Gössnitzkees is the largest glacier in the Schober Mountains and is highly representative of the other 25 glaciers of this mountain group. All glaciers of this mountain group have receded continuously since 1850. Ongoing atmospheric warming sustains excessive glacier melt. In 1988 a long-term monitoring program was started at Gössnitzkees using terrestrial photogrammetry in order to document and quantify glacier change. The surveys have been repeated from time to time using different types of cameras. Recent surveys date from 2009, 2012, and 2015. The aim of this paper is twofold: firstly, to investigate whether or not the rather complex photogrammetric evaluation process using a conventional photogrammetric workstation (mostly with a limited degree of automation for terrestrial applications) can be replaced by modern fully automated Structure-from-Motion (SfM) based approaches, and secondly, to document and quantify the glacier change at Gössnitzkees based on available information augmented by results obtained from the most recent surveys mentioned. Over the last 27 years (1988-2015) the terminus of Gössnitzkees has receded by 179 m and the glacier ice has melted at a mean annual rate of about 1.5 m/year. The Schober Mountains are in the process of deglaciation and the glaciers will likely disappear within the next two decades. Based on our practical investigations we found out that SfM-based software is in general capable of handling terrestrial photographs in a fully automatic mode supporting challenging glacier studies.

  5. Long-term ERT monitoring of biogeochemical changes of an aged hydrocarbon contamination.

    PubMed

    Caterina, David; Flores Orozco, Adrian; Nguyen, Frédéric

    2017-06-01

    Adequate management of contaminated sites requires information with improved spatio-temporal resolution, in particular to assess bio-geochemical processes, such as the transformation and degradation of contaminants, precipitation of minerals or changes in groundwater geochemistry occurring during and after remediation procedures. Electrical Resistivity Tomography (ERT), a geophysical method sensitive to pore-fluid and pore-geometry properties, permits to gain quasi-continuous information about subsurface properties in real-time and has been consequently widely used for the characterization of hydrocarbon-impacted sediments. However, its application for the long-term monitoring of processes accompanying natural or engineered bioremediation is still difficult due to the poor understanding of the role that biogeochemical processes play in the electrical signatures. For in-situ studies, the task is further complicated by the variable signal-to-noise ratio and the variations of environmental parameters leading to resolution changes in the electrical images. In this work, we present ERT imaging results for data collected over a period of two years on a site affected by a diesel fuel contamination and undergoing bioremediation. We report low electrical resistivity anomalies in areas associated to the highest contaminant concentrations likely due transformations of the contaminant due to microbial activity and accompanying release of metabolic products. We also report large seasonal variations of the bulk electrical resistivity in the contaminated areas in correlation with temperature and groundwater level fluctuations. However, the amplitude of bulk electrical resistivity variations largely exceeds the amplitude expected given existing petrophysical models. Our results suggest that the variations in electrical properties are mainly controlled by microbial activity which in turn depends on soil temperature and hydrogeological conditions. Therefore, ERT can be suggested as

  6. Temporal Dynamics of Microbial Plankton Diversity at a Long-Term Ecological Monitoring Site

    NASA Astrophysics Data System (ADS)

    Nagarkar, M.; Palenik, B.; Daniels, E.

    2016-02-01

    Microbial marine eukaryotes play a key role in ocean trophic dynamics, as they comprise a large proportion of both primary producers and primary consumers. The advent of high-throughput amplicon sequencing with environmental samples has uncovered far greater eukaryotic diversity than previous methods, but much of this diversity remains unclassified and uncharacterized. Here we describe eukaryotic community diversity at the Scripps Institution of Oceanography pier, a long-term ecological monitoring site in the California current ecosystem. This site is well suited for a temporal study as other data, including chlorophyll, temperature, and cyanobacteria counts, have been collected on a weekly basis for over a decade. The compilation of community 18S sequence data at seventeen time points over several years reveals that the eukaryotic microbial composition is highly dynamic. By defining and classifying Operational Taxonomic Units (OTUs) we found that approximately a quarter of this diversity remains unclassified. While some OTUs were ubiquitous temporally, less than 1% were present during all times sampled and the majority of OTUs were members of the `rare biosphere'- present at low levels during only one or a few time points. With this time series we can explore factors, both environmental and biological, underlying the temporal differences in the eukaryotic community. We additionally used our sequence data to examine the environmental relevance of lab isolates from the pier sampling site, including both heterotrophic nanoflagellate grazers and common autotrophs. We found these model species to be relatively rare in the overall community over time, but this was partially dependent on whether the conventional 97% similarity cutoff for species-level OTU assignment was used. This raises important questions about whether this cutoff is appropriate within all taxa.

  7. Long-term stream chemistry monitoring on the fernow experiment forest: implications for sustainable management of hardwood forests

    Treesearch

    Mary Beth Adams; James N. Kochenderfer

    2007-01-01

    Long-term monitoring of stream chemistry of forested watersheds on the Fernow Experimental Forest in West Virginia has been conducted to determine the effects of both human induced and natural disturbances on nutrient cycling and stream chemistry. We compare mean annual stream water pH, and nitrate (NO3), sulfate (SO4), and...

  8. Net change in forest density, 1873-2001. Using historical maps to monitor long-term forest trends.

    Treesearch

    Greg C. Liknes; Mark D. Nelson; Daniel J. Kaisershot

    2013-01-01

    European settlement of the United States and utilization of forests are inextricably linked. Forest products fueled development, providing the building blocks for railroads, bridges, ships, and homes. Perhaps because of the importance of its forests, the United States has a rich cartographic history documenting its resources. Long-term, broad-scale monitoring efforts...

  9. Long term in situ monitoring of total dissolved iron concentrations on the MoMAR observatory

    NASA Astrophysics Data System (ADS)

    Laes-Huon, Agathe; Legrand, Julien; Tanguy, Virginie; Cathalot, Cecile; Blandin, Jérôme; Rolin, Jean-Francois; Sarradin, Pierre-Marie

    2015-04-01

    Nowadays the scientific community wants relevant monitoring with an increase in spatial and temporal distribution of key chemicals. The hydrothermal ecosystems characterized by strong physico-chemical gradients are also of particular interest as they present an unique fauna, sustained by microbial chemosynthesis. The characterization of the chemical environment in the hydrothermal vent ecosystems implies the use of in situ instrumentation which is a serious challenge in the marine environment (Prien et al. 2007). The CHEMINI (CHEmical MINIaturised analyser), presented here, is a chemical in situ analyser specialized for deep sea uses (Vuillemin et al. 2007). It was first deployed on the autonomous deep sea observatory MoMAR (Monitoring of the Mid-Atlantic Ridge, FIXO3, Fixed point Open Ocean Observatories) in 2010. The first part of the presentation will focus on the description of the CHEMINI, then on the results obtained on the MoMAR observatory during the last 4 years. CHEMINI, implemented on the TEMPO ecological module determined total dissolved iron concentrations associated with an optode and a temperature probe. Several months of total iron concentrations, of T°C and videos were recorded permitting the study of the temporal dynamics of faunal assemblages and their habitat on the Lucky strike vent (-1700m, Cuvelier et al. 2011). Long term in situ analysis of total dissolved iron (31st of August 2013 - 23rd of February 2014, [DFe] = 7.12 +- 2.11 µmol L-1, n = 519) at the Eiffel Tower edifice is presented in details. The daily analyzed in situ standard (25µmol.L-1) showed an excellent reproducibility (1.07%, n=522). CHEMINI was reliable, robust over time for in situ analysis. The averaged total dissolved iron concentrations for the 6 months period remain low but they correlated significantly with temperature showing a spectra frequency with a maximal contribution around 4-5 days for both variables. The analytical results will be commented and the future

  10. Continuation of long-term global SO2 pollution monitoring from OMI to OMPS

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Li, C.; Krotkov, N. A.; Joiner, J.

    2016-12-01

    In the past 12+ years, Ozone Monitoring Instrument (OMI) on board NASA EOS Aura satellite has pioneered the first high-resolution global SO2 pollution monitoring, which enabled new studies of atmospheric chemistry and applications for air quality management. Such long-term SO2 record will be continued with other satellite instruments, i.e., the Ozone Mapping and Profiler Suite (OMPS) Nadir Mapper on board NASA-NOAA Suomi National Polar-orbiting Partnership (S-NPP) satellite and the follow up JPSS series satellites. In this presentation, we demonstrate the first comparison between OMI and OMPS SO2 retrievals from the OMI operational SO2 algorithm, which is our state-of-the-art principal component analysis (PCA) approach. The PCA technique does not use any sort of "soft calibration" corrections required in concurrent satellite SO2 algorithms and enables seamless merging of different satellite datasets. We demonstrate a very good consistency of the retrievals from OMI and OMPS. Four full years of OMI and OMPS SO2 retrievals during 2012-2015 have been analyzed over some of the world's most polluted regions: eastern China, Mexico, and South Africa. In general, the comparisons show high correlations (r =0.79-0.96) of SO2 mass between the two instruments on a daily basis and less than unity regression slopes (0.76-0.97) indicating slightly lower OMPS SO2 mass as compared with OMI. The annual averaged SO2 loading difference between OMI and OMPS is negligible (< 0.03 Dobson Unit (DU)) over South Africa and up to 0.1 DU over eastern China). We also found a very good correlation (r=0.92-0.97) between the spatial distributions of the annual mean SO2 over the three regions. The two instruments also show generally good agreement in terms of the daily spatial distribution in SO2. For example, over the Mexico region for 82% of the days, the two instruments have a spatial correlation coefficient of 0.6 or better. Such consistent retrievals were achieved without any explicit

  11. Long-term monitoring of a cable stayed bridge using a SCADA system

    NASA Astrophysics Data System (ADS)

    Torbol, Marco; Kim, Sehwan; Shinozuka, Masanobu

    2012-04-01

    DuraMote is a MEMS-based remote sensing system, which is developed for the NIST TIP project, Next Generation SCADA for Prevention and Mitigation of Water System Infrastructure Disaster. It is designed for supervisory control and data acquisition (SCADA) of pipe ruptures in water distribution systems. In this project, a method is developed to detect the pipe ruptures by analyzing the acceleration data gathered by DuraMote which consists of two primary components; the first, "Gopher" contains the accelerometers and are attached to the water pipe surface noninvasively, and the second, "Roocas" is placed above ground supplying the power to, and retrieving the data from the multiple Gophers, and then transmit the data through Wi-Fi to a base station. The relays support the Wi-Fi network to facilitate the transmission. A large scale bridge provides an ideal test-bet to validate the performance of such a complex monitoring system as DuraMote for its accuracy, reliability, robustness, and user friendliness. This is because a large bridge is most of the time subjected to susceptible level of ambient vibration due to passing loads, wind, etc. DuraMote can record the acceleration time history arising from the vibration making it possible to estimate the frequency values of various bridge vibration modes. These estimated frequency values are then compared with the values computed from analytical model of the bridge for the verification of the accuracy of DuraMote. It is noted that such a verification method cannot be used practically by deploying DuraMote on a water distribution network since the dynamic behavior of a pipe network, either above or underground, is too complex to model analytically for this purpose, and in addition, the network generally lacks conveniently recordable ambient vibration. In this experiment, the performance of DuraMote system was tested being installed on the Hwamyung Bridge, a 500 m long RC cable stayed bridge in Korea for long term monitoring. In

  12. Simulation and Optimization of Large Scale Subsurface Environmental Impacts; Investigations, Remedial Design and Long Term Monitoring

    SciTech Connect

    Deschaine, L.M.

    2008-07-01

    accuracy of them. The uncertainty and sparse nature of information in earth science simulations necessitate stochastic representations. For discussion purposes, the solution to these site-wide challenges is divided into three sub-components; plume finding, long term monitoring, and site-wide remediation. Plume finding is the optimal estimation of the plume fringe(s) at a specified time. It is optimized by fusing geo-stochastic flow and transport simulations with the information content of data using a Kalman filter. The result is an optimal monitoring sensor network; the decision variable is location(s) of sensor in three dimensions. Long term monitoring extends this approach concept, and integrates the spatial-time correlations to optimize the decision variables of where to sample and when to sample over the project life cycle. Optimization of location and timing of samples to meet the desired accuracy of temporal plume movement is accomplished using enumeration or genetic algorithms. The remediation optimization solves the multi-component, multiphase system of equations and incorporates constraints on life-cycle costs, maximum annual costs, maximum allowable annual discharge (for assessing the monitored natural attenuation solution) and constraints on where remedial system component(s) can be located, including management overrides to force certain solutions to be chosen are incorporated for solution design. It uses a suite of optimization techniques, including the outer approximation method, Lipchitz global optimization, genetic algorithms, and the like. The automated optimal remedial design algorithm requires a stable simulator be available for the simulated process. This is commonly the case for all above specifications sans true three-dimensional multiphase flow. Much work is currently being conducted in the industry to develop stable 3D, three-phase simulators. If needed, an interim heuristic algorithm is available to get close to optimal for these conditions. This

  13. Long term structural health monitoring by distributed fiber-optic sensing

    NASA Astrophysics Data System (ADS)

    Persichetti, G.; Minardo, A.; Testa, G.; Bernini, R.

    2012-04-01

    Structural health monitoring (SHM) systems allow to detect unusual structural behaviors that indicate a malfunction in the structure, which is an unhealthy structural condition. Depending on the complexity level of the SHM system, it can even perform the diagnosis and the prognosis steps, supplying the required information to carry out the most suitable actuation. While standard SHM systems are based on the use of point sensors (e.g., strain gauges, crackmeters, tiltmeters, etc.), there is an increasing interest towards the use of distributed optical fiber sensors, in which the whole structure is monitored by use of a single optical fiber. In particular, distributed optical fiber sensors based on stimulated Brillouin scattering (SBS) permit to detect the strain in a fully distributed manner, with a spatial resolution in the meter or submeter range, and a sensing length that can reach tens of km. These features, which have no performance equivalent among the traditional electronic sensors, are to be considered extremely valuable. When the sensors are opportunely installed on the most significant structural members, this system can lead to the comprehension of the real static behaviour of the structure rather than merely measuring the punctual strain level on one of its members. In addition, the sensor required by Brillouin technology is an inexpensive, telecom-grade optical fiber that shares most of the typical advantages of other fiber-optic sensors, such as high resistance to moisture and corrosion, immunity to electromagnetic fields and potential for long-term monitoring. In this work, we report the result of a test campaign performed on a concrete bridge. In particular, the tests were performed by an portable prototype based on Brillouin Optical Time-Domain Analysis (BOTDA) [1,2]. This type of analysis makes use of a pulsed laser light and a frequency-shifted continuous-wave (CW) laser light, launched simultaneously at the two opposite ends of an optical fiber

  14. Long-term pressure monitoring with arterial applanation tonometry: a non-invasive alternative during clinical intervention?

    PubMed

    Matthys, Koen S; Kalmar, Alain F; Struys, Michel M R F; Mortier, Eric P; Avolio, Alberto P; Segers, Patrick; Verdonck, Pascal R

    2008-01-01

    Arterial tonometry is a non-invasive technique for continuous registration of arterial pressure waveforms. This study aims to assess tonometric blood pressure recording (TBP) as an alternative for invasive long-term bedside monitoring. A prospective study was set up where patients undergoing neurosurgical intervention were subjected to both invasive (IBP) and non-invasive (TBP) blood pressure monitoring during the entire procedure. A single-element tonometric pressure transducer was used to better investigate different inherent error sources of TBP measurement. A total of 5.7 hours of combined IBP and TBP were recorded from three patients. Although TBP performed fairly well as an alternative for IBP in steady state scenarios and some short-term variations, it could not detect relevant long-term pressure variations at all times. These findings are discussed in comparison to existing work. Physiological alterations at the site of TBP measurement are highlighted as a potentially important source of artifacts. It is concluded that at this point arterial tonometry remains not enough understood for long-term use during a delicate operative procedure. Physiological changes at the TBP measurement site deserve further investigation before tonometry technology is to be considered as an non-invasive alternative for long-term clinical monitoring.

  15. Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior

    NASA Astrophysics Data System (ADS)

    Gasperikova, Erika; Hubbard, Susan S.; Watson, David B.; Baker, Gregory S.; Peterson, John E.; Kowalsky, Michael B.; Smith, Meagan; Brooks, Scott

    2012-11-01

    Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales.

  16. Long-term electrical resistivity monitoring of recharge-induced contaminant plume behavior.

    PubMed

    Gasperikova, Erika; Hubbard, Susan S; Watson, David B; Baker, Gregory S; Peterson, John E; Kowalsky, Michael B; Smith, Meagan; Brooks, Scott

    2012-11-01

    Geophysical measurements, and electrical resistivity tomography (ERT) data in particular, are sensitive to properties that are related (directly or indirectly) to hydrological processes. The challenge is in extracting information from geophysical data at a relevant scale that can be used to gain insight about subsurface behavior and to parameterize or validate flow and transport models. Here, we consider the use of ERT data for examining the impact of recharge on subsurface contamination at the S-3 ponds of the Oak Ridge Integrated Field Research Challenge (IFRC) site in Tennessee. A large dataset of time-lapse cross-well and surface ERT data, collected at the site over a period of 12 months, is used to study time variations in resistivity due to changes in total dissolved solids (primarily nitrate). The electrical resistivity distributions recovered from cross-well and surface ERT data agrees well, and both of these datasets can be used to interpret spatiotemporal variations in subsurface nitrate concentrations due to rainfall, although the sensitivity of the electrical resistivity response to dilution varies with nitrate concentration. Using the time-lapse surface ERT data interpreted in terms of nitrate concentrations, we find that the subsurface nitrate concentration at this site varies as a function of spatial position, episodic heavy rainstorms (versus seasonal and annual fluctuations), and antecedent rainfall history. These results suggest that the surface ERT monitoring approach is potentially useful for examining subsurface plume responses to recharge over field-relevant scales. Published by Elsevier B.V.

  17. Long-term monitoring of climatic and nutritional affects on tree growth in interior Alaska

    Treesearch

    J. Yarie; K. Van Cleve

    2010-01-01

    The comparative analysis of a large set of long-term fertilization and thinning studies in the major forest types of interior Alaska is summarized. Results indicate that nutrient limitations may only occur during the early spring growth period, after which moisture availability is the primary control of tree growth on warm sites. The temperature dynamics of both air...

  18. Long-term performance monitoring of hardwood timber bridges in Pennsylvania

    Treesearch

    James P. Wacker; Carlito Calil; Lola E. Hislop; Paula D. Hilbrich Lee; James A. Kainz

    2004-01-01

    Several hardwood timber bridges were constructed in Pennsylvania during the early 1990s. This report summarizes the long-term field performance of seven stress-laminated deck bridges over a 4-year period beginning August 1997 and ending July 2001. Data collected include lumber moisture content, static load test deflection measurements, and bridge condition assessments...

  19. Long Term 2 Second Round Source Water Monitoring and Bin Placement Memo

    EPA Pesticide Factsheets

    The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) applies to all public water systems served by a surface water source or public water systems served by a ground water source under the direct influence of surface water.

  20. The new Seafloor Observatory (OBSEA) for remote and long-term coastal ecosystem monitoring.

    PubMed

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  1. Seismicity rates of slow, intermediate, and fast spreading ridges: Insights from long-term hydroacoustic monitoring

    NASA Astrophysics Data System (ADS)

    Dziak, R. P.; Haxel, J. H.; Bohnenstiehl, D. R.; Goslin, J.

