Sample records for long-term memory tasks

  1. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    ERIC Educational Resources Information Center

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  2. Musical and Verbal Memory in Alzheimer's Disease: A Study of Long-Term and Short-Term Memory

    ERIC Educational Resources Information Center

    Menard, Marie-Claude; Belleville, Sylvie

    2009-01-01

    Musical memory was tested in Alzheimer patients and in healthy older adults using long-term and short-term memory tasks. Long-term memory (LTM) was tested with a recognition procedure using unfamiliar melodies. Short-term memory (STM) was evaluated with same/different judgment tasks on short series of notes. Musical memory was compared to verbal…

  3. Short-term memory, executive control, and children's route learning.

    PubMed

    Purser, Harry R M; Farran, Emily K; Courbois, Yannick; Lemahieu, Axelle; Mellier, Daniel; Sockeel, Pascal; Blades, Mark

    2012-10-01

    The aim of this study was to investigate route-learning ability in 67 children aged 5 to 11years and to relate route-learning performance to the components of Baddeley's model of working memory. Children carried out tasks that included measures of verbal and visuospatial short-term memory and executive control and also measures of verbal and visuospatial long-term memory; the route-learning task was conducted using a maze in a virtual environment. In contrast to previous research, correlations were found between both visuospatial and verbal memory tasks-the Corsi task, short-term pattern span, digit span, and visuospatial long-term memory-and route-learning performance. However, further analyses indicated that these relationships were mediated by executive control demands that were common to the tasks, with long-term memory explaining additional unique variance in route learning. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Long-Term Episodic Memory in Children with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Skowronek, Jeffrey S.; Leichtman, Michelle D.; Pillemer, David B.

    2008-01-01

    Twenty-nine grade-matched 4th-8th-grade males, 12 with attention-deficit/hyperactivity disorder (ADHD) (age M = 12.2 years, SD = 1.48), and 17 without (age M = 11.5, SD = 1.59), completed two working memory tasks (digit span and the Simon game) and three long-term episodic memory tasks (a personal event memory task, story memory task, and picture…

  5. Complex network structure influences processing in long-term and short-term memory.

    PubMed

    Vitevitch, Michael S; Chan, Kit Ying; Roodenrys, Steven

    2012-07-01

    Complex networks describe how entities in systems interact; the structure of such networks is argued to influence processing. One measure of network structure, clustering coefficient, C, measures the extent to which neighbors of a node are also neighbors of each other. Previous psycholinguistic experiments found that the C of phonological word-forms influenced retrieval from the mental lexicon (that portion of long-term memory dedicated to language) during the on-line recognition and production of spoken words. In the present study we examined how network structure influences other retrieval processes in long- and short-term memory. In a false-memory task-examining long-term memory-participants falsely recognized more words with low- than high-C. In a recognition memory task-examining veridical memories in long-term memory-participants correctly recognized more words with low- than high-C. However, participants in a serial recall task-examining redintegration in short-term memory-recalled lists comprised of high-C words more accurately than lists comprised of low-C words. These results demonstrate that network structure influences cognitive processes associated with several forms of memory including lexical, long-term, and short-term.

  6. Musicians have better memory than nonmusicians: A meta-analysis.

    PubMed

    Talamini, Francesca; Altoè, Gianmarco; Carretti, Barbara; Grassi, Massimo

    2017-01-01

    Several studies have found that musicians perform better than nonmusicians in memory tasks, but this is not always the case, and the strength of this apparent advantage is unknown. Here, we conducted a meta-analysis with the aim of clarifying whether musicians perform better than nonmusicians in memory tasks. Education Source; PEP (WEB)-Psychoanalytic Electronic Publishing; Psychology and Behavioral Science (EBSCO); PsycINFO (Ovid); PubMed; ScienceDirect-AllBooks Content (Elsevier API); SCOPUS (Elsevier API); SocINDEX with Full Text (EBSCO) and Google Scholar were searched for eligible studies. The selected studies involved two groups of participants: young adult musicians and nonmusicians. All the studies included memory tasks (loading long-term, short-term or working memory) that contained tonal, verbal or visuospatial stimuli. Three meta-analyses were run separately for long-term memory, short-term memory and working memory. We collected 29 studies, including 53 memory tasks. The results showed that musicians performed better than nonmusicians in terms of long-term memory, g = .29, 95% CI (.08-.51), short-term memory, g = .57, 95% CI (.41-.73), and working memory, g = .56, 95% CI (.33-.80). To further explore the data, we included a moderator (the type of stimulus presented, i.e., tonal, verbal or visuospatial), which was found to influence the effect size for short-term and working memory, but not for long-term memory. In terms of short-term and working memory, the musicians' advantage was large with tonal stimuli, moderate with verbal stimuli, and small or null with visuospatial stimuli. The three meta-analyses revealed a small effect size for long-term memory, and a medium effect size for short-term and working memory, suggesting that musicians perform better than nonmusicians in memory tasks. Moreover, the effect of the moderator suggested that, the type of stimuli influences this advantage.

  7. Musicians have better memory than nonmusicians: A meta-analysis

    PubMed Central

    Altoè, Gianmarco; Carretti, Barbara; Grassi, Massimo

    2017-01-01

    Background Several studies have found that musicians perform better than nonmusicians in memory tasks, but this is not always the case, and the strength of this apparent advantage is unknown. Here, we conducted a meta-analysis with the aim of clarifying whether musicians perform better than nonmusicians in memory tasks. Methods Education Source; PEP (WEB)—Psychoanalytic Electronic Publishing; Psychology and Behavioral Science (EBSCO); PsycINFO (Ovid); PubMed; ScienceDirect—AllBooks Content (Elsevier API); SCOPUS (Elsevier API); SocINDEX with Full Text (EBSCO) and Google Scholar were searched for eligible studies. The selected studies involved two groups of participants: young adult musicians and nonmusicians. All the studies included memory tasks (loading long-term, short-term or working memory) that contained tonal, verbal or visuospatial stimuli. Three meta-analyses were run separately for long-term memory, short-term memory and working memory. Results We collected 29 studies, including 53 memory tasks. The results showed that musicians performed better than nonmusicians in terms of long-term memory, g = .29, 95% CI (.08–.51), short-term memory, g = .57, 95% CI (.41–.73), and working memory, g = .56, 95% CI (.33–.80). To further explore the data, we included a moderator (the type of stimulus presented, i.e., tonal, verbal or visuospatial), which was found to influence the effect size for short-term and working memory, but not for long-term memory. In terms of short-term and working memory, the musicians’ advantage was large with tonal stimuli, moderate with verbal stimuli, and small or null with visuospatial stimuli. Conclusions The three meta-analyses revealed a small effect size for long-term memory, and a medium effect size for short-term and working memory, suggesting that musicians perform better than nonmusicians in memory tasks. Moreover, the effect of the moderator suggested that, the type of stimuli influences this advantage. PMID:29049416

  8. The short- and long-term consequences of directed forgetting in a working memory task.

    PubMed

    Festini, Sara B; Reuter-Lorenz, Patricia A

    2013-01-01

    Directed forgetting requires the voluntary control of memory. Whereas many studies have examined directed forgetting in long-term memory (LTM), the mechanisms and effects of directed forgetting within working memory (WM) are less well understood. The current study tests how directed forgetting instructions delivered in a WM task influence veridical memory, as well as false memory, over the short and long term. In a modified item recognition task Experiment 1 tested WM only and demonstrated that directed forgetting reduces false recognition errors and semantic interference. Experiment 2 replicated these WM effects and used a surprise LTM recognition test to assess the long-term effects of directed forgetting in WM. Long-term veridical memory for to-be-remembered lists was better than memory for to-be-forgotten lists-the directed forgetting effect. Moreover, fewer false memories emerged for to-be-forgotten information than for to-be-remembered information in LTM as well. These results indicate that directed forgetting during WM reduces semantic processing of to-be-forgotten lists over the short and long term. Implications for theories of false memory and the mechanisms of directed forgetting within working memory are discussed.

  9. A Processing Approach to the Working Memory/Long-Term Memory Distinction: Evidence from the Levels-of-Processing Span Task

    ERIC Educational Resources Information Center

    Rose, Nathan S.; Craik, Fergus I. M.

    2012-01-01

    Recent theories suggest that performance on working memory (WM) tasks involves retrieval from long-term memory (LTM). To examine whether WM and LTM tests have common principles, Craik and Tulving's (1975) levels-of-processing paradigm, which is known to affect LTM, was administered as a WM task: Participants made uppercase, rhyme, or…

  10. The effect of functional hearing loss and age on long- and short-term visuospatial memory: evidence from the UK biobank resource.

    PubMed

    Rönnberg, Jerker; Hygge, Staffan; Keidser, Gitte; Rudner, Mary

    2014-01-01

    The UK Biobank offers cross-sectional epidemiological data collected on >500,000 individuals in the UK between 40 and 70 years of age. Using the UK Biobank data, the aim of this study was to investigate the effects of functional hearing loss and hearing aid usage on visuospatial memory function. This selection of variables resulted in a sub-sample of 138,098 participants after discarding extreme values. A digit triplets functional hearing test was used to divide the participants into three groups: poor, insufficient and normal hearers. We found negative relationships between functional hearing loss and both visuospatial working memory (i.e., a card pair matching task) and visuospatial, episodic long-term memory (i.e., a prospective memory task), with the strongest association for episodic long-term memory. The use of hearing aids showed a small positive effect for working memory performance for the poor hearers, but did not have any influence on episodic long-term memory. Age also showed strong main effects for both memory tasks and interacted with gender and education for the long-term memory task. Broader theoretical implications based on a memory systems approach will be discussed and compared to theoretical alternatives.

  11. Working memory, long-term memory, and medial temporal lobe function

    PubMed Central

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053

  12. Conversion of short-term to long-term memory in the novel object recognition paradigm

    PubMed Central

    Moore, Shannon J.; Deshpande, Kaivalya; Stinnett, Gwen S.; Seasholtz, Audrey F.; Murphy, Geoffrey G.

    2013-01-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. PMID:23835143

  13. Conversion of short-term to long-term memory in the novel object recognition paradigm.

    PubMed

    Moore, Shannon J; Deshpande, Kaivalya; Stinnett, Gwen S; Seasholtz, Audrey F; Murphy, Geoffrey G

    2013-10-01

    It is well-known that stress can significantly impact learning; however, whether this effect facilitates or impairs the resultant memory depends on the characteristics of the stressor. Investigation of these dynamics can be confounded by the role of the stressor in motivating performance in a task. Positing a cohesive model of the effect of stress on learning and memory necessitates elucidating the consequences of stressful stimuli independently from task-specific functions. Therefore, the goal of this study was to examine the effect of manipulating a task-independent stressor (elevated light level) on short-term and long-term memory in the novel object recognition paradigm. Short-term memory was elicited in both low light and high light conditions, but long-term memory specifically required high light conditions during the acquisition phase (familiarization trial) and was independent of the light level during retrieval (test trial). Additionally, long-term memory appeared to be independent of stress-mediated glucocorticoid release, as both low and high light produced similar levels of plasma corticosterone, which further did not correlate with subsequent memory performance. Finally, both short-term and long-term memory showed no savings between repeated experiments suggesting that this novel object recognition paradigm may be useful for longitudinal studies, particularly when investigating treatments to stabilize or enhance weak memories in neurodegenerative diseases or during age-related cognitive decline. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Incidental biasing of attention from visual long-term memory.

    PubMed

    Fan, Judith E; Turk-Browne, Nicholas B

    2016-06-01

    Holding recently experienced information in mind can help us achieve our current goals. However, such immediate and direct forms of guidance from working memory are less helpful over extended delays or when other related information in long-term memory is useful for reaching these goals. Here we show that information that was encoded in the past but is no longer present or relevant to the task also guides attention. We examined this by associating multiple unique features with novel shapes in visual long-term memory (VLTM), and subsequently testing how memories for these objects biased the deployment of attention. In Experiment 1, VLTM for associated features guided visual search for the shapes, even when these features had never been task-relevant. In Experiment 2, associated features captured attention when presented in isolation during a secondary task that was completely unrelated to the shapes. These findings suggest that long-term memory enables a durable and automatic type of memory-based attentional control. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Long-term effects of interference on short-term memory performance in the rat.

    PubMed

    Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a "within-session/short-term" PI effect. However, we also observed a different "between-session/long-term" PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored more permanently in an intermediary form or memory between WM and long-term memory.

  16. Deficits in verbal long-term memory and learning in children with poor phonological short-term memory skills.

    PubMed

    Gathercole, Susan E; Briscoe, Josie; Thorn, Annabel; Tiffany, Claire

    2008-03-01

    Possible links between phonological short-term memory and both longer term memory and learning in 8-year-old children were investigated in this study. Performance on a range of tests of long-term memory and learning was compared for a group of 16 children with poor phonological short-term memory skills and a comparison group of children of the same age with matched nonverbal reasoning abilities but memory scores in the average range. The low-phonological-memory group were impaired on longer term memory and learning tasks that taxed memory for arbitrary verbal material such as names and nonwords. However, the two groups performed at comparable levels on tasks requiring the retention of visuo-spatial information and of meaningful material and at carrying out prospective memory tasks in which the children were asked to carry out actions at a future point in time. The results are consistent with the view that poor short-term memory function impairs the longer-term retention and ease of learning of novel verbal material.

  17. Similarities and Differences between Working Memory and Long-Term Memory: Evidence from the Levels-of-Processing Span Task

    ERIC Educational Resources Information Center

    Rose, Nathan S.; Myerson, Joel; Roediger, Henry L., III; Hale, Sandra

    2010-01-01

    Two experiments compared the effects of depth of processing on working memory (WM) and long-term memory (LTM) using a levels-of-processing (LOP) span task, a newly developed WM span procedure that involves processing to-be-remembered words based on their visual, phonological, or semantic characteristics. Depth of processing had minimal effect on…

  18. Modality-specific alpha modulations facilitate long-term memory encoding in the presence of distracters.

    PubMed

    Jiang, Haiteng; van Gerven, Marcel A J; Jensen, Ole

    2015-03-01

    It has been proposed that long-term memory encoding is not only dependent on engaging task-relevant regions but also on disengaging task-irrelevant regions. In particular, oscillatory alpha activity has been shown to be involved in shaping the functional architecture of the working brain because it reflects the functional disengagement of specific regions in attention and memory tasks. We here ask if such allocation of resources by alpha oscillations generalizes to long-term memory encoding in a cross-modal setting in which we acquired the ongoing brain activity using magnetoencephalography. Participants were asked to encode pictures while ignoring simultaneously presented words and vice versa. We quantified the brain activity during rehearsal reflecting subsequent memory in the different attention conditions. The key finding was that successful long-term memory encoding is reflected by alpha power decreases in the sensory region of the to-be-attended modality and increases in the sensory region of the to-be-ignored modality to suppress distraction during rehearsal period. Our results corroborate related findings from attention studies by demonstrating that alpha activity is also important for the allocation of resources during long-term memory encoding in the presence of distracters.

  19. Long-term effects of interference on short-term memory performance in the rat

    PubMed Central

    Missaire, Mégane; Fraize, Nicolas; Joseph, Mickaël Antoine; Hamieh, Al Mahdy; Parmentier, Régis; Marighetto, Aline; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    A distinction has always been made between long-term and short-term memory (also now called working memory, WM). The obvious difference between these two kinds of memory concerns the duration of information storage: information is supposedly transiently stored in WM while it is considered durably consolidated into long-term memory. It is well acknowledged that the content of WM is erased and reset after a short time, to prevent irrelevant information from proactively interfering with newly stored information. In the present study, we used typical WM radial maze tasks to question the brief lifespan of spatial WM content in rodents. Groups of rats were submitted to one of two different WM tasks in a radial maze: a WM task involving the repetitive presentation of a same pair of arms expected to induce a high level of proactive interference (PI) (HIWM task), or a task using a different pair in each trial expected to induce a low level of PI (LIWM task). Performance was effectively lower in the HIWM group than in LIWM in the final trial of each training session, indicative of a “within-session/short-term” PI effect. However, we also observed a different “between-session/long-term” PI effect between the two groups: while performance of LIWM trained rats remained stable over days, the performance of HIWM rats dropped after 10 days of training, and this impairment was visible from the very first trial of the day, hence not attributable to within-session PI. We also showed that a 24 hour-gap across training sessions known to allow consolidation processes to unfold, was a necessary and sufficient condition for the long-term PI effect to occur. These findings suggest that in the HIWM task, WM content was not entirely reset between training sessions and that, in specific conditions, WM content can outlast its purpose by being stored more permanently, generating a long-term deleterious effect of PI. The alternative explanation is that WM content could be transferred and stored more permanently in an intermediary form or memory between WM and long-term memory. PMID:28288205

  20. The short- and long-term fates of memory items retained outside the focus of attention

    PubMed Central

    Eichenbaum, Adam S.; Starrett, Michael J.; Rose, Nathan S.; Emrich, Stephen M.; Postle, Bradley R.

    2015-01-01

    When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e., attended) items are associated with active neural representations, unprioritized (i.e., unattended) memory items can be retained in WM despite the absence of such active representations, and with no decrement in their recognition if they are cued later in the trial. These findings raise two intriguing questions about the nature of the short-term retention of information outside the focus of attention. First, when the focus of attention shifts from items in WM, is there a loss of fidelity for those unattended memory items? Second, could the retention of unattended memory items be accomplished by long-term memory mechanisms? We addressed the first question by comparing the precision of recall of attended versus unattended memory items, and found a significant decrease in precision for unattended memory items, reflecting a degradation in the quality of those representations. We addressed the second question by asking subjects to perform a WM task, followed by a surprise memory test for the items that they had seen in the WM task. Long-term memory for unattended memory items from the WM task was not better than memory for items that had remained selected by the focus of attention in the WM task. These results show that unattended WM representations are degraded in quality and are not preferentially represented in long-term memory, as compared to attended memory items. PMID:25472902

  1. The short- and long-term fates of memory items retained outside the focus of attention.

    PubMed

    LaRocque, Joshua J; Eichenbaum, Adam S; Starrett, Michael J; Rose, Nathan S; Emrich, Stephen M; Postle, Bradley R

    2015-04-01

    When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e., attended) items are associated with active neural representations, unprioritized (i.e., unattended) memory items can be retained in WM despite the absence of such active representations, and with no decrement in their recognition if they are cued later in the trial. These findings raise two intriguing questions about the nature of the short-term retention of information outside the focus of attention. First, when the focus of attention shifts from items in WM, is there a loss of fidelity for those unattended memory items? Second, could the retention of unattended memory items be accomplished by long-term memory mechanisms? We addressed the first question by comparing the precision of recall of attended versus unattended memory items, and found a significant decrease in precision for unattended memory items, reflecting a degradation in the quality of those representations. We addressed the second question by asking subjects to perform a WM task, followed by a surprise memory test for the items that they had seen in the WM task. Long-term memory for unattended memory items from the WM task was not better than memory for items that had remained selected by the focus of attention in the WM task. These results show that unattended WM representations are degraded in quality and are not preferentially represented in long-term memory, as compared to attended memory items.

  2. Memory binding and white matter integrity in familial Alzheimer’s disease

    PubMed Central

    Saarimäki, Heini; Bastin, Mark E.; Londoño, Ana C.; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-01-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer’s disease. They have been found to be affected in patients who meet criteria for familial Alzheimer’s disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer’s disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer’s disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer’s disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer’s disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer’s disease. PMID:25762465

  3. Memory binding and white matter integrity in familial Alzheimer's disease.

    PubMed

    Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon

    2015-05-01

    Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Working memory training shows immediate and long-term effects on cognitive performance in children

    PubMed Central

    Pugin, Fiona; Metz, Andreas J.; Stauffer, Madlaina; Wolf, Martin; Jenni, Oskar G.; Huber, Reto

    2014-01-01

    Working memory is important for mental reasoning and learning processes. Several studies in adults and school-age children have shown performance improvement in cognitive tests after working memory training. Our aim was to examine not only immediate but also long-term effects of intensive working memory training on cognitive performance tests in children. Fourteen healthy male subjects between 10 and 16 years trained a visuospatial n-back task over 3 weeks (30 min daily), while 15 individuals of the same age range served as a passive control group. Significant differences in immediate (after 3 weeks of training) and long-term effects (after 2-6 months) in an auditory n-back task were observed compared to controls (2.5 fold immediate and 4.7 fold long-term increase in the training group compared to the controls). The improvement was more pronounced in subjects who improved their performance during the training. Other cognitive functions (matrices test and Stroop task) did not change when comparing the training group to the control group. We conclude that visuospatial working memory training in children boosts performance in similar memory tasks such as the auditory n-back task. The sustained performance improvement several months after the training supports the effectiveness of the training. PMID:25671082

  5. Standard object recognition memory and "what" and "where" components: Improvement by post-training epinephrine in highly habituated rats.

    PubMed

    Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel

    2010-02-11

    The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.

  6. Transfer of Information from Short- to Long-Term Memory

    ERIC Educational Resources Information Center

    Modigliani, Vito; Seamon, John G.

    1974-01-01

    The present study examined current hypotheses concerning information transfer from short-term memory (STM) to long-term memory (LTM) using a Peterson STM task with word triplets presented over retention intervals of 0, 3, 6, 9, and 18 sec. (Editor)

  7. A role for autophagy in long-term spatial memory formation in male rodents.

    PubMed

    Hylin, Michael J; Zhao, Jing; Tangavelou, Karthikeyan; Rozas, Natalia S; Hood, Kimberly N; MacGowan, Jacalyn S; Moore, Anthony N; Dash, Pramod K

    2018-03-01

    A hallmark of long-term memory formation is the requirement for protein synthesis. Administration of protein synthesis inhibitors impairs long-term memory formation without influencing short-term memory. Rapamycin is a specific inhibitor of target of rapamycin complex 1 (TORC1) that has been shown to block protein synthesis and impair long-term memory. In addition to regulating protein synthesis, TORC1 also phosphorylates Unc-51-like autophagy activating kinase-1 (Ulk-1) to suppress autophagy. As autophagy can be activated by rapamycin (and rapamycin inhibits long-term memory), our aim was to test the hypothesis that autophagy inhibitors would enhance long-term memory. To examine if learning alters autophagosome number, we used male reporter mice carrying the GFP-LC3 transgene. Using these mice, we observed that training in the Morris water maze task increases the number of autophagosomes, a finding contrary to our expectations. For learning and memory studies, male Long Evans rats were used due to their relatively larger size (compared to mice), making it easier to perform intrahippocampal infusions in awake, moving animals. When the autophagy inhibitors 3-methyladenine (3-MA) or Spautin-1 were administered bilaterally into the hippocampii prior to training in the Morris water maze task, the drugs did not alter learning. In contrast, when memory was tested 24 hours later by a probe trial, significant impairments were observed. In addition, intrahippocampal infusion of an autophagy activator peptide (TAT-Beclin-1) improved long-term memory. These results indicate that autophagy is not necessary for learning, but is required for long-term memory formation. © 2017 Wiley Periodicals, Inc.

  8. Hippocampal Overexpression of Mutant CREB Blocks Long-Term, but Not Short-Term Memory for a Socially Transmitted Food Preference

    ERIC Educational Resources Information Center

    Brightwell, Jennifer J.; Countryman, Renee A.; Neve, Rachael L.; Colombo, Paul J.; Smith, Clayton A.

    2005-01-01

    Phosphorylation of the transcription factor CREB on Ser133 is implicated in the establishment of long-term memory for hippocampus-dependent tasks, including spatial learning and contextual fear conditioning. We reported previously that training on a hippocampus-dependent social transmission of food preference (STFP) task increases CREB…

  9. Long-term consolidation of declarative memory: insight from temporal lobe epilepsy.

    PubMed

    Tramoni, Eve; Felician, Olivier; Barbeau, Emmanuel J; Guedj, Eric; Guye, Maxime; Bartolomei, Fabrice; Ceccaldi, Mathieu

    2011-03-01

    Several experiments carried out with a subset of patients with temporal lobe epilepsy have demonstrated normal memory performance at standard delays of recall (i.e. minutes to hours) but impaired performance over longer delays (i.e. days or weeks), suggesting altered long-term consolidation mechanisms. These mechanisms were specifically investigated in a group of five adult-onset pharmaco-sensitive patients with temporal lobe epilepsy, exhibiting severe episodic memory complaints despite normal performance at standardized memory assessment. In a first experiment, the magnitude of autobiographical memory loss was evaluated using retrograde personal memory tasks based on verbal and visual cues. In both conditions, results showed an unusual U-shaped pattern of personal memory impairment, encompassing most of the patients' life, sparing however, periods of the childhood, early adulthood and past several weeks. This profile was suggestive of a long-term consolidation impairment of personal episodes, adequately consolidated over 'short-term' delays but gradually forgotten thereafter. Therefore, in a subsequent experiment, patients were submitted to a protocol specifically devised to investigate short and long-term consolidation of contextually-bound experiences (episodic memory) and context-free information (semantic knowledge and single-items). In the short term (1 h), performance at both contextually-free and contextually-bound memory tasks was intact. After a 6-week delay, however, contextually-bound memory performance was impaired while contextually-free memory performance remained preserved. This effect was independent of task difficulty and the modality of retrieval (recall and recognition). Neuroimaging studies revealed the presence of mild metabolic changes within medial temporal lobe structures. Taken together, these results show the existence of different consolidation systems within declarative memory. They suggest that mild medial temporal lobe dysfunction can impede the building and stabilization of episodic memories but leaves long-term semantic and single-items mnemonic traces intact.

  10. Hippocampal size is related to short-term true and false memory, and right fusiform size is related to long-term true and false memory.

    PubMed

    Zhu, Bi; Chen, Chuansheng; Loftus, Elizabeth F; He, Qinghua; Lei, Xuemei; Dong, Qi; Lin, Chongde

    2016-11-01

    There is a keen interest in identifying specific brain regions that are related to individual differences in true and false memories. Previous functional neuroimaging studies showed that activities in the hippocampus, right fusiform gyrus, and parahippocampal gyrus were associated with true and false memories, but no study thus far has examined whether the structures of these brain regions are associated with short-term and long-term true and false memories. To address that question, the current study analyzed data from 205 healthy young adults, who had valid data from both structural brain imaging and a misinformation task. In the misinformation task, subjects saw the crime scenarios, received misinformation, and took memory tests about the crimes an hour later and again after 1.5 years. Results showed that bilateral hippocampal volume was associated with short-term true and false memories, whereas right fusiform gyrus volume and surface area were associated with long-term true and false memories. This study provides the first evidence for the structural neural bases of individual differences in short-term and long-term true and false memories.

  11. How Chunks, Long-Term Working Memory and Templates Offer a Cognitive Explanation for Neuroimaging Data on Expertise Acquisition: A Two-Stage Framework

    ERIC Educational Resources Information Center

    Guida, Alessandro; Gobet, Fernand; Tardieu, Hubert; Nicolas, Serge

    2012-01-01

    Our review of research on PET and fMRI neuroimaging of experts and expertise acquisition reveals two apparently discordant patterns in working-memory-related tasks. When experts are involved, studies show activations in brain regions typically activated during long-term memory tasks that are not observed with novices, a result that is compatible…

  12. Long-Term Memory and the Control of Attentional Control

    PubMed Central

    Mayr, Ulrich; Kuhns, David; Hubbard, Jason

    2014-01-01

    Task-switch costs and in particular the switch-cost asymmetry (i.e., the larger costs of switching to a dominant than a non-dominant task) are usually explained in terms of trial-to-trial carry-over of task-specific control settings. Here we argue that task switches are just one example of situations that trigger a transition from working-memory maintenance to updating, thereby opening working memory to interference from long-term memory. We used a new paradigm that requires selecting a spatial location either on the basis of a central cue (i.e., endogenous control of attention) or a peripheral, sudden onset (i.e., exogenous control of attention). We found a strong cost asymmetry that occurred even after short interruptions of otherwise single-task blocks (Exp. 1-3), but that was much stronger when participants had experienced the competing task under conditions of conflict (Exp. 1-2). Experiment 3 showed that the asymmetric costs were due to interruptions per se, rather than to associative interference tied to specific interruption activities. Experiment 4 generalized the basic pattern across interruptions varying in length or control demands and Experiment 5 across primary tasks with response-selection conflict rather than attentional conflict. Combined, the results support a model in which costs of selecting control settings arise when (a) potentially interfering memory traces have been encoded in long-term memory and (b) working-memory is forced from a maintenance mode into an updating mode (e.g., through task interruptions), thereby allowing unwanted retrieval of the encoded memory traces. PMID:24650696

  13. Differential functions of NR2A and NR2B in short-term and long-term memory in rats.

    PubMed

    Jung, Ye-Ha; Suh, Yoo-Hun

    2010-08-23

    N-methyl-D-aspartate receptors (NMDARs) are glutamate receptors implicated in synaptic plasticity and memory function. The specific functions of NMDA receptor subunits NR2A and NR2B have not yet been fully determined in the different types of memory. Nine Wistar rats (8-weeks-old) were subjected to the Morris water maze task to evaluate the memory behaviorally. Quantitative analysis of NR1, NR2A, and NR2B levels in the right and left forebrain of rats was performed and subunit associations with different types of memory were investigated using the Morris water maze task. Right forebrain NR2A expression was significantly increased and correlated with faster escape time onto a hidden platform, indicating involvement of short-term memory, because of the training time interval. Right forebrain NR2B expression was positively associated with long-term memory lasting 24-h (h). In the left forebrain, NR2B expression was positively related to 72-h long-term memory. In conclusion, the functions of NR2A and NR2B receptors were differentially specialized in short-term and long-term memory, depending on the right or left forebrain.

  14. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation.

    PubMed

    Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B

    2015-12-01

    It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.

  15. The effects of DHEA, 3beta-hydroxy-5alpha-androstane-6,17-dione, and 7-amino-DHEA analogues on short term and long term memory in the mouse.

    PubMed

    Bazin, Marc-Antoine; El Kihel, Laïla; Boulouard, Michel; Bouët, Valentine; Rault, Sylvain

    2009-11-01

    Neurosteroids have been reported to modulate memory processes in rodents. Three analogues of dehydroepiandrosterone (DHEA), two of them previously described (7beta-aminoDHEA and 7beta-amino-17-ethylenedioxy-DHEA), and a new one (3beta-hydroxy-5alpha-androstane-6,17-dione) were synthesized, and their effects were evaluated on memory. This study examined their effects on long term and short term memory in male (6 weeks old) NMRI mice in comparison with the reference drug. Long term memory was assessed using the passive avoidance task and short term memory (spatial working memory) using the spontaneous alternation task in a Y maze. Moreover, the effects of DHEA and its analogues on spontaneous locomotion were measured. In all tests, DHEA and analogues were injected at three equimolar doses (0.300-1.350-6.075 microM/kg). DHEA and its three analogues administered immediately post-training at the highest doses (6.075 microM/kg, s.c.) improved retention in passive avoidance test. Without effect per se in the spatial working memory task, the four compounds failed to reverse scopolamine (1mg/kg, i.p.)-induced deficit in spontaneous alternation. These data suggested an action of DHEA and analogues in consolidation of long term memory particularly when emotional components are implied. Moreover, data indicated that pharmacological modulation of DHEA as performed in this study provides derivatives giving the same mnemonic profile than reference molecule.

  16. Semantic and phonological contributions to short-term repetition and long-term cued sentence recall.

    PubMed

    Meltzer, Jed A; Rose, Nathan S; Deschamps, Tiffany; Leigh, Rosie C; Panamsky, Lilia; Silberberg, Alexandra; Madani, Noushin; Links, Kira A

    2016-02-01

    The function of verbal short-term memory is supported not only by the phonological loop, but also by semantic resources that may operate on both short and long time scales. Elucidation of the neural underpinnings of these mechanisms requires effective behavioral manipulations that can selectively engage them. We developed a novel cued sentence recall paradigm to assess the effects of two factors on sentence recall accuracy at short-term and long-term stages. Participants initially repeated auditory sentences immediately following a 14-s retention period. After this task was complete, long-term memory for each sentence was probed by a two-word recall cue. The sentences were either concrete (high imageability) or abstract (low imageability), and the initial 14-s retention period was filled with either an undemanding finger-tapping task or a more engaging articulatory suppression task (Exp. 1, counting backward by threes; Exp. 2, repeating a four-syllable nonword). Recall was always better for the concrete sentences. Articulatory suppression reduced accuracy in short-term recall, especially for abstract sentences, but the sentences initially recalled following articulatory suppression were retained better at the subsequent cued-recall test, suggesting that the engagement of semantic mechanisms for short-term retention promoted encoding of the sentence meaning into long-term memory. These results provide a basis for using sentence imageability and subsequent memory performance as probes of semantic engagement in short-term memory for sentences.

  17. Electrophysiological indices of altered working memory processes in long-term ecstasy users.

    PubMed

    Nulsen, Claire; Fox, Allison; Hammond, Geoff

    2011-10-01

    The aim of this study was to determine the effect of light long-term ecstasy consumption on verbal short-term and working memory and to identify the cognitive processes contributing to task performance. Electroencephalogram was recorded while ecstasy users (N = 11), polydrug users (N = 13), and non-users (N = 13) completed forward and backward serial recognition tasks designed to engage verbal short-term memory and verbal working memory, respectively. All three groups displayed significantly lower digit-backward span than digit-forward span with ecstasy users displaying the greatest difference. The parietally distributed P3b was significantly smaller in the digits backward task than in the digits forward task in non-ecstasy-using controls. Ecstasy users did not show the reduced P3b component in the backward task that was seen in both non-ecstasy-using control groups. Ecstasy users' performance was suppressed more by the concurrent processing demands of the working memory task than that of the non-ecstasy-using controls. Non-ecstasy-using controls showed differential event-related potential wave forms in the short-term and working memory tasks, and this pattern was not seen in the ecstasy users. This is consistent with a reduction in the cognitive resources allocated to processing in working memory in ecstasy users. Copyright © 2011 John Wiley & Sons, Ltd.

  18. Reconciling change blindness with long-term memory for objects.

    PubMed

    Wood, Katherine; Simons, Daniel J

    2017-02-01

    How can we reconcile remarkably precise long-term memory for thousands of images with failures to detect changes to similar images? We explored whether people can use detailed, long-term memory to improve change detection performance. Subjects studied a set of images of objects and then performed recognition and change detection tasks with those images. Recognition memory performance exceeded change detection performance, even when a single familiar object in the postchange display consistently indicated the change location. In fact, participants were no better when a familiar object predicted the change location than when the displays consisted of unfamiliar objects. When given an explicit strategy to search for a familiar object as a way to improve performance on the change detection task, they performed no better than in a 6-alternative recognition memory task. Subjects only benefited from the presence of familiar objects in the change detection task when they had more time to view the prechange array before it switched. Once the cost to using the change detection information decreased, subjects made use of it in conjunction with memory to boost performance on the familiar-item change detection task. This suggests that even useful information will go unused if it is sufficiently difficult to extract.

  19. Long-term memory-based control of attention in multi-step tasks requires working memory: evidence from domain-specific interference

    PubMed Central

    Foerster, Rebecca M.; Carbone, Elena; Schneider, Werner X.

    2014-01-01

    Evidence for long-term memory (LTM)-based control of attention has been found during the execution of highly practiced multi-step tasks. However, does LTM directly control for attention or are working memory (WM) processes involved? In the present study, this question was investigated with a dual-task paradigm. Participants executed either a highly practiced visuospatial sensorimotor task (speed stacking) or a verbal task (high-speed poem reciting), while maintaining visuospatial or verbal information in WM. Results revealed unidirectional and domain-specific interference. Neither speed stacking nor high-speed poem reciting was influenced by WM retention. Stacking disrupted the retention of visuospatial locations, but did not modify memory performance of verbal material (letters). Reciting reduced the retention of verbal material substantially whereas it affected the memory performance of visuospatial locations to a smaller degree. We suggest that the selection of task-relevant information from LTM for the execution of overlearned multi-step tasks recruits domain-specific WM. PMID:24847304

  20. What Three-Year-Olds Remember from Their Past: Long-Term Memory for Persons, Objects, and Actions

    ERIC Educational Resources Information Center

    Hirte, Monika; Graf, Frauke; Kim, Ziyon; Knopf, Monika

    2017-01-01

    From birth on, infants show long-term recognition memory for persons. Furthermore, infants from six months onwards are able to store and retrieve demonstrated actions over long-term intervals in deferred imitation tasks. Thus, information about the model demonstrating the object-related actions is stored and recognition memory for the objects as…

  1. Similarities and Differences Between Working Memory and Long-Term Memory: Evidence From the Levels-of-Processing Span Task

    PubMed Central

    Rose, Nathan S.; Myerson, Joel; Roediger, Henry L.; Hale, Sandra

    2010-01-01

    Two experiments compared the effects of depth of processing on working memory (WM) and long-term memory (LTM) using a levels-of-processing (LOP) span task, a newly developed WM span procedure that involves processing to-be-remembered words based on their visual, phonological, or semantic characteristics. Depth of processing had minimal effect on WM tests, yet subsequent memory for the same items on delayed tests showed the typical benefits of semantic processing. Although the difference in LOP effects demonstrates a dissociation between WM and LTM, we also found that the retrieval practice provided by recalling words on the WM task benefited long-term retention, especially for words initially recalled from supraspan lists. The latter result is consistent with the hypothesis that WM span tasks involve retrieval from secondary memory, but the LOP dissociation suggests the processes engaged by WM and LTM tests may differ. Therefore, similarities and differences between WM and LTM depend on the extent to which retrieval from secondary memory is involved and whether there is a match (or mismatch) between initial processing and subsequent retrieval, consistent with transfer-appropriate-processing theory. PMID:20192543

  2. Long-term pitch memory for music recordings is related to auditory working memory precision.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon Lm; Nusbaum, Howard C

    2018-04-01

    Most individuals have reliable long-term memories for the pitch of familiar music recordings. This pitch memory (1) appears to be normally distributed in the population, (2) does not depend on explicit musical training and (3) only seems to be weakly related to differences in listening frequency estimates. The present experiment was designed to assess whether individual differences in auditory working memory could explain variance in long-term pitch memory for music recordings. In Experiment 1, participants first completed a musical note adjustment task that has been previously used to assess working memory of musical pitch. Afterward, participants were asked to judge the pitch of well-known music recordings, which either had or had not been shifted in pitch. We found that performance on the pitch working memory task was significantly related to performance in the pitch memory task using well-known recordings, even when controlling for overall musical experience and familiarity with each recording. In Experiment 2, we replicated these findings in a separate group of participants while additionally controlling for fluid intelligence and non-pitch-based components of auditory working memory. In Experiment 3, we demonstrated that participants could not accurately judge the pitch of unfamiliar recordings, suggesting that our method of pitch shifting did not result in unwanted acoustic cues that could have aided participants in Experiments 1 and 2. These results, taken together, suggest that the ability to maintain pitch information in working memory might lead to more accurate long-term pitch memory.

  3. Cognitive Control Network Contributions to Memory-Guided Visual Attention

    PubMed Central

    Rosen, Maya L.; Stern, Chantal E.; Michalka, Samantha W.; Devaney, Kathryn J.; Somers, David C.

    2016-01-01

    Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network (CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. PMID:25750253

  4. The differential effects of ecstasy/polydrug use on executive components: shifting, inhibition, updating and access to semantic memory.

    PubMed

    Montgomery, Catharine; Fisk, John E; Newcombe, Russell; Murphy, Phillip N

    2005-10-01

    Recent theoretical models suggest that the central executive may not be a unified structure. The present study explored the nature of central executive deficits in ecstasy users. In study 1, 27 ecstasy users and 34 non-users were assessed using tasks to tap memory updating (computation span; letter updating) and access to long-term memory (a semantic fluency test and the Chicago Word Fluency Test). In study 2, 51 ecstasy users and 42 non-users completed tasks that assess mental set switching (number/letter and plus/minus) and inhibition (random letter generation). MANOVA revealed that ecstasy users performed worse on both tasks used to assess memory updating and on tasks to assess access to long-term memory (C- and S-letter fluency). However, notwithstanding the significant ecstasy group-related effects, indices of cocaine and cannabis use were also significantly correlated with most of the executive measures. Unexpectedly, in study 2, ecstasy users performed significantly better on the inhibition task, producing more letters than non-users. No group differences were observed on the switching tasks. Correlations between indices of ecstasy use and number of letters produced were significant. The present study provides further support for ecstasy/polydrug-related deficits in memory updating and in access to long-term memory. The surplus evident on the inhibition task should be treated with some caution, as this was limited to a single measure and has not been supported by our previous work.

  5. Effects of social instability stress in adolescence on long-term, not short-term, spatial memory performance.

    PubMed

    Green, Matthew R; McCormick, Cheryl M

    2013-11-01

    There is evidence that exposure to stressors in adolescence leads to lasting deficits on hippocampal-dependent tasks, but whether medial prefrontal cortical function is also impaired is unknown. We previously found that rats exposed to social instability stress in adolescence (SS; daily 1h isolation and subsequent change of cage partner between postnatal days 30 and 45) had impaired memory performance on a Spatial Object Location test and in memory for fear conditioning context, tasks that depend on the integrity of the hippocampus. Here we investigated whether impaired performance would be evident after adolescent SS in male rats on a different test of hippocampal function, spatial learning and memory in the Morris water maze (MWM) and on a working memory task for which performance depends on the integrity of the medial prefrontal cortex, the Delayed Alternation task (DAT). During MWM testing, SS rats showed greater improvements in performance across trials within days compared to control (CTL) rats, but showed less retention of learning between days (48 h) compared to CTL rats. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 min), but not after shorter delays (15 or 60 min) compared to CTL rats. No group differences were observed on the DAT, which assessed working memory across brief delays (5-90 s). Thus, deficits in memory performance after chronic social stress in adolescence may be limited to long-term memory. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Long-term associative learning predicts verbal short-term memory performance.

    PubMed

    Jones, Gary; Macken, Bill

    2018-02-01

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

  7. Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds.

    PubMed

    Rammsayer, Thomas; Ulrich, Rolf

    2011-05-01

    The distinct timing hypothesis suggests a sensory mechanism for processing of durations in the range of milliseconds and a cognitively controlled mechanism for processing of longer durations. To test this hypothesis, we employed a dual-task approach to investigate the effects of maintenance and elaborative rehearsal on temporal processing of brief and long durations. Unlike mere maintenance rehearsal, elaborative rehearsal as a secondary task involved transfer of information from working to long-term memory and elaboration of information to enhance storage in long-term memory. Duration discrimination of brief intervals was not affected by a secondary cognitive task that required either maintenance or elaborative rehearsal. Concurrent elaborative rehearsal, however, impaired discrimination of longer durations as compared to maintenance rehearsal and a control condition with no secondary task. These findings endorse the distinct timing hypothesis and are in line with the notion that executive functions, such as continuous memory updating and active transfer of information into long-term memory interfere with temporal processing of durations in the second, but not in the millisecond range. 2011 Elsevier B.V. All rights reserved.

  8. Short-Term and Working Memory Impairments in Early-Implanted, Long-Term Cochlear Implant Users Are Independent of Audibility and Speech Production

    PubMed Central

    AuBuchon, Angela M.; Pisoni, David B.; Kronenberger, William G.

    2015-01-01

    OBJECTIVES Determine if early-implanted, long-term cochlear implant (CI) users display delays in verbal short-term and working memory capacity when processes related to audibility and speech production are eliminated. DESIGN Twenty-three long-term CI users and 23 normal-hearing controls each completed forward and backward digit span tasks under testing conditions which differed in presentation modality (auditory or visual) and response output (spoken recall or manual pointing). RESULTS Normal-hearing controls reproduced more lists of digits than the CI users, even when the test items were presented visually and the responses were made manually via touchscreen response. CONCLUSIONS Short-term and working memory delays observed in CI users are not due to greater demands from peripheral sensory processes such as audibility or from overt speech-motor planning and response output organization. Instead, CI users are less efficient at encoding and maintaining phonological representations in verbal short-term memory utilizing phonological and linguistic strategies during memory tasks. PMID:26496666

  9. Short-Term and Working Memory Impairments in Early-Implanted, Long-Term Cochlear Implant Users Are Independent of Audibility and Speech Production.

    PubMed

    AuBuchon, Angela M; Pisoni, David B; Kronenberger, William G

    2015-01-01

    To determine whether early-implanted, long-term cochlear implant (CI) users display delays in verbal short-term and working memory capacity when processes related to audibility and speech production are eliminated. Twenty-three long-term CI users and 23 normal-hearing controls each completed forward and backward digit span tasks under testing conditions that differed in presentation modality (auditory or visual) and response output (spoken recall or manual pointing). Normal-hearing controls reproduced more lists of digits than the CI users, even when the test items were presented visually and the responses were made manually via touchscreen response. Short-term and working memory delays observed in CI users are not due to greater demands from peripheral sensory processes such as audibility or from overt speech-motor planning and response output organization. Instead, CI users are less efficient at encoding and maintaining phonological representations in verbal short-term memory using phonological and linguistic strategies during memory tasks.

  10. Division of attention as a function of the number of steps, visual shifts, and memory load

    NASA Technical Reports Server (NTRS)

    Chechile, R. A.; Butler, K.; Gutowski, W.; Palmer, E. A.

    1986-01-01

    The effects on divided attention of visual shifts and long-term memory retrieval during a monitoring task are considered. A concurrent vigilance task was standardized under all experimental conditions. The results show that subjects can perform nearly perfectly on all of the time-shared tasks if long-term memory retrieval is not required for monitoring. With the requirement of memory retrieval, however, there was a large decrease in accuracy for all of the time-shared activities. It was concluded that the attentional demand of longterm memory retrieval is appreciable (even for a well-learned motor sequence), and thus memory retrieval results in a sizable reduction in the capability of subjects to divide their attention. A selected bibliography on the divided attention literature is provided.

  11. Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.

    PubMed

    Wang, Xiao-Qin; Wang, Gong-Wu

    2016-03-15

    Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. From Brown-Peterson to continual distractor via operation span: A SIMPLE account of complex span.

    PubMed

    Neath, Ian; VanWormer, Lisa A; Bireta, Tamra J; Surprenant, Aimée M

    2014-09-01

    Three memory tasks-Brown-Peterson, complex span, and continual distractor-all alternate presentation of a to-be-remembered item and a distractor activity, but each task is associated with a different memory system, short-term memory, working memory, and long-term memory, respectively. SIMPLE, a relative local distinctiveness model, has previously been fit to data from both the Brown-Peterson and continual distractor tasks; here we use the same version of the model to fit data from a complex span task. Despite the many differences between the tasks, including unpredictable list length, SIMPLE fit the data well. Because SIMPLE posits a single memory system, these results constitute yet another demonstration that performance on tasks originally thought to tap different memory systems can be explained without invoking multiple memory systems.

  13. Proactive Interference Does Not Meaningfully Distort Visual Working Memory Capacity Estimates in the Canonical Change Detection Task

    PubMed Central

    Lin, Po-Han; Luck, Steven J.

    2012-01-01

    The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556

  14. Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task.

    PubMed

    Lin, Po-Han; Luck, Steven J

    2012-01-01

    The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.

  15. Long-term semantic representations moderate the effect of attentional refreshing on episodic memory.

    PubMed

    Loaiza, Vanessa M; Duperreault, Kayla A; Rhodes, Matthew G; McCabe, David P

    2015-02-01

    The McCabe effect (McCabe, Journal of Memory and Language 58:480-494, 2008) refers to an advantage in episodic memory (EM) retrieval for memoranda studied in complex span versus simple span tasks, particularly for memoranda presented in earlier serial positions. This finding has been attributed to the necessity to refresh memoranda during complex span tasks that, in turn, promotes content-context binding in working memory (WM). Several frameworks have conceptualized WM as being embedded in long-term memory. Thus, refreshing may be less efficient when memoranda are not well-established in long-term semantic memory (SM). To investigate this, we presented words and nonwords in simple and complex span trials in order to manipulate the long-term semantic representations of the memoranda with the requirement to refresh the memoranda during WM. A recognition test was administered that required participants to make a remember-know decision for each memorandum recognized as old. The results replicated the McCabe effect, but only for words, and the beneficial effect of refreshing opportunities was exclusive to recollection. These results extend previous research by indicating that the predictive relationship between WM refreshing and long-term EM is specific to recollection and, furthermore, moderated by representations in long-term SM. This supports the predictions of WM frameworks that espouse the importance of refreshing in content-context binding, but also those that view WM as being an activated subset of and, therefore, constrained by the contents of long-term memory.

  16. NEREC, an effective brain mapping protocol for combined language and long-term memory functions.

    PubMed

    Perrone-Bertolotti, Marcela; Girard, Cléa; Cousin, Emilie; Vidal, Juan Ricardo; Pichat, Cédric; Kahane, Philippe; Baciu, Monica

    2015-12-01

    Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language and long-term memory encoding/recall) instead of applying isolated tasks to map temporoparietal regions, (b) analyzing NE data based on performances recorded during REC, (c) double-mapping networks involved in naming and in long-term memory encoding and retrieval, (d) focusing on remembering with hippocampal activation and familiarity judgment with lateral temporal cortices activation, and (e) short duration of examination and feasibility. These aspects are of particular interest in patients with TLE, who frequently show impairment of these cognitive functions. Here, we show that the novel protocol is suited for this clinical evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The perirhinal cortex of the rat is necessary for spatial memory retention long after but not soon after learning.

    PubMed

    Ramos, Juan M J; Vaquero, Joaquín M M

    2005-09-15

    Many observations in humans and experimental animals support the view that the hippocampus is critical immediately after learning in order for long-term memory formation to take place. However, exactly when the medial temporal cortices adjacent to the hippocampus are necessary for this process to occur normally is not yet well known. Using a spatial task, we studied whether the perirhinal cortex of rats is necessary to establish representations in long-term memory. Results showed that, in a spatial task sensitive to hippocampal lesions, control and perirhinal lesioned rats can both learn at the same rate (Experiment 1). Interestingly, a differential involvement of the perirhinal cortex in memory retention was observed as time passes after learning. Thus, 24 days following the end of learning, lesioned and control rats remembered the task perfectly as measured by a retraining test. In contrast, 74 days after the learning the perirhinal animals showed a profound impairment in the retention of the spatial information (Experiment 2). Taken together, these results suggest that the perirhinal region is critical for the formation of long-term spatial memory. However, its contribution to memory formation and retention is time-dependent, it being necessary only long after learning takes place and not during the phase immediately following acquisition.

  18. The New ISD: Applying Cognitive Strategies to Instructional Design.

    ERIC Educational Resources Information Center

    Clark, Ruth Colvin

    2002-01-01

    Discusses cognitive models of instruction that can help develop new models of Instructional Systems Design (ISD) that include cognitive task analysis to identify mental models; constructive assumptions of learning; working memory and long-term memory; retrieval of new knowledge and skills from long-term memory; and support of metacognitive skills.…

  19. Long-Term Memory Biases Auditory Spatial Attention

    ERIC Educational Resources Information Center

    Zimmermann, Jacqueline F.; Moscovitch, Morris; Alain, Claude

    2017-01-01

    Long-term memory (LTM) has been shown to bias attention to a previously learned visual target location. Here, we examined whether memory-predicted spatial location can facilitate the detection of a faint pure tone target embedded in real world audio clips (e.g., soundtrack of a restaurant). During an initial familiarization task, participants…

  20. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.

    PubMed

    Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ron; Emsell, Louise; Amant, Frederic; Sunaert, Stefan

    2013-09-01

    Insight into the neural architecture of multitasking is crucial when investigating the pathophysiology of multitasking deficits in clinical populations. Presently, little is known about how the brain combines dual-tasking with a concurrent short-term memory task, despite the relevance of this mental operation in daily life and the frequency of complaints related to this process, in disease. In this study we aimed to examine how the brain responds when a memory task is added to dual-tasking. Thirty-three right-handed healthy volunteers (20 females, mean age 39.9 ± 5.8) were examined with functional brain imaging (fMRI). The paradigm consisted of two cross-modal single tasks (a visual and auditory temporal same-different task with short delay), a dual-task combining both single tasks simultaneously and a multi-task condition, combining the dual-task with an additional short-term memory task (temporal same-different visual task with long delay). Dual-tasking compared to both individual visual and auditory single tasks activated a predominantly right-sided fronto-parietal network and the cerebellum. When adding the additional short-term memory task, a larger and more bilateral frontoparietal network was recruited. We found enhanced activity during multitasking in components of the network that were already involved in dual-tasking, suggesting increased working memory demands, as well as recruitment of multitask-specific components including areas that are likely to be involved in online holding of visual stimuli in short-term memory such as occipito-temporal cortex. These results confirm concurrent neural processing of a visual short-term memory task during dual-tasking and provide evidence for an effective fMRI multitasking paradigm. © 2013 Elsevier Ltd. All rights reserved.

  1. Robust retention and transfer of tool construction techniques in chimpanzees (Pan troglodytes).

    PubMed

    Vale, Gill L; Flynn, Emma G; Pender, Lydia; Price, Elizabeth; Whiten, Andrew; Lambeth, Susan P; Schapiro, Steven J; Kendal, Rachel L

    2016-02-01

    Long-term memory can be critical to a species' survival in environments with seasonal and even longer-term cycles of resource availability. The present, longitudinal study investigated whether complex tool behaviors used to gain an out-of-reach reward, following a hiatus of about 3 years and 7 months since initial experiences with a tool use task, were retained and subsequently executed more quickly by experienced than by naïve chimpanzees. Ten of the 11 retested chimpanzees displayed impressive long-term procedural memory, creating elongated tools using the same methods employed years previously, either combining 2 tools or extending a single tool. The complex tool behaviors were also transferred to a different task context, showing behavioral flexibility. This represents some of the first evidence for appreciable long-term procedural memory, and improvements in the utility of complex tool manufacture in chimpanzees. Such long-term procedural memory and behavioral flexibility have important implications for the longevity and transmission of behavioral traditions. (c) 2016 APA, all rights reserved).

  2. Robust Retention and Transfer of Tool Construction Techniques in Chimpanzees (Pan troglodytes)

    PubMed Central

    Vale, Gill L.; Flynn, Emma G.; Pender, Lydia; Price, Elizabeth; Whiten, Andrew; Lambeth, Susan P.; Schapiro, Steven J.; Kendal, Rachel L.

    2016-01-01

    Long-term memory can be critical to a species’ survival in environments with seasonal and even longer-term cycles of resource availability. The present, longitudinal study investigated whether complex tool behaviors used to gain an out-of-reach reward, following a hiatus of about 3 years and 7 months since initial experiences with a tool use task, were retained and subsequently executed more quickly by experienced than by naïve chimpanzees. Ten of the 11 retested chimpanzees displayed impressive long-term procedural memory, creating elongated tools using the same methods employed years previously, either combining 2 tools or extending a single tool. The complex tool behaviors were also transferred to a different task context, showing behavioral flexibility. This represents some of the first evidence for appreciable long-term procedural memory, and improvements in the utility of complex tool manufacture in chimpanzees. Such long-term procedural memory and behavioral flexibility have important implications for the longevity and transmission of behavioral traditions. PMID:26881941

  3. The case of the missing visual details: Occlusion and long-term visual memory.

    PubMed

    Williams, Carrick C; Burkle, Kyle A

    2017-10-01

    To investigate the critical information in long-term visual memory representations of objects, we used occlusion to emphasize 1 type of information or another. By occluding 1 solid side of the object (e.g., top 50%) or by occluding 50% of the object with stripes (like a picket fence), we emphasized visible information about the object, processing the visible details in the former and the object's overall form in the latter. On a token discrimination test, surprisingly, memory for solid or stripe occluded objects at either encoding (Experiment 1) or test (Experiment 2) was the same. In contrast, when occluded objects matched at encoding and test (Experiment 3) or when the occlusion shifted, revealing the entire object piecemeal (Experiment 4), memory was better for solid compared with stripe occluded objects, indicating that objects are represented differently in long-term visual memory. Critically, we also found that when the task emphasized remembering exactly what was shown, memory performance in the more detailed solid occlusion condition exceeded that in the stripe condition (Experiment 5). However, when the task emphasized the whole object form, memory was better in the stripe condition (Experiment 6) than in the solid condition. We argue that long-term visual memory can represent objects flexibly, and task demands can interact with visual information, allowing the viewer to cope with changing real-world visual environments. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. The effect of long-term working memory through personalization applied to free recall: uncurbing the primacy-effect enthusiasm.

    PubMed

    Guida, Alessandro; Gras, Doriane; Noel, Yvonnick; Le Bohec, Olivier; Quaireau, Christophe; Nicolas, Serge

    2013-05-01

    In this study, a personalization method (Guida, Tardieu, & Nicolas, European Journal of Cognitive Psychology, 21: 862-896 2009) was applied to a free-recall task. Fifteen pairs of words, composed of an object and a location, were presented to 93 participants, who had to mentally associate each pair and subsequently recall the objects. A 30-s delay was introduced on half of the trials, the presentation rate was manipulated (5 or 10 s per item), and verbal and visuospatial working memory tests were administered to test for their effects on the serial curve. Two groups were constituted: a personalized group, for whom the locations were well-known places on their university campus, and a nonpersonalized group, for whom the locations did not refer to known places. Since personalization putatively operationalizes long-term working memory (Ericsson & Kintsch, Psychological Review, 102: 211-245 1995)-namely, the capacity to store information reliably and rapidly in long-term memory-and if we take a dual-store approach to memory, the personalization advantage would be expected to be greater for pre-recency than for recency items. Overall, the results were compatible with long-term working memory theory. They contribute to validating the personalization method as a methodology to characterize the contribution of long-term memory storage to performance in working memory tasks.

  5. Memory Reactivation Enables Long-Term Prevention of Interference.

    PubMed

    Herszage, Jasmine; Censor, Nitzan

    2017-05-22

    The ability of the human brain to successively learn or perform two competing tasks constitutes a major challenge in daily function. Indeed, exposing the brain to two different competing memories within a short temporal offset can induce interference, resulting in deteriorated performance in at least one of the learned memories [1-4]. Although previous studies have investigated online interference and its effects on performance [5-13], whether the human brain can enable long-term prevention of future interference is unknown. To address this question, we utilized the memory reactivation-reconsolidation framework [2, 12] stemming from studies at the synaptic level [14-17], according to which reactivation of a memory enables its update. In a set of experiments, using the motor sequence learning task [18] we report that a unique pairing of reactivating the original memory (right hand) in synchrony with novel memory trials (left hand) prevented future interference between the two memories. Strikingly, these effects were long-term and observed a month following reactivation. Further experiments showed that preventing future interference was not due to practice per se, but rather specifically depended on a limited time window induced by reactivation of the original memory. These results suggest a mechanism according to which memory reactivation enables long-term prevention of interference, possibly by creating an updated memory trace integrating original and novel memories during the reconsolidation time window. The opportunity to induce a long-term preventive effect on memories may enable the utilization of strategies optimizing normal human learning, as well as recovery following neurological insults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Working Memory Capacity and Recall from Long-Term Memory: Examining the Influences of Encoding Strategies, Study Time Allocation, Search Efficiency, and Monitoring Abilities

    ERIC Educational Resources Information Center

    Unsworth, Nash

    2016-01-01

    The relation between working memory capacity (WMC) and recall from long-term memory (LTM) was examined in the current study. Participants performed multiple measures of delayed free recall varying in presentation duration and self-reported their strategy usage after each task. Participants also performed multiple measures of WMC. The results…

  7. The Hebb repetition effect in simple and complex memory span.

    PubMed

    Oberauer, Klaus; Jones, Timothy; Lewandowsky, Stephan

    2015-08-01

    The Hebb repetition effect refers to the finding that immediate serial recall is improved over trials for memory lists that are surreptitiously repeated across trials, relative to new lists. We show in four experiments that the Hebb repetition effect is also observed with a complex-span task, in which encoding or retrieval of list items alternates with an unrelated processing task. The interruption of encoding or retrieval by the processing task did not reduce the size of the Hebb effect, demonstrating that incidental long-term learning forms integrated representations of lists, excluding the interleaved processing events. Contrary to the assumption that complex-span performance relies more on long-term memory than standard immediate serial recall (simple span), the Hebb effect was not larger in complex-span than in simple-span performance. The Hebb effect in complex span was also not modulated by the opportunity for refreshing list items, questioning a role of refreshing for the acquisition of the long-term memory representations underlying the effect.

  8. Long-term memory of color stimuli in the jungle crow (Corvus macrorhynchos).

    PubMed

    Bogale, Bezawork Afework; Sugawara, Satoshi; Sakano, Katsuhisa; Tsuda, Sonoko; Sugita, Shoei

    2012-03-01

    Wild-caught jungle crows (n = 20) were trained to discriminate between color stimuli in a two-alternative discrimination task. Next, crows were tested for long-term memory after 1-, 2-, 3-, 6-, and 10-month retention intervals. This preliminary study showed that jungle crows learn the task and reach a discrimination criterion (80% or more correct choices in two consecutive sessions of ten trials) in a few trials, and some even in a single session. Most, if not all, crows successfully remembered the constantly reinforced visual stimulus during training after all retention intervals. These results suggest that jungle crows have a high retention capacity for learned information, at least after a 10-month retention interval and make no or very few errors. This study is the first to show long-term memory capacity of color stimuli in corvids following a brief training that memory rather than rehearsal was apparent. Memory of visual color information is vital for exploitation of biological resources in crows. We suspect that jungle crows could remember the learned color discrimination task even after a much longer retention interval.

  9. Facing the future: Memory as an evolved system for planning future acts

    PubMed Central

    Klein, Stanley B.; Robertson, Theresa E.; Delton, Andrew W.

    2013-01-01

    All organisms capable of long-term memory are necessarily oriented toward the future. We propose that one of the most important adaptive functions of long-term episodic memory is to store information about the past in the service of planning for the personal future. Because a system should have especially efficient performance when engaged in a task that makes maximal use of its evolved machinery, we predicted that future-oriented planning would result in especially good memory relative to other memory tasks. We tested recall performance of a word list, using encoding tasks with different temporal perspectives (e.g., past, future) but a similar context. Consistent with our hypothesis, future-oriented encoding produced superior recall. We discuss these findings in light of their implications for the thesis that memory evolved to enable its possessor to anticipate and respond to future contingencies that cannot be known with certainty. PMID:19966234

  10. Left-right dissociation of hippocampal memory processes in mice.

    PubMed

    Shipton, Olivia A; El-Gaby, Mohamady; Apergis-Schoute, John; Deisseroth, Karl; Bannerman, David M; Paulsen, Ole; Kohl, Michael M

    2014-10-21

    Left-right asymmetries have likely evolved to make optimal use of bilaterian nervous systems; however, little is known about the synaptic and circuit mechanisms that support divergence of function between equivalent structures in each hemisphere. Here we examined whether lateralized hippocampal memory processing is present in mice, where hemispheric asymmetry at the CA3-CA1 pyramidal neuron synapse has recently been demonstrated, with different spine morphology, glutamate receptor content, and synaptic plasticity, depending on whether afferents originate in the left or right CA3. To address this question, we used optogenetics to acutely silence CA3 pyramidal neurons in either the left or right dorsal hippocampus while mice performed hippocampus-dependent memory tasks. We found that unilateral silencing of either the left or right CA3 was sufficient to impair short-term memory. However, a striking asymmetry emerged in long-term memory, wherein only left CA3 silencing impaired performance on an associative spatial long-term memory task, whereas right CA3 silencing had no effect. To explore whether synaptic properties intrinsic to the hippocampus might contribute to this left-right behavioral asymmetry, we investigated the expression of hippocampal long-term potentiation. Following the induction of long-term potentiation by high-frequency electrical stimulation, synapses between CA3 and CA1 pyramidal neurons were strengthened only when presynaptic input originated in the left CA3, confirming an asymmetry in synaptic properties. The dissociation of hippocampal long-term memory function between hemispheres suggests that memory is routed via distinct left-right pathways within the mouse hippocampus, and provides a promising approach to help elucidate the synaptic basis of long-term memory.

  11. Does Controlling for Temporal Parameters Change the Levels-of-Processing Effect in Working Memory?

    PubMed Central

    Loaiza, Vanessa M.; Camos, Valérie

    2016-01-01

    The distinguishability between working memory (WM) and long-term memory has been a frequent and long-lasting source of debate in the literature. One recent method of identifying the relationship between the two systems has been to consider the influence of long-term memory effects, such as the levels-of-processing (LoP) effect, in WM. However, the few studies that have examined the LoP effect in WM have shown divergent results. This study examined the LoP effect in WM by considering a theoretically meaningful methodological aspect of the LoP span task. Specifically, we fixed the presentation duration of the processing component a priori because such fixed complex span tasks have shown differences when compared to unfixed tasks in terms of recall from WM as well as the latent structure of WM. After establishing a fixed presentation rate from a pilot study, the LoP span task presented memoranda in red or blue font that were immediately followed by two processing words that matched the memoranda in terms of font color or semantic relatedness. On presentation of the processing words, participants made deep or shallow processing decisions for each of the memoranda before a cue to recall them from WM. Participants also completed delayed recall of the memoranda. Results indicated that LoP affected delayed recall, but not immediate recall from WM. These results suggest that fixing temporal parameters of the LoP span task does not moderate the null LoP effect in WM, and further indicate that WM and long-term episodic memory are dissociable on the basis of LoP effects. PMID:27152126

  12. Does Controlling for Temporal Parameters Change the Levels-of-Processing Effect in Working Memory?

    PubMed

    Loaiza, Vanessa M; Camos, Valérie

    2016-01-01

    The distinguishability between working memory (WM) and long-term memory has been a frequent and long-lasting source of debate in the literature. One recent method of identifying the relationship between the two systems has been to consider the influence of long-term memory effects, such as the levels-of-processing (LoP) effect, in WM. However, the few studies that have examined the LoP effect in WM have shown divergent results. This study examined the LoP effect in WM by considering a theoretically meaningful methodological aspect of the LoP span task. Specifically, we fixed the presentation duration of the processing component a priori because such fixed complex span tasks have shown differences when compared to unfixed tasks in terms of recall from WM as well as the latent structure of WM. After establishing a fixed presentation rate from a pilot study, the LoP span task presented memoranda in red or blue font that were immediately followed by two processing words that matched the memoranda in terms of font color or semantic relatedness. On presentation of the processing words, participants made deep or shallow processing decisions for each of the memoranda before a cue to recall them from WM. Participants also completed delayed recall of the memoranda. Results indicated that LoP affected delayed recall, but not immediate recall from WM. These results suggest that fixing temporal parameters of the LoP span task does not moderate the null LoP effect in WM, and further indicate that WM and long-term episodic memory are dissociable on the basis of LoP effects.

