Sample records for long-term monitoring system

  1. Nonnative Fishes in the Upper Mississippi River System

    USGS Publications Warehouse

    Irons, Kevin S.; DeLain, Steven A.; Gittinger, Eric; Ickes, Brian S.; Kolar, Cindy S.; Ostendort, David; Ratcliff, Eric N.; Benson, Amy J.; Irons, Kevin S.

    2009-01-01

    The introduction, spread, and establishment of nonnative species is widely regarded as a leading threat to aquatic biodiversity and consequently is ranked among the most serious environmental problems facing the United States today. This report presents information on nonnative fish species observed by the Long Term Resource Monitoring Program on the Upper Mississippi River System a nexus of North American freshwater fish diversity for the Nation. The Long Term Resource Monitoring Program, as part of the U.S. Army Corps of Engineers' Environmental Management Plan, is the Nation's largest river monitoring program and stands as the primary source of standardized ecological information on the Upper Mississippi River System. The Long Term Resource Monitoring Program has been monitoring fish communities in six study areas on the Upper Mississippi River System since 1989. During this period, more than 3.5 million individual fish, consisting of 139 species, have been collected. Although fish monitoring activities of the Long Term Resource Monitoring Program focus principally on entire fish communities, data collected by the Program are useful for detecting and monitoring the establishment and spread of nonnative fish species within the Upper Mississippi River System Basin. Sixteen taxa of nonnative fishes, or hybrids thereof, have been observed by the Long Term Resource Monitoring Program since 1989, and several species are presently expanding their distribution and increasing in abundance. For example, in one of the six study areas monitored by the Long Term Resource Monitoring Program, the number of established nonnative species has increased from two to eight species in less than 10 years. Furthermore, contributions of those eight species can account for up to 60 percent of the total annual catch and greater than 80 percent of the observed biomass. These observations are critical because the Upper Mississippi River System stands as a nationally significant pathway for nonnative species expansion between the Mississippi River and the Great Lakes Basin. This report presents a synthesis of data on nonnative fish species observed during Long Term Resource Monitoring Program monitoring activities.

  2. Connecticut permanent long-term bridge monitoring network, volume 7 : lessons learned for specifications to guide design of structural health monitoring systems.

    DOT National Transportation Integrated Search

    2014-08-01

    This report proposes a set of specifications for bridge structural health monitoring that has resulted from the : experiences gained during the installation and monitoring of six permanent long-term bridge monitoring systems in : Connecticut. As expe...

  3. Long-Term Structural Performance Monitoring of Bridges : Hardware Maintenance and, Long-term Data Collection/Analysis

    DOT National Transportation Integrated Search

    2011-06-01

    In this project a description of the maintenance of the sensor monitoring systems installed on three California : highway bridges is presented. The monitoring systems consist of accelerometers, strain gauges, pressure sensors, : and displacement sens...

  4. Long-term structural performance monitoring of bridges : hardware maintenance and, long-term data collection/analysis.

    DOT National Transportation Integrated Search

    2011-06-01

    In this project a description of the maintenance of the sensor monitoring systems installed on three California : highway bridges is presented. The monitoring systems consist of accelerometers, strain gauges, pressure sensors, : and displacement sens...

  5. Subsurface Remediation: Improving Long-Term Monitoring and Remedial Systems Performance Conference Proceedings

    EPA Pesticide Factsheets

    This document summarizes the presentations and workshops of a conference on improving long-term monitoring (LTM) and remedial systems performance that was held in St. Louis, Missouri between June 8th to 11th, 1999.

  6. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design

    PubMed Central

    Hall, Travis; Nguyen, Tam Q.; Mayeda, Jill C.; Lie, Paul E.; Lopez, Jerry; Banister, Ron E.

    2017-01-01

    It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients’ long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient’s vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is sleeping without hectic movements nearby. PMID:29140281

  7. Non-Contact Sensor for Long-Term Continuous Vital Signs Monitoring: A Review on Intelligent Phased-Array Doppler Sensor Design.

    PubMed

    Hall, Travis; Lie, Donald Y C; Nguyen, Tam Q; Mayeda, Jill C; Lie, Paul E; Lopez, Jerry; Banister, Ron E

    2017-11-15

    It has been the dream of many scientists and engineers to realize a non-contact remote sensing system that can perform continuous, accurate and long-term monitoring of human vital signs as we have seen in many Sci-Fi movies. Having an intelligible sensor system that can measure and record key vital signs (such as heart rates and respiration rates) remotely and continuously without touching the patients, for example, can be an invaluable tool for physicians who need to make rapid life-and-death decisions. Such a sensor system can also effectively help physicians and patients making better informed decisions when patients' long-term vital signs data is available. Therefore, there has been a lot of research activities on developing a non-contact sensor system that can monitor a patient's vital signs and quickly transmit the information to healthcare professionals. Doppler-based radio-frequency (RF) non-contact vital signs (NCVS) monitoring system are particularly attractive for long term vital signs monitoring because there are no wires, electrodes, wearable devices, nor any contact-based sensors involved so the subjects may not be even aware of the ubiquitous monitoring. In this paper, we will provide a brief review on some latest development on NCVS sensors and compare them against a few novel and intelligent phased-array Doppler-based RF NCVS biosensors we have built in our labs. Some of our NCVS sensor tests were performed within a clutter-free anechoic chamber to mitigate the environmental clutters, while most tests were conducted within the typical Herman-Miller type office cubicle setting to mimic a more practical monitoring environment. Additionally, we will show the measurement data to demonstrate the feasibility of long-term NCVS monitoring. The measured data strongly suggests that our latest phased array NCVS system should be able to perform long-term vital signs monitoring intelligently and robustly, especially for situations where the subject is sleeping without hectic movements nearby.

  8. Long-term Monitoring Program Optimization for Chlorinated Volatile Organic Compound Plume, Naval Air Station Brunswick, Maine

    NASA Astrophysics Data System (ADS)

    Calderone, G. M.

    2006-12-01

    A long-term monitoring program was initiated in 1995 at 6 sites at NAS Brunswick, including 3 National Priorities List (Superfund) sites. Primary contaminants of concern include chlorinated volatile organic compounds, including tetrachloroethane, trichloroethene, and vinyl chloride, in addition to metals. More than 80 submersible pumping systems were installed to facilitate sample collection utilizing the low-flow sampling technique. Long-term monitoring of the groundwater is conducted to assess the effectiveness of remedial measures, and monitor changes in contaminant concentrations in the Eastern Plume Operable Unit. Long-term monitoring program activities include quarterly groundwater sampling and analysis at more than 90 wells across 6 sites; surface water, sediment, seep, and leachate sampling and analysis at 3 sites; landfill gas monitoring; well maintenance; engineering inspections of landfill covers and other sites or evidence of stressed vegetation; water level gauging; and treatment plant sampling and analysis. Significant cost savings were achieved by optimizing the sampling network and reducing sampling frequency from quarterly to semi- annual or annual sampling. As part of an ongoing optimization effort, a geostatistical assessment of the Eastern Plume was conducted at the Naval Air Station, Brunswick, Maine. The geostatistical assessment used 40 monitoring points and analytical data collected over 3 years. For this geostatistical assessment, EA developed and utilized a database of analytical results generated during 3 years of long-term monitoring which was linked to a Geographic Information System to enhance data visualization capacity. The Geographic Information System included themes for groundwater volatile organic compound concentration, groundwater flow directions, shallow and deep wells, and immediate access to point-specific analytical results. This statistical analysis has been used by the site decision-maker and its conclusions supported a significant reduction in the Long-Term Monitoring Program.

  9. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from ground water monitoring ...

  10. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Horikawa, H.; Takaesu, M.; Sueki, K.; Araki, E.; Sonoda, A.; Takahashi, N.; Tsuboi, S.

    2015-12-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP).We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real-time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough.We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site (*1). Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor information. In addition, before data download, user can check that data is available or not by data check function.In this presentation, we briefly introduce NanTroSEIZE and then show our web application system. We also discuss our future plans for developments of monitoring data download system.*1 Long-Term Borehole Monitoring Data Site http://join-web.jamstec.go.jp/borehole/borehole_top_e.html

  11. A bio-inspired memory model for structural health monitoring

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Zhu, Yong

    2009-04-01

    Long-term structural health monitoring (SHM) systems need intelligent management of the monitoring data. By analogy with the way the human brain processes memories, we present a bio-inspired memory model (BIMM) that does not require prior knowledge of the structure parameters. The model contains three time-domain areas: a sensory memory area, a short-term memory area and a long-term memory area. First, the initial parameters of the structural state are specified to establish safety criteria. Then the large amount of monitoring data that falls within the safety limits is filtered while the data outside the safety limits are captured instantly in the sensory memory area. Second, disturbance signals are distinguished from danger signals in the short-term memory area. Finally, the stable data of the structural balance state are preserved in the long-term memory area. A strategy for priority scheduling via fuzzy c-means for the proposed model is then introduced. An experiment on bridge tower deformation demonstrates that the proposed model can be applied for real-time acquisition, limited-space storage and intelligent mining of the monitoring data in a long-term SHM system.

  12. [An ultra-low power, wearable, long-term ECG monitoring system with mass storage].

    PubMed

    Liu, Na; Chen, Yingmin; Zhang, Wenzan; Luo, Zhangyuan; Jin, Xun; Ying, Weihai

    2012-01-01

    In this paper, we described an ultra-low power, wearable ECG system capable of long term monitoring and mass storage. This system is based on micro-chip PIC18F27J13 with consideration of its high level of integration and low power consumption. The communication with the micro-SD card is achieved through SPI bus. Through the USB, it can be connected to the computer for replay and disease diagnosis. Given its low power cost, lithium cells are used to support continuous ECG acquiring and storage for up to 15 days. Meanwhile, the wearable electrodes avoid the pains and possible risks in implanting. Besides, the mini size of the system makes long wearing possible for patients and meets the needs of long-term dynamic monitoring and mass storage requirements.

  13. An ultra-high input impedance ECG amplifier for long-term monitoring of athletes.

    PubMed

    Gargiulo, Gaetano; Bifulco, Paolo; Cesarelli, Mario; Ruffo, Mariano; Romano, Maria; Calvo, Rafael A; Jin, Craig; van Schaik, André

    2010-01-01

    We present a new, low-power electrocardiogram (ECG) recording system with an ultra-high input impedance that enables the use of long-lasting, dry electrodes. The system incorporates a low-power Bluetooth module for wireless connectivity and is designed to be suitable for long-term monitoring during daily activities. The new system using dry electrodes was compared with a clinically approved ECG reference system using gelled Ag/AgCl electrodes and performance was found to be equivalent. In addition, the system was used to monitor an athlete during several physical tasks, and a good quality ECG was obtained in all cases, including when the athlete was totally submerged in fresh water.

  14. Development of Download System for Waveform Data Observed at Long-Term Borehole Monitoring System installed in the Nankai Trough

    NASA Astrophysics Data System (ADS)

    Tsuboi, Seiji; Horikawa, Hiroki; Takaesu, Morifumi; Sueki, Kentaro; Araki, Eiichiro; Sonoda, Akira; Takahashi, Narumi

    2016-04-01

    The Nankai Trough in southwest Japan is one of most active subduction zone in the world. Great mega-thrust earthquakes repeatedly occurred every 100 to 150 years in this area, it's anticipated to occur in the not distant future. For the purpose of elucidation of the history of mega-splay fault activity, the physical properties of the geological strata and the internal structure of the accretionary prism, and monitoring of diastrophism in this area, we have a plan, Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE), as a part of Integrated Ocean Drilling Program (IODP). We have a plan to install the borehole observation system in a few locations by the NanTroSEIZE. This system is called Long-Term Borehole Monitoring System, it consists of various sensors in the borehole such as a broadband seismometer, a tiltmeter, a strainmeter, geophones and accelerometer, thermometer array as well as pressure ports for pore-fluid pressure monitoring. The signal from sensors is transmitted to DONET (Dense Ocean-floor Network System for Earthquake and Tsunamis) in real time. During IODP Exp. 332 in December 2010, the first Long-Term Borehole Monitoring System was installed into the C0002 borehole site located 80 km off the Kii Peninsula, 1938 m water depth in the Nankai Trough. We have developed a web application system for data download, Long-Term Borehole Monitoring Data Site. Based on a term and sensors which user selected on this site, user can download monitoring waveform data (e.g. broadband seismometer data, accelerometer data, strainmeter data, tiltmeter data) in near real-time. This system can make the arbitrary data which user selected a term and sensors, and download it simply. Downloadable continuous data is provided in seed format, which includes sensor informations. In addition, before data download, user can check that data is abailable or not by data check function. In this presentation, we show our web application system and discuss our future plans for developments of monitoring data download system.

  15. Limnological Monitoring on the Upper Mississippi River System, 1993-1996: Long Term Resource Monitoring Program Havana Field Station

    DTIC Science & Technology

    2002-11-01

    synopsis of the collected data and collection methods, as well as a preliminary report of remarkable or unusual conditions in the system. They are intended...resource requires scientific understanding of the ecosystem and of its long-term trends and conditions . To meet this need, Congress authorized a Long...chemical oxygen demand, biochemical oxygen demand, total coliform bacteria , fecal coliform bacteria , fecal streptococcus, heavy metals, pesticides, and

  16. PERMEABLE REACTIVE BARRIER PERFORMANCE MONITORING: LONG-TERM TRENDS IN GEOCHEMICAL PARAMETERS AT TWO SITES

    EPA Science Inventory

    A major goal of research on the long-term performance of subsurface reactive barriers is to identify standard ground-water monitoring parameters that may be useful indicators of declining performance or impending system failure. Results are presented from studies conducted over ...

  17. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  18. Long-Term In-Service Monitoring and Performance Assessment of the Main Cables of Long-Span Suspension Bridges

    PubMed Central

    Deng, Yang; Liu, Yang; Chen, Suren

    2017-01-01

    Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables. PMID:28621743

  19. Long-Term In-Service Monitoring and Performance Assessment of the Main Cables of Long-Span Suspension Bridges.

    PubMed

    Deng, Yang; Liu, Yang; Chen, Suren

    2017-06-16

    Despite the recent developments in structural health monitoring, there remain great challenges for accurately, conveniently, and economically assessing the in-service performance of the main cables for long-span suspension bridges. A long-term structural health monitoring technique is developed to measure the tension force with a conventional sensing technology and further provide the in-service performance assessment strategy of the main cable. The monitoring system adopts conventional vibrating strings transducers to monitor the tension forces of separate cable strands of the main cable in the anchor span. The performance evaluation of the main cable is conducted based on the collected health monitoring data: (1) the measured strand forces are used to derive the overall tension force of a main cable, which is further translated into load bearing capacity assessment using the concept of safety factor; and (2) the proposed technique can also evaluate the uniformity of tension forces from different cable strands. The assessment of uniformity of strand forces of a main cable offers critical information in terms of potential risks of partial damage and performance deterioration of the main cable. The results suggest the proposed low-cost monitoring system is an option to provide approximate estimation of tension forces of main cables for suspension bridges. With the long-term monitoring data, the proposed monitoring-based evaluation methods can further provide critical information to assess the safety and serviceability performance of main cables.

  20. A real-time measurement system for long-life flood monitoring and warning applications.

    PubMed

    Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta

    2012-01-01

    A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km(2) semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events.

  1. A Real-Time Measurement System for Long-Life Flood Monitoring and Warning Applications

    PubMed Central

    Marin-Perez, Rafael; García-Pintado, Javier; Gómez, Antonio Skarmeta

    2012-01-01

    A flood warning system incorporates telemetered rainfall and flow/water level data measured at various locations in the catchment area. Real-time accurate data collection is required for this use, and sensor networks improve the system capabilities. However, existing sensor nodes struggle to satisfy the hydrological requirements in terms of autonomy, sensor hardware compatibility, reliability and long-range communication. We describe the design and development of a real-time measurement system for flood monitoring, and its deployment in a flash-flood prone 650 km2 semiarid watershed in Southern Spain. A developed low-power and long-range communication device, so-called DatalogV1, provides automatic data gathering and reliable transmission. DatalogV1 incorporates self-monitoring for adapting measurement schedules for consumption management and to capture events of interest. Two tests are used to assess the success of the development. The results show an autonomous and robust monitoring system for long-term collection of water level data in many sparse locations during flood events. PMID:22666028

  2. Common Calibration Source for Monitoring Long-term Ozone Trends

    NASA Technical Reports Server (NTRS)

    Kowalewski, Matthew

    2004-01-01

    Accurate long-term satellite measurements are crucial for monitoring the recovery of the ozone layer. The slow pace of the recovery and limited lifetimes of satellite monitoring instruments demands that datasets from multiple observation systems be combined to provide the long-term accuracy needed. A fundamental component of accurately monitoring long-term trends is the calibration of these various instruments. NASA s Radiometric Calibration and Development Facility at the Goddard Space Flight Center has provided resources to minimize calibration biases between multiple instruments through the use of a common calibration source and standardized procedures traceable to national standards. The Facility s 50 cm barium sulfate integrating sphere has been used as a common calibration source for both US and international satellite instruments, including the Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet 2 (SBUV/2) instruments, Shuttle SBUV (SSBUV), Ozone Mapping Instrument (OMI), Global Ozone Monitoring Experiment (GOME) (ESA), Scanning Imaging SpectroMeter for Atmospheric ChartographY (SCIAMACHY) (ESA), and others. We will discuss the advantages of using a common calibration source and its effects on long-term ozone data sets. In addition, sphere calibration results from various instruments will be presented to demonstrate the accuracy of the long-term characterization of the source itself.

  3. Ten-year monitoring of high-rise building columns using long-gauge fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Glisic, B.; Inaudi, D.; Lau, J. M.; Fong, C. C.

    2013-05-01

    A large-scale lifetime building monitoring program was implemented in Singapore in 2001. The monitoring aims of this unique program were to increase safety, verify performance, control quality, increase knowledge, optimize maintenance costs, and evaluate the condition of the structures after a hazardous event. The first instrumented building, which has now been monitored for more than ten years, is presented in this paper. The long-gauge fiber optic strain sensors were embedded in fresh concrete of ground-level columns, thus the monitoring started at the birth of both the construction material and the structure. Measurement sessions were performed during construction, upon completion of each new story and the roof, and after the construction, i.e., in-service. Based on results it was possible to follow and evaluate long-term behavior of the building through every stage of its life. The results of monitoring were analyzed at a local (column) and global (building) level. Over-dimensioning of one column was identified. Differential settlement of foundations was detected, localized, and its magnitude estimated. Post-tremor analysis was performed. Real long-term behavior of concrete columns was assessed. Finally, the long-term performance of the monitoring system was evaluated. The researched monitoring method, monitoring system, rich results gathered over approximately ten years, data analysis algorithms, and the conclusions on the structural behavior and health condition of the building based on monitoring are presented in this paper.

  4. Long-term fish monitoring in large rivers: Utility of “benchmarking” across basins

    USGS Publications Warehouse

    Ward, David L.; Casper, Andrew F.; Counihan, Timothy D.; Bayer, Jennifer M.; Waite, Ian R.; Kosovich, John J.; Chapman, Colin; Irwin, Elise R.; Sauer, Jennifer S.; Ickes, Brian; McKerrow, Alexa

    2017-01-01

    In business, benchmarking is a widely used practice of comparing your own business processes to those of other comparable companies and incorporating identified best practices to improve performance. Biologists and resource managers designing and conducting monitoring programs for fish in large river systems tend to focus on single river basins or segments of large rivers, missing opportunities to learn from those conducting fish monitoring in other rivers. We briefly examine five long-term fish monitoring programs in large rivers in the United States (Colorado, Columbia, Mississippi, Illinois, and Tallapoosa rivers) and identify opportunities for learning across programs by detailing best monitoring practices and why these practices were chosen. Although monitoring objectives, methods, and program maturity differ between each river system, examples from these five case studies illustrate the important role that long-term monitoring programs play in interpreting temporal and spatial shifts in fish populations for both established objectives and newly emerging questions. We suggest that deliberate efforts to develop a broader collaborative network through benchmarking will facilitate sharing of ideas and development of more effective monitoring programs.

  5. A method for the automated long-term monitoring of three-spined stickleback Gasterosteus aculeatus shoal dynamics.

    PubMed

    Kleinhappel, T K; Al-Zoubi, A; Al-Diri, B; Burman, O; Dickinson, P; John, L; Wilkinson, A; Pike, T W

    2014-04-01

    This paper describes and evaluates a flexible, non-invasive tagging system for the automated identification and long-term monitoring of individual three-spined sticklebacks Gasterosteus aculeatus. The system is based on barcoded tags, which can be reliably and robustly detected and decoded to provide information on an individual's identity and location. Because large numbers of fish can be individually tagged, it can be used to monitor individual- and group-level dynamics within fish shoals. © 2014 The Fisheries Society of the British Isles.

  6. Long-Term Monitoring Research Needs: A DOE Perspective

    NASA Astrophysics Data System (ADS)

    Moore, B.; Davis, C. B.

    2002-05-01

    The U.S. Department of Energy's Office of Environmental Management is responsible for dealing with the nation's legacy of Cold War radioactive and hazardous waste and contamination. Major efforts are underway to deal with this legacy; these are expected to last up to decades and cost up to billions of dollars at some sites. At all sites, however, active remediation must eventually cease; if hazards then remain, the site must enter into a long-term stewardship mode. In this talk we discuss aspects of long-term monitoring pertinent to DOE sites, focusing on challenges to be faced, specific goals or targets to be met, and research needs to be addressed in order to enable DOE to meet its long-term stewardship obligations. DOE LTM research needs fall into three major categories: doing what we can do now much more efficiently; doing things we cannot do now; and proving the validity of our monitoring programs. Given the enormity of the DOE obligations, it will be highly desirable to develop much more efficient monitoring paradigms. Doing so will demand developing autonomous, remote monitoring networks of in situ sensors capable of replacing (or at least supplementing to a large extent) conventional groundwater and soil gas sampling and analysis programs. The challenges involved range from basic science (e.g., inventing in situ sensors for TCE that do not demand routine maintenance) to engineering (attaining superior reliability in data reporting in remote networks) to ergonomics (developing decent ways of selecting and presenting the "right" information from the monitoring network) to regulatory affairs (presenting convincing evidence that the more efficient systems actually provide superior monitoring). We explore these challenges in some detail, focusing on the "long" in long-term monitoring as it applies to DOE sites. Monitoring system performance validation and, ultimately, regulator and stakeholder acceptance of site closure and long-term stewardship plans depend critically on the validity and uncertainty in models used to predict contaminant fate and transport. This is an area of active research at the present time. We survey joint research initiatives in this area involving DOE along with USGS, U.S. EPA, U.S. NRC, and U.S. DOA and non-Federal collaborators, and explore their potential for furthering DOE long-term monitoring needs and objectives.

  7. Glucose Monitoring in Individuals With Diabetes Using a Long-Term Implanted Sensor/Telemetry System and Model.

    PubMed

    Lucisano, Joseph Y; Routh, Timothy L; Lin, Joe T; Gough, David A

    2017-09-01

    The use of a fully implanted first-generation prototype sensor/telemetry system is described for long-term monitoring of subcutaneous tissue glucose in a small cohort of people with diabetes. Sensors are based on a membrane containing immobilized glucose oxidase and catalase coupled to oxygen electrodes and a telemetry system, integrated as an implant. The devices remained implanted for up to 180 days, with signals transmitted every 2 min to external receivers. The data include signal recordings from glucose clamps and spontaneous glucose excursions, matched, respectively, to reference blood glucose and finger-stick values. The sensor signals indicate dynamic tissue glucose, for which there is no independent standard, and a model describing the relationship between blood glucose and the signal is, therefore, included. The values of all model parameters have been estimated, including the permeability of adjacent tissues to glucose, and equated to conventional mass transfer parameters. As a group, the sensor calibration varied randomly at an average rate of -2.6%/week. Statistical correlation indicated strong association between the sensor signals and reference glucose values. Continuous long-term glucose monitoring in individuals with diabetes is feasible with this system. All therapies for diabetes are based on glucose control, and therefore, require glucose monitoring. This fully implanted long-term sensor/telemetry system may facilitate a new era of management of the disease.

  8. Glucose Monitoring in Individuals with Diabetes using a Long-Term Implanted Sensor/Telemetry System and Model

    PubMed Central

    Lucisano, Joseph Y.; Routh, Timothy L.; Lin, Joe T.; Gough, David A.

    2017-01-01

    Objective The use of a fully implanted, first-generation prototype sensor/telemetry system is described for long-term monitoring of subcutaneous tissue glucose in a small cohort of people with diabetes. Methods Sensors are based on a membrane containing immobilized glucose oxidase and catalase coupled to oxygen electrodes and a telemetry system, integrated as an implant. The devices remained implanted for up to 180 days, with signals transmitted every 2 minutes to external receivers. Results The data include signal recordings from glucose clamps and spontaneous glucose excursions, matched respectively to reference blood glucose and finger-stick values. The sensor signals indicate dynamic tissue glucose, for which there is no independent standard, and a model describing the relationship between blood glucose and the signal is therefore included. The values of all model parameters have been estimated, including the permeability of adjacent tissues to glucose, and equated to conventional mass transfer parameters. As a group, the sensor calibration varied randomly at an average rate of −2.6%/week. Statistical correlation indicated strong association between the sensor signals and reference glucose values. Conclusions Continuous, long-term glucose monitoring in individuals with diabetes is feasible with this system. Significance All therapies for diabetes are based on glucose control and therefore require glucose monitoring. This fully implanted, long-term sensor/telemetry system may facilitate a new era of management of the disease. PMID:27775510

  9. RBC aggregation based system for long-term photoplethysmography (PPG): new prospects for PPG applications

    NASA Astrophysics Data System (ADS)

    Shvartsman, Leonid D.; Tverskoy, Boris

    2015-03-01

    We present system for long-term continuous PPG monitoring, and physical model for PPG analysis. The system is based on ideology of light scattering modulated by the process of RBC aggregation. OXIRATE's system works in reflection geometry. The sensor is tiny, completely mobile phone compatible, it can be placed nearly everywhere on the body surface. These technical features allow all-night comfortable PPG monitoring that was performed and analyzed. We can define various sleep stages on the basis of different reproducible time-behavior of PPG signal. Our system of PPG monitoring was used also for reflection pulse oximetry and for extreme PPG studies, such as diving.