    2004-12-01

    Ocean basin earthquakes recorded on NOAA/OSU and U.S. Navy hydrophone arrays are used to evaluate long-term volcano-tectonic seismicity levels from segments of the fast-spreading rate East Pacific Rise (EPR) from 20° S-20° N, intermediate-spreading rate Juan de Fuca Ridge (JdFR) from 39° -52° N and Galapagos Rift (GR) from 90° -103° W, and the slow-spreading northern Mid-Atlantic Ridge (MAR) from 5° -60° N. The hydrophones record the acoustic energy of seafloor earthquakes that propagate along the ocean sound channel with little attenuation over large distances. Frequency-magnitude relationships (Bohnenstiehl et al., 2002; Dziak et al., 2004) indicate the hydrophone catalogs are complete in these regions to body-wave magnitude ˜2.5 (EPR and GR), 2.5 (JdFR), and 3.0 (MAR), an improvement of 1.5 to 2 units over the land-based seismic catalogs for mid-ocean ridge systems. Using the hydrophone earthquake catalog, we will compare seismicity rates of the JdFR (12 years of data), to seismicity rates along the GR (6 years) and EPR (6 years) and MAR (4 years of data from 5° -39° N; 16 months from 39° -60° N). During these monitoring periods, five confirmed seafloor spreading events (four of which were associated with magmatic activity) were recorded on discrete JdFR segments, while 6 possible magmatic events were observed on the EPR, one on the GR, and one on the MAR. Empirical orthogonal functions will be used to elucidate the space-time patterns of seismicity and compare between the various spreading rates ridges, as well as to investigate the recurrence rate of seafloor spreading events present. In addition, single-link cluster analysis (SLC; Frolich and Davis, 1990) will be used to de-cluster the earthquake databases to reduce the effects of aftershock sequences and magmatic swarms, allowing us to evaluate how overall plate motion and changes in spreading rate effect levels of seismicity between ridge segments and different ridge systems. Preliminary

  2. The New Seafloor Observatory (OBSEA) for Remote and Long-Term Coastal Ecosystem Monitoring

    PubMed Central

    Aguzzi, Jacopo; Mànuel, Antoni; Condal, Fernando; Guillén, Jorge; Nogueras, Marc; del Rio, Joaquin; Costa, Corrado; Menesatti, Paolo; Puig, Pere; Sardà, Francesc; Toma, Daniel; Palanques, Albert

    2011-01-01

    A suitable sampling technology to identify species and to estimate population dynamics based on individual counts at different temporal levels in relation to habitat variations is increasingly important for fishery management and biodiversity studies. In the past two decades, as interest in exploring the oceans for valuable resources and in protecting these resources from overexploitation have grown, the number of cabled (permanent) submarine multiparametric platforms with video stations has increased. Prior to the development of seafloor observatories, the majority of autonomous stations were battery powered and stored data locally. The recently installed low-cost, multiparametric, expandable, cabled coastal Seafloor Observatory (OBSEA), located 4 km off of Vilanova i la Gertrú, Barcelona, at a depth of 20 m, is directly connected to a ground station by a telecommunication cable; thus, it is not affected by the limitations associated with previous observation technologies. OBSEA is part of the European Multidisciplinary Seafloor Observatory (EMSO) infrastructure, and its activities are included among the Network of Excellence of the European Seas Observatory NETwork (ESONET). OBSEA enables remote, long-term, and continuous surveys of the local ecosystem by acquiring synchronous multiparametric habitat data and bio-data with the following sensors: Conductivity-Temperature-Depth (CTD) sensors for salinity, temperature, and pressure; Acoustic Doppler Current Profilers (ADCP) for current speed and direction, including a turbidity meter and a fluorometer (for the determination of chlorophyll concentration); a hydrophone; a seismometer; and finally, a video camera for automated image analysis in relation to species classification and tracking. Images can be monitored in real time, and all data can be stored for future studies. In this article, the various components of OBSEA are described, including its hardware (the sensors and the network of marine and land nodes

  3. Long-term magnetic field monitoring of the Sun-like star ξ Bootis A

    NASA Astrophysics Data System (ADS)

    Morgenthaler, A.; Petit, P.; Saar, S.; Solanki, S. K.; Morin, J.; Marsden, S. C.; Aurière, M.; Dintrans, B.; Fares, R.; Gastine, T.; Lanoux, J.; Lignières, F.; Paletou, F.; Ramírez Vélez, J. C.; Théado, S.; Van Grootel, V.

    2012-04-01

    Aims: We aim to investigate the long-term temporal evolution of the magnetic field of the solar-type star ξ Bootis A, both from direct magnetic field measurements and from the simultaneous estimate of indirect activity indicators. Methods: We obtained seven epochs of high-resolution, circularly-polarized spectra from the NARVAL spectropolarimeter between 2007 and 2011, for a total of 76 spectra. Using approximately 6100 photospheric spectral lines covering the visible domain, we employed a cross-correlation procedure to compute a mean polarized line profile from each spectrum. The large-scale photospheric magnetic field of the star was then modelled by means of Zeeman-Doppler Imaging, allowing us to follow the year-to-year evolution of the reconstructed magnetic topology. Simultaneously, we monitored the width of several magnetically sensitive spectral lines, the radial velocity, the line asymmetry of intensity line profiles, and the chromospheric emission in the cores of the Ca II H and Hα lines. Results: During the highest observed activity states, in 2007 and 2011, the large-scale field of ξ Bootis A is almost completely axisymmetric and is dominated by its toroidal component. The toroidal component persists with a constant polarity, containing a significant fraction of the magnetic energy of the large-scale surface field through all observing epochs. The magnetic topologies reconstructed for these activity maxima are very similar, suggesting a form of short cyclicity in the large-scale field distribution. The mean unsigned large-scale magnetic flux derived from the magnetic maps varies by a factor of about 2 between the lowest and highest observed magnetic states. The chromospheric flux is less affected and varies by a factor of 1.2. Correlated temporal evolution, due to both rotational modulation and seasonal variability, is observed between the Ca II emission, the Hα emission and the width of magnetically sensitive lines. The rotational dependence of

  4. Long-term results from an urban CO2 monitoring network

    NASA Astrophysics Data System (ADS)

    Ehleringer, J.; Pataki, D. E.; Lai, C.; Schauer, A.

    2009-12-01

    High-precision atmospheric CO2 has been monitored in several locations through the Salt Lake Valley metropolitan region of northern Utah over the past nine years. Many parts of this semi-arid grassland have transitioned into dense urban forests, supported totally by extensive homeowner irrigation practices. Diurnal changes in fossil-fuel energy uses and photosynthesis-respiration processes have resulted in significant spatial and temporal variations in atmospheric CO2. Here we present an analysis of the long-term patterns and trends in midday and nighttime CO2 values for four sites: a midvalley residential neighborhood, a midvalley non-residential neighborhood, an undeveloped valley-edge area transitioning from agriculture, and a developed valley-edge neighborhood with mixed residential and commercial activities; the neighborhoods span an elevation gradient within the valley of ~100 m. Patterns in CO2 concentrations among neighborhoods were examined relative to each other and relative to the NOAA background station, a desert site in Wendover, Utah. Four specific analyses are considered. First, we present a statistical analysis of weekday versus weekend CO2 patterns in the winter, spring, summer, and fall seasons. Second, we present a statistical analysis of the influences of high-pressure systems on the elevation of atmospheric CO2 above background levels in the winter versus summer seasons. Third, we present an analysis of the nighttime CO2 values through the year, relating these patterns to observed changes in the carbon isotope ratios of atmospheric CO2. Lastly, we examine the rate of increase in midday urban CO2 over time relative to regional and global CO2 averages to determine if the amplification of urban energy use is statistically detectable from atmospheric trace gas measurements over the past decade. These results show two important patterns. First, there is a strong weekday-weekend effect of vehicle emissions in contrast to the temperature

  5. Environmental response to sewage treatment strategies: Hong Kong's experience in long term water quality monitoring.

    PubMed

    Xu, Jie; Lee, Joseph H W; Yin, Kedong; Liu, Hongbin; Harrison, Paul J

    2011-11-01

    In many coastal cities around the world, marine outfalls are used for disposal of partially treated wastewater effluent. The combined use of land-based treatment and marine discharge can be a cost-effective and environmentally acceptable sewage strategy. Before 2001, screened sewage was discharged into Victoria Harbour through many small outfalls. After 2001, the Hong Kong Harbour Area Treatment Scheme (HATS) was implemented to improve the water quality in Victoria Harbour and surrounding waters. Stage I of HATS involved the construction of a 24 km long deep tunnel sewerage system to collect sewage from the densely populated urban areas of Hong Kong to a centralized sewage treatment plant at Stonecutters Island. A sewage flow of 1.4 million m3 d(-1) receives Chemically Enhanced Primary Treatment (CEPT) followed by discharge via a 1.2 km long outfall 2 km west of the harbor. The ecosystem recovery in Victoria Harbour and the environmental response to sewage abatement after the implementation of HATS was studied using a 21-year data set from long term monthly water quality monitoring. Overall, the pollution control scheme has achieved the intended objectives. The sewage abatement has resulted in improved water quality in terms of a significant reduction in nutrients and an increase in bottom DO levels. Furthermore, due to the efficient tidal mixing and flushing, the impact of the HATS discharge on water quality in the vicinity of the outfall location is relatively limited. However, Chl a concentrations have not been reduced in Victoria Harbour where algal growth is limited by hydrodynamic mixing and water clarity rather than nutrient concentrations. Phosphorus removal in the summer is suggested to reduce the risk of algal blooms in the more weakly-flushed and stratified southern waters, while nutrient removal is less important in other seasons due to the pronounced role played by hydrodynamic mixing. The need for disinfection of the effluent to reduce bacterial (E

  6. IN-SITU, LONG-TERM MONITORING SYSTEM FOR RADIOACTIVE CONTAMINANTS

    SciTech Connect

    James S. Durham; Stephen W.S. McKeever; Mark S. Akselrod

    2002-10-01

    This report presents the results of the first phase of the project entitled ''In-situ, Long-term Monitoring System for Radioactive Contaminants.'' Phase one of this effort included four objectives, each with specific success criteria. The first objective was to produce dosimetry grade fibers and rods of aluminum oxide. The success criterion for this milestone was the production of aluminum oxide rods and fibers that have a minimum measurable dose (MMD) of 100 mrem or less. This milestone was completed and the MMD for the rods was measured to be 1.53 mrem. Based on the MMD, the ability of the sensor to measure {sup 137}Cs, {sup 90}Sr/{sup 90}Y, and {sup 99}Tc was evaluated. It was determined that the sensor can measure the release limit of these radionuclides (50 pCi/cm{sup 3}) in 150 h, 200 h, and 54,000 h, respectively. The monitor is adequate for measuring {sup 137}Cs and {sup 90}Sr/{sup 90}Y but is unsuitable for measuring {sup 99}Tc in soil. The second objective was to construct a prototype sensor (dosimeter and fiber optic channel). There were three success criteria for this milestone: (1) Perform measurements with the sensor for both gamma and beta radiation with a standard deviation of 10% or less; (2) Demonstrate the ability of the sensor to discriminate between gamma and beta radiation; and (3) Obtain similar or relatable results for differing lengths of fiber optic cable. These milestones were met. The sensor was able to measure gamma radiation repeatedly with a standard deviation of 3.15% and beta radiation with a standard deviation of 2.85%. Data is presented that demonstrates that an end cap can be used to discriminate between beta plus gamma radiation using beta radiation from a {sup 90}Sr/{sup 90}Y source, and gamma radiation alone. It is shown that some amount of attenuation occurs in longer fiber optic cables, but it is unclear if the attenuation is due to poor alignment of the dosimeter and the cable. This issue will be investigated further when

  7. IN-SITU, LONG-TERM MONITORING SYSTEM FOR RADIOACTIVE CONTAMINANTS

    SciTech Connect

    James S. Durham; Stephen W.S. McKeever; Mark S. Akselrod

    2002-10-01

    This report presents the results of the first phase of the project entitled ''In-situ, Long-term Monitoring System for Radioactive Contaminants.'' Phase one of this effort included four objectives, each with specific success criteria. The first objective was to produce dosimetry grade fibers and rods of aluminum oxide. The success criterion for this milestone was the production of aluminum oxide rods and fibers that have a minimum measureable dose (MMD) of 100 mrem or less. This milestone was completed and the MMD for the rods was measured to be 1.53 mrem. Based on the MMD, the ability of the sensor to measure {sup 137}Cs, {sup 90}Sr/{sup 90}Y, and {sup 99}Tc was evaluated. It was determined that the sensor can measure the release limit of these radionuclides (50 pCi/cm{sup 3}) in 150 h, 200 h, and 54,000 h, respectively. The monitor is adequate for measuring {sup 137}Cs and {sup 90}Sr/{sup 90}Y but is unsuitable for measuring {sup 99}Tc in soil. The second objective was to construct a prototype sensor (dosimeter and fiber optic channel). There were three success criteria for this milestone: (1) Perform measurements with the sensor for both gamma and beta radiation with a standard deviation of 10% or less; (2) Demonstrate the ability of the sensor to discriminate between gamma and beta radiation; and (3) Obtain similar or relatable results for differing lengths of fiber optic cable. These milestones were met. The sensor was able to measure gamma radiation repeatedly with a standard deviation of 3.15% and beta radiation with a standard deviation of 2.85%. Data is presented that demonstrates that an end cap can be used to discriminate between beta plus gamma and gamma radiation. It is shown that some amount of attenuation occurs in longer fiber optic cables, but it is unclear if the attenuation is due to poor alignment of the dosimeter and the cable. This issue will be investigated further when more dosimeters are available so that the dosimeters can be permanently

  8. Long-term geoelectrical monitoring of laboratory freeze-thaw experiments on bedrock samples

    NASA Astrophysics Data System (ADS)

    Kuras, Oliver; Uhlemann, Sebastian; Murton, Julian; Krautblatter, Michael

    2014-05-01

    Much attention has recently focussed on the continuous and near-real-time geophysical monitoring of permafrost-affected bedrock with permanently installed sensor arrays. It is hoped that such efforts will enhance process understanding in such environments (permafrost degradation, weathering mechanisms) and augment our capability to predict future instabilities of rock walls and slopes. With regard to electrical methods for example, recent work has demonstrated that temperature-calibrated electrical resistivity tomography (ERT) is capable of imaging recession and re-advance of rock permafrost in response to the ambient temperature regime. However, field experience also shows that several fundamental improvements to ERT methodology are still required to achieve the desired sensitivity, spatial-temporal resolution and long-term robustness that must underpin continuous geophysical measurements. We have applied 4D geoelectrical tomography to monitoring laboratory experiments simulating permafrost growth, persistence and thaw in bedrock over a period of 26 months. Six water-saturated samples of limestone and chalk of varying porosity represented lithologies commonly affected by permafrost-related instability. Time-lapse imaging of the samples was undertaken during multiple successive freeze-thaw cycles, emulating annual seasonal change over several decades. Further experimental control was provided by simultaneous measurements of vertical profiles of temperature and moisture content within the bedrock samples. These experiments have helped develop an alternative methodology for the volumetric imaging of permafrost bedrock and tracking active layer dynamics. Capacitive resistivity imaging (CRI), a technique based upon low-frequency, capacitively-coupled measurements emulates ERT methodology, but without the need for galvanic contact on frozen rock. The latter is perceived as a key potential weakness, which could lead to significant limitations as a result of the variable

  9. Evaluating satellite-derived long-term historical precipitation datasets for drought monitoring in Chile

    NASA Astrophysics Data System (ADS)

    Zambrano, Francisco; Wardlow, Brian; Tadesse, Tsegaye; Lillo-Saavedra, Mario; Lagos, Octavio

    2017-04-01

    Precipitation is a key parameter for the study of climate change and variability and the detection and monitoring of natural disaster such as drought. Precipitation datasets that accurately capture the amount and spatial variability of rainfall is critical for drought monitoring and a wide range of other climate applications. This is challenging in many parts of the world, which often have a limited number of weather stations and/or historical data records. Satellite-derived precipitation products offer a viable alternative with several remotely sensed precipitation datasets now available with long historical data records (+30years), which include the Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) datasets. This study presents a comparative analysis of three historical satellite-based precipitation datasets that include Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 version 7 (1998-2015), PERSIANN-CDR (1983-2015) and CHIRPS 2.0 (1981-2015) over Chile to assess their performance across the country and for the case of the two long-term products the applicability for agricultural drought were evaluated when used in the calculation of commonly used drought indicator as the Standardized Precipitation Index (SPI). In this analysis, 278 weather stations of in situ rainfall measurements across Chile were initially compared to the satellite data. The study area (Chile) was divided into five latitudinal zones: North, North-Central, Central, South-Central and South to determine if there were a regional difference among these satellite products, and nine statistics were used to evaluate their performance to estimate the amount and spatial distribution of historical rainfall across Chile. Hierarchical cluster analysis, k-means and singular value decomposition were used to analyze

  10. Long-term changes in flood event patterns due to changes in hydrological distribution parameters in a rural-urban catchment, Shikoku, Japan

    NASA Astrophysics Data System (ADS)

    Mouri, Goro; Kanae, Shinjiro; Oki, Taikan

    2011-07-01

    This article describes the principal control parameters of flood events and precipitation and the relationships between corresponding hydrologic and climatologic parameters. The long-term generation of runoff and associated processes is important in understanding floods and droughts under changes in climate and land use. This study presents detailed analyses of flood events in a coastal amphitheatre catchment with a total area of 445 km 2 in western Japan, followed by analyses of flood events in both urban and forest areas. Using long-term (1962 to 2002) hydrological and climatological data from the Ministry of Land, Infrastructure and Transport, Japan, the contributions of precipitation, river discharge, temperature, and relative humidity to flood events were analysed. Flood events could be divided into three types with respect to hydrologic and climatologic principal control parameters: the long-term tendency; medium-term changes as revealed by hydrographs and hyetographs of high-intensity events such as the relative precipitation, river discharge, and temperature; and large events, as shown by the flow-duration curve, with each cluster having particular characteristics. River discharge showed a decreasing tendency of flow quantity during small rainfall events of less than 100 mm/event from the 1980s to the present. An approximately 7% decrease from 44.8 to 37.3% occurred in the percentage of river water supplied by precipitation in the years after the 1980s. For the medium-term changes, no marked change occurred in the flow quantity of the peak point over time in event hydrographs. However, flow quantities before and after the peak tended to decrease by 1 to 2 m 3/s after the 1980s. Theoretical considerations with regard to the influence of hydrologic and climatologic parameters on flood discharge are discussed and examined in terms of observational data. These findings provide a sound foundation for use in hydrological catchment modelling.

  11. Continuation of long-term global SO2 pollution monitoring from OMI to OMPS

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Li, Can; Krotkov, Nickolay A.; Joiner, Joanna; Fioletov, Vitali; McLinden, Chris

    2017-04-01

    Over the past 20 years, advances in satellite remote sensing of pollution-relevant species have made space-borne observations an increasingly important part of atmospheric chemistry research and air quality management. This progress has been facilitated by advanced UV-vis spectrometers, such as the Ozone Monitoring Instrument (OMI) on board the NASA Earth Observing System (EOS) Aura satellite, and continues with new instruments, such as the Ozone Mapping and Profiler Suite (OMPS) on board the NASA-NOAA Suomi National Polar-orbiting Partnership (SNPP) satellite. In this study, we demonstrate that it is possible, using our state-of-the-art principal component analysis (PCA) retrieval technique, to continue the long-term global SO2 pollution monitoring started by OMI with the current and future OMPS instruments that will fly on the NOAA Joint Polar Satellite System (JPSS) 1, 2, 3, and 4 satellites in addition to SNPP, with a very good consistency of retrievals from these instruments. Since OMI SO2 data have been primarily used for (1) providing regional context on air pollution and long-range transport on a daily basis and (2) providing information on point emission sources on an annual basis after data averaging, we focused on these two aspects in our OMI-OMPS comparisons. Four years of retrievals (2012-2015) have been compared for three regions: eastern China, Mexico, and South Africa. In general, the comparisons show relatively high correlations (r = 0. 79-0.96) of daily regional averaged SO2 mass between the two instruments and near-unity regression slopes (0.76-0.97). The annual averaged SO2 loading differences between OMI and OMPS are small (< 0.03 Dobson unit (DU) over South Africa and up to 0.1 DU over eastern China). We also found a very good correlation (r = 0. 92-0.97) in the spatial distribution of annual averaged SO2 between OMI and OMPS over the three regions during 2012-2015. The emissions from ˜ 400 SO2 sources calculated with the two instruments also

  12. Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): A Long-Term Remote Sensing, Hydrologic, Ecologic, and Socio-Economic Assessment with Management Implications

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Barreto-Orta, M.; Ortiz, J.; Santiago, L.; Setegn, S. G.; Guild, L. S.; Ramos-Scharron, C. E.; Armstrong, R.; Detres, Y.