  13. HDAC inhibition modulates hippocampus-dependent long-term memory for object location in a CBP-dependent manner

    PubMed Central

    Haettig, Jakob; Stefanko, Daniel P.; Multani, Monica L.; Figueroa, Dario X.; McQuown, Susan C.; Wood, Marcelo A.

    2011-01-01

    Transcription of genes required for long-term memory not only involves transcription factors, but also enzymatic protein complexes that modify chromatin structure. Chromatin-modifying enzymes, such as the histone acetyltransferase (HAT) CREB (cyclic-AMP response element binding) binding protein (CBP), are pivotal for the transcriptional regulation required for long-term memory. Several studies have shown that CBP and histone acetylation are necessary for hippocampus-dependent long-term memory and hippocampal long-term potentiation (LTP). Importantly, every genetically modified Cbp mutant mouse exhibits long-term memory impairments in object recognition. However, the role of the hippocampus in object recognition is controversial. To better understand how chromatin-modifying enzymes modulate long-term memory for object recognition, we first examined the role of the hippocampus in retrieval of long-term memory for object recognition or object location. Muscimol inactivation of the dorsal hippocampus prior to retrieval had no effect on long-term memory for object recognition, but completely blocked long-term memory for object location. This was consistent with experiments showing that muscimol inactivation of the hippocampus had no effect on long-term memory for the object itself, supporting the idea that the hippocampus encodes spatial information about an object (such as location or context), whereas cortical areas (such as the perirhinal or insular cortex) encode information about the object itself. Using location-dependent object recognition tasks that engage the hippocampus, we demonstrate that CBP is essential for the modulation of long-term memory via HDAC inhibition. Together, these results indicate that HDAC inhibition modulates memory in the hippocampus via CBP and that different brain regions utilize different chromatin-modifying enzymes to regulate learning and memory. PMID:21224411

  14. Prefrontal θ-Burst Stimulation Disrupts the Organizing Influence of Active Short-Term Retrieval on Episodic Memory.

    PubMed

    Marin, Bianca M; VanHaerents, Stephen A; Voss, Joel L; Bridge, Donna J

    2018-01-01

    Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object's location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation.

  15. Prefrontal θ-Burst Stimulation Disrupts the Organizing Influence of Active Short-Term Retrieval on Episodic Memory

    PubMed Central

    2018-01-01

    Abstract Dorsolateral prefrontal cortex (DLPFC) is thought to organize items in working memory and this organizational role may also influence long-term memory. To causally test this hypothesized role of DLPFC in long-term memory formation, we used θ-burst noninvasive stimulation (TBS) to modulate DLPFC involvement in a memory task that assessed the influence of active short-term retrieval on later memory. Human subjects viewed three objects on a grid and then either actively retrieved or passively restudied one object’s location after a brief delay. Long-term memory for the other objects was assessed after a delay to evaluate the beneficial role of active short-term retrieval on subsequent memory for the entire set of object locations. We found that DLPFC TBS had no significant effects on short-term memory. In contrast, DLPFC TBS impaired long-term memory selectively in the active-retrieval condition but not in the passive-restudy condition. These findings are consistent with the hypothesized contribution of DLPFC to the organizational processes operative during active short-term retrieval that influence long-term memory, although other regions that were not stimulated could provide similar contributions. Notably, active-retrieval and passive-restudy conditions were intermixed, and therefore nonspecific influences of stimulation were well controlled. These results suggest that DLPFC is causally involved in organizing event information during active retrieval to support coherent long-term memory formation. PMID:29445769

  16. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    PubMed

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. © 2016 Associated Professional Sleep Societies, LLC.

  17. A cognitive psychometric model for the psychodiagnostic assessment of memory-related deficits.

    PubMed

    Alexander, Gregory E; Satalich, Timothy A; Shankle, W Rodman; Batchelder, William H

    2016-03-01

    Clinical tests used for psychodiagnostic purposes, such as the well-known Alzheimer's Disease Assessment Scale: Cognitive subscale (ADAS-Cog), include a free-recall task. The free-recall task taps into latent cognitive processes associated with learning and memory components of human cognition, any of which might be impaired with the progression of Alzheimer's disease (AD). A Hidden Markov model of free recall is developed to measure latent cognitive processes used during the free-recall task. In return, these cognitive measurements give us insight into the degree to which normal cognitive functions are differentially impaired by medical conditions, such as AD and related disorders. The model is used to analyze the free-recall data obtained from healthy elderly participants, participants diagnosed as having mild cognitive impairment, and participants diagnosed with early AD. The model is specified hierarchically to handle item differences because of the serial position curve in free recall, as well as within-group individual differences in participants' recall abilities. Bayesian hierarchical inference is used to estimate the model. The model analysis suggests that the impaired patients have the following: (1) long-term memory encoding deficits, (2) short-term memory (STM) retrieval deficits for all but very short time intervals, (3) poorer transfer into long-term memory for items successfully retrieved from STM, and (4) poorer retention of items encoded into long-term memory after longer delays. Yet, impaired patients appear to have no deficit in immediate recall of encoded words in long-term memory or for very short time intervals in STM. (c) 2016 APA, all rights reserved).

  18. A Diffusion Model Analysis of Adult Age Differences in Episodic and Semantic Long-Term Memory Retrieval

    ERIC Educational Resources Information Center

    Spaniol, Julia; Madden, David J.; Voss, Andreas

    2006-01-01

    Two experiments investigated adult age differences in episodic and semantic long-term memory tasks, as a test of the hypothesis of specific age-related decline in context memory. Older adults were slower and exhibited lower episodic accuracy than younger adults. Fits of the diffusion model (R. Ratcliff, 1978) revealed age-related increases in…

  19. Short-term and long-term memory in early temporal lobe dysfunction.

    PubMed

    Hershey, T; Craft, S; Glauser, T A; Hale, S

    1998-01-01

    Following medial temporal damage, mature humans are impaired in retaining new information over long delays but not short delays. The question of whether a similar dissociation occurs in children was addressed by testing children (ages 7-16) with unilateral temporal lobe epilepsy (TLE) and controls on short- and long-term memory tasks, including a spatial delayed response task (SDR). Early-onset TLE did not affect performance on short delays on SDR, but it did impair performance at the longest delay (60 s), similar to adults with unilateral medial temporal damage. In addition, early-onset TLE affected performance on pattern recall, spatial span, and verbal span with rehearsal interference. No differences were found on story recall or on a response inhibition task.

  20. Memory and linguistic/executive functions of children with borderline intellectual functioning.

    PubMed

    Água Dias, Andrea B; Albuquerque, Cristina P; Simões, Mário R

    2017-11-08

    Children with Borderline Intellectual Functioning (BIF) have received a minimal amount of research attention and have been studied in conjunction with Intellectual and Developmental Disabilities. The present study intends to broaden the knowledge of BIF, by analyzing domains such as verbal memory and visual memory, as well as tasks that rely simultaneously on memory, executive functions, and language. A cross-sectional, comparison study was carried out between a group of 40 children with BIF (mean age = 10.03; 24 male and 16 female), and a control group of 40 normal children of the same age, gender, and socioeconomic level as the BIF group. The WISC-III Full Scale IQs of the BIF group ranged from 71 to 84. The following instruments were used: Word List, Narrative Memory, Rey Complex Figure, Face Memory, Rapid Naming (both RAN and RAS tests), and Verbal Fluency. The results showed deficits in children with BIF in verbal short-term memory, rapid naming, phonemic verbal fluency, and visual short-term memory, specifically in a visual recognition task, when compared with the control group. Long-term verbal memory was impaired only in older children with BIF and long-term visual memory showed no deficit. Verbal short-term memory stands out as a limitation and visual long-term memory as a strength. Correlations between the WISC-III and neuropsychological tests scores were predominantly low. The study expands the neuropsychological characterization of children with BIF and the implications of the deficits and strengths are stressed.

  1. Long-Term Memory for a Common Object.

    ERIC Educational Resources Information Center

    Nickerson, Raymond S.; Adams, Marilyn Jager

    1979-01-01

    Five experiments investigated how completely and accurately adults remember the visual details of the common United States penny. Subjects had to draw a penny from unaided recall and select the correct representation of a penny. Performance was poor on all tasks. Implications for long-term memory models were discussed. (Author/RD)

  2. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep

    PubMed Central

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-01-01

    Study Objectives: It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. Methods: We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. Results: We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. Conclusions: These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. Citation: Fraize N, Carponcy J, Joseph MA, Comte JC, Luppi PH, Libourel PA, Salin PA, Malleret G, Parmentier R. Levels of interference in long and short-term memory differentially modulate non-REM and REM sleep. SLEEP 2016;39(12):2173–2188. PMID:27748246

  3. Long-term effects of cannabis on oculomotor function in humans.

    PubMed

    Huestegge, L; Radach, R; Kunert, H J

    2009-08-01

    Cannabis is known to affect human cognitive and visuomotor skills directly after consumption. Some studies even point to rather long-lasting effects, especially after chronic tetrahydrocannabinol (THC) abuse. However, it is still unknown whether long-term effects on basic visual and oculomotor processing may exist. In the present study, the performance of 20 healthy long-term cannabis users without acute THC intoxication and 20 control subjects were examined in four basic visuomotor paradigms to search for specific long-term impairments. Subjects were asked to perform: 1) reflexive saccades to visual targets (prosaccades), including gap and overlap conditions, 2) voluntary antisaccades, 3) memory-guided saccades and 4) double-step saccades. Spatial and temporal parameters of the saccades were subsequently analysed. THC subjects exhibited a significant increase of latency in the prosaccade and antisaccade tasks, as well as prolonged saccade amplitudes in the antisaccade and memory-guided task, compared with the control subjects. The results point to substantial and specific long-term deficits in basic temporal processing of saccades and impaired visuo-spatial working memory. We suggest that these impairments are a major contributor to degraded performance of chronic users in a vital everyday task like visual search, and they might potentially also affect spatial navigation and reading.

  4. Cognitive Control Network Contributions to Memory-Guided Visual Attention.

    PubMed

    Rosen, Maya L; Stern, Chantal E; Michalka, Samantha W; Devaney, Kathryn J; Somers, David C

    2016-05-01

    Visual attentional capacity is severely limited, but humans excel in familiar visual contexts, in part because long-term memories guide efficient deployment of attention. To investigate the neural substrates that support memory-guided visual attention, we performed a set of functional MRI experiments that contrast long-term, memory-guided visuospatial attention with stimulus-guided visuospatial attention in a change detection task. Whereas the dorsal attention network was activated for both forms of attention, the cognitive control network(CCN) was preferentially activated during memory-guided attention. Three posterior nodes in the CCN, posterior precuneus, posterior callosal sulcus/mid-cingulate, and lateral intraparietal sulcus exhibited the greatest specificity for memory-guided attention. These 3 regions exhibit functional connectivity at rest, and we propose that they form a subnetwork within the broader CCN. Based on the task activation patterns, we conclude that the nodes of this subnetwork are preferentially recruited for long-term memory guidance of visuospatial attention. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. What are the differences between long-term, short-term, and working memory?

    PubMed

    Cowan, Nelson

    2008-01-01

    In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rather encouraging regarding the existence of both decay and capacity limits. Working memory has been conceived and defined in three different, slightly discrepant ways: as short-term memory applied to cognitive tasks, as a multi-component system that holds and manipulates information in short-term memory, and as the use of attention to manage short-term memory. Regardless of the definition, there are some measures of memory in the short term that seem routine and do not correlate well with cognitive aptitudes and other measures (those usually identified with the term "working memory") that seem more attention demanding and do correlate well with these aptitudes. The evidence is evaluated and placed within a theoretical framework depicted in Fig. 1.

  6. Memory and subjective workload assessment

    NASA Technical Reports Server (NTRS)

    Staveland, L.; Hart, S.; Yeh, Y. Y.

    1986-01-01

    Recent research suggested subjective introspection of workload is not based upon specific retrieval of information from long term memory, and only reflects the average workload that is imposed upon the human operator by a particular task. These findings are based upon global ratings of workload for the overall task, suggesting that subjective ratings are limited in ability to retrieve specific details of a task from long term memory. To clarify the limits memory imposes on subjective workload assessment, the difficulty of task segments was varied and the workload of specified segments was retrospectively rated. The ratings were retrospectively collected on the manipulations of three levels of segment difficulty. Subjects were assigned to one of two memory groups. In the Before group, subjects knew before performing a block of trials which segment to rate. In the After group, subjects did not know which segment to rate until after performing the block of trials. The subjective ratings, RTs (reaction times) and MTs (movement times) were compared within group, and between group differences. Performance measures and subjective evaluations of workload reflected the experimental manipulations. Subjects were sensitive to different difficulty levels, and recalled the average workload of task components. Cueing did not appear to help recall, and memory group differences possibly reflected variations in the groups of subjects, or an additional memory task.

  7. Effects of an acute bout of exercise on memory in 6th grade children.

    PubMed

    Etnier, Jennifer; Labban, Jeffrey D; Piepmeier, Aaron; Davis, Matthew E; Henning, David A

    2014-08-01

    Research supports the positive effects of exercise on cognitive performance by children. However, a limited number of studies have explored the effects specifically on memory. The purpose of this study was to compare the effects of an acute bout of exercise on learning, short-term memory, and long-term memory in a sample of children. Children were randomly assigned to an exercise condition or to a no-treatment control condition and then performed repeated trials on an auditory verbal learning task. In the exercise condition, participants performed the PACER task, an aerobic fitness assessment, in their physical education class before performing the memory task. In the control condition, participants performed the memory task at the beginning of their physical education class. Results showed that participants in the exercise condition demonstrated significantly better learning of the word lists and significantly better recall of the words after a brief delay. There were not significant differences in recognition of the words after an approximately 24-hr delay. These results provide evidence in a school setting that an acute bout of exercise provides benefits for verbal learning and long-term memory. Future research should be designed to identify the extent to which these findings translate to academic measures.

  8. Propofol and midazolam inhibit conscious memory processes very soon after encoding: an event-related potential study of familiarity and recollection in volunteers.

    PubMed

    Veselis, Robert A; Pryor, Kane O; Reinsel, Ruth A; Li, Yuelin; Mehta, Meghana; Johnson, Ray

    2009-02-01

    Intravenous drugs active via gamma-aminobutyric acid receptors to produce memory impairment during conscious sedation. Memory function was assessed using event-related potentials (ERPs) while drug was present. The continuous recognition task measured recognition of photographs from working (6 s) and long-term (27 s) memory while ERPs were recorded from Cz (familiarity recognition) and Pz electrodes (recollection recognition). Volunteer participants received sequential doses of one of placebo (n = 11), 0.45 and 0.9 microg/ml propofol (n = 10), 20 and 40 ng/ml midazolam (n = 12), 1.5 and 3 microg/ml thiopental (n = 11), or 0.25 and 0.4 ng/ml dexmedetomidine (n = 11). End-of-day yes/no recognition 225 min after the end of drug infusion tested memory retention of pictures encoded on the continuous recognition tasks. Active drugs increased reaction times and impaired memory on the continuous recognition task equally, except for a greater effect of midazolam (P < 0.04). Forgetting from continuous recognition tasks to end of day was similar for all drugs (P = 0.40), greater than placebo (P < 0.001). Propofol and midazolam decreased the area between first presentation (new) and recognized (old, 27 s later) ERP waveforms from long-term memory for familiarity (P = 0.03) and possibly for recollection processes (P = 0.12). Propofol shifted ERP amplitudes to smaller voltages (P < 0.002). Dexmedetomidine may have impaired familiarity more than recollection processes (P = 0.10). Thiopental had no effect on ERPs. Propofol and midazolam impaired recognition ERPs from long-term memory but not working memory. ERP measures of memory revealed different pathways to end-of-day memory loss as early as 27 s after encoding.

  9. When music and long-term memory interact: effects of musical expertise on functional and structural plasticity in the hippocampus.

    PubMed

    Groussard, Mathilde; La Joie, Renaud; Rauchs, Géraldine; Landeau, Brigitte; Chételat, Gaël; Viader, Fausto; Desgranges, Béatrice; Eustache, Francis; Platel, Hervé

    2010-10-05

    The development of musical skills by musicians results in specific structural and functional modifications in the brain. Surprisingly, no functional magnetic resonance imaging (fMRI) study has investigated the impact of musical training on brain function during long-term memory retrieval, a faculty particularly important in music. Thus, using fMRI, we examined for the first time this process during a musical familiarity task (i.e., semantic memory for music). Musical expertise induced supplementary activations in the hippocampus, medial frontal gyrus, and superior temporal areas on both sides, suggesting a constant interaction between episodic and semantic memory during this task in musicians. In addition, a voxel-based morphometry (VBM) investigation was performed within these areas and revealed that gray matter density of the hippocampus was higher in musicians than in nonmusicians. Our data indicate that musical expertise critically modifies long-term memory processes and induces structural and functional plasticity in the hippocampus.

  10. Working memory for conjunctions relies on the medial temporal lobe.

    PubMed

    Olson, Ingrid R; Page, Katie; Moore, Katherine Sledge; Chatterjee, Anjan; Verfaellie, Mieke

    2006-04-26

    A prominent theory of hippocampal function proposes that the hippocampus is importantly involved in relating or binding together separate pieces of information to form an episodic representation. This hypothesis has only been applied to studies of long-term memory because the paradigmatic view of the hippocampus is that it is not critical for short-term forms of memory. However, relational processing is important in many working memory tasks, especially tasks using visual stimuli. Here, we test the hypothesis that the medial temporal lobes are important for relational memory even over short delays. The task required patients with medial temporal lobe amnesia and controls to remember three objects, locations, or object-location conjunctions over 1 or 8 s delays. The results show that working memory for objects and locations was at normal levels, but that memory for conjunctions was severely impaired at 8 s delays. Additional analyses suggest that the hippocampus per se is critical for accurate conjunction working memory. We propose that the hippocampus is critically involved in memory for conjunctions at both short and long delays.

  11. Working Memory for Conjunctions Relies on the Medial Temporal Lobe

    PubMed Central

    Olson, Ingrid R.; Page, Katie; Moore, Katherine Sledge; Chatterjee, Anjan; Verfaellie, Mieke

    2006-01-01

    A prominent theory of hippocampal function proposes that the hippocampus is importantly involved in relating or binding together separate pieces of information to form an episodic representation. This hypothesis has only been applied to studies of long-term memory because the paradigmatic view of the hippocampus is that it is not critical for short-term forms of memory. However, relational processing is important in many working memory tasks, especially tasks using visual stimuli. Here, we test the hypothesis that the medial temporal lobes are important for relational memory even over short delays. The task required patients with medial temporal lobe amnesia and controls to remember three objects, locations, or object-location conjunctions over 1 or 8 s delays. The results show that working memory for objects and locations was at normal levels, but that memory for conjunctions was severely impaired at 8 s delays. Additional analyses suggest that the hippocampus per se is critical for accurate conjunction working memory. We propose that the hippocampus is critically involved in memory for conjunctions at both short and long delays. PMID:16641239

  12. What are the differences between long-term, short-term, and working memory?

    PubMed Central

    Cowan, Nelson

    2008-01-01

    In the recent literature there has been considerable confusion about the three types of memory: long-term, short-term, and working memory. This chapter strives to reduce that confusion and makes up-to-date assessments of these types of memory. Long- and short-term memory could differ in two fundamental ways, with only short-term memory demonstrating (1) temporal decay and (2) chunk capacity limits. Both properties of short-term memory are still controversial but the current literature is rather encouraging regarding the existence of both decay and capacity limits. Working memory has been conceived and defined in three different, slightly discrepant ways: as short-term memory applied to cognitive tasks, as a multi-component system that holds and manipulates information in short-term memory, and as the use of attention to manage short-term memory. Regardless of the definition, there are some measures of memory in the short term that seem routine and do not correlate well with cognitive aptitudes and other measures (those usually identified with the term “working memory”) that seem more attention demanding and do correlate well with these aptitudes. The evidence is evaluated and placed within a theoretical framework depicted in Fig. 1. PMID:18394484

  13. A constrained rasch model of trace redintegration in serial recall.

    PubMed

    Roodenrys, Steven; Miller, Leonie M

    2008-04-01

    The notion that verbal short-term memory tasks, such as serial recall, make use of information in long-term as well as in short-term memory is instantiated in many models of these tasks. Such models incorporate a process in which degraded traces retrieved from a short-term store are reconstructed, or redintegrated (Schweickert, 1993), through the use of information in long-term memory. This article presents a conceptual and mathematical model of this process based on a class of item-response theory models. It is demonstrated that this model provides a better fit to three sets of data than does the multinomial processing tree model of redintegration (Schweickert, 1993) and that a number of conceptual accounts of serial recall can be related to the parameters of the model.

  14. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze

    PubMed Central

    Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S. F.; Serrano, Peter A.

    2013-01-01

    Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI. PMID:23653600

  15. Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice

    ERIC Educational Resources Information Center

    Wolf, Gerald; Engelmann, Mario; Richter, Karin

    2005-01-01

    Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…

  16. False Memories Seconds Later: The Rapid and Compelling Onset of Illusory Recognition

    ERIC Educational Resources Information Center

    Flegal, Kristin E.; Atkins, Alexandra S.; Reuter-Lorenz, Patricia A.

    2010-01-01

    Distortions of long-term memory (LTM) in the converging associates task are thought to arise from semantic associative processes and monitoring failures due to degraded verbatim and/or contextual memory. Sensory-based coding is traditionally considered more prevalent than meaning-based coding in short-term memory (STM), whereas the converse is…

  17. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.

    PubMed

    Hampson, Robert E; Song, Dong; Robinson, Brian S; Fetterhoff, Dustin; Dakos, Alexander S; Roeder, Brent M; She, Xiwei; Wicks, Robert T; Witcher, Mark R; Couture, Daniel E; Laxton, Adrian W; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J; Whitlow, Christopher T; Marmarelis, Vasilis Z; Berger, Theodore W; Deadwyler, Sam A

    2018-06-01

    We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  18. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2018-06-01

    Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  19. Working memory capacity and retrieval limitations from long-term memory: an examination of differences in accessibility.

    PubMed

    Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A

    2012-01-01

    In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.

  20. The role of reduced working memory storage and processing resources in the associative memory deficit of older adults: simulation studies with younger adults.

    PubMed

    Hara, Yoko; Naveh-Benjamin, Moshe

    2015-01-01

    Previous research indicates that relative to younger adults, older adults show a larger decline in long-term memory (LTM) for associations than for the components that make up these associations. The purpose of the present study was to investigate whether we can impair associative memory performance in young adults by reducing their working memory (WM) resources, hence providing potential clues regarding the underlying causes of the associative memory deficit in older adults. With two experiments, we investigated whether we can reduce younger adults' long-term associative memory using secondary tasks in which either storage or processing WM loads were manipulated, while participants learned name-face pairs and then remembered the names, the faces, and the name-face associations. Results show that reducing either the storage or the processing resources of WM produced performance patterns of an associative long-term memory deficit in young adults. Furthermore, younger adults' associative memory deficit was a function of their performance on a working memory span task. These results indicate that one potential reason older adults have an associative deficit is a reduction in their WM resources but further research is needed to assess the mechanisms involved in age-related associative memory deficits.

  1. "Looking-at-nothing" during sequential sensorimotor actions: Long-term memory-based eye scanning of remembered target locations.

    PubMed

    Foerster, Rebecca M

    2018-03-01

    Before acting humans saccade to a target object to extract relevant visual information. Even when acting on remembered objects, locations previously occupied by relevant objects are fixated during imagery and memory tasks - a phenomenon called "looking-at-nothing". While looking-at-nothing was robustly found in tasks encouraging declarative memory built-up, results are mixed in the case of procedural sensorimotor tasks. Eye-guidance to manual targets in complete darkness was observed in a task practiced for days beforehand, while investigations using only a single session did not find fixations to remembered action targets. Here, it is asked whether looking-at-nothing can be found in a single sensorimotor session and thus independent from sleep consolidation, and how it progresses when visual information is repeatedly unavailable. Eye movements were investigated in a computerized version of the trail making test. Participants clicked on numbered circles in ascending sequence. Fifty trials were performed with the same spatial arrangement of 9 visual targets to enable long-term memory consolidation. During 50 consecutive trials, participants had to click the remembered target sequence on an empty screen. Participants scanned the visual targets and also the empty target locations sequentially with their eyes, however, the latter less precise than the former. Over the course of the memory trials, manual and oculomotor sequential target scanning became more similar to the visual trials. Results argue for robust looking-at-nothing during procedural sensorimotor tasks provided that long-term memory information is sufficient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Cognitive correlates of long-term cannabis use in Costa Rican men.

    PubMed

    Fletcher, J M; Page, J B; Francis, D J; Copeland, K; Naus, M J; Davis, C M; Morris, R; Krauskopf, D; Satz, P

    1996-11-01

    Cognitive correlates of long-term cannabis use have been elusive. We tested the hypothesis that long-term cannabis use is associated with deficits in short term memory, working memory, and attention in a literate, westernized culture (Costa Rica) in which the effects of cannabis use can be isolated. Two cohorts of long-term cannabis users and nonusers were studied. Within each cohort, users and nonusers were comparable in age and socioeconomic status. Polydrug users and users who tested positive for the use of cannabis at the time of cognitive assessment after a 72-hour abstention period were excluded. The older cohort (whose age was approximately 45 years) had consumed cannabis for an average of 34 years, and comprised 17 users and 30 nonusers, who had been recruited in San José, Costa Rica, and had been observed since 1973. The younger cohort (whose age was approximately 28 years) had consumed cannabis for an average of 8 years, and comprised 37 users and 49 nonusers. Short-term memory, working memory, and attentional skills were measured in each subject. Older long-term users performed worse than older nonusers on 2 short-term memory tests involving learning lists of words. In addition, older long-term users performed worse than older nonusers on selective and divided attention tasks associated with working memory. No notable differences were apparent between younger users and nonusers. Long-term cannabis use was associated with disruption of short-term memory, working memory, and attentional skills in older long-term cannabis users.

  3. The Representational Consequences of Intentional Forgetting: Impairments to Both the Probability and Fidelity of Long-Term Memory

    PubMed Central

    2016-01-01

    We investigated whether intentional forgetting impacts only the likelihood of later retrieval from long-term memory or whether it also impacts the fidelity of those representations that are successfully retrieved. We accomplished this by combining an item-method directed forgetting task with a testing procedure and modeling approach inspired by the delayed-estimation paradigm used in the study of visual short-term memory (STM). Abstract or concrete colored images were each followed by a remember (R) or forget (F) instruction and sometimes by a visual probe requiring a speeded detection response (E1–E3). Memory was tested using an old–new (E1–E2) or remember-know-no (E3) recognition task followed by a continuous color judgment task (E2–E3); a final experiment included only the color judgment task (E4). Replicating the existing literature, more “old” or “remember” responses were made to R than F items and RTs to postinstruction visual probes were longer following F than R instructions. Color judgments were more accurate for successfully recognized or recollected R than F items (E2–E3); a mixture model confirmed a decrease to both the probability of retrieving the F items as well as the fidelity of the representation of those F items that were retrieved (E4). We conclude that intentional forgetting is an effortful process that not only reduces the likelihood of successfully encoding an item for later retrieval, but also produces an impoverished memory trace even when those items are retrieved; these findings draw a parallel between the control of memory representations within working and long-term memory. PMID:26709589

  4. The representational consequences of intentional forgetting: Impairments to both the probability and fidelity of long-term memory.

    PubMed

    Fawcett, Jonathan M; Lawrence, Michael A; Taylor, Tracy L

    2016-01-01

    We investigated whether intentional forgetting impacts only the likelihood of later retrieval from long-term memory or whether it also impacts the fidelity of those representations that are successfully retrieved. We accomplished this by combining an item-method directed forgetting task with a testing procedure and modeling approach inspired by the delayed-estimation paradigm used in the study of visual short-term memory (STM). Abstract or concrete colored images were each followed by a remember (R) or forget (F) instruction and sometimes by a visual probe requiring a speeded detection response (E1-E3). Memory was tested using an old-new (E1-E2) or remember-know-no (E3) recognition task followed by a continuous color judgment task (E2-E3); a final experiment included only the color judgment task (E4). Replicating the existing literature, more "old" or "remember" responses were made to R than F items and RTs to postinstruction visual probes were longer following F than R instructions. Color judgments were more accurate for successfully recognized or recollected R than F items (E2-E3); a mixture model confirmed a decrease to both the probability of retrieving the F items as well as the fidelity of the representation of those F items that were retrieved (E4). We conclude that intentional forgetting is an effortful process that not only reduces the likelihood of successfully encoding an item for later retrieval, but also produces an impoverished memory trace even when those items are retrieved; these findings draw a parallel between the control of memory representations within working and long-term memory. (c) 2015 APA, all rights reserved).

  5. Caffeine and diphenyl diselenide improve long-term memory impaired in middle-aged rats.

    PubMed

    Leite, Marlon R; Marcondes Sari, Marcel Henrique; de Freitas, Mayara L; Oliveira, Lia P; Dalmolin, Laíza; Brandão, Ricardo; Zeni, Gilson

    2014-05-01

    The aim of the present study was to evaluate the effects of diphenyl diselenide (PhSe)2 supplemented diet (10ppm) associated to the administration of caffeine (15mg/kg; i.g.) for 30days on the novel object recognition memory in middle-aged rats. The present findings showed that (PhSe)2-supplemented diet enhanced short-term memory, but not long-term memory, of middle-aged rats in the novel object recognition task. The (PhSe)2 supplemented diet associated with caffeine administration improved long-term memory, but did not alter short-term memory, impaired in middle-aged rats. Daily caffeine administration to middle-aged rats had no effect on the memory tasks. Diet supplemented with (PhSe)2 plus caffeine administration increased the number of crossings and rearings reduced in middle-aged rats. Caffeine administration plus (PhSe)2 diets were effective in increasing the number of rearings and crossings, respectively, in middle-aged rats, [(3)H] glutamate uptake was reduced in hippocampal slices of rats from (PhSe)2 and caffeine plus (PhSe)2 groups. In addition, animals supplemented with (PhSe)2 showed an increase in the pCREB/CREB ratio whereas pAkt/Akt ratio was not modified. These results suggest that the effects of (PhSe)2 on the short-term memory may be related to its ability to decrease the uptake of glutamate, influencing the increase of CREB phosphorylation. (PhSe)2-supplemented diet associated to the administration of caffeine improved long-term memory impaired in middle-aged rats, an effect independent of CREB and Akt phosphorylation. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. A Preliminary Empirical Evaluation of Virtual Reality as a Training Tool for Visual-Spatial Tasks

    DTIC Science & Technology

    1993-05-01

    Hillsdale, NJ: Lawrence Erlbaum Associates. Craik , F.I.M., & Lockhart , R.S. (1972). Levels of processing ; A framework for memory research. Journal of...short-term memory (Bower, 1972; Kanigel, 1981), elaborative rehearsai in short-term memory, and subsequent retrieval from long-term memory ( Craik ... Lockhart , 1972; Chase & Ericsson, 1981), ?nd the superiority of gist over verbatim recall of sentences (Bransford & Franks, 1971). Even memory for simple

  7. The impact of cognitive load on delayed recall.

    PubMed

    Camos, Valérie; Portrat, Sophie

    2015-08-01

    Recent studies have suggested that long-term retention of items studied in a working memory span task depends on the refreshing of memory items-more specifically, on the number of refreshing opportunities. However, it was previously shown that refreshing depends on the cognitive load of the concurrent task introduced in the working memory span task. Thus, cognitive load should determine the long-term retention of items assessed in a delayed-recall test if such retention relies on refreshing. In two experiments, while the amount of refreshing opportunities remained constant, we varied the cognitive load of the concurrent task by either introducing tasks differing in their attentional demands or varying the pace of the concurrent task. To verify that this effect was related to refreshing and not to any maintenance mechanism, we also manipulated the availability of subvocal rehearsal. Replicating previous results, increasing cognitive load reduced immediate recall. This increase also had a detrimental effect on delayed recall. Conversely, the addition of concurrent articulation reduced immediate but not delayed recall. This study shows that both working and episodic memory traces depend on the cognitive load of the concurrent task, whereas the use of rehearsal affects only working memory performance. These findings add further evidence of the dissociation between subvocal rehearsal and attentional refreshing.

  8. Using electrophysiology to demonstrate that cuing affects long-term memory storage over the short term

    PubMed Central

    Maxcey, Ashleigh M.; Fukuda, Keisuke; Song, Won S.; Woodman, Geoffrey F.

    2015-01-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cued presented during a stream of objects, followed by a short retention interval and immediate memory test, change how information is handled by long-term memory. We tested this hypothesis using a family of frontal event-related potentials (ERPs) believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when objects repeat frequently such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate how frequent stimulus repetitions fail to isolate the role of working memory mechanisms. PMID:25604772

  9. Using electrophysiology to demonstrate that cueing affects long-term memory storage over the short term.

    PubMed

    Maxcey, Ashleigh M; Fukuda, Keisuke; Song, Won S; Woodman, Geoffrey F

    2015-10-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that the object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object, relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cues presented during a stream of objects, followed by a short retention interval and immediate memory test, can change how information is handled by long-term memory. We tested this hypothesis by using a family of frontal event-related potentials believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when the objects repeated frequently, such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate that frequent stimulus repetitions fail to isolate the role of working memory mechanisms.

  10. Verbal short-term memory and vocabulary learning in polyglots.

    PubMed

    Papagno, C; Vallar, G

    1995-02-01

    Polyglot and non-polyglot Italian subjects were given tests assessing verbal (phonological) and visuo-spatial short-term and long-term memory, general intelligence, and vocabulary knowledge in their native language. Polyglots had a superior level of performance in verbal short-term memory tasks (auditory digit span and nonword repetition) and in a paired-associate learning test, which assessed the subjects' ability to acquire new (Russian) words. By contrast, the two groups had comparable performance levels in tasks assessing general intelligence, visuo-spatial short-term memory and learning, and paired-associate learning of Italian words. These findings, which are in line with neuropsychological and developmental evidence, as well as with data from normal subjects, suggest a close relationship between the capacity of phonological memory and the acquisition of foreign languages.

  11. Effects of ethanolic extract and naphthoquinones obtained from the bulbs of Cipura paludosa on short-term and long-term memory: involvement of adenosine A₁ and A₂A receptors.

    PubMed

    Lucena, Greice M R S; Matheus, Filipe C; Ferreira, Vania M; Tessele, Priscila B; Azevedo, Mariangela S; Cechinel-Filho, Valdir; Prediger, Rui D

    2013-04-01

    Previous studies from our group have indicated important biological properties of the ethanolic extract and isolated compounds from the bulbs of Cipura paludosa (Iridaceae), a native plant widely distributed in northern Brazil, including antioxidant, neuroprotective and anti-nociceptive activities. In the present study, the effects of the ethanolic extract and its two naphthoquinones (eleutherine and isoeleutherine) on the short- and long-term memory of adult rodents were assessed in social recognition and inhibitory avoidance tasks. Acute pre-training oral administration of the ethanolic extract improved the short-term social memory in rats as well as facilitated the step-down inhibitory avoidance short- and long-term memory in mice. Moreover, the co-administration of 'non-effective' doses of the extract of Cipura paludosa and the adenosine receptor antagonists caffeine (non-selective), DPCPX (adenosine A1 receptor antagonist) and ZM241385 (adenosine A2A receptor antagonist) improved the social recognition memory of rats. In the inhibitory avoidance task, the co-administration of sub-effective doses of the extract with caffeine or ZM241385, but not with DPCPX, improved the short- and long-term memory of mice. Finally, the acute oral administration of eleutherine and isoeleutherine facilitated the inhibitory avoidance short- and long-term memory in mice. These results demonstrate for the first time the cognitive-enhancing properties of the extract and isolated compounds from the bulbs of Cipura paludosa in rodents and suggest a possible involvement of adenosine A1 and A2A receptors in these effects. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.

  12. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    PubMed

    Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank

    2011-01-01

    Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia.

  13. Attending to unrelated targets boosts short-term memory for color arrays.

    PubMed

    Makovski, Tal; Swallow, Khena M; Jiang, Yuhong V

    2011-05-01

    Detecting a target typically impairs performance in a second, unrelated task. It has been recently reported however, that detecting a target in a stream of distractors can enhance long-term memory of faces and scenes that were presented concurrently with the target (the attentional boost effect). In this study we ask whether target detection also enhances performance in a visual short-term memory task, where capacity limits are severe. Participants performed two tasks at once: a one shot, color change detection task and a letter-detection task. In Experiment 1, a central letter appeared at the same time as 3 or 5 color patches (memory display). Participants encoded the colors and pressed the spacebar if the letter was a T (target). After a short retention interval, a probe display of color patches appeared. Performance on the change detection task was enhanced when a target, rather than a distractor, appeared with the memory display. This effect was not modulated by memory load or the frequency of trials in which a target appeared. However, there was no enhancement when the target appeared at the same time as the probe display (Experiment 2a) or during the memory retention interval (Experiment 2b). Together these results suggest that detecting a target facilitates the encoding of unrelated information into visual short-term memory. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Acute stress does not impair long-term memory retrieval in older people.

    PubMed

    Pulopulos, Matias M; Almela, Mercedes; Hidalgo, Vanesa; Villada, Carolina; Puig-Perez, Sara; Salvador, Alicia

    2013-09-01

    Previous studies have shown that stress-induced cortisol increases impair memory retrieval in young people. This effect has not been studied in older people; however, some findings suggest that age-related changes in the brain can affect the relationships between acute stress, cortisol and memory in older people. Our aim was to investigate the effects of acute stress on long-term memory retrieval in healthy older people. To this end, 76 participants from 56 to 76 years old (38 men and 38 women) were exposed to an acute psychosocial stressor or a control task. After the stress/control task, the recall of pictures, words and stories learned the previous day was assessed. There were no differences in memory retrieval between the stress and control groups on any of the memory tasks. In addition, stress-induced cortisol response was not associated with memory retrieval. An age-related decrease in cortisol receptors and functional changes in the amygdala and hippocampus could underlie the differences observed between the results from this study and those found in studies performed with young people. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Declarative memory impairments following a military combat course: parallel neuropsychological and biochemical investigations.

    PubMed

    Piérard, Christophe; Béracochéa, Daniel; Pérès, Michel; Jouanin, Jean-Claude; Liscia, Pierrette; Satabin, Pascale; Martin, Serge; Testylier, Guy; Guézennec, Charles Yannick; Beaumont, Maurice

    2004-01-01

    The aim of this study was to investigate the impact on several forms of memory and metabolism of a 5-day combat course including heavy and continuous physical activities and sleep deprivation. Mnemonic performance and biochemical parameters of 21 male soldiers were examined before and at the end of the course. Our results showed that short-term memory (memory span, visual memory, audiovisual association) and long-term memory were significantly impaired, whereas short-term spatial memory and planning tasks were spared. Parallel biochemical analysis showed an adaptation of energy metabolism. The observed decrease in glycaemia may be partly responsible for the long-term memory impairment, whereas the decreases in plasma cholinesterases and choline may be involved in the short-term memory deterioration. However, there are also many other reasons for the observed memory changes, one of them being chronic sleep deprivation. Copyright 2004 S. Karger AG, Basel

  16. Examining Object Location and Object Recognition Memory in Mice

    PubMed Central

    Vogel-Ciernia, Annie; Wood, Marcelo A.

    2014-01-01

    Unit Introduction The ability to store and recall our life experiences defines a person's identity. Consequently, the loss of long-term memory is a particularly devastating part of a variety of cognitive disorders, diseases and injuries. There is a great need to develop therapeutics to treat memory disorders, and thus a variety of animal models and memory paradigms have been developed. Mouse models have been widely used both to study basic disease mechanisms and to evaluate potential drug targets for therapeutic development. The relative ease of genetic manipulation of Mus musculus has led to a wide variety of genetically altered mice that model cognitive disorders ranging from Alzheimer's disease to autism. Rodents, including mice, are particularly adept at encoding and remembering spatial relationships, and these long-term spatial memories are dependent on the medial temporal lobe of the brain. These brain regions are also some of the first and most heavily impacted in disorders of human memory including Alzheimer's disease. Consequently, some of the simplest and most commonly used tests of long-term memory in mice are those that examine memory for objects and spatial relationships. However, many of these tasks, such as Morris water maze and contextual fear conditioning, are dependent upon the encoding and retrieval of emotionally aversive and inherently stressful training events. While these types of memories are important, they do not reflect the typical day-to-day experiences or memories most commonly affected in human disease. In addition, stress hormone release alone can modulate memory and thus obscure or artificially enhance these types of tasks. To avoid these sorts of confounds, we and many others have utilized tasks testing animals’ memory for object location and novel object recognition. These tasks involve exploiting rodents’ innate preference for novelty, and are inherently not stressful. In this protocol we detail how memory for object location and object identity can be used to evaluate a wide variety of mouse models and treatments. PMID:25297693

  17. Inhibition of long-term memory formation by anti-ependymin antisera after active shock-avoidance learning in goldfish.

    PubMed

    Piront, M L; Schmidt, R

    1988-02-23

    Ependymins are acidic glycoprotein constituents of goldfish brain cytoplasm and extracellular fluid which are known to participate in biochemical reactions of long-term memory formation. In earlier experiments, anti-ependymin antisera were found to cause amnesia when injected into goldfish brain ventricles after the acquisition of a vestibulomotoric training task. To investigate whether they also inhibit memory consolidation after other learning events the anti-ependymin antisera were injected after an active shock-avoidance learning paradigm, as follows: goldfish were trained in a shuttle-box to cross a barrier in order to avoid electric shocks (unconditioned stimulus) applied shortly after a light signal (conditioned stimulus). Anti-ependymin antisera blocked retention of the learned avoidance when injected 0.5, 4.5 or 24 h after acquisition of the new behavior. They had no effect, however, when injected 72 h after learning. Apparently, long-term memory was already consolidated at this point. Antisera injected 0.5 or 72 h prior to training, also did not influence learning or memory. Thirteen percent of the goldfish fled the light stimulus spontaneously. These fish therefore did not experience the unconditioned stimulus and thus were unable to learn the task. When they were treated with the anti-ependymin antisera and tested 3 days later, the spontaneous escape reaction was not affected (active control group). The ability of anti-ependymin antisera to inhibit memory consolidation and their efficacy after administration at specific time intervals are very similar for the active shock-avoidance learning and for the vestibulomotoric training. We conclude that ependymins are not task-specific, but serve a general function in biochemical reactions essential for long-term memory formation.

  18. Get the gist? The effects of processing depth on false recognition in short-term and long-term memory.

    PubMed

    Flegal, Kristin E; Reuter-Lorenz, Patricia A

    2014-07-01

    Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays.

  19. Calcium homeostasis and protein kinase/phosphatase balance participate in nicotine-induced memory improvement in passive avoidance task in mice.

    PubMed

    Michalak, Agnieszka; Biala, Grazyna

    2017-01-15

    Long-term potentiation (LTP) and long-term depression (LTD) depend on specific postsynaptic Ca 2+ /calmodulin concentration. LTP results from Ca 2+ influx through the activated NMDA receptors or voltage-gated calcium channels (VGCCs) and is linked with activation of protein kinases including mitogen-activated protein kinase (MAPK). Weaker synaptic stimulation, as a result of low Ca 2+ influx, leads to activation of Ca 2+ /calmodulin-dependent phosphatase (calcineurin - CaN) and triggers LTD. Interestingly, both memory formation and drug addiction share similar neuroplastic changes. Nicotine, which is one of the most common addictive drugs, manifests its memory effects through nicotinic acetylcholine receptors (nAChRs). Because nAChRs may also gate Ca 2+ , it is suggested that calcium signaling pathways are involved in nicotine-induced memory effects. Within the scope of the study was to evaluate the importance of calcium homeostasis and protein kinase/phosphatase balance in nicotine-induced short- and long-term memory effects. To assess memory function in mice passive avoidance test was used. The presented results confirm that acute nicotine (0.1mg/kg) improves short- and long-term memory. Pretreatment with L-type VGCC blockers (amlodipine, nicardipine verapamil) increased nicotine-induced memory improvement in the context of short- and long-term memory. Pretreatment with FK-506 (a potent CaN inhibitor) enhanced short- but not long-term memory effects of nicotine, while SL-327 (a selective MAPK/ERK kinase inhibitor) attenuated both nicotine-induced short- and long-term memory improvement. Acute nicotine enhances both types of memory via L-type VGCC blockade and via ERK1/2 activation. Only short- but not long-term memory enhancement induced by nicotine is dependent on CaN inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Recognition memory span in autopsy-confirmed Dementia with Lewy Bodies and Alzheimer's Disease.

    PubMed

    Salmon, David P; Heindel, William C; Hamilton, Joanne M; Vincent Filoteo, J; Cidambi, Varun; Hansen, Lawrence A; Masliah, Eliezer; Galasko, Douglas

    2015-08-01

    Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and Normal Control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from long-term storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Recognition Memory Span in Autopsy-Confirmed Dementia with Lewy Bodies and Alzheimer’s Disease

    PubMed Central

    Salmon, David P.; Heindel, William C.; Hamilton, Joanne M.; Filoteo, J. Vincent; Cidambi, Varun; Hansen, Lawrence A.; Masliah, Eliezer; Galasko, Douglas

    2016-01-01

    Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and normal control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from Long-Term Storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. PMID:26184443

  2. Cognitive Load Theory: A Broader View on the Role of Memory in Learning and Education

    ERIC Educational Resources Information Center

    Paas, Fred; Ayres, Paul

    2014-01-01

    According to cognitive load theory (CLT), the limitations of working memory (WM) in the learning of new tasks together with its ability to cooperate with an unlimited long-term memory (LTM) for familiar tasks enable human beings to deal effectively with complex problems and acquire highly complex knowledge and skills. With regard to WM, CLT has…

  3. Episodic memory in former professional football players with a history of concussion: an event-related functional neuroimaging study.

    PubMed

    Ford, Jaclyn H; Giovanello, Kelly S; Guskiewicz, Kevin M

    2013-10-15

    Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions.

  4. The role of semantic memory in short-term recall: effect of strategic retrieval ability in an elderly population.

    PubMed

    Larigauderie, Pascale; Michaud, Aurelie; Vicente, Siobhan

    2011-03-01

    The present paper examines the relationship between two classic phenomena: semantic effects in short-term recall (STR) tasks, which are interpreted as indicating the involvement of long-term memory (LTM) in the functioning of short-term memory, on the one hand, and the existence of individual differences amongst elderly people in strategic retrieval ability (i.e., the ability to activate representations in LTM in a controlled way) on the other hand. Forty elderly participants completed a STR task under four different conditions which were thought to differentially involve LTM representations. Several executive functions, among which the strategic retrieval ability, were evaluated. The results showed that the participants who obtained the best performances in terms of strategic retrieval ability, and only in this executive ability, also exhibited better performances in the STR task, in particular when this task was performed under conditions which favored the use of LTM.

  5. The Effects of Valence and Arousal on Associative Working Memory and Long-Term Memory

    PubMed Central

    Bergmann, Heiko C.; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P. C.

    2012-01-01

    Background Emotion can either facilitate or impair memory, depending on what, when and how memory is tested and whether the paradigm at hand is administered as a working memory (WM) or a long-term memory (LTM) task. Whereas emotionally arousing single stimuli are more likely to be remembered, memory for the relationship between two or more component parts (i.e., relational memory) appears to be worse in the presence of emotional stimuli, at least in some relational memory tasks. The current study investigated the effects of both valence (neutral vs. positive vs. negative) and arousal (low vs. high) in an inter-item WM binding and LTM task. Methodology/Principal Findings A five-pair delayed-match-to-sample (WM) task was administered. In each trial, study pairs consisted of one neutral picture and a second picture of which the emotional qualities (valence and arousal levels) were manipulated. These pairs had to be remembered across a delay interval of 10 seconds. This was followed by a probe phase in which five pairs were tested. After completion of this task, an unexpected single item LTM task as well as an LTM task for the pairs was assessed. As expected, emotional arousal impaired WM processing. This was reflected in lower accuracy for pairs consisting of high-arousal pictures compared to pairs with low-arousal pictures. A similar effect was found for the associative LTM task. However, the arousal effect was modulated by affective valence for the WM but not the LTM task; pairs with low-arousal negative pictures were not processed as well in the WM task. No significant differences were found for the single-item LTM task. Conclusions/Significance The present study provides additional evidence that processes during initial perception/encoding and post-encoding processes, the time interval between study and test and the interaction between valence and arousal might modulate the effects of “emotion” on associative memory. PMID:23300724

  6. Memory complaints in amnestic Mild Cognitive Impairment: More prospective or retrospective?

    PubMed

    de Mendonça, Alexandre; Felgueiras, Helena; Verdelho, Ana; Câmara, Sara; Grilo, Cláudia; Maroco, João; Pereira, Antonina; Guerreiro, Manuela

    2018-05-15

    Patients with amnestic Mild Cognitive Impairment (aMCI), usually considered an early stage of Alzheimer's disease, have deficits not only in retrospective memory (RM), that is, recalling of past events, words or people, but also on prospective memory (PM), the cognitive ability of remembering to execute delayed intentions in the future. This study investigated whether patients with aMCI refer more PM complaints as compared with RM complaints, and whether this might depend upon short-term vs long-term items or time-based vs event-based tasks. Patients with aMCI (n = 178) and healthy controls (n = 160) underwent the Prospective and Retrospective Memory Questionnaire (PRMQ), a 16-item instrument to appraise differences between PM and RM complaints, as well as a general mental state examination, a subjective memory complaints questionnaire, objective memory tests, and assessment of depressive symptoms and activities of daily living. Patients with aMCI reported more memory complaints evaluated with the PRMQ (total score = 44.3 ± 10.8) as compared with controls (36.7 ± 9.8, P < 0.001). Using a mixed effect repeated-measures analysis of covariance (ANCOVA) showed that participants generally referred more retrospective than prospective memory complaints. Patients with aMCI had significantly more complaints on short-term memory as compared with long-term memory, and more complaints in time-based (auto-initiated) as compared with event-based tasks, than healthy controls. Patients with aMCI reported significantly more difficulties on short-term memory, presumably reflecting internal temporal lobe pathology typical of Alzheimer's disease, and more complaints on time-based tasks, which are cognitively very demanding, but did not seem particularly troubled regarding prospective memory. Copyright © 2018 John Wiley & Sons, Ltd.

  7. Long-term memory of hierarchical relationships in free-living greylag geese.

    PubMed

    Weiss, Brigitte M; Scheiber, Isabella B R

    2013-01-01

    Animals may memorise spatial and social information for many months and even years. Here, we investigated long-term memory of hierarchically ordered relationships, where the position of a reward depended on the relationship of a stimulus relative to other stimuli in the hierarchy. Seventeen greylag geese (Anser anser) had been trained on discriminations between successive pairs of five or seven implicitly ordered colours, where the higher ranking colour in each pair was rewarded. Geese were re-tested on the task 2, 6 and 12 months after learning the dyadic colour relationships. They chose the correct colour above chance at all three points in time, whereby performance was better in colour pairs at the beginning or end of the colour series. Nonetheless, they also performed above chance on internal colour pairs, which is indicative of long-term memory for quantitative differences in associative strength and/or for relational information. There were no indications for a decline in performance over time, indicating that geese may remember dyadic relationships for at least 6 months and probably well over 1 year. Furthermore, performance in the memory task was unrelated to the individuals' sex and their performance while initially learning the dyadic colour relationships. We discuss possible functions of this long-term memory in the social domain.

  8. Defining the "D" in ISD. Part 1: Task-General Instructional Methods.

    ERIC Educational Resources Information Center

    Clark, Ruth Colvin

    1986-01-01

    The first of two articles designed to provide guidelines for the instructional development phase of instructional systems development focuses on general instructional methods supporting all instructional tasks. Teaching methods that support selective attention, processing in working memory, and connecting in long-term memory are described and…

  9. RNG105/caprin1, an RNA granule protein for dendritic mRNA localization, is essential for long-term memory formation.

    PubMed

    Nakayama, Kei; Ohashi, Rie; Shinoda, Yo; Yamazaki, Maya; Abe, Manabu; Fujikawa, Akihiro; Shigenobu, Shuji; Futatsugi, Akira; Noda, Masaharu; Mikoshiba, Katsuhiko; Furuichi, Teiichi; Sakimura, Kenji; Shiina, Nobuyuki

    2017-11-21

    Local regulation of synaptic efficacy is thought to be important for proper networking of neurons and memory formation. Dysregulation of global translation influences long-term memory in mice, but the relevance of the regulation specific for local translation by RNA granules remains elusive. Here, we demonstrate roles of RNG105/caprin1 in long-term memory formation. RNG105 deletion in mice impaired synaptic strength and structural plasticity in hippocampal neurons. Furthermore, RNG105-deficient mice displayed unprecedentedly severe defects in long-term memory formation in spatial and contextual learning tasks. Genome-wide profiling of mRNA distribution in the hippocampus revealed an underlying mechanism: RNG105 deficiency impaired the asymmetric somato-dendritic localization of mRNAs. Particularly, RNG105 deficiency reduced the dendritic localization of mRNAs encoding regulators of AMPAR surface expression, which was consistent with attenuated homeostatic AMPAR scaling in dendrites and reduced synaptic strength. Thus, RNG105 has an essential role, as a key regulator of dendritic mRNA localization, in long-term memory formation.

  10. Long-Term Memory for Place Learning Is Facilitated by Expression of cAMP Response Element-Binding Protein in the Dorsal Hippocampus

    ERIC Educational Resources Information Center

    Brightwell, Jennifer J.; Smith, Clayton A.; Neve, Rachael L.; Colombo, Paul J.

    2007-01-01

    Extensive research has shown that the hippocampus is necessary for consolidation of long-term spatial memory in rodents. We reported previously that rats using a place strategy to solve a cross maze task showed sustained phosphorylation of hippocampus cyclic AMP response element-binding protein (CREB), a transcription factor implicated in…

  11. Effects of Length of Retention Interval on Proactive Interference in Short-Term Visual Memory

    ERIC Educational Resources Information Center

    Meudell, Peter R.

    1977-01-01

    These experiments show two things: (a) In visual memory, long-term interference on a current item from items previously stored only seems to occur when the current item's retention interval is relatively long, and (b) the visual code appears to decay rapidly, reaching asymptote within 3 seconds of input in the presence of an interpolated task.…

  12. The Relationship Between Online Visual Representation of a Scene and Long-Term Scene Memory

    ERIC Educational Resources Information Center

    Hollingworth, Andrew

    2005-01-01

    In 3 experiments the author investigated the relationship between the online visual representation of natural scenes and long-term visual memory. In a change detection task, a target object either changed or remained the same from an initial image of a natural scene to a test image. Two types of changes were possible: rotation in depth, or…

  13. Experimental Effects of Acute Exercise on Iconic Memory, Short-Term Episodic, and Long-Term Episodic Memory.

    PubMed

    Yanes, Danielle; Loprinzi, Paul D

    2018-06-11

    The present experiment evaluated the effects of acute exercise on iconic memory and short- and long-term episodic memory. A two-arm, parallel-group randomized experiment was employed ( n = 20 per group; M age = 21 year). The experimental group engaged in an acute bout of moderate-intensity treadmill exercise for 15 min, while the control group engaged in a seated, time-matched computer task. Afterwards, the participants engaged in a paragraph-level episodic memory task (20 min delay and 24 h delay recall) as well as an iconic memory task, which involved 10 trials (at various speeds from 100 ms to 800 ms) of recalling letters from a 3 × 3 array matrix. For iconic memory, there was a significant main effect for time (F = 42.9, p < 0.001, η² p = 0.53) and a trend towards a group × time interaction (F = 2.90, p = 0.09, η² p = 0.07), but no main effect for group (F = 0.82, p = 0.37, η² p = 0.02). The experimental group had higher episodic memory scores at both the baseline (19.22 vs. 17.20) and follow-up (18.15 vs. 15.77), but these results were not statistically significant. These findings provide some suggestive evidence hinting towards an iconic memory and episodic benefit from acute exercise engagement.

  14. Memory-guided selective attention: Single experiences with conflict have long-lasting effects on cognitive control.

    PubMed

    Brosowsky, Nicholaus P; Crump, Matthew J C

    2018-05-17

    Adjustments in cognitive control, as measured by congruency sequence effects, are thought to be influenced by both external stimuli and internal goals. However, this dichotomy has often overshadowed the potential contribution of past experience stored in memory. Here, we examine the role of long-term episodic memory in guiding selective attention. Our aim was to demonstrate new evidence that selective attention can be modulated by long-term retrieval of stimulus-specific attentional control settings. All the experiments used a modified flanker task involving multiple unique stimuli. Critically, each stimulus was only presented twice during the experiment: first as a prime, and second as a probe. Experiments 1 and 2 varied the number of intervening trials between prime and probe and manipulated the amount of conflict using a secondary task. Experiment 3 ensured that specific colors assigned to prime stimuli were not repeated when presented as probes. Across both Experiments 1 and 2, we consistently found smaller congruency effects on probe trials when its associated prime trial was incongruent compared with congruent, demonstrating long-term congruency sequence effects. However, Experiment 3 showed no evidence for long-term effects. These findings suggest long-term preservation of selective attention processing at the episodic level, and implicate a role for memory in updating cognitive control. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. The effect of the social regulation of emotion on emotional long-term memory.

    PubMed

    Flores, Luis E; Berenbaum, Howard

    2017-04-01

    Memories for emotional events tend to be stronger than for neutral events, and weakening negative memories can be helpful to promote well-being. The present study examined whether the social regulation of emotion (in the form of handholding) altered the strength of emotional long-term memory. A sample of 219 undergraduate students viewed sets of negative, neutral, and positive images. Each participant held a stress ball while viewing half of the images and held someone's hand while viewing the other half. Participants returned 1 week later to complete a recognition task. Performance on the recognition task demonstrated that participants had lower memory accuracy for negative but not for positive pictures that were shown while they were holding someone's hand compared with when they were holding a stress ball. Although handholding altered the strength of negative emotional long-term memory, it did not down-regulate negative affective response as measured by self-report or facial expressivity. The present findings provide evidence that the social regulation of emotion can help weaken memory for negative information. Given the role of strong negative memories in different forms of psychopathology (e.g., depression, posttraumatic stress disorder), these findings may help better understand how close relationships protect against psychopathology. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Deficits of long-term memory in ecstasy users are related to cognitive complexity of the task.

    PubMed

    Brown, John; McKone, Elinor; Ward, Jeff

    2010-03-01

    Despite animal evidence that methylenedioxymethamphetamine (ecstasy) causes lasting damage in brain regions related to long-term memory, results regarding human memory performance have been variable. This variability may reflect the cognitive complexity of the memory tasks. However, previous studies have tested only a limited range of cognitive complexity. Furthermore, comparisons across different studies are made difficult by regional variations in ecstasy composition and patterns of use. The objective of this study is to evaluate ecstasy-related deficits in human verbal memory over a wide range of cognitive complexity using subjects drawn from a single geographical population. Ecstasy users were compared to non-drug using controls on verbal tasks with low cognitive complexity (stem completion), moderate cognitive complexity (stem-cued recall and word list learning) and high cognitive complexity (California Verbal Learning Test, Verbal Paired Associates and a novel Verbal Triplet Associates test). Where significant differences were found, both groups were also compared to cannabis users. More cognitively complex memory tasks were associated with clearer ecstasy-related deficits than low complexity tasks. In the most cognitively demanding task, ecstasy-related deficits remained even after multiple learning opportunities, whereas the performance of cannabis users approached that of non-drug using controls. Ecstasy users also had weaker deliberate strategy use than both non-drug and cannabis controls. Results were consistent with the proposal that ecstasy-related memory deficits are more reliable on tasks with greater cognitive complexity. This could arise either because such tasks require a greater contribution from the frontal lobe or because they require greater interaction between multiple brain regions.

  17. Training working memory in older adults: Is there an advantage of using strategies?

    PubMed

    Borella, Erika; Carretti, Barbara; Sciore, Roberta; Capotosto, Emanuela; Taconnat, Laurence; Cornoldi, Cesare; De Beni, Rossana

    2017-03-01

    The purpose of the present study was to test the efficacy of a working memory (WM) training in elderly people, and to compare the effects of a WM training based on an adaptive procedure with one combining the same procedure with the use of a strategy, based on the construction of visual mental images. Eighteen older adults received training with a WM task (the WM group), another 18 received the same WM training and were also taught to use a visual imagery strategy (the WM + Strategy group), and another 18 served as active controls. Training-related gains in the WM (criterion) task and transfer effects on measures of verbal and visuospatial WM, short-term memory (STM), processing speed, and reasoning were considered. Training gains and transfer effects were also assessed after 6 months. After the training, both the trained groups performed better than the control group in the WM criterion task, and maintained these gains 6 months later; they also showed immediate transfer effects on processing speed. The two trained groups also outperformed the control group in the long term in the WM tasks, in one of the STM tasks (backward span task), and in the processing speed measure. Long-term large effect sizes were found for all the tasks involving memory processes in the WM + Strategy group, but only for the processing speed task in the WM group. Findings are discussed in terms of the benefits and limits of teaching older people a strategy in combination with an adaptive WM training. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  18. Neural Conflict–Control Mechanisms Improve Memory for Target Stimuli

    PubMed Central

    Krebs, Ruth M.; Boehler, Carsten N.; De Belder, Maya; Egner, Tobias

    2015-01-01

    According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. PMID:24108799

  19. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns.

    PubMed

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10- and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities.

  20. Long Term Memory for Noise: Evidence of Robust Encoding of Very Short Temporal Acoustic Patterns

    PubMed Central

    Viswanathan, Jayalakshmi; Rémy, Florence; Bacon-Macé, Nadège; Thorpe, Simon J.

    2016-01-01

    Recent research has demonstrated that humans are able to implicitly encode and retain repeating patterns in meaningless auditory noise. Our study aimed at testing the robustness of long-term implicit recognition memory for these learned patterns. Participants performed a cyclic/non-cyclic discrimination task, during which they were presented with either 1-s cyclic noises (CNs) (the two halves of the noise were identical) or 1-s plain random noises (Ns). Among CNs and Ns presented once, target CNs were implicitly presented multiple times within a block, and implicit recognition of these target CNs was tested 4 weeks later using a similar cyclic/non-cyclic discrimination task. Furthermore, robustness of implicit recognition memory was tested by presenting participants with looped (shifting the origin) and scrambled (chopping sounds into 10− and 20-ms bits before shuffling) versions of the target CNs. We found that participants had robust implicit recognition memory for learned noise patterns after 4 weeks, right from the first presentation. Additionally, this memory was remarkably resistant to acoustic transformations, such as looping and scrambling of the sounds. Finally, implicit recognition of sounds was dependent on participant's discrimination performance during learning. Our findings suggest that meaningless temporal features as short as 10 ms can be implicitly stored in long-term auditory memory. Moreover, successful encoding and storage of such fine features may vary between participants, possibly depending on individual attention and auditory discrimination abilities. Significance Statement Meaningless auditory patterns could be implicitly encoded and stored in long-term memory.Acoustic transformations of learned meaningless patterns could be implicitly recognized after 4 weeks.Implicit long-term memories can be formed for meaningless auditory features as short as 10 ms.Successful encoding and long-term implicit recognition of meaningless patterns may strongly depend on individual attention and auditory discrimination abilities. PMID:27932941

  1. Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory

    PubMed Central

    Prince, Toni-Moi; Wimmer, Mathieu; Choi, Jennifer; Havekes, Robbert; Aton, Sara; Abel, Ted

    2014-01-01

    Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on long-term memory consolidation and synaptic plasticity, long-term memory was assessed when mice were sleep deprived following training in the hippocampus-dependent object place recognition task. We found that 3 hours of sleep deprivation significantly impaired memory when deprivation began 1 hour after training. In contrast, 3 hours of deprivation beginning immediately post-training did not impair spatial memory. Furthermore, a 3-hour sleep deprivation beginning 1 hour after training impaired hippocampal long-term potentiation (LTP), whereas sleep deprivation immediately after training did not affect LTP. Together, our findings define a specific 3-hour critical period, extending from 1 to 4 hours after training, during which sleep deprivation impairs hippocampal function. PMID:24380868

  2. Effect of circadian phase on memory acquisition and recall: operant conditioning vs. classical conditioning.

    PubMed

    Garren, Madeleine V; Sexauer, Stephen B; Page, Terry L

    2013-01-01

    There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning.

  3. Effect of Circadian Phase on Memory Acquisition and Recall: Operant Conditioning vs. Classical Conditioning

    PubMed Central

    Garren, Madeleine V.; Sexauer, Stephen B.; Page, Terry L.

    2013-01-01

    There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning. PMID:23533587

  4. Genetic deletion of melanin-concentrating hormone neurons impairs hippocampal short-term synaptic plasticity and hippocampal-dependent forms of short-term memory.

    PubMed

    Le Barillier, Léa; Léger, Lucienne; Luppi, Pierre-Hervé; Fort, Patrice; Malleret, Gaël; Salin, Paul-Antoine

    2015-11-01

    The cognitive role of melanin-concentrating hormone (MCH) neurons, a neuronal population located in the mammalian postero-lateral hypothalamus sending projections to all cortical areas, remains poorly understood. Mainly activated during paradoxical sleep (PS), MCH neurons have been implicated in sleep regulation. The genetic deletion of the only known MCH receptor in rodent leads to an impairment of hippocampal dependent forms of memory and to an alteration of hippocampal long-term synaptic plasticity. By using MCH/ataxin3 mice, a genetic model characterized by a selective deletion of MCH neurons in the adult, we investigated the role of MCH neurons in hippocampal synaptic plasticity and hippocampal-dependent forms of memory. MCH/ataxin3 mice exhibited a deficit in the early part of both long-term potentiation and depression in the CA1 area of the hippocampus. Post-tetanic potentiation (PTP) was diminished while synaptic depression induced by repetitive stimulation was enhanced suggesting an alteration of pre-synaptic forms of short-term plasticity in these mice. Behaviorally, MCH/ataxin3 mice spent more time and showed a higher level of hesitation as compared to their controls in performing a short-term memory T-maze task, displayed retardation in acquiring a reference memory task in a Morris water maze, and showed a habituation deficit in an open field task. Deletion of MCH neurons could thus alter spatial short-term memory by impairing short-term plasticity in the hippocampus. Altogether, these findings could provide a cellular mechanism by which PS may facilitate memory encoding. Via MCH neuron activation, PS could prepare the day's learning by increasing and modulating short-term synaptic plasticity in the hippocampus. © 2015 Wiley Periodicals, Inc.