  10. Development of a cost-effective and flexible vibration DAQ system for long-term continuous structural health monitoring

    NASA Astrophysics Data System (ADS)

    Nguyen, Theanh; Chan, Tommy H. T.; Thambiratnam, David P.; King, Les

    2015-12-01

    In the structural health monitoring (SHM) field, long-term continuous vibration-based monitoring is becoming increasingly popular as this could keep track of the health status of structures during their service lives. However, implementing such a system is not always feasible due to on-going conflicts between budget constraints and the need of sophisticated systems to monitor real-world structures under their demanding in-service conditions. To address this problem, this paper presents a comprehensive development of a cost-effective and flexible vibration DAQ system for long-term continuous SHM of a newly constructed institutional complex with a special focus on the main building. First, selections of sensor type and sensor positions are scrutinized to overcome adversities such as low-frequency and low-level vibration measurements. In order to economically tackle the sparse measurement problem, a cost-optimized Ethernet-based peripheral DAQ model is first adopted to form the system skeleton. A combination of a high-resolution timing coordination method based on the TCP/IP command communication medium and a periodic system resynchronization strategy is then proposed to synchronize data from multiple distributed DAQ units. The results of both experimental evaluations and experimental-numerical verifications show that the proposed DAQ system in general and the data synchronization solution in particular work well and they can provide a promising cost-effective and flexible alternative for use in real-world SHM projects. Finally, the paper demonstrates simple but effective ways to make use of the developed monitoring system for long-term continuous structural health evaluation as well as to use the instrumented building herein as a multi-purpose benchmark structure for studying not only practical SHM problems but also synchronization related issues.

  11. 40 CFR 75.64 - Quarterly reports.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...

  12. 40 CFR 75.64 - Quarterly reports.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...

  13. 40 CFR 75.64 - Quarterly reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...

  14. 40 CFR 75.64 - Quarterly reports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... placed in long-term cold storage (as defined in § 72.2 of this chapter), quarterly reports are not... the unit). For units placed into long-term cold storage during a reporting quarter, the exemption from... long-term cold storage. For any provisionally-certified monitoring system, § 75.20(a)(3) shall apply...

  15. The measurement procedure in the SEMONT monitoring system.

    PubMed

    Djuric, Nikola; Kljajic, Dragan; Kasas-Lazetic, Karolina; Bajovic, Vera

    2014-03-01

    The measurement procedure of the open area in situ electric field strength is presented, acquiring the real field data for testing of the Serbian electromagnetic field monitoring network (SEMONT) and its Internet portal. The SEMONT monitoring system introduces an advanced approach of wireless sensor network utilization for the continuous supervision of overall and cumulative level of electromagnetic field over the observed area. The aim of the SEMONT system is to become a useful tool for the national and municipal agencies for the environmental protection, regarding the electromagnetic pollution monitoring and the exposure assessment of the general population. Considering the public concern on the potentially harmful effects of the long-term exposure to electromagnetic radiation, as well as the public transparency principle that is incorporated into the Serbian law on non-ionizing radiation protection, the SEMONT monitoring system is designed for the long-term continuous monitoring, presenting real-time measurement results, and corresponding exposure assessment over the public Internet network.

  16. Real-time long term measurement using integrated framework for ubiquitous smart monitoring

    NASA Astrophysics Data System (ADS)

    Heo, Gwanghee; Lee, Giu; Lee, Woosang; Jeon, Joonryong; Kim, Pil-Joong

    2007-04-01

    Ubiquitous monitoring combining internet technologies and wireless communication is one of the most promising technologies of infrastructure health monitoring against the natural of man-made hazards. In this paper, an integrated framework of the ubiquitous monitoring is developed for real-time long term measurement in internet environment. This framework develops a wireless sensor system based on Bluetooth technology and sends measured acceleration data to the host computer through TCP/IP protocol. And it is also designed to respond to the request of web user on real time basis. In order to verify this system, real time monitoring tests are carried out on a prototype self-anchored suspension bridge. Also, wireless measurement system is analyzed to estimate its sensing capacity and evaluate its performance for monitoring purpose. Based on the evaluation, this paper proposes the effective strategies for integrated framework in order to detect structural deficiencies and to design an early warning system.

  17. Bridge Displacement Monitoring Method Based on Laser Projection-Sensing Technology

    PubMed Central

    Zhao, Xuefeng; Liu, Hao; Yu, Yan; Xu, Xiaodong; Hu, Weitong; Li, Mingchu; Ou, Jingping

    2015-01-01

    Bridge displacement is the most basic evaluation index of the health status of a bridge structure. The existing measurement methods for bridge displacement basically fail to realize long-term and real-time dynamic monitoring of bridge structures, because of the low degree of automation and the insufficient precision, causing bottlenecks and restriction. To solve this problem, we proposed a bridge displacement monitoring system based on laser projection-sensing technology. First, the laser spot recognition method was studied. Second, the software for the displacement monitoring system was developed. Finally, a series of experiments using this system were conducted, and the results show that such a system has high measurement accuracy and speed. We aim to develop a low-cost, high-accuracy and long-term monitoring method for bridge displacement based on these preliminary efforts. PMID:25871716

  18. Long-term monitoring of river basins: strengths and weaknesses, opportunities and threats

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T. P.

    2016-12-01

    In a world where equilibrium is more and more uncommon, monitoring is an essential way to discover whether undesirable change is taking place. Monitoring requires a deliberate plan of action: the regular collection and processing of information. Long-term data reveal important patterns, allowing trends, cycles, and rare events to be identified. This is particularly important for complex systems where signals may be subtle and slow to emerge. Moreover, very long data sets are essential to test hypotheses undreamt of at the time the monitoring was started. This overview includes long time series from UK river basins showing how hydrology and water quality have changed over time - and continue to change. An important conclusion is the long time frame of system recovery, well beyond the normal lifetime of individual governments or research grants. At a time of increasing hydroclimatic variability, long time series remain crucially important; in particular, continuity of observations is vital at key benchmark sites.

  19. Long Term 2 Second Round Source Water Monitoring and Bin Placement Memo

    EPA Pesticide Factsheets

    The Long Term 2 Enhanced Surface Water Treatment Rule (LT2ESWTR) applies to all public water systems served by a surface water source or public water systems served by a ground water source under the direct influence of surface water.

  20. Development of a novel ultrasonic temperature probe for long-term monitoring of dry cask storage systems

    NASA Astrophysics Data System (ADS)

    Bakhtiari, S.; Wang, K.; Elmer, T. W.; Koehl, E.; Raptis, A. C.

    2013-01-01

    With the recent cancellation of the Yucca Mountain repository and the limited availability of wet storage utilities for spent nuclear fuel (SNF), more attention has been directed toward dry cask storage systems (DCSSs) for long-term storage of SNF. Consequently, more stringent guidelines have been issued for the aging management of dry storage facilities that necessitate monitoring of the conditions of DCSSs. Continuous health monitoring of DCSSs based on temperature variations is one viable method for assessing the integrity of the system. In the present work, a novel ultrasonic temperature probe (UTP) is being tested for long-term online temperature monitoring of DCSSs. Its performance was evaluated and compared with type N thermocouple (NTC) and resistance temperature detector (RTD) using a small-scale dry storage canister mockup. Our preliminary results demonstrate that the UTP system developed at Argonne is able to achieve better than 0.8 °C accuracy, tested at temperatures of up to 400 °C. The temperature resolution is limited only by the sampling rate of the current system. The flexibility of the probe allows conforming to complex geometries thus making the sensor particularly suited to measurement scenarios where access is limited.

  1. Demonstration and Validation of the Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long-Term Monitoring (LTM) of Groundwater at Military and Government Sites

    DTIC Science & Technology

    2010-08-01

    Long - Term Monitoring (LTM) of Groundwater at Military and...Geostatistical Temporal-Spatial Algorithm (GTS) for Optimization of Long - Term Monitoring (LTM) of Groundwater at Military and Government Sites 5a. CONTRACT NUMBER...Council LTM long - term monitoring LTMO long - term monitoring optimization LWQR locally weighted quadratic regression LZ Lower Zone MCL

  2. ETV TEST OF PCDD/F EMISSIONS MONITORING SYSTEMS

    EPA Science Inventory

    Four polychlorinated dibenzodioxin and furan (PCDD/F) emission monitors were tested under the EPA Environmental Technology and Verification (ETV) program. Two long-term sampling devices, the DioxinMonitoringSystem and Adsorption Method for Sampling Dioxins and Furans, and two sem...

  3. A study to assess the long-term stability of the ionization chamber reference system in the LNMRI

    NASA Astrophysics Data System (ADS)

    Trindade Filho, O. L.; Conceição, D. A.; da Silva, C. J.; Delgado, J. U.; de Oliveira, A. E.; Iwahara, A.; Tauhata, L.

    2018-03-01

    Ionization chambers are used as secondary standard in order to maintain the calibration factors of radionuclides in the activity measurements in metrology laboratories. Used as radionuclide calibrator in nuclear medicine clinics to control dose in patients, its long-term performance is not evaluated systematically. A methodology for long-term evaluation for its stability is monitored and checked. Historical data produced monthly of 2012 until 2017, by an ionization chamber, electrometer and 226Ra, were analyzed via control chart, aiming to follow the long-term performance. Monitoring systematic errors were consistent within the limits of control, demonstrating the quality of measurements in compliance with ISO17025.

  4. 3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila

    NASA Astrophysics Data System (ADS)

    Kumar, S. Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong

    2016-09-01

    Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila.

  5. Dry electrode bio-potential recordings.

    PubMed

    Gargiulo, Gaetano; Bifulco, Paolo; McEwan, Alistair; Nasehi Tehrani, Joubin; Calvo, Rafael A; Romano, Maria; Ruffo, Mariano; Shephard, Richard; Cesarelli, Mario; Jin, Craig; Mohamed, Armin; van Schaik, André

    2010-01-01

    As wireless bio-medical long term monitoring moves towards personal monitoring it demands very high input impedance systems capable to extend the reading of bio-signal during the daily activities offering a kind of "stress free", convenient connection, with no need for skin preparation. In particular we highlight the development and broad applications of our own circuits for wearable bio-potential sensor systems enabled by the use of an FET based amplifier circuit with sufficiently high impedance to allow the use of passive dry electrodes which overcome the significant barrier of gel based contacts. In this paper we present the ability of dry electrodes in long term monitoring of ECG, EEG and fetal ECG.

  6. An introduction to orbit dynamics and its application to satellite-based earth monitoring systems

    NASA Technical Reports Server (NTRS)

    Brooks, D. R.

    1977-01-01

    The long term behavior of satellites is studied at a level of complexity suitable for the initial planning phases of earth monitoring missions. First-order perturbation theory is used to describe in detail the basic orbit dynamics of satellite motion around the earth and relative to the sun. Surface coverage capabilities of satellite orbits are examined. Several examples of simulated observation and monitoring missions are given to illustrate representative applications of the theory. The examples stress the need for devising ways of maximizing total mission output in order to make the best possible use of the resultant data base as input to those large-scale, long-term earth monitoring activities which can best justify the use of satellite systems.

  7. Monitoring the condition of natural resources in US national parks.

    PubMed

    Fancy, S G; Gross, J E; Carter, S L

    2009-04-01

    The National Park Service has developed a long-term ecological monitoring program for 32 ecoregional networks containing more than 270 parks with significant natural resources. The monitoring program assists park managers in developing a broad-based understanding of the status and trends of park resources as a basis for making decisions and working with other agencies and the public for the long-term protection of park ecosystems. We found that the basic steps involved in planning and designing a long-term ecological monitoring program were the same for a range of ecological systems including coral reefs, deserts, arctic tundra, prairie grasslands, caves, and tropical rainforests. These steps involve (1) clearly defining goals and objectives, (2) compiling and summarizing existing information, (3) developing conceptual models, (4) prioritizing and selecting indicators, (5) developing an overall sampling design, (6) developing monitoring protocols, and (7) establishing data management, analysis, and reporting procedures. The broad-based, scientifically sound information obtained through this systems-based monitoring program will have multiple applications for management decision-making, research, education, and promoting public understanding of park resources. When combined with an effective education program, monitoring results can contribute not only to park issues, but also to larger quality-of-life issues that affect surrounding communities and can contribute significantly to the environmental health of the nation.

  8. Connecticut permanent long-term bridge monitoring network, volume 6 : monitoring of a continuous plate girder bridge with load restrictions - Route 15 over the Housatonic River in Stratford (Bridge #761).

    DOT National Transportation Integrated Search

    2014-08-01

    This report describes the instrumentation and data acquisition system for monitoring of a continuous span steel plate : girder bridge with a composite concrete deck located on a limited access highway. The monitoring system was : developed and instal...

  9. Assessment of dynamic and long-term performance of an innovative multi-story timber building via structural monitoring and dynamic testing

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; Morris, Hugh; Worth, Margaret; Gaul, Andrew; Jager, Simon; Desgeorges, Yohann

    2012-04-01

    An innovative three-story timber building, using self-centering, post-tensioned timber shear walls as the main horizontal load resisting system and lightweight non-composite timber-concrete floors, has recently been completed in Nelson, New Zealand. It is expected to be the trailblazer for similar but taller structures to be more widely adopted. Performance based standards require an advanced understanding of building responses and in order to meet the need for in-situ performance data the building has been subjected to forced vibration testing and instrumented for continuous monitoring using a total of approximately 90 data channels to capture its dynamic and long-term responses. The first part of the paper presents a brief discussion of the existing research on the seismic performance of timber frame buildings and footfall induced floor vibrations. An outline of the building structural system, focusing on the novel design solutions, is then discussed. This is followed by the description of the monitoring system. The analysis of monitoring results starts with a discussion of the monitoring of long-term deformations. Next, the assessment of the floor vibration serviceability performance is outlined. Then, the forced vibration tests conducted on the whole building at different construction stages are reviewed. The system identification results from seismic shaking records are also discussed. Finally, updating of a finite element model of the building is conducted.

  10. Statistical analysis of long-term hydrologic records for selection of drought-monitoring sites on Long Island, New York

    USGS Publications Warehouse

    Busciolano, Ronald J.

    2005-01-01

    Ground water is the sole source of water supply for more than 3 million people on Long Island, New York. Large-scale ground-water pumpage, sewering systems, and prolonged periods of below-normal precipitation have lowered ground-water levels and decreased stream-discharge in western and central Long Island. No method is currently (2004) available on Long Island that can assess data from the ground-water-monitoring network to enable water managers and suppliers with the ability to give timely warning of severe water-level declines.This report (1) quantifies past drought- and human-induced changes in the ground-water system underlying Long Island by applying statistical and graphical methods to precipitation, stream-discharge, and ground-water-level data from selected monitoring sites; (2) evaluates the relation between water levels in the upper glacial aquifer and those in the underlying Magothy aquifer; (3) defines trends in stream discharge and ground-water levels that might indicate the onset of drought conditions or the effects of excessive pumping; and (4) discusses the long-term records that were used to select sites for a Long Island drought-monitoring network.Long Island’s long-term hydrologic records indicated that the available data provide a basis for development of a drought-monitoring network. The data from 36 stations that were selected as possible drought-monitoring sites—8 precipitation-monitoring stations, 8 streamflow-gaging (discharge) stations, 15 monitoring wells screened in the upper glacial aquifer under water-table (unconfined) conditions, and 5 monitoring wells screened in the underlying Magothy aquifer under semi-confined conditions—indicate that water levels in western parts of Long Island have fallen and risen markedly (more than 15 ft) in response to fluctuations in pumpage, and have declined from the increased use of sanitary- and storm-sewer systems. Water levels in the central and eastern parts, in contrast, remain relatively unaffected compared to the western parts, although the effects of human activity are discernible in the records.The value of each site as a drought-monitoring indicator was assessed through an analysis of trends in the records. Fifty-year annual and monthly data sets were created and combined into three composite-average hydrographs—precipitation, stream discharge, and ground-water levels. Three zones representing the range of human effect on ground-water levels were delineated to help evaluate islandwide hydrologic conditions and to quantify the indices. Data from the three indices can be used to assess current conditions in the ground-water system underlying Long Island and evaluate water-level declines during periods of drought.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION (ETV) TEST OF DIOXIN EMISSION MONITORS

    EPA Science Inventory

    The performance of four dioxin emission monitors including two long-term sampling devices, the DMS (DioxinMonitoringSystem) and AMESA (Adsorption Method for Sampling Dioxins and Furans), and two semi-real-time continuous monitors, RIMMPA-TOFMS (Resonance Ionization with Multi-Mir...

  12. Innovative Strategy For Long Term Monitoring Of Metal And Radionuclide Plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eddy-Dilek, Carol; Millings, Margaret R.; Looney, Brian B.

    2014-01-08

    Many government and private industry sites that were once contaminated with radioactive and chemical wastes cannot be cleaned up enough to permit unrestricted human access. The sites will require long term management, in some cases indefinitely, leaving site owners with the challenge of protecting human health and environmental quality at these "legacy" sites. Long-term monitoring of groundwater contamination is one of the largest projected costs in the life cycle of environmental management at the Savannah River Site, the larger DOE complex, and many large federal and private sites. There is a need to optimize the performance and manage the costmore » of long term surveillance and monitoring at their sites. Currently, SRNL is initiating a pilot field test using alternative protocols for long term monitoring of metals and radionuclides. A key component of the approach is that monitoring efforts are focused on measurement of low cost metrics related to hydrologic and chemical conditions that control contaminant migration. The strategy combines careful monitoring of hydrologic boundary conditions with measurement of master variables such as chemical surrogates along with a smaller number of standard well analyses. In plumes contaminated with metals, master variables control the chemistry of the groundwater system, and include redox variables (ORP, DO, chemicals), pH, specific conductivity, biological community (breakdown/decay products), and temperature. Significant changes in these variables will result in conditions whereby the plume may not be stable and therefore can be used to predict possible plume migration. Conversely, concentration measurements for all types of contaminants in groundwater are a lagging indicator plume movement - major changes contaminant concentrations indicate that contamination has migrated. An approach based on measurement of master variables and explicit monitoring of hydrologic boundary conditions combined with traditional metrics should lead to improved monitoring while simultaneously reducing costs. This paradigm is being tested at the SRS F-Area where an innovative passive remedial system is being monitored and evaluated over the long term prior to traditional regulatory closure. Contaminants being addressed at this site are uranium, strontium-90, iodine-129, and tritium. We believe that the proposed strategies will be more effective in early identification of potential risks; these strategies will also be cost effective because controlling variables are relatively simple to measure. These variables also directly reflect the evolution of the plume through time, so that the monitoring strategy can be modified as the plume 'ages'. This transformational long-term monitoring paradigm will generate large cost savings to DOE, other federal agencies and industry and will provide improved performance and leading indicators of environmental management performance.« less

  13. Long-Term Monitoring of Global Climate Forcings and Feedbacks

    NASA Technical Reports Server (NTRS)

    Hansen, J. (Editor); Rossow, W. (Editor); Fung, I. (Editor)

    1993-01-01

    A workshop on Long-Term Monitoring of Global Climate Forcings and Feedbacks was held February 3-4, 1992, at NASA's Goddard Institute for Space Studies to discuss the measurements required to interpret long-term global temperature changes, to critique the proposed contributions of a series of small satellites (Climsat), and to identify needed complementary monitoring. The workshop concluded that long-term (several decades) of continuous monitoring of the major climate forcings and feedbacks is essential for understanding long-term climate change.

  14. Assessment of the usefulness of semipermeable membrane devices for long-term watershed monitoring in an urban slough system

    USGS Publications Warehouse

    McCarthy, K.

    2006-01-01

    Semipermeable membrane devices (SPMDs) were deployed at eight sites within the Buffalo Slough, near Portland, Oregon, to (1) measure the spatial and seasonal distribution of dissolved polycyclic aromatic hydrocarbon (PAH) and organochlorine (OC) compounds in the slough, (2) assess the usefulness of SPMDs as a tool for investigating and monitoring hydrophobic compounds throughout the Columbia Slough system, and (3) evaluate the utility of SPMDs as a tool for measuring the long-term effects of watershed improvement activities. Data from the SPMDs revealed clear spatial and seasonal differences in water quality within the slough and indicate that for hydrophobic compounds, this time-integrated passive-sampling technique is a useful tool for long-term watershed monitoring. In addition, the data suggest that a spiking rate of 2-5 ??g/SPMD of permeability/performance reference compounds, including at least one compound that is not susceptible to photodegradation, may be optimum for the conditions encountered here. ?? Springer Science + Business Media, Inc. 2006.

  15. Real-time seismic monitoring needs of a building owner - And the solution: A cooperative effort

    USGS Publications Warehouse

    Celebi, M.; Sanli, A.; Sinclair, M.; Gallant, S.; Radulescu, D.

    2004-01-01

    A recently implemented advanced seismic monitoring system for a 24-story building facilitates recording of accelerations and computing displacements and drift ratios in near-real time to measure the earthquake performance of the building. The drift ratio is related to the damage condition of the specific building. This system meets the owner's needs for rapid quantitative input to assessments and decisions on post-earthquake occupancy. The system is now successfully working and, in absence of strong shaking to date, is producing low-amplitude data in real time for routine analyses and assessment. Studies of such data to date indicate that the configured monitoring system with its building specific software can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can be used for health monitoring of a building, for assessing performance-based design and analyses procedures, for long-term assessment of structural characteristics, and for long-term damage detection.

  16. Long-Term Environmental Research Programs - Evolving Capacity for Discovery

    NASA Astrophysics Data System (ADS)

    Swanson, F. J.

    2008-12-01

    Long-term forestry, watershed, and ecological research sites have become critical, productive nodes for environmental science research and in some cases for work in the social sciences and humanities. The Forest Service's century-old Experimental Forests and Ranges and the National Science Foundation's 28- year-old Long-Term Ecological Research program have been remarkably productive in both basic and applied sciences, including characterization of acid rain and old-growth ecosystems and development of forest, watershed, and range management systems for commercial and other land use objectives. A review of recent developments suggests steps to enhance the function of collections of long-term research sites as interactive science networks. The programs at these sites have evolved greatly, especially over the past few decades, as the questions addressed, disciplines engaged, and degree of science integration have grown. This is well displayed by small, experimental watershed studies, which first were used for applied hydrology studies then more fundamental biogeochemical studies and now examination of complex ecosystem processes; all capitalizing on the legacy of intensive studies and environmental monitoring spanning decades. In very modest ways these collections of initially independent sites have functioned increasingly as integrated research networks addressing inter-site questions by using common experimental designs, being part of a single experiment, and examining long-term data in a common analytical framework. The network aspects include data sharing via publicly-accessible data-harvester systems for climate and streamflow data. The layering of one research or environmental monitoring network upon another facilitates synergies. Changing climate and atmospheric chemistry highlight a need to use these networks as continental-scale observatory systems for assessing the impacts of environmental change on ecological services. To better capitalize on long-term research sites and networks, agencies and universities 1) need to encourage collaboration among sites and between science and land manager communities while 2) maintaining long- term studies and monitoring efforts, and staffing the collaboration in each partner organization, including positions specifically designated as liaisons among the participating communities.

  17. Technical challenges related to implementation of a formula one real time data acquisition and analysis system in a paediatric intensive care unit.

    PubMed

    Matam, B Rajeswari; Duncan, Heather

    2018-06-01

    Most existing, expert monitoring systems do not provide the real time continuous analysis of the monitored physiological data that is necessary to detect transient or combined vital sign indicators nor do they provide long term storage of the data for retrospective analyses. In this paper we examine the feasibility of implementing a long term data storage system which has the ability to incorporate real-time data analytics, the system design, report the main technical issues encountered, the solutions implemented and the statistics of the data recorded. McLaren Electronic Systems expertise used to continually monitor and analyse the data from F1 racing cars in real time was utilised to implement a similar real-time data recording platform system adapted with real time analytics to suit the requirements of the intensive care environment. We encountered many technical (hardware and software) implementation challenges. However there were many advantages of the system once it was operational. They include: (1) The ability to store the data for long periods of time enabling access to historical physiological data. (2) The ability to alter the time axis to contract or expand periods of interest. (3) The ability to store and review ECG morphology retrospectively. (4) Detailed post event (cardiac/respiratory arrest or other clinically significant deteriorations in patients) data can be reviewed clinically as opposed to trend data providing valuable clinical insight. Informed mortality and morbidity reviews can be conducted. (5) Storage of waveform data capture to use for algorithm development for adaptive early warning systems. Recording data from bed-side monitors in intensive care/wards is feasible. It is possible to set up real time data recording and long term storage systems. These systems in future can be improved with additional patient specific metrics which predict the status of a patient thus paving the way for real time predictive monitoring.