    2014-12-01

    For several decades Puerto Rico's coastal and marine ecosystems (CMEs) have suffered the effects of anthropogenic stresses associated to population growth and varying land use. Coral reefs, for instance, have been impacted by sedimentation, increased eutrophication, and coastal water contamination. Here we present an overview of a new NASA project to study human impacts in two priority watersheds (Manatí and Guánica). The project uses an interdisciplinary approach that includes historic and recent remote sensing analysis and hydrological, ecological and socio-economic modeling to provide a multi-decadal assessment of change in coral reefs, seagrass beds, mangroves and sandy beaches. The project's main goal is to evaluate the impacts of land use/land cover changes on the quality and extent of CMEs in priority watersheds in the north and south coasts of Puerto Rico. Methods include assessments of coral reefs benthic communities cover, monitoring of short- and long-term beach geomorphological changes associated with riverine and sediment input, calculation of the economical value of selected CMEs, establish permanent monitoring transects in never before studied coral reef areas, provide recommendations to enhance current coastal policy management practices, and disseminate the results to local stakeholders. This project will include imagery from the Operational Land Imager of Landsat 8 to assess coastal ecosystems extent. Habitat and species distribution maps will be created by incorporating field and remotely-sensed data into an Ecological Niche Factor Analysis. The social component will allow us to study the valuation of specific CMEs attributes from the stakeholder's point of view. Our results and the generality of the methodology will provide for its application to other similar tropical locations.

  13. Long-term tritium monitoring to study river basin dynamics: case of the Danube River basin

    NASA Astrophysics Data System (ADS)

    Aggarwal, Pradeep; Araguas, Luis; Groening, Manfred; Newman, Brent; Kurttas, Turker; Papesch, Wolfgang; Rank, Dieter; Suckow, Axel; Vitvar, Tomas

    2010-05-01

    During the last five decades, isotope concentrations (O-18, D, tritium) have been extensively measured in precipitation, surface- and ground-waters to derive information on residence times of water in aquifers and rivers, recharge processes, and groundwater dynamics. The unique properties of the isotopes of the water molecule as tracers are especially useful for understanding the retention of water in river basins, which is a key parameter for assessing water resources availability, addressing quality issues, investigating interconnections between surface- and ground-waters, and for predicting possible hydrological shifts related to human activities and climate change. Detailed information of the spatial and temporal changes of isotope contents in precipitation at a global scale was one of the initial aims of the Global Network of Isotopes in Precipitation (GNIP), which has provided a detailed chronicle of tritium and stable isotope contents in precipitation since the 1960s. Accurate information of tritium contents resulting of the thermonuclear atmospheric tests in the 1950s and 1960s is available in GNIP for stations distributed world-wide. Use of this dataset for hydrological dating or as an indicator of recent recharge has been extensive in shallow groundwaters. However, its use has been more limited in surface waters, due to the absence of specific monitoring programmes of tritium and stable isotopes in rivers, lakes and other surface water bodies. The IAEA has recently been compiling new and archival isotope data measured in groundwaters, rivers, lakes and other water bodies as part of its web based Water Isotope System for Data Analysis, Visualization and Electronic Retrieval (WISER). Recent additions to the Global Network of Isotopes in Rivers (GNIR) contained within WISER now make detailed studies in rivers possible. For this study, we are re-examining residence time estimates for the Danube in central Europe. Tritium data are available in GNIR from 15

  14. GUMNET - A new long-term monitoring initiative in the Guadarrama Mountains, Madrid, Spain

    NASA Astrophysics Data System (ADS)

    Rath, Volker; Fidel González Rouco, J.; Yagüe Anguis, Carlos

    2014-05-01

    We are announcing a new monitoring network in the Guadarrama Mountains north of Madrid, which is planned to be operational in early 2015. This network integrates atmospheric measurements as well as subsurface observations. It aims at improving the characterization of atmosphere-ground interactions in mountainous terrain, the hydrometeorology of the region, climatic change, and related research lines. It will also provide the meteorological and climate data which form the necessary background information for biological, agricultural and hydrological investigations in this area. Currently, the initiative is supported by research groups from the Complutense and Polytechnical Universities of Madrid (UCM and UPM), the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), the Spanish National Meteorological Agency (AEMET), and finally the Parque Nacional de la Sierra de Guadarrama (PNSG). This infrastructure forms part of the Campus of Excellence Moncloa, and is supposed to become a focus of local as well as of international research. However, it is not associated with a particular project: data will in principle be available to the scientific and public communities. Also, the integration of new instruments (long or short term) will be welcome. The starting setup is as following: A group of WMO-compatible meteorological station in the central area of the massif will be installed, which include also a subsurface component of boreholes (≡20 m depth), where temperature and moisture will be measured. This core group is complemented by a reference site near El Escorial (including a fixed and a mobile tower for micrometeorological investigations). This setup is embedded in a network of meteorological stations run partly by AEMET and partly by the PNSG, which will provide the information necessary for the characterization of regional meteorology and climate. Finally, part of the data will be made available quasi-online on a central web server in

  15. Improving Aquifer Imaging and Long-term Monitoring with Oscillating Signals: Oscillatory Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Cardiff, M. A.; Zhou, Y.

    2012-12-01

    Pumping tests provide direct information about hydrologic properties - especially hydraulic conductivity (K) - that can be used to understand 3-D spatial heterogeneity and improve aquifer flow and transport predictions. A state-of-the-art method for analyzing pumping tests, Hydraulic Tomography (HT), uses information from sets of constant-rate pumping tests to tomographically estimate K throughout an aquifer. In this presentation, we discuss a modified version of HT, multi-frequency Oscillatory Hydraulic Tomography (OHT), in which the pressure responses from a series of oscillating pumping tests of varying frequency are analyzed. In particular, we present a computationally efficient framework for tomographic analysis of data from such tests, which: 1) Compresses data and extracts relevant information using signal processing routines 2) Performs inversion using a fast-running and physically-based steady-periodic forward model and 3) Jointly analyzes multi-frequency data in order to reduce uncertainty associated with parameter estimates. We demonstrate many of the benefits of the multi-frequency OHT concept using a 3D transient synthetic application. While the transient forward model requires 10s of minutes to generate each pumping test's synthetic data, we show that this data can effectively be inverted using a separate, steady-periodic inverse model that requires only seconds to run. Thus, large datasets from many pumping tests can be analyzed, and large problem domains can be studied, using an inversion framework that requires only modest computational resources. Because OHT involves no net water extraction, it can also be used in a "passive" configuration over long time-periods to monitor changes in aquifer properties over time (e.g., due to infiltration of a high-viscosity NAPL). Forward modeling of signal response changes due to such processes will be presented in a separate synthetic application, which tests the ability of OHT signals of various magnitudes and

  16. Long-term watershed research and monitoring to understand ecosystem change in parks and equivalent reserves

    USGS Publications Warehouse

    Herrmann, R.

    1997-01-01

    Integrated watershed ecosystem studies in National Parks or equivalent reserves suggest that effects of external processes on 'protected' resources are subtle, chronic, and long-term. Ten years of data from National Park watersheds suggests that temperature and precipitation changes are linked to nitrogen levels in lakes and streams. We envision measurable biotic effects in these remote watersheds, if expected climate trends continue. The condition of natural resources within areas set aside for preservation are difficult to ascertain, but gaining this knowledge is the key to understanding ecosystem change and of processes operating among biotic and abiotic ecosystem components. There is increasing evidence that understanding the magnitude of variation within and between such processes can provide an early indication of environmental change and trends attributable to human-induced stress. The following four papers are case studies of how this concept has been implemented. These long-term studies have expanded our knowledge of ecosystem response to natural and human-induced stress. The existence of these sites with a commitment to gathering 'long-term' ecosystem-level data permits research activities aimed at testing more important hypotheses on ecosystem processes and structure.

  17. A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals

    NASA Astrophysics Data System (ADS)

    Lee, Seung Min; Kim, Jeong Hun; Byeon, Hang Jin; Choi, Yoon Young; Park, Kwang Suk; Lee, Sang-Hoon

    2013-06-01

    Objective. Long-term electroencephalogram (EEG) monitoring broadens EEG applications to various areas, but it requires cap-free recording of EEG signals. Our objective here is to develop a capacitive, small-sized, adhesive and biocompatible electrode for the cap-free and long-term EEG monitoring. Approach. We have developed an electrode made of polydimethylsiloxane (PDMS) and adhesive PDMS for EEG monitoring. This electrode can be attached to a hairy scalp and be completely hidden by the hair. We tested its electrical and mechanical (adhesive) properties by measuring voltage gain to frequency and adhesive force using 30 repeat cycles of the attachment and detachment test. Electrode performance on EEG was evaluated by alpha rhythm detection and measuring steady state visually evoked potential and N100 auditory evoked potential. Main results. We observed the successful recording of alpha rhythm and evoked signals to diverse stimuli with high signal quality. The biocompatibility of the electrode was verified and a survey found that the electrode was comfortable and convenient to wear. Significance. These results indicate that the proposed EEG electrode is suitable and convenient for long term EEG monitoring.

  18. Autonomous hydrophone array for long-term acoustic monitoring in the open ocean

    NASA Astrophysics Data System (ADS)

    D'Eu, J.-F.; Brachet, C.; Goslin, J.; Royer, J.-Y.; Ammann, J.

    2009-04-01

    We are developing an array of new autonomous hydrophones, benefiting from a long-lasting collaboration with the Pacific Marine Environmental Laboratory (NOAA and Oregon state University). The hydrophones are deployed on a mooring line anchored to the seafloor by an expendable anchor weight. The length of the line is adjusted so that the sensor (and buoy) lies in the middle of the SOFAR channel at about 1000m depth for mid-latitudes (depending on the speed-of-sound profile). The buoy at depth keeps the line under tension and prevents wave-motion noise from the sensor. The instrument continuously samples and records the acoustic signals at 240Hz for seismic studies, or 480Hz (or more) for marine mammal studies. The SOFAR channel acts as an acoustic wave-guide in the ocean so that acoustic waves can propagate with little attenuation over long distances. Autonomous hydrophones allow the detection and localization of the low-magnitude (Mw>2.5) seismic activity along oceanic ridges and in deformed intraplate areas, which remains generally undetected or poorly localized by land-based seismic networks. An array of hydrophones can monitor a much wider area (more than 1000 km across) than ocean-bottom seismometers, which suffer from the rapid attenuation of seismic waves in the crust and upper mantle. Arrays of autonomous hydrophones thus succeed in detecting and locating 30 to 50 times more earthquakes than those listed in the catalogs from land-based seismograph stations. Data are buffered on flash cards and then regularly stored on hard disks or on solid-state drives (e.g. 20Gb of data per year at 240Hz sampling rate). We use 24-bit sigma-delta converters with programmable gain amplifiers. As timing is a key issue for an accurate localisation of the seismic events, instruments are synchronized with GPS time and have a low-power, highly stable calibrated clock (10-8 drift). All electronics and batteries (Li or alcaline) are placed in titanium pressure cases for long-term

  19. Long-term hydrologic and water quality responses following commercial clearcutting of mixed hardwoods on a Southern Appalachian catchment

    Treesearch

    W.T. Swank; J.M. Vose; K.J. Elliott

    2001-01-01

    Long-term changes (~ 20 years) in water yield, the storm hydrograph, stream inorganic chemistry, and sediment yield were analyzed for a 59 ha mixed hardwood covered catchment (Watershed 7) in the Southern Appalachian Mountains (USA) following clearcutting and cable logging. The first year after cutting, streamflow increased 26 cm or 28 percent above the flow expected...

  20. Statistical package for improved analysis of hillslope monitoring data collected as part of the Board of Forestry's long-term monitoring program

    Treesearch

    Jack Lewis; Jim Baldwin

    1997-01-01

    The State of California has embarked upon a Long-Term Monitoring Program whose primary goal is to assess the effectiveness of the Forest Practice Rules and Review Process in protecting the beneficial uses of waters from the impacts of timber operations on private timberlands. The Board of Forestry's Monitoring Study Group concluded that hillslope monitoring should...

  1. Long-Term In-Service Monitoring and Performance Assessment of the Main Cables of Long-Span Suspension Bridges.

    PubMed

    Deng, Yang; Liu, Yang; Chen, Suren

    2017-06-16

    Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables.

  2. A Long-term Reach-Scale Monitoring Network for Riparian Evapotranspiration, Rock Creek, Kansas

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Solis, J. A.; Whittemore, D. O.; Butler, J. J.; Reboulet, E.; Knobbe, S.; Dealy, M.

    2011-12-01

    Riparian evapotranspiration (RET) is an important component of basin-wide evapotranspiration (ET), especially in subhumid to semi-arid regions, with significant impact on water management and conservation. In narrow riparian zones, typical of much of the subhumid to semi-arid U.S., direct measurement of RET by eddy correlation is precluded by the limited fetch distance of riparian vegetation. Alternative approaches based on water balance analyses have a long history, but their accuracy is not well understood. Factors such as heterogeneity in soil properties and root distributions, and sparse measurements, introduce uncertainties in RET estimates. As part of a larger effort aimed at improving understanding of basin-wide RET using scaling theories, we installed a continuous monitoring system for water balance estimation at the scale of a single (~100 m long) reach along Rock Creek in the Whitewater Basin in central Kansas. The distinguishing features of this site include a vadose zone with fine-grained soils underlain by a phreatic zone of coarse gravel embedded in clay, overlying karst bedrock. Across the width (~40 m) of the riparian zone, we installed one transect of four wells screened at the bottom of the alluvium (6-7 m depth), each accompanied by a soil moisture profiler with capacitance sensors at 4 vertical levels above the local water-table elevation (~2.5 m depth) and a shallow well screened just below the water table. All wells were instrumented with pressure transducers for monitoring water levels. Additional sets of all sensors were installed at the upstream and downstream ends of the study reach. Initial results from the monitoring network suggest significant complexities in the behavior of the subsurface system at the site, including a high degree of heterogeneity. All deep wells show a rapid response to streamflow variations and nearby pumping. However, the shallow water-table wells do not respond rapidly to either. Both the shallow wells and soil

  3. LONG-TERM TRENDS IN GROWTH OF PINUS PALUSTRIS AND PINUS ELLIOTTII GROWING ALONG A HYDROLOGICAL GRADIENT IN CENTRAL FLORIDA

    EPA Science Inventory

    Land-use change and urbanization has led to changes in the hydrologic regime in wet central Florida, with a trend toward lowered water table levels. These hydrologic changes are having environmental consequences in wetlands, where shifts in species composition and fire frequency...

  4. LONG-TERM TRENDS IN GROWTH OF PINUS PALUSTRIS AND PINUS ELLIOTTII GROWING ALONG A HYDROLOGICAL GRADIENT IN CENTRAL FLORIDA

    EPA Science Inventory

    Land-use change and urbanization has led to changes in the hydrologic regime in wet central Florida, with a trend toward lowered water table levels. These hydrologic changes are having environmental consequences in wetlands, where shifts in species composition and fire frequency...

  5. Glucose Monitoring in Individuals with Diabetes using a Long-Term Implanted Sensor/Telemetry System and Model

    PubMed Central

    Lucisano, Joseph Y.; Routh, Timothy L.; Lin, Joe T.; Gough, David A.

    2017-01-01

    Objective The use of a fully implanted, first-generation prototype sensor/telemetry system is described for long-term monitoring of subcutaneous tissue glucose in a small cohort of people with diabetes. Methods Sensors are based on a membrane containing immobilized glucose oxidase and catalase coupled to oxygen electrodes and a telemetry system, integrated as an implant. The devices remained implanted for up to 180 days, with signals transmitted every 2 minutes to external receivers. Results The data include signal recordings from glucose clamps and spontaneous glucose excursions, matched respectively to reference blood glucose and finger-stick values. The sensor signals indicate dynamic tissue glucose, for which there is no independent standard, and a model describing the relationship between blood glucose and the signal is therefore included. The values of all model parameters have been estimated, including the permeability of adjacent tissues to glucose, and equated to conventional mass transfer parameters. As a group, the sensor calibration varied randomly at an average rate of −2.6%/week. Statistical correlation indicated strong association between the sensor signals and reference glucose values. Conclusions Continuous, long-term glucose monitoring in individuals with diabetes is feasible with this system. Significance All therapies for diabetes are based on glucose control and therefore require glucose monitoring. This fully implanted, long-term sensor/telemetry system may facilitate a new era of management of the disease. PMID:27775510

  6. Combined investigations on long-term hydrochemical monitoring and high frequency measurements in the Critical Zone from the Auradé catchment (SW, France)

    NASA Astrophysics Data System (ADS)

    Ponnou-Delaffon, Vivien; Probst, Anne; Payre-Suc, Virginie; Ferrant, Sylvain; Probst, Jean-Luc

    2017-04-01

    The Critical Zone (CZ) is now well identified as the land-atmosphere interface under the influence of many human pressures rendering up vulnerable for future generations. Although many investigations have been undergone over the last 30 years in the different compartments of the CZ, it remains important to understand the overall functioning of this area in a context of global change. A long-term hydrological and chemical monitoring was performed since 30 years for nitrates and discharge, and for 10 years for major elements at the stream outlet of a small agricultural carbonated catchment (Auradé site). This catchment is part of the observatories network OZCAR infrastructure and since 1992 it was a pilot for improving agricultural practices. Two time scales were investigated based on a discrete sampling during low water flow and hydrological events, and since 2006 on high frequency datas (every 10mn) for pH, conductivity, nitrate, temperature…using a multiparameter probe. The long-term trends indicated mostly a decreasing in nitrate, Ca and Mg concentrations namely and an increase in DOC, which can be related to the influence of the environmental practices (fertilizers inputs, vegetative filter strip etc..), but more recently to the changes in temperature and hydrological patterns (decreasing discharge and occurrence of rare but intensive events). The high frequency measurements on short-term events allowed: (i) to highlight the mechanisms involved in flux exportations (nycthemeral cycle for nitrates as ex.), (ii) to reconstruct the chemical patterns by correlating the parameters to major elements, and finally (iii) to have a better and more precise approach of the contribution of weathering and land use on the hydrochemical functioning of the CZ, particularly on the disturbance of carbon cycle by anthropogenic fingerprints.