  5. Effects of postnatal malnutrition and senescence on learning, long-term memory, and extinction in the rat.

    PubMed

    Martínez, Yvonne; Díaz-Cintra, Sofía; León-Jacinto, Uriel; Aguilar-Vázquez, Azucena; Medina, Andrea C; Quirarte, Gina L; Prado-Alcalá, Roberto A

    2009-10-12

    There is a wealth of information indicating that the hippocampal formation is important for learning and memory consolidation. The hippocampus is very sensitive to ageing and developmentally stressful factors such as prenatal malnutrition, which produces anatomical alterations of hippocampal pyramidal cells as well as impaired spatial learning. On the other hand, there are no reports about differential effects of postnatal malnutrition, installed at birth and maintained all through life in young and aged rats, on learning and memory of active avoidance, a task with an important procedural component. We now report that learning and long-term retention of this task were impaired in young malnourished animals, but not in young control, senile control, and senile malnourished Sprague-Dawley rats; young and senile rats were 90 and 660 days of age, respectively. Extinction tests showed, however, that long-term memory of the malnourished groups and senile control animals is impaired as compared with the young control animals. These data strongly suggest that the learning and long-term retention impairments seen in the young animals were due to postnatal malnutrition; in the senile groups, this cognitive alteration did not occur, probably because ageing itself is an important factor that enables the brain to engage in compensatory mechanisms that reduce the effects of malnutrition. Nonetheless, ageing and malnutrition, conditions known to produce anatomic and functional hippocampal alterations, impede the maintenance of long-term memory, as seen during the extinction test.

  6. A Familiar Pattern? Semantic Memory Contributes to the Enhancement of Visuo-Spatial Memories

    ERIC Educational Resources Information Center

    Riby, Leigh M.; Orme, Elizabeth

    2013-01-01

    In this study we quantify for the first time electrophysiological components associated with incorporating long-term semantic knowledge with visuo-spatial information using two variants of a traditional matrix patterns task. Results indicated that the matrix task with greater semantic content was associated with enhanced accuracy and RTs in a…

  7. A processing approach to the working memory/long-term memory distinction: evidence from the levels-of-processing span task.

    PubMed

    Rose, Nathan S; Craik, Fergus I M

    2012-07-01

    Recent theories suggest that performance on working memory (WM) tasks involves retrieval from long-term memory (LTM). To examine whether WM and LTM tests have common principles, Craik and Tulving's (1975) levels-of-processing paradigm, which is known to affect LTM, was administered as a WM task: Participants made uppercase, rhyme, or category-membership judgments about words, and immediate recall of the words was required after every 3 or 8 processing judgments. In Experiment 1, immediate recall did not demonstrate a levels-of-processing effect, but a subsequent LTM test (delayed recognition) of the same words did show a benefit of deeper processing. Experiment 2 showed that surprise immediate recall of 8-item lists did demonstrate a levels-of-processing effect, however. A processing account of the conditions in which levels-of-processing effects are and are not found in WM tasks was advanced, suggesting that the extent to which levels-of-processing effects are similar between WM and LTM tests largely depends on the amount of disruption to active maintenance processes. 2012 APA, all rights reserved

  8. Preservation of long-term memory and synaptic plasticity despite short-term impairments in the Tc1 mouse model of Down syndrome.

    PubMed

    Morice, Elise; Andreae, Laura C; Cooke, Sam F; Vanes, Lesley; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Bliss, Timothy V P

    2008-07-01

    Down syndrome (DS) is a genetic disorder arising from the presence of a third copy of the human chromosome 21 (Hsa21). Recently, O'Doherty and colleagues in an earlier study generated a new genetic mouse model of DS (Tc1) that carries an almost complete Hsa21. Since DS is the most common genetic cause of mental retardation, we have undertaken a detailed analysis of cognitive function and synaptic plasticity in Tc1 mice. Here we show that Tc1 mice have impaired spatial working memory (WM) but spared long-term spatial reference memory (RM) in the Morris watermaze. Similarly, Tc1 mice are selectively impaired in short-term memory (STM) but have intact long-term memory (LTM) in the novel object recognition task. The pattern of impaired STM and normal LTM is paralleled by a corresponding phenotype in long-term potentiation (LTP). Freely-moving Tc1 mice exhibit reduced LTP 1 h after induction but normal maintenance over days in the dentate gyrus of the hippocampal formation. Biochemical analysis revealed a reduction in membrane surface expression of the AMPAR (alpha-amino-3-hydroxy-5-methyl-4-propionic acid receptor) subunit GluR1 in the hippocampus of Tc1 mice, suggesting a potential mechanism for the impairment in early LTP. Our observations also provide further evidence that STM and LTM for hippocampus-dependent tasks are subserved by parallel processing streams.

  9. Differential changes in hippocampal CaMKII and GluA1 activity after memory training involving different levels of adaptive forgetting

    PubMed Central

    Fraize, Nicolas; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Touret, Monique; Parmentier, Régis; Salin, Paul Antoine; Malleret, Gaël

    2017-01-01

    Phosphorylation of CaMKII and AMPA receptor GluA1 subunit has been shown to play a major role in hippocampal-dependent long-term/reference memory (RM) and in the expression of long-term synaptic potentiation (LTP). In contrast, it has been proposed that dephosphorylation of these proteins could be involved in the opposite phenomenon of hippocampal long-term synaptic depression (LTD) and in adaptive forgetting. Adaptive forgetting allows interfering old memories to be forgotten to give new ones the opportunity to be stored in memory, and in particular in short-term/working memory (WM) that was shown to be very sensitive to proactive interference. To determine the role of CaMKII and GluA1 in adaptive forgetting, we adopted a comparative approach to assess the relative quantity and phosphorylation state of these proteins in the brain of rats trained in one of three radial maze paradigms: a RM task, a WM task involving a high level of adaptive forgetting, or a WM involving a low level of adaptive forgetting. Surprisingly, Western blot analyses revealed that training in a WM task involving a high level of adaptive forgetting specifically increased the expression of AMPA receptor GluA1 subunit and the activity of CaMKII in the dentate gyrus. These results highlight that WM with proactive interference involves mechanisms of synaptic plasticity selectively in the dentate gyrus. PMID:28096498

  10. Differential changes in hippocampal CaMKII and GluA1 activity after memory training involving different levels of adaptive forgetting.

    PubMed

    Fraize, Nicolas; Hamieh, Al Mahdy; Joseph, Mickaël Antoine; Touret, Monique; Parmentier, Régis; Salin, Paul Antoine; Malleret, Gaël

    2017-02-01

    Phosphorylation of CaMKII and AMPA receptor GluA1 subunit has been shown to play a major role in hippocampal-dependent long-term/reference memory (RM) and in the expression of long-term synaptic potentiation (LTP). In contrast, it has been proposed that dephosphorylation of these proteins could be involved in the opposite phenomenon of hippocampal long-term synaptic depression (LTD) and in adaptive forgetting. Adaptive forgetting allows interfering old memories to be forgotten to give new ones the opportunity to be stored in memory, and in particular in short-term/working memory (WM) that was shown to be very sensitive to proactive interference. To determine the role of CaMKII and GluA1 in adaptive forgetting, we adopted a comparative approach to assess the relative quantity and phosphorylation state of these proteins in the brain of rats trained in one of three radial maze paradigms: a RM task, a WM task involving a high level of adaptive forgetting, or a WM involving a low level of adaptive forgetting. Surprisingly, Western blot analyses revealed that training in a WM task involving a high level of adaptive forgetting specifically increased the expression of AMPA receptor GluA1 subunit and the activity of CaMKII in the dentate gyrus. These results highlight that WM with proactive interference involves mechanisms of synaptic plasticity selectively in the dentate gyrus. © 2017 Fraize et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Episodic Memory in Former Professional Football Players with a History of Concussion: An Event-Related Functional Neuroimaging Study

    PubMed Central

    Giovanello, Kelly S.; Guskiewicz, Kevin M.

    2013-01-01

    Abstract Previous research has demonstrated that sport-related concussions can have short-term effects on cognitive processes, but the long-term consequences are less understood and warrant more research. This study was the first to use event-related functional magnetic resonance imaging (fMRI) to examine long-term differences in neural activity during memory tasks in former athletes who have sustained multiple sport-related concussions. In an event-related fMRI study, former football players reporting multiple sport-related concussions (i.e., three or more) were compared with players who reported fewer than three concussions during a memory paradigm examining item memory (i.e., memory for the particular elements of an event) and relational memory (i.e., memory for the relationships between elements). Behaviorally, we observed that concussion history did not significantly affect behavioral performance, because persons in the low and high concussion groups had equivalent performance on both memory tasks, and in addition, that concussion history was not associated with any behavioral memory measures. Despite demonstrating equivalent behavioral performance, the two groups of former players demonstrated different neural recruitment patterns during relational memory retrieval, suggesting that multiple concussions may be associated with functional inefficiencies in the relational memory network. In addition, the number of previous concussions significantly correlated with functional activity in a number of brain regions, including the medial temporal lobe and inferior parietal lobe. Our results provide important insights in understanding the long-term functional consequences of sustaining multiple sports-related concussions. PMID:23679098

  12. A critical evaluation of monkey models of amnesia and dementia.

    PubMed

    Ridley, R M; Baker, H F

    1991-01-01

    In this review we consider various models of amnesia and dementia in monkeys and examine the validity of such models. In Section 2 we describe the various types of memory tests (tasks) available for use with monkeys and discuss the extent to which these tasks assess different facets of memory according to present theories of human memory. We argue that the rules which govern correct task performance are best regarded as a form of semantic rather than procedural memory, and that when information about stimulus attributes or reward associations is stored long-term then that knowledge is semantic. The demonstration of episodic memory in monkeys is problematic and the term recognition memory has been used too loosely. In particular, it is difficult to dissociate episodic memory for stimulus events from the use of semantic memory for the rule of the task, since dysfunction of either can produce impairment on performance of the same task. Tasks can also be divided into those which assess memory for stimulus-reward associations (evaluative memory) and those which tax stimulus-response associations including spatial and conditional responding (non-evaluative memory). This dissociation cuts across the distinction between semantic and episodic memory. In Section 3 we examine the usefulness of the classification of tasks described in Section 2 in clarifying our understanding of the contribution of the temporal lobes and the cholinergic system to memory. We conclude that evaluative and non-evaluative memory are mediated by separate parallel systems involving the amygdala and hippocampus, respectively.

  13. Enhanced long-term and impaired short-term spatial memory in GluA1 AMPA receptor subunit knockout mice: evidence for a dual-process memory model.

    PubMed

    Sanderson, David J; Good, Mark A; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H; Rawlins, J Nicholas P; Bannerman, David M

    2009-06-01

    The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations between a particular spatial location and an outcome. This hypothesis is in concordance with the theory that short-term and long-term memory depend on dissociable psychological processes. In this study we tested GluA1-/- mice on both short-term and long-term spatial memory using a simple novelty preference task. Mice were given a series of repeated exposures to a particular spatial location (the arm of a Y-maze) before their preference for a novel spatial location (the unvisited arm of the maze) over the familiar spatial location was assessed. GluA1-/- mice were impaired if the interval between the trials was short (1 min), but showed enhanced spatial memory if the interval between the trials was long (24 h). This enhancement was caused by the interval between the exposure trials rather than the interval prior to the test, thus demonstrating enhanced learning and not simply enhanced performance or expression of memory. This seemingly paradoxical enhancement of hippocampus-dependent spatial learning may be caused by GluA1 gene deletion reducing the detrimental effects of short-term memory on subsequent long-term learning. Thus, these results support a dual-process model of memory in which short-term and long-term memory are separate and sometimes competitive processes.

  14. Memory functioning in children with reading disabilities and/or attention deficit/hyperactivity disorder: a clinical investigation of their working memory and long-term memory functioning.

    PubMed

    Kibby, Michelle Y; Cohen, Morris J

    2008-11-01

    We examined memory functioning in children with reading disabilities (RD), Attention deficit/hyperactivity disorder (ADHD), and RD/ADHD using a clinic sample with a clinical instrument: the Children's Memory Scale, enhancing its generalizability. Participants included 23 children with RD, 30 with ADHD, 30 with RD/ADHD, and 30 controls. Children with RD presented with reduced verbal short-term memory (STM) but intact visual STM, central executive (CE), and long-term memory (LTM) functioning. Their deficit in STM appeared specific to tasks requiring phonetic coding of material. Children with ADHD displayed intact CE and LTM functioning but reduced visual-spatial STM, especially when off stimulant medication. Children with RD/ADHD had deficits consistent with both disorders.

  15. Misremembering what you see or hear: Dissociable effects of modality on short- and long-term false recognition.

    PubMed

    Olszewska, Justyna M; Reuter-Lorenz, Patricia A; Munier, Emily; Bendler, Sara A

    2015-09-01

    False working memories readily emerge using a visual item-recognition variant of the converging associates task. Two experiments, manipulating study and test modality, extended prior working memory results by demonstrating a reliable false recognition effect (more false alarms to associatively related lures than to unrelated lures) within seconds of encoding in either the visual or auditory modality. However, false memories were nearly twice as frequent when study lists were seen than when they were heard, regardless of test modality, although study-test modality mismatch was generally disadvantageous (consistent with encoding specificity). A final experiment that varied study-test modality using a hybrid short- and long-term memory test (Flegal, Atkins & Reuter-Lorenz, 2010) replicated the auditory advantage in the short term but revealed a reversal in the long term: The false memory effect was greater in the auditory study-test condition than in the visual study-test condition. Thus, the same encoding conditions gave rise to an opposite modality advantage depending on whether recognition was tested under short-term or long-term memory conditions. Although demonstrating continuity in associative processing across delay, the results indicate that delay condition affects the availability of modality-dependent features of the memory trace and, thus, distinctiveness, leading to dissociable patterns of short- and long-term memory performance. (c) 2015 APA, all rights reserved).

  16. Hippocampus, perirhinal cortex, and complex visual discriminations in rats and humans

    PubMed Central

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory. PMID:25593294

  17. Accelerated long-term forgetting in presymptomatic autosomal dominant Alzheimer's disease: a cross-sectional study.

    PubMed

    Weston, Philip S J; Nicholas, Jennifer M; Henley, Susie M D; Liang, Yuying; Macpherson, Kirsty; Donnachie, Elizabeth; Schott, Jonathan M; Rossor, Martin N; Crutch, Sebastian J; Butler, Christopher R; Zeman, Adam Z; Fox, Nick C

    2018-02-01

    Tests sensitive to presymptomatic changes in Alzheimer's disease could be valuable for clinical trials. Accelerated long-term forgetting-during which memory impairment becomes apparent over longer periods than usually assessed, despite normal performance on standard cognitive testing-has been identified in other temporal lobe disorders. We assessed whether accelerated long-term forgetting is a feature of presymptomatic autosomal dominant (familial) Alzheimer's disease, and whether there is an association between accelerated long-term forgetting and early subjective memory changes. This was a cross-sectional study at the Dementia Research Centre, University College London (London, UK). Participants were recruited from a cohort of autosomal dominant Alzheimer's disease families already involved in research at University College London, and had to have a parent known to be affected by an autosomal dominant Alzheimer's disease mutation, and not report any current symptoms of cognitive decline. Accelerated long-term forgetting of three tasks (list, story, and figure recall) was assessed by comparing 7-day recall with initial learning and 30-min recall. 7-day recognition was also assessed. Subjective memory was assessed using the Everyday Memory Questionnaire. The primary outcome measure for each task was the proportion of material retained at 30 min that was recalled 7 days later (ie, 7-day recall divided by 30-min recall). We used linear regression to compare accelerated long-term forgetting scores between mutation carriers and non-carriers (adjusting for age, IQ, and test set) and, for mutation carriers, to assess whether there was an association between accelerated long-term forgetting and estimated years to symptom onset (EYO). Spearman's correlation was used to examine the association between accelerated long-term forgetting and subjective memory scores. Between Feb 17, 2015 and March 30, 2016, we recruited 35 people. 21 participants were mutation carriers (mean EYO 7·2 years, SD 4·5). Across the three tasks, we detected no differences between carriers and non-carriers for initial learning or 30-min recall. The proportion of material recalled at 7 days was lower in carriers than non-carriers for list (estimated difference in mean for list recall -30·94 percentage points, 95% CI -45·16 to -16·73; p=0·0002), story (-20·10, -33·28 to -6·91; p=0·0048), and figure (-15·41, -26·88 to -3·93; p=0·012) recall. Accelerated long-term forgetting was greater in carriers nearer to their estimated age at onset (p≤0·01 for all three tests). Mutation carriers' 7-day recognition memory was also lower across all tasks (list [mean difference -5·80, 95% CI -9·96 to -2·47; p<0·01], story [-6·84, -10·94 to -3·37; p<0·01], and figure [-17·61, -27·68 to -7·72; p<0·01] recognition). Subjective memory scores were poorer in asymptomatic carriers compared with non-carriers (adjusted difference in means 7·88, 95% CI 1·36 to 14·41; p=0·016), and we found a correlation between accelerated long-term forgetting and subjective memory in mutation carriers. Accelerated long-term forgetting is an early presymptomatic feature of autosomal dominant Alzheimer's disease, which appears to pre-date other amnestic deficits and might underpin subjective memory complaints in Alzheimer's disease. Accelerated long-term forgetting testing might be useful in presymptomatic Alzheimer's disease trials. MRC, NIHR, Alzheimer's Research UK, Dementias Platform UK, Dunhill Medical Trust, ERUK, Great Western Research, Health Foundation, Patrick Berthoud Trust. Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  18. Long-term effects of frequent cannabis use on working memory and attention: an fMRI study.

    PubMed

    Jager, Gerry; Kahn, Rene S; Van Den Brink, Wim; Van Ree, Jan M; Ramsey, Nick F

    2006-04-01

    Excessive use of cannabis may have long-term effects on cognitive abilities. Mild impairments have been found in several cognitive domains, particularly in memory and attention. It is not clear, however, whether these effects also occur with moderate, recreational use of cannabis. Furthermore, little is known about underlying brain correlates. The aim of this study is to assess brain function in frequent but relatively moderate cannabis users in the domains of working memory and selective attention. Functional magnetic resonance imaging was used to examine verbal working memory and visuo-auditory selective attention in ten frequent cannabis users (after 1 week of abstinence) and ten non-using healthy controls. Groups were similar in age, gender and estimated IQ. Cannabis users and controls performed equally well during the working memory task and the selective attention task. Furthermore, cannabis users did not differ from controls in terms of overall patterns of brain activity in the regions involved in these cognitive functions. However, for working memory, a more specific region-of-interest analysis showed that, in comparison to the controls, cannabis users displayed a significant alteration in brain activity in the left superior parietal cortex. No evidence was found for long-term deficits in working memory and selective attention in frequent cannabis users after 1 week of abstinence. Nonetheless, frequent cannabis use may affect brain function, as indicated by altered neurophysiological dynamics in the left superior parietal cortex during working memory processing.

  19. Memory for relations in the short term and the long term after medial temporal lobe damage.

    PubMed

    Squire, Larry R

    2017-05-01

    A central idea about the organization of declarative memory and the function of the hippocampus is that the hippocampus provides for the coding of relationships between items. A question arises whether this idea refers to the process of forming long-term memory or whether, as some studies have suggested, memory for relations might depend on the hippocampus even at short retention intervals and even when the task falls within the province of short-term (working) memory. The latter formulation appears to place the operation of relational memory into conflict with the idea that working memory is independent of medial temporal lobe (MTL) structures. In this report, the concepts of relational memory and working memory are discussed in the light of a simple demonstration experiment. Patients with MTL lesions successfully learned and recalled two word pairs when tested directly after learning but failed altogether when tested after a delay. The results do not contradict the idea that the hippocampus has a fundamental role in relational memory. However, there is a need for further elaboration and specification of the idea in order to explain why patients with MTL lesions can establish relational memory in the short term but not in long-term memory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Randomized controlled trial of the cognitive side-effects of magnetic seizure therapy (MST) and electroconvulsive shock (ECS).

    PubMed

    Moscrip, Tammy D; Terrace, Herbert S; Sackeim, Harold A; Lisanby, Sarah H

    2006-02-01

    Magnetic seizure therapy (MST) is under development as a means of improving the cognitive side-effect profile of electroconvulsive therapy (ECT) by inducing more spatially delimited seizures that spare cortical regions involved in memory. We tested whether MST had a cognitive side-effect profile distinct from electroconvulsive shock (ECS) in a non-human primate model, using the Columbia University Primate Cognitive Profile, which has been shown to be sensitive to the cognitive effects of ECS. Using a within-subject cross-over design, daily ECS, MST, and sham (anaesthesia-only) interventions were administered in 5-wk blocks. Rhesus macaques (n = 2) were trained on a long-term memory task, an anterograde learning and memory task, and a combined anterograde and retrograde task where learning and memory were evaluated for new and previously learned 3-item lists. Acutely following each intervention, monkeys were tested on the cognitive battery twice daily, separated by a 3-h retention interval. Overall, monkeys were least accurate following ECS (p's < 0.05) compared to sham and MST. This effect was most marked for long-term memory of a constant target, short-term memory of a variable target and recall of previously learned 3-item lists. Monkeys were slowest to complete all tasks following ECS (p's = 0.0001). Time to task completion following MST did not differ from sham. These findings suggest that MST results in a more benign acute cognitive side-effect profile than ECS in this model, consistent with initial observations with human MST.

  1. Long-term memory following transient global amnesia: an investigation of episodic and semantic memory.

    PubMed

    Guillery-Girard, B; Quinette, P; Desgranges, B; Piolino, P; Viader, F; de la Sayette, V; Eustache, F

    2006-11-01

    Several studies noted persistence of memory impairment following an episode of transient global amnesia (TGA) with standard tests. To specify long-term memory impairments in a group of patients selected with stringent criteria. Both retrograde and anterograde memory were investigated in 32 patients 13-67 months after a TGA episode with original tasks encompassing retrograde semantic memory (academic, public and personal knowledge), retrograde episodic memory (autobiographical events) and anterograde episodic memory. Patients had preserved academic and public knowledge. Pathological scores were obtained in personal verbal fluency for the two most recent periods, and patients produced less autobiographical events than controls. However, when they were provided time to detail, memories were as episodic as in controls regardless of their remoteness. Anterograde episodic tasks revealed a mild but significant impairment of the capacity of re-living the condition of encoding, i.e. the moment at which words were presented. Patients who have suffered from an episode of TGA manifest deficits of memory focused on the retrieval of both recent semantic information and episodic memories and especially the capacity of re-living. These deficits may not result from a deterioration of memory per se but rather from difficulties in accessing memories.

  2. Effects of grasp compatibility on long-term memory for objects.

    PubMed

    Canits, Ivonne; Pecher, Diane; Zeelenberg, René

    2018-01-01

    Previous studies have shown action potentiation during conceptual processing of manipulable objects. In four experiments, we investigated whether these motor actions also play a role in long-term memory. Participants categorized objects that afforded either a power grasp or a precision grasp as natural or artifact by grasping cylinders with either a power grasp or a precision grasp. In all experiments, responses were faster when the affordance of the object was compatible with the type of grasp response. However, subsequent free recall and recognition memory tasks revealed no better memory for object pictures and object names for which the grasp affordance was compatible with the grasp response. The present results therefore do not support the hypothesis that motor actions play a role in long-term memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Basic and Exceptional Calculation Abilities in a Calculating Prodigy: A Case Study.

    ERIC Educational Resources Information Center

    Pesenti, Mauro; Seron, Xavier; Samson, Dana; Duroux, Bruno

    1999-01-01

    Describes the basic and exceptional calculation abilities of a calculating prodigy whose performances were investigated in single- and multi-digit number multiplication, numerical comparison, raising of powers, and short-term memory tasks. Shows how his highly efficient long-term memory storage and retrieval processes, knowledge of calculation…

  4. Monkeys have a limited form of short-term memory in audition

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer; Yin, Pingbo

    2012-01-01

    A stimulus trace may be temporarily retained either actively [i.e., in working memory (WM)] or by the weaker mnemonic process we will call passive short-term memory, in which a given stimulus trace is highly susceptible to “overwriting” by a subsequent stimulus. It has been suggested that WM is the more robust process because it exploits long-term memory (i.e., a current stimulus activates a stored representation of that stimulus, which can then be actively maintained). Recent studies have suggested that monkeys may be unable to store acoustic signals in long-term memory, raising the possibility that they may therefore also lack auditory WM. To explore this possibility, we tested rhesus monkeys on a serial delayed match-to-sample (DMS) task using a small set of sounds presented with ∼1-s interstimulus delays. Performance was accurate whenever a match or a nonmatch stimulus followed the sample directly, but it fell precipitously if a single nonmatch stimulus intervened between sample and match. The steep drop in accuracy was found to be due not to passive decay of the sample’s trace, but to retroactive interference from the intervening nonmatch stimulus. This “overwriting” effect was far greater than that observed previously in serial DMS with visual stimuli. The results, which accord with the notion that WM relies on long-term memory, indicate that monkeys perform serial DMS in audition remarkably poorly and that whatever success they had on this task depended largely, if not entirely, on the retention of stimulus traces in the passive form of short-term memory. PMID:22778411

  5. Monkeys have a limited form of short-term memory in audition.

    PubMed

    Scott, Brian H; Mishkin, Mortimer; Yin, Pingbo

    2012-07-24

    A stimulus trace may be temporarily retained either actively [i.e., in working memory (WM)] or by the weaker mnemonic process we will call passive short-term memory, in which a given stimulus trace is highly susceptible to "overwriting" by a subsequent stimulus. It has been suggested that WM is the more robust process because it exploits long-term memory (i.e., a current stimulus activates a stored representation of that stimulus, which can then be actively maintained). Recent studies have suggested that monkeys may be unable to store acoustic signals in long-term memory, raising the possibility that they may therefore also lack auditory WM. To explore this possibility, we tested rhesus monkeys on a serial delayed match-to-sample (DMS) task using a small set of sounds presented with ~1-s interstimulus delays. Performance was accurate whenever a match or a nonmatch stimulus followed the sample directly, but it fell precipitously if a single nonmatch stimulus intervened between sample and match. The steep drop in accuracy was found to be due not to passive decay of the sample's trace, but to retroactive interference from the intervening nonmatch stimulus. This "overwriting" effect was far greater than that observed previously in serial DMS with visual stimuli. The results, which accord with the notion that WM relies on long-term memory, indicate that monkeys perform serial DMS in audition remarkably poorly and that whatever success they had on this task depended largely, if not entirely, on the retention of stimulus traces in the passive form of short-term memory.

  6. In search of an auditory engram.

    PubMed

    Fritz, Jonathan; Mishkin, Mortimer; Saunders, Richard C

    2005-06-28

    Monkeys trained preoperatively on a task designed to assess auditory recognition memory were impaired after removal of either the rostral superior temporal gyrus or the medial temporal lobe but were unaffected by lesions of the rhinal cortex. Behavioral analysis indicated that this result occurred because the monkeys did not or could not use long-term auditory recognition, and so depended instead on short-term working memory, which is unaffected by rhinal lesions. The findings suggest that monkeys may be unable to place representations of auditory stimuli into a long-term store and thus question whether the monkey's cerebral memory mechanisms in audition are intrinsically different from those in other sensory modalities. Furthermore, it raises the possibility that language is unique to humans not only because it depends on speech but also because it requires long-term auditory memory.

  7. Continuous Timescale Long-Short Term Memory Neural Network for Human Intent Understanding

    PubMed Central

    Yu, Zhibin; Moirangthem, Dennis S.; Lee, Minho

    2017-01-01

    Understanding of human intention by observing a series of human actions has been a challenging task. In order to do so, we need to analyze longer sequences of human actions related with intentions and extract the context from the dynamic features. The multiple timescales recurrent neural network (MTRNN) model, which is believed to be a kind of solution, is a useful tool for recording and regenerating a continuous signal for dynamic tasks. However, the conventional MTRNN suffers from the vanishing gradient problem which renders it impossible to be used for longer sequence understanding. To address this problem, we propose a new model named Continuous Timescale Long-Short Term Memory (CTLSTM) in which we inherit the multiple timescales concept into the Long-Short Term Memory (LSTM) recurrent neural network (RNN) that addresses the vanishing gradient problem. We design an additional recurrent connection in the LSTM cell outputs to produce a time-delay in order to capture the slow context. Our experiments show that the proposed model exhibits better context modeling ability and captures the dynamic features on multiple large dataset classification tasks. The results illustrate that the multiple timescales concept enhances the ability of our model to handle longer sequences related with human intentions and hence proving to be more suitable for complex tasks, such as intention recognition. PMID:28878646

  8. The role of the BDNF Val66Met polymorphism in individual differences in long-term memory capacity.

    PubMed

    Montag, Christian; Felten, Andrea; Markett, Sebastian; Fischer, Luise; Winkel, Katja; Cooper, Andrew; Reuter, Martin

    2014-12-01

    The protein brain-derived neurotrophic factor (BDNF) plays an important role in diverse memory processes and is strongly expressed in the hippocampus. The hippocampus itself is a key structure involved in the processing of information from short-term to long-term memory. Due to the putative role of BDNF in memory consolidation, a prominent single nucleotide polymorphism (SNP) on the BDNF gene (BDNF Val66Met) was investigated in the context of long-term memory performance. N=138 students were presented with 40 words from 10 categories, each consisting of eight words such as 'fruits' or 'vehicles' in a memory recognition task (specifically the Deese-Roediger-McDermott Paradigm). Recognition performance was analyzed 25 min after the initial presentation of the word list and subsequently 1 week after the initial presentation. Overall, individual long-term memory performance immediately after learning the word list (T1) and performance 1 week later (T2) did not differ on the basis of the BDNF SNP, but an interaction effect of BDNF Val66Met by time-of-recall was found: Carriers of the Met66+ variant showed the strongest decline in hit rate performance over time.

  9. Temporally graded semantic memory loss in amnesia and semantic dementia: Further evidence for opposite gradients.

    PubMed

    Estmacott, Robyn W; Moscovitch, Morris

    2002-03-01

    The consolidation theory of long-term memory (e.g., Squire, 1992) predicts that damage to the medial temporal lobes will result in temporally graded retrograde memory loss, with a disproportionate impairment of recent relative to remote knowledge; in contrast, severe atrophy of the temporal neocortex is predicted to result in the reverse temporally graded pattern, with a selective sparing of recent memory (K.S. Graham & Hodges, 1997). Previously, we reported evidence that autobiographical episodic memory does not follow this temporal pattern (Westmacott, Leach, Freedman, & Moscovitch, 2001). In the present study, we found evidence suggesting that semantic memory loss does follow the predicted temporal pattern. We used a set of tasks that tap implicit and explicit memory for famous names and English vocabulary terms from across the 20th century. KC, a person with medial temporal amnesia, consistently demonstrated across tasks a selective deficit for famous names and vocabulary terms from the 5-year period just prior to injury; this deficit was particularly profound for elaborated semantic knowledge (e.g., word definitions, occupation of famous person). However, when asked to guess on unfamiliar items, KC's performance for names and words from this 5-year time period increased substantially, suggesting that he retains some of this knowledge at an implicit or rudimentary level. Conversely, EL, a semantic dementia patient with temporal neocortical atrophy and relative sparing of the medial temporal lobe, demonstrated a selective sparing of names and words from the most recent time period. However, this selective sparing of recent semantic memory was demonstrated in the implicit tasks only; performance on explicit tasks suggested an equally severe impairment of semantics across all time periods. Unlike the data from our previous study of autobiographical episodic memory, these findings are consistent with the predictions both of consolidation theory (Hodges & Graham, 1998; Squire, 1992) and multiple trace theory (Nadel & Moscovitch, 1999) that the hippocampus plays a timelimited role in the acquisition and representation of long-term semantic memories. Moreover, our findings suggest that tasks requiring minimal verbal production and explicit recall may provide a more sensitive and comprehensive assessment of intact memory capacity in brain-damaged individuals.

  10. Neural conflict-control mechanisms improve memory for target stimuli.

    PubMed

    Krebs, Ruth M; Boehler, Carsten N; De Belder, Maya; Egner, Tobias

    2015-03-01

    According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Pupil Dilation Reflects the Creation and Retrieval of Memories

    PubMed Central

    Goldinger, Stephen D.; Papesh, Megan H.

    2017-01-01

    It has long been known that pupils—the apertures that allow light into the eyes—dilate and constrict not only in response to changes in ambient light but also in response to emotional changes and arousing stimuli (e.g., Fontana, 1765). Charles Darwin (1872) related changes in pupil diameter to fear and other “emotions” in animals. For decades, pupillometry has been used to study cognitive processing across many domains, including perception, language, visual search, and short-term memory. Historically, such studies have examined the pupillary reflex as a correlate of attentional demands imposed by different tasks or stimuli—pupils typically dilate as cognitive demand increases. Because the neural mechanisms responsible for such task-evoked pupillary reflexes (TEPRs) implicate a role for memory processes, recent studies have examined pupillometry as a tool for investigating the cognitive processes underlying the creation of new episodic memories and their later retrieval. Here, we review the historical antecedents of current pupillometric research and discuss several recent studies linking pupillary dilation to the on-line consumption of cognitive resources in long-term-memory tasks. We conclude by discussing the future role of pupillometry in memory research and several methodological considerations that are important when designing pupillometric studies. PMID:29093614

  12. A mouse model of Rubinstein-Taybi syndrome: Defective long-term memory is ameliorated by inhibitors of phosphodiesterase 4

    PubMed Central

    Bourtchouladze, Rusiko; Lidge, Regina; Catapano, Ray; Stanley, Jennifer; Gossweiler, Scott; Romashko, Darlene; Scott, Rod; Tully, Tim

    2003-01-01

    Mice carrying a truncated form of cAMP-responsive element binding protein (CREB)-binding protein (CBP) show several developmental abnormalities similar to patients with Rubinstein-Taybi syndrome (RTS). RTS patients suffer from mental retardation, whereas long-term memory formation is defective in mutant CBP mice. A critical role for cAMP signaling during CREB-dependent long-term memory formation appears to be evolutionarily conserved. From this observation, we reasoned that drugs that modulate CREB function by enhancing cAMP signaling might yield an effective treatment for the memory defect(s) of CBP+/− mice. To this end, we designed a cell-based drug screen and discovered inhibitors of phosphodiesterase 4 (PDE4) to be particularly effective enhancers of CREB function. We extend previous behavioral observations by showing that CBP+/− mutants have impaired long-term memory but normal learning and short-term memory in an object recognition task. We demonstrate that the prototypical PDE4 inhibitor, rolipram, and a novel one (HT0712) abolish the long-term memory defect of CBP+/− mice. Importantly, the genetic lesion in CBP acts specifically to shift the dose sensitivity for HT0712 to enhance memory formation, which conveys molecular specificity on the drug's mechanism of action. Our results suggest that PDE4 inhibitors may be used to treat the cognitive dysfunction of RTS patients. PMID:12930888

  13. Training Planning and Working Memory in Third Graders

    ERIC Educational Resources Information Center

    Goldin, Andrea Paula; Segretin, Maria Soledad; Hermida, Maria Julia; Paz, Luciano; Lipina, Sebastian Javier; Sigman, Mariano

    2013-01-01

    Working memory and planning are fundamental cognitive skills supporting fluid reasoning. We show that 2 games that train working memory and planning skills in school-aged children promote transfer to 2 different tasks: an attentional test and a fluid reasoning test. We also show long-term improvement of planning and memory capacities in…

  14. A Chain-Retrieval Model for Voluntary Task Switching

    ERIC Educational Resources Information Center

    Vandierendonck, Andre; Demanet, Jelle; Liefooghe, Baptist; Verbruggen, Frederick

    2012-01-01

    To account for the findings obtained in voluntary task switching, this article describes and tests the chain-retrieval model. This model postulates that voluntary task selection involves retrieval of task information from long-term memory, which is then used to guide task selection and task execution. The model assumes that the retrieved…

  15. Implicit short- and long-term memory direct our gaze in visual search.

    PubMed

    Kruijne, Wouter; Meeter, Martijn

    2016-04-01

    Visual attention is strongly affected by the past: both by recent experience and by long-term regularities in the environment that are encoded in and retrieved from memory. In visual search, intertrial repetition of targets causes speeded response times (short-term priming). Similarly, targets that are presented more often than others may facilitate search, even long after it is no longer present (long-term priming). In this study, we investigate whether such short-term priming and long-term priming depend on dissociable mechanisms. By recording eye movements while participants searched for one of two conjunction targets, we explored at what stages of visual search different forms of priming manifest. We found both long- and short- term priming effects. Long-term priming persisted long after the bias was present, and was again found even in participants who were unaware of a color bias. Short- and long-term priming affected the same stage of the task; both biased eye movements towards targets with the primed color, already starting with the first eye movement. Neither form of priming affected the response phase of a trial, but response repetition did. The results strongly suggest that both long- and short-term memory can implicitly modulate feedforward visual processing.

  16. Differential long-term effects of haloperidol and risperidone on the acquisition and performance of tasks of spatial working and short-term memory and sustained attention in rats.

    PubMed

    Hutchings, Elizabeth J; Waller, Jennifer L; Terry, Alvin V

    2013-12-01

    A common feature of the neuropsychiatric disorders for which antipsychotic drugs are prescribed is cognitive dysfunction, yet the effects of long-term antipsychotic treatment on cognition are largely unknown. In the current study, we evaluated the effects of long-term oral treatment with the first-generation antipsychotic haloperidol (1.0 and 2.0 mg/kg daily) and the second-generation antipsychotic risperidone (1.25 and 2.5 mg/kg daily) on the acquisition and performance of two radial-arm maze (RAM) tasks and a five-choice serial reaction-time task (5C-SRTT) in rats during days 15-60 and 84-320 days of treatment, respectively. In the RAM, neither antipsychotic significantly affected the acquisition or performance of a spatial win shift or a delayed non-match-to-position task. Conversely, in the rats administered 5C-SRTT, haloperidol was associated with profound deficits in performance, and the subjects were not able to progress through all stages of task acquisition. Depending on the dose, risperidone was associated with a greater number of trials to meet specific performance criteria during task acquisition compared with vehicle-treated controls; however, most subjects were eventually able to achieve all levels of task acquisition. Both haloperidol and risperidone also increased the number of perseverative and time-out responses during certain stages of task acquisition, and the response and reward latencies were slightly higher than controls during several stages of the study. These results in rats suggest that while long-term treatment with haloperidol or risperidone may not significantly affect spatial working or short-term memory, both antipsychotics can (depending on dose) impair sustained attention, decrease psychomotor speed, increase compulsive-type behaviors, and impair cognitive flexibility.

  17. Differential Long-Term Effects of Haloperidol and Risperidone on the Acquisition and Performance of Tasks of Spatial Working and Short-Term Memory and Sustained Attention in Rats

    PubMed Central

    Hutchings, Elizabeth J.; Waller, Jennifer L.

    2013-01-01

    A common feature of the neuropsychiatric disorders for which antipsychotic drugs are prescribed is cognitive dysfunction, yet the effects of long-term antipsychotic treatment on cognition are largely unknown. In the current study, we evaluated the effects of long-term oral treatment with the first-generation antipsychotic haloperidol (1.0 and 2.0 mg/kg daily) and the second-generation antipsychotic risperidone (1.25 and 2.5 mg/kg daily) on the acquisition and performance of two radial-arm maze (RAM) tasks and a five-choice serial reaction-time task (5C-SRTT) in rats during days 15–60 and 84–320 days of treatment, respectively. In the RAM, neither antipsychotic significantly affected the acquisition or performance of a spatial win shift or a delayed non–match-to-position task. Conversely, in the rats administered 5C-SRTT, haloperidol was associated with profound deficits in performance, and the subjects were not able to progress through all stages of task acquisition. Depending on the dose, risperidone was associated with a greater number of trials to meet specific performance criteria during task acquisition compared with vehicle-treated controls; however, most subjects were eventually able to achieve all levels of task acquisition. Both haloperidol and risperidone also increased the number of perseverative and time-out responses during certain stages of task acquisition, and the response and reward latencies were slightly higher than controls during several stages of the study. These results in rats suggest that while long-term treatment with haloperidol or risperidone may not significantly affect spatial working or short-term memory, both antipsychotics can (depending on dose) impair sustained attention, decrease psychomotor speed, increase compulsive-type behaviors, and impair cognitive flexibility. PMID:24042161

  18. Short- and long-term memory contributions to immediate serial recognition: evidence from serial position effects.

    PubMed

    Purser, Harry; Jarrold, Christopher

    2010-04-01

    A long-standing body of research supports the existence of separable short- and long-term memory systems, relying on phonological and semantic codes, respectively. The aim of the current study was to measure the contribution of long-term knowledge to short-term memory performance by looking for evidence of phonologically and semantically coded storage within a short-term recognition task, among developmental samples. Each experimental trial presented 4-item lists. In Experiment 1 typically developing children aged 5 to 6 years old showed evidence of phonologically coded storage across all 4 serial positions, but evidence of semantically coded storage at Serial Positions 1 and 2. In a further experiment, a group of individuals with Down syndrome was investigated as a test case that might be expected to use semantic coding to support short-term storage, but these participants showed no evidence of semantically coded storage and evidenced phonologically coded storage only at Serial Position 4, suggesting that individuals with Down syndrome have a verbal short-term memory capacity of 1 item. Our results suggest that previous evidence of semantic effects on "short-term memory performance" does not reflect semantic coding in short-term memory itself, and provide an experimental method for researchers wishing to take a relatively pure measure of verbal short-term memory capacity, in cases where rehearsal is unlikely.

  19. Protocol for Short- and Longer-term Spatial Learning and Memory in Mice

    PubMed Central

    Willis, Emily F.; Bartlett, Perry F.; Vukovic, Jana

    2017-01-01

    Studies on the role of the hippocampus in higher cognitive functions such as spatial learning and memory in rodents are reliant upon robust and objective behavioral tests. This protocol describes one such test—the active place avoidance (APA) task. This behavioral task involves the mouse continuously integrating visual cues to orientate itself within a rotating arena in order to actively avoid a shock zone, the location of which remains constant relative to the room. This protocol details the step-by-step procedures for a novel paradigm of the hippocampal-dependent APA task, measuring acquisition of spatial learning during a single 20-min trial (i.e., short-term memory), with spatial memory encoding and retrieval (i.e., long-term memory) assessed by trials conducted over consecutive days. Using the APA task, cognitive flexibility can be assessed using the reversal learning paradigm, as this increases the cognitive load required for efficient performance in the task. In addition to a detailed experimental protocol, this paper also describes the range of its possible applications, the expected key results, as well as the analytical methods to assess the data, and the pitfalls/troubleshooting measures. The protocol described herein is highly robust and produces replicable results, thus presenting an important paradigm that enables the assessment of subtle short-term changes in spatial learning and memory, such as those observed for many experimental interventions. PMID:29089878

  20. Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory

    PubMed Central

    Xue, Gui; Love, Bradley C.; Preston, Alison R.; Poldrack, Russell A.

    2014-01-01

    Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. PMID:24872552

  1. Long-term memory for verbal and visual information in Down syndrome and Williams syndrome: performance on the Doors and People test.

    PubMed

    Jarrold, Christopher; Baddeley, Alan D; Phillips, Caroline

    2007-02-01

    Previous studies have suggested that Williams syndrome and Down syndrome may be associated with specific short-term memory deficits. Individuals with Williams syndrome perform relatively poorly on tests of visuo-spatial short-term memory and individuals with Down syndrome show a relative deficit on verbal short-term memory tasks. However, these patterns of impairments may reflect the impact of generally impaired visuo-spatial processing skills in Williams syndrome, and verbal abilities in Down syndrome. The current study explored this possibility by assessing long-term memory among 15 individuals with Williams syndrome and 20 individuals with Down syndrome using the Doors and People test, a battery which assesses recall and recognition of verbal and visual information. Individuals' performance was standardised for age and level of intellectual ability with reference to that shown by a sample of 110 typically developing children. The results showed that individuals with Down syndrome have no differential deficits in long-term memory for verbal information, implying that verbal short-term memory deficits in this population are relatively selective. Instead both individuals with Down syndrome and with Williams syndrome showed some evidence of relatively poor performance on tests of long-term memory for visual information. It is therefore possible that visuo-spatial short-term memory deficits that have previously been demonstrated in Williams syndrome may be secondary to more general problems in visuo-spatial processing in this population.

  2. The phonological neighbourhood effect on short-term memory for order.

    PubMed

    Clarkson, L; Roodenrys, S; Miller, L M; Hulme, C

    2017-03-01

    There is a growing body of literature that suggests that long-term memory (LTM) and short-term memory (STM) structures that were once thought to be distinct are actually co-dependent, and that LTM can aid retrieval from STM. The mechanism behind this effect is commonly argued to act on item memory but not on order memory. The aim of the current study was to examine whether LTM could exert an influence on STM for order by examining an effect attributed to LTM, the phonological neighbourhood effect, in a task that reduced the requirement to retain item information. In Experiment 1, 18 participants completed a serial reconstruction task where neighbourhood density alternated within the lists. In Experiment 2, 22 participants completed a serial reconstruction task using pure lists of dense and sparse neighbourhood words. In Experiment 3, 22 participants completed a reconstruction task with both mixed and pure lists. There was a significant effect of neighbourhood density with better recall for dense than sparse neighbourhood words in pure lists but not in mixed lists. Results suggest that LTM exerts an influence prior to that proposed by many models of memory for order.

  3. Pitch discrimination and melodic memory in children with autism spectrum disorders.

    PubMed

    Stanutz, Sandy; Wapnick, Joel; Burack, Jacob A

    2014-02-01

    Pitch perception is enhanced among persons with autism. We extended this finding to memory for pitch and melody among school-aged children. The purpose of this study was to investigate pitch memory in musically untrained children with autism spectrum disorders, aged 7-13 years, and to compare it to that of age- and IQ-matched typically developing children. The children were required to discriminate isolated tones in two differing contexts as well to remember melodies after a period of 1 week. The tasks were designed to employ both short- and long-term memory for music. For the pitch discrimination task, the children first had to indicate whether two isolated tones were the same or different when the second was the same or had been altered to be 25, 35, or 45 cents sharp or flat. Second, the children discriminated the tones within the context of melody. They were asked whether two melodies were the same or different when the leading tone of the second melody was the same or had been altered to be 25, 35, or 45 cents sharp or flat. Long-term memory for melody was also investigated, as the children attempted to recall four different two-bar melodies after 1 week. The children with autism spectrum disorders demonstrated elevated pitch discrimination ability in the single-tone and melodic context as well as superior long-term memory for melody. Pitch memory correlated positively with scores on measures of nonverbal fluid reasoning ability. Superior short- and long-term pitch memory was found among children with autism spectrum disorders. The results indicate an aspect to cognitive functioning that may predict both enhanced nonverbal reasoning ability and atypical language development.

  4. Retrospective attention in short-term memory has a lasting effect on long-term memory across age.

    PubMed

    Strunk, Jonathan; Morgan, Lauren; Reaves, Sarah; Verhaeghen, Paul; Duarte, Audrey

    2018-04-13

    Declines in both short- and long-term memory are typical of healthy aging. Recent findings suggest that retrodictive attentional cues ("retro-cues") that indicate the location of to-be-probed items in short-term memory (STM) have a lasting impact on long-term memory (LTM) performance in young adults. Whether older adults can also use retro-cues to facilitate both STM and LTM is unknown. Young and older adults performed a visual STM task in which spatially informative retro-cues or non-informative neutral-cues were presented during STM maintenance of real-world objects. We tested participants' memory at both STM and LTM delays for objects that were previously cued with retrodictive or neutral cues during STM order to measure the lasting impact of retrospective attention on LTM. Older adults showed reduced STM and LTM capacity compared to young adults. However, they showed similar magnitude retro-cue memory benefits as young adults at both STM and LTM delays. To the best of our knowledge, this is the first study to investigate whether retro-cues in STM facilitate the encoding of objects into LTM such that they are more likely to be subsequently retrieved by older adults. Our results support the idea that retrospective attention can be an effective means by which older adults can improve their short and long-term memory performance, even in the context of reduced memory capacity.

  5. This Is Your Brain: A Decision-Making Machine

    DTIC Science & Technology

    2015-11-01

    brain has vast comput-ing power that performs a plethora of vital tasks. It regu-lates your bodily functions, movements and emotions . It processes and...system beneath the cerebrum and associated with long-term memory and emotions . In our “The brain is a wonderful organ. It starts working when you get...presence of perceived danger. Long-term memories and experiences also are stored here, often along with their emotional connections to pain or

  6. Neuroimaging Evidence for Agenda-Dependent Monitoring of Different Features during Short-Term Source Memory Tests

    ERIC Educational Resources Information Center

    Mitchell, Karen J.; Raye, Carol L.; McGuire, Joseph T.; Frankel, Hillary; Greene, Erich J.; Johnson, Marcia K.

    2008-01-01

    A short-term source monitoring procedure with functional magnetic resonance imaging assessed neural activity when participants made judgments about the format of 1 of 4 studied items (picture, word), the encoding task performed (cost, place), or whether an item was old or new. The results support findings from long-term memory studies showing that…

  7. The Development of Automaticity in Short-Term Memory Search: Item-Response Learning and Category Learning

    ERIC Educational Resources Information Center

    Cao, Rui; Nosofsky, Robert M.; Shiffrin, Richard M.

    2017-01-01

    In short-term-memory (STM)-search tasks, observers judge whether a test probe was present in a short list of study items. Here we investigated the long-term learning mechanisms that lead to the highly efficient STM-search performance observed under conditions of consistent-mapping (CM) training, in which targets and foils never switch roles across…

  8. Short-Term Memory Coding in Children with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Henry, Lucy

    2008-01-01

    To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and…

  9. Ventromedial prefrontal cortex stimulation enhances memory and hippocampal neurogenesis in the middle-aged rats

    PubMed Central

    Liu, Albert; Jain, Neeraj; Vyas, Ajai; Lim, Lee Wei

    2015-01-01

    Memory dysfunction is a key symptom of age-related dementia. Although recent studies have suggested positive effects of electrical stimulation for memory enhancement, its potential targets remain largely unknown. In this study, we hypothesized that spatially targeted deep brain stimulation of ventromedial prefrontal cortex enhanced memory functions in a middle-aged rat model. Our results show that acute stimulation enhanced the short-, but not the long-term memory in the novel-object recognition task. Interestingly, after chronic high-frequency stimulation, both the short- and long-term memories were robustly improved in the novel-object recognition test and Morris water-maze spatial task compared to sham. Our results also demonstrated that chronic ventromedial prefrontal cortex high-frequency stimulation upregulated neurogenesis-associated genes along with enhanced hippocampal cell proliferation. Importantly, these memory behaviors were strongly correlated with the hippocampal neurogenesis. Overall, these findings suggest that chronic ventromedial prefrontal cortex high-frequency stimulation may serve as a novel effective therapeutic target for dementia-related disorders. DOI: http://dx.doi.org/10.7554/eLife.04803.001 PMID:25768425

  10. Beyond Capacity Limitations: Determinants of Word Recall Performance on Verbal Working Memory Span Tasks in Children With SLI

    PubMed Central

    Mainela-Arnold, Elina; Evans, Julia L.

    2016-01-01

    Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that verbal memory capacity and long-term linguistic knowledge may not be distinct constructs. It has been suggested that linguistic representations in SLI are weak in ways that result in a breakdown in language processing on tasks that require manipulation of unfamiliar material. In this study, the effects of word frequency, long-term linguistic knowledge, and serial order position on recall performance in the competing language processing task (CLPT) were investigated in 10 children with SLI and 10 age-matched peers (age 8 years 6 months to 12 years 4 months). The children with SLI recalled significantly fewer target words on the CLPT as compared with their age-matched controls. The SLI group did not differ, however, in their ability to recall target words having high word frequency but were significantly poorer in their ability to recall words on the CLPT having low word frequency. Differences in receptive and expressive language abilities also appeared closely related to performance on the CLPT, suggesting that working memory capacity is not distinct from language knowledge and that degraded linguistic representations may have an effect on performance on verbal working memory span tasks in children with SLI. PMID:16378481

  11. Neuropsychological assessment of memory in child and adolescent first episode psychosis: cannabis and «the paradox effect».

    PubMed

    Moreno-Granados, Josefa María; Ferrín, Maite; Salcedo-Marín, Dolores M; Ruiz-Veguilla, Miguel

    2014-01-01

    The importance of neuropsychological functioning in First-Episode Psychosis (FEP) has led to the publication of a growing number of studies in this area of research. The present study pursued three goals: First, to examine verbal and visual memory in a sample of Child and Adolescent FEP, second, to evaluate the effect of other cognitive domains on verbal and visual memory, and finally, to examine the relationship between performance in this cognitive dimension and the use of cannabis at this age. A sample of 41 FEPs and 39 healthy subjects were evaluated. The variables assessed were verbal and visual memory, attention, working memory, processing speed, mental flexibility, verbal fluency, motor coordination, planning ability and intelligence. Our results found impairment of short and long-term recall of verbal memory, and short-term visual memory in early psychosis. They also found relationships between cognitive dimensions, such as visual memory and intelligence and motor coordination. Finally, a «paradoxical» effect was found in patients who used cannabis, as the FEP consumers performed the visual memory test better than those who had not used it. Patients showed impairment of short and long-term recall of verbal information and short-term visual reproduction. In the second place, motor coordination and intelligence influenced short-term visual memory in patients in the early stages of the illness. Third, use of cannabis in patients with FEP was associated with better performance in the test that evaluated the short-term visual memory, as measured by task completion time, that is, efficiency in performing the test. However, when measured by task execution accuracy, their visual memory was no better than the controls. Copyright © 2012 SEP y SEPB. Published by Elsevier España. All rights reserved.

  12. Spatial versus verbal memory impairments in patients with fibromyalgia.

    PubMed

    Kim, Seong-Ho; Kim, Sang-Hyon; Kim, Seong-Kyu; Nam, Eun Jung; Han, Seung Woo; Lee, Seung Jae

    2012-05-01

    Mounting evidence suggests that individuals with fibromyalgia (FM) have impairments in general cognitive functions. However, few studies have explored the possibility of dissociation between verbal and visuospatial memory impairments in FM. Therefore, the purpose of this study was to investigate the asymmetrical impairment of cognitive functions between verbal and visuospatial memory and between short-term and long-term memory. Neuropsychological assessments were carried out on 23 female patients with FM and 24 healthy female controls. Verbal memory abilities were assessed using the Korean version of the Rey auditory verbal learning test (KAVLT) and digit span task, and visuospatial memory abilities were assessed using the Korean version of the Rey complex figure test (KCFT) and spatial span task. The analysis of covariance was used to assess group differences in performance on cognitive tests after controlling for depression. The two groups did not significantly differ in terms of age, years of education, or in their estimated verbal and performance IQ, but FM patients reported more severe depressive symptoms than did controls on the Beck depression inventory. Significant group differences were found in immediate and delayed recall on the KCFT (F (1,44) = 6.49, p = 0.014 and F (1,44) = 6.96, p = 0.011, respectively), whereas no difference was found in immediate and delayed recall on the KAVLT. In terms of short-term memory, neither the digit span task nor spatial span task showed any difference between groups, regardless of whether repetition was forward or backward. These findings suggest that spatial memory abilities may be more impaired than verbal memory abilities in patients with FM.

  13. False memories and lexical decision: even twelve primes do not cause long-term semantic priming.

    PubMed

    Zeelenberg, René; Pecher, Diane

    2002-03-01

    Semantic priming effects are usually obtained only if the prime is presented shortly before the target stimulus. Recent evidence obtained with the so-called false memory paradigm suggests, however, that in both explicit and implicit memory tasks semantic relations between words can result in long-lasting effects when multiple 'primes' are presented. The aim of the present study was to investigate whether these effects would generalize to lexical decision. In four experiments we showed that even as many as 12 primes do not cause long-term semantic priming. In all experiments, however, a repetition priming effect was obtained. The present results are consistent with a number of other results showing that semantic information plays a minimal role in long-term priming in visual word recognition.

  14. Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis

    PubMed Central

    Hanslmayr, Simon; Staudigl, Tobias; Fellner, Marie-Christin

    2012-01-01

    The traditional belief is that brain oscillations are important for human long-term memory, because they induce synchronized firing between cell assemblies which shapes synaptic plasticity. Therefore, most prior studies focused on the role of synchronization for episodic memory, as reflected in theta (∼5 Hz) and gamma (>40 Hz) power increases. These studies, however, neglect the role that is played by neural desynchronization, which is usually reflected in power decreases in the alpha and beta frequency band (8–30 Hz). In this paper we present a first idea, derived from information theory that gives a mechanistic explanation of how neural desynchronization aids human memory encoding and retrieval. Thereby we will review current studies investigating the role of alpha and beta power decreases during long-term memory tasks and show that alpha and beta power decreases play an important and active role for human memory. Applying mathematical models of information theory, we demonstrate that neural desynchronization is positively related to the richness of information represented in the brain, thereby enabling encoding and retrieval of long-term memories. This information via desynchronization hypothesis makes several predictions, which can be tested in future experiments. PMID:22514527

  15. Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis.

    PubMed

    Hanslmayr, Simon; Staudigl, Tobias; Fellner, Marie-Christin

    2012-01-01

    The traditional belief is that brain oscillations are important for human long-term memory, because they induce synchronized firing between cell assemblies which shapes synaptic plasticity. Therefore, most prior studies focused on the role of synchronization for episodic memory, as reflected in theta (∼5 Hz) and gamma (>40 Hz) power increases. These studies, however, neglect the role that is played by neural desynchronization, which is usually reflected in power decreases in the alpha and beta frequency band (8-30 Hz). In this paper we present a first idea, derived from information theory that gives a mechanistic explanation of how neural desynchronization aids human memory encoding and retrieval. Thereby we will review current studies investigating the role of alpha and beta power decreases during long-term memory tasks and show that alpha and beta power decreases play an important and active role for human memory. Applying mathematical models of information theory, we demonstrate that neural desynchronization is positively related to the richness of information represented in the brain, thereby enabling encoding and retrieval of long-term memories. This information via desynchronization hypothesis makes several predictions, which can be tested in future experiments.

  16. Variation in Working Memory Capacity and Temporal-Contextual Retrieval from Episodic Memory

    ERIC Educational Resources Information Center

    Spillers, Gregory J.; Unsworth, Nash

    2011-01-01

    Unsworth and Engle (2007) recently proposed a model of working memory capacity characterized by, among other things, the ability to conduct a strategic, cue-dependent search of long-term memory. Although this ability has been found to mediate individual variation in a number of higher order cognitive tasks, the component processes involved remain…

  17. Study on memories of temporal lobes and the principles of lateralization using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Kamakura, Katsutoshi

    2007-01-01

    In this study we measured the variation of brain blood quantity (Oxy-Hb, Deoxy-Hb and Total-Hb) in the temporal lobes using near infrared spectroscopy (NIRS) when the tasks of the memories were presented to the subjects. The memories are classified into the short-term memory (STM) and the long-term memory (LTM) including the episodic and semantic memories. The subjects joined in this study are 11 persons who are university students including graduate students. We used the language task of letter-number sequencing, also reverse sequencing to measure STM and the task of the episodic memory to measure LTM. As a result of analysis, concerning the episodic memory, the variation of Oxy-Hb in the left temporal lobe was larger than that of Oxy-Hb in the right temporal lobe. The result might suggest that the episodic memory has a relationship with cerebral dominance concerning language area in the left temporal lobe. It seems that the episodic memory meditated with the function of language used in this study is much stored in the left temporal lobe than in the right temporal lobe. This result coincides with the principles of lateralization. The variation of Oxy-Hb in the language task of letter-number sequencing was smaller than that of Oxy-Hb in the language task of the episodic memory.

  18. Recent life stress exposure is associated with poorer long-term memory, working memory, and self-reported memory.

    PubMed

    Shields, Grant S; Doty, Dominique; Shields, Rebecca H; Gower, Garrett; Slavich, George M; Yonelinas, Andrew P

    2017-11-01

    Although substantial research has examined the effects of stress on cognition, much of this research has focused on acute stress (e.g. manipulated in the laboratory) or chronic stress (e.g. persistent interpersonal or financial difficulties). In contrast, the effects of recent life stress on cognition have been relatively understudied. To address this issue, we examined how recent life stress is associated with long-term, working memory, and self-reported memory in a sample of 142 healthy young adults who were assessed at two time points over a two-week period. Recent life stress was measured using the newly-developed Stress and Adversity Inventory for Daily Stress (Daily STRAIN), which assesses the frequency of relatively common stressful life events and difficulties over the preceding two weeks. To assess memory performance, participants completed both long-term and working memory tasks. Participants also provided self-reports of memory problems. As hypothesized, greater recent life stress exposure was associated with worse performance on measures of long-term and working memory, as well as more self-reported memory problems. These associations were largely robust while controlling for possible confounds, including participants' age, sex, and negative affect. The findings indicate that recent life stress exposure is broadly associated with worse memory. Future studies should thus consider assessing recent life stress as a potential predictor, moderator, or covariate of memory performance.

  19. Selective interference with image retention and generation: evidence for the workspace model.

    PubMed

    van der Meulen, Marian; Logie, Robert H; Della Sala, Sergio

    2009-08-01

    We address three types of model of the relationship between working memory (WM) and long-term memory (LTM): (a) the gateway model, in which WM acts as a gateway between perceptual input and LTM; (b) the unitary model, in which WM is seen as the currently activated areas of LTM; and (c) the workspace model, in which perceptual input activates LTM, and WM acts as a separate workspace for processing and temporary retention of these activated traces. Predictions of these models were tested, focusing on visuospatial working memory and using dual-task methodology to combine two main tasks (visual short-term retention and image generation) with two interference tasks (irrelevant pictures and spatial tapping). The pictures selectively disrupted performance on the generation task, whereas the tapping selectively interfered with the retention task. Results are consistent with the predictions of the workspace model.

  20. The Effects of Elaboration and Rehearsal on Long-Term Retention of Shape Names by Kindergarteners

    ERIC Educational Resources Information Center

    Gallimore, Ronald; And Others

    1977-01-01

    Elaboration and overt rehearsal are compared as instructional paradigms for memory retention. Superior long-term retention was produced in the elaboration condition when the initial acquisition effects were statistically removed. Short-term data suggest acquisition was complexly affected by experimental condition, I.Q., and task. Elaboration…

  1. Short- and long-term cognitive effects of chronic cannabinoids administration in late-adolescence rats.

    PubMed

    Abush, Hila; Akirav, Irit

    2012-01-01

    The use of cannabis can impair cognitive function, especially short-term memory. A controversial question is whether long-term cannabis use during the late-adolescence period can cause irreversible deficits in higher brain function that persist after drug use stops. In order to examine the short- and long-term effects of chronic exposure to cannabinoids, rats were administered chronic i.p. treatment with the CB1/CB2 receptor agonist WIN55,212-2 (WIN; 1.2 mg/kg) for two weeks during the late adolescence period (post-natal days 45-60) and tested for behavioral and electrophysiological measures of cognitive performance 24 hrs, 10 and 30 days after the last drug injection. The impairing effects of chronic WIN on short-term memory in the water maze and the object recognition tasks as well as long-term potentiation (LTP) in the ventral subiculum (vSub)-nucleus accumbens (NAc) pathway were temporary as they lasted only 24 h or 10 d after withdrawal. However, chronic WIN significantly impaired hippocampal dependent short-term memory measured in the object location task 24 hrs, 10, 30, and 75 days after the last drug injection. Our findings suggest that some forms of hippocampal-dependent short-term memory are sensitive to chronic cannabinoid administration but other cognitive impairments are temporary and probably result from a residue of cannabinoids in the brain or acute withdrawal effects from cannabinoids. Understanding the effects of cannabinoids on cognitive function may provide us with tools to overcome these impairments and for cannabinoids to be more favorably considered for clinical use.

  2. Long-Term Recency in Anterograde Amnesia

    PubMed Central

    Talmi, Deborah; Caplan, Jeremy B.; Richards, Brian; Moscovitch, Morris

    2015-01-01

    Amnesia is usually described as an impairment of a long-term memory (LTM) despite an intact short-term memory (STM). The intact recency effect in amnesia had supported this view. Although dual-store models of memory have been challenged by single-store models based on interference theory, this had relatively little influence on our understanding and treatment of amnesia, perhaps because the debate has centred on experiments in the neurologically intact population. Here we tested a key prediction of single-store models for free recall in amnesia: that people with amnesia will exhibit a memory advantage for the most recent items even when all items are stored in and retrieved from LTM, an effect called long-term recency. People with amnesia and matched controls studied, and then free-recalled, word lists with a distractor task following each word, including the last (continual distractor task, CDFR). This condition was compared to an Immediate Free Recall (IFR, no distractors) and a Delayed Free Recall (DFR, end-of-list distractor only) condition. People with amnesia demonstrated the full long-term recency pattern: the recency effect was attenuated in DFR and returned in CDFR. The advantage of recency over midlist items in CDFR was comparable to that of controls, confirming a key prediction of single-store models. Memory deficits appeared only after the first word recalled in each list, suggesting the impairment in amnesia may emerge only as the participant’s recall sequence develops, perhaps due to increased susceptibility to output interference. Our findings suggest that interference mechanisms are preserved in amnesia despite the overall impairment to LTM, and challenge strict dual-store models of memory and their dominance in explaining amnesia. We discuss the implication of our findings for rehabilitation. PMID:26046770

  3. The hippocampus, time and working memory.

    PubMed

    Rawlins, J N; Tsaltas, E

    1983-12-01

    Rats were trained on a discrete trial working memory leverpress alternation task, following hippocampal lesions (HC), cortical control lesions (CC) or sham operations (SO). Each trial consisted of a forced information response, for which a randomly selected lever was presented followed by a free choice stage, when both levers were presented. The rats were rewarded for pressing the lever which had not been presented at the information stage. When the information response was not rewarded, all rats learnt the task equally well at IRIs of up to 12.75 sec. When the information response was rewarded, the HC rats showed impaired choice accuracy. The extent of this impairment depended on the IRI, being greatest at long IRIs, and least at short ones. Varying the number of leverpresses required to complete the information response affected choice accuracy equivalently in all groups: all rats chose significantly less accurately when only one leverpress was required than when ten leverpresses were required. There was no interaction between the lesion treatments and the information response requirements. It was concluded that both the length of the IRI and the occurrence of events during the IRI determine the extent of the hippocampal lesion-induced performance deficit in working memory tasks. It is proposed that hippocampal damage disrupts an intermediate-term, high-capacity memory buffer, but leaves both a residual short-term memory system and the long-term retention of associations unaffected. This proposal leads to the prediction that reference memory tasks should also be affected by hippocampal lesions when a delay is introduced between making a response and being rewarded for doing so.