  18. Statistical analysis of modal properties of a cable-stayed bridge through long-term structural health monitoring with wireless smart sensor networks

    NASA Astrophysics Data System (ADS)

    Asadollahi, Parisa; Li, Jian

    2016-04-01

    Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.

  19. Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives

    PubMed Central

    Yamaguchi, Nobuyasu; Roberts, Michael; Castro, Sarah; Oubre, Cherie; Makimura, Koichi; Leys, Natalie; Grohmann, Elisabeth; Sugita, Takashi; Ichijo, Tomoaki; Nasu, Masao

    2014-01-01

    Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed. PMID:25130885

  20. Controlled CO2 injection into a shallow aquifer and leakage detection monitoring practices at the K-COSEM site, Korea

    NASA Astrophysics Data System (ADS)

    Lee, S. S.; Joun, W.; Ju, Y. J.; Ha, S. W.; Jun, S. C.; Lee, K. K.

    2017-12-01

    Artificial carbon dioxide injection into a shallow aquifer system was performed with two injection types imitating short- and long-term CO2 leakage events into a shallow aquifer. One is pulse type leakage of CO2 (6 hours) under a natural hydraulic gradient (0.02) and the other is long-term continuous injection (30 days) under a forced hydraulic gradient (0.2). Injection and monitoring tests were performed at the K-COSEM site in Eumseong, Korea where a specially designed well field had been installed for artificial CO2 release tests. CO2-infused and tracer gases dissolved groundwater was injected through a well below groundwater table and monitoring were conducted in both saturated and unsaturated zones. Real-time monitoring data on CO2 concentration and hydrochemical parameters, and periodical measurements of several gas tracers (He, Ar, Kr, SF6) were obtained. The pulse type short-term injection test was carried out prior to the long-term injection test. Results of the short-term injection test, under natural hydraulic gradient, showed that CO2 plume migrated along the preferential pathway identified through hydraulic interference tests. On the other hand, results of the long-term injection test indicated the CO2 plume migration path was aligned to the forced hydraulic gradient. Compared to the short-term test, the long-term injection formed detectable CO2 concentration change in unsaturated wellbores. Recovery data of tracer gases made breakthrough curves compatible to numerical simulation results. The monitoring results indicated that detection of CO2 leakage into groundwater was more effectively performed by using a pumping and monitoring method in order to capture by-passing plume. With this concept, an effective real-time monitoring method was proposed. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2storage" from the KEITI (Project number : 2014001810003)

  1. Survey of Technologies for Monitoring Containment Liners and Covers

    EPA Pesticide Factsheets

    The report provides information on innovative long-term monitoring technologies to detect contaminant releases beneath a liner containment system and identify potential problems with the integrity of final containment covers.

  2. Feasibility of bridge structural health monitoring using short term data acquisition system.

    DOT National Transportation Integrated Search

    2015-01-01

    Long-term testing of bridges can expensive and result in a large amount of data that is dicult to manage and : analyze. The purpose of this study was to investigate the feasibility of a short-term data acquisition system that : used a minimal numb...

  3. Monitoring regional groundwater extraction: the problem.

    PubMed

    Bredehoeft, J D

    2011-01-01

    As hydraulic disturbances (signals) are propagated through a groundwater system two things happen: (1) the higher frequencies in the disturbance are filtered out by the physics of the system and (2) the disturbance takes time to propagate through the system. The filtering and time delays depend on the aquifer diffusivity. This means, for example, if one is observing a water table aquifer at some distance from where annual recharge is occurring, only the long-term average effect of the recharge will be transmitted to the observation point--the system filters out annual variations. These facts have profound impacts on what is feasible to monitor. For example, if one is concerned about the impact of pumping on a spring in a water table aquifer, where the pumping is more than 20 miles or so from the spring, there will be a long delay before the pumping impacts the spring and there will be an equally long delay before a long-term reduction in the pumping regime will restore the spring. The filtering by lower diffusivity groundwater systems makes it impossible to discriminate between the impacts of several major pumpers in the system and/or long-term climate changes. © 2011, The Author(s). Ground Water © 2011, National Ground Water Association.

  4. Long-term ecosystem monitoring and change detection: the Sonoran initiative

    Treesearch

    Robert Lozar; Charles Ehlschlaeger

    2005-01-01

    Ecoregional Systems Heritage and Encroachment Monitoring (ESHEM) examines issues of land management at an ecosystem level using remote sensing. Engineer Research and Development Center (ERDC), in partnership with Western Illinois University, has developed an ecoregional database and monitoring capability covering the Sonoran region. The monitoring time horizon will...

  5. Long-term environmental monitoring for assessment of change: measurement inconsistencies over time and potential solutions.

    PubMed

    Ellingsen, Kari E; Yoccoz, Nigel G; Tveraa, Torkild; Hewitt, Judi E; Thrush, Simon F

    2017-10-30

    The importance of long-term environmental monitoring and research for detecting and understanding changes in ecosystems and human impacts on natural systems is widely acknowledged. Over the last decades, a number of critical components for successful long-term monitoring have been identified. One basic component is quality assurance/quality control protocols to ensure consistency and comparability of data. In Norway, the authorities require environmental monitoring of the impacts of the offshore petroleum industry on the Norwegian continental shelf, and in 1996, a large-scale regional environmental monitoring program was established. As a case study, we used a sub-set of data from this monitoring to explore concepts regarding best practices for long-term environmental monitoring. Specifically, we examined data from physical and chemical sediment samples and benthic macroinvertebrate assemblages from 11 stations from six sampling occasions during the period 1996-2011. Despite the established quality assessment and quality control protocols for this monitoring program, we identified several data challenges, such as missing values and outliers, discrepancies in variable and station names, changes in procedures without calibration, and different taxonomic resolution. Furthermore, we show that the use of different laboratories over time makes it difficult to draw conclusions with regard to some of the observed changes. We offer recommendations to facilitate comparison of data over time. We also present a new procedure to handle different taxonomic resolution, so valuable historical data is not discarded. These topics have a broader relevance and application than for our case study.

  6. RadMap

    EPA Pesticide Factsheets

    RadMap is an interactive desktop tool featuring a nationwide geographic information systems (GIS) map of long-term radiation monitoring locations across the United States with access to key information about the monitor and the area surrounding it.

  7. Total On-line Access Data System (TOADS): Phase II Final Report for the Period August 2002 - August 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuracko, K. L.; Parang, M.; Landguth, D. C.

    2004-09-13

    TOADS (Total On-line Access Data System) is a new generation of real-time monitoring and information management system developed to support unattended environmental monitoring and long-term stewardship of U.S. Department of Energy facilities and sites. TOADS enables project managers, regulators, and stakeholders to view environmental monitoring information in realtime over the Internet. Deployment of TOADS at government facilities and sites will reduce the cost of monitoring while increasing confidence and trust in cleanup and long term stewardship activities. TOADS: Reliably interfaces with and acquires data from a wide variety of external databases, remote systems, and sensors such as contaminant monitors, areamore » monitors, atmospheric condition monitors, visual surveillance systems, intrusion devices, motion detectors, fire/heat detection devices, and gas/vapor detectors; Provides notification and triggers alarms as appropriate; Performs QA/QC on data inputs and logs the status of instruments/devices; Provides a fully functional data management system capable of storing, analyzing, and reporting on data; Provides an easy-to-use Internet-based user interface that provides visualization of the site, data, and events; and Enables the community to monitor local environmental conditions in real time. During this Phase II STTR project, TOADS has been developed and successfully deployed for unattended facility, environmental, and radiological monitoring at a Department of Energy facility.« less

  8. Assessment of long-term gas sampling design at two commercial manure-belt layer barns.

    PubMed

    Chai, Li-Long; Ni, Ji-Qin; Chen, Yan; Diehl, Claude A; Heber, Albert J; Lim, Teng T

    2010-06-01

    Understanding temporal and spatial variations of aerial pollutant concentrations is important for designing air quality monitoring systems. In long-term and continuous air quality monitoring in large livestock and poultry barns, these systems usually use location-shared analyzers and sensors and can only sample air at limited number of locations. To assess the validity of the gas sampling design at a commercial layer farm, a new methodology was developed to map pollutant gas concentrations using portable sensors under steady-state or quasi-steady-state barn conditions. Three assessment tests were conducted from December 2008 to February 2009 in two manure-belt layer barns. Each barn was 140.2 m long and 19.5 m wide and had 250,000 birds. Each test included four measurements of ammonia and carbon dioxide concentrations at 20 locations that covered all operating fans, including six of the fans used in the long-term sampling that represented three zones along the lengths of the barns, to generate data for complete-barn monitoring. To simulate the long-term monitoring, gas concentrations from the six long-term sampling locations were extracted from the 20 assessment locations. Statistical analyses were performed to test the variances (F-test) and sample means (t test) between the 6- and 20-sample data. The study clearly demonstrated ammonia and carbon dioxide concentration gradients that were characterized by increasing concentrations from the west to east ends of the barns following the under-cage manure-belt travel direction. Mean concentrations increased from 7.1 to 47.7 parts per million (ppm) for ammonia and from 2303 to 3454 ppm for carbon dioxide from the west to east of the barns. Variations of mean gas concentrations were much less apparent between the south and north sides of the barns, because they were 21.2 and 20.9 ppm for ammonia and 2979 and 2951 ppm for carbon dioxide, respectively. The null hypotheses that the variances and means between the 6- and 20-sample data were equal at alpha = 0.05 (P > 0.05) were accepted for both gases. The results proved that the long-term gas sampling design was valid in this instance and suggested that the gas sampling design in these two barns was one of the best on the basis of available long-term monitoring instrumentation at reasonable cost.

  9. The development and validation of a Real Time Location System to reliably monitor everyday activities in natural contexts.

    PubMed

    Judah, Gaby; de Witt Huberts, Jessie; Drassal, Allan; Aunger, Robert

    2017-01-01

    The accurate measurement of behaviour is vitally important to many disciplines and practitioners of various kinds. While different methods have been used (such as observation, diaries, questionnaire), none are able to accurately monitor behaviour over the long term in the natural context of people's own lives. The aim of this work was therefore to develop and test a reliable system for unobtrusively monitoring various behaviours of multiple individuals within the same household over a period of several months. A commercial Real Time Location System was adapted to meet these requirements and subsequently validated in three households by monitoring various bathroom behaviours. The results indicate that the system is robust, can monitor behaviours over the long-term in different households and can reliably distinguish between individuals. Precision rates were high and consistent. Recall rates were less consistent across households and behaviours, although recall rates improved considerably with practice at set-up of the system. The achieved precision and recall rates were comparable to the rates observed in more controlled environments using more valid methods of ground truthing. These initial findings indicate that the system is a valuable, flexible and robust system for monitoring behaviour in its natural environment that would allow new research questions to be addressed.

  10. Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Niebur, Dagmar

    1995-01-01

    Electric power systems represent complex systems involving many electrical components whoseoperation has to be planned, analyzed, monitored and controlled. The time-scale of tasks in electricpower systems extends from long term planning years ahead to milliseconds in the area of control. The behavior of power systems is highly non-linear. Monitoring and control involves several hundred variables which are only partly available by measurements.

  11. Transit Performance Monitoring System (TPMS) results : summary report, phase 3

    DOT National Transportation Integrated Search

    2004-06-01

    This report presents the results of the third phase of a project to implement a transit performance monitoring system (TPMS). The TPMS was designed to collect data on transit customers through the use of on-board surveys. The long-term goal of the TP...

  12. Transit Performance Monitoring System (TPMS) results : summary report, phases 1 and 2

    DOT National Transportation Integrated Search

    2002-02-01

    This report presents the results of a project to implement a transit performance monitoring system (TPMS). The TPMS was designed to collect data on transit customers through the use of on-board surveys. The long-term goal of the TPMS initiative is to...

  13. Long-term ex vivo and in vivo monitoring of tumor progression by using dual luciferases.

    PubMed

    Morita, Naoki; Haga, Sanae; Ohmiya, Yoshihiro; Ozaki, Michitaka

    2016-03-15

    We propose a new concept of tumor progression monitoring using dual luciferases in living animals to reduce stress for small animals and the cost of luciferin. The secreted Cypridina luciferase (CLuc) was used as an ex vivo indicator to continuously monitor tumor progression. On the other hand, the non-secreted firefly luciferase was used as an in vivo indicator to analyze the spatial distribution of the tumor at suitable time points indicated by CLuc. Thus, the new monitoring systems that use dual luciferases are available, allowing long-term bioluminescence imaging under minimal stress for the experimental animals. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Minimal hardware Bluetooth tracking for long-term at-home elder supervision.

    PubMed

    Kelly, Damian; McLoone, Sean; Farrell, Ronan

    2010-01-01

    The ability to automatically detect the location of an elder within their own home is a significant enabler of remote elder supervision and interaction applications. This location information is typically generated via a myriad of sensors throughout the home environment. Even with high sensor redundancy, there are still situations where traditional elder monitoring systems are unable to resolve the location of the elder. This work develops a minimal infrastructure radio-frequency localisation system for long-term elder location tracking. An RFID room-labelling technique is employed and with it, the localisation system developed in this work is shown to exhibit superior performance to more traditional localisation systems in realistic long-term deployments.

  15. RadMap Installation Instructions

    EPA Pesticide Factsheets

    RadMap is an interactive desktop tool featuring a nationwide geographic information systems (GIS) map of long-term radiation monitoring locations across the United States with access to key information about the monitor and the area surrounding it.

  16. Connecticut permanent long-term bridge monitoring network, volume 5 : wireless monitoring of the hung span in a large truss bridge - I-95 NB over the Thames River in New London (bridge #3819).

    DOT National Transportation Integrated Search

    2014-08-01

    This report describes the instrumentation and data acquisition for the center hung segment in the largest : truss bridge in Connecticut, located on the interstate system. The monitoring system was developed as a : joint effort between researchers at ...

  17. Connecticut permanent long-term bridge monitoring network, volume 3 : monitoring of a multi-steel girder composite bridge - I-91 SB over the Mattabesset River in Cromwell (bridge #3078).

    DOT National Transportation Integrated Search

    2014-08-01

    This report describes the instrumentation and data acquisition for a multi-girder, composite steel bridge in Connecticut. The : computer-based remote monitoring system was developed to collect information on the girder bending strains. The monitoring...

  18. Towards A Representation of Vertically Resolved Ozone Changes in Reanalyses

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Wargan, Krzysztof; Keller, Christoph; McCarty, Will; Coy, Larry

    2017-01-01

    The Solar Backscatter Ultraviolet Radiometer (SBUV) instruments on NASA and NOAA spacecraft provide a long-term record of total-column ozone and deep-layer partial columns since about 1980. These data have been carefully processed to extract long-term trends and offer a valuable resource for ozone monitoring. Studies assimilating limb-sounding observations in the Goddard Earth Observing System (GEOS) data assimilation system (DAS) demonstrate that vertical ozone gradients in the upper troposphere and lower stratosphere (UTLS) are much better represented than with the deep-layer SBUV observations. This is exemplified by the use of retrieved ozone from the EOS Microwave Limb Sounder (EOS-MLS) instrument in the MERRA-2 reanalysis, for the period after 2004. This study examines the potential for extending the use of limb-sounding observations at earlier times and into the future, so that future reanalyses may be more applicable to the study of long-term ozone changes.Historical data are available from NASA instruments: the Limb Infrared Monitor of the Stratosphere (LIMS: 1978-1979); the Upper Atmospheric Research Satellite (UARS: 1991-1995); Sounding of the Atmosphere using Broadband Emission Radiometry (SABER: 2000-onwards). For the post EOS-MLS period, the joint NASA-NOAA Ozone Monitoring and Profiling Suite Limb Profiler (OMPS-LP) instrument was launched on the Suomi-NPP platform in 201x and is planned for future platforms. This study will examine two aspects of these data pertaining to future reanalyses. First, the feasibility of merging the EOS-MLS and OMPS-LP instruments to provide a long-term record that extends beyond the potential lifetime of EOS-MLS. If feasible, this would allow for long-term monitoring of ozone recovery in a three-dimensional reanalysis context. Second, the skill of the GEOS DAS in ingesting historical data types will be investigated. Because these do not overlap with EOS-MLS, use will be made of system statistics and evaluation using independent datasets. Impacts of using a complete ozone chemistry module will also be considered.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, J.

    The U. S. Department of Energy's (DOE) Office of Environmental Management (EM) has the responsibility for cleaning up 60 sites in 22 states that were associated with the legacy of the nation's nuclear weapons program and other research and development activities. These sites are unique and many of the technologies needed to successfully disposition the associated wastes have yet to be developed or would require significant re-engineering to be adapted for future EM cleanup efforts. In 2008, the DOE-EM Engineering and Technology Program (EM-22) released the Engineering and Technology Roadmap in response to Congressional direction and the need to focusmore » on longer term activities required for the completion of the aforementioned cleanup program. One of the strategic initiatives included in the Roadmap was to enhance long term performance monitoring as defined by 'Develop and deploy cost effective long-term strategies and technologies to monitor closure sites (including soil, groundwater, and surface water) with multiple contaminants (organics, metals and radionuclides) to verify integrated long-term cleanup performance'. To support this long-term monitoring (LTM) strategic initiative, EM 22 and the Savannah River National Laboratory (SRNL) organized and held an interactive symposia, known as the 2009 DOE-EM Long-Term Monitoring Technical Forum, to define and prioritize LTM improvement strategies and products that could be realized within a 3 to 5 year investment time frame. This near-term focus on fundamental research would then be used as a foundation for development of applied programs to improve the closure and long-term performance of EM's legacy waste sites. The Technical Forum was held in Atlanta, GA on February 11-12, 2009, and attended by 57 professionals with a focus on identifying those areas of opportunity that would most effectively advance the transition of the current practices to a more effective strategy for the LTM paradigm. The meeting format encompassed three break-out sessions, which focused on needs and opportunities associated with the following LTM technical areas: (1) Performance Monitoring Tools, (2) Systems, and (3) Information Management. The specific objectives of the Technical Forum were to identify: (1) technical targets for reducing EM costs for life-cycle monitoring; (2) cost-effective approaches and tools to support the transition from active to passive remedies at EM waste sites; and (3) specific goals and objectives associated with the lifecycle monitoring initiatives outlined within the Roadmap. The first Breakout Session on LTM performance measurement tools focused on the integration and improvement of LTM performance measurement and monitoring tools that deal with parameters such as ecosystems, boundary conditions, geophysics, remote sensing, biomarkers, ecological indicators and other types of data used in LTM configurations. Although specific tools were discussed, it was recognized that the Breakout Session could not comprehensively discuss all monitoring technologies in the time provided. Attendees provided key references where other organizations have assessed monitoring tools. Three investment sectors were developed in this Breakout Session. The second Breakout Session was on LTM systems. The focus of this session was to identify new and inventive LTM systems addressing the framework for interactive parameters such as infrastructure, sensors, diagnostic features, field screening tools, state of the art characterization monitoring systems/concepts, and ecosystem approaches to site conditions and evolution. LTM systems consist of the combination of data acquisition and management efforts, data processing and analysis efforts and reporting tools. The objective of the LTM systems workgroup was to provide a vision and path towards novel and innovative LTM systems, which should be able to provide relevant, actionable information on system performance in a cost-effective manner. Two investment sectors were developed in this Breakout Session. The last Breakout Session of the Technical Forum was on LTM information management. The session focus was on the development and implementation of novel information management systems for LTM including techniques to address data issues such as: efficient management of large and diverse datasets; consistency and comparability in data management and incorporation of accurate historical information; data interpretation and information synthesis including statistical methods, modeling, and visualization; and linage of data to site management objectives and leveraging information to forge consensus among stakeholders. One investment sector was developed in this Breakout Session.« less

  20. Using larval fish community structure to guide long-term monitoring of fish spawning activity

    USGS Publications Warehouse

    Pritt, Jeremy J.; Roseman, Edward F.; Ross, Jason E.; DeBruyne, Robin L.

    2015-01-01

    Larval fishes provide a direct indication of spawning activity and may therefore be useful for long-term monitoring efforts in relation to spawning habitat restoration. However, larval fish sampling can be time intensive and costly. We sought to understand the spatial and temporal structure of larval fish communities in the St. Clair–Detroit River system, Michigan–Ontario, to determine whether targeted larval fish sampling can be made more efficient for long-term monitoring. We found that larval fish communities were highly nested, with lower river segments and late-spring samples containing the highest genus richness of larval fish. We created four sampling scenarios for each river system: (1) using all available data, (2) limiting temporal sampling to late spring, (3) limiting spatial sampling to lower river segments only, and (4) limiting both spatial and temporal sampling. By limiting the spatial extent of sampling to lower river sites and/or limiting the temporal extent to the late-spring period, we found that effort could be reduced by more than 50% while maintaining over 75% of the observed and estimated total genus richness. Similarly, limiting the sampling effort to lower river sites and/or the late-spring period maintained between 65% and 93% of the observed richness of lithophilic-spawning genera and invasive genera. In general, community composition remained consistent among sampling scenarios. Targeted sampling offers a lower-cost alternative to exhaustive spatial and temporal sampling and may be more readily incorporated into long-term monitoring.

  1. Combining Modeling and Monitoring to Produce a New Paradigm of an Integrated Approach to Providing Long-Term Control of Contaminants

    NASA Astrophysics Data System (ADS)

    Fogwell, T. W.

    2009-12-01

    Sir David King, Chief Science Advisor to the British government and Cambridge University Professor, stated in October 2005, "The scientific community is considerably more capable than it has been in the past to assist governments to avoid and reduce risk to their own populations. Prime ministers and presidents ignore the advice from the science community at the peril of their own populations." Some of these greater capabilities can be found in better monitoring techniques applied to better modeling methods. These modeling methods can be combined with the information derived from monitoring data in order to decrease the risk of population exposure to dangerous substances and to promote efficient control or cleanup of the contaminants. An introduction is presented of the types of problems that exist for long-term control of radionuclides at DOE sites. A breakdown of the distributions at specific sites is given, together with the associated difficulties. A paradigm for remediation showing the integration of monitoring with modeling is presented. It is based on a feedback system that allows for the monitoring to act as principal sensors in a control system. The resulting system can be optimized to improve performance. Optimizing monitoring automatically entails linking the monitoring with modeling. If monitoring designs were required to be more efficient, thus requiring optimization, then the monitoring automatically becomes linked to modeling. Records of decision could be written to accommodate revisions in monitoring as better modeling evolves. Currently the establishment of a very prescriptive monitoring program fails to have a mechanism for improving models and improving control of the contaminants. The technical pieces of the required paradigm are already available; they just need to be implemented and applied to solve the long-term control of the contaminants. An integration of the various parts of the system is presented. Each part is described, and examples are given. References are given to other projects which bring together similar elements in systems for the control of contaminants. Trends are given for the development of the technical features of a robust system. Examples of monitoring methods for specific sites are given. The examples are used to illustrate how such a system would work. Examples of technology needs are presented. Finally, other examples of integrated modeling-monitoring approaches are presented.

  2. GB-InSAR monitoring and observational method for landslide emergency management: the Montaguto earthflow (AV, Italy)

    NASA Astrophysics Data System (ADS)

    Ferrigno, Federica; Gigli, Giovanni; Fanti, Riccardo; Intrieri, Emanuele; Casagli, Nicola

    2017-06-01

    On 10 March 2010, because of the heavy rainfall in the preceding days, the Montaguto landslide (Southern Italy) reactivated, affecting both state road 90 Delle Puglie and the Rome-Bari railway. A similar event occurred on May 2005 and on September 2009. As a result, the National Civil Protection Department (DPC) started an accurate monitoring and analysis program. A monitoring project using the GB-InSAR (ground-based interferometric synthetic aperture radar) system was emplaced to investigate the landslide kinematics, plan urgent safety measures for risk mitigation and design long-term stabilization work.Here, we present the GB-InSAR monitoring system results and its applications in the observational method (OM) approach. GB-InSAR is an established instrument for long-term campaigns aimed at early warning and monitoring during construction works. Our paper further develops these aspects in that it highlights how the OM based on the GB-InSAR technique can produce savings in terms of cost and time in engineering projects without compromising safety. This study focuses on the key role played by the monitoring activities during the design and planning activities, with special reference to the emergency phase.

  3. Space Propulsion Synergy Group ETO technology assessments

    NASA Astrophysics Data System (ADS)

    Bray, James

    The Space Propulsion Synergy Group (SPSG), which was chartered to support long-range strategic planning, has, using a broad industry/government team, evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long-term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a priori. The SPSG invented a dual prioritization approach that balances long-term strategic thrusts with current programmatic constraints. This enables individual program managers to make decisions based on both individual project needs and long-term strategic needs. Results indicate that an SSTO using an integrated modular engine has the best long-term potential for a 20 Klb class vehicle, and that health monitoring and control technologies are among the highest dual priority liquid rocket technologies.

  4. EVALUATION OF DIOXIN EMISSIONS MONITORING SYSTEMS

    EPA Science Inventory

    Continuous samplers and real or semi-real-time continuous monitors for polychlorinated dibenzodioxins and furans provide significant advantages relative to conventional methods of extractive sampling. Continuous samplers collect long term samples over a time period of days to wee...

  5. Development and evaluation of a long-term, implantable, electrically actuated left ventricular assist system: THI/Gould LVAS.