  7. Bioindicators in monitoring long term genotoxic impact of oil spill: Haven case study.

    PubMed

    Bolognesi, Claudia; Perrone, Emanuela; Roggieri, Paola; Sciutto, Andrea

    2006-07-01

    The evaluation of long term impact and risk of oil spill is a complex process involving chemical analyses and development of the ecosystem-based toxicology. An integrated biomarker approach using different bioindicators, mussels, oysters and fish with different feeding habits was applied to evaluate the long term risk from Haven oil spill along the Ligurian coast (Italy). Mussels were caged for a period of 4 weeks and fish were caught in the impacted and reference area. Caged oysters were also analyzed in different area of the wreck. DNA damage and micronuclei (MN) frequency were evaluated in gill cells of bivalves. DNA single strand breaks were measured in hepatocytes and MN were measured in fish erythrocytes. The results revealed an increase in MN frequency (more than 10 times the level at the reference site) in caged mussels from Arenzano compared to the reference area after an interval of 4 months from the accident. No increase in DNA damage and a significant increase in MN frequency were recorded in caged mussels (mean value 10.15 vs 5.3) and in benthic fish Mullus barbatus (2.5 vs 0.7) in a further sampling in 1998. Statistically significant increase of DNA damage and MN frequency was observed in caged oysters in different areas of the wreck in a biomonitoring carried out in 2001.

  8. Long term laboratory corrosion monitoring of calcine bin set materials exposed to zirconia calcine

    SciTech Connect

    Dirk, W.J.

    1994-06-01

    Corrosion testing of Type 1025 carbon steel, 405, 304, 304L, 316L, and 347 stainless steels, and 6061-T6 aluminum were conducted in synthetic zirconia calcine to model long term corrosion performance of bin set material. Testing was conducted over a period of 17 years. The existing calcine bin set {number_sign}1 is constructed of Type 405 stainless steel, 2 through 4 are constructed of Type 304 stainless steel and 5 through 7 are constructed of Type 304L stainless steel. The highest rate observed for Type 304L stainless steel was 8.1 {times} 10{sup {minus}7} inches per month. This would equal a wall thickness loss of about 5 mils after 500 years of storage. Currently, the established schedule for removal of corrosion test coupons from the calcine storage bins is at the end of the 10th, 100th, 250th, and 450th year of solid storage service. Very low corrosion rates and metal oxide data determined from the long term laboratory test, in conjunction with corrosion rates from the coupon assessment of the second bin set, indicate this schedule should be revised from 10 years to 50 years for the first assessment.

  9. Evaluating the long-term hydrology of an evapotranspiration-capillary barrier with a 1000 year design life: HYDROLOGY OF A 1000 YEAR ETC BARRIER

    SciTech Connect

    Zhang, Z. Fred

    2016-06-01

    A surface barrier (or cover) is a commonly used technology for subsurface remediation. A key function of the barrier is to reduce or eliminate the movement of meteoric precipitation into the underlying waste zone, where it could mobilize and transport contaminants. Surface barriers are expected to perform for centuries to millennia, yet there are very few examples of performance for periods longer than a decade. The Prototype Hanford Barrier was constructed in 1994 over an existing waste site to demonstrate its long-term performance for a design period of 1000 years. This barrier is a field-scale evapotranspiration-capillary (ETC) barrier. In this design, the storage layer consists of 2-m-thick silt loam. The 19-year monitoring results show that the store-and-release mechanism for the ETC barrier worked efficiently as the storage layer was recharged in the winter season (November to March) and the stored water was released to the atmosphere in the summer season (April to October) via soil evaporation and plant transpiration. The capillary break functioned normally in improving the storage capacity and minimizing drainage. The maximum drainage observed through the ET barrier at any of the monitoring stations was only 0.178 mm yr-1 (under an enhanced precipitation condition), which is less than the design criterion. A very small amount (2.0 mm yr-1 on average) of runoff was observed during the 19-year monitoring period. The observed storage capacity of the storage layer was considerably (39%) larger than the estimated value based on the method of equilibrium of water pressure. After a controlled fire in 2008, the newly grown vegetation (primarily shallow-rooted grasses) could still release the stored water and summer precipitation to the atmosphere via transpiration. The findings are useful for predicting water storage and ET under different precipitation conditions and for the design of future barriers.

  10. Identification of temporal patterns of long-term hydrological signals in Lower Mississippi River Basin using wavelet analysis

    Treesearch

    Ying Ouyang

    2016-01-01

    Estimates of surface hydrological characteristics in watershed ecosystems are essential to climate change assessment, water supply planning, water quality protection, ecological restoration, and water resources management.

  11. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Araki, E.; Sonoda, A.; Takahashi, N.; Tsuboi, S.

    2015-12-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP).We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real-time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough.We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site (*1). Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor information. In addition, before data download, user can check that data is available or not by data check function.In this presentation, we briefly introduce NanTroSEIZE and then show our web

  12. The use of long term monitoring data for the extension of the service duration of existing wind turbine support structures

    NASA Astrophysics Data System (ADS)

    Loraux, C.; Brühwiler, E.

    2016-09-01

    Actual wind energy converter (WEC) are designed for a relatively short service life of 20 years and the limiting criterion is the fatigue safety. However, effective fatigue loading endured by the structural components of the wind turbines (WT) is likely to be much below design assumptions provided by current codes. This paper describes a simple but efficient long term monitoring system that allows owners to verify the fatigue safety of their existing WTs. The monitored data will also help to drastically extend the service life of existing wind turbine support structure and will thus reduce the global environmental footprint of WTs.

  13. Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time.

    PubMed

    Magurran, Anne E; Baillie, Stephen R; Buckland, Stephen T; Dick, Jan McP; Elston, David A; Scott, E Marian; Smith, Rognvald I; Somerfield, Paul J; Watt, Allan D

    2010-10-01

    The growing need for baseline data against which efforts to reduce the rate of biodiversity loss can be judged highlights the importance of long-term datasets, some of which are as old as ecology itself. We review methods of evaluating change in biodiversity at the community level using these datasets, and contrast whole-community approaches with those that combine information from different species and habitats. As all communities experience temporal turnover, one of the biggest challenges is distinguishing change that can be attributed to external factors, such as anthropogenic activities, from underlying natural change. We also discuss methodological issues, such as false alerts and modifications in design, of which users of these data sets need to be aware. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. LONG-TERM X-RAY MONITORING OF THE YOUNG PULSAR PSR B1509-58

    SciTech Connect

    Livingstone, Margaret A.; Kaspi, Victoria M.

    2011-11-20

    It has long been thought that the pulsed X-ray properties of rotation-powered pulsars are stable on long timescales. However, long-term, systematic studies of individual sources have been lacking. Furthermore, dramatic X-ray variability has now been observed from two pulsars having inferred sub-critical dipole magnetic fields. Here we present an analysis of the long-term pulsed X-ray properties of the young, energetic pulsar PSR B1509-58 using data from the Rossi X-ray Timing Explorer. We measured the 2-50 keV pulsed flux for 14.7 yr of X-ray observations and found that it is consistent with being constant on all relevant timescales, and place a 3{sigma} upper limit on day-to-week variability of <28%. In addition, we searched for magnetar-like X-ray bursts in all observations and found none, which we use to constrain the measurable burst rate to less than one per 750 ks of observations. We also searched for variability in the pulse profile and found that it is consistent with being stable on timescales of days to decades. This supports the hypothesis that X-ray properties of rotation-powered X-ray pulsars can be stable on decade-long timescales. In addition, we extend the existing timing solution by 7.1 yr to a total of 28.4 yr and report updated values of the braking index, n = 2.832 {+-} 0.003, and the second braking index, m = 17.6 {+-} 1.9.

  15. Spectroscopic monitoring of SS 433: A search for long-term variations of kinematic model parameters

    NASA Astrophysics Data System (ADS)

    Davydov, V. V.; Esipov, V. F.; Cherepashchuk, A. M.

    2008-06-01

    Between 1994 and 2006, we obtained uniform spectroscopic observations of SS 433 in the region of H α. We determined Doppler shifts of the moving emission lines, H α + and H α -, and studied various irregularities in the profiles for the moving emission lines. The total number of Doppler shifts measured in these 13 years is 488 for H α - and 389 for H α +. We have also used published data to study possible long-term variations of the SS 433 system, based on 755 Doppler shifts for H α - and 630 for H α + obtained over 28 years. We have derived improved kinematic model parameters for the precessing relativistic jets of S S 433 using five-and eight-parameter models. On average, the precession period was stable during the 28 years of observations (60 precession cycles), at 162.250d ± 0.003d. Phase jumps of the precession period and random variations of its length with amplitudes of ≈6% and ≈1%, respectively, were observed, but no secular changes in the precession period were detected. The nutation period, P nut = 6.2876d ± 0.00035d, and its phase were stable during 28 years (more than 1600 nutation cycles). We find no secular variations of the nutation cycle. The ejection speed of the relativistic jets, v, was, on average, constant during the 28 years, β = v/c = 0.2561 ± 0.0157. No secular variation of β is detected. In general, S S 433 demonstrates remarkably stable long-term characteristics of its precession and nutation, as well as of the central “engine” near the relativistic object that collimates the plasma in the jets and accelerates it to v = 0.2561 c. Our results support a model with a “slaved” accretion disk in S S 433, which follows the precession of the optical star’s rotation axis.

  16. Publication of sensor data in the long-term environmental monitoring infrastructure TERENO

    NASA Astrophysics Data System (ADS)

    Stender, V.; Schroeder, M.; Klump, J. F.

    2014-12-01

    Terrestrial Environmental Observatories (TERENO) is an interdisciplinary and long-term research project spanning an Earth observation network across Germany. It includes four test sites within Germany from the North German lowlands to the Bavarian Alps and is operated by six research centers of the Helmholtz Association. TERENO Northeast is one of the sub-observatories of TERENO and is operated by the German Research Centre for Geosciences GFZ in Potsdam. This observatory investigates geoecological processes in the northeastern lowland of Germany by collecting large amounts of environmentally relevant data. The success of long-term projects like TERENO depends on well-organized data management, data exchange between the partners involved and on the availability of the captured data. Data discovery and dissemination are facilitated not only through data portals of the regional TERENO observatories but also through a common spatial data infrastructure TEODOOR (TEreno Online Data repOsitORry). TEODOOR bundles the data, provided by the different web services of the single observatories, and provides tools for data discovery, visualization and data access. The TERENO Northeast data infrastructure integrates data from more than 200 instruments and makes data available through standard web services. TEODOOR accesses the OGC Sensor Web Enablement (SWE) interfaces offered by the regional observatories. In addition to the SWE interface, TERENO Northeast also publishes time series of environmental sensor data through the online research data publication platform DataCite. The metadata required by DataCite are created in an automated process by extracting information from the SWE SensorML to create ISO 19115 compliant metadata. The GFZ data management tool kit panMetaDocs is used to register Digital Object Identifiers (DOI) and preserve file based datasets. In addition to DOI, the International Geo Sample Numbers (IGSN) is used to uniquely identify research specimens.

  17. Continuous long-term cytotoxicity monitoring in 3D spheroids of beetle luciferase-expressing hepatocytes by nondestructive bioluminescence measurement.

    PubMed

    Yasunaga, Mayu; Fujita, Yasuko; Saito, Rumiko; Oshimura, Mitsuo; Nakajima, Yoshihiro

    2017-06-20

    Three-dimensional (3D) spheroids are frequently used in toxicological study because their morphology and function closely resemble those of tissue. As these properties are maintained over a long term, repeated treatment of the spheroids with a test object is possible. Generally, in the repeated treatment test to assess cytotoxicity in the spheroids, ATP assay, colorimetric measurement using pigments or high-content imaging analysis is performed. However, continuous assessment of cytotoxicity in the same spheroids using the above assays or analysis is impossible because the spheroids must be disrupted or killed. To overcome this technical limitation, we constructed a simple monitoring system in which cytotoxicity in the spheroids can be continuously monitored by nondestructive bioluminescence measurement. Mouse primary hepatocytes were isolated from transchromosomic (Tc) mice harboring a mouse artificial chromosome (MAC) vector expressing beetle luciferase Emerald Luc (ELuc) under the control of cytomegalovirus immediate early enhancer/chicken β-actin promoter/rabbit β-globin intron II (CAG) promoter, and used in 3D cultures. We confirmed that both luminescence and albumin secretion from the spheroids seeded in the 96-well format Cell-able(TM) were maintained for approximately 1 month. Finally, we repetitively treated the luminescent 3D spheroids with representative hepatotoxicants for approximately 1 month, and continuously and nondestructively measured bioluminescence every day. We successfully obtained daily changes of the dose-response bioluminescence curves for the respective toxicants. In this study, we constructed a monitoring system in which cytotoxicity in the same 3D spheroids was continuously and sensitively monitored over a long term. Because this system can be easily applied to other cells, such as human primary cells or stem cells, it is expected to serve as the preferred platform for simple and cost-effective long-term monitoring of cellular events

  18. A comparison of the temporally integrated monitoring of ecosystems and Adirondack Long Term-Monitoring programs in the Adirondack Mountain region of New Yrok

    EPA Science Inventory

    This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initi...

  19. A comparison of the temporally integrated monitoring of ecosystems and Adirondack Long Term-Monitoring programs in the Adirondack Mountain region of New Yrok

    EPA Science Inventory

    This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initi...

  20. Large-scale modelling of forest hydrological processes and their long-term effect on water yield

    NASA Astrophysics Data System (ADS)

    Watson, Fred G. R.; Vertessy, Robert A.; Grayson, Rodger B.

    1999-04-01

    A water balance model was used to simulate the long-term increases in water yield with forest age which are observed in the mountain ash (Eucalyptus regnans) forests of Victoria, Australia. Specifically, the hypothesis was tested that water yield changes could be explained by changes in evapotranspiration resulting from changes in leaf area index (LAI). A curve predicting changes in the total LAI of mountain ash forest was constructed from ground-based observations and their correlation with Landsat Thematic Mapper measurements of the transformed normalized difference vegetation index (TNDVI). A further curve for mountain ash canopy LAI was constructed from destructive LAI measurements and stem diameter measurements. The curves were incorporated within Macaque, a large-scale, physically based water balance model which was applied to three forested catchments (total area 145 km2). The model was used to evaluate the effect of changes in LAI on predicted stream flow over an 82-year period spanning the 1939 wildfires which burnt most of the area. The use of the LAI curves induced improvement in the predicted hydrographs relative to the case for constant LAI, but the change was not large enough to account for all of the difference in water yield between old-growth and regrowth forests. Of a number of possibilities, concomitant changes in leaf conductance with age were suggested as an additional control on stream flow. These were estimated using data on stand sapwood area per unit leaf area and coded into Macaque. The hydrograph predicted using both the LAI curves and a new leaf conductance versus age curve accurately predicted the observed long-term changes in water yield. We conclude that LAI is a partial control on long-term yield changes, but that another water use efficiency per unit LAI control is also operative.

  1. Long-term ecosystem monitoring and change detection: the Sonoran initiative

    Treesearch

    Robert Lozar; Charles Ehlschlaeger

    2005-01-01

    Ecoregional Systems Heritage and Encroachment Monitoring (ESHEM) examines issues of land management at an ecosystem level using remote sensing. Engineer Research and Development Center (ERDC), in partnership with Western Illinois University, has developed an ecoregional database and monitoring capability covering the Sonoran region. The monitoring time horizon will...

  2. Potentials, Limitations and Applications of long-term and mobile ad-hoc Wireless Sensor Networks for Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Bumberger, Jan; Mollenhauer, Hannes; Lapteva, Yulia; Hutschenreuther, Tino; Toepfer, Hannes; Dietrich, Peter

    2014-05-01

    To characterize environmental systems it is necessary to identify and describe processes with suitable methods. Environmental systems are often characterized by their high heterogeneity, so individual measurements for their complete representation are often not sufficient. The application of wireless sensor networks in terrestrial and aquatic ecosystems offer significant benefits as a better consideration of the local test conditions becomes possible. This can be essential for the monitoring of heterogeneous environmental systems. Significant advantages in the application of mobile ad-hoc wireless sensor networks are their self-organizing behavior, resulting in a major reduction in installation and operation costs and time. In addition, a point measurement with a sensor is significantly improved by measuring at several points. It is also possible to perform analog and digital signal processing and computation on the basis of the measured data close to the sensor. Hence, a significant reduction of the data to be transmitted can be achieved which leads to a better energy management of sensor nodes. Furthermore, their localization via satellite, the miniaturization of the nodes and long-term energy self-sufficiency are current topics under investigation. The possibilities and limitations of the applicability of wireless sensor networks for long-term and mobile environmental monitoring are presented. A concepts and realization example are given in the field of micrometeorology and soil parameters for the interaction of biotic and abiotic processes .This long term monitoring is part of the Global Change Experimental Facility (GCEF), a large field-based experimental platform to assess the effects of climate change on ecosystem functions and processes under different land-use scenarios. Furthermore a mobile ad-hoc sensor network is presented for the monitoring of water induced mass wasting processes.

  3. Development of a cost-effective and flexible vibration DAQ system for long-term continuous structural health monitoring

    NASA Astrophysics Data System (ADS)

    Nguyen, Theanh; Chan, Tommy H. T.; Thambiratnam, David P.; King, Les

    2015-12-01

    In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental-numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.

  4. Long-term crustal deformation monitored by gravity and space techniques at Medicina, Italy and Wettzell, Germany

    NASA Astrophysics Data System (ADS)

    Richter, B.; Zerbini, S.; Matonti, F.; Simon, D.

    2004-10-01

    Series of gravity recordings at the stations Medicina (Italy) and Wettzell (Germany) are investigated to separate seasonal gravity variations from long-term trends in gravity. The findings are compared to height variations monitored by continuous GPS observations. To study the origin of these variations in height and gravity the environmental parameters at the stations are included in the fact finding. In Medicina, a clear seasonal signal is visible in the gravity and height data series, caused by seasonal fluctuations in the atmosphere including mass redistribution, the ocean, groundwater but also by geo-mechanical effects such as soil consolidation and thermal expansion of the structure supporting the GPS antenna. In Wettzell, no seasonal effect could be clearly identified, and the long-term trend in gravity is mainly caused by ground water variations. The successful combination of height and gravity series with the derived ratio of gravity to height changes indicates that the long-term trends in height and gravity are most likely due to mass changes rather than to tectonic movements.

  5. Evaluation of long-term trends in hydrologic and water-quality conditions, and estimation of water budgets through 2013, Chester County, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Reif, Andrew G.

    2017-06-02

    An evaluation of trends in hydrologic and water quality conditions and estimation of water budgets through 2013 was done by the U.S. Geological Survey in cooperation with the Chester County Water Resources Authority. Long-term hydrologic, meteorologic, and biologic data collected in Chester County, Pennsylvania, which included streamflow, groundwater levels, surface-water quality, biotic integrity, precipitation, and air temperature were analyzed to determine possible trends or changes in hydrologic conditions. Statistically significant trends were determined by applying the Kendall rank correlation test; the magnitudes of the trends were determined using the Sen slope estimator. Water budgets for eight selected watersheds were updated and a new water budget was developed for the Marsh Creek watershed. An average water budget for Chester County was developed using the eight selected watersheds and the new Marsh Creek water budget.Annual and monthly mean streamflow, base flow, and runoff were analyzed for trends at 10 streamgages. The periods of record at the 10 streamgages ranged from 1961‒2013 to 1988‒2013. The only statistically significant trend for annual mean streamflow was for West Branch Brandywine Creek near Honey Brook, Pa. (01480300) where annual mean streamflow increased 1.6 cubic feet per second (ft3/s) per decade. The greatest increase in monthly mean streamflow was for Brandywine Creek at Chadds Ford, Pa. (01481000) for December; the increase was 47 ft3/s per decade. No statistically significant trends in annual mean base flow or runoff were determined for the 10 streamgages. The greatest increase in monthly mean base flow was for Brandywine Creek at Chadds Ford, Pa. (01481000) for December; the increase was 26 ft3/s per decade.The magnitude of peaks greater than a base streamflow was analyzed for trends for 12 streamgages. The period of record at the 12 stream gages ranged from 1912‒2012 to 2004–11. Fifty percent of the streamgages showed a

  6. Multivariate Analysis of Long Term Variability in Icelandic Hydrological Series and its Relation to the Atmospheric Circulation in the North Atlantic

    NASA Astrophysics Data System (ADS)

    Jonsdottir, J. F.; Snorrason, A.; Jonsson, T.; Sveinsson, O. G.; Jonsson, P.