  4. Functional Evidence for Memory Stabilization in Sensorimotor Adaptation: A 24-h Resting-State fMRI Study.

    PubMed

    Della-Maggiore, Valeria; Villalta, Jorge I; Kovacevic, Natasa; McIntosh, Anthony Randal

    2017-03-01

    Adaptation learning is crucial to maintain precise motor control in face of environmental perturbations. Although much progress has been made in understanding the psychophysics and neurophysiology of sensorimotor adaptation (SA), the time course of memory consolidation remains elusive. The lack of a reproducible gradient of memory resistance using protocols of retrograde interference has even led to the proposal that memories produced through SA do not consolidate. Here, we pursued an alternative approach using resting-state fMRI to track changes in functional connectivity (FC) induced by learning. Given that consolidation leads to long-term memory, we hypothesized that a change in FC that predicted long-term memory but not short-term memory would provide indirect evidence for memory stabilization. Six scans were acquired before, 15 min, 1, 3, 5.5, and 24 h after training on a center-out task under veridical or distorted visual feedback. The experimental group showed an increment in FC of a network including motor, premotor, posterior parietal cortex, cerebellum, and putamen that peaked at 5.5 h. Crucially, the strengthening of this network correlated positively with long-term retention but negatively with short-term retention. Our work provides evidence, suggesting that adaptation memories stabilize within a 6-h window, and points to different mechanisms subserving short- and long-term memory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Medial prefrontal cortex dopamine controls the persistent storage of aversive memories

    PubMed Central

    Gonzalez, María C.; Kramar, Cecilia P.; Tomaiuolo, Micol; Katche, Cynthia; Weisstaub, Noelia; Cammarota, Martín; Medina, Jorge H.

    2014-01-01

    Medial prefrontal cortex (mPFC) is essential for initial memory processing and expression but its involvement in persistent memory storage has seldom been studied. Using the hippocampus dependent inhibitory avoidance learning task and the hippocampus-independent conditioned taste aversion paradigm together with specific dopamine receptor agonists and antagonists we found that persistence but not formation of long-term aversive memories requires dopamine D1/D5 receptors activation in mPFC immediately after training and, depending on the task, between 6 and 12 h later. Our results indicate that besides its well-known participation in retrieval and early consolidation, mPFC also modulates the endurance of long-lasting aversive memories regardless of whether formation of the aversive mnemonic trace requires the participation of the hippocampus. PMID:25506318

  6. [Genotype-dependent mice behavior in cognitive tasks. Effect of noopept].

    PubMed

    Bel'nik, A P; Ostrovskaia, R U; Poletaeva, I I

    2007-01-01

    The interstrain differences in performance of C57BL/6J, BALB/c and DBA/2J male mice in two cognitive tasks were found. Mice C57BL/6J showed good learning ability and preservation of memory traces tested 10 days after performance in a simplified version of Morris water maze. Mice BALB/c learned the task but, virtually, no long-term memory traces were revealed, whereas DBA/2J demonstrated poor learning. The effect of nootropic drug Noopept (GVS-111, N-phenil-acetyl-L-prolylglycin ethyl ether) was shown to be genotype-dependent. Its administration (0.5 mg/kg i.p., 15 min before learning) improved the long-term memory in Morris test in BALB/c mice but failed to produce any improvement in C57BL/6J. The ability of mice for extrapolation of the direction of stimulus movement differently changed after Noopept injections: the proportion of correct task solutions increased in C57BL/6J and BALB/c mice, whereas the performance of DBA/2J did not change.

  7. Effects of long-term voluntary exercise on learning and memory processes: dependency of the task and level of exercise.

    PubMed

    García-Capdevila, Sílvia; Portell-Cortés, Isabel; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David

    2009-09-14

    The effect of long-term voluntary exercise (running wheel) on anxiety-like behaviour (plus maze and open field) and learning and memory processes (object recognition and two-way active avoidance) was examined on Wistar rats. Because major individual differences in running wheel behaviour were observed, the data were analysed considering the exercising animals both as a whole and grouped according to the time spent in the running wheel (low, high, and very-high running). Although some variables related to anxiety-like behaviour seem to reflect an anxiogenic compatible effect, the view of the complete set of variables could be interpreted as an enhancement of defensive and risk assessment behaviours in exercised animals, without major differences depending on the exercise level. Effects on learning and memory processes were dependent on task and level of exercise. Two-way avoidance was not affected either in the acquisition or in the retention session, while the retention of object recognition task was affected. In this latter task, an enhancement in low running subjects and impairment in high and very-high running animals were observed.

  8. Overexpression of Protein Kinase Mζ in the Hippocampus Enhances Long-Term Potentiation and Long-Term Contextual But Not Cued Fear Memory in Rats.

    PubMed

    Schuette, Sven R M; Fernández-Fernández, Diego; Lamla, Thorsten; Rosenbrock, Holger; Hobson, Scott

    2016-04-13

    The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal models in which compensatory mechanisms may occur. To avoid these issues, some studies have been done using viral overexpression of PKMζ in different brain structures to show cognitive enhancement. However, electrophysiological experiments were exclusively done in knock-out models or inhibitory studies to show depletion of LTP. There was no study showing the effect of PKMζ overexpression in the hippocampus on behavior and LTP experiments. To our knowledge, this is the first study to combine these aspects with the result of enhanced memory for contextual fear memory and to show enhanced LTP in hippocampal slices overexpressing PKMζ. Copyright © 2016 Schuette et al.

  9. Executive Resources and Item-Context Binding: Exploring the Influence of Concurrent Inhibition, Updating, and Shifting Tasks on Context Memory

    PubMed Central

    Nieznański, Marek; Obidziński, Michał; Zyskowska, Emilia; Niedziałkowska, Daria

    2015-01-01

    Previous research has demonstrated that context memory performance decreases as a result of cognitive load. However, the role of specific executive resources availability has not been specified yet. In a dual-task experiment, participants performed three kinds of concurrent task engaging: inhibition, updating, or shifting operations. In comparison with a no-load single-task condition, a significant decrease in item and context memory was observed, regardless of the kind of executive task. When executive load conditions were compared with non-specific cognitive load conditions, a significant interference effect was observed in the case of the inhibition task. The inhibition process appears to be an aspect of executive control, which relies on the same resource as item-context binding does, especially when binding refers to associations retrieved from long-term memory. PMID:26435761

  10. Direct comparison of prefrontal cortex regions engaged by working and long-term memory tasks.

    PubMed

    Braver, T S; Barch, D M; Kelley, W M; Buckner, R L; Cohen, N J; Miezin, F M; Snyder, A Z; Ollinger, J M; Akbudak, E; Conturo, T E; Petersen, S E

    2001-07-01

    Neuroimaging studies have suggested the involvement of ventrolateral, dorsolateral, and frontopolar prefrontal cortex (PFC) regions in both working (WM) and long-term memory (LTM). The current study used functional magnetic resonance imaging (fMRI) to directly compare whether these PFC regions show selective activation associated with one memory domain. In a within-subjects design, subjects performed the n-back WM task (two-back condition) as well as LTM encoding (intentional memorization) and retrieval (yes-no recognition) tasks. Additionally, each task was performed with two different types of stimulus materials (familiar words, unfamiliar faces) in order to determine the influence of material-type vs task-type. A bilateral region of dorsolateral PFC (DL-PFC; BA 46/9) was found to be selectively activated during the two-back condition, consistent with a hypothesized role for this region in active maintenance and/or manipulation of information in WM. Left frontopolar PFC (FP-PFC) was also found to be selectively engaged during the two-back. Although FP-PFC activity has been previously associated with retrieval from LTM, no frontopolar regions were found to be selectively engaged by retrieval. Finally, lateralized ventrolateral PFC (VL-PFC) regions were found to be selectively engaged by material-type, but uninfluenced by task-type. These results highlight the importance of examining PFC activity across multiple memory domains, both for functionally differentiating PFC regions (e.g., task-selectivity vs material-selectivity in DL-PFC and VL-PFC) and for testing the applicability of memory domain-specific theories (e.g., FP-PFC in LTM retrieval).

  11. Reduced prefrontal activation during working and long-term memory tasks and impaired patient-reported cognition among cancer survivors postchemotherapy compared with healthy controls.

    PubMed

    Wang, Lei; Apple, Alexandra C; Schroeder, Matthew P; Ryals, Anthony J; Voss, Joel L; Gitelman, Darren; Sweet, Jerry J; Butt, Zeeshan A; Cella, David; Wagner, Lynne I

    2016-01-15

    Patients who receive adjuvant chemotherapy have reported cognitive impairments that may last for years after the completion of treatment. Working memory-related and long-term memory-related changes in this population are not well understood. The objective of this study was to demonstrate that cancer-related cognitive impairments are associated with the under recruitment of brain regions involved in working and recognition memory compared with controls. Oncology patients (n = 15) who were receiving adjuvant chemotherapy and had evidence of cognitive impairment according to neuropsychological testing and self-report and a group of age-matched, education group-matched, cognitively normal control participants (n = 14) underwent functional magnetic resonance imaging. During functional magnetic resonance imaging, participants performed a nonverbal n-back working memory task and a visual recognition task. On the working memory task, when 1-back and 2-back data were averaged and contrasted with 0-back data, significantly reduced activation was observed in the right dorsolateral prefrontal cortex for oncology patients versus controls. On the recognition task, oncology patients displayed decreased activity of the left-middle hippocampus compared with controls. Neuroimaging results were not associated with patient-reported cognition. Decreased recruitment of brain regions associated with the encoding of working memory and recognition memory was observed in the oncology patients compared with the control group. These results suggest that there is a reduction in neural functioning postchemotherapy and corroborate patient-reported cognitive difficulties after cancer treatment, although a direct association was not observed. Cancer 2016;122:258-268. © 2015 American Cancer Society. © 2015 American Cancer Society.

  12. Remote Memory and Cortical Synaptic Plasticity Require Neuronal CCCTC-Binding Factor (CTCF).

    PubMed

    Kim, Somi; Yu, Nam-Kyung; Shim, Kyu-Won; Kim, Ji-Il; Kim, Hyopil; Han, Dae Hee; Choi, Ja Eun; Lee, Seung-Woo; Choi, Dong Il; Kim, Myung Won; Lee, Dong-Sung; Lee, Kyungmin; Galjart, Niels; Lee, Yong-Seok; Lee, Jae-Hyung; Kaang, Bong-Kiun

    2018-05-30

    The molecular mechanism of long-term memory has been extensively studied in the context of the hippocampus-dependent recent memory examined within several days. However, months-old remote memory maintained in the cortex for long-term has not been investigated much at the molecular level yet. Various epigenetic mechanisms are known to be important for long-term memory, but how the 3D chromatin architecture and its regulator molecules contribute to neuronal plasticity and systems consolidation is still largely unknown. CCCTC-binding factor (CTCF) is an 11-zinc finger protein well known for its role as a genome architecture molecule. Male conditional knock-out mice in which CTCF is lost in excitatory neurons during adulthood showed normal recent memory in the contextual fear conditioning and spatial water maze tasks. However, they showed remarkable impairments in remote memory in both tasks. Underlying the remote memory-specific phenotypes, we observed that female CTCF conditional knock-out mice exhibit disrupted cortical LTP, but not hippocampal LTP. Similarly, we observed that CTCF deletion in inhibitory neurons caused partial impairment of remote memory. Through RNA sequencing, we observed that CTCF knockdown in cortical neuron culture caused altered expression of genes that are highly involved in cell adhesion, synaptic plasticity, and memory. These results suggest that remote memory storage in the cortex requires CTCF-mediated gene regulation in neurons, whereas recent memory formation in the hippocampus does not. SIGNIFICANCE STATEMENT CCCTC-binding factor (CTCF) is a well-known 3D genome architectural protein that regulates gene expression. Here, we use two different CTCF conditional knock-out mouse lines and reveal, for the first time, that CTCF is critically involved in the regulation of remote memory. We also show that CTCF is necessary for appropriate expression of genes, many of which we found to be involved in the learning- and memory-related processes. Our study provides behavioral and physiological evidence for the involvement of CTCF-mediated gene regulation in the remote long-term memory and elucidates our understanding of systems consolidation mechanisms. Copyright © 2018 the authors 0270-6474/18/385042-11$15.00/0.

  13. Long-Term Aftereffects of Response Inhibition: Memory Retrieval, Task Goals, and Cognitive Control

    ERIC Educational Resources Information Center

    Verbruggen, Frederick; Logan, Gordon D.

    2008-01-01

    Cognitive control theories attribute control to executive processes that adjust and control behavior online. Theories of automaticity attribute control to memory retrieval. In the present study, online adjustments and memory retrieval were examined, and their roles in controlling performance in the stop-signal paradigm were elucidated. There was…

  14. Episodic Long-Term Memory of Spoken Discourse Masked by Speech: What Is the Role for Working Memory Capacity?

    ERIC Educational Resources Information Center

    Sorqvist, Patrik; Ronnberg, Jerker

    2012-01-01

    Purpose: To investigate whether working memory capacity (WMC) modulates the effects of to-be-ignored speech on the memory of materials conveyed by to-be-attended speech. Method: Two tasks (reading span, Daneman & Carpenter, 1980; Ronnberg et al., 2008; and size-comparison span, Sorqvist, Ljungberg, & Ljung, 2010) were used to measure individual…

  15. Reverse inference of memory retrieval processes underlying metacognitive monitoring of learning using multivariate pattern analysis.

    PubMed

    Stiers, Peter; Falbo, Luciana; Goulas, Alexandros; van Gog, Tamara; de Bruin, Anique

    2016-05-15

    Monitoring of learning is only accurate at some time after learning. It is thought that immediate monitoring is based on working memory, whereas later monitoring requires re-activation of stored items, yielding accurate judgements. Such interpretations are difficult to test because they require reverse inference, which presupposes specificity of brain activity for the hidden cognitive processes. We investigated whether multivariate pattern classification can provide this specificity. We used a word recall task to create single trial examples of immediate and long term retrieval and trained a learning algorithm to discriminate them. Next, participants performed a similar task involving monitoring instead of recall. The recall-trained classifier recognized the retrieval patterns underlying immediate and long term monitoring and classified delayed monitoring examples as long-term retrieval. This result demonstrates the feasibility of decoding cognitive processes, instead of their content. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Central executive involvement in children's spatial memory.

    PubMed

    Ang, Su Yin; Lee, Kerry

    2008-11-01

    Previous research with adults found that spatial short-term and working memory tasks impose similar demands on executive resources. We administered spatial short-term and working memory tasks to 8- and 11-year-olds in three separate experiments. In Experiments 1 and 2 an executive suppression task (random number generation) was found to impair performances on a short-term memory task (Corsi blocks), a working memory task (letter rotation), and a spatial visualisation task (paper folding). In Experiment 3 an articulatory suppression task only impaired performance on the working memory task. These results suggest that short-term and working memory performances are dependent on executive resources. The degree to which the short-term memory task was dependent on executive resources was expected to be related to the amount of experience children have had with such tasks. Yet we found no significant age-related suppression effects. This was attributed to differences in employment of cognitive strategies by the older children.

  17. Global neural pattern similarity as a common basis for categorization and recognition memory.

    PubMed

    Davis, Tyler; Xue, Gui; Love, Bradley C; Preston, Alison R; Poldrack, Russell A

    2014-05-28

    Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. Copyright © 2014 the authors 0270-6474/14/347472-13$15.00/0.

  18. Cognition and the Brain

    DTIC Science & Technology

    1992-05-25

    by a by the distinctions between short-term and long-term sensory event. As evidence they shom that %khen the ISI memory ’. episodic , semantic and...Patterson. J.V. and Starr. A. I 19S9a) ams .1 function of variations in semantic citaceori,’itions. In: D. Brain potentials in a memory scanning task. 1...number) FIELD GROUP SUB-GROUP L ocalization of cognitive processes; alpha-band suppression; memory scanning for tones; silent speech; visual image

  19. Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats.

    PubMed

    Almaguer-Melian, William; Bergado-Rosado, Jorge; Pavón-Fuentes, Nancy; Alberti-Amador, Esteban; Mercerón-Martínez, Daymara; Frey, Julietta U

    2012-01-17

    Novelty processing can transform short-term into long-term memory. We propose that this memory-reinforcing effect of novelty could be explained by mechanisms outlined in the "synaptic tagging hypothesis." Initial short-term memory is sustained by a transient plasticity change at activated synapses and sets synaptic tags. These tags are later able to capture and process the plasticity-related proteins (PRPs), which are required to transform a short-term synaptic change into a long-term one. Novelty is involved in inducing the synthesis of PRPs [Moncada D, et al. (2011) Proc Natl Acad Sci USA 108:12937-12936], which are then captured by the tagged synapses, consolidating memory. In contrast to novelty, stress can impair learning, memory, and synaptic plasticity. Here, we address questions as to whether novelty-induced PRPs are able to prevent the loss of memory caused by stress and if the latter would not interact with the tag-setting process. We used water-maze (WM) training as a spatial learning paradigm to test our hypothesis. Stress was induced by a strong foot shock (FS; 5 × 1 mA, 2 s) applied 5 min after WM training. Our data show that FS reduced long-term but not short-term memory in the WM paradigm. This negative effect on memory consolidation was time- and training-dependent. Interestingly, novelty exposure prevented the stress-induced memory loss of the spatial task and increased BDNF and Arc expression. This rescuing effect was blocked by anisomycin, suggesting that WM-tagged synapses were not reset by FS and were thus able to capture the novelty-induced PRPs, re-establishing FS-impaired long-term memory.

  20. Different types of working memory binding in epilepsy patients with unilateral anterior temporal lobectomy.

    PubMed

    van Geldorp, Bonnie; Bouman, Zita; Hendriks, Marc P H; Kessels, Roy P C

    2014-03-01

    The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Motivation and short-term memory in visual search: Attention's accelerator revisited.

    PubMed

    Schneider, Daniel; Bonmassar, Claudia; Hickey, Clayton

    2018-05-01

    A cue indicating the possibility of cash reward will cause participants to perform memory-based visual search more efficiently. A recent study has suggested that this performance benefit might reflect the use of multiple memory systems: when needed, participants may maintain the to-be-remembered object in both long-term and short-term visual memory, with this redundancy benefitting target identification during search (Reinhart, McClenahan & Woodman, 2016). Here we test this compelling hypothesis. We had participants complete a memory-based visual search task involving a reward cue that either preceded presentation of the to-be-remembered target (pre-cue) or followed it (retro-cue). Following earlier work, we tracked memory representation using two components of the event-related potential (ERP): the contralateral delay activity (CDA), reflecting short-term visual memory, and the anterior P170, reflecting long-term storage. We additionally tracked attentional preparation and deployment in the contingent negative variation (CNV) and N2pc, respectively. Results show that only the reward pre-cue impacted our ERP indices of memory. However, both types of cue elicited a robust CNV, reflecting an influence on task preparation, both had equivalent impact on deployment of attention to the target, as indexed in the N2pc, and both had equivalent impact on visual search behavior. Reward prospect thus has an influence on memory-guided visual search, but this does not appear to be necessarily mediated by a change in the visual memory representations indexed by CDA. Our results demonstrate that the impact of motivation on search is not a simple product of improved memory for target templates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Short-term retention of a single word relies on retrieval from long-term memory when both rehearsal and refreshing are disrupted.

    PubMed

    Rose, Nathan S; Buchsbaum, Bradley R; Craik, Fergus I M

    2014-07-01

    Many working memory (WM) models propose that the focus of attention (or primary memory) has a capacity limit of one to four items, and therefore, that performance on WM tasks involves retrieving some items from long-term (or secondary) memory (LTM). In the present study, we present evidence suggesting that recall of even one item on a WM task can involve retrieving it from LTM. The WM task required participants to make a deep (living/nonliving) or shallow ("e"/no "e") level-of-processing (LOP) judgment on one word and to recall the word after a 10-s delay on each trial. During the delay, participants either rehearsed the word or performed an easy or a hard math task. When the to-be-remembered item could be rehearsed, recall was fast and accurate. When it was followed by a math task, recall was slower, error-prone, and benefited from a deeper LOP at encoding, especially for the hard math condition. The authors suggest that a covert-retrieval mechanism may have refreshed the item during easy math, and that the hard math condition shows that even a single item cannot be reliably held in WM during a sufficiently distracting task--therefore, recalling the item involved retrieving it from LTM. Additionally, performance on a final free recall (LTM) test was better for items recalled following math than following rehearsal, suggesting that initial recall following math involved elaborative retrieval from LTM, whereas rehearsal did not. The authors suggest that the extent to which performance on WM tasks involves retrieval from LTM depends on the amounts of disruption to both rehearsal and covert-retrieval/refreshing maintenance mechanisms.

  3. Opposite effects depending on learning and memory demands in dorsomedial prefrontal cortex lesioned rats performing an olfactory task.

    PubMed

    Chaillan, F A; Marchetti, E; Delfosse, F; Roman, F S; Soumireu-Mourat, B

    1997-01-01

    In this study, the functional properties of the dorsomedial prefrontal cortex (dmPFC) of the rat were examined in two olfactory tasks. In a successive cue olfactory discrimination task, dmPFC lesioned animals improved performance across sessions more rapidly than operated control animals. In an olfactory task using fixed interval training, animals with similar lesions were impaired. Both effects, although opposite, can be explained by a temporal processing deficit. The present results seem to indicate that the dmPFC is required for timing, classified as part of non-declarative memory. As reference memory improved in the lesioned animals, the finding is that the dmPFC supports non-declarative memory and thus interacts with declarative memory in the long-term formation of the associations between a particular stimulus (olfactory cue) and particular responses.

  4. Increase in posterior alpha activity during rehearsal predicts successful long-term memory formation of word sequences.

    PubMed

    Meeuwissen, Esther B; Takashima, Atsuko; Fernández, Guillén; Jensen, Ole

    2011-12-01

    It is becoming increasingly clear that demanding cognitive tasks rely on an extended network engaging task-relevant areas and, importantly, disengaging task-irrelevant areas. Given that alpha activity (8-12 Hz) has been shown to reflect the disengagement of task-irrelevant regions in attention and working memory tasks, we here ask if alpha activity plays a related role for long-term memory formation. Subjects were instructed to encode and maintain the order of word sequences while the ongoing brain activity was recorded using magnetoencephalography (MEG). In each trial, three words were presented followed by a 3.4 s rehearsal interval. Considering the good temporal resolution of MEG this allowed us to investigate the word presentation and rehearsal interval separately. The sequences were grouped in trials where word order either could be tested immediately (working memory trials; WM) or later (LTM trials) according to instructions. Subjects were tested on their ability to retrieve the order of the three words. The data revealed that alpha power in parieto-occipital regions was lower during word presentation compared to rehearsal. Our key finding was that parieto-occipital alpha power during the rehearsal period was markedly stronger for successfully than unsuccessfully encoded LTM sequences. This subsequent memory effect demonstrates that high posterior alpha activity creates an optimal brain state for successful LTM formation possibly by actively reducing parieto-occipital activity that might interfere with sequence encoding. Copyright © 2010 Wiley Periodicals, Inc.

  5. Enhancing long-term memory with stimulation tunes visual attention in one trial.

    PubMed

    Reinhart, Robert M G; Woodman, Geoffrey F

    2015-01-13

    Scientists have long proposed that memory representations control the mechanisms of attention that focus processing on the task-relevant objects in our visual field. Modern theories specifically propose that we rely on working memory to store the object representations that provide top-down control over attentional selection. Here, we show that the tuning of perceptual attention can be sharply accelerated after 20 min of noninvasive brain stimulation over medial-frontal cortex. Contrary to prevailing theories of attention, these improvements did not appear to be caused by changes in the nature of the working memory representations of the search targets. Instead, improvements in attentional tuning were accompanied by changes in an electrophysiological signal hypothesized to index long-term memory. We found that this pattern of effects was reliably observed when we stimulated medial-frontal cortex, but when we stimulated posterior parietal cortex, we found that stimulation directly affected the perceptual processing of the search array elements, not the memory representations providing top-down control. Our findings appear to challenge dominant theories of attention by demonstrating that changes in the storage of target representations in long-term memory may underlie rapid changes in the efficiency with which humans can find targets in arrays of objects.

  6. Very low birth weight piglets show improved cognitive performance in the spatial cognitive holeboard task.

    PubMed

    Antonides, Alexandra; Schoonderwoerd, Anne C; Nordquist, Rebecca E; van der Staay, Franz Josef

    2015-01-01

    Low birth weight (LBW) is common in humans and has been found to cause lasting cognitive and developmental deficits later in life. It is thought that the primary cause is intra-uterine growth restriction (IUGR) due to a shortage of oxygen and supply of nutrients to the fetus. Pigs appear to be a good model animal to investigate long-term cognitive effects of LBW, as LBW is common in commercially farmed breeds of pigs. Moreover, pigs are developmentally similar to humans and can be trained to perform complex tasks. In this study, we trained ten very low birth weight (vLBW) piglets and their ten normal birth weight (NBW) siblings in a spatial cognitive holeboard task in order to investigate long-term cognitive effects of LBW. In this task, four out of sixteen holes contain a hidden food reward, which allows measuring working memory (WM) (short-term memory) and reference memory (RM) (long-term memory) in parallel. Piglets were trained for 46-54 trials during the acquisition phase, followed by a 20-trial reversal phase in which a different set of four holes was baited. Both groups acquired the task and improved their performance over time. A mixed model repeated measures ANOVA revealed that vLBW piglets showed better RM performance than NBW piglets in both the acquisition and reversal phase. Additionally, WM scores in the vLBW were less disrupted than in the NBW animals when switched to the reversal phase. These findings are contrary to findings in humans. Moreover, vLBW pigs had lower hair cortisol concentrations (HCCs) than NBW pigs in flank hair at 12 weeks of age. These results could indicate that restricted intra-uterine growth causes compensatory mechanisms to arise in early development that result in beneficial effects for vLBW piglets, increasing their low survival chances in early-life competition.

  7. Tc1 mouse model of trisomy-21 dissociates properties of short- and long-term recognition memory.

    PubMed

    Hall, Jessica H; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Harwood, John L; Good, Mark A

    2016-04-01

    The present study examined memory function in Tc1 mice, a transchromosomic model of Down syndrome (DS). Tc1 mice demonstrated an unusual delay-dependent deficit in recognition memory. More specifically, Tc1 mice showed intact immediate (30sec), impaired short-term (10-min) and intact long-term (24-h) memory for objects. A similar pattern was observed for olfactory stimuli, confirming the generality of the pattern across sensory modalities. The specificity of the behavioural deficits in Tc1 mice was confirmed using APP overexpressing mice that showed the opposite pattern of object memory deficits. In contrast to object memory, Tc1 mice showed no deficit in either immediate or long-term memory for object-in-place information. Similarly, Tc1 mice showed no deficit in short-term memory for object-location information. The latter result indicates that Tc1 mice were able to detect and react to spatial novelty at the same delay interval that was sensitive to an object novelty recognition impairment. These results demonstrate (1) that novelty detection per se and (2) the encoding of visuo-spatial information was not disrupted in adult Tc1 mice. The authors conclude that the task specific nature of the short-term recognition memory deficit suggests that the trisomy of genes on human chromosome 21 in Tc1 mice impacts on (perirhinal) cortical systems supporting short-term object and olfactory recognition memory. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Scaring Them into Learning!? Using a Snake Screen to Enhance the Knowledge Transfer Effectiveness of a Web Interface

    ERIC Educational Resources Information Center

    Kock, Ned; Chatelain-Jardón, Ruth; Carmona, Jesus

    2009-01-01

    It seems that surprise events have the potential to turn short-term memories into long-term memories, an unusual phenomenon that may have limited but interesting applications in learning tasks. This surprise-enhanced cognition phenomenon is theoretically modeled based on the notion that many human mental traits have evolved through natural…

  9. The self-reference effect on episodic memory recollection in young and older adults and Alzheimer's disease.

    PubMed

    Lalanne, Jennifer; Rozenberg, Johanna; Grolleau, Pauline; Piolino, Pascale

    2013-12-01

    The Self-reference effect (SRE) on long-term episodic memory and autonoetic consciousness has been investigated in young adults, scarcely in older adults, but never in Alzheimer's patients. Is the functional influence of Selfreference still present when the individual's memory and identity are impaired? We investigated this issue in 60 young subjects, 41 elderly subjects, and 28 patients with Alzheimer's disease, by using 1) an incidental learning task of personality traits in three encoding conditions, inducing variable degrees of depth of processing and personal involvement, 2) a 2- minute retention interval free recall task, and 3) a 20-minute delayed recognition task, combined with a remember-know paradigm. Each recorded score was corrected for errors (intrusions in free recall, false alarms in recognition, and false source memory in remember responses). Compared with alternative encodings, the Self-reference significantly enhanced performance on the free recall task in the young group, and on the recognition task both in the young and older groups but not in the Alzheimer group. The most important finding in the Alzheimer group is that the Self-reference led the most often to a subjective sense of remembering (especially for the positive words) with the retrieval of the correct encoding source. This Self-reference recollection effect in patients was related to independent subjective measures of a positive and definite sense of Self (measured by the Tennessee Self Concept Scale), and to memory complaints in daily life. In conclusion, these results demonstrated the power and robustness of the Self-reference effect on recollection in long-term episodic memory in Alzheimer's disease, albeit the retrieval is considerably reduced. These results should open new perspectives for the development of rehabilitation programs for memory deficits.

  10. Redintegration, task difficulty, and immediate serial recall tasks.

    PubMed

    Ritchie, Gabrielle; Tolan, Georgina Anne; Tehan, Gerald

    2015-03-01

    While current theoretical models remain somewhat inconclusive in their explanation of short-term memory (STM), many theories suggest at least a contribution of long-term memory (LTM) to the short-term system. A number of researchers refer to this process as redintegration (e.g., Schweickert, 1993). Under short-term recall conditions, the current study investigated the effects of redintegration and task difficulty in order to extend research conducted by Neale and Tehan (2007). Thirty participants in Experiment 1 and 26 participants in Experiment 2 completed a serial recall task in which retention interval, presentation rate, and articulatory suppression were used to modify task difficulty. Redintegration was examined by manipulating the characteristics of the to-be-remembered items; lexicality in Experiment 1 and wordlikeness in Experiment 2. Responses were scored based on correct-in-position recall, item scoring, and order accuracy scoring. In line with the Neale and Tehan results, as the difficulty of the task increased so did the effects of redintegration. This was evident in that the advantage for words in Experiment 1 and wordlikeness in Experiment 2 decreased as task difficulty increased. This relationship was observed for item but not order memory, and findings were discussed in relation to the theory of redintegration. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  11. Control of the Contents of Working Memory--A Comparison of Two Paradigms and Two Age Groups

    ERIC Educational Resources Information Center

    Oberauer, Klaus

    2005-01-01

    Two experiments investigated whether young and old adults can temporarily remove information from a capacity-limited central component of working memory (WM) into another component, the activated part of long-term memory (LTM). Experiment 1 used a modified Sternberg recognition task (S. Sternberg, 1969); Experiment 2 used an arithmetic…

  12. Task-relevant perceptual features can define categories in visual memory too.

    PubMed

    Antonelli, Karla B; Williams, Carrick C

    2017-11-01

    Although Konkle, Brady, Alvarez, and Oliva (2010, Journal of Experimental Psychology: General, 139(3), 558) claim that visual long-term memory (VLTM) is organized on underlying conceptual, not perceptual, information, visual memory results from visual search tasks are not well explained by this theory. We hypothesized that when viewing an object, any task-relevant visual information is critical to the organizational structure of VLTM. In two experiments, we examined the organization of VLTM by measuring the amount of retroactive interference created by objects possessing different combinations of task-relevant features. Based on task instructions, only the conceptual category was task relevant or both the conceptual category and a perceptual object feature were task relevant. Findings indicated that when made task relevant, perceptual object feature information, along with conceptual category information, could affect memory organization for objects in VLTM. However, when perceptual object feature information was task irrelevant, it did not contribute to memory organization; instead, memory defaulted to being organized around conceptual category information. These findings support the theory that a task-defined organizational structure is created in VLTM based on the relevance of particular object features and information.

  13. Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention.

    PubMed

    Kundu, Bornali; Sutterer, David W; Emrich, Stephen M; Postle, Bradley R

    2013-05-15

    Although long considered a natively endowed and fixed trait, working memory (WM) ability has recently been shown to improve with intensive training. What remains controversial and poorly understood, however, are the neural bases of these training effects and the extent to which WM training gains transfer to other cognitive tasks. Here we present evidence from human electrophysiology (EEG) and simultaneous transcranial magnetic stimulation and EEG that the transfer of WM training to other cognitive tasks is supported by changes in task-related effective connectivity in frontoparietal and parieto-occipital networks that are engaged by both the trained and transfer tasks. One consequence of this effect is greater efficiency of stimulus processing, as evidenced by changes in EEG indices of individual differences in short-term memory capacity and in visual search performance. Transfer to search-related activity provides evidence that something more fundamental than task-specific strategy or stimulus-specific representations has been learned. Furthermore, these patterns of training and transfer highlight the role of common neural systems in determining individual differences in aspects of visuospatial cognition.

  14. Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention

    PubMed Central

    Kundu, Bornali; Sutterer, David W.; Emrich, Stephen M.; Postle, Bradley R.

    2013-01-01

    Although long considered a natively endowed and fixed trait, working memory (WM) ability has recently been shown to improve with intensive training. What remains controversial and poorly understood, however, are the neural bases of these training effects, and the extent to which WM training gains transfer to other cognitive tasks. Here we present evidence from human electrophysiology (EEG) and simultaneous transcranial magnetic stimulation (TMS) and EEG that the transfer of WM training to other cognitive tasks is supported by changes in task-related effective connectivity in frontoparietal and parietooccipital networks that are engaged by both the trained and transfer tasks. One consequence of this effect is greater efficiency of stimulus processing, as evidenced by changes in EEG indices of individual differences in short-term memory capacity and in visual search performance. Transfer to search-related activity provides evidence that something more fundamental than task-specific strategy or stimulus-specific representations have been learned. Furthermore, these patterns of training and transfer highlight the role of common neural systems in determining individual differences in aspects of visuospatial cognition. PMID:23678114

  15. Working Memory Training for Healthy Older Adults: The Role of Individual Characteristics in Explaining Short- and Long-Term Gains

    PubMed Central

    Borella, Erika; Carbone, Elena; Pastore, Massimiliano; De Beni, Rossana; Carretti, Barbara

    2017-01-01

    Objective: The aim of the present study was to explore whether individual characteristics such as age, education, vocabulary, and baseline performance in a working memory (WM) task—similar to the one used in the training (criterion task)—predict the short- and long-term specific gains and transfer effects of a verbal WM training for older adults. Method: Four studies that adopted the Borella et al. (2010) verbal WM training procedure were found eligible for our analysis as they included: healthy older adults who attended either the training sessions (WM training group), or alternative activities (active control group); the same measures for assessing specific gains (on the criterion WM task), and transfer effects (nearest on a visuo-spatial WM task, near on short-term memory tasks and far on a measure of fluid intelligence, a measure of processing speed and two inhibitory measures); and a follow-up session. Results: Linear mixed models confirmed the overall efficacy of the training, in the short-term at least, and some maintenance effects. In the trained group, the individual characteristics considered were found to contribute (albeit only modestly in some cases) to explaining the effects of the training. Conclusions: Overall, our findings suggest the importance of taking individual characteristics and individual differences into account when examining WM training gains in older adults. PMID:28381995

  16. Neural Correlates of Opposing Effects of Emotional Distraction on Perception and Episodic Memory: An Event-Related fMRI Investigation

    PubMed Central

    Shafer, Andrea T.; Dolcos, Florin

    2012-01-01

    A main question in emotion and memory literature concerns the relationship between the immediate impact of emotional distraction on perception and the long-term impact of emotion on memory. While previous research shows both automatic and resource-mediated mechanisms to be involved in initial emotion processing and memory, it remains unclear what the exact relationship between the immediate and long-term effects is, and how this relationship may change as a function of manipulations at perception favoring the engagement of either more automatic or mediated mechanisms. Using event-related functional magnetic resonance imaging, we varied the degree of resource availability for processing task-irrelevant emotional information, to determine how the initial (impairing) impact of emotional distraction related to the long-term (enhancing) impact of emotion on memory. Results showed that a direct relationship between emotional distraction and memory was dependent on automatic mechanisms, as this was found only under conditions of limited resource availability and engagement of amygdala (AMY)-hippocampal (HC) mechanisms to both impairing and enhancing effects. A hemispheric disassociation was also identified in AMY-HC, where while both sides were associated with emotional distraction and left AMY and anterior HC were linked to emotional memory, functional asymmetry was only identified in the posterior HC, with only the left side contributing to emotional memory. Finally, areas dissociating between the two opposing effects included the medial frontal, precentral, superior temporal, and middle occipital gyri (linked to emotional distraction), and the superior parietal cortex (linked to emotional memory). These findings demonstrate the relationship between emotional distraction and memory is context dependent and that specific brain regions may be more or less susceptible to the direction of emotional modulation (increased or decreased), depending on the task manipulation, and processes investigated. PMID:23049502

  17. Overexpression of the NR2A subunit in the forebrain impairs long-term social recognition and non-social olfactory memory.

    PubMed

    Jacobs, S A; Tsien, J Z

    2014-04-01

    Animals must recognize and remember conspecifics and potential mates, and distinguish these animals from potential heterospecific competitors and predators. Despite its necessity, aged animals are known to exhibit impaired social recognition memory. As the brain ages, the ratio of NR2A:NR2B in the brain increases over time and has been postulated to underlie the cognitive decline observed during the aging process. Here, we test the hypothesis that an increased NR2A:NR2B subunit ratio underlies long-term social recognition memory. Using transgenic overexpression of NR2A in the forebrain regions, we investigated the ability of these mice to learn and remember male and female conspecifics, mice of another strain and animals of another rodent species, the rat. Furthermore, due to the importance of olfaction in social recognition, we tested the olfactory memory in the NR2A transgenic mice. Our series of behavioral experiments revealed significant impairments in the NR2A transgenic mice in long-term social memory of both male and female conspecifics. Additionally, the NR2A transgenic mice are unable to recognize mice of another strain or rats. The NR2A transgenic mice also exhibited long-term memory impairments in the olfactory recognition task. Taken together, our results provide evidence that an increased NR2A:NR2B ratio in the forebrain leads to reduced long-term memory function, including the ethologically important memories such as social recognition and olfactory memory.

  18. Presentation format effects in a levels-of-processing task.

    PubMed

    Foos, Paul W; Goolkasian, Paula

    2008-01-01

    Three experiments were conducted to examine better performance in long-term memory when stimulus items are pictures or spoken words compared to printed words. Hypotheses regarding the allocation of attention to printed words, the semantic link between pictures and processing, and a rich long-term representation for pictures were tested. Using levels-of-processing tasks eliminated format effects when no memory test was expected and processing was deep (El), and when study and test formats did not match (E3). Pictures produced superior performance when a memory test was expected (El & 2) and when study and test formats were the same (E3). Results of all experiments support the attenuation of attention model and that picture superiority is due to a more direct access to semantic processing and a richer visual code. General principles to guide the processing of stimulus information are discussed.

  19. CaMKII activity is essential for improvement of memory-related behaviors by chronic rivastigmine treatment.

    PubMed

    Moriguchi, Shigeki; Tagashira, Hideaki; Sasaki, Yuzuru; Yeh, Jay Z; Sakagami, Hiroyuki; Narahashi, Toshio; Fukunaga, Kohji

    2014-03-01

    Because the cholinergic system is down-regulated in the brain of Alzheimer's disease patients, cognitive deficits in Alzheimer's disease patients are significantly improved by rivastigmine treatment. To address the mechanism underlying rivastigmine-induced memory improvements, we chronically treated olfactory bulbectomized (OBX) mice with rivastigmine. The chronic rivastigmine treatments for 12-13 days starting at 10 days after OBX operation significantly improved memory-related behaviors assessed by Y-maze task, novel object recognition task, passive avoidance task, and Barnes maze task, whereas the single rivastigmine treatment failed to improve the memory. Consistent with the improved memory-related behaviors, long-term potentiation in the hippocampal CA1 region was markedly restored by rivastigmine treatments. In immunoblotting analyses, the reductions of calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation and calcium/calmodulin-dependent protein kinase IV (CaMKIV) phosphorylation in the CA1 region in OBX mice were significantly restored by rivastigmine treatments. In addition, phosphorylation of AMPAR subunit glutamate receptor 1 (GluA1) (Ser-831) and cAMP-responsive element-binding protein (Ser-133) as downstream targets of CaMKII and CaMKIV, respectively, in the CA1 region was also significantly restored by chronic rivastigmine treatments. Finally, we confirmed that rivastigmine-induced improvements of memory-related behaviors and long-term potentiation were not obtained in CaMKIIα(+/-) mice. On the other hand, CaMKIV(-/-) mice did not exhibit the cognitive impairments. Taken together, the stimulation of CaMKII activity in the hippocampus is essential for rivastigmine-induced memory improvement in OBX mice. © 2013 International Society for Neurochemistry.

  20. Slowing down after a mild traumatic brain injury: a strategy to improve cognitive task performance?

    PubMed

    Ozen, Lana J; Fernandes, Myra A

    2012-01-01

    Long-term persistent attention and memory difficulties following a mild traumatic brain injury (TBI) often go undetected on standard neuropsychological tests, despite complaints by mild TBI individuals. We conducted a visual Repetition Detection working memory task to digits, in which we manipulated task difficulty by increasing cognitive load, to identify subtle deficits long after a mild TBI. Twenty-six undergraduate students with a self-report of one mild TBI, which occurred at least 6 months prior, and 31 non-head-injured controls took part in the study. Participants were not informed until study completion that the study's purpose was to examine cognitive changes following a mild TBI, to reduce the influence of "diagnosis threat" on performance. Neuropsychological tasks did not differentiate the groups, though mild TBI participants reported higher state anxiety levels. On our working memory task, the mild TBI group took significantly longer to accurately detect repeated targets on our task, suggesting that slowed information processing is a long-term consequence of mild TBI. Accuracy was comparable in the low-load condition and, unexpectedly, mild TBI performance surpassed that of controls in the high-load condition. Temporal analysis of target identification suggested a strategy difference between groups: mild TBI participants made a significantly greater number of accurate responses following the target's offset, and significantly fewer erroneous distracter responses prior to target onset, compared with controls. Results suggest that long after a mild TBI, high-functioning young adults invoke a strategy of delaying their identification of targets in order to maintain, and facilitate, accuracy on cognitively demanding tasks. © The Author 2011. Published by Oxford University Press. All rights reserved.

  1. Promoting the experimental dialogue between working memory and chunking: Behavioral data and simulation.

    PubMed

    Portrat, Sophie; Guida, Alessandro; Phénix, Thierry; Lemaire, Benoît

    2016-04-01

    Working memory (WM) is a cognitive system allowing short-term maintenance and processing of information. Maintaining information in WM consists, classically, in rehearsing or refreshing it. Chunking could also be considered as a maintenance mechanism. However, in the literature, it is more often used to explain performance than explicitly investigated within WM paradigms. Hence, the aim of the present paper was (1) to strengthen the experimental dialogue between WM and chunking, by studying the effect of acronyms in a computer-paced complex span task paradigm and (2) to formalize explicitly this dialogue within a computational model. Young adults performed a WM complex span task in which they had to maintain series of 7 letters for further recall while performing a concurrent location judgment task. The series to be remembered were either random strings of letters or strings containing a 3-letter acronym that appeared in position 1, 3, or 5 in the series. Together, the data and simulations provide a better understanding of the maintenance mechanisms taking place in WM and its interplay with long-term memory. Indeed, the behavioral WM performance lends evidence to the functional characteristics of chunking that seems to be, especially in a WM complex span task, an attentional time-based mechanism that certainly enhances WM performance but also competes with other processes at hand in WM. Computational simulations support and delineate such a conception by showing that searching for a chunk in long-term memory involves attentionally demanding subprocesses that essentially take place during the encoding phases of the task.

  2. Stuck in default mode: inefficient cross-frequency synchronization may lead to age-related short-term memory decline.

    PubMed

    Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando; Sauseng, Paul

    2015-04-01

    Aging-related decline in short-term memory capacity seems to be caused by deficient balancing of task-related and resting state brain networks activity; however, the exact neural mechanism underlying this deficit remains elusive. Here, we studied brain oscillatory activity in healthy young and old adults during visual information maintenance in a delayed match-to-sample task. Particular emphasis was on long range phase:amplitude coupling of frontal alpha (8-12 Hz) and posterior fast oscillatory activity (>30 Hz). It is argued that through posterior fast oscillatory activity nesting into the excitatory or the inhibitory phase of frontal alpha wave, long-range networks can be efficiently coupled or decoupled, respectively. On the basis of this mechanism, we show that healthy, elderly participants exhibit a lack of synchronization in task-relevant networks while maintaining synchronized regions of the resting state network. Lacking disconnection of this resting state network is predictive of aging-related short-term memory decline. These results support the idea of inefficient orchestration of competing brain networks in the aging human brain and identify the neural mechanism responsible for this control breakdown. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Short-term memory and dual task performance

    NASA Technical Reports Server (NTRS)

    Regan, J. E.

    1982-01-01

    Two hypotheses concerning the way in which short-term memory interacts with another task in a dual task situation are considered. It is noted that when two tasks are combined, the activity of controlling and organizing performance on both tasks simultaneously may compete with either task for a resource; this resource may be space in a central mechanism or general processing capacity or it may be some task-specific resource. If a special relationship exists between short-term memory and control, especially if there is an identity relationship between short-term and a central controlling mechanism, then short-term memory performance should show a decrement in a dual task situation. Even if short-term memory does not have any particular identity with a controlling mechanism, but both tasks draw on some common resource or resources, then a tradeoff between the two tasks in allocating resources is possible and could be reflected in performance. The persistent concurrence cost in memory performance in these experiments suggests that short-term memory may have a unique status in the information processing system.

  4. Neural Bases of Automaticity

    ERIC Educational Resources Information Center

    Servant, Mathieu; Cassey, Peter; Woodman, Geoffrey F.; Logan, Gordon D.

    2018-01-01

    Automaticity allows us to perform tasks in a fast, efficient, and effortless manner after sufficient practice. Theories of automaticity propose that across practice processing transitions from being controlled by working memory to being controlled by long-term memory retrieval. Recent event-related potential (ERP) studies have sought to test this…

  5. Neural activity in the hippocampus predicts individual visual short-term memory capacity.

    PubMed

    von Allmen, David Yoh; Wurmitzer, Karoline; Martin, Ernst; Klaver, Peter

    2013-07-01

    Although the hippocampus had been traditionally thought to be exclusively involved in long-term memory, recent studies raised controversial explanations why hippocampal activity emerged during short-term memory tasks. For example, it has been argued that long-term memory processes might contribute to performance within a short-term memory paradigm when memory capacity has been exceeded. It is still unclear, though, whether neural activity in the hippocampus predicts visual short-term memory (VSTM) performance. To investigate this question, we measured BOLD activity in 21 healthy adults (age range 19-27 yr, nine males) while they performed a match-to-sample task requiring processing of object-location associations (delay period  =  900 ms; set size conditions 1, 2, 4, and 6). Based on individual memory capacity (estimated by Cowan's K-formula), two performance groups were formed (high and low performers). Within whole brain analyses, we found a robust main effect of "set size" in the posterior parietal cortex (PPC). In line with a "set size × group" interaction in the hippocampus, a subsequent Finite Impulse Response (FIR) analysis revealed divergent hippocampal activation patterns between performance groups: Low performers (mean capacity  =  3.63) elicited increased neural activity at set size two, followed by a drop in activity at set sizes four and six, whereas high performers (mean capacity  =  5.19) showed an incremental activity increase with larger set size (maximal activation at set size six). Our data demonstrated that performance-related neural activity in the hippocampus emerged below capacity limit. In conclusion, we suggest that hippocampal activity reflected successful processing of object-location associations in VSTM. Neural activity in the PPC might have been involved in attentional updating. Copyright © 2013 Wiley Periodicals, Inc.

  6. Short theta burst stimulation to left frontal cortex prior to encoding enhances subsequent recognition memory

    PubMed Central

    Demeter, Elise; Mirdamadi, Jasmine L.; Meehan, Sean K.; Taylor, Stephan F.

    2016-01-01

    Deep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS). In a pair of experiments using a 2-session within-subjects design, we stimulated either left DLPFC or a control region (Vertex) with a single 2-s train of short theta burst stimulation (sTBS) during a semantic encoding task and then gave participants a recognition memory test. We found that subsequent memory was enhanced on the day left DLPFC was stimulated, relative to the day Vertex was stimulated, and that DLPFC stimulation also increased participants’ confidence in their decisions during the recognition task. We also explored the time course of how long the effects of sTBS persisted. Our data suggest 2 s of sTBS to left DLPFC is capable of enhancing subsequent memory for items encoded up to 15 s following stimulation. Collectively, these data demonstrate sTBS is capable of enhancing long-term memory and provide evidence that TBS protocols are a potentially powerful tool for modulating cognitive function. PMID:27098772

  7. Divergent short- and long-term effects of acute stress in object recognition memory are mediated by endogenous opioid system activation.

    PubMed

    Nava-Mesa, Mauricio O; Lamprea, Marisol R; Múnera, Alejandro

    2013-11-01

    Acute stress induces short-term object recognition memory impairment and elicits endogenous opioid system activation. The aim of this study was thus to evaluate whether opiate system activation mediates the acute stress-induced object recognition memory changes. Adult male Wistar rats were trained in an object recognition task designed to test both short- and long-term memory. Subjects were randomly assigned to receive an intraperitoneal injection of saline, 1 mg/kg naltrexone or 3 mg/kg naltrexone, four and a half hours before the sample trial. Five minutes after the injection, half the subjects were submitted to movement restraint during four hours while the other half remained in their home cages. Non-stressed subjects receiving saline (control) performed adequately during the short-term memory test, while stressed subjects receiving saline displayed impaired performance. Naltrexone prevented such deleterious effect, in spite of the fact that it had no intrinsic effect on short-term object recognition memory. Stressed subjects receiving saline and non-stressed subjects receiving naltrexone performed adequately during the long-term memory test; however, control subjects as well as stressed subjects receiving a high dose of naltrexone performed poorly. Control subjects' dissociated performance during both memory tests suggests that the short-term memory test induced a retroactive interference effect mediated through light opioid system activation; such effect was prevented either by low dose naltrexone administration or by strongly activating the opioid system through acute stress. Both short-term memory retrieval impairment and long-term memory improvement observed in stressed subjects may have been mediated through strong opioid system activation, since they were prevented by high dose naltrexone administration. Therefore, the activation of the opioid system plays a dual modulating role in object recognition memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Neuronal correlate of visual associative long-term memory in the primate temporal cortex

    NASA Astrophysics Data System (ADS)

    Miyashita, Yasushi

    1988-10-01

    In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.

  9. Rhinal and Dorsolateral Prefrontal Cortex Lesions Produce Selective Impairments in Object and Spatial Learning and Memory in Canines

    PubMed Central

    Christie, Lori-Ann; Saunders, Richard C.; Kowalska, Danuta, M.; MacKay, William A.; Head, Elizabeth; Cotman, Carl W.; Milgram, Norton W.

    2014-01-01

    To examine the effects of rhinal and dorsolateral prefrontal cortex lesions on object and spatial recognition memory in canines, we used a protocol in which both an object (delayed non-matching to sample, or DNMS) and a spatial (delayed non-matching to position or DNMP) recognition task were administered daily. The tasks used similar procedures such that only the type of stimulus information to be remembered differed. Rhinal cortex (RC) lesions produced a selective deficit on the DNMS task, both in retention of the task rules at short delays and in object recognition memory. By contrast, performance on the DNMP task remained intact at both short and long delay intervals in RC animals. Subjects who received dorsolateral prefrontal cortex (dlPFC) lesions were impaired on a spatial task at a short, 5-sec delay, suggesting disrupted retention of the general task rules, however, this impairment was transient; long-term spatial memory performance was unaffected in dlPFC subjects. The present results provide support for the involvement of the RC in object, but not visuospatial, processing and recognition memory, whereas the dlPFC appears to mediate retention of a non-matching rule. These findings support theories of functional specialization within the medial temporal lobe and frontal cortex and suggest that rhinal and dorsolateral prefrontal cortices in canines are functionally similar to analogous regions in other mammals. PMID:18792072

  10. Merging of long-term memories in an insect.

    PubMed

    Hunt, Kathryn L; Chittka, Lars

    2015-03-16

    Research on comparative cognition has largely focused on successes and failures of animals to solve certain cognitive tasks, but in humans, memory errors can be more complex than simple failures to retrieve information [1, 2]. The existence of various types of "false memories," in which individuals remember events that they have never actually encountered, are now well established in humans [3, 4]. We hypothesize that such systematic memory errors may be widespread in animals whose natural lifestyle involves the processing and recollection of memories for multiple stimuli [5]. We predict that memory traces for various stimuli may "merge," such that features acquired in distinct bouts of training are combined in an animal's mind, so that stimuli that have never been viewed before, but are a combination of the features presented in training, may be chosen during recall. We tested this using bumblebees, Bombus terrestris. When individuals were first trained to a solid single-colored stimulus followed by a black and white (b/w)-patterned stimulus, a subsequent preference for the last entrained stimulus was found in both short-term- and long-term-memory tests. However, when bees were first trained to b/w-patterned stimuli followed by solid single-colored stimuli and were tested in long-term-memory tests 1 or 3 days later, they only initially preferred the most recently rewarded stimulus, and then switched their preference to stimuli that combined features from the previous color and pattern stimuli. The observed merging of long-term memories is thus similar to the memory conjunction error found in humans [6]. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Prospective memory deficits in illicit polydrug users are associated with the average long-term typical dose of ecstasy typically consumed in a single session.

    PubMed

    Gallagher, Denis T; Hadjiefthyvoulou, Florentia; Fisk, John E; Montgomery, Catharine; Robinson, Sarita J; Judge, Jeannie

    2014-01-01

    Neuroimaging evidence suggests that ecstasy-related reductions in SERT densities relate more closely to the number of tablets typically consumed per session rather than estimated total lifetime use. To better understand the basis of drug related deficits in prospective memory (p.m.) we explored the association between p.m. and average long-term typical dose and long-term frequency of use. Study 1: Sixty-five ecstasy/polydrug users and 85 nonecstasy users completed an event-based, a short-term and a long-term time-based p.m. task. Study 2: Study 1 data were merged with outcomes on the same p.m. measures from a previous study creating a combined sample of 103 ecstasy/polydrug users, 38 cannabis-only users, and 65 nonusers of illicit drugs. Study 1: Ecstasy/polydrug users had significant impairments on all p.m. outcomes compared with nonecstasy users. Study 2: Ecstasy/polydrug users were impaired in event-based p.m. compared with both other groups and in long-term time-based p.m. compared with nonillicit drug users. Both drug using groups did worse on the short-term time-based p.m. task compared with nonusers. Higher long-term average typical dose of ecstasy was associated with poorer performance on the event and short-term time-based p.m. tasks and accounted for unique variance in the two p.m. measures over and above the variance associated with cannabis and cocaine use. The typical ecstasy dose consumed in a single session is an important predictor of p.m. impairments with higher doses reflecting increasing tolerance giving rise to greater p.m. impairment.

  12. Visual short-term memory deficits in REM sleep behaviour disorder mirror those in Parkinson's disease.

    PubMed

    Rolinski, Michal; Zokaei, Nahid; Baig, Fahd; Giehl, Kathrin; Quinnell, Timothy; Zaiwalla, Zenobia; Mackay, Clare E; Husain, Masud; Hu, Michele T M

    2016-01-01

    Individuals with REM sleep behaviour disorder are at significantly higher risk of developing Parkinson's disease. Here we examined visual short-term memory deficits--long associated with Parkinson's disease--in patients with REM sleep behaviour disorder without Parkinson's disease using a novel task that measures recall precision. Visual short-term memory for sequentially presented coloured bars of different orientation was assessed in 21 patients with polysomnography-proven idiopathic REM sleep behaviour disorder, 26 cases with early Parkinson's disease and 26 healthy controls. Three tasks using the same stimuli controlled for attentional filtering ability, sensorimotor and temporal decay factors. Both patients with REM sleep behaviour disorder and Parkinson's disease demonstrated a deficit in visual short-term memory, with recall precision significantly worse than in healthy controls with no deficit observed in any of the control tasks. Importantly, the pattern of memory deficit in both patient groups was specifically explained by an increase in random responses. These results demonstrate that it is possible to detect the signature of memory impairment associated with Parkinson's disease in individuals with REM sleep behaviour disorder, a condition associated with a high risk of developing Parkinson's disease. The pattern of visual short-term memory deficit potentially provides a cognitive marker of 'prodromal' Parkinson's disease that might be useful in tracking disease progression and for disease-modifying intervention trials. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  13. Learning, Memory, and Transcranial Direct Current Stimulation

    PubMed Central

    Brasil-Neto, Joaquim P.

    2012-01-01

    Transcranial direct current stimulation (tDCS) has been the subject of many studies concerning its possible cognitive effects. One of the proposed mechanisms of action for neuromodulatory techniques, such as transcranial magnetic stimulation and tDCS is induction of long-term potentiation (LTP) and long-term depression (LTD)-like phenomena. LTP and LTD are also among the most important neurobiological processes involved in memory and learning. This fact has led to an immediate interest in the study of possible effects of tDCS on memory consolidation, retrieval, or learning of various tasks. This review analyses published articles describing beneficial or disruptive effects of tDCS on memory and learning in normal subjects. The most likely mechanisms underlying these effects are discussed. PMID:22969734

  14. Working Memory Systems in the Rat.

    PubMed

    Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D

    2016-02-08

    A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Executive function deficits in short-term abstinent cannabis users.

    PubMed

    McHale, Sue; Hunt, Nigel

    2008-07-01

    Few cognitive tasks are adequately sensitive to show the small decrements in performance in abstinent chronic cannabis users. In this series of three experiments we set out to demonstrate a variety of tasks that are sufficiently sensitive to show differences in visual memory, verbal memory, everyday memory and executive function between controls and cannabis users. A series of three studies explored cognitive function deficits in cannabis users (phonemic verbal fluency, visual recognition and immediate and delayed recall, and prospective memory) in short-term abstinent cannabis users. Participants were selected using snowball sampling, with cannabis users being compared to a standard control group and a tobacco-use control group. The cannabis users, compared to both control groups, had deficits on verbal fluency, visual recognition, delayed visual recall, and short- and long-interval prospective memory. There were no differences for immediate visual recall. These findings suggest that cannabis use leads to impaired executive function. Further research needs to explore the longer term impact of cannabis use. Copyright 2008 John Wiley & Sons, Ltd.

  16. Retrieval of long and short lists from long term memory: a functional magnetic resonance imaging study with human subjects.

    PubMed

    Zysset, S; Müller, K; Lehmann, C; Thöne-Otto, A I; von Cramon, D Y

    2001-11-13

    Previous studies have shown that reaction time in an item-recognition task with both short and long lists is a quadratic function of list length. This suggests that either different memory retrieval processes are implied for short and long lists or an adaptive process is involved. An event-related functional magnetic resonance imaging study with nine subjects and list lengths varying between 3 and 18 words was conducted to identify the underlying neuronal structures of retrieval from long and short lists. For the retrieval and processing of word-lists a single fronto-parietal network, including premotor, left prefrontal, left precuneal and left parietal regions, was activated. With increasing list length, no additional regions became involved in retrieving information from long-term memory, suggesting that not necessarily different, but highly adaptive retrieval processes are involved.

  17. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice.

    PubMed

    Kruk-Slomka, Marta; Biala, Grażyna

    2016-03-15

    The endocannabinoid system, through the cannabinoid type 1 (CB1) and 2 (CB2) receptors modulates many physiological functions, including different aspects of memory-related processes. The aim of the present experiments was to explore the role of the endocannabinoid system, through CB1 receptors in the different stages of short-term (acquisition, retention and retrieval) and long-term (acquisition, consolidation and retrieval) memory-related responses, using the inhibitory avoidance (IA) test in mice. Our results revealed that an acute injection of oleamide (10 and 20mg/kg), a CB1 receptor agonist, impairs the short-term or/and long-term acquisition, retention/consolidation, retrieval memory and learning processes in the IA test in mice. In turn, in this test an acute injection of AM 251 (1 and 3mg/kg), a CB1 receptor antagonist, improves the short-term or/and long-term memory stages, described above. Moreover, this memory impairment induced by effective dose of oleamide (20mg/kg) is reversed by non-effective dose of AM 251 (0.25mg/kg) in the IA task, which proves the selectivity of oleamide to CB1 receptors and confirms that the CB1 receptor-related mechanism is one of the possible mechanisms, responsible for memory and learning responses. Obtained results provide clear evidence that the endocannabinoid system, through CB1 receptors, participates in the different stages of short- and long-term memory-related behavior. This knowledge may open in the future new possibilities for the development of CB-based therapies, especially for memory impairment human disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Autoradiographic study of serotonin transporter during memory formation.

    PubMed

    Tellez, Ruth; Rocha, Luisa; Castillo, Carlos; Meneses, Alfredo

    2010-09-01

    Serotonin transporter (SERT) has been associated with drugs of abuse like d-methamphetamine (METH). METH is well known to produce effects on the monoamine systems but it is unclear how METH affects SERT and memory. Here the effects of METH and the serotonin reuptake inhibitor fluoxetine (FLX) on autoshaping and novel object recognition (NOR) were investigated. Notably, both memory tasks recruit different behavioral, neural and cognitive demand. In autoshaping task a dose-response curve for METH was determined. METH (1.0mg/kg) impaired short-term memory (STM; lasting less of 90min) in NOR and impaired both STM and long-term memory (LTM; lasting 24 and 48h) in autoshaping, indicating that METH had long-lasting effects in the latter task. A comparative autoradiography study of the relationship between the binding pattern of SERT in autoshaping new untrained vs. trained treated (METH, FLX, or both) animals was made. Considering that hemispheric dominance is important for LTM, hence right vs. left hemisphere of the brain was compared. Results showed that trained animals decreased cortical SERT binding relative to untrained ones. In untrained and trained treated animals with the amnesic dose (1.0mg/kg) of METH SERT binding in several areas including hippocampus and cortex decreased, more remarkably in the trained animals. In contrast, FLX improved memory, increased SERT binding, prevented the METH amnesic effect and re-established the SERT binding. In general, memory and amnesia seemed to make SERT more vulnerable to drugs effects. Copyright 2010 Elsevier B.V. All rights reserved.

  19. Enhanced oscillatory activity in the hippocampal-prefrontal network is related to short-term memory function after early-life seizures

    PubMed Central

    Kleen, Jonathan K.; Wu, Edie X.; Holmes, Gregory L.; Scott, Rod C.; Lenck-Santini, Pierre-Pascal

    2011-01-01

    Neurological insults during development are associated with later impairments in learning and memory. Although remedial training can help restore cognitive function, the neural mechanisms of this recovery in memory systems are largely unknown. To examine this issue we measured electrophysiological oscillatory activity in the hippocampus (both CA3 and CA1) and prefrontal cortex of adult rats that had experienced repeated seizures in the first weeks of life, while they were remedially trained on a delayed-nonmatch-to-sample memory task. Seizure-exposed rats showed initial difficulties learning the task but performed similar to control rats after extra training. Whole-session analyses illustrated enhanced theta power in all three structures while seizure rats learned response tasks prior to the memory task. Whilst performing the memory task, dynamic oscillation patterns revealed that prefrontal cortex theta power was increased among seizure-exposed rats. This enhancement appeared after the first memory training steps using short delays and plateaued at the most difficult steps which included both short and long delays. Further, seizure rats showed enhanced CA1-prefrontal theta coherence in correct trials compared to incorrect trials when long delays were imposed, suggesting increased hippocampal-prefrontal synchrony for the task in this group when memory demand was high. Seizure-exposed rats also showed heightened gamma power and coherence among all three structures during the trials. Our results demonstrate the first evidence of hippocampal-prefrontal enhancements following seizures in early development. Dynamic compensatory changes in this network and interconnected circuits may underpin cognitive rehabilitation following other neurological insults to higher cognitive systems. PMID:22031886

  20. Mitochondrial Haplogroup Influences Motor Function in Long-Term HIV-1-Infected Individuals

    PubMed Central

    Azar, Ashley; Giovannetti, Tania; Pirrone, Vanessa; Nonnemacher, Michael R.; Passic, Shendra; Kercher, Katherine; Williams, Jean W.; Wigdahl, Brian; Dampier, William; Libon, David J.; Sell, Christian

    2016-01-01

    Evolutionary divergence of the mitochondrial genome has given rise to distinct haplogroups. These haplogroups have arisen in specific geographical locations and are responsible for subtle functional changes in the mitochondria that may provide an evolutionary advantage in a given environment. Based on these functional differences, haplogroups could define disease susceptibility in chronic settings. In this study, we undertook a detailed neuropsychological analysis of a cohort of long-term HIV-1-infected individuals in conjunction with sequencing of their mitochondrial genomes. Stepwise regression analysis showed that the best model for predicting both working memory and declarative memory were age and years since diagnosis. In contrast, years since diagnosis and sub-haplogroup were significantly predictive of psychomotor speed. Consistent with this, patients with haplogroup L3e obtained better scores on psychomotor speed and dexterity tasks when compared to the remainder of the cohort, suggesting that this haplogroup provides a protective advantage when faced with the combined stress of HIV-1 infection and long-term antiretroviral therapies. Differential performance on declarative memory tasks was noted for individuals with other sub-L haplogroups, but these differences were not as robust as the association between L3e and psychomotor speed and dexterity tasks. This work provides evidence that mitochondrial haplogroup is related to neuropsychological test performance among patients in chronic disease settings such as HIV-1 infection. PMID:27711166

  1. Activation of the dopamine D1 receptor can extend long-term spatial memory persistence via PKA signaling in mice.

    PubMed

    Zhang, Jiabao; Ko, Sang-Yoon; Liao, Yulan; Kwon, Yubeen; Jeon, Se Jin; Sohn, Aeree; Cheong, Jae Hoon; Kim, Dong Hyun; Ryu, Jong Hoon

    2018-05-24

    Many works have been performed to understand the mechanisms of the formation and persistence of memory. However, it is not fully understood whether the decay of long-term memory can be modulated by the activation of dopamine D 1 receptor. A Barnes maze task was employed to measure long-term spatial memory. We observed that the spatial memory acquired through 3 trials per session for 4 days had begun to fade out by the 14th day and had completely disappeared by 21 days after the first probe test. The intraperitoneal administration of SKF 38393 (a dopamine D 1 receptor agonist) for 7 days beginning on the 14th day after the first probe test prevented natural memory forgetting, and the intraperitoneal administration of SCH 23390 (a dopamine D 1 receptor antagonist) prevented this memory persistence. In the Western blotting, the administration of SKF 38393 increased the phosphorylation levels of PKA, ERK1/2, CaMKII, and CREB in the hippocampus. In addition, such increased levels were decreased by the corresponding antagonist (SCH 23390). Moreover, the inhibition of PKA could completely reverse the preservation of spatial memory induced by dopamine D 1 receptor activation. These results suggest that the activation of the dopamine D 1 receptor plays a critical role in the persistence of long-term spatial memory through the PKA signaling pathway. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Auditory short-term memory in the primate auditory cortex

    PubMed Central

    Scott, Brian H.; Mishkin, Mortimer

    2015-01-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ‘working memory’ bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ‘match’ stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. PMID:26541581

  3. Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation*

    PubMed Central

    Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert

    2016-01-01

    Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams. PMID:26598641

  4. Short-Term Memory Depends on Dissociable Medial Temporal Lobe Regions in Amnestic Mild Cognitive Impairment

    PubMed Central

    Das, Sandhitsu R.; Mancuso, Lauren; Olson, Ingrid R.; Arnold, Steven E.; Wolk, David A.