    PubMed

    Norman, J C; McGee, M G; Fuqua, J M; Igo, S R; Turner, S A; Sterling, R; Urrutia, C O; Frazier, O H; Clay, W C; Chambers, J A

    1983-02-01

    A long-term, implantable, electrically actuated left ventricular assist system (THI/Gould LVAS) is being developed and characterized in vitro and in vivo for utilization in patients with end-stage heart disease. This system consists of five major components: a long-term, implantable blood pump (THI E-type ALVAD); an electrical-mechanical energy converter (Gould Model V); a control unit with batteries; a volume compensation system; and an external power supply and monitoring unit. Two of these components (blood pump and electrical-mechanical energy converter) have been integrated, and are undergoing chronic in vivo evaluations in calves. Thus far, 44 pneumatically and electrically actuated THI/Gould LVAS evaluations have been performed. This experience has resulted in greater than 6.5 years of actuation in vivo, with durations exceeding 1 year. System in vivo performance in terms of durability, mechanical reliability, hemodynamic effectiveness, and biocompatibility has been satisfactory. Demonstration of long-term (2-year) effectiveness in supporting the circulation is the ultimate goal.

  6. Individual based, long term monitoring of acacia trees in hyper arid zone: Integration of a field survey and a remote sensing approach

    NASA Astrophysics Data System (ADS)

    Isaacson, Sivan; Blumberg, Dan G.; Ginat, Hanan; Shalmon, Benny

    2013-04-01

    Vegetation in hyper arid zones is very sparse as is. Monitoring vegetation changes in hyper arid zones is important because any reduction in the vegetation cover in these areas can lead to a considerable reduction in the carrying capacity of the ecological system. This study focuses on the impact of climate fluctuations on the acacia population in the southern Arava valley, Israel. The period of this survey includes a sequence of dry years with no flashfloods in most of the plots that ended in two years with vast floods. Arid zone acacia trees play a significant role in the desert ecosystem by moderating the extreme environmental conditions including radiation, temperature, humidity and precipitation. The trees also provide nutrients for the desert dwellers. Therefore, acacia trees in arid zones are considered to be `keystone species', because they have major influence over both plants and animal species, i.e., biodiversity. Long term monitoring of the acacia tree population in this area can provide insights into long term impacts of climate fluctuations on ecosystems in arid zones. Since 2000, a continuous yearly based survey on the three species of acacia population in seven different plots is conducted in the southern Arava (established by Shalmon, ecologist of the Israel nature and parks authority). The seven plots representing different ecosystems and hydrological regimes. A yearly based population monitoring enabled us to determine the mortality and recruitment rate of the acacia populations as well as growing rates of individual trees. This survey provides a unique database of the acacia population dynamics during a sequence of dry years that ended in a vast flood event during the winter of 2010. A lack of quantitative, nondestructive methods to estimate and monitor stress status of the acacia trees, led us to integrate remote sensing tools (ground and air-based) along with conventional field measurements in order to develop a long term monitoring of acacia trees in hyper arid zones. This study includes further work on the development of ground based remote sensing as a new tool to monitor stress indicators as part of long term ecological research. Since acacia trees are long lived, we were able to identify individual trees in satellite images from 1968 (corona) and expand our monitoring "into the past". Remote sensing expands the spatial and temporal database and is thus a powerful tool for long term monitoring in arid zones, where access is limited and long-term ground data are rare.

  7. Two Decades in the Life of EXO 2030+375

    NASA Technical Reports Server (NTRS)

    Wilson-Hodge, Colleen A.; Jenke, Pete; Finger, Mark; Camero-Arranz, Ascension; Fabregat, Juan; Reig, Pablo; Steele, Iain

    2011-01-01

    EXO 2030+375, a 42-s accreting pulsar in a 46-day orbit around a Be star, has undergone a detected outburst at nearly every periastron passage since 1991. It has been monitored with BATSE, RXTE, and Fermi/GBM. We will present preliminary results of long-term monitoring, including a long-term frequency history, long-term pulsed flux measurements, and available long ]term optical/ir monitoring results.

  8. Long-term monitoring of high-elevation white pine communities in Pacific West Region National Parks

    Treesearch

    Shawn T. McKinney; Tom Rodhouse; Les Chow; Penelope Latham; Daniel Sarr; Lisa Garrett; Linda Mutch

    2011-01-01

    National Park Service Inventory and Monitoring (I&M) networks conduct long-term monitoring to provide park managers information on the status and trends in key biological and environmental attributes (Vital Signs). Here we present an overview of a collaborative approach to long-term monitoring of high-elevation white pine forest dynamics among three Pacific West...

  9. An RFID-based on-lens sensor system for long-term IOP monitoring.

    PubMed

    Hsu, Shun-Hsi; Chiou, Jin-Chern; Liao, Yu-Te; Yang, Tzu-Sen; Kuei, Cheng-Kai; Wu, Tsung-Wei; Huang, Yu-Chieh

    2015-01-01

    In this paper, an RFID-based on-lens sensor system is proposed for noninvasive long-term intraocular pressure monitoring. The proposed sensor IC, fabricated in a 0.18um CMOS process, consists of capacitive sensor readout circuitry, RFID communication circuits, and digital processing units. The sensor IC is integrated with electroplating capacitive sensors and a receiving antenna on the contact lens. The sensor IC can be wirelessly powered, communicate with RFID compatible equipment, and perform IOP measurement using on-lens capacitive sensor continuously from a 2cm distance while the incident power from an RFID reader is 20 dBm. The proposed system is compatible to Gen2 RFID protocol, extending the flexibility and reducing the self-developed firmware efforts.

  10. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

    PubMed Central

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152

  11. Long-Term Ecological Monitoring Field Sampling Plan for 2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Haney

    2007-07-31

    This field sampling plan describes the field investigations planned for the Long-Term Ecological Monitoring Project at the Idaho National Laboratory Site in 2007. This plan and the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions constitute the sampling and analysis plan supporting long-term ecological monitoring sampling in 2007. The data collected under this plan will become part of the long-term ecological monitoring data set that is being collected annually. The data will be used t determine the requirements for the subsequent long-term ecological monitoring. This plan guides the 2007more » investigations, including sampling, quality assurance, quality control, analytical procedures, and data management. As such, this plan will help to ensure that the resulting monitoring data will be scientifically valid, defensible, and of known and acceptable quality.« less

  12. Representativeness of shorter measurement sessions in long-term indoor air monitoring.

    PubMed

    Maciejewska, M; Szczurek, A

    2015-02-01

    Indoor air quality (IAQ) considerably influences health, comfort and the overall performance of people who spend most of their lives in confined spaces. For this reason, there is a strong need to develop methods for IAQ assessment. The fundamental issue in the quantitative determination of IAQ is the duration of measurements. Its inadequate choice may result in providing incorrect information and this potentially leads to wrong conclusions. The most complete information may be acquired through long-term monitoring. However it is typically perceived as impractical due to time and cost load. The aim of this study was to determine whether long-term monitoring can be adequately represented by a shorter measurement session. There were considered three measurable quantities: temperature, relative humidity and carbon dioxide concentration. They are commonly recognized as indicatives for IAQ and may be readily monitored. Scaled Kullback-Leibler divergence, also called relative entropy, was applied as a measure of data representativeness. We considered long-term monitoring in a range from 1 to 9 months. Based on our work, the representative data on CO2 concentration may be acquired while performing measurements during 20% of time dedicated to long-term monitoring. In the case of temperature and relative humidity the respective time demand was 50% of long-term monitoring. From our results, in indoor air monitoring strategies, there could be considered shorter measurement sessions, while still collecting data which are representative for long-term monitoring.

  13. Establishing Long-term Observations of Gas Hydrate Systems: Results from Ocean Networks Canada's NEPTUNE Observatory

    NASA Astrophysics Data System (ADS)

    Scherwath, M.; Riedel, M.; Roemer, M.; Heesemann, M.; Chun, J. H.; Moran, K.; Spence, G.; Thomsen, L.

    2016-12-01

    The key for a scientific understanding of natural environments and the determination of baselines is the long-term monitoring of environmental factors. For seafloor environments including gas hydrate systems, cabled ocean observatories are important platforms for the remote acquisition of a comprehensive suite of datasets. This is particularly critical for those datasets that are difficult to acquire with autonomous, battery-powered systems, such as cameras or high-bandwidth sonar because cable connections provide continuous power and communication from shore to the seafloor. Ocean Networks Canada is operating the NEPTUNE cabled undersea observatory in the Northeast Pacific with two nodes at gas hydrate sites, Barkley Canyon and Clayoquot Slope. With up to seven years of continuous data from these locations we are now beginning to understand the dynamics of the natural systems and are able to classify the variations within the gas hydrate system. For example, the long-term monitoring of gas vent activity has allowed us to classify phases of low, intermittent and high activity that seem to reoccur periodically. Or, by recording the speeds of bacterial mat growth or detecting periods of increased productivity of flora and fauna at hydrates sites we can start to classify benthic activity and relate that to outside environmental parameters. This will eventually allow us to do enhanced environmental monitoring, establish baselines, and potentially detect anthropogenic variations or events for example during gas hydrate production.

  14. Temporal variations in the potential hydrological performance of extensive green roof systems

    NASA Astrophysics Data System (ADS)

    De-Ville, Simon; Menon, Manoj; Stovin, Virginia

    2018-03-01

    Existing literature provides contradictory information about variation in potential green roof hydrological performance over time. This study has evaluated a long-term hydrological monitoring record from a series of extensive green roof test beds to identify long-term evolutions and sub-annual (seasonal) variations in potential hydrological performance. Monitoring of nine differently-configured extensive green roof test beds took place over a period of 6 years in Sheffield, UK. Long-term evolutions and sub-annual trends in maximum potential retention performance were identified through physical monitoring of substrate field capacity over time. An independent evaluation of temporal variations in detention performance was undertaken through the fitting of reservoir-routing model parameters. Aggregation of the resulting retention and detention variations permitted the prediction of extensive green roof hydrological performance in response to a 1-in-30-year 1-h summer design storm for Sheffield, UK, which facilitated the comparison of multi and sub-annual hydrological performance variations. Sub-annual (seasonal) variation was found to be significantly greater than long-term evolution. Potential retention performance increased by up to 12% after 5-years, whilst the maximum sub-annual variation in potential retention was 27%. For vegetated roof configurations, a 4% long-term improvement was observed for detention performance, compared to a maximum 63% sub-annual variation. Consistent long-term reductions in detention performance were observed in unvegetated roof configurations, with a non-standard expanded-clay substrate experiencing a 45% reduction in peak attenuation over 5-years. Conventional roof configurations exhibit stable long-term hydrological performance, but are nonetheless subject to sub-annual variation.

  15. Integrating environmental monitoring with cumulative effects management and decision making.

    PubMed

    Cronmiller, Joshua G; Noble, Bram F

    2018-05-01

    Cumulative effects (CE) monitoring is foundational to emerging regional and watershed CE management frameworks, yet monitoring is often poorly integrated with CE management and decision-making processes. The challenges are largely institutional and organizational, more so than scientific or technical. Calls for improved integration of monitoring with CE management and decision making are not new, but there has been limited research on how best to integrate environmental monitoring programs to ensure credible CE science and to deliver results that respond to the more immediate questions and needs of regulatory decision makers. This paper examines options for the integration of environmental monitoring with CE frameworks. Based on semistructured interviews with practitioners, regulators, and other experts in the Lower Athabasca, Alberta, Canada, 3 approaches to monitoring system design are presented. First, a distributed monitoring system, reflecting the current approach in the Lower Athabasca, where monitoring is delegated to different external programs and organizations; second, a 1-window system in which monitoring is undertaken by a single, in-house agency for the purpose of informing management and regulatory decision making; third, an independent system driven primarily by CE science and understanding causal relationships, with knowledge adopted for decision support where relevant to specific management questions. The strengths and limitations of each approach are presented. A hybrid approach may be optimal-an independent, nongovernment, 1-window model for CE science, monitoring, and information delivery-capitalizing on the strengths of distributed, 1-window, and independent monitoring systems while mitigating their weaknesses. If governments are committed to solving CE problems, they must invest in the long-term science needed to do so; at the same time, if science-based monitoring programs are to be sustainable over the long term, they must be responsive to the more immediate, often shorter term needs and CE information requirements of decision makers. Integr Environ Assess Manag 2018;14:407-417. © 2018 SETAC. © 2018 SETAC.

  16. Noncontact ECG system for unobtrusive long-term monitoring.

    PubMed

    McDonald, Neil J; Anumula, Harini A; Duff, Eric; Soussou, Walid

    2012-01-01

    This paper describes measurements made using an ECG system with QUASAR's capacitive bioelectrodes integrated into a pad system that is placed over a chair. QUASAR's capacitive bioelectrode has the property of measuring bioelectric potentials at a small separation from the body. This enables the measurement of ECG signals through fabric, without the removal of clothing or preparation of skin. The ECG was measured through the subject's clothing while the subject sat in the chair without any supporting action from the subject. The ECG pad system is an example of a high compliance system that places minimal requirements upon the subject and, consequently, can be used to generate a long-term record from ECG segments collected on a daily basis, providing valuable information on long-term trends in cardiac health.

  17. Ambulatory instrumentation suitable for long-term monitoring of cattle health.

    PubMed

    Schoenig, S A; Hildreth, T S; Nagl, L; Erickson, H; Spire, M; Andresen, D; Warren, S

    2004-01-01

    The benefits of real-time health diagnoses of cattle are potentially tremendous. Early detection of transmissible disease, whether from natural or terrorist events, could help to avoid huge financial losses in the agriculture industry while also improving meat quality. This work discusses physiological and behavioral parameters relevant to cattle state-of-health assessment. These parameters, along with a potentially harsh monitoring environment, drive a set of design considerations that must be addressed when building systems to acquire long-term, real-time measurements in the field. A prototype system is presented that supports the measurement of suitable physiologic parameters and begins to address the design constraints for continuous state-of-health determination in free-roaming cattle.

  18. Traffic & rural intersection monitoring with a solar-based infrared wireless system : phase 2 final report, long term effect and justification for further analysis, May 2008 [summary].

    DOT National Transportation Integrated Search

    2008-05-01

    This study concerns the development and evaluation of a dynamic speed monitoring (DSM) system for use at rural intersections. The purpose of the DSM system is to give traffic speed feedback to drivers via an advisory sign, with the goals of improving...

  19. Real-time alpha monitoring of a radioactive liquid waste stream at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, J.D.; Whitley, C.R.; Rawool-Sullivan, M.

    1995-12-31

    This poster display concerns the development, installation, and testing of a real-time radioactive liquid waste monitor at Los Alamos National Laboratory (LANL). The detector system was designed for the LANL Radioactive Liquid Waste Treatment Facility so that influent to the plant could be monitored in real time. By knowing the activity of the influent, plant operators can better monitor treatment, better segregate waste (potentially), and monitor the regulatory compliance of users of the LANL Radioactive Liquid Waste Collection System. The detector system uses long-range alpha detection technology, which is a nonintrusive method of characterization that determines alpha activity on themore » liquid surface by measuring the ionization of ambient air. Extensive testing has been performed to ensure long-term use with a minimal amount of maintenance. The final design was a simple cost-effective alpha monitor that could be modified for monitoring influent waste streams at various points in the LANL Radioactive Liquid Waste Collection System.« less

  20. Proceedings of the NASA Microbiology Workshop

    NASA Technical Reports Server (NTRS)

    Roman, M. C.; Jan, D. L.

    2012-01-01

    Long-term spaceflight is characterized by extraordinary challenges to maintain the life-supporting instrumentation free from microbial contamination and the crew healthy. The methodology currently employed for microbial monitoring in space stations or short spaceflights within the orbit of Earth have been instrumental in safeguarding the success of the missions, but suffers certain shortcomings that are critical for long spaceflights. This workshop addressed current practices and methodologies for microbial monitoring in space systems, and identified and discussed promising alternative methodologies and cutting-edge technologies for pursuit in the microbial monitoring that hold promise for supporting future NASA long-duration space missions.

  1. Design of a smart ECG garment based on conductive textile electrode and flexible printed circuit board.

    PubMed

    Cai, Zhipeng; Luo, Kan; Liu, Chengyu; Li, Jianqing

    2017-08-09

    A smart electrocardiogram (ECG) garment system was designed for continuous, non-invasive and comfortable ECG monitoring, which mainly consists of four components: Conductive textile electrode, garment, flexible printed circuit board (FPCB)-based ECG processing module and android application program. Conductive textile electrode and FPCB-based ECG processing module (6.8 g, 55 mm × 53 mm × 5 mm) are identified as two key techniques to improve the system's comfort and flexibility. Preliminary experimental results verified that the textile electrodes with circle shape, 40 mm size in diameter, and 5 mm thickness sponge are best suited for the long-term ECG monitoring application. The tests on the whole system confirmed that the designed smart garment can obtain long-term ECG recordings with high signal quality.

  2. 78 FR 68757 - Atlantic Highly Migratory Species; Vessel Monitoring Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... vessel that declares out of the HMS fishery long-term declaration by as much as 4 hours if it declares... hours a day, 7 days a week to provide hourly position reports for the duration of the long-term... to use VMS, to provide hourly position reports 24 hours a day, 7 days a week (24/7) via VMS. The...

  3. Low-power sensor module for long-term activity monitoring.

    PubMed

    Leuenberger, Kaspar; Gassert, Roger

    2011-01-01

    Wearable sensor modules are a promising approach to collecting data on functional motor activities, both for repeated and long-term assessments, as well as to investigate the transfer of therapy to activities of daily living at home, but have so far either had limited sensing capabilities, or were not laid out for long-term monitoring. This paper presents ReSense, a miniature sensor unit optimized for long-term monitoring of functional activity. Inertial MEMS sensors capture accelerations along six degrees of freedom and a barometric pressure sensor serves as a precise altimeter. Data is written to an integrated memory card. The realized module measures Ø25 × 10 mm, weighs 10 g and can record continuously for 27 h at 25 Hz and over 22 h at 100 Hz. The integrated power-management system detects inactivity and extends the operating time by about a factor of two, as shown by initial 24 h recordings on five energetic healthy adults. The integrated barometric pressure sensor allowed to identify activities incorporating a change in altitude, such as going up/down stairs or riding an elevator. By taking into account data from the inertial sensors during the altitude changes, it becomes possible to distinguish between these two activities.

  4. Caribbean-wide, long-term study of seagrass beds reveals local variations, shifts in community structure and occasional collapse.

    PubMed

    van Tussenbroek, Brigitta I; Cortés, Jorge; Collin, Rachel; Fonseca, Ana C; Gayle, Peter M H; Guzmán, Hector M; Jácome, Gabriel E; Juman, Rahanna; Koltes, Karen H; Oxenford, Hazel A; Rodríguez-Ramirez, Alberto; Samper-Villarreal, Jimena; Smith, Struan R; Tschirky, John J; Weil, Ernesto

    2014-01-01

    The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m(-2)) and annual foliar productivity of the dominant seagrass T. testudinum (<200 and >2000 g dry m(-2)) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration.

  5. Making the CARE Comprehensive Geriatric Assessment as the Core of a Total Mobile Long Term Care Support System in China.

    PubMed

    Cui, Yanyan; Gong, Dongwei; Yang, Bo; Chen, Hua; Tu, Ming-Hsiang; Zhang, Chaonan; Li, Huan; Liang, Naiwen; Jiang, Liping; Chang, Polun

    2018-01-01

    Comprehensive Geriatric Assessments (CGAs) have been recommended to be used for better monitoring the health status of elder residents and providing quality care. This study reported how our nurses perceived the usability of CGA component of a mobile integrated-care long term care support system developed in China. We used the Continuity Assessment Record and Evaluation (CARE), developed in the US, as the core CGA component of our Android-based support system, in which apps were designed for all key stakeholders for delivering quality long term care. A convenience sample of 18 subjects from local long term care facilities in Shanghai, China were invited to assess the CGA assessment component in terms of Technology Acceptance Model for Mobile based on real field trial assessment. All (100%) were satisfied with the mobile CGA component. 88.9% perceived the system was easy to learn and use. 99.4% showed their willingness to use for their work. We concluded it is technically feasible to implement a CGA-based mobile integrated care support system in China.

  6. Predicting long-term performance of engineered geologic carbon dioxide storage systems to inform decisions amidst uncertainty

    NASA Astrophysics Data System (ADS)

    Pawar, R.

    2016-12-01

    Risk assessment and risk management of engineered geologic CO2 storage systems is an area of active investigation. The potential geologic CO2 storage systems currently under consideration are inherently heterogeneous and have limited to no characterization data. Effective risk management decisions to ensure safe, long-term CO2 storage requires assessing and quantifying risks while taking into account the uncertainties in a storage site's characteristics. The key decisions are typically related to definition of area of review, effective monitoring strategy and monitoring duration, potential of leakage and associated impacts, etc. A quantitative methodology for predicting a sequestration site's long-term performance is critical for making key decisions necessary for successful deployment of commercial scale geologic storage projects where projects will require quantitative assessments of potential long-term liabilities. An integrated assessment modeling (IAM) paradigm which treats a geologic CO2 storage site as a system made up of various linked subsystems can be used to predict long-term performance. The subsystems include storage reservoir, seals, potential leakage pathways (such as wellbores, natural fractures/faults) and receptors (such as shallow groundwater aquifers). CO2 movement within each of the subsystems and resulting interactions are captured through reduced order models (ROMs). The ROMs capture the complex physical/chemical interactions resulting due to CO2 movement and interactions but are computationally extremely efficient. The computational efficiency allows for performing Monte Carlo simulations necessary for quantitative probabilistic risk assessment. We have used the IAM to predict long-term performance of geologic CO2 sequestration systems and to answer questions related to probability of leakage of CO2 through wellbores, impact of CO2/brine leakage into shallow aquifer, etc. Answers to such questions are critical in making key risk management decisions. A systematic uncertainty quantification approach can been used to understand how uncertain parameters associated with different subsystems (e.g., reservoir permeability, wellbore cement permeability, wellbore density, etc.) impact the overall site performance predictions.

  7. Long term fluctuations of groundwater mine pollution in a sulfide mining district with dry Mediterranean climate: Implications for water resources management and remediation.

    PubMed

    Caraballo, Manuel A; Macías, Francisco; Nieto, José Miguel; Ayora, Carlos

    2016-01-01

    Water resources management and restoration strategies, and subsequently ecological and human life quality, are highly influenced by the presence of short and long term cycles affecting the intensity of a targeted pollution. On this respect, a typical acid mine drainage (AMD) groundwater from a sulfide mining district with dry Mediterranean climate (Iberian Pyrite Belt, SW Spain) was studied to unravel the effect of long term weather changes in water flow rate and metal pollutants concentration. Three well differentiated polluting stages were observed and the specific geochemical, mineralogical and hydrological processes involved (pyrite and enclosing rocks dissolution, evaporitic salts precipitation-redisolution and pluviometric long term fluctuations) were discussed. Evidencing the importance of including longer background monitoring stage in AMD management and restoration strategies, the present study strongly advise a minimum 5-years period of AMD continuous monitoring previous to the design of any AMD remediation system in regions with dry Mediterranean climate. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Using oblique digital photography for alluvial sandbar monitoring and low-cost change detection

    USGS Publications Warehouse

    Tusso, Robert B.; Buscombe, Daniel D.; Grams, Paul E.

    2015-01-01

    The maintenance of alluvial sandbars is a longstanding management interest along the Colorado River in Grand Canyon. Resource managers are interested in both the long-term trend in sandbar condition and the short-term response to management actions, such as intentional controlled floods released from Glen Canyon Dam. Long-term monitoring is accomplished at a range of scales, by a combination of annual topographic survey at selected sites, daily collection of images from those sites using novel, autonomously operating, digital camera systems (hereafter referred to as 'remote cameras'), and quadrennial remote sensing of sandbars canyonwide. In this paper, we present results from the remote camera images for daily changes in sandbar topography.

  9. A Low-Cost, In Situ Resistivity and Temperature Monitoring System

    EPA Science Inventory

    We present a low-cost, reliable method for long-term in situ autonomous monitoring of subsurface resistivity and temperature in a shallow, moderately heterogeneous subsurface. Probes, to be left in situ, were constructed at relatively low cost with close electrode spacing. Once i...

  10. Roadmap to Long-Term Monitoring Optimization

    EPA Pesticide Factsheets

    This roadmap focuses on optimization of established long-term monitoring programs for groundwater. Tools and techniques discussed concentrate on methods for optimizing the monitoring frequency and spatial (three-dimensional) distribution of wells ...

  11. myBrain: a novel EEG embedded system for epilepsy monitoring.

    PubMed

    Pinho, Francisco; Cerqueira, João; Correia, José; Sousa, Nuno; Dias, Nuno

    2017-10-01

    The World Health Organisation has pointed that a successful health care delivery, requires effective medical devices as tools for prevention, diagnosis, treatment and rehabilitation. Several studies have concluded that longer monitoring periods and outpatient settings might increase diagnosis accuracy and success rate of treatment selection. The long-term monitoring of epileptic patients through electroencephalography (EEG) has been considered a powerful tool to improve the diagnosis, disease classification, and treatment of patients with such condition. This work presents the development of a wireless and wearable EEG acquisition platform suitable for both long-term and short-term monitoring in inpatient and outpatient settings. The developed platform features 32 passive dry electrodes, analogue-to-digital signal conversion with 24-bit resolution and a variable sampling frequency from 250 Hz to 1000 Hz per channel, embedded in a stand-alone module. A computer-on-module embedded system runs a Linux ® operating system that rules the interface between two software frameworks, which interact to satisfy the real-time constraints of signal acquisition as well as parallel recording, processing and wireless data transmission. A textile structure was developed to accommodate all components. Platform performance was evaluated in terms of hardware, software and signal quality. The electrodes were characterised through electrochemical impedance spectroscopy and the operating system performance running an epileptic discrimination algorithm was evaluated. Signal quality was thoroughly assessed in two different approaches: playback of EEG reference signals and benchmarking with a clinical-grade EEG system in alpha-wave replacement and steady-state visual evoked potential paradigms. The proposed platform seems to efficiently monitor epileptic patients in both inpatient and outpatient settings and paves the way to new ambulatory clinical regimens as well as non-clinical EEG applications.