    2004-05-01

    Observed long-term variability in Icelandic time series of river flow is quite regular and significant. Similarly, aggregated long-term observations of glacial termini show significant changes since their initiation some 70 years ago. The relationship of these changes to variations in time series of climatic and oceanographic variables is quite important, since it can give indications of the possible relationship between hydrological time series and climate variability such as the Northern Atlantic pressure Oscillation (NAO). It can also give indications of the possible effects of anthropogenic climate changes due to increased concentration of greenhouse gases in the atmosphere. The variability of the atmospheric circulation in the North Atlantic has great effects on the precipitation and runoff in Iceland and in fact on the hydrology of the Nordic countries and the contries of western Europe. The island is situated in the middle of the North Atlantic Ocean in the path of the low-pressure frontal systems that transport moisture and thermal energy from the South to the North. A multivariate statistical analysis is performed on discharge data for several rivers in Iceland. The variability in the characteristics of the rivers is large since their watersheds are in various parts of the country, where glaciers and groundwater play a large role in the hydrology of some of the watersheds. The modes of variability are identified by a principal component analysis and the physical explanation of the modes is searched for by canonical correlation with data on precipitation, temperature, sea level pressure and other climatic and oceanographic variables. This study should give information on what processes relate the variability of the atmospheric circulation to the variability of the Icelandic rivers. It will thereby reveal the options of predicting the hydrological conditions in Iceland based on indices and information from the general prevalent circulation patterns. An

  7. A Wearable Cardiac Monitor for Long-Term Data Acquisition and Analysis

    PubMed Central

    Winokur, Eric S.; Delano, Maggie K.; Sodini, Charles G.

    2015-01-01

    A low-power wearable ECG monitoring system has been developed entirely from discrete electronic components and a custom PCB. This device removes all loose wires from the system and minimizes the footprint on the user. The monitor consists of five electrodes, which allow a cardiologist to choose from a variety of possible projections. Clinical tests to compare our wearable monitor with a commercial clinical ECG recorder are conducted on ten healthy adults under different ambulatory conditions, with nine of the datasets used for analysis. Data from both monitors were synchronized and annotated with PhysioNet's waveform viewer WAVE (physionet.org) [1]. All gold standard annotations are compared to the results of the WQRS detection algorithm [2] provided by PhysioNet. QRS sensitivity and QRS positive predictability are extracted from both monitors to validate the wearable monitor. PMID:22968205

  8. Home Blood Pressure Monitoring: How Good a Predictor of Long-Term Risk?

    PubMed Central

    Sheikh, Samia; Sinha, Arjun D.

    2011-01-01

    Most management decisions for the diagnosis and treatment of hypertension are made using blood pressure (BP) measurements made in the clinic. However, home BP recordings may be of superior prognostic value. In this review, we show that home BP recordings are generally superior to clinic BP measurements in predicting long-term prognosis. Home BP has been shown to significantly predict important end points including all-cause mortality, progression of chronic kidney disease, and functional decline in the elderly. In addition, home BP recordings significantly and strongly predict cardiovascular events. These findings are robust, as they concur despite having been studied in disparate populations, using heterogeneous methods of clinic and home BP measurement, and with varied methods of statistical analysis. The advantages of home BP recordings are not due solely to a larger number of measurements, and they extend to the elderly, patients with chronic kidney disease, and those on hemodialysis. Because home BP recordings combine improved accuracy with the advantages of low cost and easy implementation, most patients with known or suspected hypertension should have their BP assessed and managed by means of home BP recordings. PMID:21327567

  9. Effects of ungulate disturbance and weather variation on Pediocactus winkleri: insights from long-term monitoring

    USGS Publications Warehouse

    Clark, Deborah J.; Clark, Thomas O.; Duniway, Michael C.; Flagg, Cody B.

    2015-01-01

    Population dynamics and effects of large ungulate disturbances on Winkler cactus (Pediocactus winkleri K.D. Heil) were documented annually over a 20-year time span at one plot within Capitol Reef National Park, Utah. This cactus species was federally listed as threatened in 1998. The study began in 1995 to gain a better understanding of life history aspects and threats to this species. Data were collected annually in early spring and included diameter, condition, reproductive structures, mortality, recruitment, and disturbance by large ungulates. We used odds ratio and probability model analyses to determine effects of large ungulate trampling and weather on these cacti. During the study, plot population declined by 18%, with trampling of cactus, low precipitation, and cold spring temperatures implicated as causal factors. Precipitation and temperature affected flowering, mortality, and recruitment. Large ungulate disturbances increased mortality and reduced the probability of flowering. These results suggest that large ungulate disturbances and recent climate regimes have had an adverse impact on long-term persistence of this cactus.

  10. Long-term monitoring of sulfonamide leaching from manure amended soil into groundwater.

    PubMed

    Spielmeyer, Astrid; Höper, Heinrich; Hamscher, Gerd

    2017-06-01

    Veterinary antibiotics such as sulfonamides are frequently applied in livestock farming worldwide. Due to poor absorption in the animal gut and/or reversible metabolization sulfonamides are excreted in considerable amounts and can subsequently be detected in liquid manure. As manure is utilized for soil fertilization, sulfonamides can enter the environment via this pathway. Water samples taken below an agriculture field in Lower Saxony revealed the permanent entrance of sulfamethazine into groundwater and concentrations up to 100 ng L(-1) were determined. During a long-term lysimeter study, nine sulfonamides were applied to two different soil types by using fortified liquid manure. Divert mobilities were found with sulfamethazine und sulfamethoxazole showing the highest detection frequency in water samples taken below both bedrock and sandy soil. Four years after the last application of fortified manure, sulfonamides were still detectable in the leachate. Based on analyses of manure and fermentation residue samples, a permanent input of sulfonamides to the soil can be excluded. Thus, the positive findings must be caused by the antibiotics once applied. Soils fertilized with manure contaminated with sulfonamides can consequently be a long-time source for the transfer of antibiotics into groundwater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Reagent-free ultrasensitive spectroscopic probes for long term diabetes monitoring

    NASA Astrophysics Data System (ADS)

    Dingari, N. C.; Barman, I.; Kang, J. W.; Horowitz, G.; Rao Dasari, Ramachandra

    2012-02-01

    Long-term glycemic control is essential in developing therapeutics for diabetics. Glycated hemoglobin (HbA1c) and glycated albumin have been increasingly accepted as a functional metric of glycemic control over the past two to three months and three weeks, respectively. In this talk, we present the first demonstration of non-enhanced Raman spectroscopy as a novel analytical method for quantitative detection of HbA1c and glycated albumin. Using the drop coating deposition Raman technique, we observe that the non-enzymatic glycosylation of these proteins results in subtle, but consistent, changes in vibrational features, which with the help of multivariate classification techniques can be used to discriminate the glycated proteins from their unglycated variants with 100%. Additionally, the developed multivariate calibration models show a high degree of prediction accuracy even at substantially lower concentrations than those typically encountered in clinical practice. The excellent accuracy and reproducibility achieved in this proof-of-concept study opens substantive avenues for basic investigations of glycated proteins as well as in high-throughput glycemic marker sensing in multi-component mixtures and potentially even in serum and whole blood samples.

  12. A new technique to monitor the long-term stability of an optoelectronic oscillator.

    NASA Astrophysics Data System (ADS)

    Pham, Toan Thang; Ledoux-Rak, Isabelle; Journet, Bernard; Vu, Van Yem

    2015-01-01

    The main advantage of an optoelectronic oscillator (OEO) is the ability to synthesize directly very high spectral purity frequency in microwave domain. Beside applications in radar, telecommunication and satellite systems, OEO can also be used in sensor applications such as refractive index or distance measurements. However, the long-term stability of the OEO is easily affected by ambient environment variations. The optical fiber loop effective refractive index varies corresponding to its surrounding temperature changes. Consequently, it makes the optical transmission path inside the fiber loop differ from the initial state, leading to oscillation frequency changes. To stabilize the single loop OEO, it is essential to keep its high Q elements in a well-controlled thermal box as much as possible. Unfortunately, in the real implementation condition, this requirement is difficult to be satisfied. In this paper, we present a new technique to estimate the oscillation frequency variation under the room temperature by using a vector network analyzer (VNA). Experimental results show a good correlation between OEO oscillation frequency drift and the phase measured by the VNA. This technique can be implemented to apply corrections when using the OEO as a distance variation or a refractive index measurement tool. We also tracked the temperature of the fiber loop at the same time with the VNAbased experiment to compare two correlations of temperature and phase with OEO oscillation frequency.

  13. Microautologous Fat Transplantation for Primary Augmentation Rhinoplasty: Long-Term Monitoring of 198 Asian Patients

    PubMed Central

    Kao, Wen-Pin; Lin, Yun-Nan; Lin, Tsung-Ying; Huang, Yu-Hao; Chou, Chih-Kang; Takahashi, Hidenobu; Shieh, Tung-Ying; Chang, Kao-Ping; Lee, Su-Shin; Lai, Chung-Sheng; Lin, Sin-Daw; Lin, Tsai-Ming

    2016-01-01

    Background Numerous techniques and materials are available for increasing the dorsal height and length of the nose. Microautologous fat transplantation (MAFT) may be an appropriate strategy for augmentation rhinoplasty. Objectives The authors sought to determine the long-term results of MAFT with the so-called one-third maneuver in Asian patients who underwent augmentation rhinoplasty. Methods A total of 198 patients who underwent primary augmentation rhinoplasty with MAFT were evaluated in a retrospective study. Fat was harvested by liposuction and was processed and refined by centrifugation. Minute parcels of purified fat were transplanted to the nasal dorsum with a MAFT-Gun. Patient satisfaction was scored with a 5-point Likert scale, and aesthetic outcomes were validated with pre- and postoperative photographs. Results The mean age of the patients was 45.5 years. The mean operating time for MAFT was 25 minutes, and patients underwent 1-3 MAFT sessions. The mean volume of fat delivered per session was 3.4 mL (range, 2.0-5.5 mL). Patients received follow-up for an average of 19 months (range, 6-42 months). Overall, 125 of 198 patients (63.1%) indicated that they were satisfied with the results of 1-3 sessions of MAFT. There were no major complications. Conclusions The results of this study support MAFT as an appropriate fat-transfer strategy for Asian patients undergoing primary augmentation rhinoplasty. Level of Evidence: 4 Therapeutic PMID:26764261

  14. Report of the Director-General on the Long-Term Programme in the Field of Hydrology.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France). General Conference.

    The report describes the principal orientations of the International Hydrological Programme, as well as the procedures suggested for its execution. The origin and justification of the programme are presented. The objectives of the 1975 programme are stated and the contents, which include the activities, themes, application of new techniques in…

  15. Long-term hydrologic research on the San Dimas Experimental Forest, southern California: lessons learned and future directions

    Treesearch

    Pete Wohlgemuth

    2016-01-01

    The San Dimas Experimental Forest (SDEF) is located in the San Gabriel Mountains, about 45 km northeastof Los Angeles, California. The SDEF was originally established in 1934 to document and quantify the hydrologic cycle in semiarid uplands with intermittent headwater streams. New and innovative equipment was necessary to measure rainfall and streamflow in this...

  16. Correlations between short-term mobile monitoring and long-term passive sampler measurements of traffic-related air pollution.

    PubMed

    Riley, Erin A; Schaal, LaNae; Sasakura, Miyoko; Crampton, Robert; Gould, Timothy R; Hartin, Kris; Sheppard, Lianne; Larson, Timothy; Simpson, Christopher D; Yost, Michael G

    2016-05-01

    Mobile monitoring has provided a means for broad spatial measurements of air pollutants that are otherwise impractical to measure with multiple fixed site sampling strategies. However, the larger the mobile monitoring route the less temporally dense measurements become, which may limit the usefulness of short-term mobile monitoring for applications that require long-term averages. To investigate the stationarity of short-term mobile monitoring measurements, we calculated long term medians derived from a mobile monitoring campaign that also employed 2-week integrated passive sampler detectors (PSD) for NOx, Ozone, and nine volatile organic compounds at 43 intersections distributed across the entire city of Baltimore, MD. This is one of the largest mobile monitoring campaigns in terms of spatial extent undertaken at this time. The mobile platform made repeat measurements every third day at each intersection for 6-10 minutes at a resolution of 10 s. In two-week periods in both summer and winter seasons, each site was visited 3-4 times, and a temporal adjustment was applied to each dataset. We present the correlations between eight species measured using mobile monitoring and the 2-week PSD data and observe correlations between mobile NOx measurements and PSD NOx measurements in both summer and winter (Pearson's r = 0.84 and 0.48, respectively). The summer season exhibited the strongest correlations between multiple pollutants, whereas the winter had comparatively few statistically significant correlations. In the summer CO was correlated with PSD pentanes (r = 0.81), and PSD NOx was correlated with mobile measurements of black carbon (r = 0.83), two ultrafine particle count measures (r =0.8), and intermodal (1-3 μm) particle counts (r = 0.73). Principal Component Analysis of the combined PSD and mobile monitoring data revealed multipollutant features consistent with light duty vehicle traffic, diesel exhaust and crankcase blow by. These features were more consistent

  17. Correlations between short-term mobile monitoring and long-term passive sampler measurements of traffic-related air pollution

    NASA Astrophysics Data System (ADS)

    Riley, Erin A.; Schaal, LaNae; Sasakura, Miyoko; Crampton, Robert; Gould, Timothy R.; Hartin, Kris; Sheppard, Lianne; Larson, Timothy; Simpson, Christopher D.; Yost, Michael G.

    2016-05-01

    Mobile monitoring has provided a means for broad spatial measurements of air pollutants that are otherwise impractical to measure with multiple fixed site sampling strategies. However, the larger the mobile monitoring route the less temporally dense measurements become, which may limit the usefulness of short-term mobile monitoring for applications that require long-term averages. To investigate the stationarity of short-term mobile monitoring measurements, we calculated long term medians derived from a mobile monitoring campaign that also employed 2-week integrated passive sampler detectors (PSD) for NOx, Ozone, and nine volatile organic compounds at 43 intersections distributed across the entire city of Baltimore, MD. This is one of the largest mobile monitoring campaigns in terms of spatial extent undertaken at this time. The mobile platform made repeat measurements every third day at each intersection for 6-10 min at a resolution of 10 s. In two-week periods in both summer and winter seasons, each site was visited 3-4 times, and a temporal adjustment was applied to each dataset. We present the correlations between eight species measured using mobile monitoring and the 2-week PSD data and observe correlations between mobile NOx measurements and PSD NOx measurements in both summer and winter (Pearson's r = 0.84 and 0.48, respectively). The summer season exhibited the strongest correlations between multiple pollutants, whereas the winter had comparatively few statistically significant correlations. In the summer CO was correlated with PSD pentanes (r = 0.81), and PSD NOx was correlated with mobile measurements of black carbon (r = 0.83), two ultrafine particle count measures (r = 0.8), and intermodal (1-3 μm) particle counts (r = 0.73). Principal Component Analysis of the combined PSD and mobile monitoring data revealed multipollutant features consistent with light duty vehicle traffic, diesel exhaust and crankcase blow by. These features were more consistent

  18. Detecting environmental change: science and society-perspectives on long-term research and monitoring in the 21st century.

    PubMed

    Parr, T W; Sier, A R J; Battarbee, R W; Mackay, A; Burgess, J

    2003-07-01

    Widespread concern over the state of the environment and the impacts of anthropogenic activities on ecosystem services and functions has highlighted the need for high-quality, long-term datasets for detecting and understanding environmental change. In July 2001, an international conference reviewed progress in the field of long-term ecosystem research and monitoring (LTERM). Examples are given which demonstrate the need for long-term environmental monitoring and research, for palaeoecological reconstructions of past environments and for applied use of historical records that inform us of past environmental conditions. LTERM approaches are needed to provide measures of baseline conditions and for informing decisions on ecosystem management and environmental policy formulation. They are also valuable in aiding the understanding of the processes of environmental change, including the integrated effects of natural and anthropogenic drivers and pressures, recovery from stress and resilience of species, populations, communities and ecosystems. The authors argue that, in order to realise the full potential of LTERM approaches, progress must be made in four key areas: (i) increase the number, variety and scope of LTERM activities to help define the operational range of ecosystems; (ii) greater integration of research, monitoring, modelling, palaeoecological reconstruction and remote sensing to create a broad-scale early warning system of environmental change; (iii) development of inter-disciplinary approaches which draw upon social and environmental science expertise to understand the factors determining the vulnerability and resilience of the nature-society system to change; and (iv) more and better use of LTERM data and information to inform the public and policymakers and to provide guidance on sustainable development.

  19. Development of a long-term post-closure radiation monitor: Phase 2, Topical report, March 1994--July 1995

    SciTech Connect

    Reed, S.E.

    1995-07-01

    The long-term monitoring of a hazardous waste site for migration of radionuclides requires installation of radiation sensors at a large number of subsurface locations. The concept under development employs a passive in-ground measurement probe which contains a scintillator coupled to an optical lightguide. The overall goal of the Long-Term Post-Closure Radiation Monitor System (LPRMS) development program is to configure a long-term radiation monitor using commercially available, demonstrated components to the largest extent possible. The development program is planned as a three phase program spanning a total time of 53 months. The problems to be solved during Phase 1 were primarily those associated with selection of the most appropriate components (scintillator, coupling optics, optical fiber, and opto-electronics) to maximize the signal reaching the detectors and thereby minimizing the integration time required to obtain a reliable measure of radiation. Phase 2 (the current Phase) encompassed the fabrication and testing of the prototype LPRMS probe at a contaminated DOE site, the Fernald Environmental Management Project, in southwestern Ohio. Uranium isotopes are the primary contaminants of concern at this site. The single probe and opto-electronic device were used to made measurements in-situ at relatively shallow subsurface depths. The end objective of Phase 2 was the design of a full-scale prototype system which incorporates all the features expected to be necessary on a commercial system, including 50 meter depth of measurement, multiplexing of multiple probes, and remote transmission of data. This full-scale prototype will be fabricated and field tested for 12 months during Phase 3, and a commercial design will be developed based upon the data gathered and experience gained during the entire program.

  20. Assessing the Long-Term Hydrologic Impact of Land Use Change Using a GIS-NPS Model and the World Wide Web

    SciTech Connect

    Bhaduri, B.; Engel, B.; Harbor, J.; Jones, D.; Lim, K.J.