    2016-01-01

    Short-term memory (STM) has generally been thought to be independent of the medial temporal lobe (MTL) in contrast to long-term memory (LTM). Prodromal Alzheimer's disease (AD) is a condition in which the MTL is a major early focus of pathology and LTM is thought disproportionately affected relative to STM. However, recent studies have suggested a role for the MTL in STM, particularly hippocampus, when binding of different elements is required. Other work has suggested involvement of extrahippocampal MTL structures, particularly in STM tasks that involve item-level memory. We examined STM for individual objects, locations, and object-location conjunctions in amnestic mild cognitive impairment (MCI), often associated with prodromal AD. Relative to age-matched, cognitively normal controls, MCI patients not only displayed impairment on object-location conjunctions but were similarly impaired for non-bound objects and locations. Moreover, across all participants, these conditions displayed dissociable correlations of cortical thinning along the long axis of the MTL and associated cortical nodes of anterior and posterior MTL networks. These findings support the role of the MTL in visual STM tasks and the division of labor of MTL in support of different types of memory representations, overlapping with findings in LTM. PMID:25725042

  5. Neurotrophins play differential roles in short and long-term recognition memory.

    PubMed

    Callaghan, Charlotte K; Kelly, Aine M

    2013-09-01

    The neurotrophin family of proteins are believed to mediate various forms of synaptic plasticity in the adult brain. Here we have assessed the roles of these proteins in object recognition memory in the rat, using icv infusions of function-blocking antibodies or the tyrosine kinase antagonist, tyrphostin AG879, to block Trk receptors. We report that tyrphostin AG879 impairs both short-term and long-term recognition memory, indicating a requirement for Trk receptor activation in both processes. The effect of inhibition of each of the neurotrophins with activity-blocking neutralising antibodies was also tested. Treatment with anti-BDNF, anti-NGF or anti-NT4 had no effect on short-term memory, but blocked long-term recognition memory. Treatment with anti-NT3 had no effect on either process. We also assessed changes in expression of neurotrophins and their respective receptors in the hippocampus, dentate gyrus and perirhinal cortex over a 24 h period following training in the object recognition task. We observed time-dependent changes in expression of the Trk receptors and their ligands in the dentate gyrus and perirhinal cortex. The data are consistent with a pivotal role for neurotrophic factors in the expression of recognition memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. CaMKII knockdown affects both early and late phases of olfactory long-term memory in the honeybee.

    PubMed

    Scholl, Christina; Kübert, Natalie; Muenz, Thomas S; Rössler, Wolfgang

    2015-12-01

    Honeybees are able to solve complex learning tasks and memorize learned information for long time periods. The molecular mechanisms mediating long-term memory (LTM) in the honeybee Apis mellifera are, to a large part, still unknown. We approached this question by investigating the potential function of the calcium/calmodulin-dependent protein kinase II (CaMKII), an enzyme known as a 'molecular memory switch' in vertebrates. CaMKII is able to switch to a calcium-independent constitutively active state, providing a mechanism for a molecular memory and has further been shown to play an essential role in structural synaptic plasticity. Using a combination of knockdown by RNA interference and pharmacological manipulation, we disrupted the function of CaMKII during olfactory learning and memory formation. We found that learning, memory acquisition and mid-term memory were not affected, but all manipulations consistently resulted in an impaired LTM. Both early LTM (24 h after learning) and late LTM (72 h after learning) were significantly disrupted, indicating the necessity of CaMKII in two successive stages of LTM formation in the honeybee. © 2015. Published by The Company of Biologists Ltd.

  7. Examination of long-term visual memorization capacity in the Clark's nutcracker (Nucifraga columbiana).

    PubMed

    Qadri, Muhammad A J; Leonard, Kevin; Cook, Robert G; Kelly, Debbie M

    2018-02-15

    Clark's nutcrackers exhibit remarkable cache recovery behavior, remembering thousands of seed locations over the winter. No direct laboratory test of their visual memory capacity, however, has yet been performed. Here, two nutcrackers were tested in an operant procedure used to measure different species' visual memory capacities. The nutcrackers were incrementally tested with an ever-expanding pool of pictorial stimuli in a two-alternative discrimination task. Each picture was randomly assigned to either a right or a left choice response, forcing the nutcrackers to memorize each picture-response association. The nutcrackers' visual memorization capacity was estimated at a little over 500 pictures, and the testing suggested effects of primacy, recency, and memory decay over time. The size of this long-term visual memory was less than the approximately 800-picture capacity established for pigeons. These results support the hypothesis that nutcrackers' spatial memory is a specialized adaptation tied to their natural history of food-caching and recovery, and not to a larger long-term, general memory capacity. Furthermore, despite millennia of separate and divergent evolution, the mechanisms of visual information retention seem to reflect common memory systems of differing capacities across the different species tested in this design.

  8. Requirement of NF-kappa B Activation in Different Mice Brain Areas during Long-Term Memory Consolidation in Two Contextual One-Trial Tasks with Opposing Valences

    PubMed Central

    Salles, Angeles; Krawczyk, Maria del C.; Blake, Mariano; Romano, Arturo; Boccia, Mariano M.; Freudenthal, Ramiro

    2017-01-01

    NF-kappa B is a transcription factor whose activation has been shown to be necessary for long-term memory consolidation in several species. NF-kappa B is activated and translocates to the nucleus of cells in a specific temporal window during consolidation. Our work focuses on a one trial learning tasks associated to the inhibitory avoidance (IA) setting. Mice were trained either receiving or not a footshock when entering a dark compartment (aversive vs. appetitive learning). Regardless of training condition (appetitive or aversive), latencies to step-through during testing were significantly different to those measured during training. Additionally, these testing latencies were also different from those of a control group that only received a shock unrelated to context. Moreover, nuclear NF-kappa B DNA-binding activity was augmented in the aversive and the appetitive tasks when compared with control and naïve animals. NF-kappa B inhibition by Sulfasalazine injected either in the Hippocampus, Amygdala or Nucleus accumbens immediately after training was able to impair retention in both training versions. Our results suggest that NF-kappa B is a critical molecular step, in different brain areas on memory consolidation. This was the case for both the IA task and also the modified version of the same task where the footshock was omitted during training. This work aims to further investigate how appetitive and aversive memories are consolidated. PMID:28439227

  9. Activation of mitogen-activated protein kinase/extracellular signal-regulated kinase in hippocampal circuitry is required for consolidation and reconsolidation of recognition memory.

    PubMed

    Kelly, Aine; Laroche, Serge; Davis, Sabrina

    2003-06-15

    Consolidation and reconsolidation of long-term memory have been shown to be dependent on the synthesis of new proteins, but the specific molecular mechanisms underlying these events remain to be elucidated. The mitogen-activated protein kinase (MAPK) pathway can trigger genomic responses in neurons, leading to changes in protein synthesis, and several studies have identified its pivotal role in synaptic plasticity and long-term memory formation. In this study, we analyze the involvement of this pathway in the consolidation and reconsolidation of long-term recognition memory, using an object recognition task. We show that inhibition of the MAPK pathway by intracerebroventricular injection of the MEK [MAPK/extracellular signal-regulated kinase (ERK)] inhibitor UO126 blocks consolidation of object recognition memory but does not affect short-term memory. Brain regions of the entorhinal cortex-hippocampal circuitry were analyzed for ERK activation, and it was shown that consolidation of recognition memory was associated with increased phosphorylation of ERK in the dentate gyrus and entorhinal cortex, although total expression of ERK was unchanged. We also report that inhibition of the MAPK pathway blocks reconsolidation of recognition memory, and this was shown to be dependent on reactivation of the memory trace by brief reexposure to the objects. In addition, reconsolidation of memory was associated with an increase in the phosphorylation of ERK in entorhinal cortex and CA1. In summary, our data show that the MAPK kinase pathway is required for both consolidation and reconsolidation of long-term recognition memory, and that this is associated with hyperphosphorylation of ERK in different subregions of the entorhinal cortex-hippocampal circuitry.

  10. Auditory short-term memory in the primate auditory cortex.

    PubMed

    Scott, Brian H; Mishkin, Mortimer

    2016-06-01

    Sounds are fleeting, and assembling the sequence of inputs at the ear into a coherent percept requires auditory memory across various time scales. Auditory short-term memory comprises at least two components: an active ׳working memory' bolstered by rehearsal, and a sensory trace that may be passively retained. Working memory relies on representations recalled from long-term memory, and their rehearsal may require phonological mechanisms unique to humans. The sensory component, passive short-term memory (pSTM), is tractable to study in nonhuman primates, whose brain architecture and behavioral repertoire are comparable to our own. This review discusses recent advances in the behavioral and neurophysiological study of auditory memory with a focus on single-unit recordings from macaque monkeys performing delayed-match-to-sample (DMS) tasks. Monkeys appear to employ pSTM to solve these tasks, as evidenced by the impact of interfering stimuli on memory performance. In several regards, pSTM in monkeys resembles pitch memory in humans, and may engage similar neural mechanisms. Neural correlates of DMS performance have been observed throughout the auditory and prefrontal cortex, defining a network of areas supporting auditory STM with parallels to that supporting visual STM. These correlates include persistent neural firing, or a suppression of firing, during the delay period of the memory task, as well as suppression or (less commonly) enhancement of sensory responses when a sound is repeated as a ׳match' stimulus. Auditory STM is supported by a distributed temporo-frontal network in which sensitivity to stimulus history is an intrinsic feature of auditory processing. This article is part of a Special Issue entitled SI: Auditory working memory. Published by Elsevier B.V.

  11. The efficacy of a multifactorial memory training in older adults living in residential care settings.

    PubMed

    Vranić, Andrea; Španić, Ana Marija; Carretti, Barbara; Borella, Erika

    2013-11-01

    Several studies have shown an increase in memory performance after teaching mnemonic techniques to older participants. However, transfer effects to non-trained tasks are generally either very small, or not found. The present study investigates the efficacy of a multifactorial memory training program for older adults living in a residential care center. The program combines teaching of memory strategies with activities based on metacognitive (metamemory) and motivational aspects. Specific training-related gains in the Immediate list recall task (criterion task), as well as transfer effects on measures of short-term memory, long-term memory, working memory, motivational (need for cognition), and metacognitive aspects (subjective measure of one's memory) were examined. Maintenance of training benefits was assessed after seven months. Fifty-one older adults living in a residential care center, with no cognitive impairments, participated in the study. Participants were randomly assigned to two programs: the experimental group attended the training program, while the active control group was involved in a program in which different psychological issues were discussed. A benefit in the criterion task and substantial general transfer effects were found for the trained group, but not for the active control, and they were maintained at the seven months follow-up. Our results suggest that training procedures, which combine teaching of strategies with metacognitive-motivational aspects, can improve cognitive functioning and attitude toward cognitive activities in older adults.

  12. The human hippocampal formation mediates short-term memory of colour-location associations.

    PubMed

    Finke, Carsten; Braun, Mischa; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Hoffmann, Karl-Titus; Kopp, Ute; Ploner, Christoph J

    2008-01-31

    The medial temporal lobe (MTL) has long been considered essential for declarative long-term memory, whereas the fronto-parietal cortex is generally seen as the anatomical substrate of short-term memory. This traditional dichotomy is questioned by recent studies suggesting a possible role of the MTL for short-term memory. In addition, there is no consensus on a possible specialization of MTL sub-regions for memory of associative information. Here, we investigated short-term memory for single features and feature associations in three humans with post-surgical lesions affecting the right hippocampal formation and in 10 healthy controls. We used three delayed-match-to-sample tasks with two delays (900/5000 ms) and three set sizes (2/4/6 items). Subjects were instructed to remember either colours, locations or colour-location associations. In colour-only and location-only conditions, performance of patients did not differ from controls. By contrast, a significant group difference was found in the association condition at 5000 ms delay. This difference was largely independent of set size, thus suggesting that it cannot be explained by the increased complexity of the association condition. These findings show that the hippocampal formation plays a significant role for short-term memory of simple visuo-spatial associations, and suggest a specialization of MTL sub-regions for associative memory.

  13. Strategic search from long-term memory: an examination of semantic and autobiographical recall.

    PubMed

    Unsworth, Nash; Brewer, Gene A; Spillers, Gregory J

    2014-01-01

    Searching long-term memory is theoretically driven by both directed (search strategies) and random components. In the current study we conducted four experiments evaluating strategic search in semantic and autobiographical memory. Participants were required to generate either exemplars from the category of animals or the names of their friends for several minutes. Self-reported strategies suggested that participants typically relied on visualization strategies for both tasks and were less likely to rely on ordered strategies (e.g., alphabetic search). When participants were instructed to use particular strategies, the visualization strategy resulted in the highest levels of performance and the most efficient search, whereas ordered strategies resulted in the lowest levels of performance and fairly inefficient search. These results are consistent with the notion that retrieval from long-term memory is driven, in part, by search strategies employed by the individual, and that one particularly efficient strategy is to visualize various situational contexts that one has experienced in the past in order to constrain the search and generate the desired information.

  14. The Mind and Brain of Short-Term Memory

    PubMed Central

    Jonides, John; Lewis, Richard L.; Nee, Derek Evan; Lustig, Cindy A.; Berman, Marc G.; Moore, Katherine Sledge

    2014-01-01

    The past 10 years have brought near-revolutionary changes in psychological theories about short-term memory, with similarly great advances in the neurosciences. Here, we critically examine the major psychological theories (the “mind”) of short-term memory and how they relate to evidence about underlying brain mechanisms. We focus on three features that must be addressed by any satisfactory theory of short-term memory. First, we examine the evidence for the architecture of short-term memory, with special attention to questions of capacity and how—or whether—short-term memory can be separated from long-term memory. Second, we ask how the components of that architecture enact processes of encoding, maintenance, and retrieval. Third, we describe the debate over the reason about forgetting from short-term memory, whether interference or decay is the cause. We close with a conceptual model tracing the representation of a single item through a short-term memory task, describing the biological mechanisms that might support psychological processes on a moment-by-moment basis as an item is encoded, maintained over a delay with some forgetting, and ultimately retrieved. PMID:17854286

  15. A Critical Role for the Nucleus Reuniens in Long-Term, But Not Short-Term Associative Recognition Memory Formation.

    PubMed

    Barker, Gareth R I; Warburton, Elizabeth Clea

    2018-03-28

    Recognition memory for single items requires the perirhinal cortex (PRH), whereas recognition of an item and its associated location requires a functional interaction among the PRH, hippocampus (HPC), and medial prefrontal cortex (mPFC). Although the precise mechanisms through which these interactions are effected are unknown, the nucleus reuniens (NRe) has bidirectional connections with each regions and thus may play a role in recognition memory. Here we investigated, in male rats, whether specific manipulations of NRe function affected performance of recognition memory for single items, object location, or object-in-place associations. Permanent lesions in the NRe significantly impaired long-term, but not short-term, object-in-place associative recognition memory, whereas single item recognition memory and object location memory were unaffected. Temporary inactivation of the NRe during distinct phases of the object-in-place task revealed its importance in both the encoding and retrieval stages of long-term associative recognition memory. Infusions of specific receptor antagonists showed that encoding was dependent on muscarinic and nicotinic cholinergic neurotransmission, whereas NMDA receptor neurotransmission was not required. Finally, we found that long-term object-in-place memory required protein synthesis within the NRe. These data reveal a specific role for the NRe in long-term associative recognition memory through its interactions with the HPC and mPFC, but not the PRH. The delay-dependent involvement of the NRe suggests that it is not a simple relay station between brain regions, but, rather, during high mnemonic demand, facilitates interactions between the mPFC and HPC, a process that requires both cholinergic neurotransmission and protein synthesis. SIGNIFICANCE STATEMENT Recognizing an object and its associated location, which is fundamental to our everyday memory, requires specific hippocampal-cortical interactions, potentially facilitated by the nucleus reuniens (NRe) of the thalamus. However, the role of the NRe itself in associative recognition memory is unknown. Here, we reveal the crucial role of the NRe in encoding and retrieval of long-term object-in-place memory, but not for remembrance of an individual object or individual location and such involvement is cholinergic receptor and protein synthesis dependent. This is the first demonstration that the NRe is a key node within an associative recognition memory network and is not just a simple relay for information within the network. Rather, we argue, the NRe actively modulates information processing during long-term associative memory formation. Copyright © 2018 the authors 0270-6474/18/383208-10$15.00/0.

  16. A prospective study of severe hypoglycemia and long-term spatial memory in children with type 1 diabetes.

    PubMed

    Hershey, Tamara; Lillie, Rema; Sadler, Michelle; White, Neil H

    2004-06-01

    In a previous retrospective study, severe hypoglycemia (SH) was associated with decreased long-term spatial memory in children with type 1 diabetes mellitus (T1DM). In this study, we tested the hypothesis that prospectively ascertained SH would also be associated with decreased spatial long-term memory over time. Children with T1DM (n = 42) and sibling controls (n = 25) performed a spatial delayed response (SDR) task with short and long delays and other neuropsychological tests at baseline and after 15 months of monitoring. Extreme glycemic events and other medical complications were recorded prospectively during follow-up. Fourteen T1DM children experienced at least one episode of SH during the follow-up period (range = 1-5). After controlling for long-delay SDR performance at baseline, age, gender, and age of onset, the presence of SH during the prospective period was statistically associated with decreased long-delay SDR performance at follow-up (semipartial r = -0.38, p = 0.017). This relationship was not seen with short-delay SDR or with verbal or object memory, attention, or motor speed. These results, together with previously reported data, support the hypothesis that SH has specific, negative effects on spatial memory skills in T1DM children.

  17. Working and reference memory across the estrous cycle of rat: a long-term study in gonadally intact females.

    PubMed

    Pompili, Assunta; Tomaz, Carlos; Arnone, Benedetto; Tavares, Maria Clotilde; Gasbarri, Antonella

    2010-11-12

    The results of many studies conducted over the past two decades suggested a role of estrogen on mammal's ability to learn and remember. In the present paper, we analyzed the influence that the endogenous fluctuation of estrogen, naturally present across the different phases of estrous cycle of female rats, can exert over the performance of tasks utilized to assess memory. In particular, we analyzed the performances in an eight arms radial maze task, dependent upon working memory, and in a water maze (WM) task, dependent upon spatial reference memory. The water maze is aversively motivated by the desire to escape onto a safe platform, whereas the radial arm maze (RAM) is motivated by food reward. The difference in reinforcement may affect the speed of learning, the strategy adopted and the necessity for accurate navigation. Therefore, coherent results obtained through the two different tasks can be due to mnemonic factors. The study was conducted during a long period of time, 14 months, utilizing gonadally intact females, without pharmacological and surgical treatments. In order to evaluate the post-acquisition phase we first trained the animals to reach the criterion in performing tasks, and then we submitted them to experimental phase. Our results show that estrogen can have an effect on memory processes, and that this effect may be different in relation to different kinds of memory. In fact, in our study, estrogen selectively improved working memory, but not reference memory, during post-acquisition performance of a RAM task with four baited and four un-baited arms. Moreover, WM performances showed that estrogen have a negative effect on spatial reference memory. (c) 2010 Elsevier B.V. All rights reserved.

  18. Post-training administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning.

    PubMed

    Cambon, K; Venero, C; Berezin, V; Bock, E; Sandi, C

    2003-01-01

    The neural cell adhesion molecule (NCAM) plays a key role in synaptic plasticity and memory formation. We have recently developed a synthetic peptide, termed C3d, which, through the binding to the first, N-terminal immunoglobulin-like (Ig) module in the extracellular portion of NCAM, has been shown to promote neurite outgrowth and synapse formation in vitro, and to interfere with passive avoidance memory in rats in vivo. In this study, we investigated whether the i.c.v. administration of C3d, either 5.5 h after or 2 days before training, could be effective to modulate the strength at which emotional memory for aversive situations is established into a long-term memory. The effects of the peptide were evaluated in adult male Wistar rats trained in the contextual fear conditioning task. The results indicated that C3d significantly reduced the subsequent long-term retention of the conditioned fear response when administered 5.5 h post-training, as indicated by retention tests performed 2-3 and 7 days post-training. However, this treatment failed to influence conditioning for this task when injected 2 days pre-training. Additional experiments showed that C3d did not influence the emotional or locomotor behaviour of the animals, when tested in the open field task. Furthermore, hippocampal levels of microtubule-associated protein 2 (MAP2), Synaptophysin and NCAM were found unchanged when evaluated by enzyme-linked immunosorbent assay in crude synaptosomal preparations 2 days after peptide i.c.v. injection. Therefore, post-training injection of this synthetic peptide was efficient to attenuate the strength at which memory for contextual fear conditioning was enduringly stored, whilst it did not affect the acquisition of new memories. In addition to further support the view that NCAM is critically involved in memory consolidation, the current findings suggest that the NCAM IgI module is a potential target for the development of therapeutic drugs capable to reduce the cognitive impact induced by exposure to intensive stress experiences.

  19. What you say matters: exploring visual-verbal interactions in visual working memory.

    PubMed

    Mate, Judit; Allen, Richard J; Baqués, Josep

    2012-01-01

    The aim of this study was to explore whether the content of a simple concurrent verbal load task determines the extent of its interference on memory for coloured shapes. The task consisted of remembering four visual items while repeating aloud a pair of words that varied in terms of imageability and relatedness to the task set. At test, a cue appeared that was either the colour or the shape of one of the previously seen objects, with participants required to select the object's other feature from a visual array. During encoding and retention, there were four verbal load conditions: (a) a related, shape-colour pair (from outside the experimental set, i.e., "pink square"); (b) a pair of unrelated but visually imageable, concrete, words (i.e., "big elephant"); (c) a pair of unrelated and abstract words (i.e., "critical event"); and (d) no verbal load. Results showed differential effects of these verbal load conditions. In particular, imageable words (concrete and related conditions) interfered to a greater degree than abstract words. Possible implications for how visual working memory interacts with verbal memory and long-term memory are discussed.

  20. Pupil old/new effects reflect stimulus encoding and decoding in short-term memory.

    PubMed

    Brocher, Andreas; Graf, Tim

    2016-12-01

    We conducted five pupil old/new experiments to examine whether pupil old/new effects can be linked to familiarity and/or recollection processes of recognition memory. In Experiments 1-3, we elicited robust pupil old/new effects for legal words and pseudowords (Experiment 1), positive and negative words (Experiment 2), and low-frequency and high-frequency words (Experiment 3). Importantly, unlike for old/new effects in ERPs, we failed to find any effects of long-term memory representations on pupil old/new effects. In Experiment 4, using the words and pseudowords from Experiment 1, participants made lexical decisions instead of old/new decisions. Pupil old/new effects were restricted to legal words. Additionally requiring participants to make speeded responses (Experiment 5) led to a complete absence of old/new effects. Taken together, these data suggest that pupil old/new effects do not map onto familiarity and recollection processes of recognition memory. They rather seem to reflect strength of memory traces in short-term memory, with little influence of long-term memory representations. Crucially, weakening the memory trace through manipulations in the experimental task significantly reduces pupil/old new effects. © 2016 Society for Psychophysiological Research.

  1. Glucocorticoids Enhance Taste Aversion Memory via Actions in the Insular Cortex and Basolateral Amygdala

    ERIC Educational Resources Information Center

    Miranda, Maria Isabel; Quirarte, Gina L.; Rodriguez-Garcia, Gabriela; McGaugh, James L.; Roozendaal, Benno

    2008-01-01

    It is well established that glucocorticoid hormones strengthen the consolidation of hippocampus-dependent spatial and contextual memory. The present experiments investigated glucocorticoid effects on the long-term formation of conditioned taste aversion (CTA), an associative learning task that does not depend critically on hippocampal function.…

  2. Recalling an Aversive Experience by Day-Old Chicks Is Not Dependent on Somatic Protein Synthesis

    ERIC Educational Resources Information Center

    Mileusnic, Radmila; Lancashire, Christine L.; Rose, Steven P. R.

    2005-01-01

    Long-term memory is dependent on protein synthesis and inhibiting such synthesis following training results in amnesia for the task. Proteins synthesized during training must be transported to the synapse and disrupting microtubules with Colchicines, and hence, blocking transport, results in transient amnesia. Reactivating memory for a previously…

  3. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia

    PubMed Central

    Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota

    2008-01-01

    Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder. PMID:18945333

  4. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia.

    PubMed

    Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota

    2008-10-22

    Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.

  5. Binaural auditory beats affect long-term memory.

    PubMed

    Garcia-Argibay, Miguel; Santed, Miguel A; Reales, José M

    2017-12-08

    The presentation of two pure tones to each ear separately with a slight difference in their frequency results in the perception of a single tone that fluctuates in amplitude at a frequency that equals the difference of interaural frequencies. This perceptual phenomenon is known as binaural auditory beats, and it is thought to entrain electrocortical activity and enhance cognition functions such as attention and memory. The aim of this study was to determine the effect of binaural auditory beats on long-term memory. Participants (n = 32) were kept blind to the goal of the study and performed both the free recall and recognition tasks after being exposed to binaural auditory beats, either in the beta (20 Hz) or theta (5 Hz) frequency bands and white noise as a control condition. Exposure to beta-frequency binaural beats yielded a greater proportion of correctly recalled words and a higher sensitivity index d' in recognition tasks, while theta-frequency binaural-beat presentation lessened the number of correctly remembered words and the sensitivity index. On the other hand, we could not find differences in the conditional probability for recall given recognition between beta and theta frequencies and white noise, suggesting that the observed changes in recognition were due to the recollection component. These findings indicate that the presentation of binaural auditory beats can affect long-term memory both positively and negatively, depending on the frequency used.

  6. Method matters: Systematic effects of testing procedure on visual working memory sensitivity

    PubMed Central

    Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.

    2010-01-01

    Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This study presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the testing procedure, supporting the idea that representations in visual WM are susceptible to interference from testing. In this study, participants were shown an array of colors to remember. After a short retention interval, memory for one of the items was tested with either a same-different task or a 2-alternative-forced-choice (2AFC) task. Memory sensitivity was much lower in the 2AFC task than in the same-different task. This difference was found regardless of encoding similarity or whether visual WM required a fine memory resolution or a coarse resolution. The 2AFC disadvantage was reduced when participants were informed shortly before testing which item would be probed. The 2AFC disadvantage diminished in perceptual tasks and was not found in tasks probing visual long-term memory. These results support memory models that acknowledge the labile nature of visual WM, and have implications for the format of visual WM and its assessment. PMID:20854011

  7. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    PubMed

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Cannabinoids Ameliorate Impairments Induced by Chronic Stress to Synaptic Plasticity and Short-Term Memory

    PubMed Central

    Abush, Hila; Akirav, Irit

    2013-01-01

    Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory. Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescent rats were exposed to chronic restraint stress for 2 weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object-recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC, and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested. Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders. PMID:23426383

  9. Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

    PubMed

    Abush, Hila; Akirav, Irit

    2013-07-01

    Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory. Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescent rats were exposed to chronic restraint stress for 2 weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object-recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC, and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested. Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.

  10. Leptin attenuates the detrimental effects of β-amyloid on spatial memory and hippocampal later-phase long term potentiation in rats.

    PubMed

    Tong, Jia-Qing; Zhang, Jun; Hao, Ming; Yang, Ju; Han, Yu-Fei; Liu, Xiao-Jie; Shi, Hui; Wu, Mei-Na; Liu, Qing-Song; Qi, Jin-Shun

    2015-07-01

    β-Amyloid (Aβ) is the main component of amyloid plaques developed in the brain of patients with Alzheimer's disease (AD). The increasing burden of Aβ in the cortex and hippocampus is closely correlated with memory loss and cognition deficits in AD. Recently, leptin, a 16kD peptide derived mainly from white adipocyte tissue, has been appreciated for its neuroprotective function, although less is known about the effects of leptin on spatial memory and synaptic plasticity. The present study investigated the neuroprotective effects of leptin against Aβ-induced deficits in spatial memory and in vivo hippocampal late-phase long-term potentiation (L-LTP) in rats. Y maze spontaneous alternation was used to assess short term working memory, and the Morris water maze task was used to assess long term reference memory. Hippocampal field potential recordings were performed to observe changes in L-LTP. We found that chronically intracerebroventricular injection of leptin (1μg) effectively alleviated Aβ1-42 (20μg)-induced spatial memory impairments of Y maze spontaneous alternation and Morris water maze. In addition, chronic administration of leptin also reversed Aβ1-42-induced suppression of in vivo hippocampal L-LTP in rats. Together, these results suggest that chronic leptin treatments reversed Aβ-induced deficits in learning and memory and the maintenance of L-LTP. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Lithium activates brain phospholipase A2 and improves memory in rats: implications for Alzheimer's disease.

    PubMed

    Mury, Fábio B; da Silva, Weber C; Barbosa, Nádia R; Mendes, Camila T; Bonini, Juliana S; Sarkis, Jorge Eduardo Souza; Cammarota, Martin; Izquierdo, Ivan; Gattaz, Wagner F; Dias-Neto, Emmanuel

    2016-10-01

    Phospholipase A2 (Pla2) is required for memory retrieval, and its inhibition in the hippocampus has been reported to impair memory acquisition in rats. Moreover, cognitive decline and memory deficits showed to be reduced in animal models after lithium treatment, prompting us to evaluate possible links between Pla2, lithium and memory. Here, we evaluated the possible modulation of Pla2 activity by a long-term treatment of rats with low doses of lithium and its impact in memory. Wistar rats were trained for the inhibitory avoidance task, treated with lithium for 100 days and tested for perdurability of long-term memory. Hippocampal samples were used for quantifying the expression of 19 brain-expressed Pla2 genes and for evaluating the enzymatic activity of Pla2 using group-specific radio-enzymatic assays. Our data pointed to a significant perdurability of long-term memory, which correlated with increased transcriptional and enzymatic activities of certain members of the Pla2 family (iPla2 and sPla2) after the chronic lithium treatment. Our data suggest new possible targets of lithium, add more information on its pharmacological activity and reinforce the possible use of low doses of lithium for the treatment of neurodegenerative conditions such as the Alzheimer's disease.

  12. Relational and conjunctive binding functions dissociate in short-term memory.

    PubMed

    Parra, Mario A; Fabi, Katia; Luzzi, Simona; Cubelli, Roberto; Hernandez Valdez, Maria; Della Sala, Sergio

    2015-02-01

    Remembering complex events requires binding features within unified objects (conjunctions) and holding associations between objects (relations). Recent studies suggest that the two functions dissociate in long-term memory (LTM). Less is known about their functional organization in short-term memory (STM). The present study investigated this issue in patient AE affected by a stroke which caused damage to brain regions known to be relevant for relational functions both in LTM and in STM (i.e., the hippocampus). The assessment involved a battery of standard neuropsychological tasks and STM binding tasks. One STM binding task (Experiment 1) presented common objects and common colors forming either pairs (relations) or integrated objects (conjunctions). Free recall of relations or conjunctions was assessed. A second STM binding task used random polygons and non-primary colors instead (Experiment 2). Memory was assessed by selecting the features that made up the relations or the conjunctions from a set of single polygons and a set of single colors. The neuropsychological assessment revealed impaired delayed memory in AE. AE's pronounced relational STM binding deficits contrasted with his completely preserved conjunctive binding functions in both Experiments 1 and 2. Only 2.35% and 1.14% of the population were expected to have a discrepancy more extreme than that presented by AE in Experiments 1 and 2, respectively. Processing relations and conjunctions of very elementary nonspatial features in STM led to dissociating performances in AE. These findings may inform current theories of memory decline such as those linked to cognitive aging.

  13. Contrasting contributions of phonological short-term memory and long-term knowledge to vocabulary learning in a foreign language.

    PubMed

    Masoura, Elvira V; Gathercole, Susan E

    2005-01-01

    The contributions of phonological short-term memory and existing foreign vocabulary knowledge to the learning of new words in a second language were compared in a sample of 40 Greek children studying English at school. The children's speed of learning new English words in a paired-associate learning task was strongly influenced by their current English vocabulary, but was independent of phonological memory skill, indexed by nonword repetition ability. However, phonological memory performance was closely linked to English vocabulary scores. The findings suggest that in learners with considerable familiarity with a second language, foreign vocabulary acquisition is mediated largely by use of existing knowledge representations.

  14. Correlated individual differences suggest a common mechanism underlying metacognition in visual perception and visual short-term memory.

    PubMed

    Samaha, Jason; Postle, Bradley R

    2017-11-29

    Adaptive behaviour depends on the ability to introspect accurately about one's own performance. Whether this metacognitive ability is supported by the same mechanisms across different tasks is unclear. We investigated the relationship between metacognition of visual perception and metacognition of visual short-term memory (VSTM). Experiments 1 and 2 required subjects to estimate the perceived or remembered orientation of a grating stimulus and rate their confidence. We observed strong positive correlations between individual differences in metacognitive accuracy between the two tasks. This relationship was not accounted for by individual differences in task performance or average confidence, and was present across two different metrics of metacognition and in both experiments. A model-based analysis of data from a third experiment showed that a cross-domain correlation only emerged when both tasks shared the same task-relevant stimulus feature. That is, metacognition for perception and VSTM were correlated when both tasks required orientation judgements, but not when the perceptual task was switched to require contrast judgements. In contrast with previous results comparing perception and long-term memory, which have largely provided evidence for domain-specific metacognitive processes, the current findings suggest that metacognition of visual perception and VSTM is supported by a domain-general metacognitive architecture, but only when both domains share the same task-relevant stimulus feature. © 2017 The Author(s).

  15. Retrieval Demands Adaptively Change Striatal Old/New Signals and Boost Subsequent Long-Term Memory.

    PubMed

    Herweg, Nora A; Sommer, Tobias; Bunzeck, Nico

    2018-01-17

    The striatum is a central part of the dopaminergic mesolimbic system and contributes both to the encoding and retrieval of long-term memories. In this regard, the co-occurrence of striatal novelty and retrieval success effects in independent studies underlines the structure's double duty and suggests dynamic contextual adaptation. To test this hypothesis and further investigate the underlying mechanisms of encoding and retrieval dynamics, human subjects viewed pre-familiarized scene images intermixed with new scenes and classified them as indoor versus outdoor (encoding task) or old versus new (retrieval task), while fMRI and eye tracking data were recorded. Subsequently, subjects performed a final recognition task. As hypothesized, striatal activity and pupil size reflected task-conditional salience of old and new stimuli, but, unexpectedly, this effect was not reflected in the substantia nigra and ventral tegmental area (SN/VTA), medial temporal lobe, or subsequent memory performance. Instead, subsequent memory generally benefitted from retrieval, an effect possibly driven by task difficulty and activity in a network including different parts of the striatum and SN/VTA. Our findings extend memory models of encoding and retrieval dynamics by pinpointing a specific contextual factor that differentially modulates the functional properties of the mesolimbic system. SIGNIFICANCE STATEMENT The mesolimbic system is involved in the encoding and retrieval of information but it is unclear how these two processes are achieved within the same network of brain regions. In particular, memory retrieval and novelty encoding were considered in independent studies, implying that novelty (new > old) and retrieval success (old > new) effects may co-occur in the striatum. Here, we used a common framework implicating the striatum, but not other parts of the mesolimbic system, in tracking context-dependent salience of old and new information. The current study, therefore, paves the way for a more comprehensive understanding of the functional properties of the mesolimbic system during memory encoding and retrieval. Copyright © 2018 the authors 0270-6474/18/380745-10$15.00/0.

  16. The Control of Single-color and Multiple-color Visual Search by Attentional Templates in Working Memory and in Long-term Memory.

    PubMed

    Grubert, Anna; Carlisle, Nancy B; Eimer, Martin

    2016-12-01

    The question whether target selection in visual search can be effectively controlled by simultaneous attentional templates for multiple features is still under dispute. We investigated whether multiple-color attentional guidance is possible when target colors remain constant and can thus be represented in long-term memory but not when they change frequently and have to be held in working memory. Participants searched for one, two, or three possible target colors that were specified by cue displays at the start of each trial. In constant-color blocks, the same colors remained task-relevant throughout. In variable-color blocks, target colors changed between trials. The contralateral delay activity (CDA) to cue displays increased in amplitude as a function of color memory load in variable-color blocks, which indicates that cued target colors were held in working memory. In constant-color blocks, the CDA was much smaller, suggesting that color representations were primarily stored in long-term memory. N2pc components to targets were measured as a marker of attentional target selection. Target N2pcs were attenuated and delayed during multiple-color search, demonstrating less efficient attentional deployment to color-defined target objects relative to single-color search. Importantly, these costs were the same in constant-color and variable-color blocks. These results demonstrate that attentional guidance by multiple-feature as compared with single-feature templates is less efficient both when target features remain constant and can be represented in long-term memory and when they change across trials and therefore have to be maintained in working memory.

  17. Order information is used to guide recall of long lists: Further evidence for the item-order account.

    PubMed

    Forrin, Noah D; MacLeod, Colin M

    2016-06-01

    Differences in memory for item order have been used to explain the absence of between-subjects (i.e., pure-list) effects in free recall for several encoding techniques, including the production effect, the finding that reading aloud benefits memory compared with reading silently. Notably, however, evidence in support of the item-order account (Nairne, Riegler, & Serra, 1991) has derived primarily from short-list paradigms. We provide novel evidence that the item-order account also applies when recalling long lists. In Experiment 1, participants studied and then free recalled 3 different long lists of words: pure aloud, pure silent, and mixed (half aloud, half silent). A Bayesian analysis supported a null pure-list production effect, and subsequent order analyses were largely consistent with the item-order account. These findings indicate that order information is retained in long-term memory and is useful in guiding subsequent free recall. In Experiment 2, a distractor task was inserted between the study and test phases, ensuring that only long-term memory processes were involved in recall: The pattern of results remained consistent with the item-order account. Order information can be retained in long-term memory for long lists, and is useful in guiding subsequent free recall, extending the domain of the item-order account. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Short-term changes in general and memory-specific control beliefs and their relationship to cognition in younger and older adults.

    PubMed

    Bielak, Allison A M; Hultsch, David F; Levy-Ajzenkopf, Judi; MacDonald, Stuart W S; Hunter, Michael A; Strauss, Esther

    2007-01-01

    We examined short-term changes in younger and older adults' control beliefs. Participants completed measures of general and memory-specific competence and locus of control on 10 bi-monthly occasions. At each occasion, participants rated their control beliefs prior to and following completion of a battery of cognitive tasks. Exposure to the set of cognitively demanding tasks led to declines in older adults' ratings of both general and memory-specific competence compared to little change or increases in younger adults' ratings. Older adults were also more inconsistent in their reported locus of control beliefs across the 10 occasions. Analyses examining the relationship between control beliefs and actual cognitive performance revealed few significant effects, suggesting that short-term changes in perceived control are not driven by monitoring changes in actual performance. The results suggest the importance of assessing short-term as well as long-term changes in perceived control to obtain a complete picture of aging-related changes.

  19. History of concussion impacts electrophysiological correlates of working memory.

    PubMed

    Hudac, Caitlin M; Cortesa, Cathryn S; Ledwidge, Patrick S; Molfese, Dennis L

    2017-10-10

    Sports-related concussions occur in approximately 21% of college athletes with implications for long-term cognitive impairments in working memory. Working memory involves the capacity to maintain short-term information and integrate with higher-order cognitive processing for planning and behavior execution, critical skills for optimal cognitive and athletic performance. This study quantified working memory impairments in 36 American football college athletes (18-23years old) using event-related potentials (ERPs). Despite performing similarly in a standard 2-back working memory task, athletes with history of concussion exhibited larger P1 and P3 amplitudes compared to Controls. Concussion History group latencies were slower for the P1 and faster for the N2. Source estimation analyses indicated that previously concussed athletes engaged different brain regions compared to athletes with no concussion history. These findings suggest that ERPs may be a sensitive and objective measure to detect long-term cognitive consequences of concussion. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats

    PubMed Central

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L.; Schwandt, Melanie; Heilig, Markus

    2010-01-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9–15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. PMID:20849966

  1. The relative kicking frequency of infants born full-term and preterm during learning and short-term and long-term memory periods of the mobile paradigm.

    PubMed

    Heathcock, Jill C; Bhat, Anjana N; Lobo, Michele A; Galloway, James C

    2005-01-01

    Infants born preterm differ in their spontaneous kicking, as well as their learning and memory abilities in the mobile paradigm, compared with infants born full-term. In the mobile paradigm, a supine infant's ankle is tethered to a mobile so that leg kicks cause a proportional amount of mobile movement. The purpose of this study was to investigate the relative kicking frequency of the tethered (right) and nontethered (left) legs in these 2 groups of infants. Ten infants born full-term and 10 infants born preterm (<33 weeks gestational age, <2,500 g) and 10 comparison infants participated in the study. The relative kicking frequencies of the tethered and nontethered legs were analyzed during learning and short-term and long-term memory periods of the mobile paradigm. Infants born full-term showed an increase in the relative kicking frequency of the tethered leg during the learning period and the short-term memory period but not for the long-term memory period. Infants born preterm did not show a change in kicking pattern for learning or memory periods, and consistently kicked both legs in relatively equal amounts. Infants born full-term adapted their baseline kicking frequencies in a task-specific manner to move the mobile and then retained this adaptation for the short-term memory period. In contrast, infants born preterm showed no adaptation, suggesting a lack of purposeful leg control. This lack of control may reflect a general decrease in the ability of infants born preterm to use their limb movements to interact with their environment. As such, the mobile paradigm may be clinically useful in the early assessment and intervention of infants born preterm and at risk for future impairment.

  2. Enhancing effects of nicotine and impairing effects of scopolamine on distinct aspects of performance in computerized attention and working memory tasks in marmoset monkeys.

    PubMed

    Spinelli, Simona; Ballard, Theresa; Feldon, Joram; Higgins, Guy A; Pryce, Christopher R

    2006-08-01

    With the CAmbridge Neuropsychological Test Automated Battery (CANTAB), computerized neuropsychological tasks can be presented on a touch-sensitive computer screen, and this system has been used to assess cognitive processes in neuropsychiatric patients, healthy volunteers, and species of non-human primate, primarily the rhesus macaque and common marmoset. Recently, we reported that the common marmoset, a small-bodied primate, can be trained to a high and stable level of performance on the CANTAB five-choice serial reaction time (5-CSRT) task of attention, and a novel task of working memory, the concurrent delayed match-to-position (CDMP) task. Here, in order to increase understanding of the specific cognitive demands of these tasks and the importance of acetylcholine to their performance, the effects of systemic delivery of the muscarinic receptor antagonist scopolamine and the nicotinic receptor agonist nicotine were studied. In the 5-CSRT task, nicotine enhanced performance in terms of increased sustained attention, whilst scopolamine led to increased omissions despite a high level of orientation to the correct stimulus location. In the CDMP task, scopolamine impaired performance at two stages of the task that differ moderately in terms of memory retention load but both of which are likely to require working memory, including interference-coping, abilities. Nicotine tended to enhance performance at the long-delay stage specifically but only against a background of relatively low baseline performance. These data are consistent with a dissociation of the roles of muscarinic and nicotinic cholinergic receptors in the regulation of both sustained attention and working memory in primates.

  3. Apolipoprotein ɛ4 breaks the association between declarative long-term memory and memory-based orienting of spatial attention in middle-aged individuals.

    PubMed

    Salvato, Gerardo; Patai, Eva Z; McCloud, Tayla; Nobre, Anna C

    2016-09-01

    Apolipoprotein (APOE) ɛ4 genotype has been identified as a risk factor for late-onset Alzheimer disease (AD). The memory system is mostly involved in AD, and memory deficits represent its key feature. A growing body of studies has focused on the earlier identification of cognitive dysfunctions in younger and older APOE ɛ4 carriers, but investigation on middle-aged individuals remains rare. Here we sought to investigate if the APOE ɛ4 genotype modulates declarative memory and its influences on perception in the middle of the life span. We tested 60 middle-aged individuals recruited according to their APOE allele variants (ɛ3/ɛ3, ɛ3/ɛ4, ɛ4/ɛ4) on a long-term memory-based orienting of attention task. Results showed that the APOE ɛ4 genotype impaired neither explicit memory nor memory-based orienting of spatial attention. Interestingly, however, we found that the possession of the ɛ4 allele broke the relationship between declarative long-term memory and memory-guided orienting of visuo-spatial attention, suggesting an earlier modulation exerted by pure genetic characteristics on cognition. These findings are discussed in light of possible accelerated brain ageing in middle-aged ɛ4-carriers, and earlier structural changes in the brain occurring at this stage of the lifespan. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. The lasting memory enhancements of retrospective attention

    PubMed Central

    Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey

    2016-01-01

    Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues (“retro-cues”) enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. PMID:27038756

  5. Bridging Grafts and Transient Nerve Growth Factor Infusions Promote Long-Term Central Nervous System Neuronal Rescue and Partial Functional Recovery

    NASA Astrophysics Data System (ADS)

    Tuszynski, Mark H.; Gage, Fred H.

    1995-05-01

    Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.

  6. Memory processes of flight situation awareness: interactive roles of working memory capacity, long-term working memory, and expertise.

    PubMed

    Sohn, Young Woo; Doane, Stephanie M

    2004-01-01

    This research examined the role of working memory (WM) capacity and long-term working memory (LT-WM) in flight situation awareness (SA). We developed spatial and verbal measures of WM capacity and LT-WM skill and then determined the ability of these measures to predict pilot performance on SA tasks. Although both spatial measures of WM capacity and LT-WM skills were important predictors of SA performance, their importance varied as a function of pilot expertise. Spatial WM capacity was most predictive of SA performance for novices, whereas spatial LT-WM skill based on configurations of control flight elements (attitude and power) was most predictive for experts. Furthermore, evidence for an interactive role of WM and LT-WM mechanisms was indicated. Actual or potential applications of this research include cognitive analysis of pilot expertise and aviation training.

  7. The Effects of Phonological Short-Term Memory and Speech Perception on Spoken Sentence Comprehension in Children: Simulating Deficits in an Experimental Design.

    PubMed

    Higgins, Meaghan C; Penney, Sarah B; Robertson, Erin K

    2017-10-01

    The roles of phonological short-term memory (pSTM) and speech perception in spoken sentence comprehension were examined in an experimental design. Deficits in pSTM and speech perception were simulated through task demands while typically-developing children (N [Formula: see text] 71) completed a sentence-picture matching task. Children performed the control, simulated pSTM deficit, simulated speech perception deficit, or simulated double deficit condition. On long sentences, the double deficit group had lower scores than the control and speech perception deficit groups, and the pSTM deficit group had lower scores than the control group and marginally lower scores than the speech perception deficit group. The pSTM and speech perception groups performed similarly to groups with real deficits in these areas, who completed the control condition. Overall, scores were lowest on noncanonical long sentences. Results show pSTM has a greater effect than speech perception on sentence comprehension, at least in the tasks employed here.

  8. Misremembering What You See or Hear: Dissociable Effects of Modality on Short- and Long-Term False Recognition

    ERIC Educational Resources Information Center

    Olszewska, Justyna M.; Reuter-Lorenz, Patricia A.; Munier, Emily; Bendler, Sara A.

    2015-01-01

    False working memories readily emerge using a visual item-recognition variant of the converging associates task. Two experiments, manipulating study and test modality, extended prior working memory results by demonstrating a reliable false recognition effect (more false alarms to associatively related lures than to unrelated lures) within seconds…

  9. Problem Solving as an Encoding Task: A Special Case of the Generation Effect

    ERIC Educational Resources Information Center

    Kizilirmak, Jasmin M.; Wiegmann, Berit; Richardson-Klavehn, Alan

    2016-01-01

    Recent evidence suggests that solving problems through insight can enhance long-term memory for the problem and its solution. Previous findings have shown that generation of the solution as well as experiencing a feeling of Aha! can have a beneficial relationship to later memory. These findings lead to the question of how learning in…

  10. Upregulation of CREB-mediated transcription enhances both short- and long-term memory.

    PubMed

    Suzuki, Akinobu; Fukushima, Hotaka; Mukawa, Takuya; Toyoda, Hiroki; Wu, Long-Jun; Zhao, Ming-Gao; Xu, Hui; Shang, Yuze; Endoh, Kengo; Iwamoto, Taku; Mamiya, Nori; Okano, Emiko; Hasegawa, Shunsuke; Mercaldo, Valentina; Zhang, Yue; Maeda, Ryouta; Ohta, Miho; Josselyn, Sheena A; Zhuo, Min; Kida, Satoshi

    2011-06-15

    Unraveling the mechanisms by which the molecular manipulation of genes of interest enhances cognitive function is important to establish genetic therapies for cognitive disorders. Although CREB is thought to positively regulate formation of long-term memory (LTM), gain-of-function effects of CREB remain poorly understood, especially at the behavioral level. To address this, we generated four lines of transgenic mice expressing dominant active CREB mutants (CREB-Y134F or CREB-DIEDML) in the forebrain that exhibited moderate upregulation of CREB activity. These transgenic lines improved not only LTM but also long-lasting long-term potentiation in the CA1 area in the hippocampus. However, we also observed enhanced short-term memory (STM) in contextual fear-conditioning and social recognition tasks. Enhanced LTM and STM could be dissociated behaviorally in these four lines of transgenic mice, suggesting that the underlying mechanism for enhanced STM and LTM are distinct. LTM enhancement seems to be attributable to the improvement of memory consolidation by the upregulation of CREB transcriptional activity, whereas higher basal levels of BDNF, a CREB target gene, predicted enhanced shorter-term memory. The importance of BDNF in STM was verified by microinfusing BDNF or BDNF inhibitors into the hippocampus of wild-type or transgenic mice. Additionally, increasing BDNF further enhanced LTM in one of the lines of transgenic mice that displayed a normal BDNF level but enhanced LTM, suggesting that upregulation of BDNF and CREB activity cooperatively enhances LTM formation. Our findings suggest that CREB positively regulates memory consolidation and affects memory performance by regulating BDNF expression.

  11. Negative emotion enhances mnemonic precision and subjective feelings of remembering in visual long-term memory.

    PubMed

    Xie, Weizhen; Zhang, Weiwei

    2017-09-01

    Negative emotion sometimes enhances memory (higher accuracy and/or vividness, e.g., flashbulb memories). The present study investigates whether it is the qualitative (precision) or quantitative (the probability of successful retrieval) aspect of memory that drives these effects. In a visual long-term memory task, observers memorized colors (Experiment 1a) or orientations (Experiment 1b) of sequentially presented everyday objects under negative, neutral, or positive emotions induced with International Affective Picture System images. In a subsequent test phase, observers reconstructed objects' colors or orientations using the method of adjustment. We found that mnemonic precision was enhanced under the negative condition relative to the neutral and positive conditions. In contrast, the probability of successful retrieval was comparable across the emotion conditions. Furthermore, the boost in memory precision was associated with elevated subjective feelings of remembering (vividness and confidence) and metacognitive sensitivity in Experiment 2. Altogether, these findings suggest a novel precision-based account for emotional memories. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Short-Term Memory Depends on Dissociable Medial Temporal Lobe Regions in Amnestic Mild Cognitive Impairment.

    PubMed

    Das, Sandhitsu R; Mancuso, Lauren; Olson, Ingrid R; Arnold, Steven E; Wolk, David A

    2016-05-01

    Short-term memory (STM) has generally been thought to be independent of the medial temporal lobe (MTL) in contrast to long-term memory (LTM). Prodromal Alzheimer's disease (AD) is a condition in which the MTL is a major early focus of pathology and LTM is thought disproportionately affected relative to STM. However, recent studies have suggested a role for the MTL in STM, particularly hippocampus, when binding of different elements is required. Other work has suggested involvement of extrahippocampal MTL structures, particularly in STM tasks that involve item-level memory. We examined STM for individual objects, locations, and object-location conjunctions in amnestic mild cognitive impairment (MCI), often associated with prodromal AD. Relative to age-matched, cognitively normal controls, MCI patients not only displayed impairment on object-location conjunctions but were similarly impaired for non-bound objects and locations. Moreover, across all participants, these conditions displayed dissociable correlations of cortical thinning along the long axis of the MTL and associated cortical nodes of anterior and posterior MTL networks. These findings support the role of the MTL in visual STM tasks and the division of labor of MTL in support of different types of memory representations, overlapping with findings in LTM. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Decreased prefrontal functional brain response during memory testing in women with Cushing's syndrome in remission.

    PubMed

    Ragnarsson, Oskar; Stomby, Andreas; Dahlqvist, Per; Evang, Johan A; Ryberg, Mats; Olsson, Tommy; Bollerslev, Jens; Nyberg, Lars; Johannsson, Gudmundur

    2017-08-01

    Neurocognitive dysfunction is an important feature of Cushing's syndrome (CS). Our hypothesis was that patients with CS in remission have decreased functional brain responses in the prefrontal cortex and hippocampus during memory testing. In this cross-sectional study we included 19 women previously treated for CS and 19 controls matched for age, gender, and education. The median remission time was 7 (IQR 6-10) years. Brain activity was studied with functional magnetic resonance imaging during episodic- and working-memory tasks. The primary regions of interest were the prefrontal cortex and the hippocampus. A voxel-wise comparison of functional brain responses in patients and controls was performed. During episodic-memory encoding, patients displayed lower functional brain responses in the left and right prefrontal gyrus (p<0.001) and in the right inferior occipital gyrus (p<0.001) compared with controls. There was a trend towards lower functional brain responses in the left posterior hippocampus in patients (p=0.05). During episodic-memory retrieval, the patients displayed lower functional brain responses in several brain areas with the most predominant difference in the right prefrontal cortex (p<0.001). During the working memory task, patients had lower response in the prefrontal cortices bilaterally (p<0.005). Patients, but not controls, had lower functional brain response during a more complex working memory task compared with a simpler one. In conclusion, women with CS in long-term remission have reduced functional brain responses during episodic and working memory testing. This observation extends previous findings showing long-term adverse effects of severe hypercortisolaemia on brain function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Selecting a Response in Task Switching: Testing a Model of Compound Cue Retrieval

    ERIC Educational Resources Information Center

    Schneider, Darryl W.; Logan, Gordon D.

    2009-01-01

    How can a task-appropriate response be selected for an ambiguous target stimulus in task-switching situations? One answer is to use compound cue retrieval, whereby stimuli serve as joint retrieval cues to select a response from long-term memory. In the present study, the authors tested how well a model of compound cue retrieval could account for a…

  15. Effects of Adolescent Cannabinoid Self-Administration in Rats on Addiction-Related Behaviors and Working Memory

    PubMed Central

    Kirschmann, Erin K; Pollock, Michael W; Nagarajan, Vidhya; Torregrossa, Mary M

    2017-01-01

    Use of marijuana (Cannabis sativa) often begins in adolescence, and heavy adolescent marijuana use is often associated with impaired cognitive function in adulthood. However, clinical reports of long-lasting cognitive deficits, particularly in subjects who discontinue use in adulthood, are mixed. Moreover, dissociating innate differences in cognitive function from cannabis-induced deficits is challenging. Therefore, the current study sought to develop a rodent model of adolescent cannabinoid self-administration (SA), using the synthetic cannabinoid receptor agonist WIN55,212-2 (WIN), in order to assess measures of relapse/reinstatement of drug seeking and long-term effects on cognitive function assessed in a delay-match-to-sample working memory task and a spatial recognition task. Adolescent male rats readily self-administered WIN in 2-h or 6-h sessions/day, but did not demonstrate an escalation of intake with 6-h access. Rats exhibited significant cue-induced reinstatement of WIN seeking that increased with 21 days of abstinence (ie, ‘incubation of craving’). Cognitive testing occurred in adulthood under drug-free conditions. Both 2-h and 6-h adolescent WIN SA groups exhibited significantly better working memory performance in adulthood relative to sucrose SA controls, and performance was associated with altered expression of proteins regulating GABAergic and glutamatergic signaling in the prefrontal cortex. Self-administered WIN did not produce either acute or chronic effects on short-term memory, but experimenter administration of WIN in adolescence, at doses previously reported in the literature, produced acute deficits in short-term memory that recovered with abstinence. Thus, SA of a rewarding cannabinoid in adolescence does not produce long-term cognitive dysfunction. PMID:27582345

  16. Effects of Adolescent Cannabinoid Self-Administration in Rats on Addiction-Related Behaviors and Working Memory.

    PubMed

    Kirschmann, Erin K; Pollock, Michael W; Nagarajan, Vidhya; Torregrossa, Mary M

    2017-04-01

    Use of marijuana (Cannabis sativa) often begins in adolescence, and heavy adolescent marijuana use is often associated with impaired cognitive function in adulthood. However, clinical reports of long-lasting cognitive deficits, particularly in subjects who discontinue use in adulthood, are mixed. Moreover, dissociating innate differences in cognitive function from cannabis-induced deficits is challenging. Therefore, the current study sought to develop a rodent model of adolescent cannabinoid self-administration (SA), using the synthetic cannabinoid receptor agonist WIN55,212-2 (WIN), in order to assess measures of relapse/reinstatement of drug seeking and long-term effects on cognitive function assessed in a delay-match-to-sample working memory task and a spatial recognition task. Adolescent male rats readily self-administered WIN in 2-h or 6-h sessions/day, but did not demonstrate an escalation of intake with 6-h access. Rats exhibited significant cue-induced reinstatement of WIN seeking that increased with 21 days of abstinence (ie, 'incubation of craving'). Cognitive testing occurred in adulthood under drug-free conditions. Both 2-h and 6-h adolescent WIN SA groups exhibited significantly better working memory performance in adulthood relative to sucrose SA controls, and performance was associated with altered expression of proteins regulating GABAergic and glutamatergic signaling in the prefrontal cortex. Self-administered WIN did not produce either acute or chronic effects on short-term memory, but experimenter administration of WIN in adolescence, at doses previously reported in the literature, produced acute deficits in short-term memory that recovered with abstinence. Thus, SA of a rewarding cannabinoid in adolescence does not produce long-term cognitive dysfunction.

  17. False memory for face in short-term memory and neural activity in human amygdala.

    PubMed

    Iidaka, Tetsuya; Harada, Tokiko; Sadato, Norihiro

    2014-12-03

    Human memory is often inaccurate. Similar to words and figures, new faces are often recognized as seen or studied items in long- and short-term memory tests; however, the neural mechanisms underlying this false memory remain elusive. In a previous fMRI study using morphed faces and a standard false memory paradigm, we found that there was a U-shaped response curve of the amygdala to old, new, and lure items. This indicates that the amygdala is more active in response to items that are salient (hit and correct rejection) compared to items that are less salient (false alarm), in terms of memory retrieval. In the present fMRI study, we determined whether the false memory for faces occurs within the short-term memory range (a few seconds), and assessed which neural correlates are involved in veridical and illusory memories. Nineteen healthy participants were scanned by 3T MRI during a short-term memory task using morphed faces. The behavioral results indicated that the occurrence of false memories was within the short-term range. We found that the amygdala displayed a U-shaped response curve to memory items, similar to those observed in our previous study. These results suggest that the amygdala plays a common role in both long- and short-term false memory for faces. We made the following conclusions: First, the amygdala is involved in detecting the saliency of items, in addition to fear, and supports goal-oriented behavior by modulating memory. Second, amygdala activity and response time might be related with a subject's response criterion for similar faces. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    PubMed

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The role of central attention in retrieval from visual short-term memory.

    PubMed

    Magen, Hagit

    2017-04-01

    The role of central attention in visual short-term memory (VSTM) encoding and maintenance is well established, yet its role in retrieval has been largely unexplored. This study examined the involvement of central attention in retrieval from VSTM using a dual-task paradigm. Participants performed a color change-detection task. Set size varied between 1 and 3 items, and the memory sample was maintained for either a short or a long delay period. A secondary tone discrimination task was introduced at the end of the delay period, shortly before the appearance of a central probe, and occupied central attention while participants were searching within VSTM representations. Similarly to numerous previous studies, reaction time increased as a function of set size reflecting the occurrence of a capacity-limited memory search. When the color targets were maintained over a short delay, memory was searched for the most part without the involvement of central attention. However, with a longer delay period, the search relied entirely on the operation of central attention. Taken together, this study demonstrates that central attention is involved in retrieval from VSTM, but the extent of its involvement depends on the duration of the delay period. Future studies will determine whether the type of memory search (parallel or serial) carried out during retrieval depends on the nature of the attentional mechanism involved the task.

  20. Searching for the Hebb effect in Down syndrome: evidence for a dissociation between verbal short-term memory and domain-general learning of serial order.

    PubMed

    Mosse, E K; Jarrold, C

    2010-04-01

    The Hebb effect is a form of repetition-driven long-term learning that is thought to provide an analogue for the processes involved in new word learning. Other evidence suggests that verbal short-term memory also constrains now vocabulary acquisition, but if the Hebb effect is independent of short-term memory, then it may be possible to demonstrate its preservation in a sample of individuals with Down syndrome, who typically show a verbal short-term memory deficit alongside surprising relative strengths in vocabulary. In two experiments, individuals both with and without Down syndrome (matched for receptive vocabulary) completed immediate serial recall tasks incorporating a Hebb repetition paradigm in either verbal or visuospatial conditions. Both groups demonstrated equivalent benefit from Hebb repetition, despite individuals with Down syndrome showing significantly lower verbal short-term memory spans. The resultant Hebb effect was equivalent across verbal and visuospatial domains. These studies suggest that the Hebb effect is essentially preserved within Down syndrome, implying that explicit verbal short-term memory is dissociable from potentially more implicit Hebb learning. The relative strength in receptive vocabulary observed in Down syndrome may therefore be supported by largely intact long-term as opposed to short-term serial order learning. This in turn may have implications for teaching methods and interventions that present new phonological material to individuals with Down syndrome.

  1. The hard fall effect: high working memory capacity leads to a higher, but less robust short-term memory performance.

    PubMed

    Thomassin, Noémylle; Gonthier, Corentin; Guerraz, Michel; Roulin, Jean-Luc

    2015-01-01

    Participants with a high working memory span tend to perform better than low spans in a variety of tasks. However, their performance is paradoxically more impaired when they have to perform two tasks at once, a phenomenon that could be labeled the "hard fall effect." The present study tested whether this effect exists in a short-term memory task, and investigated the proposal that the effect is due to high spans using efficient facilitative strategies under simple task conditions. Ninety-eight participants performed a spatial short-term memory task under simple and dual task conditions; stimuli presentation times either allowed for the use of complex facilitative strategies or not. High spans outperformed low spans only under simple task conditions when presentation times allowed for the use of facilitative strategies. These results indicate that the hard fall effect exists on a short-term memory task and may be caused by individual differences in strategy use.

  2. Complex-learning Induced Modifications in Synaptic Inhibition: Mechanisms and Functional Significance.

    PubMed

    Reuveni, Iris; Lin, Longnian; Barkai, Edi

    2018-06-15

    Following training in a difficult olfactory-discrimination (OD) task rats acquire the capability to perform the task easily, with little effort. This new acquired skill, of 'learning how to learn' is termed 'rule learning'. At the single-cell level, rule learning is manifested in long-term enhancement of intrinsic neuronal excitability of piriform cortex (PC) pyramidal neurons, and in excitatory synaptic connections between these neurons to maintain cortical stability, such long-lasting increase in excitability must be accompanied by paralleled increase in inhibitory processes that would prevent hyper-excitable activation. In this review we describe the cellular and molecular mechanisms underlying complex-learning-induced long-lasting modifications in GABA A -receptors and GABA B -receptor-mediated synaptic inhibition. Subsequently we discuss how such modifications support the induction and preservation of long-term memories in the in the mammalian brain. Based on experimental results, computational analysis and modeling, we propose that rule learning is maintained by doubling the strength of synaptic inputs, excitatory as well as inhibitory, in a sub-group of neurons. This enhanced synaptic transmission, which occurs in all (or almost all) synaptic inputs onto these neurons, activates specific stored memories. At the molecular level, such rule-learning-relevant synaptic strengthening is mediated by doubling the conductance of synaptic channels, but not their numbers. This post synaptic process is controlled by a whole-cell mechanism via particular second messenger systems. This whole-cell mechanism enables memory amplification when required and memory extinction when not relevant. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Mindfulness Enhances Episodic Memory Performance: Evidence from a Multimethod Investigation

    PubMed Central

    Goodman, Robert J.; Ryan, Richard M.; Anālayo, Bhikkhu

    2016-01-01

    Training in mindfulness, classically described as a receptive attentiveness to present events and experiences, has been shown to improve attention and working memory. Both are key to long-term memory formation, and the present three-study series used multiple methods to examine whether mindfulness would enhance episodic memory, a key form of long-term memory. In Study 1 (N = 143), a self-reported state of mindful attention predicted better recognition performance in the Remember-Know (R-K) paradigm. In Study 2 (N = 93), very brief training in a focused attention form of mindfulness also produced better recognition memory performance on the R-K task relative to a randomized, well-matched active control condition. Study 3 (N = 57) extended these findings by showing that relative to randomized active and inactive control conditions the effect of very brief mindfulness training generalized to free-recall memory performance. This study also found evidence for mediation of the mindfulness training—episodic memory relation by intrinsic motivation. These findings indicate that mindful attention can beneficially impact motivation and episodic memory, with potential implications for educational and occupational performance. PMID:27115491

  4. Mindfulness Enhances Episodic Memory Performance: Evidence from a Multimethod Investigation.

    PubMed

    Brown, Kirk Warren; Goodman, Robert J; Ryan, Richard M; Anālayo, Bhikkhu

    2016-01-01

    Training in mindfulness, classically described as a receptive attentiveness to present events and experiences, has been shown to improve attention and working memory. Both are key to long-term memory formation, and the present three-study series used multiple methods to examine whether mindfulness would enhance episodic memory, a key form of long-term memory. In Study 1 (N = 143), a self-reported state of mindful attention predicted better recognition performance in the Remember-Know (R-K) paradigm. In Study 2 (N = 93), very brief training in a focused attention form of mindfulness also produced better recognition memory performance on the R-K task relative to a randomized, well-matched active control condition. Study 3 (N = 57) extended these findings by showing that relative to randomized active and inactive control conditions the effect of very brief mindfulness training generalized to free-recall memory performance. This study also found evidence for mediation of the mindfulness training-episodic memory relation by intrinsic motivation. These findings indicate that mindful attention can beneficially impact motivation and episodic memory, with potential implications for educational and occupational performance.