  12. Automatic modal identification of cable-supported bridges instrumented with a long-term monitoring system

    NASA Astrophysics Data System (ADS)

    Ni, Y. Q.; Fan, K. Q.; Zheng, G.; Chan, T. H. T.; Ko, J. M.

    2003-08-01

    An automatic modal identification program is developed for continuous extraction of modal parameters of three cable-supported bridges in Hong Kong which are instrumented with a long-term monitoring system. The program employs the Complex Modal Indication Function (CMIF) algorithm to identify modal properties from continuous ambient vibration measurements in an on-line manner. By using the LabVIEW graphical programming language, the software realizes the algorithm in Virtual Instrument (VI) style. The applicability and implementation issues of the developed software are demonstrated by using one-year measurement data acquired from 67 channels of accelerometers deployed on the cable-stayed Ting Kau Bridge. With the continuously identified results, normal variability of modal vectors caused by varying environmental and operational conditions is observed. Such observation is very helpful for selection of appropriate measured modal vectors for structural health monitoring applications.

  13. Connecticut permanent long-term bridge monitoring network, volume 2 : monitoring of curved post-tensioned concrete box-girder bridge : I-384 WB over I-84 in East Hartford (bridge #5686).

    DOT National Transportation Integrated Search

    2014-08-01

    This report describes the instrumentation and data acquisition for a three-span continuous, curved post-tensioned box-girder : bridge in Connecticut. The computer-based remote monitoring system was developed to collect information on the deformations...

  14. Connecticut permanent long-term bridge monitoring network, volume 4 : monitoring of curved steel box-girder composite bridge - I-84 EB Flyover to I-91 NB in Hartford (bridge #5868).

    DOT National Transportation Integrated Search

    2014-08-01

    This report describes the instrumentation and data acquisition for a continuous curved steel box-girder composite bridge in : Connecticut. The computer-based remote monitoring system was installed in 2001, with accelerometers, tilt meters and : tempe...

  15. Connecticut permanent long-term bridge monitoring network, volume 1 : monitoring of post-tensioned segmental concrete box-girder bridge - I-95 over the Connecticut River in Old Saybrook (bridge #6200).

    DOT National Transportation Integrated Search

    2014-08-01

    This report describes the instrumentation and data acquisition for an eleven span segmental, post-tensioned : box-girder bridge in Connecticut. Based on a request from the designers, the computer-based remote : monitoring system was developed to coll...

  16. Global Water Clarity: Continuing a Century-Long Monitoring

    EPA Science Inventory

    Aquatic systems worldwide are changing due to increasing climate variability and human activities, yet it is difficult to capture such temporal changes without standardized long-term observations [Boyce et al. 2015, Barton et al. 2016]. Unlike the well-established Keeling curve t...

  17. Developments in seismic monitoring for risk reduction

    USGS Publications Warehouse

    Celebi, M.

    2007-01-01

    This paper presents recent state-of-the-art developments to obtain displacements and drift ratios for seismic monitoring and damage assessment of buildings. In most cases, decisions on safety of buildings following seismic events are based on visual inspections of the structures. Real-time instrumental measurements using GPS or double integration of accelerations, however, offer a viable alternative. Relevant parameters, such as the type of connections and structural characteristics (including storey geometry), can be estimated to compute drifts corresponding to several pre-selected threshold stages of damage. Drift ratios determined from real-time monitoring can then be compared to these thresholds in order to estimate damage conditions drift ratios. This approach is demonstrated in three steel frame buildings in San Francisco, California. Recently recorded data of strong shaking from these buildings indicate that the monitoring system can be a useful tool in rapid assessment of buildings and other structures following an earthquake. Such systems can also be used for risk monitoring, as a method to assess performance-based design and analysis procedures, for long-term assessment of structural characteristics of a building, and as a possible long-term damage detection tool.

  18. Live load monitoring for the I-10 twin span bridge : research project capsule.

    DOT National Transportation Integrated Search

    2014-10-01

    To establish a site-specific database for bridge evaluation and future bridge design, : DOTD established a long-term health monitoring system at the I-10 Twin Span Bridge. : The bridge is instrumented from deck to piles to capture bridge response (bo...

  19. Long Term Monitoring of Atmospheric Composition at NOAA - Driving Science with 60 Year-old Records

    NASA Astrophysics Data System (ADS)

    Butler, J. H.

    2017-12-01

    NOAA's Global Monitoring Division and its precursor organizations have provided some of the longest real-time records of the trends and distributions of climatically relevant substances in the atmosphere, some going back for 60 years (http://www.esrl.noaa.gov/gmd). The focus of these measurements has been on obtaining reliable records of global trends and distributions of these substances, but the experimental design and use of measurements have advanced over time with evolving scientific questions. Today, and into this century, scientific questions continue to progress and the observing systems that address them will need to progress accordingly. Long-term, ground based observing systems in NOAA's Global Monitoring Division focus largely on three sets of questions, two of which align with WCRP grand challenges. These are Carbon Cycle System Feedbacks, Trends in Surface Radiation and Cloud Distributions, and Recovery of Stratospheric Ozone. The data collected and analyzed help us understand radiative forcing, climate sensitivity, air quality, climate modification, renewable energy options, and arctic processes, and they are useful for verifying model output and satellite retrievals. Regional information will become increasingly important for mitigating and adapting to climate change, and this information must be accurate, precise, and without bias. NOAA, with its long-standing networks and its role in providing calibrations for partnering organizations, is well positioned to provide the linkages necessary to assure that regional measurements are comparable. This presentation will identify major, climate-relevant findings that have come from NOAA's networks in the past and will address the long-term monitoring needs to support decision-making over coming decades as society begins to seriously address climate change.

  20. Continuous noninvasive monitoring in the neonatal ICU.

    PubMed

    Sahni, Rakesh

    2017-04-01

    Standard hemodynamic monitoring such as heart rate and systemic blood pressure may only provide a crude estimation of organ perfusion during neonatal intensive care. Pulse oximetry monitoring allows for continuous noninvasive monitoring of hemoglobin oxygenation and thus provides estimation of end-organ oxygenation. This review aims to provide an overview of pulse oximetry and discuss its current and potential clinical use during neonatal intensive care. Technological advances in continuous assessment of dynamic changes in systemic oxygenation with pulse oximetry during transition to extrauterine life and beyond provide additional details about physiological interactions among the key hemodynamic factors regulating systemic blood flow distribution along with the subtle changes that are frequently transient and undetectable with standard monitoring. Noninvasive real-time continuous systemic oxygen monitoring has the potential to serve as biomarkers for early-organ dysfunction, to predict adverse short-term and long-term outcomes in critically ill neonates, and to optimize outcomes. Further studies are needed to establish values predicting adverse outcomes and to validate targeted interventions to normalize abnormal values to improve outcomes.

  1. Detecting environmental change: science and society-perspectives on long-term research and monitoring in the 21st century.

    PubMed

    Parr, T W; Sier, A R J; Battarbee, R W; Mackay, A; Burgess, J

    2003-07-01

    Widespread concern over the state of the environment and the impacts of anthropogenic activities on ecosystem services and functions has highlighted the need for high-quality, long-term datasets for detecting and understanding environmental change. In July 2001, an international conference reviewed progress in the field of long-term ecosystem research and monitoring (LTERM). Examples are given which demonstrate the need for long-term environmental monitoring and research, for palaeoecological reconstructions of past environments and for applied use of historical records that inform us of past environmental conditions. LTERM approaches are needed to provide measures of baseline conditions and for informing decisions on ecosystem management and environmental policy formulation. They are also valuable in aiding the understanding of the processes of environmental change, including the integrated effects of natural and anthropogenic drivers and pressures, recovery from stress and resilience of species, populations, communities and ecosystems. The authors argue that, in order to realise the full potential of LTERM approaches, progress must be made in four key areas: (i) increase the number, variety and scope of LTERM activities to help define the operational range of ecosystems; (ii) greater integration of research, monitoring, modelling, palaeoecological reconstruction and remote sensing to create a broad-scale early warning system of environmental change; (iii) development of inter-disciplinary approaches which draw upon social and environmental science expertise to understand the factors determining the vulnerability and resilience of the nature-society system to change; and (iv) more and better use of LTERM data and information to inform the public and policymakers and to provide guidance on sustainable development.

  2. Bridge deterioration models to support Indiana's bridge management system.

    DOT National Transportation Integrated Search

    2016-02-01

    An effective bridge management system that is equipped with reliable deterioration models enables agency engineers to carry out : monitoring and long-term programming of bridge repair actions. At the project level, deterioration models help the agenc...

  3. Climate Change and Water Working Group - User Needs to Manage Hydrclimatic Risk from Days to Decades

    NASA Astrophysics Data System (ADS)

    Raff, D. A.; Brekke, L. D.; Werner, K.; Wood, A.; White, K. D.

    2012-12-01

    The Federal Climate Change Water Working Group (CCAWWG) provides engineering and scientific collaborations in support of water management. CCAWWG objectives include building working relationships across federal science and water management agencies, provide a forum to share expertise and leverage resources, develop education and training forums, to work with water managers to understand scientific needs and to foster collaborative efforts across the Federal and non-Federal water management and science communities to address those needs. Identifying and addressing water management needs has been categorized across two major time scales: days to a decade and multi-decadal, respectively. These two time periods are termed "Short-Term" and "Long-Term" in terms of the types of water management decisions they support where Short-Term roughly correlates to water management operations and Long-Term roughly correlates to planning activities. This presentation will focus on portraying the identified water management user needs across these two time periods. User Needs for Long-Term planning were identified in the 2011 Reclamation and USACE "Addressing Climate Change in Long-Term Water Resources Planning and Management: User Needs for Improving Tools and Information." User needs for Long-Term planning are identified across eight major categories: Summarize Relevant Literature, Obtain Climate Change Information, Make Decisions About How to Use the Climate Change Information, Assess Natural Systems Response, Assess Socioeconomic and Institutional Response, Assess System Risks and Evaluate Alternatives, Assess and Characterize Uncertainties, and Communicating Results and Uncertainties to Decisionmakers. User Needs for Short-Term operations are focused on needs relative to available or desired monitoring and forecast products from the hydroclimatic community. These needs are presenting in the 2012 USACE, Reclamation, and NOAA - NWS "Short-Term Water Management Decisions: User Needs for Improved Climate, Weather, and Hydrologic Information." Identified needs are presented in four categories: Monitoring, Forecasting, Understanding on Product Relationships and Utilization in Water Management, and Information Services Enterprise. These needs represent everything from continuation and enhancement of in situ monitoring products such as USGS water gages and precipitation networks to supporting product maintenance and evolution to accommodate newly developed technologies.

  4. Space-Derived Sewer Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The QuadraScan Longterm Flow Monitoring System is a second generation sewer monitor developed by American Digital Systems, Inc.'s founder Peter Petroff. Petroff, a former spacecraft instrumentation designer at Marshall Space Flight Center, used expertise based on principles acquired in Apollo and other NASA programs. QuadraScan borrows even more heavily from space technology, for example in its data acquisition and memory system derived from NASA satellites. "One-time" measurements are often plagued with substantial errors due to the flow of groundwater absorbed into the system. These system sizing errors stem from a basic informational deficiency: accurate, reliable data on how much water flows through a sewer system over a long period of time is very difficult to obtain. City officials are turning to "permanent," or long-term sewer monitoring systems. QuadraScan offers many advantages to city officials such as the early warning capability to effectively plan for city growth in order to avoid the crippling economic impact of bans on new sewer connections in effect in many cities today.

  5. Did LMC X-3 Undergo a 'Her X-1-like' Anomalous Low State?

    NASA Technical Reports Server (NTRS)

    Boyd, Patricia t.

    2008-01-01

    The black hole X-ray binary LMC X-3 has been monitored by the Rossi X-ray Timing Explorer (RXTE) from its launch to the present by the All-Sky Monitor (ASM). This well-sampled light curve is supplemented by frequent pointed observations with the PCA and HEXTE instruments which provide improved sensitivity, time resolution and spectral information. The long-term X-ray luminosity of the system is strongly modulated on timescales of hundreds of days. The mean 2-10 kev X-ray flux varies by a factor of more than 100 during this long-term cycle. This variability has been attributed to the precession of a bright, tilted, and warped accretion disk---the mechanism also invoked to explain the 35-day super-orbital period in the X-ray binary pulsar system Her X-1. The ASM light curve displays a unique episode, starting in December 2003, during which LMC X-3 displayed a very low, nearly constant flux, for about 80 days. This is markedly different from the typical low-flux excursions in LMC X-3, which smoothly evolve toward and then away from a minimum flux on about a 10-day time scale. The character of the long-term variability, as measured by amplitude and characteristic time scale, is not the same after this long low state as it was before. Similar shifts in long-term period and amplitude are seen after the so-called "anomalous low states" in Her X-1, when the 35-day X-ray modulation ceases for an unpredictable length of time. These similar shifts in the long-term amplitude and timescale in the two systems suggests they share a similar mechanism which gives rise to the anomalous low states

  6. Lindenmayer DB and Likens GE (eds): Effective ecological monitoring [book review

    Treesearch

    Charles T. Scott

    2011-01-01

    Long-term ecological monitoring is becoming increasingly important but more challenging to fund. Lindenmayer and Likens describe the common characteristics of successful monitoring programs and of those that fail. They draw upon their monitoring experiences together, independently, and from a variety of other long-term monitoring programs around the world. They then...

  7. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Technical Reports Server (NTRS)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.; Sager, J. C. (Principal Investigator)

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estunate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  8. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Astrophysics Data System (ADS)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  9. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    NASA Astrophysics Data System (ADS)

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 12-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  10. Web Based Autonomous Geophysical/Hydrological Monitoring of the Gilt Edge Mine Site: Implementation and Results

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Wangerud, K.; Mattson, E.; Ankeny, M.; Richardson, A.; Heath, G.

    2005-05-01

    The Ruby Gulch repository at the Gilt Edge Mine Superfund site is a capped waste rock repository. Early in the system design EPA and its subcontractor, Bureau of Reclamation, recognized the need for long-term monitoring system to provide information on the repository behavior with the following objectives: 1 Provide information on the integrity of the newly constructed surface cover and diversion system 2 Continually assess the waste's hydrological and geochemical behavior, such that rational decisions can be made for the operation of this cover and liner system 3 Easily access of information pertaining to the system performance to stakeholders 4 Integration of a variety of data sources to produce information which could be used to enhance future cover designs. Through discussions between EPA, the Bureau of Reclamation and Idaho National Laboratory a long-term monitoring system was designed and implemented allowing EPA to meet these objectives. This system was designed to provide a cost effective way to deal with massive amounts of data and information, subject to the following specifications: 1 Data acquisition should occur autonomously and automatically, 2 Data management, processing and presentation should be automated as much as possible, 3 Users should be able to access all data and information remotely through a web browser. The INL long-term monitoring system integrates the data from a set of 522 electrodes resistivity electrodes consisting of 462 surface electrodes and 60 borehole electrodes (in 4 wells with 15 electrodes each), an outflow meter at the toe of the repository, an autonomous, remotely accessible weather station, and four wells (average depths of 250 feet) with thermocouples, pressure transducers and sampling ports for water and air. The monitoring system has currently been in operation for over a year, and has collected data continuously over this period. Results from this system have shown both the diurnal variation in rockmass behavior, movement of water through the waste (allowing estimated in residence time) and are leading to a comprehensive model of the repository behavior. Due to the sheer volume of data, a user driven interface allows users to create their own views of the different datasets.

  11. Solar energy system performance evaluation report for IBM System 3, Glendo, Wyoming

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The analysis used was based on instrumented system data monitored and collected for at least one full season of operation. The long-term field performance of the installed system is described. Technical contributions to the definition of techniques and requirements for solar energy system design are given.

  12. Monitoring of left ventricular ejection fraction with a miniature, nonimaging nuclear detector: accuracy and reliability over time with special reference to blood labeling.

    PubMed

    Lindhardt, T B; Hesse, B; Gadsbøll, N

    1997-01-01

    The purpose of this study was to determine the accuracy of determinations of left ventricular ejection fraction (LVEF) by a nonimaging miniature nuclear detector system (Cardioscint) and to evaluate the feasibility of long-term LVEF monitoring in patients admitted to the coronary care unit, with special reference to the blood-labeling technique. Cardioscint LVEF values were compared with measurements of LVEF by conventional gamma camera radionuclide ventriculography in 33 patients with a wide range of LVEF values. In 21 of the 33 patients, long-term monitoring was carried out for 1 to 4 hours (mean 186 minutes), with three different kits: one for in vivo and two for in vitro red blood cell labeling. The stability of the labeling was assessed by determination of the activity of blood samples taken during the first 24 hours after blood labeling. The agreement between Cardioscint LVEF and gamma camera LVEF was good with automatic background correction (r = 0.82; regression equation y = 1.04x + 3.88) but poor with manual background correction (r = 0.50; y = 0.88x - 0.55). The agreement was highest in patients without wall motion abnormalities. The long-term monitoring showed no difference between morning and afternoon Cardioscint LVEF values. Short-lasting fluctuations in LVEFs greater than 10 EF units were observed in the majority of the patients. After 24 hours, the mean reduction in the physical decay-corrected count rate of the blood samples was most pronounced for the two in vitro blood-labeling kits (57% +/- 9% and 41% +/- 3%) and less for the in vivo blood-labeling kit (32% +/- 26%). This "biologic decay" had a marked influence on the Cardioscint monitoring results, demanding frequent background correction. A fairly accurate estimate of LVEF can be obtained with the nonimaging Cardioscint system, and continuous bedside LVEF monitoring can proceed for hours with little inconvenience to the patients. Instability of the red blood cell labeling during long-term monitoring necessitates frequent background correction.

  13. An investment benefiting America's highways : the long term pavement performance program

    DOT National Transportation Integrated Search

    2000-01-01

    The Federal Highway Administration (FHWA) and the States, beginning in 1978, jointly developed and implemented a continuous data collection system called the Highway Performance Monitoring System (HPMS). Currently, the HPMS contains over 110,000 high...

  14. Public strategies for improving eHealth integration and long-term sustainability in public health care systems: Findings from an Italian case study.

    PubMed

    De Rosis, Sabina; Nuti, Sabina

    2018-01-01

    eHealth is expected to contribute in tackling challenges for health care systems. However, it also imposes challenges. Financing strategies adopted at national as well regional levels widely affect eHealth long-term sustainability. In a public health care system, the public actor is among the main "buyers" eHealth. However, public interventions have been increasingly focused on cost containment. How to match these 2 aspects? This article explores some central issues, mainly related to financial aspects, in the development of effective and valuable eHealth strategies in a public health care system: How can the public health care system (as a "buyer") improve long-term success and sustainability of eHealth solutions? What levers are available to match in the long period different interests of different stakeholders in the eHealth field? A case study was performed in the Region of Tuscany, Italy. According to our results, win-win strategies should be followed. Investments should take into account the need to long-term finance solutions, for sustaining changes in health care organizations for obtaining benefits. To solve the interoperability issues, the concept of the "platform approach" emerged, based on collaboration within and between organizations. Private sector as well as beneficiaries and final users of the eHealth solutions should participate in their design, provision, and monitoring. For creating value for all, the evidence gap and the financial needs could be addressed with a pull mechanism of funding, aimed at paying according to the outcomes produced by the eHealth solution, on the base of an ongoing monitoring, measurement, and evaluation of the outcomes. © 2017 The Authors. The International Journal of Health Planning and Management published by John Wiley & Sons Ltd.

  15. Caribbean-Wide, Long-Term Study of Seagrass Beds Reveals Local Variations, Shifts in Community Structure and Occasional Collapse

    PubMed Central

    van Tussenbroek, Brigitta I.; Cortés, Jorge; Collin, Rachel; Fonseca, Ana C.; Gayle, Peter M. H.; Guzmán, Hector M.; Jácome, Gabriel E.; Juman, Rahanna; Koltes, Karen H.; Oxenford, Hazel A.; Rodríguez-Ramirez, Alberto; Samper-Villarreal, Jimena; Smith, Struan R.; Tschirky, John J.; Weil, Ernesto

    2014-01-01

    The CARICOMP monitoring network gathered standardized data from 52 seagrass sampling stations at 22 sites (mostly Thalassia testudinum-dominated beds in reef systems) across the Wider Caribbean twice a year over the period 1993 to 2007 (and in some cases up to 2012). Wide variations in community total biomass (285 to >2000 g dry m−2) and annual foliar productivity of the dominant seagrass T. testudinum (<200 and >2000 g dry m−2) were found among sites. Solar-cycle related intra-annual variations in T. testudinum leaf productivity were detected at latitudes > 16°N. Hurricanes had little to no long-term effects on these well-developed seagrass communities, except for 1 station, where the vegetation was lost by burial below ∼1 m sand. At two sites (5 stations), the seagrass beds collapsed due to excessive grazing by turtles or sea-urchins (the latter in combination with human impact and storms). The low-cost methods of this regional-scale monitoring program were sufficient to detect long-term shifts in the communities, and fifteen (43%) out of 35 long-term monitoring stations (at 17 sites) showed trends in seagrass communities consistent with expected changes under environmental deterioration. PMID:24594732

  16. Importance of Data Management in a Long-term Biological Monitoring Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Sigurd W; Brandt, Craig C; McCracken, Kitty

    2011-01-01

    The long-term Biological Monitoring and Abatement Program (BMAP) has always needed to collect and retain high-quality data on which to base its assessments of ecological status of streams and their recovery after remediation. Its formal quality assurance, data processing, and data management components all contribute to this need. The Quality Assurance Program comprehensively addresses requirements from various institutions, funders, and regulators, and includes a data management component. Centralized data management began a few years into the program. An existing relational database was adapted and extended to handle biological data. Data modeling enabled the program's database to process, store, and retrievemore » its data. The data base's main data tables and several key reference tables are described. One of the most important related activities supporting long-term analyses was the establishing of standards for sampling site names, taxonomic identification, flagging, and other components. There are limitations. Some types of program data were not easily accommodated in the central systems, and many possible data-sharing and integration options are not easily accessible to investigators. The implemented relational database supports the transmittal of data to the Oak Ridge Environmental Information System (OREIS) as the permanent repository. From our experience we offer data management advice to other biologically oriented long-term environmental sampling and analysis programs.« less

  17. Importance of Data Management in a Long-Term Biological Monitoring Program

    NASA Astrophysics Data System (ADS)

    Christensen, Sigurd W.; Brandt, Craig C.; McCracken, Mary K.

    2011-06-01

    The long-term Biological Monitoring and Abatement Program (BMAP) has always needed to collect and retain high-quality data on which to base its assessments of ecological status of streams and their recovery after remediation. Its formal quality assurance, data processing, and data management components all contribute to meeting this need. The Quality Assurance Program comprehensively addresses requirements from various institutions, funders, and regulators, and includes a data management component. Centralized data management began a few years into the program when an existing relational database was adapted and extended to handle biological data. The database's main data tables and several key reference tables are described. One of the most important related activities supporting long-term analyses was the establishing of standards for sampling site names, taxonomic identification, flagging, and other components. The implemented relational database supports the transmittal of data to the Oak Ridge Environmental Information System (OREIS) as the permanent repository. We also discuss some limitations to our implementation. Some types of program data were not easily accommodated in the central systems, and many possible data-sharing and integration options are not easily accessible to investigators. From our experience we offer data management advice to other biologically oriented long-term environmental sampling and analysis programs.

  18. Impact of Landfill Closure Designs on Long-Term Natural Attenuation of Chlorinated Hydrocarbons

    DTIC Science & Technology

    2008-10-01

    Parsons, 2004). The bioreactor provides a source of leachable organic material for the CAH-contaminated aquifer, which is used by native microorganisms ...bioreactor concept is not new. “Bioreactor” is a generic term for a system that degrades contaminants using microorganisms . Bioreactors have been used in a...of CAHs (USEPA, 1998) and using prior experience monitoring enhanced bioremediation sites. The bioreactor was sampled to monitor the chemical and

  19. The Fram Strait integrated ocean observatory

    NASA Astrophysics Data System (ADS)

    Fahrbach, E.; Beszczynska-Möller, A.; Rettig, S.; Rohardt, G.; Sagen, H.; Sandven, S.; Hansen, E.

    2012-04-01

    A long-term oceanographic moored array has been operated since 1997 to measure the ocean water column properties and oceanic advective fluxes through Fram Strait. While the mooring line along 78°50'N is devoted to monitoring variability of the physical environment, the AWI Hausgarten observatory, located north of it, focuses on ecosystem properties and benthic biology. Under the EU DAMOCLES and ACOBAR projects, the oceanographic observatory has been extended towards the innovative integrated observing system, combining the deep ocean moorings, multipurpose acoustic system and a network of gliders. The main aim of this system is long-term environmental monitoring in Fram Strait, combining satellite data, acoustic tomography, oceanographic measurements at moorings and glider sections with high-resolution ice-ocean circulation models through data assimilation. In future perspective, a cable connection between the Hausgarten observatory and a land base on Svalbard is planned as the implementation of the ESONET Arctic node. To take advantage of the planned cabled node, different technologies for the underwater data transmission were reviewed and partially tested under the ESONET DM AOEM. The main focus was to design and evaluate available technical solutions for collecting data from different components of the Fram Strait ocean observing system, and an integration of available data streams for the optimal delivery to the future cabled node. The main components of the Fram Strait integrated observing system will be presented and the current status of available technologies for underwater data transfer will be reviewed. On the long term, an initiative of Helmholtz observatories foresees the interdisciplinary Earth-Observing-System FRAM which combines observatories such as the long term deep-sea ecological observatory HAUSGARTEN, the oceanographic Fram Strait integrated observing system and the Svalbard coastal stations maintained by the Norwegian ARCTOS network. A vision of this modular underwater observatory network in Fram Strait will be presented.