    1999-09-22

    Assessment of the long-term hydrologic impacts of land use change is important for optimizing management practices to control runoff and non-point source (NPS) pollution associated with watershed development. Land use change, dominated by an increase in urban/impervious areas, can have a significant impact on water resources. Non-point source (NPS) pollution is the leading cause of degraded water quality in the US and urban areas are an important source of NPS pollution. Despite widespread concern over the environmental impacts of land use changes such as urban sprawl, most planners, government agencies and consultants lack access to simple impact-assessment tools that can be used with readily available data. Before investing in sophisticated analyses and customized data collection, it is desirable to be able to run initial screening analyses using data that are already available. In response to this need, we developed a long-term hydrologic impact assessment technique (L-THIA) using the popular Curve Number (CN) method that makes use of basic land use, soils and long-term rainfall data. Initially developed as a spreadsheet application, the technique allows a user to compare the hydrologic impacts of past, present and any future land use change. Consequently, a NPS pollution module was incorporated to develop the L-THWNPS model. Long-term daily rainfall records are used in combination with soils and land use information to calculate average annual runoff and NPS pollution at a watershed scale. Because of the geospatial nature of land use and soils data, and the increasingly widespread use of GE by planners, government agencies and consultants, the model is linked to a Geographic Information System (GIS) that allows convenient generation and management of model input and output data, and provides advanced visualization of the model results. Manipulation of the land use layer, or provision of multiple land use layers (for different scenarios), allows for rapid and

  1. Summary of preliminary step-trend analysis from the Interagency Whitebark Pine Long-termMonitoring Program—2004-2013

    USGS Publications Warehouse

    Legg, Kristin; Shanahan, Erin; Daley, Rob; Irvine, Kathryn M.

    2014-01-01

    In mixed and dominant stands, whitebark pine (Pinus albicaulis) occurs in over two million acres within the six national forests and two national parks that comprise the Greater Yellowstone Ecosystem (GYE). Currently, whitebark pine, an ecologically important species, is impacted by multiple ecological disturbances; white pine blister rust (Cronartium ribicola), mountain pine beetle (Dendroctonus ponderosae), wildfire, and climate change all pose significant threats to the persistence of whitebark pine populations. Substantial declines in whitebark pine populations have been documented throughout its range.Under the auspices of the Greater Yellowstone Coordinating Committee (GYCC), several agencies began a collaborative, long-term monitoring program to track and document the status of whitebark pine across the GYE. This alliance resulted in the formation of the Greater Yellowstone Whitebark Pine Monitoring Working Group (GYWPMWG), which consists of representatives from the U.S. Forest Service (USFS), National Park Service (NPS), U.S. Geological Survey (USGS), and Montana State University (MSU). This groundbased monitoring program was initiated in 2004 and follows a peer-reviewed protocol (GYWPMWG 2011). The program is led by the Greater Yellowstone Inventory and Monitoring Network (GRYN) of the National Park Service in coordination with multiple agencies. More information about this monitoring effort is available at: http://science. nature.nps.gov/im/units/gryn/monitor/whitebark_pine.cfm. The purpose of this report is to provide a draft summary of the first step-trend analysis for the interagency, long-term monitoring of whitebark pine health to the Interagency Grizzly Bear Study Team (IGBST) as part of a synthesis of the state of whitebark pine in the GYE. Due to the various stages of the analyses and reporting, this is the most efficient way to provide these results to the IGBST.

  2. [The structure of intestinal dysbioses in children of preschool age during long-term period of monitoring].

    PubMed

    Nemchenko, U M; Rakova, E B; Popkova, S M; Savelkaeva, M V; Ivanova, E I; Kungurtseva, E A; Serduk, L V; Shabanova, N M

    2015-02-01

    The study was organized to examine long-term (1990-2011) structure of intestinal dysbioses in children of preschool age residing in Irkutsk. The significant decrease of expression of micro-ecological shifts (IV and III degrees) to the end of period of monitoring and almost total lacking of cases of eubiosis and statistically reliable (p ≤ 0.05) increasing of rate of dysbioses of I and II degrees were established. The given circumstance can be related to ongoing on the territory ecological pressure on organism of negative factors of environment including factors of anthropogenic character.

  3. Dacrystic seizures: demographic, semiologic, and etiologic insights from a multicenter study in long-term video-EEG monitoring units.

    PubMed

    Blumberg, Julie; Fernández, Iván Sánchez; Vendrame, Martina; Oehl, Bernhard; Tatum, William O; Schuele, Stephan; Alexopoulos, Andreas V; Poduri, Annapurna; Kellinghaus, Christoph; Schulze-Bonhage, Andreas; Loddenkemper, Tobias

    2012-10-01

    To provide an estimate of the frequency of dacrystic seizures in video-electroencephalography (EEG) long-term monitoring units of tertiary referral epilepsy centers and to describe the clinical presentation of dacrystic seizures in relationship to the underlying etiology. We screened clinical records and video-EEG reports for the diagnosis of dacrystic seizures of all patients admitted for video-EEG long-term monitoring at five epilepsy referral centers in the United States and Germany. Patients with a potential diagnosis of dacrystic seizures were identified, and their clinical charts and video-EEG recordings were reviewed. We included only patients with: (1) stereotyped lacrimation, sobbing, grimacing, yelling, or sad facial expression; (2) long-term video-EEG recordings (at least 12 h); and (3) at least one brain magnetic resonance imaging (MRI) study. Nine patients (four female) with dacrystic seizures were identified. Dacrystic seizures were identified in 0.06-0.53% of the patients admitted for long-term video-EEG monitoring depending on the specific center. Considering our study population as a whole, the frequency was 0.13%. The presence of dacrystic seizures without other accompanying clinical features was found in only one patient. Gelastic seizures accompanied dacrystic seizures in five cases, and a hypothalamic hamartoma was found in all of these five patients. The underlying etiology in the four patients with dacrystic seizures without gelastic seizures was left mesial temporal sclerosis (three patients) and a frontal glioblastoma (one patient). All patients had a difficult-to-control epilepsy as demonstrated by the following: (1) at least three different antiepileptic drugs were tried in each patient, (2) epilepsy was well controlled with antiepileptic drugs in only two patients, (3) six patients were considered for epilepsy surgery and three of them underwent a surgical/radiosurgical or radioablative procedure. Regarding outcome, antiepileptic drugs

  4. Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems

    SciTech Connect

    Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.

    2013-01-25

    With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 Degree-Sign C accuracy, tested at temperatures of up to 400 Degree-Sign C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.

  5. Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems

    NASA Astrophysics Data System (ADS)

    Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.

    2013-01-01

    With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 °C accuracy, tested at temperatures of up to 400 °C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.

  6. Long-term monitoring reveals carbon–nitrogen metabolism key to microcystin production in eutrophic lakes

    PubMed Central

    Beversdorf, Lucas J.; Miller, Todd R.; McMahon, Katherine D.

    2015-01-01

    The environmental drivers contributing to cyanobacterial dominance in aquatic systems have been extensively studied. However, understanding of toxic vs. non-toxic cyanobacterial population dynamics and the mechanisms regulating cyanotoxin production remain elusive, both physiologically and ecologically. One reason is the disconnect between laboratory and field-based studies. Here, we combined 3 years of temporal data, including microcystin (MC) concentrations, 16 years of long-term ecological research, and 10 years of molecular data to investigate the potential factors leading to the selection of toxic Microcystis and MC production. Our analysis revealed that nitrogen (N) speciation and inorganic carbon (C) availability might be important drivers of Microcystis population dynamics and that an imbalance in cellular C: N ratios may trigger MC production. More specifically, precipitous declines in ammonium concentrations lead to a transitional period of N stress, even in the presence of high nitrate concentrations, that we call the “toxic phase.” Following the toxic phase, temperature and cyanobacterial abundance remained elevated but MC concentrations drastically declined. Increases in ammonium due to lake turnover may have led to down regulation of MC synthesis or a shift in the community from toxic to non-toxic species. While total phosphorus (P) to total N ratios were relatively low over the time-series, MC concentrations were highest when total N to total P ratios were also highest. Similarly, high C: N ratios were also strongly correlated to the toxic phase. We propose a metabolic model that corroborates molecular studies and reflects our ecological observations that C and N metabolism may regulate MC production physiologically and ecologically. In particular, we hypothesize that an imbalance between 2-oxoglutarate and ammonium in the cell regulates MC synthesis in the environment. PMID:26029192

  7. Meeting Report: Long Term Monitoring of Global Vegetation using Moderate Resolution Satellites

    NASA Technical Reports Server (NTRS)

    Morisette, Jeffrey; Heinsch, Fath Ann; Running, Steven W.

    2006-01-01

    The international community has long recognized the need to coordinate observations of Earth from space. In 1984, this situation provided the impetus for creating the Committee on Earth Observation Satellites (CEOS), an international coordinating mechanism charged with coordinating international civil spaceborne missions designed to observe and study planet Earth. Within CEOS, its Working Group on Calibration and Validation (WGCV) is tasked with coordinating satellite-based global observations of vegetation. Currently, several international organizations are focusing on the requirements for Earth observation from space to address key science questions and societal benefits related to our terrestrial environment. The Global Vegetation Workshop, sponsored by the WGCV and held in Missoula, Montana, 7-10 August, 2006, was organized to establish a framework to understand the inter-relationships among multiple, global vegetation products and identify opportunities for: 1) Increasing knowledge through combined products, 2) Realizing efficiency by avoiding redundancy, and 3) Developing near- and long-term plans to avoid gaps in our understanding of critical global vegetation information. The Global Vegetation Workshop brought together 135 researchers from 25 states and 14 countries to advance these themes and formulate recommendations for CEOS members and the Global Earth Observation System of Systems (GEOSS). The eighteen oral presentations and most of the 74 posters presented at the meeting can be downloaded from the meeting website (www.ntsg.umt.edu/VEGMTG/). Meeting attendees were given a copy of the July 2006 IEEE Transactions on Geoscience and Remote Sensing Special Issue on Global Land Product Validation, coordinated by the CEOS Working Group on Calibration and Validation (WGCV). This issue contains 29 articles focusing on validation products from several of the sensors discussed during the workshop.

  8. Long-term monitoring of methane release and associated oceanographc setting offshore Svalbard

    NASA Astrophysics Data System (ADS)

    Dølven, Knut Ola; Ferre, Benedicte; Frank, Carsten; Mienert, Jürgen

    2017-04-01

    Large amounts of methane are stored in the Arctic Ocean sediments, both as free gas and in form of methane hydrates. Warming of Arctic Ocean bottom water can destabilize methane hydrates and cause extensive methane release to the ocean, influencing marine environments (Åström et al., 2016). Previous oceanographic studies have shown a significant methane release from seep-sites offshore western Svalbard, mainly based on hydrographic snapshots and/or echosounder data. These studies have shown that the methane release has significant temporal variations, and these variations can only be investigated properly with ocean observatories. Two K-Lander ocean observatories, developed in collaboration between CAGE and Kontgberg Maritime were deployed at two of these seep sites at 90 and 240 meter depth, from July 2015 to May 2016. Time series obtained from these two observatories include ocean current profiles, temperature, salinity, pressure, as well as dissolved methane and CO2 concentration. The oceanographic data show a clear seasonal variation and indicates that the water column can be significantly affected by atmospheric forcing during winter season. At the same time, methane concentration shows significant temporal variations on both relatively short (hours) and long (seasonal) time scales, with values ranging from 90 to 800 nmol/kg. The short term variations indicates a non-mixed benthic boundary layer with respect to dissolved methane, while the long term variations may indicate seasonal changes in the vertical transport of methane in the water column. Acknowledgements This project is funded by CAGE (Centre for Arctic Gas Hydrate, Environment and Climate), Norwegian Research Council grant no. 223259. Reference Åström, E. Carrol, M. L., Ambrose, W., Carrol, J. "Arctic cold seeps in marine methane hydrate environments: impacts on shelf macrobenthic community structure offshore Svalbard". Marine Ecology Progress Series, 2016 (1616-1599) 552 p. 1-18.

  9. An integrated assessment of long-term changes in the hydrology of three lowland rivers in eastern England.

    PubMed

    Hiscock, K M; Lister, D H; Boar, R R; Green, F M

    2001-03-01

    The flow records of the Rivers Bure, Nar and Wensum in eastern England have been examined with the aim of identifying long-term changes in flow behaviour relating to variations in rainfall amount, land use, land drainage intensity and water resources use. In the study area, and since 1931, there is no evidence of long-term change in rainfall amount or distribution, on either an annual or seasonal basis. Despite changes in water resources use and catchment characteristics since the beginning of the century, such as the ending of water milling and increased land drainage and arable farming, rainfall-runoff modelling over the period 1964-1992 showed that the relationship between rainfall and runoff has remained essentially unchanged in the three study rivers. A catchment resource model used to 'naturalise' the historic flow records for the period 1971-1992 to account for the net effect of water supply abstractions and discharges revealed that mean river flows have been altered by surface water and groundwater abstractions, although the average losses to mean weekly flows due to net abstractions for all water uses was no greater than 3%. Greater losses occurred during drought periods as a result of increased consumptive use of water for spray irrigation and amounted to a maximum loss of 24% in the Nar catchment. In lowland areas such as eastern England that are prone to summer dry weather and periodic drought conditions, an integrated approach to river basin management, as advocated by the EU Framework Directive, is recommended for future management of surface and groundwater resources for public water supplies, river regulation purposes and industrial and agricultural demands.

  10. New concepts for a microprocessor oriented long term intelligent monitoring of newborns.

    PubMed

    Vasseur, C P; Couvreur, M C; Toulotte, J M; Dubois, O

    1980-07-01

    This paper is based on the utilization of the very elementary principle of linear regression used in a recursive way. This technique tested on electrophysiological signals readily leads to the conception of a monitoring system built on a biprocessor unit. In a clinical context, the use of microprocessors leads then to the design of very compact devices including the capability of distributed processing which embrances the concept of intelligent monitoring. Finally, a proposal is given for the realization of a complete monitoring control desk (MCD) devoted to the survey of eight patients.

  11. Long-term changes in the benthic communities of the Sea of Azov related to the sedimentation and hydrological regime

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Shokhin, I. V.; Nabozhenko, M. V.; Pol'Shin, V. V.

    2008-06-01

    The following periods reflected in the composition and distribution of benthic communities are distinguished in the development of the Sea of Azov during the last 80 years: (1) prior to the regulation of the Don River discharge, (2) after its regulation, (3) stabilization of the Don River hydrological regime, and (4) desalination of the sea. The distribution of benthic communities in the Sea of Azov is characterized by concentric patterns, which are distorted due to the changes in the hydrological and oxygen regimes after oxygen depletion. The basic factors that influence the distribution of macrozoobenthic communities are the aeration regime of the sea and the character of the sediment accumulation. The steady distribution of benthic communities composed largely of euryhaline species adapted to the conditions of an unstable salinity in the Sea of Azov shows no correlation with the salinity fluctuations from 9 to 14‰ during the 80-year-long period.

  12. Long-term and real-time monitoring of chondrocyte behavior synthesizing extracellular matrix with biologically coupled field effect transistor

    NASA Astrophysics Data System (ADS)

    Satake, Hiroto; Saito, Akiko; Mizuno, Shuichi; Kajisa, Taira; Sakata, Toshiya

    2017-04-01

    In this study, we report the differential measurement method of accurately monitoring cellular metabolism with a semiconductor-based field effect transistor (FET), focusing on the proliferation potency of chondrocytes utilized in the field of orthopedics. By adding growth factors to chondrocytes on the gate, cellular activity was induced and continuously monitored as a change in pH during a cellular respiration for ten days using the FET biosensor. Moreover, the electrical signal of the FET device reflected the reproduction property of chondrocytes to synthesize extracellular matrix (ECM). A platform based on the FET device is suitable as a noninvasive, real-time and long-term monitoring system for cellular functions; it will contribute to the elucidation of the mechanism of ECM synthesis by chondrocytes.

  13. Long term variability of the annual hydrological regime and sensitivity to temperature phase shifts in Saxony/Germany

    NASA Astrophysics Data System (ADS)

    Renner, M.; Bernhofer, C.

    2011-01-01

    The timing of the seasons strongly effects ecosystems and human activities. Recently, there is increasing evidence of changes in the timing of the seasons, such as earlier spring seasons detected in phenological records, advanced seasonal timing of surface temperature, earlier snow melt or streamflow timing. For water resources management there is a need to quantitatively describe the variability in the timing of hydrological regimes and to understand how climatic changes control the seasonal water budget of river basins on the regional scale. In this study, changes of the annual cycle of hydrological variables are analysed for 27 river basins in Saxony/Germany. Thereby monthly series of basin runoff ratios, the ratio of runoff and basin precipitation are investigated for changes and variability of their annual periodicity over the period 1930-2009. Approximating the annual cycle by the means of harmonic functions gave acceptable results, while only two parameters, phase and amplitude, are required. It has been found that the annual phase of runoff ratio, representing the timing of the hydrological regime, is subject to considerable year-to-year variability, being concurrent with basins in similar hydro-climatic conditions. Two distinct basin classes have been identified, whereby basin elevation has been found to be the delimiting factor. An increasing importance of snow on the basin water balance with elevation is apparent and mainly governs the temporal variability of the annual timing of hydrological regimes. Further there is evidence of coincident changes in trend direction (change points in 1971 and 1988) in snow melt influenced basins. In these basins the timing of the runoff ratio is significantly correlated with the timing of temperature, and effects on runoff by temperature phase changes are even amplified. Interestingly, temperature effects may explain the low frequent variability of the second change point until today. However, the first change point can

  14. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Tsuboi, Seiji; Horikawa, Hiroki; Takaesu, Morifumi; Sueki, Kentaro; Araki, Eiichiro; Sonoda, Akira; Takahashi, Narumi

    2016-04-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP). We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough. We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site. Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor informations. In addition, before data download, user can check that data is abailable or not by data check function. In this presentation, we show our web application system and discuss our future plans for

  15. A Framework for Long-term Ecological Monitoring in Olympic National Park: Prototype for the Coniferous Forest Biome

    USGS Publications Warehouse

    Jenkins, Kurt; Woodward, Andrea; Schreiner, Ed

    2003-01-01

    This report is the result of a five-year collaboration between scientists of the U.S. Geological Survey Forest and Rangeland Ecosystem Science Center, Olympic Field Station, and the natural resources staff of Olympic National Park to develop a comprehensive strategy for monitoring natural resources of Olympic National Park. Olympic National Park is the National Park Serviceʼs prototype monitoring park, representing parks in the coniferous forest biome. Under the umbrella of the National Park Serviceʼs prototype parks program, U.S. Geological Survey and Olympic National Park staffs are obligated to:develop strategies and designs for monitoring the long-term health and integrity of national park ecosystems with a significant coniferous forest component.design exportable monitoring protocols that can be used by other parks within the coniferous forest biome (i.e., parks having similar environments), andcreate a demonstration area and ʻcenter of excellenceʼ for assisting other parks in developing ecological monitoring programs.Olympic National Park is part of the North Coast and Cascades Network, a network of seven Pacific Northwestern park units created recently by the National Park Serviceʼs Inventory and Monitoring Program to extend the monitoring of ʻvital signsʼ of park health to all National Park Service units. It is our intent and hope that the monitoring strategies and conceptual models described here will meet the overall purpose of the prototype parks monitoring program in proving useful not only to Olympic National Park, but also to parks within the North Coast and Cascades Network and elsewhere. Part I contains the conceptual design and sampling framework for the prototype long-term monitoring program in Olympic National Park. In this section, we explore key elements of monitoring design that help to ensure the spatial, ecological, and temporal integration of monitoring program elements and discuss approaches used to design an ecosystem

  16. Long-term blood pressure changes induced by the 2009 L'Aquila earthquake: assessment by 24 h ambulatory monitoring.

    PubMed

    Giorgini, Paolo; Striuli, Rinaldo; Petrarca, Marco; Petrazzi, Luisa; Pasqualetti, Paolo; Properzi, Giuliana; Desideri, Giovambattista; Omboni, Stefano; Parati, Gianfranco; Ferri, Claudio

    2013-09-01

    An increased rate of cardiovascular and cerebrovascular events has been described during and immediately after earthquakes. In this regard, few data are available on long-term blood pressure control in hypertensive outpatients after an earthquake. We evaluated the long-term effects of the April 2009 L'Aquila earthquake on blood pressure levels, as detected by 24 h ambulatory blood pressure monitoring. Before/after (mean±s.d. 6.9±4.5/14.2±5.1 months, respectively) the earthquake, the available 24 h ambulatory blood pressure monitoring data for the same patients were extracted from our database. Quake-related daily life discomforts were evaluated through interviews. We enrolled 47 patients (25 female, age 52±14 years), divided into three groups according to antihypertensive therapy changes after versus before the earthquake: unchanged therapy (n=24), increased therapy (n=17) and reduced therapy (n=6). Compared with before the quake, in the unchanged therapy group marked increases in 24 h (P=0.004), daytime (P=0.01) and nighttime (P=0.02) systolic blood pressure were observed after the quake. Corresponding changes in 24 h (P=0.005), daytime (P=0.01) and nighttime (P=0.009) diastolic blood pressure were observed. Daily life discomforts were reported more frequently in the unchanged therapy and increased therapy groups than the reduced therapy group (P=0.025 and P=0.018, respectively). In conclusion, this study shows that patients with unchanged therapy display marked blood pressure increments up to more than 1 year after an earthquake, as well as long-term quake-related discomfort. Our data suggest that particular attention to blood pressure levels and adequate therapy modifications should be considered after an earthquake, not only early after the event but also months later.