  5. Fractionating spatial memory with glutamate receptor subunit-knockout mice.

    PubMed

    Bannerman, David M

    2009-12-01

    In recent years, the contribution that different glutamate receptor subtypes and subunits make to spatial learning and memory has been studied extensively using genetically modified mice in which key proteins are knocked out. This has revealed dissociations between different aspects of spatial memory that were not previously apparent from lesion studies. For example, studies with GluA1 AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] subunit-knockout mice have revealed the presence of a GluA1-dependent, non-associative short-term memory mechanism that is important for performance on spatial working memory tasks, and a GluA1-independent, long-term associative memory mechanism which underlies performance on spatial reference memory tasks. Within this framework we have also studied the contributions of different GluN2-containing NMDARs [NMDA (N-methyl-D-aspartate) receptors] to spatial memory. Studies with GluN2 NMDAR mutants have revealed different contributions from GluN2A- and GluN2B-containing NMDARs to spatial learning. Furthermore, comparison of forebrain- and hippocampus-specific GluN2B-knockout mice has demonstrated that both hippocampal and extra-hippocampal NMDARs make important contributions to spatial memory performance.

  6. Prefrontal atrophy, disrupted NREM slow waves, and impaired hippocampal-dependent memory in aging

    PubMed Central

    Mander, Bryce A.; Rao, Vikram; Lu, Brandon; Saletin, Jared M.; Lindquist, John R.; Ancoli-Israel, Sonia; Jagust, William; Walker, Matthew P.

    2014-01-01

    Aging has independently been associated with regional brain atrophy, reduced non-rapid eye movement (NREM) slow-wave activity (SWA), and impaired long-term retention of episodic memories. However, that the interaction of these factors represents a neuropatholgical pathway associated with cognitive decline in later life remains unknown. Here, we show that age-related medial prefrontal cortex (mPFC) grey-matter atrophy is associated with reduced NREM SWA activity in older adults, the extent to which statistically mediates the impairment of overnight sleep-dependent memory retention. Moreover, this memory impairment was further associated with persistent hippocampal activation and reduced task-related hippocampal-prefrontal cortex connectivity, potentially representing impoverished hippocampal-neocortical memory transformation. Together, these data support a model in which age-related mPFC atrophy diminishes SWA, the functional consequence of which is impaired long-term memory. Such findings suggest that sleep disruption in the elderly, mediated by structural brain changes, represent a novel contributing factor to age-related cognitive decline in later life. PMID:23354332

  7. Abnormal medial temporal activity for bound information during working memory maintenance in patients with schizophrenia.

    PubMed

    Luck, David; Danion, Jean-Marie; Marrer, Corrine; Pham, Bich-Tuy; Gounot, Daniel; Foucher, Jack

    2010-08-01

    Alterations of binding in long-term memory in schizophrenia are well established and occur as a result of aberrant activity in the medial temporal lobe (MTL). In working memory (WM), such a deficit is less clear and the pathophysiological bases remain unstudied. Seventeen patients with schizophrenia and 17 matched healthy controls performed a WM binding task while undergoing functional magnetic resonance imaging. Binding was assessed by contrasting two conditions comprising an equal amount of verbal and spatial information (i.e., three letters and three spatial locations), but differing in the absence or presence of a link between them. In healthy controls, MTL activation was observed for encoding and maintenance of bound information but not for its retrieval. Between-group comparisons revealed that patients with schizophrenia showed MTL hypoactivation during the maintenance phase only. In addition, BOLD signals correlated with behavioral performance in controls but not in patients with schizophrenia. Our results confirm the major role that the MTL plays in the pathophysiology of schizophrenia. Short-term and long-term relational memory deficits in schizophrenia may share common cognitive and functional pathological bases. Our results provide additional information about the episodic buffer that represents an integrative interface between WM and long-term memory. Copyright 2009 Wiley-Liss, Inc.

  8. Relative Ease in Creating Detailed Orthographic Representations Contrasted with Severe Difficulties to Maintain Them in Long-term Memory Among Dyslexic Children.

    PubMed

    Binamé, Florence; Danzio, Sophie; Poncelet, Martine

    2015-11-01

    Most research into orthographic learning abilities has been conducted in English with typically developing children using reading-based tasks. In the present study, we examined the abilities of French-speaking children with dyslexia to create novel orthographic representations for subsequent use in spelling and to maintain them in long-term memory. Their performance was compared with that of chronological age (CA)-matched and reading age (RA)-matched control children. We used an experimental task designed to provide optimal learning conditions (i.e. 10 spelling practice trials) ensuring the short-term acquisition of the spelling of the target orthographic word forms. After a 1-week delay, the long-term retention of the targets was assessed by a spelling post-test. Analysis of the results revealed that, in the short term, children with dyslexia learned the novel orthographic word forms well, only differing from both CA and RA controls on the initial decoding of the targets and from CA controls on the first two practice trials. In contrast, a dramatic drop was observed in their long-term retention relative to CA and RA controls. These results support the suggestion of the self-teaching hypothesis (Share, 1995) that initial errors in the decoding and spelling of unfamiliar words may hinder the establishment of fully specified novel orthographic representations. Copyright © 2015 John Wiley & Sons, Ltd.

  9. The n-butanolic extract of Opuntia ficus-indica var. saboten enhances long-term memory in the passive avoidance task in mice.

    PubMed

    Kim, Jong Min; Kim, Dong Hyun; Park, Se Jin; Park, Dong Hyun; Jung, Seo Yun; Kim, Hyoung Ja; Lee, Yong Sup; Jin, Changbae; Ryu, Jong Hoon

    2010-08-16

    Opuntia ficus-indica var. saboten Makino (Cactaceae) is used to treat burns, edema, dyspepsia, and asthma in traditional medicine. The present study investigated the beneficial effects of the n-butanolic extract of O. ficus-indica var. saboten (BOF) on memory performance in mice and attempts to uncover the mechanisms underlying its action. Memory performance was assessed with the passive avoidance task, and western blotting and immunohistochemistry were used to measure changes in protein expression and cell survival. After the oral administration of BOF for 7 days, the latency time in the passive avoidance task was significantly increased relative to vehicle-treated controls (P<0.05). Western blotting revealed that the expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated cAMP response element binding-protein (pCREB), and phosphorylated extracellular signal-regulated kinase (pERK) 1/2 were significantly increased in hippocampal tissue after 7 days of BOF administration (P<0.05). Doublecortin and 5-bromo-2-deoxyuridine immunostaining also revealed that BOF significantly enhanced the survival of immature neurons, but did not affect neuronal cell proliferation in the subgranular zone of the hippocampal dentate gyrus. These results suggest that the subchronic administration of BOF enhances long-term memory, and that this effect is partially mediated by ERK-CREB-BDNF signaling and the survival of immature neurons. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  10. A Generalized Fraction: An Entity Smaller than One on the Mental Number Line

    ERIC Educational Resources Information Center

    Kallai, Arava Y.; Tzelgov, Joseph

    2009-01-01

    The representation of fractions in long-term memory (LTM) was investigated by examining the automatic processing of such numbers in a physical comparison task, and their intentional processing in a numerical comparison task. The size congruity effect (SiCE) served as a marker of automatic processing and consequently as an indicator of the access…

  11. Atypical Acquisition and Atypical Expression of Memory Consolidation Gains in a Motor Skill in Young Female Adults with ADHD

    ERIC Educational Resources Information Center

    Adi-Japha, Esther; Fox, Orly; Karni, Avi

    2011-01-01

    Individuals with ADHD often show performance deficits in motor tasks. It is not clear, however, whether this reflects less effective acquisition of skill (procedural knowledge), or deficient consolidation into long-term memory, in ADHD. The aim of the study was to compare the acquisition of skilled motor performance, the expression of…

  12. An Evolutionary Upgrade of Cognitive Load Theory: Using the Human Motor System and Collaboration to Support the Learning of Complex Cognitive Tasks

    ERIC Educational Resources Information Center

    Paas, Fred; Sweller, John

    2012-01-01

    Cognitive load theory is intended to provide instructional strategies derived from experimental, cognitive load effects. Each effect is based on our knowledge of human cognitive architecture, primarily the limited capacity and duration of a human working memory. These limitations are ameliorated by changes in long-term memory associated with…

  13. Primate Prefrontal Neurons Encode the Association of Paired Visual Stimuli during the Pair-Association Task

    ERIC Educational Resources Information Center

    Andreau, Jorge Mario; Funahashi, Shintaro

    2011-01-01

    The prefrontal cortex (PFC) is known to contribute to memory processes such as encoding representations into long-term-memory (LTM) and retrieving these representations from LTM. However, the details of the PFC's contribution to LTM processes are not well known. To examine the characteristics of the PFC's contribution to LTM processes, we analyzed…

  14. Performance of four different rat strains in the autoshaping, two-object discrimination, and swim maze tests of learning and memory.

    PubMed

    Andrews, J S; Jansen, J H; Linders, S; Princen, A; Broekkamp, C L

    1995-04-01

    The performance of four strains of rats commonly used in behavioural research was assessed in three different tests of learning and memory. The four strains included three outbred lines (Long-Evans, Sprague-Dawley, Wistar) and one inbred strain (S3). Learning and memory were tested using three different paradigms: autoshaping of a lever press, a two-object discrimination test, and performance in a two-island swim maze task. The pigmented strains showed better performance in the autoshaping procedure: the majority of the Long-Evans and the S3 rats acquired the response, and the majority of the Wistar and Sprague-Dawley failed to acquire the response in the set time. The albino strains were slightly better in the swim maze than the pigmented strains. There appeared to be a speed/accuracy trade-off in the strategy used to solve the task. This was also evident following treatment with the cholinergic-depleting agent hemicholinium-3. The performance of the Long-Evans rats was most affected by the treatment in terms of accuracy and the Wistar and Sprague-Dawleys in terms of speed. In the two-object discrimination test only the Long-Evans showed satisfactory performance and were able to discriminate a novel from a known object a short interval after initial exposure. These results show large task- and strain-dependent differences in performance in tests of learning and memory. Some of the performance variation may be due to emotional differences between the strains and may be alleviated by extra training. However, the response to pharmacological manipulation may require more careful evaluation.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Long-term effects of executive process training in young and old adults.

    PubMed

    Sandberg, Petra; Stigsdotter Neely, Anna

    2016-10-01

    Prior studies have examined the magnitude of training and transfer effects after process-based training in early and late adulthood. However, little is known about how long-lasting these effects are. Here we investigate the degree of stability of training gains and transfer effects in younger and older adults 18 months after completion of executive process training, tapping updating, inhibition, and shifting. From the original sample, 24 out of 30 older participants, and 19 out of 29 young adults, returned for follow-up assessment at which the criterion and transfer tests from pre- and post-test were re-administered. The results demonstrated stability of training gains in the updating criterion task (Letter Memory Running Span), and in a near transfer updating task (Number Memory Running Span) for both age groups. The young adults improved performance in two complex working memory tasks immediately after training. These transfer effects did not survive across time. Our results provide evidence that executive process training has its greatest effect on transfer tasks with a substantial process overlap with the trained tasks: only those effects are maintained over an 18 month period in both early and late adulthood.

  16. Does constraining memory maintenance reduce visual search efficiency?

    PubMed

    Buttaccio, Daniel R; Lange, Nicholas D; Thomas, Rick P; Dougherty, Michael R

    2018-03-01

    We examine whether constraining memory retrieval processes affects performance in a cued recall visual search task. In the visual search task, participants are first presented with a memory prompt followed by a search array. The memory prompt provides diagnostic information regarding a critical aspect of the target (its colour). We assume that upon the presentation of the memory prompt, participants retrieve and maintain hypotheses (i.e., potential target characteristics) in working memory in order to improve their search efficiency. By constraining retrieval through the manipulation of time pressure (Experiments 1A and 1B) or a concurrent working memory task (Experiments 2A, 2B, and 2C), we directly test the involvement of working memory in visual search. We find some evidence that visual search is less efficient under conditions in which participants were likely to be maintaining fewer hypotheses in working memory (Experiments 1A, 2A, and 2C), suggesting that the retrieval of representations from long-term memory into working memory can improve visual search. However, these results should be interpreted with caution, as the data from two experiments (Experiments 1B and 2B) did not lend support for this conclusion.

  17. Dysfunctional overnight memory consolidation in ecstasy users.

    PubMed

    Smithies, Vanessa; Broadbear, Jillian; Verdejo-Garcia, Antonio; Conduit, Russell

    2014-08-01

    Sleep plays an important role in the consolidation and integration of memory in a process called overnight memory consolidation. Previous studies indicate that ecstasy users have marked and persistent neurocognitive and sleep-related impairments. We extend past research by examining overnight memory consolidation among regular ecstasy users (n=12) and drug naïve healthy controls (n=26). Memory recall of word pairs was evaluated before and after a period of sleep, with and without interference prior to testing. In addition, we assessed neurocognitive performances across tasks of learning, memory and executive functioning. Ecstasy users demonstrated impaired overnight memory consolidation, a finding that was more pronounced following associative interference. Additionally, ecstasy users demonstrated impairments on tasks recruiting frontostriatal and hippocampal neural circuitry, in the domains of proactive interference memory, long-term memory, encoding, working memory and complex planning. We suggest that ecstasy-associated dysfunction in fronto-temporal circuitry may underlie overnight consolidation memory impairments in regular ecstasy users. © The Author(s) 2014.

  18. Background matters: Minor vibratory stimulation during motor skill acquisition selectively reduces off-line memory consolidation.

    PubMed

    Korman, Maria; Herling, Zohar; Levy, Ishay; Egbarieh, Nebal; Engel-Yeger, Batya; Karni, Avi

    2017-04-01

    Although a ubiquitous situation, it is not clear how effective is a learning experience when task-irrelevant, sensory noise occurs in the background. Here, young adults were trained on the finger opposition sequence task, in a well-established training and testing protocol affording measures for online as well as off-line learning. During the training session, one group experienced a minor background vibratory stimulation to the trunk by the means of vibrating cushion, while the second group experienced recorded sound vibrations. A control group was trained with no extra sensory stimulation. Sensory stimulation during training had no effect on the online within-session gains, but dampened the expression of the off-line, consolidation phase, gains in the two sensory stimulation groups. These results suggest that background sensory stimulation can selectively modify off-line, procedural memory consolidation processes, despite well-preserved on-line learning. Classical studies have shown that neural plasticity in sensory systems is modulated by motor input. The current results extend this notion and suggest that some types of task-irrelevant sensory stimulation, concurrent with motor training, may constitute a 'gating' factor - modulating the triggering of long-term procedural memory consolidation processes. Thus, vibratory stimulation may be considered as a behavioral counterpart of pharmacological interventions that do not interfere with short term neural plasticity but block long-term plasticity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Framewise phoneme classification with bidirectional LSTM and other neural network architectures.

    PubMed

    Graves, Alex; Schmidhuber, Jürgen

    2005-01-01

    In this paper, we present bidirectional Long Short Term Memory (LSTM) networks, and a modified, full gradient version of the LSTM learning algorithm. We evaluate Bidirectional LSTM (BLSTM) and several other network architectures on the benchmark task of framewise phoneme classification, using the TIMIT database. Our main findings are that bidirectional networks outperform unidirectional ones, and Long Short Term Memory (LSTM) is much faster and also more accurate than both standard Recurrent Neural Nets (RNNs) and time-windowed Multilayer Perceptrons (MLPs). Our results support the view that contextual information is crucial to speech processing, and suggest that BLSTM is an effective architecture with which to exploit it.

  20. RCT of working memory training in ADHD: long-term near-transfer effects.

    PubMed

    Hovik, Kjell Tore; Saunes, Brit-Kari; Aarlien, Anne Kristine; Egeland, Jens

    2013-01-01

    The aim of the study is to evaluate the long-term near-transfer effects of computerized working memory (WM) training on standard WM tasks in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Sixty-seven children aged 10-12 years in Vestfold/Telemark counties (Norway) diagnosed with F90.0 Hyperkinetic disorder (ICD-10) were randomly assigned to training or control group. The training group participated in a 25-day training program at school, while the control group received treatment-as-usual. Participants were tested one week before intervention, immediately after and eight months later. Based on a component analysis, six measures of WM were grouped into composites representing Visual, Auditory and Manipulation WM. The training group had significant long-term differential gains compared to the control group on all outcome measures. Performance gains for the training group were significantly higher in the visual domain than in the auditory domain. The differential gain in Manipulation WM persisted after controlling for an increase in simple storage capacity. Systematic training resulted in a long-term positive gain in performance on similar tasks, indicating the viability of training interventions for children with ADHD. The results provide evidence for both domain-general and domain-specific models. Far-transfer effects were not investigated in this article. Controlled-Trials.com ISRCTN19133620.

  1. Reversibility of object recognition but not spatial memory impairment following binge-like alcohol exposure in rats.

    PubMed

    Cippitelli, Andrea; Zook, Michelle; Bell, Lauren; Damadzic, Ruslan; Eskay, Robert L; Schwandt, Melanie; Heilig, Markus

    2010-11-01

    Excessive alcohol use leads to neurodegeneration in several brain structures including the hippocampal dentate gyrus and the entorhinal cortex. Cognitive deficits that result are among the most insidious and debilitating consequences of alcoholism. The object exploration task (OET) provides a sensitive measurement of spatial memory impairment induced by hippocampal and cortical damage. In this study, we examine whether the observed neurotoxicity produced by a 4-day binge ethanol treatment results in long-term memory impairment by observing the time course of reactions to spatial change (object configuration) and non-spatial change (object recognition). Wistar rats were assessed for their abilities to detect spatial configuration in the OET at 1 week and 10 weeks following the ethanol treatment, in which ethanol groups received 9-15 g/kg/day and achieved blood alcohol levels over 300 mg/dl. At 1 week, results indicated that the binge alcohol treatment produced impairment in both spatial memory and non-spatial object recognition performance. Unlike the controls, ethanol treated rats did not increase the duration or number of contacts with the displaced object in the spatial memory task, nor did they increase the duration of contacts with the novel object in the object recognition task. After 10 weeks, spatial memory remained impaired in the ethanol treated rats but object recognition ability was recovered. Our data suggest that episodes of binge-like alcohol exposure result in long-term and possibly permanent impairments in memory for the configuration of objects during exploration, whereas the ability to detect non-spatial changes is only temporarily affected. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory.

    PubMed

    Fernandez Espejo, Emilio

    2003-03-01

    Prefrontal dopamine loss delays extinction of cued fear conditioning responses, but its role in contextual fear conditioning has not been explored. Medial prefrontal lesions also enhance social interaction in rats, but the role of prefrontal dopamine loss on social interaction memory is not known. Besides, a role for subcortical accumbal dopamine on mnesic changes after prefrontal dopamine manipulation has been proposed but not explored. The objective was to study the involvement of dopaminergic neurotransmission in the medial prefrontal cortex (mPFC) and nucleus accumbens in two mnesic tasks: contextual fear conditioning and social interaction memory. For contextual fear conditioning, short- and long-term freezing responses after an electric shock were studied, as well as extinction retention. Regarding social interaction memory, the recognition of a juvenile, a very sensitive short-term memory test, was used. Dopamine loss was carried out by injection of 6-hydroxydopamine, and postmortem catecholamine levels were analyzed by high-performance liquid chromatography. Prefrontocortical dopamine loss (>76%) led to a reactive enhancement of accumbal dopamine content (p<0.01), supporting the hypothesis that a hyperdopaminergic tone emerges in the nucleus accumbens after prefrontocortical dopamine loss. In lesioned rats, long-term extinction of contextual fear conditioning was significantly delayed and extinction retention was impaired without changes in acquisition and short-term contextual fear conditioning and, on the other hand, acquisition and short-term social interaction memory were not affected, although time spent on social interaction was significantly reduced. Added dopamine loss in the nucleus accumbens (>76%) did not alter these behavioral changes. In summary, the results of the present study indicate that the dopaminergic network in the mPFC (but not in the nucleus accumbens) coordinates the normal long-term extinction of contextual fear conditioning responses without affecting their acquisition, and it is involved in time spent on social interaction, but not acquisition and short-term social interaction memory.

  3. The effects of synthetic cannabinoids on executive function.

    PubMed

    Cohen, K; Kapitány-Fövény, M; Mama, Y; Arieli, M; Rosca, P; Demetrovics, Z; Weinstein, A

    2017-04-01

    There is a growing use of novel psychoactive substances (NPSs) including synthetic cannabinoids. Synthetic cannabinoid products have effects similar to those of natural cannabis but the new synthetic cannabinoids are more potent and dangerous and their use has resulted in various adverse effects. The purpose of the study was to assess whether persistent use of synthetic cannabinoids is associating with impairments of executive function in chronic users. A total of 38 synthetic cannabinoids users, 43 recreational cannabis users, and 41 non-user subjects were studied in two centers in Hungary and Israel. Computerized cognitive function tests, the classical Stroop word-color task, n-back task, and a free-recall memory task were used. Synthetic cannabinoid users performed significantly worse than both recreational and non-cannabis users on the n-back task (less accuracy), the Stroop task (overall slow responses and less accuracy), and the long-term memory task (less word recall). Additionally, they have also shown higher ratings of depression and anxiety compared with both recreational and non-users groups. This study showed impairment of executive function in synthetic cannabinoid users compared with recreational users of cannabis and non-users. This may have major implications for our understanding of the long-term consequences of synthetic cannabinoid based drugs.

  4. Effects of age on a real-world What-Where-When memory task

    PubMed Central

    Mazurek, Adèle; Bhoopathy, Raja Meenakshi; Read, Jenny C. A.; Gallagher, Peter; Smulders, Tom V.

    2015-01-01

    Many cognitive abilities decline with aging, making it difficult to detect pathological changes against a background of natural changes in cognition. Most of the tests to assess cognitive decline are artificial tasks that have little resemblance to the problems faced by people in everyday life. This means both that people may have little practice doing such tasks (potentially contributing to the decline in performance) and that the tasks may not be good predictors of real-world cognitive problems. In this study, we test the performance of young people (18–25 years) and older people (60+-year-olds) on a novel, more ecologically valid test of episodic memory: the real-world What-Where-When (WWW) memory test. We also compare them on a battery of other cognitive tests, including working memory, psychomotor speed, executive function, and episodic memory. Older people show the expected age-related declines on the test battery. In the WWW memory task, older people were more likely to fail to remember any WWW combination than younger people were, although they did not significantly differ in their overall WWW score due to some older people performing as well as or better than most younger people. WWW memory performance was significantly predicted by other measures of episodic memory, such as the single-trial learning and long-term retention in the Rey Auditory Verbal Learning task and Combined Object Location Memory in the Object Relocation task. Self-reported memory complaints also predicted performance on the WWW task. These findings confirm that our real-world WWW memory task is a valid measure of episodic memory, with high ecological validity, which may be useful as a predictor of everyday memory abilities. The task will require a bit more development to improve its sensitivity to cognitive declines in aging and to potentially distinguish between mentally healthy older adults and those with early signs of cognitive pathologies. PMID:26042030

  5. Concreteness effects in short-term memory: a test of the item-order hypothesis.

    PubMed

    Roche, Jaclynn; Tolan, G Anne; Tehan, Gerald

    2011-12-01

    The following experiments explore word length and concreteness effects in short-term memory within an item-order processing framework. This framework asserts order memory is better for those items that are relatively easy to process at the item level. However, words that are difficult to process benefit at the item level for increased attention/resources being applied. The prediction of the model is that differential item and order processing can be detected in episodic tasks that differ in the degree to which item or order memory are required by the task. The item-order account has been applied to the word length effect such that there is a short word advantage in serial recall but a long word advantage in item recognition. The current experiment considered the possibility that concreteness effects might be explained within the same framework. In two experiments, word length (Experiment 1) and concreteness (Experiment 2) are examined using forward serial recall, backward serial recall, and item recognition. These results for word length replicate previous studies showing the dissociation in item and order tasks. The same was not true for the concreteness effect. In all three tasks concrete words were better remembered than abstract words. The concreteness effect cannot be explained in terms of an item-order trade off. PsycINFO Database Record (c) 2011 APA, all rights reserved.

  6. Distinct roles of hippocampus and medial prefrontal cortex in spatial and nonspatial memory.

    PubMed

    Sapiurka, Maya; Squire, Larry R; Clark, Robert E

    2016-12-01

    In earlier work, patients with hippocampal damage successfully path integrated, apparently by maintaining spatial information in working memory. In contrast, rats with hippocampal damage were unable to path integrate, even when the paths were simple and working memory might have been expected to support performance. We considered possible ways to understand these findings. We tested rats with either hippocampal lesions or lesions of medial prefrontal cortex (mPFC) on three tasks of spatial or nonspatial memory: path integration, spatial alternation, and a nonspatial alternation task. Rats with mPFC lesions were impaired on both spatial and nonspatial alternation but performed normally on path integration. By contrast, rats with hippocampal lesions were impaired on path integration and spatial alternation but performed normally on nonspatial alternation. We propose that rodent neocortex is limited in its ability to construct a coherent spatial working memory of complex environments. Accordingly, in tasks such as path integration and spatial alternation, working memory cannot depend on neocortex alone. Rats may accomplish many spatial memory tasks by relying on long-term memory. Alternatively, they may accomplish these tasks within working memory through sustained coordination between hippocampus and other cortical brain regions such as mPFC, in the case of spatial alternation, or parietal cortex in the case of path integration. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Immediate recall influences the effects of pre-encoding stress on emotional episodic long-term memory consolidation in healthy young men.

    PubMed

    Wolf, Oliver T

    2012-05-01

    The stress-associated activation of the hypothalamus-pituitary-adrenal axis influences memory. Several studies have supported the notion that post-learning stress enhances memory consolidation, while pre-retrieval stress impairs retrieval. Findings regarding the effects of pre-encoding stress, in contrast, have been rather inconsistent. In the current two studies, the impact of an immediate retrieval task on these effects was explored. In the first study, 24 healthy young male participants were exposed to a psychosocial laboratory stressor (Trier Social Stress Test) or a control condition before viewing positive, negative, and neutral photographs, which were accompanied by a brief narrative. Immediate as well as delayed (24 h later) free recall was assessed. Stress was expected to enhance emotional long-term memory without affecting immediate recall performance. Stress caused a significant increase in salivary cortisol concentrations but had no significant effects on immediate or delayed retrieval performance, even though a trend toward poorer memory of the stress group was apparent. Based on these findings, the second experiment tested the hypothesis that the beneficial effects of stress on emotional long-term memory performance might be abolished by an immediate recall test. In the second study (n = 32), the same design was used, except for the omission of the immediate retrieval test. This time stressed participants recalled significantly more negative photographs compared to the control group. The present study indicates that an immediate retrieval attempt of material studied after stress exposure can prevent or even reverse the beneficial effects of pre-encoding stress on emotional long-term memory consolidation.

  8. Where do we store the memory representations that guide attention?

    PubMed Central

    Woodman, Geoffrey F.; Carlisle, Nancy B.; Reinhart, Robert M. G.

    2013-01-01

    During the last decade one of the most contentious and heavily studied topics in the attention literature has been the role that working memory representations play in controlling perceptual selection. The hypothesis has been advanced that to have attention select a certain perceptual input from the environment, we only need to represent that item in working memory. Here we summarize the work indicating that the relationship between what representations are maintained in working memory and what perceptual inputs are selected is not so simple. First, it appears that attentional selection is also determined by high-level task goals that mediate the relationship between working memory storage and attentional selection. Second, much of the recent work from our laboratory has focused on the role of long-term memory in controlling attentional selection. We review recent evidence supporting the proposal that working memory representations are critical during the initial configuration of attentional control settings, but that after those settings are established long-term memory representations play an important role in controlling which perceptual inputs are selected by mechanisms of attention. PMID:23444390

  9. Short-term memory predictions across the lifespan: monitoring span before and after conducting a task.

    PubMed

    Bertrand, Julie Marilyne; Moulin, Chris John Anthony; Souchay, Céline

    2017-05-01

    Our objective was to explore metamemory in short-term memory across the lifespan. Five age groups participated in this study: 3 groups of children (4-13 years old), and younger and older adults. We used a three-phase task: prediction-span-postdiction. For prediction and postdiction phases, participants reported with a Yes/No response if they could recall in order a series of images. For the span task, they had to actually recall such series. From 4 years old, children have some ability to monitor their short-term memory and are able to adjust their prediction after experiencing the task. However, accuracy still improves significantly until adolescence. Although the older adults had a lower span, they were as accurate as young adults in their evaluation, suggesting that metamemory is unimpaired for short-term memory tasks in older adults. •We investigate metamemory for short-term memory tasks across the lifespan. •We find younger children cannot accurately predict their span length. •Older adults are accurate in predicting their span length. •People's metamemory accuracy was related to their short-term memory span.

  10. Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice

    PubMed Central

    Bell, Genevieve A.; Fadool, Debra Ann

    2017-01-01

    Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5 μg/μl of insulin twice daily for 30 and 60 days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice performed no different from controls regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3X increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR Kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors – as reported to elicit a modulatory effect with acute administration. This leads to two alternative interpretations regarding long-term insulin IND in mice: 1) It causes an initial stage of insulin resistance to dampen the behaviors that would normally be modulated under acute insulin IND, but ability to clear a glucose challenge is still retained, or 2) There is a lack of behavioral modulation at high concentration of insulin attributed to the twice daily intervals of hyperinsulinemia caused by insulin IND administration without any insulin resistance, per se. PMID:28259806

  11. Awake, long-term intranasal insulin treatment does not affect object memory, odor discrimination, or reversal learning in mice.

    PubMed

    Bell, Genevieve A; Fadool, Debra Ann

    2017-05-15

    Intranasal insulin delivery is currently being used in clinical trials to test for improvement in human memory and cognition, and in particular, for lessening memory loss attributed to neurodegenerative diseases. Studies have reported the effects of short-term intranasal insulin treatment on various behaviors, but less have examined long-term effects. The olfactory bulb contains the highest density of insulin receptors in conjunction with the highest level of insulin transport within the brain. Previous research from our laboratory has demonstrated that acute insulin intranasal delivery (IND) enhanced both short- and long-term memory as well as increased two-odor discrimination in a two-choice paradigm. Herein, we investigated the behavioral and physiological effects of chronic insulin IND. Adult, male C57BL6/J mice were intranasally treated with 5μg/μl of insulin twice daily for 30 and 60days. Metabolic assessment indicated no change in body weight, caloric intake, or energy expenditure following chronic insulin IND, but an increase in the frequency of meal bouts selectively in the dark cycle. Unlike acute insulin IND, which has been shown to cause enhanced performance in odor habituation/dishabituation and two-odor discrimination tasks in mice, chronic insulin IND did not enhance olfactometry-based odorant discrimination or olfactory reversal learning. In an object memory recognition task, insulin IND-treated mice did not perform differently than controls, regardless of task duration. Biochemical analyses of the olfactory bulb revealed a modest 1.3 fold increase in IR kinase phosphorylation but no significant increase in Kv1.3 phosphorylation. Substrate phosphorylation of IR kinase downstream effectors (MAPK/ERK and Akt signaling) proved to be highly variable. These data indicate that chronic administration of insulin IND in mice fails to enhance olfactory ability, object memory recognition, or a majority of systems physiology metabolic factors - as reported to elicit a modulatory effect with acute administration. This leads to two alternative interpretations regarding long-term insulin IND in mice: 1) It causes an initial stage of insulin resistance to dampen the behaviors that would normally be modulated under acute insulin IND, but ability to clear a glucose challenge is still retained, or 2) There is a lack of behavioral modulation at high concentration of insulin attributed to the twice daily intervals of hyperinsulinemia caused by insulin IND administration without any insulin resistance, per se. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The role of attention during retrieval in working-memory span: a dual-task study.

    PubMed

    Healey, M Karl; Miyake, Akira

    2009-04-01

    We tested the hypothesis that retrieving target words in operation span (OSpan) involves attention-demanding processes. Participants completed the standard OSpan task and a modified version in which all equations preceded all target words. Recall took place under either full attention or easy versus hard divided-attention conditions. Recall suffered under divided attention with the recall decrement being greater for the hard secondary task. Moreover, secondary-task performance was disrupted more by the standard OSpan task than by the modified version with the hard secondary task showing the larger decrement. Finally, the time taken to start recalling the first word was considerably longer for the standard version than for the modified version. These results are consistent with the proposal that successful OSpan task performance in part involves the attention-demanding retrieval of targets from long-term memory.

  13. Medial temporal lobe contributions to short-term memory for faces

    PubMed Central

    Race, Elizabeth; LaRocque, Karen F.; Keane, Margaret M.; Verfaellie, Mieke

    2015-01-01

    The role of the medial temporal lobes (MTL) in short-term memory (STM) remains a matter of debate. While imaging studies commonly show hippocampal activation during short-delay memory tasks, evidence from amnesic patients with MTL lesions is mixed. It has been argued that apparent STM impairments in amnesia may reflect long-term memory (LTM) contributions to performance. We challenge this conclusion by demonstrating that MTL amnesic patients show impaired delayed matching-to-sample (DMS) for faces in a task that meets both a traditional delay-based and a recently proposed distractor-based criterion for classification as a STM task. In Experiment 1, we demonstrate that our face DMS task meets the proposed distractor-based criterion for STM classification, in that extensive processing of delay-period distractor stimuli disrupts performance of healthy individuals. In Experiment 2, MTL amnesic patients with lesions extending into anterior subhippocampal cortex, but not patients with lesions limited to the hippocampus, show impaired performance on this task without distraction at delays as short as 8s, within temporal range of delay-based STM classification, in the context of intact perceptual matching performance. Experiment 3 provides support for the hypothesis that STM for faces relies on configural processing by showing that the extent to which healthy participants’ performance is disrupted by interference depends on the configural demands of the distractor task. Together, these findings are consistent with the notion that the amnesic impairment in STM for faces reflects a deficit in configural processing associated with subhippocampal cortices and provide novel evidence that the MTL supports cognition beyond the LTM domain. PMID:23937185

  14. On short-term memory of prefrontal cortex using near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Chengjun; Gan, Zhuo; Gong, Hui; Luo, Qingming; Zeng, Shaoqun

    2003-12-01

    For studying prefrontal cortical function in short-term memory two tasks were designed. In task one, a plus expression appears on screen for 300 milliseconds every other 2 seconds and the subject is required to give it"s answer but not to remember it. In task two, an Arabic numeral presents on screen as the same frequency as in task one. While a number is present, the subject need adding it to the sum he got last time. As subjects, 26 children participated in the work. Blood volume changes(BVCs) of right prefrontal cortex(PC) under two cognitive tasks were examined using functional near infrared imaging(fNIRI), a noninvasive technique for localizing regional BVCs which correlate with neural activities. The BVCs caused by short-term memory for numbers were retrieved from BVCs by task one and task two. Results revealed that short-term memory is related to PC and the near-infrared spectroscopy(NIRS) can be used to study prefrontal cortical function in short-term memory.

  15. Roles of α- and β-estrogen receptors in mouse social recognition memory: effects of gender and the estrous cycle.

    PubMed

    Sánchez-Andrade, G; Kendrick, K M

    2011-01-01

    Establishing clear effects of gender and natural hormonal changes during female ovarian cycles on cognitive function has often proved difficult. Here we have investigated such effects on the formation and long-term (24 h) maintenance of social recognition memory in mice together with the respective involvement of α- and β-estrogen receptors using α- and β-estrogen receptor knockout mice and wildtype controls. Results in wildtype animals showed that while females successfully formed a memory in the context of a habituation/dishabituation paradigm at all stages of their ovarian cycle, only when learning occurred during proestrus (when estrogen levels are highest) was it retained after 24 h. In α-receptor knockout mice (which showed no ovarian cycles) both formation and maintenance of this social recognition memory were impaired, whereas β-receptor knockouts showed no significant deficits and exhibited the same proestrus-dependent retention of memory at 24 h. To investigate possible sex differences, male α- and β-estrogen receptor knockout mice were also tested and showed similar effects to females excepting that α-receptor knockouts had normal memory formation and only exhibited a 24 h retention deficit. This indicates a greater dependence in females on α-receptor expression for memory formation in this task. Since non-specific motivational and attentional aspects of the task were unaffected, our findings suggest a general α-receptor dependent facilitation of memory formation by estrogen as well as an enhanced long-term retention during proestrus. Results are discussed in terms of the differential roles of the two estrogen receptors, the neural substrates involved and putative interactions with oxytocin. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. The long-term effects of prenatal nicotine exposure on verbal working memory: an fMRI study of young adults.

    PubMed

    A Longo, Carmelinda; A Fried, Peter; Cameron, Ian; M Smith, Andra

    2014-11-01

    Using functional magnetic resonance imaging (fMRI), the long-term effects of prenatal nicotine exposure on verbal working memory were investigated in young adults. Participants were members of the Ottawa Prenatal Prospective Study, a longitudinal study that collected a unique body of information on participants from infancy to young adulthood. This allowed for the measurement of an unprecedented number of potentially confounding drug exposure variables including: prenatal marijuana and alcohol exposure and current marijuana, nicotine and alcohol use. Twelve young adults with prenatal nicotine exposure and 13 non-exposed controls performed a 2-Back working memory task while fMRI blood oxygen level-dependent responses were examined. Despite similar task performance, participants with more prenatal nicotine exposure demonstrated significantly greater activity in several regions of the brain that typically subserve verbal working memory including the middle frontal gyrus, precentral gyrus, the inferior parietal lobe and the cingulate gyrus. These results suggest that prenatal nicotine exposure contributes to altered neural functioning during verbal working memory that continues into adulthood. Working memory is critical for a wide range of cognitive skills such as language comprehension, learning and reasoning. Thus, these findings highlight the need for continued educational programs and public awareness campaigns to reduce tobacco use among pregnant women. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli

    PubMed Central

    Brady, Timothy F.; Störmer, Viola S.; Alvarez, George A.

    2016-01-01

    Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli—colors and orientations—is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up,” revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge. PMID:27325767

  18. Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli.

    PubMed

    Brady, Timothy F; Störmer, Viola S; Alvarez, George A

    2016-07-05

    Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli-colors and orientations-is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up," revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge.

  19. The integrated role of ACh, ERK and mTOR in the mechanisms of hippocampal inhibitory avoidance memory.

    PubMed

    Giovannini, Maria Grazia; Lana, Daniele; Pepeu, Giancarlo

    2015-03-01

    The purpose of this review is to summarize the present knowledge on the interplay among the cholinergic system, Extracellular signal-Regulated Kinase (ERK) and Mammalian Target of Rapamycin (mTOR) pathways in the development of short and long term memories during the acquisition and recall of the step-down inhibitory avoidance in the hippocampus. The step-down inhibitory avoidance is a form of associative learning that is acquired in a relatively simple one-trial test through several sensorial inputs. Inhibitory avoidance depends on the integrated activity of hippocampal CA1 and other brain areas. Recall can be performed at different times after acquisition, thus allowing for the study of both short and long term memory. Among the many neurotransmitter systems involved, the cholinergic neurons that originate in the basal forebrain and project to the hippocampus are of crucial importance in inhibitory avoidance processes. Acetylcholine released from cholinergic fibers during acquisition and/or recall of behavioural tasks activates muscarinic and nicotinic acetylcholine receptors and brings about a long-lasting potentiation of the postsynaptic membrane followed by downstream activation of intracellular pathway (ERK, among others) that create conditions favourable for neuronal plasticity. ERK appears to be salient not only in long term memory, but also in the molecular mechanisms underlying short term memory formation in the hippocampus. Since ERK can function as a biochemical coincidence detector in response to extracellular signals in neurons, the activation of ERK-dependent downstream effectors is determined, in part, by the duration of ERK phosphorylation itself. Long term memories require protein synthesis, that in the synapto-dendritic compartment represents a direct mechanism that can produce rapid changes in protein content in response to synaptic activity. mTOR in the brain regulates protein translation in response to neuronal activity, thereby modulating synaptic plasticity and long term memory formation. Some studies demonstrate a complex interplay among the cholinergic system, ERK and mTOR. It has been shown that co-activation of muscarinic acetylcholine receptors and β-adrenergic receptors facilitates the conversion of short term to long term synaptic plasticity through an ERK- and mTOR-dependent mechanism which requires translation initiation. It seems therefore that the complex interplay among the cholinergic system, ERK and mTOR is crucial in the development of new inhibitory avoidance memories in the hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Effects of 45-day -6° head-down bed rest on the time-based prospective memory

    NASA Astrophysics Data System (ADS)

    Chen, SiYi; Zhou, RenLai; Xiu, LiChao; Chen, ShanGuang; Chen, XiaoPing; Tan, Cheng

    2013-03-01

    The research explored the effects of 45-day -6° head-down bed rest (HDBR) simulation of microgravity on the time-based prospective memory (PM) with 16 males. The time-based prospective memory task was performed on the 2nd day before HDBR, on the 11th, 20th, 32nd, and 40th days during HDBR, and on the 8th day after HDBR, and subjects' anxiety and depression feelings were recorded simultaneously using Beck Anxiety Inventory (BAI) and Beck Depression Inventory (BDI). The results demonstrated that it showed decreased accuracy of PM responses and frequency of clock checks during and after bed rest; long term bed rest did not induce significant emotional changes. The deficit of prospective memory performance induced by long term HDBR may result from a lack of aerobic physical activity or changes in the prefrontal cortex, but it remains to be determined.

  1. The lasting memory enhancements of retrospective attention.

    PubMed

    Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey

    2016-07-01

    Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues ("retro-cues") enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Overthinking skilled motor performance: or why those who teach can't do.

    PubMed

    Flegal, Kristin E; Anderson, Michael C

    2008-10-01

    Skilled athletes often maintain that overthinking disrupts performance of their motor skills. Here, we examined whether these experiences have a basis in verbal overshadowing, a phenomenon in which describing memories for ineffable perceptual experiences disrupts later retention. After learning a unique golf-putting task, golfers of low and intermediate skill either described their actions in detail or performed an irrelevant verbal task. They then performed the putting task again. Strikingly, describing their putting experience significantly impaired higher skill golfers' ability to reachieve the putting criterion, compared with higher skill golfers who performed the irrelevant verbal activity. Verbalization had no such effect, however, for lower skill golfers. These findings establish that the effects of overthinking extend beyond dual-task interference and may sometimes reflect impacts on long-term memory. We propose that these effects are mediated by competition between procedural and declarative memory, as suggested by recent work in cognitive neuroscience.

  3. Memory under pressure: secondary-task effects on contextual cueing of visual search.

    PubMed

    Annac, Efsun; Manginelli, Angela A; Pollmann, Stefan; Shi, Zhuanghua; Müller, Hermann J; Geyer, Thomas

    2013-11-04

    Repeated display configurations improve visual search. Recently, the question has arisen whether this contextual cueing effect (Chun & Jiang, 1998) is itself mediated by attention, both in terms of selectivity and processing resources deployed. While it is accepted that selective attention modulates contextual cueing (Jiang & Leung, 2005), there is an ongoing debate whether the cueing effect is affected by a secondary working memory (WM) task, specifically at which stage WM influences the cueing effect: the acquisition of configural associations (e.g., Travis, Mattingley, & Dux, 2013) versus the expression of learned associations (e.g., Manginelli, Langer, Klose, & Pollmann, 2013). The present study re-investigated this issue. Observers performed a visual search in combination with a spatial WM task. The latter was applied on either early or late search trials--so as to examine whether WM load hampers the acquisition of or retrieval from contextual memory. Additionally, the WM and search tasks were performed either temporally in parallel or in succession--so as to permit the effects of spatial WM load to be dissociated from those of executive load. The secondary WM task was found to affect cueing in late, but not early, experimental trials--though only when the search and WM tasks were performed in parallel. This pattern suggests that contextual cueing involves a spatial WM resource, with spatial WM providing a workspace linking the current search array with configural long-term memory; as a result, occupying this workspace by a secondary WM task hampers the expression of learned configural associations.

  4. Effects of Aerobic Exercise on Cognitive Performance Among Young Adults in a Higher Education Setting.

    PubMed

    Ludyga, Sebastian; Gerber, Markus; Brand, Serge; Pühse, Uwe; Colledge, Flora

    2018-06-01

    Acute benefits of aerobic exercise on executive functioning have been reported frequently under laboratory conditions. However, to date, a beneficial effect on long-term memory has been less well supported and no data are available regarding nonlaboratory conditions in young adults. The aim of the current study was to investigate acute effects of aerobic exercise on cognitive functioning in a university classroom setting. Using a cross-over design, 51 participants performed a bout of moderately intense running (RUN) and read an article while seated (CON). Afterwards, they completed free-recall tests, followed by a Flanker task and an n-back task. Participants in the RUN condition compared with those in the CON condition showed shorter reaction time on the inhibition task, F(1, 50) = 5.59, p = .022, η 2  = .101, and recalled more words in the immediate- and delayed-recall tests, F(1, 50) = 8.40, p = .006, η 2  = .144. The present findings suggest that a moderately intense bout of aerobic exercise benefits verbal short-term and long-term memory as well as inhibitory control among students in a classroom setting.

  5. PERSISTENT IMPAIRMENTS IN SHORT-TERM BUT ENHANCED LONG-TERM SYNAPTIC PLASTICITY IN HIPPOCAMPAL AREA CA1 FOLLOWING DEVELOPMENTAL HYPOTHYROIDISM.

    EPA Science Inventory

    Thyroid hormones (TH) are critical for nervous system development. Deficiency of TH during development impair performance on tasks of learning and memory that rely upon the hippocampus, but the mechanism underlying this impairment is not well understood. The present study was ...

  6. The (lack of) effect of dynamic visual noise on the concreteness effect in short-term memory.

    PubMed

    Castellà, Judit; Campoy, Guillermo

    2018-05-17

    It has been suggested that the concreteness effect in short-term memory (STM) is a consequence of concrete words having more distinctive and richer semantic representations. The generation and storage of visual codes in STM could also play a crucial role on the effect because concrete words are more imaginable than abstract words. If this were the case, the introduction of a visual interference task would be expected to disrupt recall of concrete words. A Dynamic Visual Noise (DVN) display, which has been proven to eliminate the concreteness effect on long-term memory (LTM), was presented along encoding of concrete and abstract words in a STM serial recall task. Results showed a main effect of word type, with more item errors in abstract words, a main effect of DVN, which impaired global performance due to more order errors, but no interaction, suggesting that DVN did not have any impact on the concreteness effect. These findings are discussed in terms of LTM participation through redintegration processes and in terms of the language-based models of verbal STM.

  7. Gait performance is not influenced by working memory when walking at a self-selected pace.

    PubMed

    Grubaugh, Jordan; Rhea, Christopher K

    2014-02-01

    Gait performance exhibits patterns within the stride-to-stride variability that can be indexed using detrended fluctuation analysis (DFA). Previous work employing DFA has shown that gait patterns can be influenced by constraints, such as natural aging or disease, and they are informative regarding a person's functional ability. Many activities of daily living require concurrent performance in the cognitive and gait domains; specifically working memory is commonly engaged while walking, which is considered dual-tasking. It is unknown if taxing working memory while walking influences gait performance as assessed by DFA. This study used a dual-tasking paradigm to determine if performance decrements are observed in gait or working memory when performed concurrently. Healthy young participants (N = 16) performed a working memory task (automated operation span task) and a gait task (walking at a self-selected speed on a treadmill) in single- and dual-task conditions. A second dual-task condition (reading while walking) was included to control for visual attention, but also introduced a task that taxed working memory over the long term. All trials involving gait lasted at least 10 min. Performance in the working memory task was indexed using five dependent variables (absolute score, partial score, speed error, accuracy error, and math error), while gait performance was indexed by quantifying the mean, standard deviation, and DFA α of the stride interval time series. Two multivariate analyses of variance (one for gait and one for working memory) were used to examine performance in the single- and dual-task conditions. No differences were observed in any of the gait or working memory dependent variables as a function of task condition. The results suggest the locomotor system is adaptive enough to complete a working memory task without compromising gait performance when walking at a self-selected pace.

  8. Augmented Reality for the Assessment of Children's Spatial Memory in Real Settings

    PubMed Central

    Juan, M.-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio

    2014-01-01

    Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5–6 year olds) and primary school (7–8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement. PMID:25438146

  9. Augmented reality for the assessment of children's spatial memory in real settings.

    PubMed

    Juan, M-Carmen; Mendez-Lopez, Magdalena; Perez-Hernandez, Elena; Albiol-Perez, Sergio

    2014-01-01

    Short-term memory can be defined as the capacity for holding a small amount of information in mind in an active state for a short period of time. Although some instruments have been developed to study spatial short-term memory in real environments, there are no instruments that are specifically designed to assess visuospatial short-term memory in an attractive way to children. In this paper, we present the ARSM (Augmented Reality Spatial Memory) task, the first Augmented Reality task that involves a user's movement to assess spatial short-term memory in healthy children. The experimental procedure of the ARSM task was designed to assess the children's skill to retain visuospatial information. They were individually asked to remember the real place where augmented reality objects were located. The children (N = 76) were divided into two groups: preschool (5-6 year olds) and primary school (7-8 year olds). We found a significant improvement in ARSM task performance in the older group. The correlations between scores for the ARSM task and traditional procedures were significant. These traditional procedures were the Dot Matrix subtest for the assessment of visuospatial short-term memory of the computerized AWMA-2 battery and a parent's questionnaire about a child's everyday spatial memory. Hence, we suggest that the ARSM task has high verisimilitude with spatial short-term memory skills in real life. In addition, we evaluated the ARSM task's usability and perceived satisfaction. The study revealed that the younger children were more satisfied with the ARSM task. This novel instrument could be useful in detecting visuospatial short-term difficulties that affect specific developmental navigational disorders and/or school academic achievement.

  10. Cognitive abilities required in time judgment depending on the temporal tasks used: A comparison of children and adults.

    PubMed

    Droit-Volet, S; Wearden, J H; Zélanti, P S

    2015-01-01

    The aim of this study was to examine age-related differences in time judgments during childhood as a function of the temporal task used. Children aged 5 and 8 years, as well as adults, were submitted to 3 temporal tasks (bisection, generalization and reproduction) with short (0.4/0.8 s) and long durations (8/16 s). Furthermore, their cognitive capacities in terms of working memory, attentional control, and processing speed were assessed by a wide battery of neuropsychological tests. The results showed that the age-related differences in time judgment were greater in the reproduction task than in the temporal discrimination tasks. This task was indeed more demanding in terms of working memory and information processing speed. In addition, the bisection task appeared to be easier for children than the generalization task, whereas these 2 tasks were similar for the adults, although the generalization task required more attention to be paid to the processing of durations. Our study thus demonstrates that it is important to understand the different cognitive processes involved in time judgment as a function of the temporal tasks used before venturing to draw conclusions about the development of time perception capabilities.

  11. Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans

    PubMed Central

    Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W. Pieter; Kessels, Roy P. C.; Daselaar, Sander M.

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories. PMID:28424596

  12. Non-Interfering Effects of Active Post-Encoding Tasks on Episodic Memory Consolidation in Humans.

    PubMed

    Varma, Samarth; Takashima, Atsuko; Krewinkel, Sander; van Kooten, Maaike; Fu, Lily; Medendorp, W Pieter; Kessels, Roy P C; Daselaar, Sander M

    2017-01-01

    So far, studies that investigated interference effects of post-learning processes on episodic memory consolidation in humans have used tasks involving only complex and meaningful information. Such tasks require reallocation of general or encoding-specific resources away from consolidation-relevant activities. The possibility that interference can be elicited using a task that heavily taxes our limited brain resources, but has low semantic and hippocampal related long-term memory processing demands, has never been tested. We address this question by investigating whether consolidation could persist in parallel with an active, encoding-irrelevant, minimally semantic task, regardless of its high resource demands for cognitive processing. We distinguish the impact of such a task on consolidation based on whether it engages resources that are: (1) general/executive, or (2) specific/overlapping with the encoding modality. Our experiments compared subsequent memory performance across two post-encoding consolidation periods: quiet wakeful rest and a cognitively demanding n-Back task. Across six different experiments (total N = 176), we carefully manipulated the design of the n-Back task to target general or specific resources engaged in the ongoing consolidation process. In contrast to previous studies that employed interference tasks involving conceptual stimuli and complex processing demands, we did not find any differences between n-Back and rest conditions on memory performance at delayed test, using both recall and recognition tests. Our results indicate that: (1) quiet, wakeful rest is not a necessary prerequisite for episodic memory consolidation; and (2) post-encoding cognitive engagement does not interfere with memory consolidation when task-performance has minimal semantic and hippocampally-based episodic memory processing demands. We discuss our findings with reference to resource and reactivation-led interference theories.

  13. The selective A-type K+ current blocker Tx3-1 isolated from the Phoneutria nigriventer venom enhances memory of naïve and Aβ(25-35)-treated mice.

    PubMed

    Gomes, Guilherme M; Dalmolin, Gerusa D; Cordeiro, Marta do Nascimento; Gomez, Marcus V; Ferreira, Juliano; Rubin, Maribel A

    2013-12-15

    Potassium channels regulate many neuronal functions, including neuronal excitability and synaptic plasticity, contributing, by these means, to mnemonic processes. In particular, A-type K(+) currents (IA) play a key role in hippocampal synaptic plasticity. Therefore, we evaluated the effect of the peptidic toxin Tx3-1, a selective blocker of IA currents, extracted from the venom of the spider Phoneutria nigriventer, on memory of mice. Administration of Tx3-1 (i.c.v., 300 pmol/site) enhanced both short- and long-term memory consolidation of mice tested in the novel object recognition task. In comparison, 4-aminopyridine (4-AP; i.c.v., 30-300 pmol/site), a non-selective K(+) channel blocker did not alter long-term memory and caused toxic side effects such as circling, freezing and tonic-clonic seizures. Moreover, Tx3-1 (i.c.v., 10-100 pmol/site) restored memory of Aβ25-35-injected mice, and exhibited a higher potency to improve memory of Aβ25-35-injected mice when compared to control group. These results show the effect of the selective blocker of IA currents Tx3-1 in both short- and long-term memory retention and in memory impairment caused by Aβ25-35, reinforcing the role of IA in physiological and pathological memory processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Accelerated long-term forgetting in children with temporal lobe epilepsy.

    PubMed

    Gascoigne, Michael B; Smith, Mary Lou; Barton, Belinda; Webster, Richard; Gill, Deepak; Lah, Suncica

    2014-07-01

    Adults with temporal lobe epilepsy (TLE) have been found to have accelerated long-term forgetting, but this phenomenon has not yet been investigated in children. Although deficits in recall of materials after short (20- to 30-minute) delays have been shown to slowly emerge from childhood to adolescence in patients with TLE, it is unknown whether such a trend will also be found in recall of materials after long delays. This study examined the presence of accelerated long-term forgetting in children with TLE and how it relates to chronological age. Twenty-three children with TLE and 58 healthy controls of similar age, sex distribution and socioeconomic status completed a battery of neuropsychological tests, including standardised tests of story recall and design location, as well as two experimental tests requiring the learning of words and design locations to a criterion, both of which assessed recall after short (30-min) and long (7-day) delays. Word recall at the 7-day delay (relative to the 30-min recall) was significantly poorer in the TLE group, compared to the control group. The TLE group also exhibited worse 30-min recall performance on a standardised test of story recall. Individual patient analyses revealed dissociation between performance on the experimental and standardised verbal memory tests; children who were impaired on the experimental test (7-day delay) were not impaired on the standardised test (30-min delay). Compared to controls, patients with a left-hemisphere seizure focus recalled fewer words at short and long delays while patients with an abnormal hippocampus recalled fewer words at the long delay. No between-group differences were found with respect to the design location task. Age negatively correlated with the recall of words after short- and long-term delays within the TLE group, where older age was associated with worse memory. This association was not present in the control group. To our knowledge, this is the first study to show evidence of accelerated long-term forgetting in children with TLE, which could not be explained by poor performance on standardised memory tests. Additionally, these results suggest that the developmental trajectory of long-term memory in children with TLE is similar to that of short-term memory: deficits emerge gradually, therefore older children are more likely to present with long-term memory deficits. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The role of short-term memory impairment in nonword repetition, real word repetition, and nonword decoding: A case study.

    PubMed

    Peter, Beate

    2018-01-01

    In a companion study, adults with dyslexia and adults with a probable history of childhood apraxia of speech showed evidence of difficulty with processing sequential information during nonword repetition, multisyllabic real word repetition and nonword decoding. Results suggested that some errors arose in visual encoding during nonword reading, all levels of processing but especially short-term memory storage/retrieval during nonword repetition, and motor planning and programming during complex real word repetition. To further investigate the role of short-term memory, a participant with short-term memory impairment (MI) was recruited. MI was confirmed with poor performance during a sentence repetition and three nonword repetition tasks, all of which have a high short-term memory load, whereas typical performance was observed during tests of reading, spelling, and static verbal knowledge, all with low short-term memory loads. Experimental results show error-free performance during multisyllabic real word repetition but high counts of sequence errors, especially migrations and assimilations, during nonword repetition, supporting short-term memory as a locus of sequential processing deficit during nonword repetition. Results are also consistent with the hypothesis that during complex real word repetition, short-term memory is bypassed as the word is recognized and retrieved from long-term memory prior to producing the word.

  16. The effects of long-term honey, sucrose or sugar-free diets on memory and anxiety in rats.

    PubMed

    Chepulis, Lynne M; Starkey, Nicola J; Waas, Joseph R; Molan, Peter C

    2009-06-22

    Sucrose is considered by many to be detrimental to health, giving rise to deterioration of the body associated with ageing. This study was undertaken to determine whether replacing sucrose in the diet long-term with honey that has a high antioxidant content could decrease deterioration in brain function during ageing. Forty-five 2-month old Sprague Dawley rats were fed ad libitum for 52 weeks on a powdered diet that was either sugar-free or contained 7.9% sucrose or 10% honey (which is the equivalent amount of sugar). Anxiety levels were assessed using an Elevated Plus Maze, whilst a Y maze and an Object Recognition task were used to assess memory. Locomotor activity was also measured using an Open Field task to ensure that differences in activity levels did not bias results in the other tasks. Anxiety generally decreased overall from 3 to 12 months, but the honey-fed rats showed significantly less anxiety at all stages of ageing compared with those fed sucrose. Honey-fed animals also displayed better spatial memory throughout the 12-month period: at 9 and 12 months a significantly greater proportion of honey-fed rats recognised the novel arm as the unvisited arm of the maze compared to rats on a sugar-free or sucrose-based diet. No significant differences among groups were observed in the Object Recognition task, and there appeared to be no differences in locomotor activity among groups at either 6 or 12 months. In conclusion, it appears that consumption of honey may reduce anxiety and improve spatial memory in middle age.

  17. Predictors of Processing-Based Task Performance in Bilingual and Monolingual Children

    PubMed Central

    Buac, Milijana; Gross, Megan; Kaushanskaya, Margarita

    2016-01-01

    In the present study we examined performance of bilingual Spanish-English-speaking and monolingual English-speaking school-age children on a range of processing-based measures within the framework of Baddeley’s working memory model. The processing-based measures included measures of short-term memory, measures of working memory, and a novel word-learning task. Results revealed that monolinguals outperformed bilinguals on the short-term memory tasks but not the working memory and novel word-learning tasks. Further, children’s vocabulary skills and socioeconomic status (SES) were more predictive of processing-based task performance in the bilingual group than the monolingual group. Together, these findings indicate that processing-based tasks that engage verbal working memory rather than short-term memory may be better-suited for diagnostic purposes with bilingual children. However, even verbal working memory measures are sensitive to bilingual children’s language-specific knowledge and demographic characteristics, and therefore may have limited clinical utility. PMID:27179914

  18. Using the memory activation capture (MAC) procedure to investigate the temporal dynamics of hypothesis generation.

    PubMed

    Lange, Nicholas D; Buttaccio, Daniel R; Davelaar, Eddy J; Thomas, Rick P

    2014-02-01

    Research investigating top-down capture has demonstrated a coupling of working memory content with attention and eye movements. By capitalizing on this relationship, we have developed a novel methodology, called the memory activation capture (MAC) procedure, for measuring the dynamics of working memory content supporting complex cognitive tasks (e.g., decision making, problem solving). The MAC procedure employs briefly presented visual arrays containing task-relevant information at critical points in a task. By observing which items are preferentially fixated, we gain a measure of working memory content as the task evolves through time. The efficacy of the MAC procedure was demonstrated in a dynamic hypothesis generation task in which some of its advantages over existing methods for measuring changes in the contents of working memory over time are highlighted. In two experiments, the MAC procedure was able to detect the hypothesis that was retrieved and placed into working memory. Moreover, the results from Experiment 2 suggest a two-stage process following hypothesis retrieval, whereby the hypothesis undergoes a brief period of heightened activation before entering a lower activation state in which it is maintained for output. The results of both experiments are of additional general interest, as they represent the first demonstrations of top-down capture driven by participant-established WM content retrieved from long-term memory.

  19. The effects of soy milk and isoflavone supplements on cognitive performance in healthy, postmenopausal women.

    PubMed

    Fournier, L R; Ryan Borchers, T A; Robison, L M; Wiediger, M; Park, J S; Chew, B P; McGuire, M K; Sclar, D A; Skaer, T L; Beerman, K A

    2007-01-01

    The decline in estrogen concentrations in women after menopause can contribute to health related changes including impairments in cognition, especially memory. Because of the health concerns related to hormone replacement therapy (HRT), alternative approaches to treat menopausal symptoms, such as nutritional supplements and/or diet containing isoflavones, are of interest. This study investigated whether soy isoflavones (soy milk and supplement) could improve cognitive functioning in healthy, postmenopausal women. PARTICIPANTS, INTERVENTION AND DESIGN: A total of 79 postmenopausal women, 48-65 years of age, completed a double-blind, placebo-controlled trial in which they were randomly assigned to one of three experimental groups: cow's milk and a placebo supplement (control); soy milk and placebo supplement (soy milk, 72 mg isoflavones/day); or cow's milk and isoflavone supplement (isoflavone supplement, 70 mg isoflavones/day). Cognitive functioning was assessed using various cognitive tasks before the intervention (baseline) and after the intervention (test). In contrast to predictions, soy isoflavones did not improve selective attention (Stroop task), visual long-term memory (pattern recognition), short-term visuospatial memory (Benton Visual Retention Test), or visuo-spatial working memory (color match task). Also, the soy milk group showed a decline in verbal working memory (Digit Ordering Task) compared to the soy supplement and control groups. Soy isoflavones consumed as a food or supplement over a 16-week period did not improve or appreciably affect cognitive functioning in healthy, postmenopausal women.

  20. Effects of lexical competition on immediate memory span for spoken words.

    PubMed

    Goh, Winston D; Pisoni, David B

    2003-08-01

    Current theories and models of the structural organization of verbal short-term memory are primarily based on evidence obtained from manipulations of features inherent in the short-term traces of the presented stimuli, such as phonological similarity. In the present study, we investigated whether properties of the stimuli that are not inherent in the short-term traces of spoken words would affect performance in an immediate memory span task. We studied the lexical neighbourhood properties of the stimulus items, which are based on the structure and organization of words in the mental lexicon. The experiments manipulated lexical competition by varying the phonological neighbourhood structure (i.e., neighbourhood density and neighbourhood frequency) of the words on a test list while controlling for word frequency and intra-set phonological similarity (family size). Immediate memory span for spoken words was measured under repeated and nonrepeated sampling procedures. The results demonstrated that lexical competition only emerged when a nonrepeated sampling procedure was used and the participants had to access new words from their lexicons. These findings were not dependent on individual differences in short-term memory capacity. Additional results showed that the lexical competition effects did not interact with proactive interference. Analyses of error patterns indicated that item-type errors, but not positional errors, were influenced by the lexical attributes of the stimulus items. These results complement and extend previous findings that have argued for separate contributions of long-term knowledge and short-term memory rehearsal processes in immediate verbal serial recall tasks.

  1. Kv4 Potassium Channels Modulate Hippocampal EPSP-Spike Potentiation and Spatial Memory in Rats

    ERIC Educational Resources Information Center

    Truchet, Bruno; Manrique, Christine; Sreng, Leam; Chaillan, Franck A.; Roman, Francois S.; Mourre, Christiane

    2012-01-01

    Kv4 channels regulate the backpropagation of action potentials (b-AP) and have been implicated in the modulation of long-term potentiation (LTP). Here we showed that blockade of Kv4 channels by the scorpion toxin AmmTX3 impaired reference memory in a radial maze task. In vivo, AmmTX3 intracerebroventricular (i.c.v.) infusion increased and…

  2. Distinct Consolidation Outcomes in a Visuomotor Adaptation Task: Off-Line Leaning and Persistent After-Effect

    ERIC Educational Resources Information Center

    Trempe, Maxime; Proteau, Luc

    2010-01-01

    Consolidation is a time-dependent process responsible for the storage of information in long-term memory. As such, it plays a crucial role in motor learning. In two experiments, we sought to determine whether one's performance influences the outcome of the consolidation process. We used a visuomotor adaptation task in which the cursor moved by the…

  3. Why Do We Move Our Eyes while Trying to Remember? The Relationship between Non-Visual Gaze Patterns and Memory

    ERIC Educational Resources Information Center

    Micic, Dragana; Ehrlichman, Howard; Chen, Rebecca

    2010-01-01

    Non-visual gaze patterns (NVGPs) involve saccades and fixations that spontaneously occur in cognitive activities that are not ostensibly visual. While reasons for their appearance remain obscure, convergent empirical evidence suggests that NVGPs change according to processing requirements of tasks. We examined NVGPs in tasks with long-term memory…

  4. Genetic influences on free and cued recall in long-term memory tasks.

    PubMed

    Volk, Heather E; McDermott, Kathleen B; Roediger, Henry L; Todd, Richard D

    2006-10-01

    Long-term memory (LTM) problems are associated with many psychiatric and neurological illnesses and are commonly measured using free and cued recall tasks. Although LTM has been linked with biologic mechanisms, the etiology of distinct LTM tasks is unknown. We studied LTM in 95 healthy female twin pairs identified through birth records in the state of Missouri. Performance on tasks of free recall of unrelated words, free and cued recall of categorized words, and the vocabulary section of the Wechsler Adult Intelligence Scale (WAIS-R) were examined using structural equation modeling. Additive genetic and unique environmental factors influenced LTM and intelligence. Free recall of unrelated and categorized words, and cued recall of categorized words, were moderately heritable (55%, 38%, and 37%). WAIS-R vocabulary score was highly heritable (77%). Controlling for verbal intelligence in multivariate analyses of recall, two components of genetic influence on LTM were found; one for all three recall scores and one for free and cued categorized word recall. Recall of unrelated and categorized words is influenced by different genetic and environmental factors indicating heterogeneity in LTM. Verbal intelligence is etiologically different from LTM indicating that these two abilities utilize different brain functions.