  20. Long-term Blood Pressure Measurement in Freely Moving Mice Using Telemetry.

    PubMed

    Alam, Mohammad Afaque; Parks, Cory; Mancarella, Salvatore

    2016-05-17

    During the development of new vasoactive agents, arterial blood pressure monitoring is crucial for evaluating the efficacy of the new proposed drugs. Indeed, research focusing on the discovery of new potential therapeutic targets using genetically altered mice requires a reliable, long-term assessment of the systemic arterial pressure variation. Currently, the gold standard for obtaining long-term measurements of blood pressure in ambulatory mice uses implantable radio-transmitters, which require artery cannulation. This technique eliminates the need for tethering, restraining, or anesthetizing the animals which introduce stress and artifacts during data sampling. However, arterial blood pressure monitoring in mice via catheterization can be rather challenging due to the small size of the arteries. Here we present a step-by-step guide to illustrate the crucial key passages for a successful subcutaneous implantation of radio-transmitters and carotid artery cannulation in mice. We also include examples of long-term blood pressure activity taken from freely moving mice after a period of post-surgery recovery. Following this procedure will allow reliable direct blood pressure recordings from multiple animals simultaneously.

  1. Long-term phenol, cresols and BTEX monitoring in urban air.

    PubMed

    Sturaro, Alberto; Rella, Rocco; Parvoli, Giorgio; Ferrara, Daniela

    2010-05-01

    This paper reports the results of a long-term monitoring of benzene, toluene, ethylbenzene, xylenes (BTEX), phenol and cresols in the air of Padua during a wide period of the year 2007 using two radial passive samplers (Radiello system) equipped with BTEX- and phenol-specific cartridges. Two sites were monitored, one in the industrial area and one close to the town centre. Relevant pollution episodes have been observed during both the winter and summer periods. Benzene, together with toluene, ethylbenzene and xylenes showed their maximum concentrations during the winter season, but the secondary pollutant phenol was higher than benzene for a large period of the year when the meteorological conditions blocked the pollutants in the lower layers of the atmosphere and solar radiation increased the benzene photo-oxidation process.

  2. Long-term monitoring and evaluation of a new system of community-based psychiatric care. Integrating research, teaching and practice at the University of Verona.

    PubMed

    Amaddeo, Francesco; Burti, Lorenzo; Ruggeri, Mirella; Tansella, Michele

    2009-01-01

    The South-Verona community psychiatric service (CPS) was implemented in 1978, according to Law 180, by the Department of Psychiatry of the University of Verona. Since then this CPS provides prompt, comprehensive and coherent answers to patients' needs, psychological and social, as well as practical, while trying to decrease and control symptoms. Special emphasis is given to integrating different interventions, such as medication, rehabilitation, family support, and social work. The South-Verona experience was from the beginning associated with a long-term research project of monitoring and evaluating the new system of care. The research team has grown and expanded over the years and presently includes the following research units: a) environmental, clinical and genetic determinants of the outcome of mental disorders; b) psychiatric register, economics and geography of mental health; c) clinical psychopharmacology and drug epidemiology; d) brain imaging and neuropsychology; e) clinical psychology and communication in medicine; and f) physical comorbidity and health promotion in psychiatric patients. This paper summarises the main results of the coordinated, long-term evaluative studies conducted so far.

  3. Automated acquisition system for routine, noninvasive monitoring of physiological data.

    PubMed

    Ogawa, M; Tamura, T; Togawa, T

    1998-01-01

    A fully automated, noninvasive data-acquisition system was developed to permit long-term measurement of physiological functions at home, without disturbing subjects' normal routines. The system consists of unconstrained monitors built into furnishings and structures in a home environment. An electrocardiographic (ECG) monitor in the bathtub measures heart function during bathing, a temperature monitor in the bed measures body temperature, and a weight monitor built into the toilet serves as a scale to record weight. All three monitors are connected to one computer and function with data-acquisition programs and a data format rule. The unconstrained physiological parameter monitors and fully automated measurement procedures collect data noninvasively without the subject's awareness. The system was tested for 1 week by a healthy male subject, aged 28, in laboratory-based facilities.

  4. Long-term monitoring of marine gas leakage

    NASA Astrophysics Data System (ADS)

    Spickenbom, Kai; Faber, Eckhard; Poggenburg, Jürgen; Seeger, Christian; Furche, Markus

    2010-05-01

    The sequestration of CO2 in sub-seabed geological formations is one of the Carbon Capture and Storage (CCS) strategies currently under study. Although offshore operations are significantly more expensive than comparable onshore operations, the growing public resistance against onshore CCS projects makes sub-seabed storage a promising option. Even after a thorough review of the geological setting, there is always the possibility of leakage from the reservoir. As part of the EU-financed project CO2ReMoVe (Research, Monitoring, Verification), which aims to develop innovative research and technologies for monitoring and verification of carbon dioxide geological storage, we are working on the development of submarine long-term gas flow monitoring systems. The basic design of the monitoring system builds on our experience in volcano monitoring. Early prototypes were composed of a raft floating on the surface of a mud volcano, carrying sensors for CO2 flux and concentration, data storage and transmission, and power supply by battery-buffered solar panels. The system was modified for installation in open sea by using a buoy instead of a raft and a funnel on the seafloor to collect the gas, connected by a flexible tube. This setup provides a cost-effective solution for shallow waters. However, a buoy interferes with ship traffic, and it is also difficult to adapt this design to greater water depths. These requirements can best be complied by a completely submersed system. A system for unattended long-term monitoring in a marine environment has to be extremely durable. Therefore, we focussed on developing a mechanically and electrically as simple setup as possible, which has the additional advantage of low cost. The system consists of a funnel-shaped gas collector, a sensor head and pressure housings for electronics and power supply. Since this setup is inexpensive, it can be deployed in numbers to cover larger areas. By addition of multi-channel data loggers, data transmission by acoustic modem or cable, relay stations on the seafloor or buoys etc. the infrastructure can be adapted to the environmental setting and financial budget. Prototype tests under laboratory conditions as well as field tests on natural submarine gas vents as an analogue to leaking storage sites have demonstrated the capabilities and robustness of the systems.

  5. Long-term synchronized electrophysiological and behavioral wireless monitoring of freely moving animals

    PubMed Central

    Grand, Laszlo; Ftomov, Sergiu; Timofeev, Igor

    2012-01-01

    Parallel electrophysiological recording and behavioral monitoring of freely moving animals is essential for a better understanding of the neural mechanisms underlying behavior. In this paper we describe a novel wireless recording technique, which is capable of synchronously recording in vivo multichannel electrophysiological (LFP, MUA, EOG, EMG) and activity data (accelerometer, video) from freely moving cats. The method is based on the integration of commercially available components into a simple monitoring system and is complete with accelerometers and the needed signal processing tools. LFP activities of freely moving group-housed cats were recorded from multiple intracortical areas and from the hippocampus. EMG, EOG, accelerometer and video were simultaneously acquired with LFP activities 24-h a day for 3 months. These recordings confirm the possibility of using our wireless method for 24-h long-term monitoring of neurophysiological and behavioral data of freely moving experimental animals such as cats, ferrets, rabbits and other large animals. PMID:23099345

  6. Simultaneous long-term monitoring of LS I +61°303 by OVRO and Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Jaron, Frédéric; Massi, Maria; Kiehlmann, Sebastian; Hovatta, Talvikki

    2018-07-01

    Previous long-term monitorings of the γ-ray-loud X-ray binary LS I +61°303 have revealed the presence of a long-term modulation of ˜4.5 yr. After 9 yr of simultaneous monitoring of LS I +61°303 by the Owens Valley Radio Observatory and the Fermi-LAT, two cycles of the long-term period are now available. Here we perform timing analysis on the radio and the γ-ray light curves. We confirm the presence of previously detected periodicities at both radio and GeV γ-ray wavelengths. Moreover, we discover an offset of the long-term modulation between radio and γ-ray data which could imply different locations of the radio (15 GHz) and GeV emission along the precessing jet.

  7. Recommended features of protocols for long-term ecological monitoring

    USGS Publications Warehouse

    Oakley, Karen L.; Boudreau, Susan L.; Humphrey, Sioux-Z

    2001-01-01

    In 1991, the National Park Service (NPS) selected seven parks to serve as prototypes for development of a long-term ecological monitoring program. Denali National Park and Preserve was one of the prototype parks selected. The principal focus of this national program was to detect and document resource changes and to understand the forces driving those changes. One of the major tasks of each prototype park was to develop monitoring protocols. In this paper, we discuss some lessons learned and what we believe to be the most important features of protocols.One of the many lessons we have learned is that monitoring protocols vary greatly in content and format. This variation leads to confusion about what information protocols should contain and how they should be formatted. Problems we have observed in existing protocols include (1) not providing enough detail, (2) omitting critical topics (such as data management), and (3) mixing explanation with instructions. Once written, protocols often sit on the shelf to collect dust, allowing methods changes to occur without being adequately considered, tested, or documented. Because a lengthy and costly research effort is often needed to develop protocols, a vision of what the final product should look like is helpful. Based on our involvement with the prototype monitoring program for Denali (Oakley and Boudreau 2000), we recommend key features of protocols, including a scheme for linking protocols to data in the data management system and for tracking protocol revisions. A protocol system is crucial for producing long-term data sets of known quality that meet program objectives.

  8. Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.L. Rovey

    A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strainmore » measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.« less

  9. Design and Application of a Field Sensing System for Ground Anchors in Slopes

    PubMed Central

    Choi, Se Woon; Lee, Jihoon; Kim, Jong Moon; Park, Hyo Seon

    2013-01-01

    In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1) load cells based on vibrating wire strain gauges (VWSGs), (2) wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3) master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4) a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons. PMID:23507820

  10. Long-Term Stream Monitoring Programs in U.S. Secondary Schools

    ERIC Educational Resources Information Center

    Overholt, Erin; MacKenzie, Ann Haley

    2005-01-01

    The authors surveyed 15 secondary school teachers in 5 states about how they designed and implemented long-term stream monitoring in their classrooms and the problems and benefits they encountered. The authors surveyed students involved in the stream monitoring projects to obtain their perspective. Teachers reported that stream monitoring provided…

  11. Bridge condition assessment based on long-term strain monitoring

    NASA Astrophysics Data System (ADS)

    Sun, LiMin; Sun, Shouwang

    2011-04-01

    In consideration of the important role that bridges play as transportation infrastructures, their safety, durability and serviceability have always been deeply concerned. Structural Health Monitoring Systems (SHMS) have been installed to many long-span bridges to provide bridge engineers with the information needed in making rational decisions for maintenance. However, SHMS also confronted bridge engineers with the challenge of efficient use of monitoring data. Thus, methodologies which are robust to random disturbance and sensitive to damage become a subject on which many researches in structural condition assessment concentrate. In this study, an innovative probabilistic approach for condition assessment of bridge structures was proposed on the basis of long-term strain monitoring on steel girder of a cable-stayed bridge. First, the methodology of damage detection in the vicinity of monitoring point using strain-based indices was investigated. Then, the composition of strain response of bridge under operational loads was analyzed. Thirdly, the influence of temperature and wind on strains was eliminated and thus strain fluctuation under vehicle loads is obtained. Finally, damage evolution assessment was carried out based on the statistical characteristics of rain-flow cycles derived from the strain fluctuation under vehicle loads. The research conducted indicates that the methodology proposed is qualified for structural condition assessment so far as the following respects are concerned: (a) capability of revealing structural deterioration; (b) immunity to the influence of environmental variation; (c) adaptability to the random characteristic exhibited by long-term monitoring data. Further examination of the applicability of the proposed methodology in aging bridge may provide a more convincing validation.

  12. Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control

    PubMed Central

    Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi

    2017-01-01

    Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at −700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m. PMID:28475168

  13. Deformation Monitoring of Waste-Rock-Backfilled Mining Gob for Ground Control.

    PubMed

    Zhao, Tongbin; Zhang, Yubao; Zhang, Zhenyu; Li, Zhanhai; Ma, Shuqi

    2017-05-05

    Backfill mining is an effective option to mitigate ground subsidence, especially for mining under surface infrastructure, such as buildings, dams, rivers and railways. To evaluate its performance, continual long-term field monitoring of the deformation of backfilled gob is important to satisfy strict public scrutiny. Based on industrial Ethernet, a real-time monitoring system was established to monitor the deformation of waste-rock-backfilled gob at -700 m depth in the Tangshan coal mine, Hebei Province, China. The designed deformation sensors, based on a resistance transducer mechanism, were placed vertically between the roof and floor. Stress sensors were installed above square steel plates that were anchored to the floor strata. Meanwhile, data cables were protected by steel tubes in case of damage. The developed system continually harvested field data for three months. The results show that industrial Ethernet technology can be reliably used for long-term data transmission in complicated underground mining conditions. The monitoring reveals that the roof subsidence of the backfilled gob area can be categorized into four phases. The bearing load of the backfill developed gradually and simultaneously with the deformation of the roof strata, and started to be almost invariable when the mining face passed 97 m.

  14. Long-term monitoring on environmental disasters using multi-source remote sensing technique

    NASA Astrophysics Data System (ADS)

    Kuo, Y. C.; Chen, C. F.

    2017-12-01

    Environmental disasters are extreme events within the earth's system that cause deaths and injuries to humans, as well as causing damages and losses of valuable assets, such as buildings, communication systems, farmlands, forest and etc. In disaster management, a large amount of multi-temporal spatial data is required. Multi-source remote sensing data with different spatial, spectral and temporal resolutions is widely applied on environmental disaster monitoring. With multi-source and multi-temporal high resolution images, we conduct rapid, systematic and seriate observations regarding to economic damages and environmental disasters on earth. It is based on three monitoring platforms: remote sensing, UAS (Unmanned Aircraft Systems) and ground investigation. The advantages of using UAS technology include great mobility and availability in real-time rapid and more flexible weather conditions. The system can produce long-term spatial distribution information from environmental disasters, obtaining high-resolution remote sensing data and field verification data in key monitoring areas. It also supports the prevention and control on ocean pollutions, illegally disposed wastes and pine pests in different scales. Meanwhile, digital photogrammetry can be applied on the camera inside and outside the position parameters to produce Digital Surface Model (DSM) data. The latest terrain environment information is simulated by using DSM data, and can be used as references in disaster recovery in the future.

  15. Mobile nocturnal long-term monitoring of wheezing and cough.

    PubMed

    Gross, Volker; Reinke, Christian; Dette, Frank; Koch, Roland; Vasilescu, Dragos; Penzel, Thomas; Koehler, Ulrich

    2007-02-01

    Changes in normal lung sounds are an important sign of pathophysiological processes in the bronchial system and lung tissue. For the diagnosis of bronchial asthma, coughing and wheezing are important symptoms that indicate the existence of obstruction. In particular, nocturnal long-term acoustic monitoring and assessment make sense for qualitative and quantitative detection and documentation. Previous methods used for lung function diagnosis require active patient cooperation that is not possible during sleep. We developed a mobile device based on the CORSA standard that allows the recording of respiratory sounds throughout the night. To date, we have recorded 133 patients with different diagnoses (80 male, 53 female), of whom 38 were children. In 68 of the patients we could detect cough events and in 87 we detected wheezing. The recording method was tolerated by all participating adults and children. Our mobile system allows non-invasive and cooperation-independent nocturnal monitoring of acoustic symptoms in the domestic environment, especially at night, when most ailments occur.

  16. Geoelectric monitoring at the Boulder magnetic observatory

    USGS Publications Warehouse

    Blum, Cletus; White, Tim; Sauter, Edward A.; Stewart, Duff; Bedrosian, Paul A.; Love, Jeffrey J.

    2017-01-01

    Despite its importance to a range of applied and fundamental studies, and obvious parallels to a robust network of magnetic-field observatories, long-term geoelectric field monitoring is rarely performed. The installation of a new geoelectric monitoring system at the Boulder magnetic observatory of the US Geological Survey is summarized. Data from the system are expected, among other things, to be used for testing and validating algorithms for mapping North American geoelectric fields. An example time series of recorded electric and magnetic fields during a modest magnetic storm is presented. Based on our experience, we additionally present operational aspects of a successful geoelectric field monitoring system.

  17. Commercialization of Measurement Technologies

    DOT National Transportation Integrated Search

    2012-10-20

    Miniaturized, wireless instrumentation is now a reality and this thesis describes : development of such a system to monitor crack response. Comparison of environmental : (long-term) and blast-induced (dynamic) crack width changes in residential struc...

  18. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    NASA Astrophysics Data System (ADS)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along with 10 year long-term stability results.

  19. Fault tree analysis for data-loss in long-term monitoring networks.

    PubMed

    Dirksen, J; ten Veldhuis, J A E; Schilperoort, R P S

    2009-01-01

    Prevention of data-loss is an important aspect in the design as well as the operational phase of monitoring networks since data-loss can seriously limit intended information yield. In the literature limited attention has been paid to the origin of unreliable or doubtful data from monitoring networks. Better understanding of causes of data-loss points out effective solutions to increase data yield. This paper introduces FTA as a diagnostic tool to systematically deduce causes of data-loss in long-term monitoring networks in urban drainage systems. In order to illustrate the effectiveness of FTA, a fault tree is developed for a monitoring network and FTA is applied to analyze the data yield of a UV/VIS submersible spectrophotometer. Although some of the causes of data-loss cannot be recovered because the historical database of metadata has been updated infrequently, the example points out that FTA still is a powerful tool to analyze the causes of data-loss and provides useful information on effective data-loss prevention.

  20. Web-based Distributed Medical Information System for Chronic Viral Hepatitis

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Qin, Tuan-fa; Jiang, Jian-ning; Lu, Hui; Ma, Zong-e.; Meng, Hong-chang

    2008-11-01

    To make a long-term dynamic monitoring to the chronically ill, especially patients of HBV A, we build a distributed Medical Information System for Chronic Viral Hepatitis (MISCHV). The Web-based system architecture and its function are described, and the extensive application and important role are also presented.

  1. A comparison of the temporally integrated monitoring of ecosystems and Adirondack Long Term-Monitoring programs in the Adirondack Mountain region of New Yrok

    EPA Science Inventory

    This paper compares lake chemistry in the Adirondack region of New York measured by the Temporally Integrated Monitoring of Ecosystems (TIME) and Adirondack Long-Term Monitoring (ALTM) programs by examining the data from six lakes common to both programs. Both programs were initi...

  2. In vivo wireless biodiagnosis system for long-term bioactivity monitoring network

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuang; Wu, Wen-Jong; Yu, Shih-An; Huang, Jhen-Gang; Lin, Yun-Han; Chen, Yih-Fan; Jin, Ming-Hui; Wen, Chih-Min; Kao, Cheng-Yan; Lin, Shi-Ming; Lu, Shey-Shi; Lin, Chii-Wann; Yen, Jia-Yush; Jaw, Fu-Shan; Chen, Chi-An; Liao, Fang-Jen; Chiu, Nan-Fu; Chien, Chia-Nan; Lee, Chih-Kung

    2004-07-01

    Attempts to develop a Wireless Health Advanced Mobile Bio-diagnostic System (abbreviated as WHAM-BioS) have arisen from the need to monitor the health status of patients under long-term care programs. The proposed WHAM-BioS as presented here was developed by integrating various technologies: nano/MEMS technology, biotechnology, network/communication technology, and information technology. The biochips proposed not only detect certain diseases but will also report any abnormal status readings on the patient to the medical personnel immediately through the network system. Since long-term home care is typically involved, the parameters monitored must be analyzed and traced continuously over a long period of time. To minimize the intrusion to the patients, a wireless sensor embedded within a wireless network is highly recommended. To facilitate the widest possible use of various biochips, a smart sensor node concept was implemented. More specifically, various technologies and components such as built-in micro power generators, energy storage devices, initialization processes, no-waste bio-detection methodologies, embedded controllers, wireless warning signal transmissions, and power/data management were merged and integrated to create this novel technology. The design methodologies and the implementation schemes are detailed. Potential expansions of this newly developed technology to other applications regimes will be presented as well.

  3. Enterprise tools to promote interoperability: MonitoringResources.org supports design and documentation of large-scale, long-term monitoringprograms

    NASA Astrophysics Data System (ADS)

    Weltzin, J. F.; Scully, R. A.; Bayer, J.

    2016-12-01

    Individual natural resource monitoring programs have evolved in response to different organizational mandates, jurisdictional needs, issues and questions. We are establishing a collaborative forum for large-scale, long-term monitoring programs to identify opportunities where collaboration could yield efficiency in monitoring design, implementation, analyses, and data sharing. We anticipate these monitoring programs will have similar requirements - e.g. survey design, standardization of protocols and methods, information management and delivery - that could be met by enterprise tools to promote sustainability, efficiency and interoperability of information across geopolitical boundaries or organizational cultures. MonitoringResources.org, a project of the Pacific Northwest Aquatic Monitoring Partnership, provides an on-line suite of enterprise tools focused on aquatic systems in the Pacific Northwest Region of the United States. We will leverage on and expand this existing capacity to support continental-scale monitoring of both aquatic and terrestrial systems. The current stakeholder group is focused on programs led by bureaus with the Department of Interior, but the tools will be readily and freely available to a broad variety of other stakeholders. Here, we report the results of two initial stakeholder workshops focused on (1) establishing a collaborative forum of large scale monitoring programs, (2) identifying and prioritizing shared needs, (3) evaluating existing enterprise resources, (4) defining priorities for development of enhanced capacity for MonitoringResources.org, and (5) identifying a small number of pilot projects that can be used to define and test development requirements for specific monitoring programs.

  4. New developments in ecological hydrology expand research opportunities

    Treesearch

    D.A. Post; G. E. Grant; J. A. Jones

    1998-01-01

    Interdisciplinary research efforts to integrate the ecological aspects of water with its physical and societal roles have a long history as well as some interesting new developments. Small, paired, experimental watersheds, with their long-term monitoring systems for data collection and their integrated ecosystem approach to analysis, have been at the center of recent...

  5. Home monitoring of patients with Parkinson's disease via wearable technology and a web-based application.

    PubMed

    Patel, Shyamal; Chen, Bor-Rong; Buckley, Thomas; Rednic, Ramona; McClure, Doug; Tarsy, Daniel; Shih, Ludy; Dy, Jennifer; Welsh, Matt; Bonato, Paolo

    2010-01-01

    Objective long-term health monitoring can improve the clinical management of several medical conditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work toward the development of a home-monitoring system. The system is currently used to monitor patients with Parkinson's disease who experience severe motor fluctuations. Monitoring is achieved using wireless wearable sensors whose data are relayed to a remote clinical site via a web-based application. The work herein presented shows that wearable sensors combined with a web-based application provide reliable quantitative information that can be used for clinical decision making.

  6. Space Propulsion Synergy Group ETO technology assessments

    NASA Astrophysics Data System (ADS)

    Bray, James

    There exists within the aerospace community a widely recognized need to improve future space launch systems. While these needs have been expressed by many national committees, potential solutions have not achieved consensus nor have they endured. Facing the challenge to remain competitive with limited national resources, the U.S. must improve its strategic planning efforts. A nationally accepted strategic plan for space would enable a focused research & development program. The Space Propulsion Synergy Group (SPSG), chartered to support long range strategic planning, has achieved several breakthroughs. First, using a broad industry/government team, the SPSG evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a-priori. Second, realizing that systems having the best long term payoffs can loose support when constraints are tight, the SPSG invented a dual prioritization approach that balances long term strategic thrusts with current programmatic constraints. This breakthrough enables individual program managers to make decisions based on both individual project needs and long term strategic needs. Results indicate that a SSTO using an integrated modular engine has the best long term potential for a 20 Klb class vehicle and that health monitoring and control technologies rank among the highest dual priority liquid rocket technologies.

  7. Long term thermoelectric module testing system.

    PubMed

    D'Angelo, Jonathan; Hogan, Timothy

    2009-10-01

    Thermoelectric generators can be used for converting waste heat into electric power. Significant interest in developing new materials in recent years has led to the discovery of several promising thermoelectrics, however, there can be considerable challenges in developing the materials into working devices. Testing and feedback is needed at each step to gain valuable information for identification of difficulties, quality of the materials and modules, repeatability in fabrication, and longevity of the devices. This paper describes a long-term module testing system for monitoring the output power of a module over extended testing times. To evaluate the system, we have tested commercially available thermoelectric modules over a one month time period.

  8. Long-term pavement monitoring program : development of pavement monitoring : prepared for alternative development workshop

    DOT National Transportation Integrated Search

    1984-08-01

    Long-term monitoring efforts have been carried on for a number of years at state and national level and have been generally accepted. However, the shape that it takes in the future will depend very largely upon the decisions that are made in this Wor...