  17. Long-term monitoring of nitrate transport to drainage from three agricultural clayey till fields

    NASA Astrophysics Data System (ADS)

    Ernstsen, V.; Olsen, P.; Rosenbom, A. E.

    2015-08-01

    The application of nitrogen (N) fertilisers to crops grown on tile-drained fields is required to sustain most modern crop production, but it poses a risk to the aquatic environment since tile drains facilitate rapid transport pathways with no significant reduction in nitrate. To maintain the water quality of the aquatic environment and the provision of food from highly efficient agriculture in line with the EU's Water Framework Directive and Nitrates Directive, field-scale knowledge is essential for introducing water management actions on-field or off-field and producing an optimal differentiated N-regulation in future. This study strives to provide such knowledge by evaluating on 11 years of nitrate-N concentration measurements in drainage from three subsurface-drained clayey till fields (1.3-2.3 ha) representing approximately 71 % of the surface sediments in Denmark dominated by clay. The fields differ in their inherent hydrogeological field settings (e.g. soil-type, geology, climate, drainage and groundwater table) and the agricultural management of the fields (e.g. crop type, type of N fertilisers and agricultural practices). The evaluation revealed three types of clayey till fields characterised by: (i) low net precipitation, high concentration of nitrate-N, and short-term low intensity drainage at air temperatures often below 5 °C; (ii) medium net precipitation, medium concentration of nitrate-N, and short-term medium-intensity drainage at air temperatures often above 5 °C; and (iii) high net precipitation, low concentration of nitrate-N and long-term high intensity drainage at air temperatures above 5 °C. For each type, on-field water management actions, such as the selection of crop types and introduction of catch crops, appeared relevant, whereas off-field actions only seemed relevant for the latter two field types given the temperature-dependent reduction potential of nitrate off-field. This initial well-documented field-scale knowledge from fields

  18. Long term real-time monitoring of large alpine rockslides by GB-InSAR: mechanisms, triggers, scenario assessment and Early Warning

    NASA Astrophysics Data System (ADS)

    Crosta, G. B.; Agliardi, F.; Sosio, R.; Rivolta, C.; Leva, D.; Dei Cas, L.

    2012-04-01

    Large rockslides in alpine valleys can undergo catastrophic evolution, posing extraordinary risks to settlements, lives and critical infrastructures. These phenomena are controlled by a complex interplay of lithological, structural, hydrological and meteo-climatic factors, which eventually result in: complex triggering mechanisms and kinematics, highly variable activity, regressive to progressive trends with superimposed acceleration and deceleration periods related to rainfall and snowmelt. Managing large rockslide risk remains challenging, due the high uncertainty related to their geological model and dynamics. In this context, the most promising approach to constrain rockslide kinematics, establish correlations with triggering factors, and predict future displacements, velocity and acceleration, and eventually possible final collapse is based on the analysis and modelling of long-term series of monitoring data. More than traditional monitoring activities, remote sensing represents an important tool aimed at describing local rockslide displacements and kinematics, at distinguishing rates of activity, and providing real time data suitable for early warning. We analyze a long term monitoring dataset collected for a deep-seated rockslide (Ruinon, Lombardy, Italy), actively monitored since 1997 through an in situ monitoring network (topographic and GPS, wire extensometers and distometer baselines) and since 2006 by a ground based radar (GB-InSAR). Monitoring allowed to set-up and update the geological model, identify rockslide extent and geometry, analyze its sensitivity to seasonal changes and their impact on the reliability and EW potential of monitoring data. GB-InSAR data allowed to identify sub-areas with different behaviors associated to outcropping bedrock and thick debris cover, and to set-up a "virtual monitoring network" by a posteriori selection of critical locations. Resulting displacement time series provide a large amount of information even in debris

  19. Twenty years of long-term Atrazine monitoring in a shallow aquifer in Western Germany (Invited)

    NASA Astrophysics Data System (ADS)

    Vereecken, H.; Vonberg, D.; Putz, T.; Vanderborght, J.

    2013-12-01

    Atrazine, one of the most frequent applied pesticides worldwide, was banned in Germany in 1991 due to exceeded threshold values in ground- and drinking waters. Monitoring of atrazine was hence introduced in the Zwischenscholle aquifer, exposed to intensive agricultural land use and susceptible to contaminants due to a shallow water table. In total 60 observation wells were monitored since 1991, of which 11 are sampled monthly today. Descriptive statistics of monitoring data were derived using the 'regression on order statistics' (ROS) data censoring approach, estimating values for nondetects. The monitoring data shows that even 20 years after the ban of atrazine, the concentrations in groundwater are on a constant level without any considerable decrease. The spatial distribution of atrazine concentrations is highly heterogeneous with observation wells exhibiting constantly concentrations above the threshold on the one hand and observation wells where concentrations are frequently below the limit of quantification (LOQ) on the other hand. A deethylatrazine-to-atrazine ratio (DAR) was used to distinguish between diffuse - and point-source contamination, with a global mean value of 0.84 indicating mainly diffuse contamination. Principle Component Analysis (PCA) was applied to the monitoring dataset and relationships of triazine compounds became obvious. Accordingly the metabolite desisopropylatrazine was exclusively associated with the occurrence of the parent compound simazine and not atrazine, whereas deethylatrazine was clearly related to atrazine.

  20. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of

  1. 20 years of long-term atrazine monitoring in a shallow aquifer in western Germany.

    PubMed

    Vonberg, David; Vanderborght, Jan; Cremer, Nils; Pütz, Thomas; Herbst, Michael; Vereecken, Harry

    2014-03-01

    Atrazine was banned in Germany in 1991 due to findings of atrazine concentrations in ground- and drinking waters exceeding threshold values. Monitoring of atrazine concentrations in the groundwater since then provides information about the resilience of the groundwater quality to changing agricultural practices. In this study, we present results of a monitoring campaign of atrazine concentrations in the Zwischenscholle aquifer. This phreatic aquifer is exposed to intensive agricultural land use and susceptible to contaminants due to a shallow water table. In total 60 observation wells (OWs) have been monitored since 1991, of which 15 are sampled monthly today. Descriptive statistics of monitoring data were derived using the "regression on order statistics" (ROS) data censoring approach, estimating values for nondetects. The monitoring data shows that even 20 years after the ban of atrazine, the groundwater concentrations of sampled OWs remain on a level close to the threshold value of 0.1 μg l(-1) without any considerable decrease. The spatial distribution of atrazine concentrations is highly heterogeneous with OWs exhibiting permanently concentrations above the regulatory threshold on the one hand and OWs were concentrations are mostly below the limit of quantification (LOQ) on the other hand. A deethylatrazine-to-atrazine ratio (DAR) was used to distinguish between diffuse - and point-source contamination, with a global mean value of 0.84 indicating mainly diffuse contamination. Principle Component Analysis (PCA) of the monitoring dataset demonstrated relationships between the metabolite desisopropylatrazine, which was found to be exclusively associated with the parent compound simazine but not with atrazine, and between deethylatrazine, atrazine, nitrate, and the specific electrical conductivity. These parameters indicate agricultural impacts on groundwater quality. The findings presented in this study point at the difficulty to estimate mean concentrations

  2. Spatio-temporal validation of long-term 3D hydrological simulations of a forested catchment using empirical orthogonal functions and wavelet coherence analysis

    NASA Astrophysics Data System (ADS)

    Fang, Zhufeng; Bogena, Heye; Kollet, Stefan; Koch, Julian; Vereecken, Harry

    2015-10-01

    Soil moisture plays a key role in the water and energy balance in soil, vegetation and atmosphere systems. According to Wood et al. (2011) there is a grand need to increase global-scale hyper-resolution water-energy-biogeochemistry land surface modelling capabilities. These modelling capabilities should also recognize epistemic uncertainties, as well as the nonlinearity and hysteresis in its dynamics. Unfortunately, it is not clear how to parameterize hydrological processes as a function of scale, and how to test deterministic models with regard to epistemic uncertainties. In this study, high resolution long-term simulations were conducted in the highly instrumented TERENO hydrological observatory of the Wüstebach catchment. Soil hydraulic parameters were derived using inverse modelling with the Hydrus-1D model using the global optimization scheme SCE-UA and soil moisture data from a wireless soil moisture sensor network. The estimated parameters were then used for 3D simulations of water transport using the integrated parallel simulation platform ParFlow-CLM. The simulated soil moisture dynamics, as well as evapotranspiration (ET) and runoff, were compared with long-term field observations to illustrate how well the model was able to reproduce the water budget dynamics. We investigated different anisotropies of hydraulic conductivity to analyze how fast lateral flow processes above the underlying bedrock affect the simulation results. For a detail investigation of the model results we applied the empirical orthogonal function (EOF) and wavelet coherence methods. The EOF analysis of temporal-spatial patterns of simulated and observed soil moisture revealed that introduction of heterogeneity in the soil porosity effectively improves estimates of soil moisture patterns. Our wavelet coherence analysis indicates that wet and dry seasons have significant effect on temporal correlation between observed and simulated soil moisture and ET. Our study demonstrates the

  3. Assessment of the usefulness of semipermeable membrane devices for long-term watershed monitoring in an urban slough system

    USGS Publications Warehouse

    McCarthy, K.

    2006-01-01

    Semipermeable membrane devices (SPMDs) were deployed at eight sites within the Buffalo Slough, near Portland, Oregon, to (1) measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbon (PAH) and organochlorine (OC) compounds in the slough, (2) assess the usefulness of SPMDs as a tool for investigating and monitoring hydrophobic compounds throughout the Columbia Slough system, and (3) evaluate the utility of SPMDs as a tool for measuring the long-term effects of watershed improvement activities. Data from the SPMDs revealed clear spatial and seasonal differences in water quality within the slough and indicate that for hydrophobic compounds, this time-integrated passive-sampling technique is a useful tool for long-term watershed monitoring. In addition, the data suggest that a spiking rate of 2-5 ??g/SPMD of permeability/performance reference compounds, including at least one compound that is not susceptible to photodegradation, may be optimum for the conditions encountered here. ?? Springer Science + Business Media, Inc. 2006.

  4. Sensitive and long-term monitoring of intracellular microRNAs using a non-integrating cytoplasmic RNA vector.

    PubMed

    Sano, Masayuki; Ohtaka, Manami; Iijima, Minoru; Nakasu, Asako; Kato, Yoshio; Nakanishi, Mahito

    2017-10-04

    MicroRNAs (miRNAs) are small noncoding RNAs that modulate gene expression at the post-transcriptional level. Different types of cells express unique sets of miRNAs that can be exploited as potential molecular markers to identify specific cell types. Among the variety of miRNA detection methods, a fluorescence-based imaging system that utilises a fluorescent-reporter gene regulated by a target miRNA offers a major advantage for long-term tracking of the miRNA in living cells. In this study, we developed a novel fluorescence-based miRNA-monitoring system using a non-integrating cytoplasmic RNA vector based on a replication-defective and persistent Sendai virus (SeVdp). Because SeVdp vectors robustly and stably express transgenes, this system enabled sensitive monitoring of miRNAs by fluorescence microscopy. By applying this system for cellular reprogramming, we found that miR-124, but not miR-9, was significantly upregulated during direct neuronal conversion. Additionally, we were able to isolate integration-free human induced pluripotent stem cells by long-term tracking of let-7 expression. Notably, this system was easily expandable to allow detection of multiple miRNAs separately and simultaneously. Our findings provide insight into a powerful tool for evaluating miRNA expression during the cellular reprogramming process and for isolating reprogrammed cells potentially useful for medical applications.

  5. Assessment and significance of phytoplankton species composition within Chesapeake Bay and Virginia tributaries through a long-term monitoring program.

    PubMed

    Marshall, Harold G; Lane, Michael F; Nesius, Kneeland K; Burchardt, Lubomira

    2009-03-01

    Phytoplankton and water quality long term trends are presented from a 20-year monitoring program of Chesapeake Bay and several of its major tributaries. Increasing phytoplankton biomass and abundance are ongoing within this estuarine complex, with diatoms the dominant component, along with chlorophytes and cyanobacteria as sub-dominant contributors in the tidal freshwater and oligohaline regions. Diatoms, dinoflagellates, and cryptomonads are among the major flora downstream in the tributaries and within the Chesapeake Bay. Water quality conditions within the three tributaries have remained rather stable over this time period; while there are long term trends of reduced nutrients, increasing bottom oxygen, and decreasing water clarity for the lower Chesapeake Bay. Of note is an increasing trend of cyanobacteria biomass at 12 of the 13 stations monitored at tributary and Chesapeake Bay stations, plus the presence of 37 potentially harmful taxa reported for these waters. However, the overall status of the phytoplankton populations is presently favorable, in that it is mainly represented and dominated by taxa suitable as a major food and oxygen source within this ecosystem. Although potentially harmful taxa are present, they have not at this time exerted profound impact to the region, or replaced the diatom populations in overall dominance.

  6. Long-Term Dynamic Monitoring of the Historical Masonry FAÇADE: the Case of Palazzo Ducale in Venice, Italy

    NASA Astrophysics Data System (ADS)

    Noh, J.; Russo, S.

    2017-08-01

    Long-term dynamic monitoring of the masonry façade of Palazzo Ducale known as Doge's palace in Venice, Italy was performed from September 2010 to October 2012. This article demonstrates the results of preliminary analysis on the data set of the first 12-month long monitoring campaign for out-of-plumb dynamic responses of the medieval façade of the monument. The aim of the analysis of the dynamic signals is to validate the data set and investigate dynamic characteristics of the vibration signature of the historical masonry wall in the long-term. Palazzo Ducale is a heavily visited heritage due to its high cultural importance and architectural value. Nevertheless, little is known about the dynamic behaviour of the double-leaf masonry façade. In this study, the dynamic properties of the structure are presented by dynamic identification carried out with the effect of the ambient vibration measured at four different locations on the façade and portico level. The trend and intensity of the vibration at each measurement locations are identified over the year. In addition, the issue on eliminating the noise blended in the signals for reliable analysis are also discussed.

  7. Floating reference position-based correction method for near-infrared spectroscopy in long-term glucose concentration monitoring

    NASA Astrophysics Data System (ADS)

    Han, Guang; Han, Tongshuai; Xu, Kexin; Liu, Jin

    2017-07-01

    We present a floating reference position (FRP)-based drift correction method for near-infrared (NIR) spectroscopy-based long-term blood glucose concentration (BGC) monitoring. Previously, we reported that it is difficult to quantify the systematic drift caused by the fluctuation of incident light intensity at different source-detector (SD) separations based on the absolute FRP change. We use the relative FRP change as a baseline reference to quantitatively characterize the signal drift at different SD separations. For the wavelengths that were used, a uniform equation was developed to describe the relationship between the drift and the relative FRP change. With the help of this equation, the correction can easily be performed by subtracting the systematic drift estimated by the equation. A theoretical analysis and an experimental phantom study demonstrated that our method could be used for systematic drift correction in NIR spectroscopy for long-term BGC monitoring. Moreover, the analysis method can also be referenced to reduce drifts from multiple sources.

  8. Impact of long-term flooding on the hydrology and carbon biogeochemistry of a northern bog in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Blodau, Christian; Welchering, Lieselotte; Kasparbauer, Klaus; Durejka, Stefan; Knorr, Klaus-Holger

    2014-05-01

    Climate change and impoundment construction may lead to rising water tables in many northern peatlands. In this study the hydrological and biogeochemical effects of flooding were analyzed at a peatland in southern Ontario, Canada, that was partly flooded 60 years ago. By a comparison of sites of increasing distance to the lake, the effects of inundation on the peatland biogeochemistry were identified. The approximate range of lake water intrusion into the peatland was determined using 18O in water. Furthermore the local hydrology was analyzed by quantifying distributions of hydraulic conductivity and small-scale groundwater flow patterns. By measuring nitrate, phosphate, ammonium, sulfate and DIC, CH4 and DOC in the lake and groundwater the chemical and biogeochemical influence of the inundation was determined. Gas fluxes of CO2 and CH4 at the site were quantified using a static chamber approach. The findings indicate that the infiltration of water from the lake at these sites occurred in time periods of higher lake levels. During summer these locations were only fed by precipitation and the previously infiltrated surface water was diluted or replaced. Nutrient concentrations in the lake water were generally lower compared to the peat pore water. The main solute entering the peatland with the intrusion was sulfate, which also influenced methane concentration patterns. Vertical flow seemed to be an important hydraulic process and control on solute transport at the study site, which has not been described to this extent previously. Additionally, indications for a discharge of groundwater into the peat during a flow reversal were found, though the assumed low permeability of underlying layers should not allow for this process. While the impact of reservoir creation on hydrologic processes appeared to be limited, the changes in water table, soil moisture and vegetation patterns had large impacts on trance gas fluxes to the atmosphere, especially on methane, whose

  9. Developments toward a low-cost approach for long-term, unattended vapor intrusion monitoring.

    PubMed

    Patel, Sanjay V; Tolley, William K

    2014-08-07

    There are over 450 000 sites contaminated by chemicals in the US. This large number of contaminated sites and the speed of subsurface migration of chemicals pose considerable risk to nearby residences and commercial buildings. The high costs for monitoring around these sites stem from the labor involved in placing and replacing the passive sorbent vapor samplers and the resultant laboratory analysis. This monitoring produces sparse data sets that do not track temporal changes well. To substantially reduce costs and better track exposures, less costly, unattended systems for monitoring soil gases and vapor intrusion into homes and businesses are desirable to aid in the remediation of contaminated sites. This paper describes progress toward the development of an inexpensive system specifically for monitoring vapor intrusion; the system can operate repeatedly without user intervention with low detection limits (1 × 10(-9), or 1 part-per-billion). Targeted analytes include chlorinated hydrocarbons (dichloroethylene, trichloroethane, trichloroethylene, and perchloroethylene) and benzene. The system consists of a trap-and-purge preconcentrator for vapor collection in conjunction with a compact gas chromatography instrument to separate individual compounds. Chemical detection is accomplished with an array of chemicapacitors and a metal-oxide semiconductor combustibles sensor. Both the preconcentrator and the chromatography column are resistively heated. All components are compatible with ambient air, which serves as the carrier gas for the gas chromatography and detectors.

  10. Connecting long-term monitoring data from vegetation plots and remote sensing in the Southwestern USA

    USDA-ARS?s Scientific Manuscript database

    Understanding vegetation response to changing climate patterns is an important element of rangeland management and supports the use and development of ecological site descriptions. Monitoring of rangeland conditions with remote sensing can be misleading if ground measurements are not used to interpr...