  5. Altered long-range alpha-band synchronization during visual short-term memory retention in children born very preterm.

    PubMed

    Doesburg, Sam M; Ribary, Urs; Herdman, Anthony T; Miller, Steven P; Poskitt, Kenneth J; Moiseev, Alexander; Whitfield, Michael F; Synnes, Anne; Grunau, Ruth E

    2011-02-01

    Children born very preterm, even when intelligence is broadly normal, often experience selective difficulties in executive function and visual-spatial processing. Development of structural cortical connectivity is known to be altered in this group, and functional magnetic resonance imaging (fMRI) evidence indicates that very preterm children recruit different patterns of functional connectivity between cortical regions during cognition. Synchronization of neural oscillations across brain areas has been proposed as a mechanism for dynamically assigning functional coupling to support perceptual and cognitive processing, but little is known about what role oscillatory synchronization may play in the altered neurocognitive development of very preterm children. To investigate this, we recorded magnetoencephalographic (MEG) activity while 7-8 year old children born very preterm and age-matched full-term controls performed a visual short-term memory task. Very preterm children exhibited reduced long-range synchronization in the alpha-band during visual short-term memory retention, indicating that cortical alpha rhythms may play a critical role in altered patterns functional connectivity expressed by this population during cognitive and perceptual processing. Long-range alpha-band synchronization was also correlated with task performance and visual-perceptual ability within the very preterm group, indicating that altered alpha oscillatory mechanisms mediating transient functional integration between cortical regions may be relevant to selective problems in neurocognitive development in this vulnerable population at school age. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Circadian rhythms and memory: not so simple as cogs and gears.

    PubMed

    Eckel-Mahan, Kristin L; Storm, Daniel R

    2009-06-01

    The influence of circadian rhythms on memory has long been studied; however, the molecular prerequisites for their interaction remain elusive. The hippocampus, which is a region of the brain important for long-term memory formation and temporary maintenance, shows circadian rhythmicity in pathways central to the memory-consolidation process. As neuronal plasticity is the translation of numerous inputs, illuminating the direct molecular links between circadian rhythms and memory consolidation remains a daunting task. However, the elucidation of how clock genes contribute to synaptic plasticity could provide such a link. Furthermore, the idea that memory training could actually function as a zeitgeber for hippocampal neurons is worth consideration, based on our knowledge of the entrainment of the circadian clock system. The integration of many inputs in the hippocampus affects memory consolidation at both the cellular and the systems level, leaving the molecular connections between circadian rhythmicity and memory relatively obscure but ripe for investigation.

  7. Short-term and working memory impairments in aphasia.

    PubMed

    Potagas, Constantin; Kasselimis, Dimitrios; Evdokimidis, Ioannis

    2011-08-01

    The aim of the present study is to investigate short-term memory and working memory deficits in aphasics in relation to the severity of their language impairment. Fifty-eight aphasic patients participated in this study. Based on language assessment, an aphasia score was calculated for each patient. Memory was assessed in two modalities, verbal and spatial. Mean scores for all memory tasks were lower than normal. Aphasia score was significantly correlated with performance on all memory tasks. Correlation coefficients for short-term memory and working memory were approximately of the same magnitude. According to our findings, severity of aphasia is related with both verbal and spatial memory deficits. Moreover, while aphasia score correlated with lower scores in both short-term memory and working memory tasks, the lack of substantial difference between corresponding correlation coefficients suggests a possible primary deficit in information retention rather than impairment in working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Phonological working memory impairments in children with specific language impairment: where does the problem lie?

    PubMed

    Alt, Mary

    2011-01-01

    The purpose of this study was to determine which factors contribute to the lexical learning deficits of children with specific language impairment (SLI). Participants included 40 7-8-year old participants, half of whom were diagnosed with SLI and half of whom had normal language skills. We tested hypotheses about the contributions to word learning of the initial encoding of phonological information and the link to long-term memory. Children took part in a computer-based fast-mapping task which manipulated word length and phonotactic probability to address the hypotheses. The task had a recognition and a production component. Data were analyzed using mixed ANOVAs with post-hoc testing. Results indicate that the main problem for children with SLI is with initial encoding, with implications for limited capacity. There was not strong evidence for specific deficits in the link to long-term memory. We were able to ascertain which aspects of lexical learning are most problematic for children with SLI in terms of fast-mapping. These findings may allow clinicians to focus intervention on known areas of weakness. Future directions include extending these findings to slow mapping scenarios. The reader will understand how different components of phonological working memory contribute to the word learning problems of children with specific language impairment. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Portable wireless neurofeedback system of EEG alpha rhythm enhances memory.

    PubMed

    Wei, Ting-Ying; Chang, Da-Wei; Liu, You-De; Liu, Chen-Wei; Young, Chung-Ping; Liang, Sheng-Fu; Shaw, Fu-Zen

    2017-11-13

    Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8-12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8-12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.

  10. Ketamine impairs recognition memory consolidation and prevents learning-induced increase in hippocampal brain-derived neurotrophic factor levels.

    PubMed

    Goulart, B K; de Lima, M N M; de Farias, C B; Reolon, G K; Almeida, V R; Quevedo, J; Kapczinski, F; Schröder, N; Roesler, R

    2010-06-02

    The non-competitive N-methyl-d-aspartate (NMDA) glutamate receptor antagonist ketamine has been shown to produce cognitive deficits. However, the effects of ketamine on the consolidation phase of memory remain poorly characterized. Here we show that systemic administration of ketamine immediately after training dose-dependently impairs long-term retention of memory for a novel object recognition (NOR) task in rats. Control experiments showed that the impairing effects of ketamine could not be attributed to an influence on memory retrieval or sensorimotor effects. In addition, ketamine prevented the increase in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by NOR learning. Our results show for the first time that ketamine disrupts the consolidation phase of long-term recognition memory. In addition, the findings suggest that the amnestic effects of ketamine might be at least partially mediated by an influence on BDNF signaling in the hippocampus. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Something worth remembering: visual discrimination in sharks.

    PubMed

    Fuss, Theodora; Schluessel, Vera

    2015-03-01

    This study investigated memory retention capabilities of juvenile gray bamboo sharks (Chiloscyllium griseum) using two-alternative forced-choice experiments. The sharks had previously been trained in a range of visual discrimination tasks, such as distinguishing between squares, triangles and lines, and their corresponding optical illusions (i.e., the Kanizsa figures or Müller-Lyer illusions), and in the present study, we tested them for memory retention. Despite the absence of reinforcement, sharks remembered the learned information for a period of up to 50 weeks, after which testing was terminated. In fish, as in other vertebrates, memory windows vary in duration depending on species and task; while it may seem beneficial to retain some information for a long time or even indefinitely, other information may be forgotten more easily to retain flexibility and save energy. The results of this study indicate that sharks are capable of long-term memory within the framework of selected cognitive skills. These could aid sharks in activities such as food retrieval, predator avoidance, mate choice or habitat selection and therefore be worth being remembered for extended periods of time. As in other cognitive tasks, intraspecific differences reflected the behavioral breadth of the species.

  12. Emotional arousal and memory after deep encoding.

    PubMed

    Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica

    2018-05-22

    Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.

  13. Correcting Memory Improves Accuracy of Predicted Task Duration

    ERIC Educational Resources Information Center

    Roy, Michael M.; Mitten, Scott T.; Christenfeld, Nicholas J. S.

    2008-01-01

    People are often inaccurate in predicting task duration. The memory bias explanation holds that this error is due to people having incorrect memories of how long previous tasks have taken, and these biased memories cause biased predictions. Therefore, the authors examined the effect on increasing predictive accuracy of correcting memory through…

  14. Hippocampus duality: Memory and novelty detection are subserved by distinct mechanisms.

    PubMed

    Barbeau, Emmanuel J; Chauvel, Patrick; Moulin, Christopher J A; Regis, Jean; Liégeois-Chauvel, Catherine

    2017-04-01

    The hippocampus plays a pivotal role both in novelty detection and in long-term memory. The physiological mechanisms underlying these behaviors have yet to be understood in humans. We recorded intracerebral evoked potentials within the hippocampus of epileptic patients (n = 10) during both memory and novelty detection tasks (targets in oddball tasks). We found that memory and detection tasks elicited late local field potentials in the hippocampus during the same period, but of opposite polarity (negative during novelty detection tasks, positive during memory tasks, ∼260-600 ms poststimulus onset, P < 0.05). Critically, these potentials had maximal amplitude on the same contact in the hippocampus for each patient. This pattern did not depend on the task as different types of memory and novelty detection tasks were used. It did not depend on the novelty of the stimulus or the difficulty of the task either. Two different hypotheses are discussed to account for this result: it is either due to the activation of CA1 pyramidal neurons by two different pathways such as the monosynaptic and trisynaptic entorhinal-hippocampus pathways, or to the activation of different neuronal populations, that is, differing either functionally (e.g., novelty/familiarity neurons) or located in different regions of the hippocampus (e.g., CA1/subiculum). In either case, these activities may integrate the activity of two distinct large-scale networks implementing externally or internally oriented, mutually exclusive, brain states. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. The Price of Fame: The Impact of Stimulus Familiarity on Proactive Interference Resolution

    PubMed Central

    Prabhakaran, Ranjani; Thompson-Schill, Sharon L.

    2013-01-01

    Interference from previously learned information, known as proactive interference (PI), limits our memory retrieval abilities. Previous studies of PI resolution have focused on the role of short-term familiarity, or recency, in causing PI. In the present study, we investigated the impact of long-term stimulus familiarity on PI resolution processes. In two behavioral experiments and one event-related fMRI experiment, long-term familiarity was manipulated through the use of famous and nonfamous stimuli, and short-term familiarity was manipulated through the use of recent and nonrecent probe items in an item recognition task. The right middle frontal gyrus demonstrated greater sensitivity to famous stimuli, suggesting that long-term stimulus familiarity plays a role in influencing PI resolution processes. Further examination of the effect of long-term stimulus familiarity on PI resolution revealed a larger behavioral interference effect for famous stimuli, but only under speeded response conditions. Thus, models of memory retrieval—and of the cognitive control mechanisms that guide retrieval processes—should consider the impact of and interactions among sources of familiarity on multiple time scales. PMID:20429858

  16. The price of fame: the impact of stimulus familiarity on proactive interference resolution.

    PubMed

    Prabhakaran, Ranjani; Thompson-Schill, Sharon L

    2011-04-01

    Interference from previously learned information, known as proactive interference (PI), limits our memory retrieval abilities. Previous studies of PI resolution have focused on the role of short-term familiarity, or recency, in causing PI. In the present study, we investigated the impact of long-term stimulus familiarity on PI resolution processes. In two behavioral experiments and one event-related fMRI experiment, long-term familiarity was manipulated through the use of famous and nonfamous stimuli, and short-term familiarity was manipulated through the use of recent and nonrecent probe items in an item recognition task. The right middle frontal gyrus demonstrated greater sensitivity to famous stimuli, suggesting that long-term stimulus familiarity plays a role in influencing PI resolution processes. Further examination of the effect of long-term stimulus familiarity on PI resolution revealed a larger behavioral interference effect for famous stimuli, but only under speeded response conditions. Thus, models of memory retrieval--and of the cognitive control mechanisms that guide retrieval processes--should consider the impact of and interactions among sources of familiarity on multiple time scales.

  17. The effects of prolonged administration of norepinephrine reuptake inhibitors on long-term potentiation in dentate gyrus, and on tests of spatial and object recognition memory in rats.

    PubMed

    Walling, Susan G; Milway, J Stephen; Ingram, Matthew; Lau, Catherine; Morrison, Gillian; Martin, Gerard M

    2016-02-01

    Phasic norepinephrine (NE) release events are involved in arousal, novelty detection and in plasticity processes underlying learning and memory in mammalian systems. Although the effects of phasic NE release events on plasticity and memory are prevalently documented, it is less understood what effects chronic NE reuptake inhibition and sustained increases in noradrenergic tone, might have on plasticity and cognitive processes in rodent models of learning and memory. This study investigates the effects of chronic NE reuptake inhibition on hippocampal plasticity and memory in rats. Rats were administered NE reuptake inhibitors (NRIs) desipramine (DMI; 0, 3, or 7.5mg/kg/day) or nortriptyline (NTP; 0, 10 or 20mg/kg/day) in drinking water. Long-term potentiation (LTP; 200 Hz) of the perforant path-dentate gyrus evoked potential was examined in urethane anesthetized rats after 30-32 days of DMI treatment. Short- (4-h) and long-term (24-h) spatial memory was tested in separate rats administered 0 or 7.5mg/kg/day DMI (25-30 days) using a two-trial spatial memory test. Additionally, the effects of chronically administered DMI and NTP were tested in rats using a two-trial, Object Recognition Test (ORT) at 2- and 24-h after 45 and 60 days of drug administration. Rats administered 3 or 7.5mg/kg/day DMI had attenuated LTP of the EPSP slope but not the population spike at the perforant path-dentate gyrus synapse. Short- and long-term memory for objects is differentially disrupted in rats after prolonged administration of DMI and NTP. Rats that were administered 7.5mg/kg/day DMI showed decreased memory for a two-trial spatial task when tested at 4-h. In the novel ORT, rats receiving 0 or 7.5mg/kg/day DMI showed a preference for the arm containing a Novel object when tested at both 2- and 24-h demonstrating both short- and long-term memory retention of the Familiar object. Rats that received either dose of NTP or 3mg/kg/day DMI showed impaired memory at 2-h, however this impairment was largely reversed at 24-h. Animals in the high-dose NTP (20mg/kg/day) group were impaired at both short- and long-term intervals. Activity levels, used as an index of location memory during the ORT, demonstrated that rats receiving DMI were again impaired at retaining memory for location. DMI dose-dependently disrupts LTP in the dentate gyrus of anesthetized rats and also disrupts memory for tests of spatial memory when administered for long periods. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Poor phonemic discrimination does not underlie poor verbal short-term memory in Down syndrome.

    PubMed

    Purser, Harry R M; Jarrold, Christopher

    2013-05-01

    Individuals with Down syndrome tend to have a marked impairment of verbal short-term memory. The chief aim of this study was to investigate whether phonemic discrimination contributes to this deficit. The secondary aim was to investigate whether phonological representations are degraded in verbal short-term memory in people with Down syndrome relative to control participants. To answer these questions, two tasks were used: a discrimination task, in which memory load was as low as possible, and a short-term recognition task that used the same stimulus items. Individuals with Down syndrome were found to perform significantly better than a nonverbal-matched typically developing group on the discrimination task, but they performed significantly more poorly than that group on the recognition task. The Down syndrome group was outperformed by an additional vocabulary-matched control group on the discrimination task but was outperformed to a markedly greater extent on the recognition task. Taken together, the results strongly indicate that phonemic discrimination ability is not central to the verbal short-term memory deficit associated with Down syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Mind racing: The influence of exercise on long-term memory consolidation.

    PubMed

    McNerney, M Windy; Radvansky, Gabriel A

    2015-01-01

    Over time, regular exercise can lower the risk for age-related decline in cognition. However, the immediate effects of exercise on memory consolidation in younger adults have not been fully investigated. In two experiments, the effects of exercise were assessed on three different memory tasks. These included paired-associate learning, procedural learning and text memory. Results indicate that performance on procedural learning and situation model memory was increased with exercise, regardless of if participants exercised before or after encoding. No benefit of exercise was found for paired-associate learning. These findings suggest that intense exercise may benefit certain types of memory consolidation.

  20. Memory functions of children born with asymmetric intrauterine growth restriction.

    PubMed

    Geva, Ronny; Eshel, Rina; Leitner, Yael; Fattal-Valevski, Aviva; Harel, Shaul

    2006-10-30

    Learning difficulties are frequently diagnosed in children born with intrauterine growth restriction (IUGR). Models of various animal species with IUGR were studied and demonstrated specific susceptibility and alterations of the hippocampal formation and its related neural structures. The main purpose was to study memory functions of children born with asymmetric IUGR in a large-scale cohort using a long-term prospective paradigm. One hundred and ten infants diagnosed with IUGR were followed-up from birth to 9 years of age. Their performance was compared with a group of 63 children with comparable gestational age and multiple socioeconomic factors. Memory functions (short-term, super- and long-term spans) for different stimuli types (verbal and visual) were evaluated using Visual Auditory Digit Span tasks (VADS), Rey Auditory Verbal Learning Test (Rey-AVLT), and Rey Osterrieth Complex Figure Test (ROCF). Children with IUGR had short-term memory difficulties that hindered both serial verbal processing system and simultaneous processing of high-load visuo-spatial stimuli. The difficulties were not related to prematurity, neonatal complications or growth catch-up, but were augmented by lower maternal education. Recognition skills and benefits from reiteration, typically affected by hippocampal dysfunction, were preserved in both groups. Memory profile of children born with IUGR is characterized primarily by a short-term memory deficit that does not necessarily comply with a typical hippocampal deficit, but rather may reflect an executive short-term memory deficit characteristic of anterior hippocampal-prefrontal network. Implications for cognitive intervention are discussed.

  1. How emotional pictures influence visuospatial binding in short-term memory in ageing and Alzheimer's disease?

    PubMed

    Borg, Céline; Leroy, Nicolas; Favre, Emilie; Laurent, Bernard; Thomas-Antérion, Catherine

    2011-06-01

    The present study examines the prediction that emotion can facilitate short-term memory. Nevertheless, emotion also recruits attention to process information, thereby disrupting short-term memory when tasks involve high attentional resources. In this way, we aimed to determine whether there is a differential influence of emotional information on short-term memory in ageing and Alzheimer's disease (AD). Fourteen patients with mild AD, 14 healthy older participants (NC), and 14 younger adults (YA) performed two tasks. In the first task, involving visual short-term memory, participants were asked to remember a picture among four different pictures (negative or neutral) following a brief delay. The second task, a binding memory task, required the recognition by participants of a picture according to its spatial location. The attentional cost involved was higher than for the first task. The pattern of results showed that visual memory performance was better for negative stimuli than for neutral ones, irrespective of the group. In contrast, binding memory performance was essentially poorer for the location of negative pictures in the NC group, and for the location of both negative and neutral stimuli in the AD group, in comparison to the YA group. Taken together, these results show that emotion has beneficial effects on visual short-term memory in ageing and AD. In contrast, emotion does not improve their performances in the binding condition. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. S 17092: a prolyl endopeptidase inhibitor as a potential therapeutic drug for memory impairment. Preclinical and clinical studies.

    PubMed

    Morain, Philippe; Lestage, Pierre; De Nanteuil, Guillaume; Jochemsen, Roeline; Robin, Jean-Loïc; Guez, David; Boyer, Pierre-Alain

    2002-01-01

    Any treatment that could positively modulate central neuropeptides levels would provide a promising therapeutic approach to the treatment of cognitive deficits associated with aging and/or neurodegenerative diseases. Therefore, based on the activity in rodents, S 17092 (2S,3aS,7aS)-1][(R,R)-2-phenylcyclopropyl]carbonyl]-2-[(thiazolidin-3-yl)carbonyl]octahydro-1H-indole) has been selected as a potent inhibitor of cerebral prolyl-endopeptidase (PEP). By retarding the degradation of neuroactive peptides, S 17092 was successfully used in a variety of memory tasks. These tasks explored short-term, long-term, reference and working memory in aged mice, as well as in rodents and monkeys with chemically induced amnesia or spontaneous memory deficits. S 17092 has also been safely administered to humans, and showed a clear peripheral expression of its mechanism of action through its inhibitory effect upon PEP activity in plasma. S 17092 exhibited central effects, as evidenced by EEG recording in healthy volunteers, and could improve a delayed verbal memory task. Collectively, the preclinical and clinical effects of S 17092 have suggested a promising role for this compound as an agent for the treatment of cognitive disorders associated with cerebral aging.

  3. The impact of multiple memory formation on dendritic complexity in the hippocampus and anterior cingulate cortex assessed at recent and remote time points

    PubMed Central

    Wartman, Brianne C.; Holahan, Matthew R.

    2014-01-01

    Consolidation processes, involving synaptic and systems level changes, are suggested to stabilize memories once they are formed. At the synaptic level, dendritic structural changes are associated with long-term memory storage. At the systems level, memory storage dynamics between the hippocampus and anterior cingulate cortex (ACC) may be influenced by the number of sequentially encoded memories. The present experiment utilized Golgi-Cox staining and neuron reconstruction to examine recent and remote structural changes in the hippocampus and ACC following training on three different behavioral procedures. Rats were trained on one hippocampal-dependent task only (a water maze task), two hippocampal-dependent tasks (a water maze task followed by a radial arm maze task), or one hippocampal-dependent and one non-hippocampal-dependent task (a water maze task followed by an operant conditioning task). Rats were euthanized recently or remotely. Brains underwent Golgi-Cox processing and neurons were reconstructed using Neurolucida software (MicroBrightField, Williston, VT, USA). Rats trained on two hippocampal-dependent tasks displayed increased dendritic complexity compared to control rats, in neurons examined in both the ACC and hippocampus at recent and remote time points. Importantly, this behavioral group showed consistent, significant structural differences in the ACC compared to the control group at the recent time point. These findings suggest that taxing the demand placed upon the hippocampus, by training rats on two hippocampal-dependent tasks, engages synaptic and systems consolidation processes in the ACC at an accelerated rate for recent and remote storage of spatial memories. PMID:24795581

  4. Cognitive functioning of long-term heavy cannabis users seeking treatment.

    PubMed

    Solowij, Nadia; Stephens, Robert S; Roffman, Roger A; Babor, Thomas; Kadden, Ronald; Miller, Michael; Christiansen, Kenneth; McRee, Bonnie; Vendetti, Janice

    2002-03-06

    Cognitive impairments are associated with long-term cannabis use, but the parameters of use that contribute to impairments and the nature and endurance of cognitive dysfunction remain uncertain. To examine the effects of duration of cannabis use on specific areas of cognitive functioning among users seeking treatment for cannabis dependence. Multisite retrospective cross-sectional neuropsychological study conducted in the United States (Seattle, Wash; Farmington, Conn; and Miami, Fla) between 1997 and 2000 among 102 near-daily cannabis users (51 long-term users: mean, 23.9 years of use; 51 shorter-term users: mean, 10.2 years of use) compared with 33 nonuser controls. Measures from 9 standard neuropsychological tests that assessed attention, memory, and executive functioning, and were administered prior to entry to a treatment program and following a median 17-hour abstinence. Long-term cannabis users performed significantly less well than shorter-term users and controls on tests of memory and attention. On the Rey Auditory Verbal Learning Test, long-term users recalled significantly fewer words than either shorter-term users (P =.001) or controls (P =.005); there was no difference between shorter-term users and controls. Long-term users showed impaired learning (P =.007), retention (P =.003), and retrieval (P =.002) compared with controls. Both user groups performed poorly on a time estimation task (P<.001 vs controls). Performance measures often correlated significantly with the duration of cannabis use, being worse with increasing years of use, but were unrelated to withdrawal symptoms and persisted after controlling for recent cannabis use and other drug use. These results confirm that long-term heavy cannabis users show impairments in memory and attention that endure beyond the period of intoxication and worsen with increasing years of regular cannabis use.

  5. Rehearsal of to-be-remembered items is unnecessary to perform directed forgetting within working memory: Support for an active control mechanism.

    PubMed

    Festini, Sara B; Reuter-Lorenz, Patricia A

    2017-01-01

    Directed forgetting tasks instruct people to forget targeted memoranda. In the context of working memory, people attempt to forget representations that are currently held in mind. Here, we evaluated candidate mechanisms of directed forgetting within working memory, by (a) testing the influence of articulatory suppression, a rehearsal-reducing and attention-demanding secondary task, on directed forgetting efficacy, and by (b) assessing the ability of people to perform forgetting in the absence of to-be-remembered competitors to rehearse. In Experiment 1, articulatory suppression interfered with directed forgetting, increasing the proportion of false alarms to to-be-forgotten probes in the working memory phase and decreasing the magnitude of the directed forgetting effect as assessed by an incidental long-term memory recognition test. Experiment 2 replicated the effects of articulatory suppression and tested whether the simultaneous requirement to retain, and presumably rehearse, to-be-remembered items was necessary for successful forgetting. The long-term directed forgetting effect was equivalent whether or not participants had to-be-remembered items to rehearse during the working memory phase. Experiment 3 included an additional comparison condition and confirmed that articulatory suppression interfered with directed forgetting and that participants were as efficient at directed forgetting with and without competitors to remember. In combination, these experiments suggest that directed forgetting in working memory requires an active control process that is limited by articulatory suppression, and that the demand to remember a concurrent memory set is unnecessary for this control process to operate. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study.

    PubMed

    Kanayama, Gen; Rogowska, Jadwiga; Pope, Harrison G; Gruber, Staci A; Yurgelun-Todd, Deborah A

    2004-11-01

    Many neuropsychological studies have documented deficits in working memory among recent heavy cannabis users. However, little is known about the effects of cannabis on brain activity. We assessed brain function among recent heavy cannabis users while they performed a working memory task. Functional magnetic resonance imaging was used to examine brain activity in 12 long-term heavy cannabis users, 6-36 h after last use, and in 10 control subjects while they performed a spatial working memory task. Regional brain activation was analyzed and compared using statistical parametric mapping techniques. Compared with controls, cannabis users exhibited increased activation of brain regions typically used for spatial working memory tasks (such as prefrontal cortex and anterior cingulate). Users also recruited additional regions not typically used for spatial working memory (such as regions in the basal ganglia). These findings remained essentially unchanged when re-analyzed using subjects' ages as a covariate. Brain activation showed little or no significant correlation with subjects' years of education, verbal IQ, lifetime episodes of cannabis use, or urinary cannabinoid levels at the time of scanning. Recent cannabis users displayed greater and more widespread brain activation than normal subjects when attempting to perform a spatial working memory task. This observation suggests that recent cannabis users may experience subtle neurophysiological deficits, and that they compensate for these deficits by "working harder"-calling upon additional brain regions to meet the demands of the task.

  7. Medial temporal lobe contributions to short-term memory for faces.

    PubMed

    Race, Elizabeth; LaRocque, Karen F; Keane, Margaret M; Verfaellie, Mieke

    2013-11-01

    The role of the medial temporal lobes (MTL) in short-term memory (STM) remains a matter of debate. Whereas imaging studies commonly show hippocampal activation during short-delay memory tasks, evidence from amnesic patients with MTL lesions is mixed. It has been argued that apparent STM impairments in amnesia may reflect long-term memory (LTM) contributions to performance. We challenge this conclusion by demonstrating that MTL amnesic patients show impaired delayed matching-to-sample (DMS) for faces in a task that meets both a traditional delay-based and a recently proposed distractor-based criterion for classification as an STM task. In Experiment 1, we demonstrate that our face DMS task meets the proposed distractor-based criterion for STM classification, in that extensive processing of delay-period distractor stimuli disrupts performance of healthy individuals. In Experiment 2, MTL amnesic patients with lesions extending into anterior subhippocampal cortex, but not patients with lesions limited to the hippocampus, show impaired performance on this task without distraction at delays as short as 8 s, within temporal range of delay-based STM classification, in the context of intact perceptual matching performance. Experiment 3 provides support for the hypothesis that STM for faces relies on configural processing by showing that the extent to which healthy participants' performance is disrupted by interference depends on the configural demands of the distractor task. Together, these findings are consistent with the notion that the amnesic impairment in STM for faces reflects a deficit in configural processing associated with subhippocampal cortices and provide novel evidence that the MTL supports cognition beyond the LTM domain. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  8. Sex differences in retention after a visual or a spatial discrimination learning task in brood parasitic shiny cowbirds.

    PubMed

    Astié, Andrea A; Scardamaglia, Romina C; Muzio, Rubén N; Reboreda, Juan C

    2015-10-01

    Females of avian brood parasites, like the shiny cowbird (Molothrus bonariensis), locate host nests and on subsequent days return to parasitize them. This ecological pressure for remembering the precise location of multiple host nests may have selected for superior spatial memory abilities. We tested the hypothesis that shiny cowbirds show sex differences in spatial memory abilities associated with sex differences in host nest searching behavior and relative hippocampus volume. We evaluated sex differences during acquisition, reversal and retention after extinction in a visual and a spatial discrimination learning task. Contrary to our prediction, females did not outperform males in the spatial task in either the acquisition or the reversal phases. Similarly, there were no sex differences in either phase in the visual task. During extinction, in both tasks the retention of females was significantly higher than expected by chance up to 50 days after the last rewarded session (∼85-90% of the trials with correct responses), but the performance of males at that time did not differ than that expected by chance. This last result shows a long-term memory capacity of female shiny cowbirds, which were able to remember information learned using either spatial or visual cues after a long retention interval. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory.

    PubMed

    Marciniak, Elodie; Faivre, Emilie; Dutar, Patrick; Alves Pires, Claire; Demeyer, Dominique; Caillierez, Raphaëlle; Laloux, Charlotte; Buée, Luc; Blum, David; Humez, Sandrine

    2015-10-29

    Chemokines are signaling molecules playing an important role in immune regulations. They are also thought to regulate brain development, neurogenesis and neuroendocrine functions. While chemokine upsurge has been associated with conditions characterized with cognitive impairments, their ability to modulate synaptic plasticity remains ill-defined. In the present study, we specifically evaluated the effects of MIP1-α/CCL3 towards hippocampal synaptic transmission, plasticity and spatial memory. We found that CCL3 (50 ng/ml) significantly reduced basal synaptic transmission at the Schaffer collateral-CA1 synapse without affecting NMDAR-mediated field potentials. This effect was ascribed to post-synaptic regulations, as CCL3 did not impact paired-pulse facilitation. While CCL3 did not modulate long-term depression (LTD), it significantly impaired long-term potentiation (LTP), an effect abolished by Maraviroc, a CCR5 specific antagonist. In addition, sub-chronic intracerebroventricular (icv) injections of CCL3 also impair LTP. In accordance with these electrophysiological findings, we demonstrated that the icv injection of CCL3 in mouse significantly impaired spatial memory abilities and long-term memory measured using the two-step Y-maze and passive avoidance tasks. These effects of CCL3 on memory were inhibited by Maraviroc. Altogether, these data suggest that the chemokine CCL3 is an hippocampal neuromodulator able to regulate synaptic plasticity mechanisms involved in learning and memory functions.

  10. Performance norms for a rhesus monkey neuropsychological testing battery: acquisition and long-term performance.

    PubMed

    Weed, M R; Taffe, M A; Polis, I; Roberts, A C; Robbins, T W; Koob, G F; Bloom, F E; Gold, L H

    1999-10-25

    A computerized behavioral battery based upon human neuropsychological tests (CANTAB, CeNeS, Cambridge, UK) has been developed to assess cognitive behaviors of rhesus monkeys. Monkeys reliably performed multiple tasks, providing long-term assessment of changes in a number of behaviors for a given animal. The overall goal of the test battery is to characterize changes in cognitive behaviors following central nervous system (CNS) manipulations. The battery addresses memory (delayed non-matching to sample, DNMS; spatial working memory, using a self-ordered spatial search task, SOSS), attention (intra-/extra-dimensional shift, ID/ED), motivation (progressive-ratio, PR), reaction time (RT) and motor coordination (bimanual task). As with human neuropsychological batteries, different tasks are thought to involve different neural substrates, and therefore performance profiles should assess function in particular brain regions. Monkeys were tested in transport cages, and responding on a touch sensitive computer monitor was maintained by food reinforcement. Parametric manipulations of several tasks demonstrated the sensitivity of performance to increases in task difficulty. Furthermore, the factors influencing difficulty for rhesus monkeys were the same as those shown to affect human performance. Data from this study represent performance of a population of healthy normal monkeys that will be used for comparison in subsequent studies of performance following CNS manipulations such as infection with simian immunodeficiency virus (NeuroAIDS) or drug administration.

  11. Methylprednisolone as a memory enhancer in rats: Effects on aversive memory, long-term potentiation and calcium influx.

    PubMed

    de Vargas, Liane da Silva; Gonçalves, Rithiele; Lara, Marcus Vinícius S; Costa-Ferro, Zaquer S M; Salamoni, Simone Denise; Domingues, Michelle Flores; Piovesan, Angela Regina; de Assis, Dênis Reis; Vinade, Lucia; Corrado, Alexandre P; Alves-Do-Prado, Wilson; Correia-de-Sá, Paulo; da Costa, Jaderson Costa; Izquierdo, Ivan; Dal Belo, Cháriston A; Mello-Carpes, Pâmela B

    2017-09-01

    It is well recognized that stress or glucocorticoids hormones treatment can modulate memory performance in both directions, either impairing or enhancing it. Despite the high number of studies aiming at explaining the effects of glucocorticoids on memory, this has not yet been completely elucidated. Here, we demonstrate that a low daily dose of methylprednisolone (MP, 5mg/kg, i.p.) administered for 10-days favors aversive memory persistence in adult rats, without any effect on the exploring behavior, locomotor activity, anxiety levels and pain perception. Enhanced performance on the inhibitory avoidance task was correlated with long-term potentiation (LTP), a phenomenon that was strengthen in hippocampal slices of rats injected with MP (5mg/kg) during 10days. Additionally, in vitro incubation with MP (30-300µM) concentration-dependently increased intracellular [Ca 2+ ] i in cultured hippocampal neurons depolarized by KCl (35mM). In conclusion, a low daily dose of MP for 10days may promote aversive memory persistence in rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Emotional stimuli exert parallel effects on attention and memory.

    PubMed

    Talmi, Deborah; Ziegler, Marilyne; Hawksworth, Jade; Lalani, Safina; Herman, C Peter; Moscovitch, Morris

    2013-01-01

    Because emotional and neutral stimuli typically differ on non-emotional dimensions, it has been difficult to determine conclusively which factors underlie the ability of emotional stimuli to enhance immediate long-term memory. Here we induced arousal by varying participants' goals, a method that removes many potential confounds between emotional and non-emotional items. Hungry and sated participants encoded food and clothing images under divided attention conditions. Sated participants attended to and recalled food and clothing images equivalently. Hungry participants performed worse on the concurrent tone-discrimination task when they viewed food relative to clothing images, suggesting enhanced attention to food images, and they recalled more food than clothing images. A follow-up regression analysis of the factors predicting memory for individual pictures revealed that food images had parallel effects on attention and memory in hungry participants, so that enhanced attention to food images did not predict their enhanced memory. We suggest that immediate long-term memory for food is enhanced in the hungry state because hunger leads to more distinctive processing of food images rendering them more accessible during retrieval.

  13. Selective impairment of subcategories of long-term memory in mice with hippocampal lesions accessed by the olfactory tubing maze.

    PubMed

    Chaillan, F A; Marchetti, E; Soumireu-Mourat, B; Roman, F S

    2005-03-30

    A new apparatus, the olfactory tubing maze for mice, was developed recently to study learning and memory processes in mice in regard to their ethological abilities. As in humans, BALB/c mice with selective bilateral lesions of the hippocampal formation showed selective impairment of subcategories of long-term memory when tested with the olfactory tubing maze. After three learning sessions, control mice reached a high percentage of correct responses. They consistently made the olfactory-reward associations, but antero-dorsal and postero-ventral hippocampal-lesioned mice did not. However, all lesioned mice learned the paradigm and the timing of the task as fast and as well as control mice. These data suggest that the olfactory tubing maze can be used to study subcategories of memory, such as declarative and non-declarative memory, which are similar in some respects to those observed in humans. Consequently, possible memory effects of classical approaches (i.e., pharmacological or lesion studies) or genetic modifications in transgenic or gene-targeting mice can be effectively analyzed using this new apparatus.

  14. Oscillatory theta activity during memory formation and its impact on overnight consolidation: a missing link?

    PubMed

    Heib, Dominik P J; Hoedlmoser, Kerstin; Anderer, Peter; Gruber, Georg; Zeitlhofer, Josef; Schabus, Manuel

    2015-08-01

    Sleep has been shown to promote memory consolidation driven by certain oscillatory patterns, such as sleep spindles. However, sleep does not consolidate all newly encoded information uniformly but rather "selects" certain memories for consolidation. It is assumed that such selection depends on salience tags attached to the new memories before sleep. However, little is known about the underlying neuronal processes reflecting presleep memory tagging. The current study sought to address the question of whether event-related changes in spectral theta power (theta ERSP) during presleep memory formation could reflect memory tagging that influences subsequent consolidation during sleep. Twenty-four participants memorized 160 word pairs before sleep; in a separate laboratory visit, they performed a nonlearning control task. Memory performance was tested twice, directly before and after 8 hr of sleep. Results indicate that participants who improved their memory performance overnight displayed stronger theta ERSP during the memory task in comparison with the control task. They also displayed stronger memory task-related increases in fast sleep spindle activity. Furthermore, presleep theta activity was directly linked to fast sleep spindle activity, indicating that processes during memory formation might indeed reflect memory tagging that influences subsequent consolidation during sleep. Interestingly, our results further indicate that the suggested relation between sleep spindles and overnight performance change is not as direct as once believed. Rather, it appears to be mediated by processes beginning during presleep memory formation. We conclude that theta ERSP during presleep memory formation reflects cortico-hippocampal interactions that lead to a better long-term accessibility by tagging memories for sleep spindle-related reprocessing.

  15. Working memory training improves visual short-term memory capacity.

    PubMed

    Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H

    2016-01-01

    Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.

  16. The role of early visual cortex in visual short-term memory and visual attention.

    PubMed

    Offen, Shani; Schluppeck, Denis; Heeger, David J

    2009-06-01

    We measured cortical activity with functional magnetic resonance imaging to probe the involvement of early visual cortex in visual short-term memory and visual attention. In four experimental tasks, human subjects viewed two visual stimuli separated by a variable delay period. The tasks placed differential demands on short-term memory and attention, but the stimuli were visually identical until after the delay period. Early visual cortex exhibited sustained responses throughout the delay when subjects performed attention-demanding tasks, but delay-period activity was not distinguishable from zero when subjects performed a task that required short-term memory. This dissociation reveals different computational mechanisms underlying the two processes.

  17. Long-term repetition priming with symmetrical polygons and words.

    PubMed

    Kersteen-Tucker, Z

    1991-01-01

    In two different tasks, subjects were asked to make lexical decisions (word or nonword) and symmetry judgments (symmetrical or nonsymmetrical) about two-dimensional polygons. In both tasks, every stimulus was repeated at one of four lags (0, 1, 4, or 8 items interposed between the first and second stimulus presentations). This paradigm, known as repetition priming, revealed comparable short-term priming (Lag 0) and long-term priming (Lags 1, 4, and 8) both for symmetrical polygons and for words. A shorter term component (Lags 0 and 1) of priming was observed for nonwords, and only very short-term priming (Lag 0) was observed for nonsymmetrical polygons. These results indicate that response facilitation accruing from repeated exposure can be observed for stimuli that have no preexisting memory representations and suggest that perceptual factors contribute to repetition-priming effects.

  18. Dorsal medial prefrontal cortex contributes to conditioned taste aversion memory consolidation and retrieval.

    PubMed

    Gonzalez, Maria Carolina; Villar, Maria Eugenia; Igaz, Lionel M; Viola, Haydée; Medina, Jorge H

    2015-12-01

    The medial prefrontal cortex (mPFC) is known for its role in decision making and memory processing, including the participation in the formation of extinction memories. However, little is known regarding its contribution to aversive memory consolidation. Here we demonstrate that neural activity and protein synthesis are required in the dorsal mPFC for memory formation of a conditioned taste aversion (CTA) task and that this region is involved in the retrieval of recent and remote long-term CTA memory. In addition, both NMDA receptor and CaMKII activity in dorsal mPFC are needed for CTA memory consolidation, highlighting the complexity of mPFC functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. The effects of long-term stress on neural dynamics of working memory processing: An investigation using ERP

    PubMed Central

    Yuan, Yiran; Leung, Ada W. S.; Duan, Hongxia; Zhang, Liang; Zhang, Kan; Wu, Jianhui; Qin, Shaozheng

    2016-01-01

    This study examined the neural dynamics of working memory (WM) processing under long-term stress. Forty participants who had been exposed to a long period of major exam preparation (six months) and twenty-one control participants performed a numerical n-back task (n = 1, 2) while electroencephalograms were recorded. Psychological and endocrinal measurements confirmed significantly higher levels of long-term stress for participants in the exam group. The exam group showed significantly increased P2 amplitude in the frontal-central sites in the 1-back and 2-back conditions, whereas other ERP components, including the P1, N1 and P3 and behavioral performance, were unchanged. Notably, the P2 effect was most pronounced in participants in the exam group who reported perceiving high levels of stress. The perceived stress scores positively correlated with the P2 amplitude in the 1-back and 2-back conditions. These results suggest that long-term stress has an impact on attention and the initiation of the updating process in WM. PMID:27000528

  20. Declarative long-term memory and the mesial temporal lobe: Insights from a 5-year postsurgery follow-up study on refractory temporal lobe epilepsy.

    PubMed

    Salvato, Gerardo; Scarpa, Pina; Francione, Stefano; Mai, Roberto; Tassi, Laura; Scarano, Elisa; Lo Russo, Giorgio; Bottini, Gabriella

    2016-11-01

    It is largely recognized that the mesial temporal lobe and its substructure support declarative long-term memory (LTM). So far, different theories have been suggested, and the organization of declarative verbal LTM in the brain is still a matter of debate. In the current study, we retrospectively selected 151 right-handed patients with temporal lobe epilepsy with and without hippocampal sclerosis, with a homogeneous (seizure-free) clinical outcome. We analyzed verbal memory performance within a normalized scores context, by means of prose recall and word paired-associate learning tasks. Patients were tested at presurgical baseline, 6months, 2 and 5years after anteromesial temporal lobe surgery, using parallel versions of the neuropsychological tests. Our main finding revealed a key involvement of the left temporal lobe and, in particular, of the left hippocampus in prose recall rather than word paired-associate task. We also confirmed that shorter duration of epilepsy, younger age, and withdrawal of antiepileptic drugs would predict a better memory outcome. When individual memory performance was taken into account, data showed that females affected by left temporal lobe epilepsy for longer duration were more at risk of presenting a clinically pathologic LTM at 5years after surgery. Taken together, these findings shed new light on verbal declarative memory in the mesial temporal lobe and on the behavioral signature of the functional reorganization after the surgical treatment of temporal lobe epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Reinforcement learning and episodic memory in humans and animals: an integrative framework

    PubMed Central

    Gershman, Samuel J.; Daw, Nathaniel D.

    2018-01-01

    We review the psychology and neuroscience of reinforcement learning (RL), which has witnessed significant progress in the last two decades, enabled by the comprehensive experimental study of simple learning and decision-making tasks. However, the simplicity of these tasks misses important aspects of reinforcement learning in the real world: (i) State spaces are high-dimensional, continuous, and partially observable; this implies that (ii) data are relatively sparse: indeed precisely the same situation may never be encountered twice; and also that (iii) rewards depend on long-term consequences of actions in ways that violate the classical assumptions that make RL tractable. A seemingly distinct challenge is that, cognitively, these theories have largely connected with procedural and semantic memory: how knowledge about action values or world models extracted gradually from many experiences can drive choice. This misses many aspects of memory related to traces of individual events, such as episodic memory. We suggest that these two gaps are related. In particular, the computational challenges can be dealt with, in part, by endowing RL systems with episodic memory, allowing them to (i) efficiently approximate value functions over complex state spaces, (ii) learn with very little data, and (iii) bridge long-term dependencies between actions and rewards. We review the computational theory underlying this proposal and the empirical evidence to support it. Our proposal suggests that the ubiquitous and diverse roles of memory in RL may function as part of an integrated learning system. PMID:27618944

  2. Errors in nonword repetition: bridging short- and long-term memory.

    PubMed

    Santos, F H; Bueno, O F A; Gathercole, S E

    2006-03-01

    According to the working memory model, the phonological loop is the component of working memory specialized in processing and manipulating limited amounts of speech-based information. The Children's Test of Nonword Repetition (CNRep) is a suitable measure of phonological short-term memory for English-speaking children, which was validated by the Brazilian Children's Test of Pseudoword Repetition (BCPR) as a Portuguese-language version. The objectives of the present study were: i) to investigate developmental aspects of the phonological memory processing by error analysis in the nonword repetition task, and ii) to examine phoneme (substitution, omission and addition) and order (migration) errors made in the BCPR by 180 normal Brazilian children of both sexes aged 4-10, from preschool to 4th grade. The dominant error was substitution [F(3,525) = 180.47; P < 0.0001]. The performance was age-related [F(4,175) = 14.53; P < 0.0001]. The length effect, i.e., more errors in long than in short items, was observed [F(3,519) = 108.36; P < 0.0001]. In 5-syllable pseudowords, errors occurred mainly in the middle of the stimuli, before the syllabic stress [F(4,16) = 6.03; P = 0.003]; substitutions appeared more at the end of the stimuli, after the stress [F(12,48) = 2.27; P = 0.02]. In conclusion, the BCPR error analysis supports the idea that phonological loop capacity is relatively constant during development, although school learning increases the efficiency of this system. Moreover, there are indications that long-term memory contributes to holding memory trace. The findings were discussed in terms of distinctiveness, clustering and redintegration hypotheses.

  3. Early handling effect on female rat spatial and non-spatial learning and memory.

    PubMed

    Plescia, Fulvio; Marino, Rosa A M; Navarra, Michele; Gambino, Giuditta; Brancato, Anna; Sardo, Pierangelo; Cannizzaro, Carla

    2014-03-01

    This study aims at providing an insight into early handling procedures on learning and memory performance in adult female rats. Early handling procedures were started on post-natal day 2 until 21, and consisted in 15 min, daily separations of the dams from their litters. Assessment of declarative memory was carried out in the novel-object recognition task; spatial learning, reference- and working memory were evaluated in the Morris water maze (MWM). Our results indicate that early handling induced an enhancement in: (1) declarative memory, in the object recognition task, both at 1h and 24h intervals; (2) reference memory in the probe test and working memory and behavioral flexibility in the "single-trial and four-trial place learning paradigm" of the MWM. Short-term separation by increasing maternal care causes a dampening in HPA axis response in the pups. A modulated activation of the stress response may help to protect brain structures, involved in cognitive function. In conclusion, this study shows the long-term effects of a brief maternal separation in enhancing object recognition-, spatial reference- and working memory in female rats, remarking the impact of early environmental experiences and the consequent maternal care on the behavioral adaptive mechanisms in adulthood. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus.

    PubMed

    McIntyre, Christa K; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D; Steward, Oswald; Guzowski, John F; McGaugh, James L

    2005-07-26

    Activation of beta-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the beta-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance.

  5. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus

    PubMed Central

    McIntyre, Christa K.; Miyashita, Teiko; Setlow, Barry; Marjon, Kristopher D.; Steward, Oswald; Guzowski, John F.; McGaugh, James L.

    2005-01-01

    Activation of β-adrenoceptors in the basolateral complex of the amygdala (BLA) modulates memory storage processes and long-term potentiation in downstream targets of BLA efferents, including the hippocampus. Here, we show that this activation also increases hippocampal levels of activity-regulated cytoskeletal protein (Arc), an immediate-early gene (also termed Arg 3.1) implicated in hippocampal synaptic plasticity and memory consolidation processes. Infusions of the β-adrenoreceptor agonist, clenbuterol, into the BLA immediately after training on an inhibitory avoidance task enhanced memory tested 48 h later. The same dose of clenbuterol significantly increased Arc protein levels in the dorsal hippocampus. Additionally, posttraining intra-BLA infusions of a memory-impairing dose of lidocaine significantly reduced Arc protein levels in the dorsal hippocampus. Increases in Arc protein levels were not accompanied by increases in Arc mRNA, suggesting that amygdala modulation of Arc protein and synaptic plasticity in efferent brain regions occurs at a posttranscriptional level. Finally, infusions of Arc antisense oligodeoxynucleotides into the dorsal hippocampus impaired performance of an inhibitory avoidance task, indicating that the changes in Arc protein expression are related to the observed changes in memory performance. PMID:16020527

  6. Reactivation in Working Memory: An Attractor Network Model of Free Recall

    PubMed Central

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view. PMID:24023690

  7. Reactivation in working memory: an attractor network model of free recall.

    PubMed

    Lansner, Anders; Marklund, Petter; Sikström, Sverker; Nilsson, Lars-Göran

    2013-01-01

    The dynamic nature of human working memory, the general-purpose system for processing continuous input, while keeping no longer externally available information active in the background, is well captured in immediate free recall of supraspan word-lists. Free recall tasks produce several benchmark memory phenomena, like the U-shaped serial position curve, reflecting enhanced memory for early and late list items. To account for empirical data, including primacy and recency as well as contiguity effects, we propose here a neurobiologically based neural network model that unifies short- and long-term forms of memory and challenges both the standard view of working memory as persistent activity and dual-store accounts of free recall. Rapidly expressed and volatile synaptic plasticity, modulated intrinsic excitability, and spike-frequency adaptation are suggested as key cellular mechanisms underlying working memory encoding, reactivation and recall. Recent findings on the synaptic and molecular mechanisms behind early LTP and on spiking activity during delayed-match-to-sample tasks support this view.

  8. Effects of Ibuprofen on Cognition and NMDA Receptor Subunit Expression Across Aging

    PubMed Central

    Loza, Alejandra Márquez; Elias, Valerie; Wong, Carmen P.; Ho, Emily; Bermudez, Michelle; Magnusson, Kathy R.

    2017-01-01

    Age-related declines in long- and short-term memory show relationships to decreases in N-methyl-D-aspartate (NMDA) receptor expression, which may involve inflammation. This study was designed to determine effects of an anti-inflammatory drug, ibuprofen, on cognitive function and NMDA receptor expression across aging. Male C57BL/6 mice (ages 5, 14, 20, and 26 months) were fed ibuprofen (375 ppm) in NIH31 diet or diet alone for 6 weeks prior to testing. Behavioral testing using the Morris water maze showed that older mice performed significantly worse than younger in spatial long-term memory, reversal, and short-term memory tasks. Ibuprofen enhanced overall performance in the short-term memory task, but this appeared to be more related to improved executive function than memory. Ibuprofen induced significant decreases over all ages in the mRNA densities for GluN2B subunit, all GluN1 splice variants, and GluN1-1 splice forms in the frontal cortex and in protein expression of GluN2A, GluN2B and GluN1 C2′ cassettes in the hippocampus. GluN1-3 splice form mRNA and C2′ cassette protein were significantly increased across ages in frontal lobes of ibuprofen-treated mice. Ibuprofen did not alter expression of pro-inflammatory cytokines IL-1β and TNFα, but did reduce the area of reactive astrocyte immunostaining in frontal cortex of aged mice. Enhancement in executive function showed a relationship to increased GluN1-3 mRNA and decreased gliosis. These findings suggest that inflammation may play a role in executive function declines in aged animals, but other effects of ibuprofen on NMDA receptors appeared to be unrelated to aging or inflammation. PMID:28057539

  9. Low-Complexity Discriminative Feature Selection From EEG Before and After Short-Term Memory Task.

    PubMed

    Behzadfar, Neda; Firoozabadi, S Mohammad P; Badie, Kambiz

    2016-10-01

    A reliable and unobtrusive quantification of changes in cortical activity during short-term memory task can be used to evaluate the efficacy of interfaces and to provide real-time user-state information. In this article, we investigate changes in electroencephalogram signals in short-term memory with respect to the baseline activity. The electroencephalogram signals have been analyzed using 9 linear and nonlinear/dynamic measures. We applied statistical Wilcoxon examination and Davis-Bouldian criterion to select optimal discriminative features. The results show that among the features, the permutation entropy significantly increased in frontal lobe and the occipital second lower alpha band activity decreased during memory task. These 2 features reflect the same mental task; however, their correlation with memory task varies in different intervals. In conclusion, it is suggested that the combination of the 2 features would improve the performance of memory based neurofeedback systems. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  10. Long-term stabilization of place cell remapping produced by a fearful experience

    PubMed Central

    Wang, Melissa E.; Wann, Ellen G.; Yuan, Robin K.; Ramos Álvarez, Manuel M.; Stead, Squire M.; Muzzio, Isabel A.

    2012-01-01

    Fear is an emotional response to danger that is highly conserved throughout evolution because it is critical for survival. Accordingly, episodic memory for fearful locations is widely studied using contextual fear conditioning, a hippocampus-dependent task (Kim and Fanselow, 1992; Phillips and LeDoux, 1992). The hippocampus has been implicated in episodic emotional memory and is thought to integrate emotional stimuli within a spatial framework. Physiological evidence supporting the role of the hippocampus in contextual fear indicates that pyramidal cells in this region, which fire in specific locations as an animal moves through an environment, shift their preferred firing locations shortly after the presentation of an aversive stimulus (Moita et al., 2004). However, the long-term physiological mechanisms through which emotional memories are encoded by the hippocampus are unknown. Here we show that during and directly after a fearful experience, new hippocampal representations are established and persist in the long term. We recorded from the same place cells in mouse hippocampal area CA1 over several days during predator odor contextual fear conditioning and found that a subset of cells changed their preferred firing locations in response to the fearful stimulus. Furthermore, the newly formed representations of the fearful context stabilized in the long term. Our results demonstrate that place cells respond to the presence of an aversive stimulus, modify their firing patterns during emotional learning, and stabilize a long-term spatial representation in response to a fearful encounter. The persistent nature of these representations may contribute to the enduring quality of emotional memories. PMID:23136419

  11. Validation of a short-term memory test for the recognition of people and faces.

    PubMed

    Leyk, D; Sievert, A; Heiss, A; Gorges, W; Ridder, D; Alexander, T; Wunderlich, M; Ruther, T

    2008-08-01

    Memorising and processing faces is a short-term memory dependent task of utmost importance in the security domain, in which constant and high performance is a must. Especially in access or passport control-related tasks, the timely identification of performance decrements is essential, margins of error are narrow and inadequate performance may have grave consequences. However, conventional short-term memory tests frequently use abstract settings with little relevance to working situations. They may thus be unable to capture task-specific decrements. The aim of the study was to devise and validate a new test, better reflecting job specifics and employing appropriate stimuli. After 1.5 s (short) or 4.5 s (long) presentation, a set of seven portraits of faces had to be memorised for comparison with two control stimuli. Stimulus appearance followed 2 s (first item) and 8 s (second item) after set presentation. Twenty eight subjects (12 male, 16 female) were tested at seven different times of day, 3 h apart. Recognition rates were above 60% even for the least favourable condition. Recognition was significantly better in the 'long' condition (+10%) and for the first item (+18%). Recognition time showed significant differences (10%) between items. Minor effects of learning were found for response latencies only. Based on occupationally relevant metrics, the test displayed internal and external validity, consistency and suitability for further use in test/retest scenarios. In public security, especially where access to restricted areas is monitored, margins of error are narrow and operator performance must remain high and level. Appropriate schedules for personnel, based on valid test results, are required. However, task-specific data and performance tests, permitting the description of task specific decrements, are not available. Commonly used tests may be unsuitable due to undue abstraction and insufficient reference to real-world conditions. Thus, tests are required that account for task-specific conditions and neurophysiological characteristics.

  12. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.

    PubMed

    Li, Xiang; Peng, Ling; Yao, Xiaojing; Cui, Shaolong; Hu, Yuan; You, Chengzeng; Chi, Tianhe

    2017-12-01

    Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM 2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13-24 h prediction tasks (MAPE = 31.47%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Acquisition and long-term retention of spatial learning in the human immunodeficiency virus-1 transgenic rat: Effects of repeated nicotine treatment

    PubMed Central

    Vigorito, Michael; Cao, Junran; Li, Ming D.; Chang, Sulie L.

    2013-01-01

    The HIV-1 transgenic (HIV-1Tg) rat shows a deficit in learning to locate a submerged platform in a multiple-trial water maze task compared to transgenic littermate and F344 control rats (Vigorito et al. 2008; Lashomb et al. 2009). Nicotine is known to have neuroprotective effects possibly by minimizing cytotoxic effects of glutamate or by modulating a cholinergic anti-inflammatory pathway. Nicotine also improves performance in a variety of learning tasks by enhancing attention and short-term memory (STM). The purpose of this study was to determine if the learning deficit in HIV-1Tg is ameliorated by repeated nicotine treatment independent of its effects on STM. HIV-1Tg and F344 rats were treated (subcutaneous) with nicotine (0.25mg/kg/injection) or saline twice daily and tested in a single-trial-per-day procedure which precludes the impact of STM on the acquisition of the spatial learning task. HIV-1Tg rats showed a deficit in the acquisition of the task and in the long-term retention for the platform location in a probe test. Nicotine did not ameliorate the deficit in HIV-1Tg rats and slightly worsened performance during acquisition. Analysis of individual differences in performance during the probe test suggested that nicotine improved performance in some F344 rats but not in HIV-1Tg rats. These results indicate that a deficit in the consolidation of long-term memory (LTM) contributes to the acquisition deficit of HIV1-Tg rats. The results, however, do not provide any evidence of the amelioration of the learning deficit observed in this behavioral model at least with the nicotine dose tested. PMID:23456952

  14. Visual working memory buffers information retrieved from visual long-term memory.

    PubMed

    Fukuda, Keisuke; Woodman, Geoffrey F

    2017-05-16

    Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects' worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved.

  15. Visual working memory buffers information retrieved from visual long-term memory

    PubMed Central

    Fukuda, Keisuke; Woodman, Geoffrey F.

    2017-01-01

    Human memory is thought to consist of long-term storage and short-term storage mechanisms, the latter known as working memory. Although it has long been assumed that information retrieved from long-term memory is represented in working memory, we lack neural evidence for this and need neural measures that allow us to watch this retrieval into working memory unfold with high temporal resolution. Here, we show that human electrophysiology can be used to track information as it is brought back into working memory during retrieval from long-term memory. Specifically, we found that the retrieval of information from long-term memory was limited to just a few simple objects’ worth of information at once, and elicited a pattern of neurophysiological activity similar to that observed when people encode new information into working memory. Our findings suggest that working memory is where information is buffered when being retrieved from long-term memory and reconcile current theories of memory retrieval with classic notions about the memory mechanisms involved. PMID:28461479

  16. Recognition-induced forgetting is not due to category-based set size.

    PubMed

    Maxcey, Ashleigh M

    2016-01-01

    What are the consequences of accessing a visual long-term memory representation? Previous work has shown that accessing a long-term memory representation via retrieval improves memory for the targeted item and hurts memory for related items, a phenomenon called retrieval-induced forgetting. Recently we found a similar forgetting phenomenon with recognition of visual objects. Recognition-induced forgetting occurs when practice recognizing an object during a two-alternative forced-choice task, from a group of objects learned at the same time, leads to worse memory for objects from that group that were not practiced. An alternative explanation of this effect is that category-based set size is inducing forgetting, not recognition practice as claimed by some researchers. This alternative explanation is possible because during recognition practice subjects make old-new judgments in a two-alternative forced-choice task, and are thus exposed to more objects from practiced categories, potentially inducing forgetting due to set-size. Herein I pitted the category-based set size hypothesis against the recognition-induced forgetting hypothesis. To this end, I parametrically manipulated the amount of practice objects received in the recognition-induced forgetting paradigm. If forgetting is due to category-based set size, then the magnitude of forgetting of related objects will increase as the number of practice trials increases. If forgetting is recognition induced, the set size of exemplars from any given category should not be predictive of memory for practiced objects. Consistent with this latter hypothesis, additional practice systematically improved memory for practiced objects, but did not systematically affect forgetting of related objects. These results firmly establish that recognition practice induces forgetting of related memories. Future directions and important real-world applications of using recognition to access our visual memories of previously encountered objects are discussed.

  17. Hippocampal Metaplasticity Is Required for the Formation of Temporal Associative Memories

    PubMed Central

    Xu, Jian; Antion, Marcia D.; Nomura, Toshihiro; Kraniotis, Stephen; Zhu, Yongling

    2014-01-01

    Metaplasticity regulates the threshold for modification of synaptic strength and is an important regulator of learning rules; however, it is not known whether these cellular mechanisms for homeostatic regulation of synapses contribute to particular forms of learning. Conditional ablation of mGluR5 in CA1 pyramidal neurons resulted in the inability of low-frequency trains of afferent activation to prime synapses for subsequent theta burst potentiation. Priming-induced metaplasticity requires mGluR5-mediated mobilization of endocannabinoids during the priming train to induce long-term depression of inhibition (I-LTD). Mice lacking priming-induced plasticity had no deficit in spatial reference memory tasks, but were impaired in an associative task with a temporal component. Conversely, enhancing endocannabinoid signaling facilitated temporal associative memory acquisition and, after training animals in these tasks, ex vivo I-LTD was partially occluded and theta burst LTP was enhanced. Together, these results suggest a link between metaplasticity mechanisms in the hippocampus and the formation of temporal associative memories. PMID:25505329

  18. Analogous selection processes in declarative and procedural working memory: N-2 list-repetition and task-repetition costs.

    PubMed

    Gade, Miriam; Souza, Alessandra S; Druey, Michel D; Oberauer, Klaus

    2017-01-01

    Working memory (WM) holds and manipulates representations for ongoing cognition. Oberauer (Psychology of Learning and Motivation, 51, 45-100, 2009) distinguishes between two analogous WM sub-systems: a declarative WM which handles the objects of thought, and a procedural WM which handles the representations of (cognitive) actions. Here, we assessed whether analogous effects are observed when participants switch between memory sets (declarative representations) and when they switch between task sets (procedural representations). One mechanism assumed to facilitate switching in procedural WM is the inhibition of previously used, but currently irrelevant task sets, as indexed by n-2 task-repetition costs (Mayr & Keele, Journal of Experimental Psychology: General, 129(1), 4-26, 2000). In this study we tested for an analogous effect in declarative WM. We assessed the evidence for n-2 list-repetition costs across eight experiments in which participants switched between memory lists to perform speeded classifications, mental arithmetic, or a local recognition test. N-2 list-repetition costs were obtained consistently in conditions assumed to increase interference between memory lists, and when lists formed chunks in long-term memory. Further analyses across experiments revealed a substantial contribution of episodic memory to n-2 list-repetition costs, thereby questioning the interpretation of n-2 repetition costs as reflecting inhibition. We reanalyzed the data of eight task-switching experiments, and observed that episodic memory also contributes to n-2 task-repetition costs. Taken together, these results show analogous processing principles in declarative and procedural WM, and question the relevance of inhibitory processes for efficient switching between mental sets.

  19. Visual novel stimuli in an ERP novelty oddball paradigm: effects of familiarity on repetition and recognition memory.

    PubMed

    Cycowicz, Yael M; Friedman, David

    2007-01-01

    The orienting response, the brain's reaction to novel and/or out of context familiar events, is reflected by the novelty P3 of the ERP. Contextually novel events also engender high rates of recognition memory. We examined, under incidental and intentional conditions, the effects of visual symbol familiarity on the novelty P3 recorded during an oddball task and on the parietal episodic memory (EM) effect, an index of recollection. Repetition of familiar, but not unfamiliar, symbols elicited a reduction in the novelty P3. Better recognition performance for the familiar symbols was associated with a robust parietal EM effect, which was absent for the unfamiliar symbols in the incidental task. These data demonstrate that processing of novel events depends on expectation and whether stimuli have preexisting representations in long-term semantic memory.

  20. 5-HT7 receptor activation: procognitive and antiamnesic effects.

    PubMed

    Meneses, A; Perez-Garcia, G; Liy-Salmeron, G; Ponce-López, T; Lacivita, E; Leopoldo, M

    2015-02-01

    The serotonin (5-hydroxytryptamine (5-HT)) 5-HT7 receptor is localized in brain areas mediating memory; however, the role of this receptor on memory remains little explored. First, demonstrating the associative nature of Pavlovian/instrumental autoshaping (P/I-A) task, rats were exposed (three sessions) to CS-US (Pavlovian autoshaping), truly random control, free operant, and presentations of US or CS, and they were compared with rats trained-tested for one session to the P/I-A procedure. Also, effects of the 5-HT7 receptor agonist LP-211 administered intraperitoneally after training was determined on short- (1.5 h) and long-term memory 24 and 48 h) and on scopolamine-induced memory impairment and cAMP production. Autoshaping and its behavioral controls were studied. Other animals were subjected to an autoshaping training session and immediately afterwards were given (intraperitoneal) vehicle or LP-211 (0.1-10 mg/kg) and/or scopolamine (0.2 mg/kg) and tested for short-term memory (STM) and long-term memory (LTM); their brains were extracted for the cAMP ELISA immunoassay. P/I-A group produced the higher %CR. LP-211 did not affect STM; nonetheless, at 0.5 and 1.0 mg/kg, it improved LTM. The 5-HT7 receptor antagonist SB-269970 (SB; 10.0 mg/kg) alone had no effect; nevertheless, the LP-211 (1.0 mg/kg) LTM facilitation was reversed by SB. The scopolamine (0.2 mg/kg) induced-decrement in CR was accompanied by significant increased cAMP production. The scopolamine-induced decrement in CR and increments in cAMP were significantly attenuated by LP-211. Autoshaping is a reliable associative learning task whose consolidation is facilitated by the 5-HT7 receptor agonist LP-211.

  1. Long-term memory and volatility clustering in high-frequency price changes

    NASA Astrophysics Data System (ADS)

    oh, Gabjin; Kim, Seunghwan; Eom, Cheoljun

    2008-02-01

    We studied the long-term memory in diverse stock market indices and foreign exchange rates using Detrended Fluctuation Analysis (DFA). For all high-frequency market data studied, no significant long-term memory property was detected in the return series, while a strong long-term memory property was found in the volatility time series. The possible causes of the long-term memory property were investigated using the return data filtered by the AR(1) model, reflecting the short-term memory property, the GARCH(1,1) model, reflecting the volatility clustering property, and the FIGARCH model, reflecting the long-term memory property of the volatility time series. The memory effect in the AR(1) filtered return and volatility time series remained unchanged, while the long-term memory property diminished significantly in the volatility series of the GARCH(1,1) filtered data. Notably, there is no long-term memory property, when we eliminate the long-term memory property of volatility by the FIGARCH model. For all data used, although the Hurst exponents of the volatility time series changed considerably over time, those of the time series with the volatility clustering effect removed diminish significantly. Our results imply that the long-term memory property of the volatility time series can be attributed to the volatility clustering observed in the financial time series.