  9. Deploying Server-side File System Monitoring at NERSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uselton, Andrew

    2009-05-01

    The Franklin Cray XT4 at the NERSC center was equipped with the server-side I/O monitoring infrastructure Cerebro/LMT, which is described here in detail. Insights gained from the data produced include a better understanding of instantaneous data rates during file system testing, file system behavior during regular production time, and long-term average behaviors. Information and insights gleaned from this monitoring support efforts to proactively manage the I/O infrastructure on Franklin. A simple model for I/O transactions is introduced and compared with the 250 million observations sent to the LMT database from August 2008 to February 2009.

  10. A Benchmark Study of Large Contract Supplier Monitoring Within DOD and Private Industry

    DTIC Science & Technology

    1994-03-01

    83 2. Long Term Supplier Relationships ...... .. 84 3. Global Sourcing . . . . . . . . . . . . .. 85 4. Refocusing on Customer Quality...monitoring and recognition, reduced number of suppliers, global sourcing, and long term contractor relationships . These initiatives were then compared to DCMC...on customer quality. 14. suBJE.C TERMS Benchmark Study of Large Contract Supplier Monitoring. 15. NUMBER OF PAGES108 16. PRICE CODE 17. SECURITY

  11. Riparian Vegetation Base-line Analysis and Monitoring Along Bishop Creek, California

    Treesearch

    Janet L. Nachlinger; Carl A. Fox; Patricia A. Moen

    1989-01-01

    A base-line analysis and long-term monitoring study of the riparian system along California's Bishop Creek is being conducted to measure the effects that planned increases in streamflow may have on riparian vegetation and associated wildlife. Six sites located in different major physiographic valley types have been selected for study. Biotic, climatologic,...

  12. Documenting the use of the Long Term Resource Monitoring element’s fish monitoring methodologies throughout the Midwest

    USGS Publications Warehouse

    Solomon, Levi E.; Casper, Andrew F.

    2016-08-16

    The Upper Mississippi River Restoration (UMRR) Program’s Long Term Resource Monitoring (LTRM) element is designed to monitor and assess long term trends in the Upper Mississippi River System (UMRS). To accomplish this, standardized methods are used that allow for comparisons across pools and rivers. In recent years, other projects and other agencies have adopted the LTRM fish methodologies for use outside the UMRR. To determine how widespread the use of the Fish Component’s methods are, a twelve question survey was delivered via SurveyMonkey.com through the states comprising the American Fisheries Society (AFS) North Central Division and the Upper Mississippi River Conservation Committee. Approximately 2,000 professionals were reached with ≈11 percent participating. Results indicate that nearly all (95 percent) respondents use standardized methods in their sampling and 48 percent are familiar with the LTRM fish methodologies. Roughly one-third (35 percent) of all respondents have used the methods in the past and most (78 percent) of those have modified the methods to suit the information needs specific to their fishery. Results indicate that the LTRM methods have indeed spread outside the UMRR and are now a well-known and potentially widely used technique to sample fish communities.

  13. A biomedical sensor system for real-time monitoring of astronauts' physiological parameters during extra-vehicular activities.

    PubMed

    Fei, Ding-Yu; Zhao, Xiaoming; Boanca, Cosmin; Hughes, Esther; Bai, Ou; Merrell, Ronald; Rafiq, Azhar

    2010-07-01

    To design and test an embedded biomedical sensor system that can monitor astronauts' comprehensive physiological parameters, and provide real-time data display during extra-vehicle activities (EVA) in the space exploration. An embedded system was developed with an array of biomedical sensors that can be integrated into the spacesuit. Wired communications were tested for physiological data acquisition and data transmission to a computer mounted on the spacesuit during task performances simulating EVA sessions. The sensor integration, data collection and communication, and the real-time data monitoring were successfully validated in the NASA field tests. The developed system may work as an embedded system for monitoring health status during long-term space mission. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Modular Subsea Monitoring Network (MSM) - Realizing Integrated Environmental Monitoring Solutions

    NASA Astrophysics Data System (ADS)

    Mosch, Thomas; Fietzek, Peer

    2016-04-01

    In a variety of scientific and industrial application areas, ranging i.e. from the supervision of hydrate fields over the detection and localization of fugitive emissions from subsea oil and gas production to fish farming, fixed point observatories are useful and applied means. They monitor the water column and/or are placed at the sea floor over long periods of time. They are essential oceanographic platforms for providing valuable long-term time series data and multi-parameter measurements. Various mooring and observatory endeavors world-wide contribute valuable data needed for understanding our planet's ocean systems and biogeochemical processes. Continuously powered cabled observatories enable real-time data transmission from spots of interest close to the shore or to ocean infrastructures. Independent of the design of the observatories they all rely on sensors which demands for regular maintenance. This work is in most cases associated with cost-intensive maintenance on a regular time basis for the entire sensor carrying fixed platform. It is mandatory to encounter this asset for long-term monitoring by enhancing hardware efficiency. On the basis of two examples of use from the area of hydrate monitoring (off Norway and Japan) we will present the concept of the Modular Subsea Monitoring Network (MSM). The modular, scalable and networking capabilities of the MSM allow for an easy adaptation to different monitoring tasks. Providing intelligent power management, combining chemical and acoustical sensors, adaptation of the payload according to the monitoring tasks, autonomous powering, modular design for easy transportation, storage and mobilization, Vessel of Opportunity-borne launching and recovery capability with a video-guided launcher system and a rope recovery system are key facts addressed during the development of the MSM. Step by step the MSM concept applied to the observatory hardware will also be extended towards the gathered data to maximize the efficiency of subsea monitoring in a variety of applications.

  15. Pollution monitoring using networks of honey bees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bromenshenk, J.J.; Dewart, M.L.; Thomas, J.M.

    1983-08-01

    Each year thousands of chemicals in large quantities are introduced into the global environment and the need for effective methods of monitoring these substances has steadily increased. Most monitoring programs rely upon instrumentation to measure specific contaminants in air, water, or soil. However, it has become apparent that humans and their environment are exposed to complex mixtures of chemicals rather than single entities. As our ability to detect ever smaller quantities of pollutants has increased, the biological significance of these findings has become more uncertain. Also, it is clear that monitoring efforts should shift from short-term studies of easily identifiablemore » sources in localized areas to long-term studies of multiple sources over widespread regions. Our investigations aim at providing better tools to meet these exigencies. Honey bees are discussed as an effective, long-term, self-sustaining system for monitoring environmental impacts. Our results indicate that the use of regional, and possibly national or international, capability can be realized with the aid of beekeepers in obtaining samples and conducting measurements. This approach has the added advantage of public involvement in environmental problem solving and protection of human health and environmental quality.« less

  16. Statistical package for improved analysis of hillslope monitoring data collected as part of the Board of Forestry's long-term monitoring program

    Treesearch

    Jack Lewis; Jim Baldwin

    1997-01-01

    The State of California has embarked upon a Long-Term Monitoring Program whose primary goal is to assess the effectiveness of the Forest Practice Rules and Review Process in protecting the beneficial uses of waters from the impacts of timber operations on private timberlands. The Board of Forestry's Monitoring Study Group concluded that hillslope monitoring should...

  17. Limnological Monitoring on the Upper Mississippi River System, 1993-1996: Lake City Field Station

    DTIC Science & Technology

    1999-10-01

    Reports of this type provide a synopsis of the collected data and collection methods, as well as a preliminary report of remarkable or unusual conditions ... conditions . To meet this need, Congress authorized a Long Term Resource Monitoring Program (LTRMP) for the Upper Mississippi River System (UMRS). The LTRMP...primarily for human consumption or regulatory purposes (e.g., chemical oxygen demand, biochemical oxygen demand, total coliform bacteria , fecal coliform

  18. Space telescopes planetary monitoring (PM) and Zvezdny (eng. star) patrol (ZP) for planetary science and exoplanets exploration

    NASA Astrophysics Data System (ADS)

    Tavrov, Alexander; Frolov, Pavel; Korablev, Oleg; Vedenkin, Nikolai; Barabanov, Sergey

    2017-11-01

    Solar System planetology requires a wide use of observing spectroscopy for surface geology to atmosphere climatology. A high-contrast imaging is required to study and to characterize extra-solar planetary systems among other faint astronomical targets observed in the vicinity of bright objects. Two middle class space telescopes projects aimed to observe Solar system planets by a long term monitoring via spectroscopy and polarimetry. Extra solar planets (exoplanets) engineering and scientific explorations are included in science program.

  19. Ecoregional-scale monitoring within conservation areas, in a rapidly changing climate

    USGS Publications Warehouse

    Beever, Erik A.; Woodward, Andrea

    2011-01-01

    Long-term monitoring of ecological systems can prove invaluable for resource management and conservation. Such monitoring can: (1) detect instances of long-term trend (either improvement or deterioration) in monitored resources, thus providing an early-warning indication of system change to resource managers; (2) inform management decisions and help assess the effects of management actions, as well as anthropogenic and natural disturbances; and (3) provide the grist for supplemental research on mechanisms of system dynamics and cause-effect relationships (Fancy et al., 2009). Such monitoring additionally provides a snapshot of the status of monitored resources during each sampling cycle, and helps assess whether legal standards and regulations are being met. Until the last 1-2 decades, tracking and understanding changes in condition of natural resources across broad spatial extents have been infrequently attempted. Several factors, however, are facilitating the achievement of such broad-scale investigation and monitoring. These include increasing awareness of the importance of landscape context, greater prevalence of regional and global environmental stressors, and the rise of landscape-scale programs designed to manage and monitor biological systems. Such programs include the US Forest Service's Forest Inventory and Analysis (FIA) Program (Moser et al., 2008), Canada's National Forest Inventory, the 3Q Programme for monitoring agricultural landscapes of Norway (Dramstad et al., 2002), and the emerging (US) Landscape Conservation Cooperatives (USDOI Secretarial Order 3289, 2009; Anonymous, 2011). This Special Section explores the underlying design considerations, as well as many pragmatic aspects associated with program implementation and interpretation of results from broad-scale monitoring systems, particularly within the constraints of high-latitude contexts (e.g., low road density, short field season, dramatic fluctuations in temperature). Although Alaska is the focus of most papers in this Special Section, we posit that many of the issues that characterize the remote, relatively undisturbed ecosystems of high northern latitudes are widespread and thus applicable to natural-resource management and conservation across northern portions of the Holarctic ecozone and indeed anywhere broad-scale monitoring is contemplated.

  20. A Systems Approach to Manage Drinking Water Quality through Integrated Model Projections, Adaptive Monitoring and Process Optimization - abstract

    EPA Science Inventory

    Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate...

  1. A Systems Approach to Manage Drinking Water Quality through Integrated Model Projections, Adaptive Monitoring and Process Optimization

    EPA Science Inventory

    Drinking water supplies can be vulnerable to impacts from short-term weather events, long-term changes in land-use and climate, and water quality controls in treatment and distribution. Disinfection by-product (DBP) formation in drinking water is a prominent example to illustrate...

  2. Real-World Neuroimaging Technologies

    DTIC Science & Technology

    2013-05-10

    system enables long-term wear of up to 10 consecutive hours of operation time. The system’s wireless technologies, light weight (200g), and dry sensor ...biomarkers, body sensor networks , brain computer interactionbrain, computer interfaces, data acquisition, electroencephalography monitoring, translational...brain activity in real-world scenarios. INDEX TERMS Behavioral science, biomarkers, body sensor networks , brain computer interfaces, brain computer

  3. Development and implementation of a human accuracy program in patient foodservice.

    PubMed

    Eden, S H; Wood, S M; Ptak, K M

    1987-04-01

    For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.

  4. Sensor Network Infrastructure for a Home Care Monitoring System

    PubMed Central

    Palumbo, Filippo; Ullberg, Jonas; Štimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-01-01

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus. PMID:24573309

  5. Sensor network infrastructure for a home care monitoring system.

    PubMed

    Palumbo, Filippo; Ullberg, Jonas; Stimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-02-25

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  6. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    NASA Astrophysics Data System (ADS)

    Walton, M.

    1991-10-01

    The technical feasibility of high-temperature (greater than 100 C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62 percent of the 9.47 GWh of energy added to the 9.21 x 10(exp 4) cu m of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108 C during the injection phase of LT1. Following heat recovery, temperatures were less than 30 C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site.

  7. [Urine metabonomic study on long-term use of total ginsenosides in rats].

    PubMed

    Xie, Xie; Chen, Shao-Qiu; Lv, Ying-Fang; Wang, Xiao-Yan; Jia, Wei

    2014-12-01

    Due to its effect of systems regulation and promotion on body, Ginseng is always referred to be long-term used as a dietary supplement. But it was still unclear about its target of the tonic effects and also the side-effects long-term use may bring. Urine metabolomic method is suitable for long-term studies of pharmaco-dynamics, pharmacology and toxicology of traditional Chinese medicine because of its characteristics of non-invasive and monitoring the whole-body metabolism. This study was designed to detect the dynamic variation of rat urine metabolome along with a long-term administration of total ginsenosides using GC-TOF based metabolomic technology. Our result showed that either short-term or chronic administration of ginsenosides did not impact the rat urine metabolome significantly (as the PCA subgroup was not successful). By comparison, the short-term (1-3 w) dose of ginsenosides had the biggest metabolic influence including TCA cycle, catecholamines and neurotransmitter amino acids. Medium-term (6-10 w) dose had a gradually lower effect and long-term (27 w) dose almost had no effect. Our study indicates that both short and long-term administration of ginsenosides showed almost no obvious side-effect on the experimental animals.

  8. Long-term monitoring of Sacramento Shade program trees: tree survival, growth and energy-saving performance

    Treesearch

    Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman

    2015-01-01

    Long-term survival and growth of urban forests are critical to achieve the targeted benefits of urban tree planting programs, such as building energy savings from tree shade. However, little is known about how trees perform in the long-term, especially in residential areas. Given this gap in the literature, we monitored 22-years of post-planting survival, growth, and...

  9. Building Capacity for a Long-Term, in-Situ, National-Scale Phenology Monitoring Network: Successes, Challenges and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Weltzin, J. F.; Browning, D. M.

    2014-12-01

    The USA National Phenology Network (USA-NPN; www.usanpn.org) is a national-scale science and monitoring initiative focused on phenology - the study of seasonal life-cycle events such as leafing, flowering, reproduction, and migration - as a tool to understand the response of biodiversity to environmental variation and change. USA-NPN provides a hierarchical, national monitoring framework that enables other organizations to leverage the capacity of the Network for their own applications - minimizing investment and duplication of effort - while promoting interoperability. Network participants can leverage: (1) Standardized monitoring protocols that have been broadly vetted, tested and published; (2) A centralized National Phenology Database (NPDb) for maintaining, archiving and replicating data, with standard metadata, terms-of-use, web-services, and documentation of QA/QC, plus tools for discovery, visualization and download of raw data and derived data products; and/or (3) A national in-situ, multi-taxa phenological monitoring system, Nature's Notebook, which enables participants to observe and record phenology of plants and animals - based on the protocols and information management system (IMS) described above - via either web or mobile applications. The protocols, NPDb and IMS, and Nature's Notebook represent a hierarchy of opportunities for involvement by a broad range of interested stakeholders, from individuals to agencies. For example, some organizations have adopted (e.g., the National Ecological Observatory Network or NEON) -- or are considering adopting (e.g., the Long-Term Agroecosystems Network or LTAR) -- the USA-NPN standardized protocols, but will develop their own database and IMS with web services to promote sharing of data with the NPDb. Other organizations (e.g., the Inventory and Monitoring Programs of the National Wildlife Refuge System and the National Park Service) have elected to use Nature's Notebook to support their phenological monitoring programs. We highlight the challenges and benefits of integrating phenology monitoring within existing and emerging national monitoring networks, and showcase opportunities that exist when standardized protocols are adopted and implemented to promote data interoperability and sharing.

  10. When the Fog Clears: Long-Term Monitoring of Fog and Fog-Dependent Biota in the Namib Desert

    NASA Astrophysics Data System (ADS)

    Logan, J. R. V.

    2014-12-01

    The Gobabeb Research and Training Centre in western Namibia is currently undertaking several efforts to enhance long-term atmospheric and fog monitoring in the central Namib Desert and to measure how fog-dependent biota are responding to global change. In an environment that receives regular sea fog and a mean annual rainfall of only 25 mm, Gobabeb is ideally situated to study the drivers and ecological role of fog in arid environments. Currently more than ten meteorological projects perform measurements at or close to Gobabeb. These projects include continuous trace gas measurements, fog isotope sampling, in situ surface radiation measurements, land surface temperature and other satellite validation studies, and multiple aerosol/dust monitoring projects; most of these projects are also components in other global monitoring networks. To these projects, Gobabeb has recently added a network of nine autonomous weather stations spanning the central Namib that will continuously collect basic meteorological data over an area of approximately 70x70 km. Using this data in conjunction with modeling efforts will expand our understanding of fog formation and the linkages between fog and the Benguela Current off Namibia's coast. Historical weather data from previous meteorological stations and satellite observations will also enable development of a fog time series for the last 50 years to determine climate variability driven by possible changes in the Benguela Current system. To complement these efforts, Gobabeb is also expanding its decades-old ecological research programs to explore the impacts of the fog on the region's biota at various time and spatial scales. Gobabeb's long-term, multidisciplinary projects can serve as a prototype for monitoring in other fog-affected systems, together increasing our understanding of coastal fog dynamics, land-atmosphere-ocean connections, and the impacts of fog-related global change.

  11. Longitudinal monitoring of whole body counter NaI(TI) detector efficiency

    USDA-ARS?s Scientific Manuscript database

    Assessing accuracy of radiation counting systems over time is critical. We examined long-term WBC performance in detail. Efficiency factors for 54 detectors were updated annually over several years. Newer efficiency values were compared with baseline and with annual values. Overall system efficiency...

  12. Implementation of a wireless sensor network for heart rate monitoring in a senior center.

    PubMed

    Huang, Jyh-How; Su, Tzu-Yao; Raknim, Paweeya; Lan, Kun-Chan

    2015-06-01

    Wearable sensor systems are widely used to monitor vital sign in hospitals and in recent years have also been used at home. In this article we present a system that includes a ring probe, sensor, radio, and receiver, designed for use as a long-term heart rate monitoring system in a senior center. The primary contribution of this article is successfully implementing a cheap, large-scale wireless heart rate monitoring system that is stable and comfortable to use 24 h a day. We developed new finger ring sensors for comfortable continuous wearing experience and used dynamic power adjustment on the ring so the sensor can detect pulses at different strength levels. Our system has been deployed in a senior center since May 2012, and 63 seniors have used this system in this period. During the 54-h system observation period, 10 alarms were set off. Eight of them were due to abnormal heart rate, and two of them were due to loose probes. The monitoring system runs stably with the senior center's existing WiFi network, and achieves 99.48% system availability. The managers and caregivers use our system as a reliable warning system for clinical deterioration. The results of the year-long deployment show that the wireless group heart rate monitoring system developed in this work is viable for use within a designated area.

  13. Validation of a wireless modular monitoring system for structures

    NASA Astrophysics Data System (ADS)

    Lynch, Jerome P.; Law, Kincho H.; Kiremidjian, Anne S.; Carryer, John E.; Kenny, Thomas W.; Partridge, Aaron; Sundararajan, Arvind

    2002-06-01

    A wireless sensing unit for use in a Wireless Modular Monitoring System (WiMMS) has been designed and constructed. Drawing upon advanced technological developments in the areas of wireless communications, low-power microprocessors and micro-electro mechanical system (MEMS) sensing transducers, the wireless sensing unit represents a high-performance yet low-cost solution to monitoring the short-term and long-term performance of structures. A sophisticated reduced instruction set computer (RISC) microcontroller is placed at the core of the unit to accommodate on-board computations, measurement filtering and data interrogation algorithms. The functionality of the wireless sensing unit is validated through various experiments involving multiple sensing transducers interfaced to the sensing unit. In particular, MEMS-based accelerometers are used as the primary sensing transducer in this study's validation experiments. A five degree of freedom scaled test structure mounted upon a shaking table is employed for system validation.

  14. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines on Intraoperative Cranial Nerve Monitoring in Vestibular Schwannoma Surgery.

    PubMed

    Vivas, Esther X; Carlson, Matthew L; Neff, Brian A; Shepard, Neil T; McCracken, D Jay; Sweeney, Alex D; Olson, Jeffrey J

    2018-02-01

    Does intraoperative facial nerve monitoring during vestibular schwannoma surgery lead to better long-term facial nerve function? This recommendation applies to adult patients undergoing vestibular schwannoma surgery regardless of tumor characteristics. Level 3: It is recommended that intraoperative facial nerve monitoring be routinely utilized during vestibular schwannoma surgery to improve long-term facial nerve function. Can intraoperative facial nerve monitoring be used to accurately predict favorable long-term facial nerve function after vestibular schwannoma surgery? This recommendation applies to adult patients undergoing vestibular schwannoma surgery. Level 3: Intraoperative facial nerve can be used to accurately predict favorable long-term facial nerve function after vestibular schwannoma surgery. Specifically, the presence of favorable testing reliably portends a good long-term facial nerve outcome. However, the absence of favorable testing in the setting of an anatomically intact facial nerve does not reliably predict poor long-term function and therefore cannot be used to direct decision-making regarding the need for early reinnervation procedures. Does an anatomically intact facial nerve with poor electromyogram (EMG) electrical responses during intraoperative testing reliably predict poor long-term facial nerve function? This recommendation applies to adult patients undergoing vestibular schwannoma surgery. Level 3: Poor intraoperative EMG electrical response of the facial nerve should not be used as a reliable predictor of poor long-term facial nerve function. Should intraoperative eighth cranial nerve monitoring be used during vestibular schwannoma surgery? This recommendation applies to adult patients undergoing vestibular schwannoma surgery with measurable preoperative hearing levels and tumors smaller than 1.5 cm. Level 3: Intraoperative eighth cranial nerve monitoring should be used during vestibular schwannoma surgery when hearing preservation is attempted. Is direct monitoring of the eighth cranial nerve superior to the use of far-field auditory brain stem responses? This recommendation applies to adult patients undergoing vestibular schwannoma surgery with measurable preoperative hearing levels and tumors smaller than 1.5 cm. Level 3: There is insufficient evidence to make a definitive recommendation.  The full guideline can be found at: https://www.cns.org/guidelines/guidelines-manage-ment-patients-vestibular-schwannoma/chapter_4. Copyright © 2017 by the Congress of Neurological Surgeons

  15. The Advanced Monitoring Systems Initiative--Performance Monitoring for DOE Environmental Remediation and Contaminant Containment

    NASA Astrophysics Data System (ADS)

    Haas, W. J.; Venedam, R. J.; Lohrstorfer, C. F.; Weeks, S. J.

    2005-05-01

    The Advanced Monitoring System Initiative (AMSI) is a new approach to accelerate the development and application of advanced sensors and monitoring systems in support of Department of Energy needs in monitoring the performance of environmental remediation and contaminant containment activities. The Nevada Site Office of the National Nuclear Security Administration (NNSA) and Bechtel Nevada manage AMSI, with funding provided by the DOE Office of Environmental Management (DOE EM). AMSI has easy access to unique facilities and capabilities available at the Nevada Test Site (NTS), including the Hazardous Materials (HazMat) Spill Center, a one-of-a-kind facility built and permitted for releases of hazardous materials for training purposes, field-test detection, plume dispersion experimentation, and equipment and materials testing under controlled conditions. AMSI also has easy access to the facilities and considerable capabilities of the DOE and NNSA National Laboratories, the Special Technologies Laboratory, Remote Sensing Laboratory, Desert Research Institute, and Nevada Universities. AMSI provides rapid prototyping, systems integration, and field-testing, including assistance during initial site deployment. The emphasis is on application. Important features of the AMSI approach are: (1) customer investment, involvement and commitment to use - including definition of needs, desired mode of operation, and performance requirements; and (2) employment of a complete systems engineering approach, which allows the developer to focus maximum attention on the essential new sensing element or elements while AMSI assumes principal responsibility for infrastructure support elements such as power, packaging, and general data acquisition, control, communication, visualization and analysis software for support of decisions. This presentation describes: (1) the needs for sensors and performance monitoring for environmental systems as seen by the DOE Long Term Stewardship Science and Technology Roadmap and the Long Term Monitoring Sensors and Analytical Methods Workshop, and (2) AMSI operating characteristics and progress in addressing those needs. Topics addressed will include: vadose zone and groundwater tritium monitoring, a wireless moisture monitoring system, Cr(VI) and CCl4 monitoring using a commercially available "universal sensor platform", strontium-90 and technetium-99 monitoring, and area chemical monitoring using an array of multi-chemical sensors.

  16. Microelectronics bioinstrumentation systems

    NASA Technical Reports Server (NTRS)

    Ko, W. H.

    1977-01-01

    Microelectronic bioinstrumentation systems to be employed in the Cardiovascular Deconditioning Program were developed. Implantable telemetry systems for long-term monitoring of animals on earth were designed to collect physiological data necessary for the understanding of the mechanisms of cardiovascular deconditioning. In-flight instrumentation systems, microelectronic instruments, and RF powering techniques for other life science experiments in the NASA program were studied.

  17. A Real-Time Monitoring System of Industry Carbon Monoxide Based on Wireless Sensor Networks.

    PubMed

    Yang, Jiachen; Zhou, Jianxiong; Lv, Zhihan; Wei, Wei; Song, Houbing

    2015-11-20

    Carbon monoxide (CO) burns or explodes at over-standard concentration. Hence, in this paper, a Wifi-based, real-time monitoring of a CO system is proposed for application in the construction industry, in which a sensor measuring node is designed by low-frequency modulation method to acquire CO concentration reliably, and a digital filtering method is adopted for noise filtering. According to the triangulation, the Wifi network is constructed to transmit information and determine the position of nodes. The measured data are displayed on a computer or smart phone by a graphical interface. The experiment shows that the monitoring system obtains excellent accuracy and stability in long-term continuous monitoring.