  11. Wireless system for long-term EEG monitoring of absence epilepsy

    NASA Astrophysics Data System (ADS)

    Whitchurch, Ashwin K.; Ashok, B. H.; Kumaar, R. V.; Saurkesi, K.; Varadan, Vijay K.

    2002-11-01

    Absence epilepsy is a form of epilepsy common mostly in children. The most common manifestations of Absence epilepsy are staring and transient loss of responsiveness. Also, subtle motor activities may occur. Due to the subtle nature of these symptoms, episodes of absence epilepsy may often go unrecognized for long periods of time or be mistakenly attributed to attention deficit disorder or daydreaming. Spells of absence epilepsy may last about 10 seconds and occur hundreds of times each day. Patients have no recollections of the events that occurred during those seizures and will resume normal activity without any postictal symptoms. The EEG during such episodes of Absence epilepsy shows intermittent activity of 3 Hz generalized spike and wave complexes. As EEG is the only way of detecting such symptoms, it is required to monitor the EEG of the patient for a long time and thus remain only in bed. So, effectively the EEG is being monitored only when the patient is stationary. The wireless monitoring sys tem described in this paper aims at eliminating this constraint and enables the physicial to monitor the EEG when the patient resumes his normal activities. This approach could even help the doctor identify possible triggers of absence epilepsy.

  12. Methods for Minimization and Management of Variability in Long Term Groundwater Monitoring Results

    DTIC Science & Technology

    2015-06-01

    Term Groundwater Monitoring Results June 2015 This report was prepared under contract to the Department of Defense Strategic Environmental Research...used in demonstration program.......................... 13  Figure 2. Use of SNAP sampler to collect groundwater samples...Julia M. Small ( groundwater sampling and data analysis); and Ben T. Medina ( groundwater sampling). This page left blank intentionally. ES-1

  13. Testing common stream sampling methods for broad-scale, long-term monitoring

    Treesearch

    Eric K. Archer; Brett B. Roper; Richard C. Henderson; Nick Bouwes; S. Chad Mellison; Jeffrey L. Kershner

    2004-01-01

    We evaluated sampling variability of stream habitat sampling methods used by the USDA Forest Service and the USDI Bureau of Land Management monitoring program for the upper Columbia River Basin. Three separate studies were conducted to describe the variability of individual measurement techniques, variability between crews, and temporal variation throughout the summer...

  14. Developments toward a Low-Cost Approach for Long-Term, Unattended Vapor Intrusion Monitoring

    PubMed Central

    Tolley, William K.

    2014-01-01

    There are over 450,000 sites contaminated by chemicals in the US. This large number of contaminated sites and the speed of subsurface migration of chemicals pose considerable risk to nearby residences and commercial buildings. The high costs for monitoring around these site stem from the labor involved in placing and replacing the passive sorbent vapor samplers and the resultant laboratory analysis. This monitoring produces sparse data sets that do not track temporal changes well. To substantially reduce costs and better track exposures, less costly, unattended systems for monitoring soil gases and vapor intrusion into homes and businesses are desirable to aid in the remediation of contaminated sites. This paper describes progress toward the development of an inexpensive system specifically for monitoring vapor intrusion; the system can operate repeatedly without user intervention with low detection limits (1 × 10−9, or 1 part-per-billion). Targeted analytes include chlorinated hydrocarbons (dichloroethylene, trichloroethane, trichloroethylene, and perchloroethylene) and benzene. The system consists of a trap-and-purge preconcentrator for vapor collection in conjunction with a compact gas chromatography instrument to separate individual compounds. Chemical detection is accomplished with an array of chemicapacitors and a metal-oxide semiconductor combustibles sensor. Both the preconcentrator and the chromatography column are resistively heated. All components are compatible with ambient air, which serves as the carrier gas for the gas chromatography and detectors. PMID:24903107

  15. AUTOMATED LONG-TERM REMOTE MONITORING OF SEDIMENT-WATER INTERFACIAL FLUX

    EPA Science Inventory

    Advective flux across the sediment-water interface is temporally and spatially heterogeneous in nature. For contaminated sediment sites, monitoring spatial as well as temporal variation of advective flux is of importance to proper risk management. This project was conducted to ...

  16. Long-term research and monitoring of conservation practice effects in Iowa watersheds

    USDA-ARS?s Scientific Manuscript database

    Impacts of conservation practices on water quality can be demonstrated at the plot and field scales in research or on-farm settings. Watershed-scale monitoring is often used to examine the cumulative effects of conservation practice implementation for that drainage area. The Upper Mississippi River ...

  17. Methods for Minimization and Management of Variability in Long-Term Groundwater Monitoring Results

    DTIC Science & Technology

    2015-12-01

    technologies that are increasing in popularity. 1.3 REGULATORY DRIVERS As part of the regulatory clean-up process , monitoring of site contaminants ...13 4.1.3 Contaminant Distribution and Selected Wells ............................................................... 13 4.2...14 iii 4.2.3 Contaminant Distribution and Selected Wells

  18. Using home telehealth to empower patients to monitor and manage long term conditions.

    PubMed

    Paget, Tony; Jones, Craig; Davies, Michelle; Evered, Caroline; Lewis, Clare

    This article describes a pilot telehealth project in Swansea where patients with heart failure and chronic obstructive pulmonary disease were provided with telehealth monitoring equipment. While early evaluation points to some potential economic benefits, supporting patient empowerment was a significant outcome.

  19. AUTOMATED LONG-TERM REMOTE MONITORING OF SEDIMENT-WATER INTERFACIAL FLUX

    EPA Science Inventory

    Advective flux across the sediment-water interface is temporally and spatially heterogeneous in nature. For contaminated sediment sites, monitoring spatial as well as temporal variation of advective flux is of importance to proper risk management. This project was conducted to ...

  20. Detecting state changes for ecosystem conservation with long-term monitoring of species composition.

    PubMed

    Mason, T J; Keith, D A; Letten, A D

    2017-03-01

    Effective conservation requires an understanding not only of contemporary vegetation distributions in the landscape, but also cognizance of vegetation transitions over time with the goal of maintaining persistence of all states within the landscape. Using a state and transition model framework, we investigated temporal transitions over 31 years in species composition among five upland swamp vegetation communities in southeastern Australia. We applied fuzzy clustering to document transitions across communities; evaluated the resilience and resistance of communities to change; and explored the relationship between ecosystem states and major environmental factors posited to structure the system. We also evaluated the predictive ability of an established vegetation dynamics model. We found that community composition remained stable or underwent reversible or directional transitions depending on the vegetation type. Wetter communities (Ti-tree thicket and Cyperoid heath) were more stable (i.e., resistant) while drier communities showed a greater propensity to transition (i.e., had lower resistance) under the observed disturbance regime (low variance fire intervals). The resilience of drier communities differed under this regime, with Banksia thicket showing reversible compositional change, while Restioid heath and Sedgeland showed directional change. In accord with an established conceptual model, we found that communities were distributed along a hydrological gradient. In addition, vegetation structure, along with light penetration to ground level, differentiated communities. However, internal dynamics of drier communities were complex: differences in fire regime (penultimate fire interval in 2014 and number of fires since 1965) were unable to predict differences in community membership among sites. Aspects of the fire regime are expected to be more important predictors if fire intervals vary more strongly among sites in the future. Fuzzy clustering of compositional

  1. Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality.

    PubMed

    Masson, Nicholas; Piedrahita, Ricardo; Hannigan, Michael

    2015-10-27

    Traditional air quality monitoring relies on point measurements from a small number of high-end devices. The recent growth in low-cost air sensing technology stands to revolutionize the way in which air quality data are collected and utilized. While several technologies have emerged in the field of low-cost monitoring, all suffer from similar challenges in data quality. One technology that shows particular promise is that of electrolytic (also known as amperometric) sensors. These sensors produce an electric current in response to target pollutants. This work addresses the development of practical models for understanding and quantifying the signal response of electrolytic sensors. Such models compensate for confounding effects on the sensor response, such as ambient temperature and humidity, and address other issues that affect the usability of low-cost sensors, such as sensor drift and inter-sensor variability.

  2. Embroidered Electrode with Silver/Titanium Coating for Long-Term ECG Monitoring

    PubMed Central

    Weder, Markus; Hegemann, Dirk; Amberg, Martin; Hess, Markus; Boesel, Luciano F.; Abächerli, Roger; Meyer, Veronika R.; Rossi, René M.

    2015-01-01

    For the long-time monitoring of electrocardiograms, electrodes must be skin-friendly and non-irritating, but in addition they must deliver leads without artifacts even if the skin is dry and the body is moving. Today's adhesive conducting gel electrodes are not suitable for such applications. We have developed an embroidered textile electrode from polyethylene terephthalate yarn which is plasma-coated with silver for electrical conductivity and with an ultra-thin titanium layer on top for passivation. Two of these electrodes are embedded into a breast belt. They are moisturized with a very low amount of water vapor from an integrated reservoir. The combination of silver, titanium and water vapor results in an excellent electrode chemistry. With this belt the long-time monitoring of electrocardiography (ECG) is possible at rest as well as when the patient is moving. PMID:25599424

  3. Long-Term Monitoring of Desert Land and Natural Resources and Application of Remote Sensing Technologies

    SciTech Connect

    Hamada, Yuki; Rollins, Katherine E.

    2016-11-01

    Monitoring environmental impacts over large, remote desert regions for long periods of time can be very costly. Remote sensing technologies present a promising monitoring tool because they entail the collection of spatially contiguous data, automated processing, and streamlined data analysis. This report provides a summary of remote sensing products and refinement of remote sensing data interpretation methodologies that were generated as part of the U.S. Department of the Interior Bureau of Land Management Solar Energy Program. In March 2015, a team of researchers from Argonne National Laboratory (Argonne) collected field data of vegetation and surface types from more than 5,000 survey points within the eastern part of the Riverside East Solar Energy Zone (SEZ). Using the field data, remote sensing products that were generated in 2014 using very high spatial resolution (VHSR; 15 cm) multispectral aerial images were validated in order to evaluate potential refinements to the previous methodologies to improve the information extraction accuracy.

  4. The long-term monitoring of the spectrophotometric IUE standard stars

    NASA Technical Reports Server (NTRS)

    Perez, M. R.; Oliversen, N.; Garhart, M.; Teays, T.

    1990-01-01

    For more than twelve years the International Ultraviolet Explorer (IUE) satellite has consistently monitored about 44 spectrophotometric standard stars. This monitoring program was set up mostly to fit some particular needs of the IUE mission, such as the study of the detector linearity, sensitivity, degradation, and scattered light profiles. The impressive body of data accumulated over the years of about 7000 images, is unique and particularly suited for stellar studies on the stars themselves. The most frequently observed early type stars used as baseline calibration standards are studied. Part of what has been learnt about the cameras from studies of these spectral images and which has indirectly affected most of the published studies is presented. Possible improvements in flux accuracy which will be incorporated in the IUE final archives are discussed.

  5. Long term application of bus monitoring system to short and medium span bridges and damage detection

    NASA Astrophysics Data System (ADS)

    Miyamoto, Ayaho; Lúcio, Válter J. G.; Emoto, Hisao; Tanaka, Hideaki

    2015-07-01

    In this study, as one solution to the problem for condition assessment of existing short and medium span reinforced/prestressed concrete bridges, a new monitoring method using a public bus as part of a public transit system (bus monitoring system) is proposed, along with safety indices, namely, characteristic deflection, which is relatively free from the influence of dynamic disturbances due to such factors as the roughness of the road surface, and a structural anomaly parameter. A basic study was conducted by using the results of technical verification experiments and numerical analysis simulation. This paper describes the details of not only how to assess the bridge condition by public bus vibration measured in operating on Ube City bus network as a specific example for verify the system but also what kind of consideration we need to apply the system to existing bridges in overseas country.

  6. Quantification Method for Electrolytic Sensors in Long-Term Monitoring of Ambient Air Quality

    PubMed Central

    Masson, Nicholas; Piedrahita, Ricardo; Hannigan, Michael

    2015-01-01

    Traditional air quality monitoring relies on point measurements from a small number of high-end devices. The recent growth in low-cost air sensing technology stands to revolutionize the way in which air quality data are collected and utilized. While several technologies have emerged in the field of low-cost monitoring, all suffer from similar challenges in data quality. One technology that shows particular promise is that of electrolytic (also known as amperometric) sensors. These sensors produce an electric current in response to target pollutants. This work addresses the development of practical models for understanding and quantifying the signal response of electrolytic sensors. Such models compensate for confounding effects on the sensor response, such as ambient temperature and humidity, and address other issues that affect the usability of low-cost sensors, such as sensor drift and inter-sensor variability. PMID:26516860

  7. Optical method for long-term and large-scale monitoring of spatial biofilm development.

    PubMed

    Milferstedt, K; Pons, M-N; Morgenroth, E

    2006-07-05

    A method was developed that allows biofilm monitoring on the square centimeter scale over extended periods of time. The method is based on image acquisition using a desktop scanner and subsequent image analysis. It was shown that results from grey level analysis are highly correlated with physical properties of the biofilm like average biomass and biofilm thickness. The scanner method was applied to monitor overall biofilm growth, detachment, and surface roughness during two 3 and 4 week long experiments. Two significantly different growth dynamics during the biofilm development could be identified, depending on the biofilm history. Surface roughness on transects in flow direction was always higher than on transects perpendicular to the flow, reflecting the anisotropic characteristics of biofilms growing in a flow field. (c) 2006 Wiley Periodicals, Inc.

  8. Results of a Long-Term Demonstration of an Optical Multi-Gas Monitor on ISS

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul; Pilgrim, Jeffrey S.

    2015-01-01

    Previously at SAMAP we reported on the development of tunable diode laser spectroscopy (TDLS) based instruments for measuring small gas molecules in real time. TDLS technology has matured rapidly over the last 5 years as a result of advances in low power diode lasers as well as better detection schemes. In collaboration with two small businesses Vista Photonics, Inc. and Nanoracks LLC, NASA developed a 4 gas TDLS based monitor for an experimental demonstration of the technology on the International Space Station (ISS). Vista invented and constructed the core TDLS sensor. Nanoracks designed and built the enclosure, and certified the integrated monitor as a payload. The device, which measures oxygen, carbon dioxide, ammonia and water vapor, is called the Multi-Gas Monitor (MGM). MGM measures the 4 gases every few seconds and records a 30 second moving average of the concentrations. The relatively small unit draws only 2.5W. MGM was calibrated at NASA-Johnson Space Center in July 2013 and launched to ISS on a Soyuz vehicle in November 2013. Installation and activation of MGM occurred in February 2014, and the unit has been operating nearly continuously ever since in the Japanese Experiment Module. Data is downlinked from ISS about once per week. Oxygen and carbon dioxide data is compared with that from the central Major Constituents Analyzer. Water vapor data is compared with dew point measurements made by sensors in the Columbus module. The ammonia channel was tested by the crew using a commercial ammonia inhalant. MGM is remarkably stable to date. Results of 18 months of operation are presented and future applications including combustion product monitoring are discussed.

  9. Long-Term Environmental Monitoring of an Operating Deep Geologic Nuclear Waste Repository

    SciTech Connect

    Conca, J.; Kirchner, Th.; Monk, J.; Sage, S.

    2008-07-01

    In the present energy dilemma in which we find ourselves, the magnitude of humanity's energy needs requires that we embrace a multitude of various energy sources and applications. Nuclear energy must be a major portion of the distribution. One often-cited strategic hurdle to the commercial production of nuclear energy is the apparent lack of an acceptable nuclear waste repository. This issue has been quietly addressed at the U. S. Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP; see http://www.wipp.energy.gov), the closest population center of significant size being Carlsbad, New Mexico. WIPP has been operating for about nine years, disposing of over 250,000 drum-equivalents of nuclear waste. From the standpoint of addressing operational and environmental risk, as well as public fear, WIPP has had extensive human health and environmental monitoring. The Carlsbad Environmental Monitoring and Research Center is in the Institute for Energy and the Environment, in the College of Engineering at New Mexico State University. Located in Carlsbad, NM, CEMRC has been the independent monitoring facility for the area around WIPP from 1993 to the present, i.e., from six years before disposal operations began to nine years of waste disposal operations (www.cemcr.org). Based on the radiological analyses of monitoring samples completed to date for area residents and site workers, and for selected aerosols, soils, sediments, drinking water and surface waters, there is no evidence of increases in radiological contaminants in the region of WIPP that could be attributed to releases from WIPP. Levels of radiological and non-radiological analytes measured since operations began in 1999 have been within the range of baseline levels measured previously, and are within the ranges measured by other entities at the State and local levels since well before disposal phase operations began in 1999. (authors)

  10. Synthesis of long-term nickel monitoring in San Francisco Bay.

    PubMed

    Yee, Don; Grieb, Thomas; Mills, William; Sedlak, Margaret

    2007-09-01

    The Regional Monitoring Program for Water Quality in the San Francisco Bay (RMP) has conducted annual monitoring of the San Francisco Estuary (estuary) since 1993. The RMP primarily monitors water, sediment, and bivalves, although short-term pilot and special studies on select topics are also conducted. The purpose of this article is to synthesize over 10 years of RMP nickel data and to illustrate how comprehensive monitoring data contribute to an understanding of contaminant fate. Nickel concentrations observed in water (43.7-233.7 nM) are largely a function of the geology of the watershed surrounding the estuary and inputs from wastewater treatment plants and urban runoff. The geologic formations supplying sediment to the estuary contain high concentrations of nickel (e.g., 1000-3300 microg/g). Much of the research to date on nickel speciation suggests that nickel complexes from wastewater treatment plants are not readily available for biological uptake [Bedsworth, W.W., Sedlak, D.L., 1999. Sources and environmental fate of strongly complexed nickel in estuarine waters: the role of ethylenediaminetetraacetate. Environ. Sci. Technol. 33, 926-931, Sedlak, D.L., Phinney, J.T., Bedsworth, W.W., 1997. Strongly complexed Cu and Ni in wastewater effluents and surface runoff. Environ. Sci. Technol. 31(10), 3010-3016, Donat, J.R., Lao, K.A., Bruland, K.W., 1994. Speciation of dissolved copper and nickel in South San Francisco Bay: a multi-method approach. Anal. Chim. Acta. 284, 547-571]. In addition, concentrations of nickel measured in biota by the RMP (0.905-113.0 microg/g dry weight in bivalve tissues) are well below recommended maximum tissue residue levels (220 microg/g wet weight, California state guidelines). Based on this information, regulators have reconsidered the water quality objectives developed for nickel.

  11. Long-term stability of a new EFPI stress monitoring sonde installed in a brown coal mine in Poland

    NASA Astrophysics Data System (ADS)

    Gloetzl, Rainer; Krywult, J.; Schneider-Gloetzl, J.; Dynowska, M.

    2006-03-01

    In the Polish brown coal mine Belchatow deformation and stress behaviour are investigated to learn in early stage any reaction of this surface coal mine pit. These values are critical in regard of landslide risks as also important for the most economic excavation geometry. As already reported in GTMM 2002 conference in Karlsruhe, a standard stress monitoring station has been installed and first results have been reported. An important task is to get confident values not in high-precision but in long-term stability. In cooperation with my Polish colleagues and the BAM (German Federal Institute for Material Testing), Berlin, a new EFPI Stress Monitoring Station has been installed in this coal mine and first experiences and results have been reported.

  12. Water quality in the inshore Great Barrier Reef lagoon: Implications for long-term monitoring and management.

    PubMed

    Schaffelke, Britta; Carleton, John; Skuza, Michele; Zagorskis, Irena; Furnas, Miles J

    2012-01-01

    Coastal and inshore areas of the Great B