  2. At the intersection of attention and memory: the mechanistic role of the posterior parietal lobe in working memory

    PubMed Central

    Berryhill, Marian E.; Chein, Jason; Olson, Ingrid R.

    2011-01-01

    Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The pure storage hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the internal attention hypothesis proposes that the PPC functions as an attention-based storage and refreshing mechanism deployable as an alternative to material-specific rehearsal. These models were tested in patients with bilateral PPC lesions. Our findings discount the pure storage hypothesis because variables indexing storage capacity and longevity were not disproportionately affected by PPC damage. Instead, our data support the internal attention account by showing that (a) normal participants tend to use a rehearsal-based WM maintenance strategy for recall tasks but not for recognition tasks; (b) patients with PPC lesions performed normally on WM tasks that relied on material-specific rehearsal strategies but poorly on WM tasks that relied on attention-based maintenance strategies and patient strategy usage could be shifted by task or instructions; (c) patients’ memory deficits extended into the long-term domain. These findings suggest that the PPC maintains or shifts internal attention among the representations of items in WM. PMID:21345344

  3. At the intersection of attention and memory: the mechanistic role of the posterior parietal lobe in working memory.

    PubMed

    Berryhill, Marian E; Chein, Jason; Olson, Ingrid R

    2011-04-01

    Portions of the posterior parietal cortex (PPC) play a role in working memory (WM) yet the precise mechanistic function of this region remains poorly understood. The pure storage hypothesis proposes that this region functions as a short-lived modality-specific memory store. Alternatively, the internal attention hypothesis proposes that the PPC functions as an attention-based storage and refreshing mechanism deployable as an alternative to material-specific rehearsal. These models were tested in patients with bilateral PPC lesions. Our findings discount the pure storage hypothesis because variables indexing storage capacity and longevity were not disproportionately affected by PPC damage. Instead, our data support the internal attention account by showing that (a) normal participants tend to use a rehearsal-based WM maintenance strategy for recall tasks but not for recognition tasks; (b) patients with PPC lesions performed normally on WM tasks that relied on material-specific rehearsal strategies but poorly on WM tasks that relied on attention-based maintenance strategies and patient strategy usage could be shifted by task or instructions; (c) patients' memory deficits extended into the long-term domain. These findings suggest that the PPC maintains or shifts internal attention among the representations of items in WM. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Reinforcement Learning and Episodic Memory in Humans and Animals: An Integrative Framework.

    PubMed

    Gershman, Samuel J; Daw, Nathaniel D

    2017-01-03

    We review the psychology and neuroscience of reinforcement learning (RL), which has experienced significant progress in the past two decades, enabled by the comprehensive experimental study of simple learning and decision-making tasks. However, one challenge in the study of RL is computational: The simplicity of these tasks ignores important aspects of reinforcement learning in the real world: (a) State spaces are high-dimensional, continuous, and partially observable; this implies that (b) data are relatively sparse and, indeed, precisely the same situation may never be encountered twice; furthermore, (c) rewards depend on the long-term consequences of actions in ways that violate the classical assumptions that make RL tractable. A seemingly distinct challenge is that, cognitively, theories of RL have largely involved procedural and semantic memory, the way in which knowledge about action values or world models extracted gradually from many experiences can drive choice. This focus on semantic memory leaves out many aspects of memory, such as episodic memory, related to the traces of individual events. We suggest that these two challenges are related. The computational challenge can be dealt with, in part, by endowing RL systems with episodic memory, allowing them to (a) efficiently approximate value functions over complex state spaces, (b) learn with very little data, and (c) bridge long-term dependencies between actions and rewards. We review the computational theory underlying this proposal and the empirical evidence to support it. Our proposal suggests that the ubiquitous and diverse roles of memory in RL may function as part of an integrated learning system.

  5. Strategic processing in long-term repetition priming in the lexical decision task.

    PubMed

    Kessler, Yoav; Moscovitch, Morris

    2013-04-01

    In a lexical decision task, faster reaction times (RTs) for old than new items is taken as evidence for an implicit memory involvement in this task. In contrast, the present study shows the involvement of both implicit and explicit memory in repetition priming. We propose a dual route model, in which lexical decisions can be made using one of two parallel processing routes: a lexical route, in which the lexical properties of the stimulus are used to determine whether it is a word or not, and a strategic route that builds on the inherent correlation between "wordness" and "oldness" in the experiment. Eliminating the strategic route by removing this correlation diminishes the priming effect at the slow end of the RT distribution, but not at the fast end. This dissociation is interpreted as evidence for the involvement of both implicit and explicit memory in repetition priming.

  6. Spatial Object Recognition Enables Endogenous LTD that Curtails LTP in the Mouse Hippocampus

    PubMed Central

    Goh, Jinzhong Jeremy

    2013-01-01

    Although synaptic plasticity is believed to comprise the cellular substrate for learning and memory, limited direct evidence exists that hippocampus-dependent learning actually triggers synaptic plasticity. It is likely, however, that long-term potentiation (LTP) works in concert with its counterpart, long-term depression (LTD) in the creation of spatial memory. It has been reported in rats that weak synaptic plasticity is facilitated into persistent plasticity if afferent stimulation is coupled with a novel spatial learning event. It is not known if this phenomenon also occurs in other species. We recorded from the hippocampal CA1 of freely behaving mice and observed that novel spatial learning triggers endogenous LTD. Specifically, we observed that LTD is enabled when test-pulse afferent stimulation is given during the learning of object constellations or during a spatial object recognition task. Intriguingly, LTP is significantly impaired by the same tasks, suggesting that LTD is the main cellular substrate for this type of learning. These data indicate that learning-facilitated plasticity is not exclusive to rats and that spatial learning leads to endogenous LTD in the hippocampus, suggesting an important role for this type of synaptic plasticity in the creation of hippocampus-dependent memory. PMID:22510536

  7. Verbal Memory Impairment in Polydrug Ecstasy Users: A Clinical Perspective.

    PubMed

    Kuypers, Kim P C; Theunissen, Eef L; van Wel, Janelle H P; de Sousa Fernandes Perna, Elizabeth B; Linssen, Anke; Sambeth, Anke; Schultz, Benjamin G; Ramaekers, Johannes G

    2016-01-01

    Ecstasy use has been associated with short-term and long-term memory deficits on a standard Word Learning Task (WLT). The clinical relevance of this has been debated and is currently unknown. The present study aimed at evaluating the clinical relevance of verbal memory impairment in Ecstasy users. To that end, clinical memory impairment was defined as decrement in memory performance that exceeded the cut-off value of 1.5 times the standard deviation of the average score in the healthy control sample. The primary question was whether being an Ecstasy user (E-user) was predictive of having clinically deficient memory performance compared to a healthy control group. WLT data were pooled from four experimental MDMA studies that compared memory performance during placebo and MDMA intoxication. Control data were taken from healthy volunteers with no drug use history who completed the WLT as part of a placebo-controlled clinical trial. This resulted in a sample size of 65 E-users and 65 age- and gender-matched healthy drug-naïve controls. All participants were recruited by similar means and were tested at the same testing facilities using identical standard operating procedures. Data were analyzed using linear mixed-effects models, Bayes factor, and logistic regressions. Findings were that verbal memory performance of placebo-treated E-users did not differ from that of controls, and there was substantial evidence in favor of the null hypothesis. History of use was not predictive of memory impairment. During MDMA intoxication of E-users, verbal memory was impaired. The combination of the acute and long-term findings demonstrates that, while clinically relevant memory impairment is present during intoxication, it is absent during abstinence. This suggests that use of Ecstasy/MDMA does not lead to clinically deficient memory performance in the long term. Additionally, it has to be investigated whether the current findings apply to more complex cognitive measures in diverse 'user categories' using a combination of genetics, imaging techniques and neuropsychological assessments.

  8. Effects of lamotrigine on hippocampal activation in corticosteroid-treated patients.

    PubMed

    Brown, E Sherwood; Zaidel, Liam; Allen, Greg; McColl, Roderick; Vazquez, Miguel; Ringe, Wendy K

    2010-11-01

    An extensive animal literature suggests that stress or excessive corticosteroid exposure is associated with changes in hippocampal function and memory. These findings are pertinent to psychiatric disorders with elevated cortisol, Cushing's disease and the millions of patients receiving prescription corticosteroids. In animals, agents that decrease glutamate release attenuate the effects of corticosteroids on the hippocampus. Minimal data are available on preventing or reversing the effects of corticosteroids on the human hippocampus. We previously reported improvement in memory in corticosteroid-treated patients given lamotrigine. In this report, we examined the impact of lamotrigine on task-related hippocampal activation in patients taking prescription corticosteroids. A total of 28 outpatients taking long-term oral prednisone for medical conditions, such as renal transplant rejection, were randomized to lamotrigine or placebo for 24 weeks. Hippocampal activation in response to a visual memory task was assessed with blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI). Consistent with a reduction in glutamate release, the right posterior hippocampus showed a significant decrease in task-related activation in the lamotrigine group as compared to the placebo group. The modest sample size and an assessment period of only 24 weeks are study limitations. Between-group differences in hippocampal activation were observed. The results suggest that an agent that modulates glutamate may modify the effects of long-term corticosteroid exposure on the human hippocampus. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Impaired recruitment of seizure-generated neurons into functional memory networks of the adult dentate gyrus following long-term amygdala kindling.

    PubMed

    Fournier, Neil M; Botterill, Justin J; Marks, Wendie N; Guskjolen, Axel J; Kalynchuk, Lisa E

    2013-06-01

    Epileptic seizures increase the birth of new neurons in the adult hippocampus. Although the consequences of aberrant neurogenesis on behavior are not fully understood, one hypothesis is that seizure-generated neurons might form faulty circuits that disrupt hippocampal functions, such as learning and memory. In the present study, we employed long-term amygdala kindling (i.e., rats receive 99-electrical stimulations) to examine the effect of repeated seizures on hippocampal neurogenesis and behavior. We labeled seizure-generated cells with the proliferation marker BrdU after 30-stimulations and continued kindling for an additional 4weeks to allow newborn neurons to mature under conditions of repeated seizures. After kindling was complete, rats were tested in a trace fear conditioning task and sacrificed 2h later to examine if 4-week old newborn cells were recruited into circuits involved in the retrieval of emotional memory. Compared to non-kindled controls, long-term kindled rats showed significant impairments in fear memory reflected in a decrease in conditioned freezing to both tone and contextual cues during testing. Moreover, long-term kindling also prevented the activation of 4-week old newborn cells in response to fear memory retrieval. These results indicate that the presence of seizure activity during cell maturation impedes the ability of new neurons to integrate properly into circuits important in memory formation. Together, our findings suggest that aberrant seizure-induced neurogenesis might contribute to the development of learning impairments in chronic epilepsy and raise the possibility that targeting the reduced activation of adult born neurons could represent a beneficial strategy to reverse cognitive deficits in some epileptic patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Evidence for age-related changes to temporal attention and memory from the choice time production task

    PubMed Central

    Gooch, Cynthia M.; Stern, Yaakov; Rakitin, Brian C.

    2009-01-01

    The effect of aging on interval timing was examined using a choice time production task, which required participants to choose a key response based on the location of the stimulus, but to delay responding until after a learned time interval. Experiment 1 varied attentional demands of the response choice portion of the task by varying difficulty of stimulus-response mapping. Choice difficulty affected temporal accuracy equally in both age groups, but older participants’ response latencies were more variable under more difficult response choice conditions. Experiment 2 tested the contribution of long-term memory to differences in choice time production between age groups over 3 days of testing. Direction of errors in time production between the two age groups diverged over the 3 sessions, but variability did not differ. Results from each experiment separately show age-related changes to attention and memory in temporal processing using different measures and manipulations in the same task. PMID:19132578

  11. Is caffeine a cognitive enhancer?

    PubMed

    Nehlig, Astrid

    2010-01-01

    The effects of caffeine on cognition were reviewed based on the large body of literature available on the topic. Caffeine does not usually affect performance in learning and memory tasks, although caffeine may occasionally have facilitatory or inhibitory effects on memory and learning. Caffeine facilitates learning in tasks in which information is presented passively; in tasks in which material is learned intentionally, caffeine has no effect. Caffeine facilitates performance in tasks involving working memory to a limited extent, but hinders performance in tasks that heavily depend on working memory, and caffeine appears to rather improve memory performance under suboptimal alertness conditions. Most studies, however, found improvements in reaction time. The ingestion of caffeine does not seem to affect long-term memory. At low doses, caffeine improves hedonic tone and reduces anxiety, while at high doses, there is an increase in tense arousal, including anxiety, nervousness, jitteriness. The larger improvement of performance in fatigued subjects confirms that caffeine is a mild stimulant. Caffeine has also been reported to prevent cognitive decline in healthy subjects but the results of the studies are heterogeneous, some finding no age-related effect while others reported effects only in one sex and mainly in the oldest population. In conclusion, it appears that caffeine cannot be considered a ;pure' cognitive enhancer. Its indirect action on arousal, mood and concentration contributes in large part to its cognitive enhancing properties.

  12. Working memory capacity and recall from long-term memory: Examining the influences of encoding strategies, study time allocation, search efficiency, and monitoring abilities.

    PubMed

    Unsworth, Nash

    2016-01-01

    The relation between working memory capacity (WMC) and recall from long-term memory (LTM) was examined in the current study. Participants performed multiple measures of delayed free recall varying in presentation duration and self-reported their strategy usage after each task. Participants also performed multiple measures of WMC. The results suggested that WMC and LTM recall were related, and part of this relation was due to effective strategy use. However, adaptive changes in strategy use and study time allocation were not related to WMC. Examining multiple variables with structural equation modeling suggested that the relation between WMC and LTM recall was due to variation in effective strategy use, search efficiency, and monitoring abilities. Furthermore, all variables were shown to account for individual differences in LTM recall. These results suggest that the relation between WMC and recall from LTM is due to multiple strategic factors operating at both encoding and retrieval. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Clinical presentation and memory function in youth with type 1 diabetes.

    PubMed

    Semenkovich, Katherine; Bischoff, Allison; Doty, Tasha; Nelson, Suzanne; Siller, Alejandro F; Hershey, Tamara; Arbeláez, Ana Maria

    2016-11-01

    While cerebral edema and diabetic ketoacidosis (DKA) in type 1 diabetes (T1DM) have well-described acute effects on cognition, little is known about the impact of clinical presentation on longer term cognitive outcomes. We hypothesized that clinical factors (degree of hyperglycemia exposure and DKA) at the time of diagnosis would relate to cognition within 3.5 months later in children with T1DM. Cognitive testing was performed on children 7-17 years old with T1DM (n = 66) within 3.5 months of diagnosis and siblings without T1DM (n = 33). Overall intelligence, processing speed, and memory (including a sensitive long-delay spatial memory test; spatial delayed response or SDR) were assessed. Medical records were reviewed for hemoglobin A1c (HbA1c), DKA status, and other clinical factors at diagnosis. Within the group with T1DM, 17 children presented in DKA and 49 did not. After adjusting for age, gender, and socioeconomic status, the subgroup with T1DM and DKA at diagnosis performed worse on the long-delay SDR task compared to sibling controls (p = 0.006). In addition, within the group with T1DM, higher HbA1c at diagnosis was associated with worse performance on the long-delay SDR task (p = 0.027). Performance on the other cognitive tasks was not different across groups or subgroups. DKA and degree of hyperglycemia exposure at diagnosis have implications for long-delay spatial memory function within 3.5 months of diagnosis. These findings suggest that early detection of T1DM, which decreases risk for prolonged exposure to hyperglycemia and DKA, may avoid negative effects on memory function. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Semantic and Visual Memory After Alcohol Abuse.

    ERIC Educational Resources Information Center

    Donat, Dennis C.

    1986-01-01

    Compared the relative performance of 40 patients with a history of alcohol abuse on tasks of short-term semantic and visual memory. Performance on the visual memory tasks was impaired significantly relative to the semantic memory task in a within-subjects analysis of variance. Semantic memory was unimpaired. (Author/ABB)

  15. Contributions of Language and Memory Demands to Verbal Memory Performance in Language-Learning Disabilities

    ERIC Educational Resources Information Center

    Isaki, Emi; Spaulding, Tammie J.; Plante, Elena

    2008-01-01

    The purpose of this study is to investigate the performance of adults with language-based learning disorders (L/LD) and normal language controls on verbal short-term and verbal working memory tasks. Eighteen adults with L/LD and 18 normal language controls were compared on verbal short-term memory and verbal working memory tasks under low,…

  16. Visual short-term memory binding deficit in familial Alzheimer's disease.

    PubMed

    Liang, Yuying; Pertzov, Yoni; Nicholas, Jennifer M; Henley, Susie M D; Crutch, Sebastian; Woodward, Felix; Leung, Kelvin; Fox, Nick C; Husain, Masud

    2016-05-01

    Long-term episodic memory deficits in Alzheimer's disease (AD) are well characterised but, until recently, short-term memory (STM) function has attracted far less attention. We employed a recently-developed, delayed reproduction task which requires participants to reproduce precisely the remembered location of items they had seen only seconds previously. This paradigm provides not only a continuous measure of localization error in memory, but also an index of relational binding by determining the frequency with which an object is misplaced to the location of one of the other items held in memory. Such binding errors in STM have previously been found on this task to be sensitive to medial temporal lobe (MTL) damage in focal lesion cases. Twenty individuals with pathological mutations in presenilin 1 or amyloid precursor protein genes for familial Alzheimer's disease (FAD) were tested together with 62 healthy controls. Participants were assessed using the delayed reproduction memory task, a standard neuropsychological battery and structural MRI. Overall, FAD mutation carriers were worse than controls for object identity as well as in gross localization memory performance. Moreover, they showed greater misbinding of object identity and location than healthy controls. Thus they would often mislocalize a correctly-identified item to the location of one of the other items held in memory. Significantly, asymptomatic gene carriers - who performed similarly to healthy controls on standard neuropsychological tests - had a specific impairment in object-location binding, despite intact memory for object identity and location. Consistent with the hypothesis that the hippocampus is critically involved in relational binding regardless of memory duration, decreased hippocampal volume across FAD participants was significantly associated with deficits in object-location binding but not with recall precision for object identity or localization. Object-location binding may therefore provide a sensitive cognitive biomarker for MTL dysfunction in a range of diseases including AD. Copyright © 2016. Published by Elsevier Ltd.

  17. Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks

    NASA Astrophysics Data System (ADS)

    Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong

    2017-03-01

    Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.

  18. Ordered short-term memory differs in signers and speakers: Implications for models of short-term memory

    PubMed Central

    Bavelier, Daphne; Newport, Elissa L.; Hall, Matt; Supalla, Ted; Boutla, Mrim

    2008-01-01

    Capacity limits in linguistic short-term memory (STM) are typically measured with forward span tasks in which participants are asked to recall lists of words in the order presented. Using such tasks, native signers of American Sign Language (ASL) exhibit smaller spans than native speakers (Boutla, Supalla, Newport, & Bavelier, 2004). Here, we test the hypothesis that this population difference reflects differences in the way speakers and signers maintain temporal order information in short-term memory. We show that native signers differ from speakers on measures of short-term memory that require maintenance of temporal order of the tested materials, but not on those in which temporal order is not required. In addition, we show that, in a recall task with free order, bilingual subjects are more likely to recall in temporal order when using English than ASL. We conclude that speakers and signers do share common short-term memory processes. However, whereas short-term memory for spoken English is predominantly organized in terms of temporal order, we argue that this dimension does not play as great a role in signers’ short-term memory. Other factors that may affect STM processes in signers are discussed. PMID:18083155

  19. Evidence for modality-independent order coding in working memory.

    PubMed

    Depoorter, Ann; Vandierendonck, André

    2009-03-01

    The aim of the present study was to investigate the representation of serial order in working memory, more specifically whether serial order is coded by means of a modality-dependent or a modality-independent order code. This was investigated by means of a series of four experiments based on a dual-task methodology in which one short-term memory task was embedded between the presentation and recall of another short-term memory task. Two aspects were varied in these memory tasks--namely, the modality of the stimulus materials (verbal or visuo-spatial) and the presence of an order component in the task (an order or an item memory task). The results of this study showed impaired primary-task recognition performance when both the primary and the embedded task included an order component, irrespective of the modality of the stimulus materials. If one or both of the tasks did not contain an order component, less interference was found. The results of this study support the existence of a modality-independent order code.

  20. Interaction between attentional systems and episodic memory encoding: the impact of conflict on binding of information.

    PubMed

    Sperduti, Marco; Armougum, Allan; Makowski, Dominique; Blondé, Philippe; Piolino, Pascale

    2017-12-01

    Episodic memory (EM) is defined as a long-term memory system that stores information that can be retrieved along with details of the context of the original events (binding). Several studies have shown that manipulation of attention during encoding can impact subsequent memory performance. An influential model of attention distinguishes between three partially independent attentional networks: the alerting, the orienting and the executive or conflict resolution component. To date, the impact of the engagement of these sub-systems during encoding on item and relational context binding has not been investigated. Here, we developed a new task combining the Attentional Network Test and an incidental episodic memory encoding task to study this issue. We reported that when the alerting network was not solicited, resolving conflict hindered item encoding. Moreover, resolving conflict, independently of the cueing condition, had a negative impact on context binding. These novel findings could have a potential impact in the understanding EM formation, and memory disorders in different populations, including healthy elderly people.

  1. [Visual representation of natural scenes in flicker changes].

    PubMed

    Nakashima, Ryoichi; Yokosawa, Kazuhiko

    2010-08-01

    Coherence theory in scene perception (Rensink, 2002) assumes the retention of volatile object representations on which attention is not focused. On the other hand, visual memory theory in scene perception (Hollingworth & Henderson, 2002) assumes that robust object representations are retained. In this study, we hypothesized that the difference between these two theories is derived from the difference of the experimental tasks that they are based on. In order to verify this hypothesis, we examined the properties of visual representation by using a change detection and memory task in a flicker paradigm. We measured the representations when participants were instructed to search for a change in a scene, and compared them with the intentional memory representations. The visual representations were retained in visual long-term memory even in the flicker paradigm, and were as robust as the intentional memory representations. However, the results indicate that the representations are unavailable for explicitly localizing a scene change, but are available for answering the recognition test. This suggests that coherence theory and visual memory theory are compatible.

  2. Retroactive interference in short-term memory and the word-length effect.

    PubMed

    Campoy, Guillermo

    2011-09-01

    Two experiments investigated the possibility that the word-length effect in short-term memory (STM) is a consequence of long words generating a greater level of retroactive interference than shorter words. In Experiment 1, six-word lists were auditorily presented under articulatory suppression for immediate serial reconstruction of only the first three words. These three words were always drawn from a single set of middle-length words, whereas the last three positions were occupied by either short or long interfering words. The results showed worse memory performance when the to-be-remembered words were followed by long words. In Experiment 2, a recent-probes task was used, in which recent negative probes matched a target word in trial n-2. The results showed lower levels of proactive interference when trial n-1 involved long words instead of short words, suggesting that long words displaced previous STM content to a greater extent. By two different experimental approaches, therefore, this study shows that long words produce more retroactive interference than short words, supporting an interference-based account for the word-length effect. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Transmodal comparison of auditory, motor, and visual post-processing with and without intentional short-term memory maintenance.

    PubMed

    Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias

    2010-12-01

    To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Parallel effects of memory set activation and search on timing and working memory capacity.

    PubMed

    Schweickert, Richard; Fortin, Claudette; Xi, Zhuangzhuang; Viau-Quesnel, Charles

    2014-01-01

    Accurately estimating a time interval is required in everyday activities such as driving or cooking. Estimating time is relatively easy, provided a person attends to it. But a brief shift of attention to another task usually interferes with timing. Most processes carried out concurrently with timing interfere with it. Curiously, some do not. Literature on a few processes suggests a general proposition, the Timing and Complex-Span Hypothesis: A process interferes with concurrent timing if and only if process performance is related to complex span. Complex-span is the number of items correctly recalled in order, when each item presented for study is followed by a brief activity. Literature on task switching, visual search, memory search, word generation and mental time travel supports the hypothesis. Previous work found that another process, activation of a memory set in long term memory, is not related to complex-span. If the Timing and Complex-Span Hypothesis is true, activation should not interfere with concurrent timing in dual-task conditions. We tested such activation in single-task memory search task conditions and in dual-task conditions where memory search was executed with concurrent timing. In Experiment 1, activating a memory set increased reaction time, with no significant effect on time production. In Experiment 2, set size and memory set activation were manipulated. Activation and set size had a puzzling interaction for time productions, perhaps due to difficult conditions, leading us to use a related but easier task in Experiment 3. In Experiment 3 increasing set size lengthened time production, but memory activation had no significant effect. Results here and in previous literature on the whole support the Timing and Complex-Span Hypotheses. Results also support a sequential organization of activation and search of memory. This organization predicts activation and set size have additive effects on reaction time and multiplicative effects on percent correct, which was found.

  5. Monkeys Rely on Recency of Stimulus Repetition When Solving Short-Term Memory Tasks

    ERIC Educational Resources Information Center

    Wittig, John H., Jr.; Richmond, Barry J.

    2014-01-01

    Seven monkeys performed variants of two short-term memory tasks that others have used to differentiate between selective and nonselective memory mechanisms. The first task was to view a list of sequentially presented images and identify whether a test matched any image from the list, but not a distractor from a preceding list. Performance was best…

  6. Executive Functions Are Employed to Process Episodic and Relational Memories in Children With Autism Spectrum Disorders

    PubMed Central

    2013-01-01

    Objective: Long-term memory functioning in autism spectrum disorders (ASDs) is marked by a characteristic pattern of impairments and strengths. Individuals with ASD show impairment in memory tasks that require the processing of relational and contextual information, but spared performance on tasks requiring more item-based, acontextual processing. Two experiments investigated the cognitive mechanisms underlying this memory profile. Method: A sample of 14 children with a diagnosis of high-functioning ASD (age: M = 12.2 years), and a matched control group of 14 typically developing (TD) children (age: M = 12.1 years), participated in a range of behavioral memory tasks in which we measured both relational and item-based memory abilities. They also completed a battery of executive function measures. Results: The ASD group showed specific deficits in relational memory, but spared or superior performance in item-based memory, across all tasks. Importantly, for ASD children, executive ability was significantly correlated with relational memory but not with item-based memory. No such relationship was present in the control group. This suggests that children with ASD atypically employed effortful, executive strategies to retrieve relational (but not item-specific) information, whereas TD children appeared to use more automatic processes. Conclusions: The relational memory impairment in ASD may result from a specific impairment in automatic associative retrieval processes with an increased reliance on effortful and strategic retrieval processes. Our findings allow specific neural predictions to be made regarding the interactive functioning of the hippocampus, prefrontal cortex, and posterior parietal cortex in ASD as a neural network supporting relational memory processing. PMID:24245930

  7. Early Life in a Barren Environment Adversely Affects Spatial Cognition in Laying Hens (Gallus gallus domesticus)

    PubMed Central

    Tahamtani, Fernanda M.; Nordgreen, Janicke; Nordquist, Rebecca E.; Janczak, Andrew M.

    2015-01-01

    Spatial cognition in vertebrates is adversely affected by a lack of environmental complexity during early life. However, to our knowledge, no previous studies have tested the effect of early exposure to varying degrees of environmental complexity on specific components of spatial cognition in chickens. There are two main rearing systems for laying hens in the EU: aviaries and cages. These two systems differ from one another in environmental complexity. The aim of the present study was to test the hypothesis that rearing in a barren cage environment relative to a complex aviary environment causes long-lasting deficits in the ability to perform spatial tasks. For this purpose, 24 white Dekalb laying hens, half of which had been reared in an aviary system and the other half in a conventional cage system, were tested in a holeboard task. Birds from both treatment groups learnt the task; however, the cage-reared hens required more time to locate rewards and had poorer levels of working memory. The latter finding supports the hypothesis that rearing in a barren environment causes long-term impairment of short-term memory in chickens. PMID:26664932

  8. Differential age-related effects on conjunctive and relational visual short-term memory binding.

    PubMed

    Bastin, Christine

    2017-12-28

    An age-related associative deficit has been described in visual short-term binding memory tasks. However, separate studies have suggested that ageing disrupts relational binding (to associate distinct items or item and context) more than conjunctive binding (to integrate features within an object). The current study directly compared relational and conjunctive binding with a short-term memory task for object-colour associations in 30 young and 30 older adults. Participants studied a number of object-colour associations corresponding to their individual object span level in a relational task in which objects were associated to colour patches and a conjunctive task where colour was integrated into the object. Memory for individual items and for associations was tested with a recognition memory test. Evidence for an age-related associative deficit was observed in the relational binding task, but not in the conjunctive binding task. This differential impact of ageing on relational and conjunctive short-term binding is discussed by reference to two underlying age-related cognitive difficulties: diminished hippocampally dependent binding and attentional resources.

  9. Preserved memory-based orienting of attention with impaired explicit memory in healthy ageing

    PubMed Central

    Salvato, Gerardo; Patai, Eva Z.; Nobre, Anna C.

    2016-01-01

    It is increasingly recognised that spatial contextual long-term memory (LTM) prepares neural activity for guiding visuo-spatial attention in a proactive manner. In the current study, we investigated whether the decline in explicit memory observed in healthy ageing would compromise this mechanism. We compared the behavioural performance of younger and older participants on learning new contextual memories, on orienting visual attention based on these learnt contextual associations, and on explicit recall of contextual memories. We found a striking dissociation between older versus younger participants in the relationship between the ability to retrieve contextual memories versus the ability to use these to guide attention to enhance performance on a target-detection task. Older participants showed significant deficits in the explicit retrieval task, but their behavioural benefits from memory-based orienting of attention were equivalent to those in young participants. Furthermore, memory-based orienting correlated significantly with explicit contextual LTM in younger adults but not in older adults. These results suggest that explicit memory deficits in ageing might not compromise initial perception and encoding of events. Importantly, the results also shed light on the mechanisms of memory-guided attention, suggesting that explicit contextual memories are not necessary. PMID:26649914

  10. Neurocognitive function in clinically stable individuals with long-term bipolar I disorder: Comparisons with schizophrenia patients and controls.

    PubMed

    Lin, Pei-Yun; Wang, Peng-Wei; Chen, Cheng-Sheng; Yen, Cheng-Fang

    2017-05-01

    This study compared the levels of the five domains of neurocognitive function-executive function, attention, memory, verbal comprehension, and perceptual organization-among clinically stable individuals with long-term bipolar I disorder, individuals with long-term schizophrenia, and a group of controls. We recruited a total of 93 clinically stable individuals with bipolar I disorder, 94 individuals with schizophrenia, and 106 controls in this study. Their neurocognitive function was measured using a series of neurocognitive function tests: the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III), Line Cancellation Test, Visual Form Discrimination, Controlled Oral Word Association Test, Wisconsin Card Sorting Test, Continuous Performance Task, and Wechsler Memory Scale-Third Edition. Neurocognitive function was compared among the three groups through a multivariate analysis of variance. The results indicated that when the effect of age was controlled, clinically stable individuals with bipolar I disorder and those with schizophrenia demonstrated poor neurocognitive function on all tests except for the WAIS-III Similarity and Information and the Line Cancellation Test. The individuals with bipolar I disorder had similar levels of neurocognitive function compared with the schizophrenia group, but higher levels of neurocognitive function on the WAIS-III Comprehension, Controlled Oral Word Association Test, and Wechsler Memory Scale-Third Edition Auditory Immediate and Delayed Index and Visual Immediate and Delayed Index. The conclusions of this study suggest that compared with controls, individuals with long-term bipolar I disorder and those with long-term schizophrenia have poorer neurocognitive function, even when clinically stable. Individuals with long-term bipolar I disorder and those with long-term schizophrenia have similar levels of deficits in several domains of neurocognitive function. Copyright © 2017. Published by Elsevier Taiwan.

  11. Increased working memory related fMRI signal in children following Tick Borne Encephalitis.

    PubMed

    Henrik, Ullman; Åsa, Fowler; Ronny, Wickström

    2016-01-01

    Tick Borne Encephalitis (TBE) is a viral infection in the central nervous system endemic in Europe and Asia. While pediatric infection may carry a lower risk for serious neurological sequelae compared to adults, a large proportion of children experience long term cognitive problems, most markedly decreased working memory capacity. We explored whether task related functional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) could reveal a biological correlate of status-post TBE in children. We examined 11 serologically verified pediatric TBE patients with central nervous system involvement with 55 healthy controls with working memory tests and MRI. The TBE patients showed a prominent deficit in working memory capacity and an increased task related functional MRI signal in working memory related cortical areas during a spatial working memory task performed without sedation. No diffusion differences could be found with DTI, in line with the reported paucity of anatomical abnormalities. This study is the first to demonstrate functional MRI abnormalities in TBE patients that bears similarity to other patient groups with diffuse neuronal damage. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  12. Acute effects of ayahuasca on neuropsychological performance: differences in executive function between experienced and occasional users.

    PubMed

    Bouso, José Carlos; Fábregas, Josep Maria; Antonijoan, Rosa Maria; Rodríguez-Fornells, Antoni; Riba, Jordi

    2013-12-01

    Ayahuasca, a South American psychotropic plant tea containing the psychedelic 5-HT2A receptor agonist N,N-dimethyltryptamine, has been shown to increase regional cerebral blood flow in prefrontal brain regions after acute administration to humans. Despite interactions at this level, neuropsychological studies have not found cognitive deficits in abstinent long-term users. Here, we wished to investigate the effects of acute ayahuasca intake on neuropsychological performance, specifically on working memory and executive function. Twenty-four ayahuasca users (11 long-term experienced users and 13 occasional users) were assessed in their habitual setting using the Stroop, Sternberg, and Tower of London tasks prior to and following ayahuasca intake. Errors in the Sternberg task increased, whereas reaction times in the Stroop task decreased and accuracy was maintained for the whole sample following ayahuasca intake. Interestingly, results in the Tower of London showed significantly increased execution and resolution times and number of movements for the occasional but not the experienced users. Additionally, a correlation analysis including all subjects showed that impaired performance in the Tower of London was inversely correlated with lifetime ayahuasca use. Acute ayahuasca administration impaired working memory but decreased stimulus-response interference. Interestingly, detrimental effects on higher cognition were only observed in the less experienced group. Rather than leading to increased impairment, greater prior exposure to ayahuasca was associated with reduced incapacitation. Compensatory or neuromodulatory effects associated with long-term ayahuasca intake could underlie preserved executive function in experienced users.

  13. Temporal Prediction Errors Affect Short-Term Memory Scanning Response Time.

    PubMed

    Limongi, Roberto; Silva, Angélica M

    2016-11-01

    The Sternberg short-term memory scanning task has been used to unveil cognitive operations involved in time perception. Participants produce time intervals during the task, and the researcher explores how task performance affects interval production - where time estimation error is the dependent variable of interest. The perspective of predictive behavior regards time estimation error as a temporal prediction error (PE), an independent variable that controls cognition, behavior, and learning. Based on this perspective, we investigated whether temporal PEs affect short-term memory scanning. Participants performed temporal predictions while they maintained information in memory. Model inference revealed that PEs affected memory scanning response time independently of the memory-set size effect. We discuss the results within the context of formal and mechanistic models of short-term memory scanning and predictive coding, a Bayes-based theory of brain function. We state the hypothesis that our finding could be associated with weak frontostriatal connections and weak striatal activity.

  14. Alterations in task-induced activity and resting-state fluctuations in visual and DMN areas revealed in long-term meditators.

    PubMed

    Berkovich-Ohana, Aviva; Harel, Michal; Hahamy, Avital; Arieli, Amos; Malach, Rafael

    2016-07-15

    Recently we proposed that the information contained in spontaneously emerging (resting-state) fluctuations may reflect individually unique neuro-cognitive traits. One prediction of this conjecture, termed the "spontaneous trait reactivation" (STR) hypothesis, is that resting-state activity patterns could be diagnostic of unique personalities, talents and life-styles of individuals. Long-term meditators could provide a unique experimental group to test this hypothesis. Using fMRI we found that, during resting-state, the amplitude of spontaneous fluctuations in long-term mindfulness meditation (MM) practitioners was enhanced in the visual cortex and significantly reduced in the DMN compared to naïve controls. Importantly, during a visual recognition memory task, the MM group showed heightened visual cortex responsivity, concomitant with weaker negative responses in Default Mode Network (DMN) areas. This effect was also reflected in the behavioral performance, where MM practitioners performed significantly faster than the control group. Thus, our results uncover opposite changes in the visual and default mode systems in long-term meditators which are revealed during both rest and task. The results support the STR hypothesis and extend it to the domain of local changes in the magnitude of the spontaneous fluctuations. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Dynamic switching between semantic and episodic memory systems.

    PubMed

    Kompus, Kristiina; Olsson, Carl-Johan; Larsson, Anne; Nyberg, Lars

    2009-09-01

    It has been suggested that episodic and semantic long-term memory systems interact during retrieval. Here we examined the flexibility of memory retrieval in an associative task taxing memories of different strength, assumed to differentially engage episodic and semantic memory. Healthy volunteers were pre-trained on a set of 36 face-name pairs over a 6-week period. Another set of 36 items was shown only once during the same time period. About 3 months after the training period all items were presented in a randomly intermixed order in an event-related fMRI study of face-name memory. Once presented items differentially activated anterior cingulate cortex and a right prefrontal region that previously have been associated with episodic retrieval mode. High-familiar items were associated with stronger activation of posterior cortices and a left frontal region. These findings fit a model of memory retrieval by which early processes determine, on a trial-by-trial basis, if the task can be solved by the default semantic system. If not, there is a dynamic shift to cognitive control processes that guide retrieval from episodic memory.

  16. Long-term and within-day variability of working memory performance and EEG in individuals.

    PubMed

    Gevins, Alan; McEvoy, Linda K; Smith, Michael E; Chan, Cynthia S; Sam-Vargas, Lita; Baum, Cliff; Ilan, Aaron B

    2012-07-01

    Assess individual-subject long-term and within-day variability of a combined behavioral and EEG test of working memory. EEGs were recorded from 16 adults performing n-back working memory tasks, with 10 tested in morning and afternoon sessions over several years. Participants were also tested after ingesting non-prescription medications or recreational substances. Performance and EEG measures were analyzed to derive an Overall score and three constituent sub-scores characterizing changes in performance, cortical activation, and alertness from each individual's baseline. Long-term and within-day variability were determined for each score; medication effects were assessed by reference to each individual's normal day-to-day variability. Over the several year period, the mean Overall score and sub-scores were approximately zero with standard deviations less than one. Overall scores were lower and their variability higher in afternoon relative to morning sessions. At the group level, alcohol, diphenhydramine and marijuana produced significant effects, but there were large individual differences. Objective working memory measures incorporating performance and EEG are stable over time and sensitive at the level of individual subjects to interventions that affect neurocognitive function. With further research these measures may be suitable for use in individualized medical care by providing a sensitive assessment of incipient illness and response to treatment. Published by Elsevier Ireland Ltd.

  17. Saccade Generation by the Frontal Eye Fields in Rhesus Monkeys Is Separable from Visual Detection and Bottom-Up Attention Shift

    PubMed Central

    Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L.

    2012-01-01

    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area’s role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area’s functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory. PMID:22761923

  18. Saccade generation by the frontal eye fields in rhesus monkeys is separable from visual detection and bottom-up attention shift.

    PubMed

    Lee, Kyoung-Min; Ahn, Kyung-Ha; Keller, Edward L

    2012-01-01

    The frontal eye fields (FEF), originally identified as an oculomotor cortex, have also been implicated in perceptual functions, such as constructing a visual saliency map and shifting visual attention. Further dissecting the area's role in the transformation from visual input to oculomotor command has been difficult because of spatial confounding between stimuli and responses and consequently between intermediate cognitive processes, such as attention shift and saccade preparation. Here we developed two tasks in which the visual stimulus and the saccade response were dissociated in space (the extended memory-guided saccade task), and bottom-up attention shift and saccade target selection were independent (the four-alternative delayed saccade task). Reversible inactivation of the FEF in rhesus monkeys disrupted, as expected, contralateral memory-guided saccades, but visual detection was demonstrated to be intact at the same field. Moreover, saccade behavior was impaired when a bottom-up shift of attention was not a prerequisite for saccade target selection, indicating that the inactivation effect was independent of the previously reported dysfunctions in bottom-up attention control. These findings underscore the motor aspect of the area's functions, especially in situations where saccades are generated by internal cognitive processes, including visual short-term memory and long-term associative memory.

  19. Skill-memory consolidation in the striatum

    PubMed Central

    Willuhn, Ingo; Steiner, Heinz

    2008-01-01

    The sensorimotor striatum is important for procedural learning, including skill learning. Our previous findings indicate that this part of the striatum mediates the acquisition of a motor skill in a running-wheel task and that this skill learning is dependent on striatal D1 dopamine receptors. Here, we investigated whether the sensorimotor striatum is also involved in the consolidation of this skill memory and whether this consolidation is modified by the indirect dopamine receptor agonist cocaine. Rats were trained on a running wheel for two days (40 min/day) to learn a new motor skill, that is, the ability to control the movement of the wheel. Before each training session, the animals received an injection of vehicle or cocaine (25 mg/kg; i.p.). Immediately following the training session, an intrastriatal infusion of 2% lidocaine (1 μl) or a sham infusion were administered. Wheel-skill performance was tested before and repeatedly after the training. Our results show that post-trial intrastriatal infusion of lidocaine disrupted late-stage long-term skill memory (post-training days 6-26), but spared early long-term memory (1 day after the training). Skill consolidation was more susceptible to such disruption in animals that practiced less during the training. Cocaine given pre-trial prevented this post-trial disruption of skill consolidation. These findings indicate that the sensorimotor striatum is critical for consolidation of late but not early long-term skill memory. Furthermore, cocaine appeared to stabilize motor memory formation by protecting consolidation processes after the training. PMID:18687364

  20. Long-Term Memory Performance in Adult ADHD.

    PubMed

    Skodzik, Timo; Holling, Heinz; Pedersen, Anya

    2017-02-01

    Memory problems are a frequently reported symptom in adult ADHD, and it is well-documented that adults with ADHD perform poorly on long-term memory tests. However, the cause of this effect is still controversial. The present meta-analysis examined underlying mechanisms that may lead to long-term memory impairments in adult ADHD. We performed separate meta-analyses of measures of memory acquisition and long-term memory using both verbal and visual memory tests. In addition, the influence of potential moderator variables was examined. Adults with ADHD performed significantly worse than controls on verbal but not on visual long-term memory and memory acquisition subtests. The long-term memory deficit was strongly statistically related to the memory acquisition deficit. In contrast, no retrieval problems were observable. Our results suggest that memory deficits in adult ADHD reflect a learning deficit induced at the stage of encoding. Implications for clinical and research settings are presented.

  1. Working memory and executive functions in transient global amnesia.

    PubMed

    Quinette, Peggy; Guillery, Bérengère; Desgranges, Béatrice; de la Sayette, Vincent; Viader, Fausto; Eustache, Francis

    2003-09-01

    Transient global amnesia (TGA) is usually considered to produce a profound impairment of long-term episodic memory, while at the same time sparing working memory. However, this neuropsychological dissociation has rarely been examined in detail. While a few studies have assessed some components of working memory in TGA, the results that have been obtained are far from conclusive. To clarify this issue, we carried out a comprehensive investigation of working memory in 10 patients during a TGA attack. In the first study, we report the results from three patients examined with a battery of neuropsychological tests designed to assess each of the three subcomponents of Baddeley's model of working memory. In a second study, seven different patients underwent neuropsychological investigations that focused specifically on the central executive system, using a protocol derived from a study by Miyake and colleagues. Our findings showed that subcomponents of working memory, such as the phonological loop and visuo-spatial sketch pad, were spared in TGA patients. Specific executive functions that entailed inhibitory control, dual task performance, updating and shifting mechanisms were also found to be normal. However, we found significantly impaired performance for the Brown-Peterson test, and that TGA patients were significantly impaired in the recollection of their episodic memories. They also made reduced numbers of 'remember' compared with 'know' judgments in the episodic memory test several days after TGA. On the basis of our findings, it would appear that the episodic memory deficit during TGA is not related to elementary aspects of executive functioning. Our data also highlight the nature of the cognitive mechanisms involved in the Brown-Peterson task, which may well depend on long-term memory (such as the process of semantic encoding). Lastly, the selective deficit in recollective episodic memories observed in TGA may be principally related to medial temporal lobe abnormalities that have been reported in this syndrome.

  2. Task set induces dynamic reallocation of resources in visual short-term memory.

    PubMed

    Sheremata, Summer L; Shomstein, Sarah

    2017-08-01

    Successful interaction with the environment requires the ability to flexibly allocate resources to different locations in the visual field. Recent evidence suggests that visual short-term memory (VSTM) resources are distributed asymmetrically across the visual field based upon task demands. Here, we propose that context, rather than the stimulus itself, determines asymmetrical distribution of VSTM resources. To test whether context modulates the reallocation of resources to the right visual field, task set, defined by memory-load, was manipulated to influence visual short-term memory performance. Performance was measured for single-feature objects embedded within predominantly single- or two-feature memory blocks. Therefore, context was varied to determine whether task set directly predicts changes in visual field biases. In accord with the dynamic reallocation of resources hypothesis, task set, rather than aspects of the physical stimulus, drove improvements in performance in the right- visual field. Our results show, for the first time, that preparation for upcoming memory demands directly determines how resources are allocated across the visual field.

  3. Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by difficulty

    PubMed Central

    Chua, Elizabeth F.; Ahmed, Rifat; Garcia, Sandry

    2016-01-01

    Background The ability to monitor one’s own memory is an important feature of normal memory and is an aspect of ‘metamemory’. Lesion studies have shown dissociations between memory and metamemory, but only single dissociations have been shown using transcranial direct current stimulation (tDCS). One potential reason that only single dissociations have been shown is that tDCS effects may be moderated by task difficulty. Objective/Hypothesis We used high definition (HD) tDCS to test for dissociable roles of the dorsolateral prefrontal cortex (DLPFC) and anterior temporal lobe (ATL) in semantic long-term memory and metamemory tasks. We also tested whether general knowledge question difficulty moderated the effects of HD-tDCS. Methods Across 3 sessions, participants received active HD-tDCS over the left DLPFC or left ATL, or sham HD-tDCS during general knowledge recall and recognition tests, and a ‘feeling-of-knowing’ metamemory task. General knowledge questions were blocked by difficulty. Repeated measures ANOVAs were used to examine the effects of HD-tDCS on memory and metamemory tasks by memory question difficulty. Results HD-tDCS over the ATL led to improved recall compared to DLPFC and sham HD-tDCS, and this occurred only for medium difficulty questions. In contrast, for non-recalled questions, HD-tDCS over the DLPFC led to improved recognition accuracy and improved feeling-of-knowing accuracy compared to ATL and sham HD-tDCS, and this was not moderated by memory question difficulty. Conclusion(s) HD-tDCS can be used to dissociate the roles of the ATL and DLPFC in different memory and ‘metamemory’ tasks. The effects of HD-tDCS on task may be moderated by task difficulty, depending on the nature of the task and site of stimulation. PMID:27876306

  4. Effects of HD-tDCS on memory and metamemory for general knowledge questions that vary by difficulty.

    PubMed

    Chua, Elizabeth F; Ahmed, Rifat; Garcia, Sandry M

    The ability to monitor one's own memory is an important feature of normal memory and is an aspect of 'metamemory'. Lesion studies have shown dissociations between memory and metamemory, but only single dissociations have been shown using transcranial direct current stimulation (tDCS). One potential reason that only single dissociations have been shown is that tDCS effects may be moderated by task difficulty. We used high definition (HD) tDCS to test for dissociable roles of the dorsolateral prefrontal cortex (DLPFC) and anterior temporal lobe (ATL) in semantic long-term memory and metamemory tasks. We also tested whether general knowledge question difficulty moderated the effects of HD-tDCS. Across 3 sessions, participants received active HD-tDCS over the left DLPFC or left ATL, or sham HD-tDCS during general knowledge recall and recognition tests, and a 'feeling-of-knowing' metamemory task. General knowledge questions were blocked by difficulty. Repeated measures ANOVAs were used to examine the effects of HD-tDCS on memory and metamemory tasks by memory question difficulty. HD-tDCS over the ATL led to improved recall compared to DLPFC and sham HD-tDCS, and this occurred only for medium difficulty questions. In contrast, for non-recalled questions, HD-tDCS over the DLPFC led to improved recognition accuracy and improved feeling-of-knowing accuracy compared to ATL and sham HD-tDCS, and this was not moderated by memory question difficulty. HD-tDCS can be used to dissociate the roles of the ATL and DLPFC in different memory and 'metamemory' tasks. The effects of HD-tDCS on task may be moderated by task difficulty, depending on the nature of the task and site of stimulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. [Working memory and work with memory: visual-spatial and further components of processing].

    PubMed

    Velichkovsky, B M; Challis, B H; Pomplun, M

    1995-01-01

    Empirical and theoretical evidence for the concept of working memory is considered. We argue that the major weakness of this concept is its loose connection with the knowledge about background perceptive and cognitive processes. Results of two relevant experiments are provided. The first study demonstrated the classical chunking effect in a speeded visual search and comparison task, the proper domain of a large-capacity very short term sensory store. Our second study was a kind of extended levels-of-processing experiment. We attempted to manipulate visual, phonological, and (different) executive components of long-term memory in the hope of finding some systematic relationships between these forms of processing. Indeed, the results demonstrated a high degree of systematicity without any apparent need for a concept such as working memory for the explanation. Accordingly, the place for working memory is at all the interfaces where our metacognitive strategies interfere with mostly domain-specific cognitive mechanisms. Working memory is simply our work with memory.

  6. Memory timeline: Brain ERP C250 (not P300) is an early biomarker of short-term storage.

    PubMed

    Chapman, Robert M; Gardner, Margaret N; Mapstone, Mark; Dupree, Haley M; Antonsdottir, Inga M

    2015-04-16

    Brain event-related potentials (ERPs) offer a quantitative link between neurophysiological activity and cognitive performance. ERPs were measured while young adults performed a task that required storing a relevant stimulus in short-term memory. Using principal components analysis, ERP component C250 (maximum at 250 ms post-stimulus) was extracted from a set of ERPs that were separately averaged for various task conditions, including stimulus relevancy and stimulus sequence within a trial. C250 was more positive in response to task-specific stimuli that were successfully stored in short-term memory. This relationship between C250 and short-term memory storage of a stimulus was confirmed by a memory probe recall test where the behavioral recall of a stimulus was highly correlated with its C250 amplitude. ERP component P300 (and its subcomponents of P3a and P3b, which are commonly thought to represent memory operations) did not show a pattern of activation reflective of storing task-relevant stimuli. C250 precedes the P300, indicating that initial short-term memory storage may occur earlier than previously believed. Additionally, because C250 is so strongly predictive of a stimulus being stored in short-term memory, C250 may provide a strong index of early memory operations. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effects of Isometric Hand-Grip Muscle Contraction on Young Adults' Free Recall and Recognition Memory.

    PubMed

    Tomporowski, Phillip D; Albrecht, Chelesa; Pendleton, Daniel M

    2017-03-01

    The purpose of this study was to determine if physical arousal produced by isometric hand-dynamometer contraction performed during word-list learning affects young adults' free recall or recognition memory. Twenty-four young adults (12 female; M age  = 22 years) were presented with 4 20-item word lists. Moderate arousal was induced in 12 adults by an initial 30-s maximal hand-dynamometer squeeze with force productions of 50% maximum; low arousal was induced in 12 adults by an initial 1-s maximal dynamometer squeeze with force production of 10% maximum during learning. Memory performances following dual-task conditions experienced during the encoding, consolidation, and recall phases of learning were compared to a single-task control condition during which words were learned in the absence of isometric exercise. Planned contrasts revealed that arousal coinciding with word encoding led to significantly poorer immediate recall, F(1, 23) = 10.13, p < .05, [Formula: see text] = .31, delayed free recall, F(1, 23) = 15.81, p < .05, [Formula: see text] = .41, and recognition memory, F(1, 23) = 6.07, p < .05, [Formula: see text] = .21, compared with when there was no arousal. Neither arousal condition facilitated participants' memory performance. The reduction in long-term memory performance specific to the encoding phase of learning is explained in terms of the dual-task attentional demands placed on participants.

  8. Role of 5-HT1-7 receptors in short- and long-term memory for an autoshaping task: intrahippocampal manipulations.

    PubMed

    Liy-Salmeron, Gustavo; Meneses, Alfredo

    2007-05-25

    It was previously reported that brain areas containing serotonin (5-hydroxytryptamine, 5-HT) receptors mediate memory consolidation as well as short (STM)- and long-term memory (LTM). Here the effects of systemic and intrahippocampal administration of 5-HT agonists and antagonists on an autoshaping learning task were explored, which requires hippocampal translation and transduction as well as 5-HT receptors expression. As previously reported ketamine (glutamatergic antagonist) and two well-known amnesic drugs, scopolamine (cholinergic antagonist) and dizocilpine (NMDA antagonist) impaired STM but not LTM; dizocilpine even improved the latter. Since ketamine produces hallucinations and impairs memory in humans, we address the question if well-known antipsychotic haloperidol and clozapine might affect STM deficit. Indeed, systemic administration of clozapine

  9. Short term memory and working memory in blind versus sighted children.

    PubMed

    Withagen, Ans; Kappers, Astrid M L; Vervloed, Mathijs P J; Knoors, Harry; Verhoeven, Ludo

    2013-07-01

    There is evidence that blind people may strengthen their memory skills to compensate for absence of vision. However, which aspects of memory are involved is open to debate and a developmental perspective is generally lacking. In the present study, we compared the short term memory (STM) and working memory (WM) of 10-year-old blind children and sighted children. STM was measured using digit span forward, name learning, and word span tasks; WM was measured using listening span and digit span backward tasks. The blind children outperformed their sighted peers on both STM and WM tasks. The enhanced capacity of the blind children on digit span and other STM tasks confirms the results of earlier research; the significantly better performance of the blind children relative to their sighted peers on verbal WM tasks is a new interesting finding. Task characteristics, including the verbal nature of the WM tasks and strategies used to perform these tasks, are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Fluoxetine Inhibits Natural Decay of Long-Term Memory via Akt/GSK-3β Signaling.

    PubMed

    Yi, Jee Hyun; Zhang, JiaBao; Ko, Sang Yoon; Kwon, Huiyoung; Jeon, Se Jin; Park, Se Jin; Jung, Jiwook; Kim, Byung C; Lee, Young Choon; Kim, Dong Hyun; Ryu, Jong Hoon

    2018-02-09

    Understanding the mechanisms underlying the natural decay of long-term memory can help us find means of extending the duration of long-term memory. However, the neurobiological processes involved in the decay of long-term memory are poorly understood. In the present study, we examined the effect of acute and chronic treatment of fluoxetine on natural decay of long-term memory and the possible mechanism. Late administration of fluoxetine prolonged the persistence of long-term memory in mice, as demonstrated by object location recognition and Barnes maze tests. Fluoxetine altered Akt/glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling in the hippocampus. Late short- and long-term pharmacological inhibition of GSK-3β mimicked the effect of fluoxetine on memory persistence. Pharmacological inhibition of Akt blocked the effect of fluoxetine on memory persistence. Finally, late infusion of fluoxetine increased hippocampal long-term potentiation (LTP) and pharmacological inhibition of GSK-3β blocked the natural decline in LTP. These results demonstrate that GSK-3β might be a key molecule in memory decay process, and fluoxetine extends the period of long-term memory maintenance via Akt/GSK-3β signaling.

  11. Serial position effects in semantic memory: reconstructing the order of verses of hymns.

    PubMed

    Maylor, Elizabeth A

    2002-12-01

    Serial position effects (primacy and recency) have been consistently demonstrated in both short- and long-term episodic memory tasks. The search for corresponding effects in semantic memory tasks (e.g., reconstructing the order of U.S. presidents) has been confounded by factors such as differential exposure to stimuli. In the present study, the stimuli were six-verse hymns that would have been sung from the first to the last verse by churchgoers on numerous occasions. Participants were presented with the verses of each hymn in random order and were required to reconstruct the correct order. Primacy and recency effects were significantly more evident for churchgoers than for nonchurchgoers. Moreover, error gradients were steeper than chance for churchgoers but not for nonchurchgoers; in other words, churchgoers' errors were more likely to be close to the correct position than further away. These findings provide the first unequivocal demonstration of serial position effects in semantic memory.

  12. Unsupervised learning in neural networks with short range synapses

    NASA Astrophysics Data System (ADS)

    Brunnet, L. G.; Agnes, E. J.; Mizusaki, B. E. P.; Erichsen, R., Jr.

    2013-01-01

    Different areas of the brain are involved in specific aspects of the information being processed both in learning and in memory formation. For example, the hippocampus is important in the consolidation of information from short-term memory to long-term memory, while emotional memory seems to be dealt by the amygdala. On the microscopic scale the underlying structures in these areas differ in the kind of neurons involved, in their connectivity, or in their clustering degree but, at this level, learning and memory are attributed to neuronal synapses mediated by longterm potentiation and long-term depression. In this work we explore the properties of a short range synaptic connection network, a nearest neighbor lattice composed mostly by excitatory neurons and a fraction of inhibitory ones. The mechanism of synaptic modification responsible for the emergence of memory is Spike-Timing-Dependent Plasticity (STDP), a Hebbian-like rule, where potentiation/depression is acquired when causal/non-causal spikes happen in a synapse involving two neurons. The system is intended to store and recognize memories associated to spatial external inputs presented as simple geometrical forms. The synaptic modifications are continuously applied to excitatory connections, including a homeostasis rule and STDP. In this work we explore the different scenarios under which a network with short range connections can accomplish the task of storing and recognizing simple connected patterns.

  13. A randomized trial on mineralocorticoid receptor blockade in men: effects on stress responses, selective attention, and memory.

    PubMed

    Cornelisse, Sandra; Joëls, Marian; Smeets, Tom

    2011-12-01

    Corticosteroids, released in high amounts after stress, exert their effects via two different receptors in the brain: glucocorticoid receptors (GRs) and mineralocorticoid receptors (MRs). GRs have a role in normalizing stress-induced effects and promoting consolidation, while MRs are thought to be important in determining the threshold for activation of the hypothalamic-pituitary-adrenal (HPA) axis. We investigated the effects of MR blockade on HPA axis responses to stress and stress-induced changes in cognitive function. In a double-blind, placebo-controlled study, 64 healthy young men received 400 mg of the MR antagonist spironolactone or placebo. After 1.5 h, they were exposed to either a Trier Social Stress Test or a non-stressful control task. Responses to stress were evaluated by hormonal, subjective, and physiological measurements. Afterwards, selective attention, working memory, and long-term memory performance were assessed. Spironolactone increased basal salivary cortisol levels as well as cortisol levels in response to stress. Furthermore, spironolactone significantly impaired selective attention, but only in the control group. The stress group receiving spironolactone showed impaired working memory performance. By contrast, long-term memory was enhanced in this group. These data support a role of MRs in the regulation of the HPA axis under basal conditions as well as in response to stress. The increased availability of cortisol after spironolactone treatment implies enhanced GR activation, which, in combination with MR blockade, presumably resulted in a decreased MR/GR activation ratio. This condition influences both selective attention and performance in various memory tasks.

  14. Visual memory in unilateral spatial neglect: immediate recall versus delayed recognition.

    PubMed

    Moreh, Elior; Malkinson, Tal Seidel; Zohary, Ehud; Soroker, Nachum

    2014-09-01

    Patients with unilateral spatial neglect (USN) often show impaired performance in spatial working memory tasks, apart from the difficulty retrieving "left-sided" spatial data from long-term memory, shown in the "piazza effect" by Bisiach and colleagues. This study's aim was to compare the effect of the spatial position of a visual object on immediate and delayed memory performance in USN patients. Specifically, immediate verbal recall performance, tested using a simultaneous presentation of four visual objects in four quadrants, was compared with memory in a later-provided recognition task, in which objects were individually shown at the screen center. Unlike healthy controls, USN patients showed a left-side disadvantage and a vertical bias in the immediate free recall task (69% vs. 42% recall for right- and left-sided objects, respectively). In the recognition task, the patients correctly recognized half of "old" items, and their correct rejection rate was 95.5%. Importantly, when the analysis focused on previously recalled items (in the immediate task), no statistically significant difference was found in the delayed recognition of objects according to their original quadrant of presentation. Furthermore, USN patients were able to recollect the correct original location of the recognized objects in 60% of the cases, well beyond chance level. This suggests that the memory trace formed in these cases was not only semantic but also contained a visuospatial tag. Finally, successful recognition of objects missed in recall trials points to formation of memory traces for neglected contralesional objects, which may become accessible to retrieval processes in explicit memory.

  15. Near-infrared spectroscopic study on the effects of chewing on short-term memory.

    PubMed

    Wada, Mayumi; Hoshi, Yoko; Iguchi, Yoshinobu; Kida, Ikuhiro

    2011-12-01

    Using near-infrared spectroscopy, we examined whether chewing gum improves performance in a short-term memory task - immediate recall of random eight-digit numbers - by assessing cerebral hemodynamic response in the prefrontal cortex. We found that the oxyhemoglobin concentration during and after chewing gum was higher than that before chewing; further, the concentration increased during the task, and this increase was reduced with chewing, although non-significantly. Chewing did not improve task performance. Therefore, chewing-induced hemodynamic responses were unrelated to the performance in short-term memory tasks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Chunk formation in immediate memory and how it relates to data compression.

    PubMed

    Chekaf, Mustapha; Cowan, Nelson; Mathy, Fabien

    2016-10-01

    This paper attempts to evaluate the capacity of immediate memory to cope with new situations in relation to the compressibility of information likely to allow the formation of chunks. We constructed a task in which untrained participants had to immediately recall sequences of stimuli with possible associations between them. Compressibility of information was used to measure the chunkability of each sequence on a single trial. Compressibility refers to the recoding of information in a more compact representation. Although compressibility has almost exclusively been used to study long-term memory, our theory suggests that a compression process relying on redundancies within the structure of the list materials can occur very rapidly in immediate memory. The results indicated a span of about three items when the list had no structure, but increased linearly as structure was added. The amount of information retained in immediate memory was maximal for the most compressible sequences, particularly when information was ordered in a way that facilitated the compression process. We discuss the role of immediate memory in the rapid formation of chunks made up of new associations that did not already exist in long-term memory, and we conclude that immediate memory is the starting place for the reorganization of information. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Contribution of underlying processes to improved visuospatial working memory associated with physical activity.

    PubMed

    Ji, Qingchun; Wang, Yingying; Guo, Wei; Zhou, Chenglin

    2017-01-01

    Working memory is critical for various cognitive processes and can be separated into two stages: short-term memory storage and manipulation processing. Although previous studies have demonstrated that increased physical activity (PA) improves working memory and that males outperform females on visuospatial working memory tasks, few studies have determined the contribution of the two underlying stages to the visuospatial working memory improvement associated with PA. Thus, the aims of the present study were to verify the relationship between physical activity and visuospatial working memory, determine whether one or both stages were affected by PA, and investigate any sex differences. A total of 56 undergraduate students were recruited for this study. Their scores on the International Physical Activity Questionnaire (IPAQ) were used to separate them into either a lower PA ( n  = 26; IPAQ score ≤3,000 metabolic equivalent [MET]-min/week) or higher PA ( n  = 30; IPAQ score >3,000 MET-min/week) group. Participants were required to complete three tasks: a visuospatial working memory task, a task that examines the short-term memory storage stage, and a mental rotation task that examines the active manipulation stage. Participants in the higher PA group maintained similar accuracy but displayed significantly faster reaction times (RT) than those in the lower PA group on the visuospatial working memory and manipulation tasks. By contrast, no difference was observed between groups on the short-term memory storage task. In addition, no effects of sex were detected. Our results confirm that PA was positively to visuospatial working memory and that this positive relationship was associated with more rapid cognitive processing during the manipulation stage, with little or no relationship between PA and the memory storage stage of visuospatial working memory.

  18. Haloperidol increases false recognition memory of thematically related pictures in healthy volunteers.

    PubMed

    Guarnieri, Regina V; Buratto, Luciano G; Gomes, Carlos F A; Ribeiro, Rafaela L; de Souza, Altay A Lino; Stein, Lilian M; Galduróz, José C; Bueno, Orlando F A

    2017-01-01

    Dopamine can modulate long-term episodic memory. Its potential role on the generation of false memories, however, is less well known. In a randomized, double-blind, placebo-controlled experiment, 24 young healthy volunteers ingested a 4-mg oral dose of haloperidol, a dopamine D 2 -receptor antagonist, or placebo, before taking part in a recognition memory task. Haloperidol was active during both study and test phases of the experiment. Participants in the haloperidol group produced more false recognition responses than those in the placebo group, despite similar levels of correct recognition. These findings show that dopamine blockade in healthy volunteers can specifically increase false recognition memory. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Short-term memory coding in children with intellectual disabilities.

    PubMed

    Henry, Lucy

    2008-05-01

    To examine visual and verbal coding strategies, I asked children with intellectual disabilities and peers matched for MA and CA to perform picture memory span tasks with phonologically similar, visually similar, long, or nonsimilar named items. The CA group showed effects consistent with advanced verbal memory coding (phonological similarity and word length effects). Neither the intellectual disabilities nor MA groups showed evidence for memory coding strategies. However, children in these groups with MAs above 6 years showed significant visual similarity and word length effects, broadly consistent with an intermediate stage of dual visual and verbal coding. These results suggest that developmental progressions in memory coding strategies are independent of intellectual disabilities status and consistent with MA.

  20. The role of rehearsal in a novel call center-type task.

    PubMed

    Perham, Nick; Banbury, Simon

    2012-01-01

    Laboratory research has long demonstrated the disruptive effects of background sound to task performance yet the real-world implications of such effects are less well known. We report two experiments that demonstrate the importance of the role of rehearsal to a novel call center-type task. In Experiment 1, performance of a novel train timetable task-in which participants identified four train journeys following presentation of train journey information-was disrupted by realistic office noise. However, in Experiment 2, when the need for rehearsal was reduced by presenting the information and the timetable at the same time, no disruption occurred . Results are discussed in terms of interference-by-process and interference-by-content approaches to short-term memory.

Top