  18. Nursing home case-mix instruments: validation of the RUG-III system in Italy.

    PubMed

    Brizioli, Enrico; Bernabei, Roberto; Grechi, Francesca; Masera, Filippo; Landi, Francesco; Bandinelli, Stefania; Cavazzini, Chiara; Gangemi, Salvatore; Ferrucci, Luigi

    2003-06-01

    The current Italian reimbursement system for long-term care does not adequately consider the great variability in the health and functional status of older persons who are admitted to long-term care institutions. Furthermore, no procedure is implemented to monitor the quality of care provided to older residents. We conducted this study to verify whether the RUG-III (Resource Utilization Groups-version III), a tool for assessing the case-mix of nursing home residents, which is widely used in the United States and in many European countries, can be effectively used in the Italian health care system. We administered an Italian version of the RUG-III to 1000 older residents of 11 intermediate- and long-term care institutions. We also collected objective information on the amount of care provided directly or indirectly to each resident by nurses, physical therapists, and other health professionals. The RUG-III 44 group classification system explained 61 and 44% of the variance in rehabilitative and nursing wage-adjusted care time, respectively. Our findings provide strong evidence that the RUG-III classification, applied to Italian intermediate- and long-term care institutions, provides a robust estimate of the amount of nursing and rehabilitation resources consumed by older residents.

  19. [Current state and prospects of military personnel health monitoring].

    PubMed

    Rezvantsev, M V; Kuznetsov, S M; Ivanov, V V; Zakurdaev, V V

    2014-01-01

    The current article is dedicated to some features of the Russian Federation Armed Forces military personnel health monitoring such as legal and informational provision, methodological basis of functioning, historical aspect of formation and development of the social and hygienic monitoring in the Russian Federation Armed Forces. The term "military personnel health monitoring" is defined as an analytical system of constant and long-term observation, analysis, assessment, studying of factors determined the military personnel health, these factors correlations, health risk factors management in order to minimize them. The current state of the military personnel health monitoring allows coming to the conclusion that the military health system does have forces and resources for state policy of establishing the population health monitoring system implementation. The following directions of the militarily personnel health monitoring improvement are proposed: the Russian Federation Armed Forces medical service record and report system reorganization bringing it closer to the civilian one, implementation of the integrated approach to the medical service informatisation, namely, military personnel health status and medical service resources monitoring. The leading means in this direction are development and introduction of a military serviceman individual health status monitoring system on the basis of a serviceman electronic medical record card. Also it is proposed the current Russian Federation Armed Forces social and hygienic monitoring improvement at the expense of informational interaction between the two subsystems on the basis of unified military medical service space.

  20. The three missing elements in the treatment of substance use disorders: Lessons from the physician health programs.

    PubMed

    DuPont, Robert L; Seppala, Marvin D; White, William L

    2016-01-01

    To make recovery, and not relapse, the expected outcome of the treatment of moderate to severe substance use disorders, 3 currently missing elements would need to be emphasized: (1) the definition of long-term recovery as the goal of all treatment and post-treatment interventions; (2) the provision of sustained post-treatment monitoring and professional and peer support, including drug testing; and (3) the insistence by others around the patients on sustained abstinence as crucial for those suffering from moderate to severe and prolonged substance use disorders. Each of these 3 elements is central to the distinctive care management system of the state physician health programs. This approach to the long-term management of substance use disorders fits with the new direction of healthcare for serious, chronic diseases-away from isolated, and expensive acute care episodes of care and toward sustained chronic disease management with long-term monitoring, support, and early re-intervention if and when needed.

  1. Adapting inland fisheries management to a changing climate

    USGS Publications Warehouse

    Paukert, Craig P.; Glazer, Bob A.; Hansen, Gretchen J. A.; Irwin, Brian J.; Jacobson, Peter C.; Kershner, Jeffrey L.; Shuter, Brian J.; Whitney, James E.; Lynch, Abigail J.

    2016-01-01

    Natural resource decision makers are challenged to adapt management to a changing climate while balancing short-term management goals with long-term changes in aquatic systems. Adaptation will require developing resilient ecosystems and resilient management systems. Decision makers already have tools to develop or ensure resilient aquatic systems and fisheries such as managing harvest and riparian zones. Because fisheries management often interacts with multiple stakeholders, adaptation strategies involving fisheries managers and other partners focused on land use, policy, and human systems, coupled with long-term monitoring, are necessary for resilient systems. We show how agencies and organizations are adapting to a changing climate in Minnesota and Ontario lakes and Montana streams. We also present how the Florida Fish and Wildlife Commission created a management structure to develop adaptation strategies. These examples demonstrate how organizations and agencies can cope with climate change effects on fishes and fisheries through creating resilient management and ecological systems.

  2. Telemetric Intracranial Pressure Monitoring with the Raumedic Neurovent P-tel.

    PubMed

    Antes, Sebastian; Tschan, Christoph A; Heckelmann, Michael; Breuskin, David; Oertel, Joachim

    2016-07-01

    Devices enabling long-term intracranial pressure monitoring have been demanded for some time. The first solutions using telemetry were proposed in 1967. Since then, many other wireless systems have followed but some technical restrictions have led to unacceptable measurement uncertainties. In 2009, a completely revised telemetric pressure device called Neurovent P-tel was introduced to the market. This report reviews technical aspects, handling, possibilities of data analysis, and the efficiency of the probe in clinical routine. The telemetric device consists of 3 main parts: the passive implant, the active antenna, and the storage monitor. The implant with its parenchymal pressure transducer is inserted via a frontal burr hole. Pressure values can be registered with a frequency of 1 Hz or 5 Hz. Telemetrically gathered data can be viewed on the storage monitor or saved on a computer for detailed analyses. A total of 247 patients with suspected (n = 123) or known (n = 124) intracranial pressure disorders underwent insertion of the telemetric pressure probe. A detailed analysis of the long-term intracranial pressure profile including mean values, maximum and negative peaks, pathologic slow waves, and pulse pressure amplitudes is feasible using the detection rate of 5 Hz. This enables the verification of suspected diagnoses as normal-pressure hydrocephalus, benign intracranial hypertension, shunt malfunction, or shunt overdrainage. Long-term application also facilitates postoperative surveillance and supports valve adjustments of shunt-treated patients. The presented telemetric measurement system is a valuable and effective diagnostic tool in selected cases. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. PRIMENET. ULTRAVIOLET RADIATION/AMPHIBIAN POPULATIONS

    EPA Science Inventory

    The PRIMENet (Parks Research and Intensive Monitoring of Ecosystems Network) is a system of 14 national parks (Acadia, Smoky Mountains, Rocky Mountains, Glacier, Sequoia-Kings Canyon, and Olympic National Parks) established as index sites for long-term monitorins of environmental...

  4. An intelligent health monitoring system using radio-frequency identification technology.

    PubMed

    Lai, Yeong-Lin; Chen, Chin-Ling; Chang, Ching-Hisang; Hsu, Chih-Yu; Lai, Yeong-Kang; Tseng, Kuo-Kun; Chen, Chih-Cheng; Zheng, Chun-Yi

    2015-01-01

    Long-term care (LTC) for the elderly has become extremely important in recent years. It is necessary for the different physiological monitoring systems to be integrated on the same interface to help oversee and manage the elderly's needs. This paper presents a novel health monitoring system for LTC services using radio-frequency identification (RFID) technology. Dual-band RFID protocols were included in the system, in which the high-frequency (HF) band of 13.56 MHz was used to identify individuals and the microwave band of 2.45 GHz was used to monitor physiological information. Distinct physiological data, including oxyhemoglobin saturation by pulse oximetry (SpO2), blood pressure, blood sugar, electrocardiogram (ECG) readings, body temperature, and respiration rate, were monitored by various biosensors. The intelligent RFID health monitoring system provided the features of the real-time acquisition of biomedical signals and the identification of personal information pertaining to the elderly and patients in nursing homes.

  5. Climate Observing Systems: Where are we and where do we need to be in the future

    NASA Astrophysics Data System (ADS)

    Baker, B.; Diamond, H. J.

    2017-12-01

    Climate research and monitoring requires an observational strategy that blends long-term, carefully calibrated measurements as well as short-term, focused process studies. The operation and implementation of operational climate observing networks and the provision of related climate services, both have a significant role to play in assisting the development of national climate adaptation policies and in facilitating national economic development. Climate observing systems will require a strong research element for a long time to come. This requires improved observations of the state variables and the ability to set them in a coherent physical (as well as a chemical and biological) framework with models. Climate research and monitoring requires an integrated strategy of land/ocean/atmosphere observations, including both in situ and remote sensing platforms, and modeling and analysis. It is clear that we still need more research and analysis on climate processes, sampling strategies, and processing algorithms.

  6. Stable microwave radiometry system for long term monitoring of deep tissue temperature

    NASA Astrophysics Data System (ADS)

    Stauffer, Paul R.; Rodriques, Dario B.; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R.; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W.; Maccarini, Paolo F.

    2013-02-01

    Background: There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. Methods: We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain onaxis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. Results: We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of +0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. Conclusions: A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.

  7. Stable Microwave Radiometry System for Long Term Monitoring of Deep Tissue Temperature.

    PubMed

    Stauffer, Paul R; Rodriques, Dario B; Salahi, Sara; Topsakal, Erdem; Oliveira, Tiago R; Prakash, Aniruddh; D'Isidoro, Fabio; Reudink, Douglas; Snow, Brent W; Maccarini, Paolo F

    2013-02-26

    There are numerous clinical applications for non-invasive monitoring of deep tissue temperature. We present the design and experimental performance of a miniature radiometric thermometry system for measuring volume average temperature of tissue regions located up to 5cm deep in the body. We constructed a miniature sensor consisting of EMI-shielded log spiral microstrip antenna with high gain on-axis and integrated high-sensitivity 1.35GHz total power radiometer with 500 MHz bandwidth. We tested performance of the radiometry system in both simulated and experimental multilayer phantom models of several intended clinical measurement sites: i) brown adipose tissue (BAT) depots within 2cm of the skin surface, ii) 3-5cm deep kidney, and iii) human brain underlying intact scalp and skull. The physical models included layers of circulating tissue-mimicking liquids controlled at different temperatures to characterize our ability to quantify small changes in target temperature at depth under normothermic surface tissues. We report SAR patterns that characterize the sense region of a 2.6cm diameter receive antenna, and radiometric power measurements as a function of deep tissue temperature that quantify radiometer sensitivity. The data demonstrate: i) our ability to accurately track temperature rise in realistic tissue targets such as urine refluxed from prewarmed bladder into kidney, and 10°C drop in brain temperature underlying normothermic scalp and skull, and ii) long term accuracy and stability of ∓0.4°C over 4.5 hours as needed for monitoring core body temperature over extended surgery or monitoring effects of brown fat metabolism over an extended sleep/wake cycle. A non-invasive sensor consisting of 2.6cm diameter receive antenna and integral 1.35GHz total power radiometer has demonstrated sufficient sensitivity to track clinically significant changes in temperature of deep tissue targets underlying normothermic surface tissues for clinical applications like the detection of vesicoureteral reflux, and long term monitoring of brown fat metabolism or brain core temperature during extended surgery.

  8. 2016 RFA for Great Lakes Long-Term Biology Monitoring Program: Phytoplankton Component

    EPA Pesticide Factsheets

    This Request for Applications solicits applications from eligible entities for a cooperative agreement to be awarded for a project to continue the long-term monitoring of phytoplankton in the open waters of the Great Lakes.

  9. 47 CFR 25.272 - General inter-system coordination procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the system control center, and those responsible for long term engineering and technical design issues... network control center which will have the responsibility to monitor space-to-Earth transmissions in its... the licensee is authorized to transmit, contact telephone numbers for the control center of the earth...

  10. Reverse inference of memory retrieval processes underlying metacognitive monitoring of learning using multivariate pattern analysis.

    PubMed

    Stiers, Peter; Falbo, Luciana; Goulas, Alexandros; van Gog, Tamara; de Bruin, Anique

    2016-05-15

    Monitoring of learning is only accurate at some time after learning. It is thought that immediate monitoring is based on working memory, whereas later monitoring requires re-activation of stored items, yielding accurate judgements. Such interpretations are difficult to test because they require reverse inference, which presupposes specificity of brain activity for the hidden cognitive processes. We investigated whether multivariate pattern classification can provide this specificity. We used a word recall task to create single trial examples of immediate and long term retrieval and trained a learning algorithm to discriminate them. Next, participants performed a similar task involving monitoring instead of recall. The recall-trained classifier recognized the retrieval patterns underlying immediate and long term monitoring and classified delayed monitoring examples as long-term retrieval. This result demonstrates the feasibility of decoding cognitive processes, instead of their content. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Compilation of 1986 annual reports of the Navy ELF (Extremely Low Frequency) communications system ecological monitoring program, volume 2

    NASA Astrophysics Data System (ADS)

    1987-07-01

    The U.S. Navy is conducting a long-term program to monitor for possible effects from the operation of its Extremely Low Frequency (ELF) Communications System to resident biota and their ecological relationships. This report documents progress of the following studies: soil amoeba; soil and litter arthropoda and earthworm studies; biological studies on pollinating insects: megachilid bees; and small vertebrates: small mammals and nesting birds.

  12. Environmental perverse incentives in coastal monitoring.

    PubMed

    Gibbs, Mark T

    2013-08-15

    It can be argued that the intensity of monitoring of coastal marine environments lags behind the equivalent terrestrial environments. This results in a paucity of long-term time series of key environmental parameters such as turbidity. This lack of management information of the sources and sinks, and causes and impacts of stressors to the coastal marine environment, along with a lack of co-ordination of information collection is compromising the ability of environmental impact assessments of major coastal developments to discriminate between local and remote anthropogenic impacts, and natural or background processes. In particular, the quasi outsourcing of the collection of coastal information can lead to a perverse incentive whereby in many cases nobody is actively or consistently monitoring the coastal marine environment effectively. This is particularly the case with regards to the collection of long-term and whole-of-system scale data. This lack of effective monitoring can act to incentivise poor environmental performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Diagnosis and management of a retrobulbar abscess of periapical origin in a domestic rabbit.

    PubMed

    Ward, Michelle L

    2006-09-01

    Retrobulbar abscessation is the most common orbital disease of rabbits, and the lesions are notoriously difficult to treat successfully. This article describes the diagnosis, surgical treatment, and long-term management of an extensive abscess located within the right maxilla and retrobulbar space of a domestic rabbit. Preoperative assessment and long-term monitoring were achieved with a combination of radiography, ophthalmic ultrasonography, and CT. Extraoral rigid endoscopy via a fenestration in the maxilla was used to facilitate surgical debridement of the lesion, and extraction of multiple cheek teeth has been fundamental to achieving control. The long-term use of topical and systemic antibiotic preparations and nonsteroidal anti-inflammatory medication is discussed.

  14. Design of Simple Landslide Monitoring System

    NASA Astrophysics Data System (ADS)

    Meng, Qingjia; Cai, Lingling

    2018-01-01

    The simple landslide monitoring system is mainly designed for slope, collapse body and surface crack. In the harsh environment, the dynamic displacement data of the disaster body is transmitted to the terminal acquisition system in real time. The main body of the system adopt is PIC32MX795F512. This chip is to realize low power design, wakes the system up through the clock chip, and turns on the switching power supply at set time, which makes the wireless transmission module running during the interval to ensure the maximum battery consumption, so that the system can be stable long term work.

  15. Monitoring Architectural Heritage by Wireless Sensors Networks: San Gimignano — A Case Study

    PubMed Central

    Mecocci, Alessandro; Abrardo, Andrea

    2014-01-01

    This paper describes a wireless sensor network (WSN) used to monitor the health state of architectural heritage in real-time. The WSN has been deployed and tested on the “Rognosa” tower in the medieval village of San Gimignano, Tuscany, Italy. This technology, being non-invasive, mimetic, and long lasting, is particularly well suited for long term monitoring and on-line diagnosis of the conservation state of heritage buildings. The proposed monitoring system comprises radio-equipped nodes linked to suitable sensors capable of monitoring crucial parameters like: temperature, humidity, masonry cracks, pouring rain, and visual light. The access to data is granted by a user interface for remote control. The WSN can autonomously send remote alarms when predefined thresholds are reached. PMID:24394600

  16. Monitoring: a vital component of science at USGS WEBB sites

    NASA Astrophysics Data System (ADS)

    Shanley, J. B.; Peters, N. E.; Campbell, D. H.; Clow, D. W.; Walker, J. F.; Hunt, R. J.

    2007-12-01

    The U.S. Geological Survey launched its Water, Energy, and Biogeochemical Budgets (WEBB) program in 1991 with the establishment of five long-term research watersheds. Monitoring of climate, hydrology, and chemistry is the cornerstone of WEBB scientific investigations. At Loch Vale, CO, long-term streamflow and climate monitoring indicated an increase rather than the expected decrease in the runoff:precipitation ratio during a drought in the early 2000s, indicating the melting of subsurface and glacial ice in the basin. At Luquillo Experimental Forest in Puerto Rico, monitoring of mercury in precipitation revealed the highest recorded mercury wet deposition rates in the USA, an unexpected finding given the lack of point sources. At Panola Mountain, GA, long-term monitoring of soil- and groundwater revealed step shifts in chemical compositions in response to wet and drought cycles, causing a corresponding shift in stream chemistry. At Sleepers River, VT, WEBB funding has extended a long- term (since 1960) weekly snow water equivalent dataset which is a valuable integrating signal of regional climate trends. At Trout Lake, WI, long-term monitoring of lakes, ground-water levels, streamflow and subsurface water chemistry has generated a rich dataset for calibrating a watershed model, and allowed for efficient design of an automated procedure for sampling mercury during runoff events. The 17-plus years of monitoring at the WEBB watersheds provides a foundation for generating new scientific hypotheses, a basis for trend detection, and context for anomalous observations that often drive new research.

  17. Development of a fully automated network system for long-term health-care monitoring at home.

    PubMed

    Motoi, K; Kubota, S; Ikarashi, A; Nogawa, M; Tanaka, S; Nemoto, T; Yamakoshi, K

    2007-01-01

    Daily monitoring of health condition at home is very important not only as an effective scheme for early diagnosis and treatment of cardiovascular and other diseases, but also for prevention and control of such diseases. From this point of view, we have developed a prototype room for fully automated monitoring of various vital signs. From the results of preliminary experiments using this room, it was confirmed that (1) ECG and respiration during bathing, (2) excretion weight and blood pressure, and (3) respiration and cardiac beat during sleep could be monitored with reasonable accuracy by the sensor system installed in bathtub, toilet and bed, respectively.

  18. PLUME-SCALER-EVALUATING LONG-TERM MONITORING WELL NETWORKS

    EPA Science Inventory

    EPA's Subsurface Protection and Remediation Division is developing a new computer application called PLUME-SCALER to evaluate long term monitoring well networks using typically available historical site water level data. PLUME-SCALER can be used to determine if there are enough ...

  19. Time is an affliction: Why ecology cannot be as predictive as physics and why it needs time series

    NASA Astrophysics Data System (ADS)

    Boero, F.; Kraberg, A. C.; Krause, G.; Wiltshire, K. H.

    2015-07-01

    Ecological systems depend on both constraints and historical contingencies, both of which shape their present observable system state. In contrast to ahistorical systems, which are governed solely by constraints (i.e. laws), historical systems and their dynamics can be understood only if properly described, in the course of time. Describing these dynamics and understanding long-term variability can be seen as the mission of long time series measuring not only simple abiotic features but also complex biological variables, such as species diversity and abundances, allowing deep insights in the functioning of food webs and ecosystems in general. Long time-series are irreplaceable for understanding change, and crucially inherent system variability and thus envisaging future scenarios. This notwithstanding current policies in funding and evaluating scientific research discourage the maintenance of long term series, despite a clear need for long-term strategies to cope with climate change. Time series are crucial for a pursuit of the much invoked Ecosystem Approach and to the passage from simple monitoring programs of large-scale and long-term Earth observatories - thus promoting a better understanding of the causes and effects of change in ecosystems. The few ongoing long time series in European waters must be integrated and networked so as to facilitate the formation of nodes of a series of observatories which, together, should allow the long-term management of the features and characteristics of European waters. Human capacity building in this region of expertise and a stronger societal involvement are also urgently needed, since the expertise in recognizing and describing species and therefore recording them reliably in the context of time series is rapidly vanishing from the European Scientific community.

  20. Distributed architecture and distributed processing mode in urban sewage treatment

    NASA Astrophysics Data System (ADS)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Decentralized rural sewage treatment facility over the broad area, a larger operation and management difficult, based on the analysis of rural sewage treatment model based on the response to these challenges, we describe the principle, structure and function in networking technology and network communications technology as the core of distributed remote monitoring system, through the application of case analysis to explore remote monitoring system features in a decentralized rural sewage treatment facilities in the daily operation and management. Practice shows that the remote monitoring system to provide technical support for the long-term operation and effective supervision of the facilities, and reduced operating, maintenance and supervision costs for development.

  1. Four-and-one-half years' experience in monitoring of reproducibility of an MR spectroscopy system--application of in vitro results to interpretation of in vivo data.

    PubMed

    Skorupa, Agnieszka; Wicher, Magdalena; Banasik, Tomasz; Jamroz, Ewa; Paprocka, Justyna; Kiełtyka, Aleksandra; Sokół, Maria; Konopka, Marek

    2014-05-08

    The primary purpose of this work was to assess long-term in vitro reproducibility of metabolite levels measured using 1H MRS (proton magnetic resonance spectroscopy). The secondary purpose was to use the in vitro results for interpretation of 1H MRS in vivo spectra acquired from patients diagnosed with Canavan disease. 1H MRS measurements were performed in the period from April 2006 to September 2010. 118 short and 116 long echo spectra were acquired from a stable phantom during this period. Change-point analysis of the in vitro N-acetylaspartate levels was exploited in the computation of fT factor (ratio of the actual to the reference N-acetylaspartate level normalized by the reciprocity principle). This coefficient was utilized in the interpretation of in vivo spectra analyzed using absolute reference technique. The monitored time period was divided into six time intervals based on short echo in vitro data (seven time intervals based on long echo in vitro data) characterized by fT coefficient ranging from 0.97 to 1.09 (based on short echo data) and from 1.0 to 1.11 (based on long echo data). Application of this coefficient to interpretation of in vivo spectra confirmed increased N-acetylaspartate level in Canavan disease. Long-term monitoring of an MRS system reproducibility, allowing for absolute referencing of metabolite levels, facilitates interpretation of metabolic changes in white matter disorders.

  2. Multi-Sensing system for outdoor thermal monitoring: Application to large scale civil engineering components

    NASA Astrophysics Data System (ADS)

    Crinière, Antoine; Dumoulin, Jean; Manceau, Jean-Luc; Perez, Laetitia; Bourquin, Frederic

    2014-05-01

    Aging of transport infrastructures combined with traffic and climatic solicitations contribute to the reduction of their performances. To address and quantify the resilience of civil engineering structure, investigations on robust, fast and efficient methods are required. Among research works carried out at IFSTTAR, methods for long term monitoring face an increasing demand. Such works take benefits of this last decade technological progresses in ICT domain. The present study follows the ISTIMES European project [1], which aimed at demonstrate the ability of different electromagnetic sensing techniques, processing methods and ICT architecture, to be used for long term monitoring of critical transport infrastructures. Thanks to this project a multi-sensing techniques system, able to date and synchronize measurements carried out by infrared thermography coupled with various measurements data (i.e. weather parameters), have been designed, developed and implemented on real site [2]. Among experiments carried out on real transport infrastructure, it has been shown, for the "Musmesci" bridge deck (Italy), that by using infrared thermal image sequence with weather measurements during sevral days it was possible to develop analysis methods able to produce qualitative and quantitative data [3]. In the present study, added functionalities were designed and added to the "IrLAW" system in order to reach full autonomy in term of power supply, very long term measurement capability (at least 1 year) and automated data base feeding. The surveyed civil engineering structures consist in two concrete beams of 16 m long and 21 T weight each. One of the two beams was damage by high energy mechanical impact at the IFSTTAR falling rocks test station facilities located in the French Alpes [4]. The system is composed of one IR uncooled microbolometric camera (FLIR SC325) with a 320X240 Focal Plane Array detector in band III, a weather station VAISALA WXT520, a GPS, a failover power supply and a backup system. All the components of the system are connected to the IrLaW software through an IP network. The monitoring system is fully autonomous since August 2013 and provides data at 0. Hz sampling frequency. First results obtained by data post-processing is addressed. Finally, discussion on experimental feedback and main outcomes of several month of measurement in outdoor conditions will be presented. REFERENCES [1]Proto M. et al., , 2010. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project. Sensors, 10,10620-10639, doi: 10.3390/s101210620. [2]J. Dumoulin, R. Averty ".Development of an infrared system coupled with a weather station for real time atmospheric corrections using GPU computing: Application to bridge monitoring", in Proc of 11th International Conference on Quantitative InfraRed Thermography, Naples Italy, 2012. [3]J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [4]I. Catapano, R. Di Napoli, F. Soldovieri1, M. Bavusi, A. Loperte and J. Dumoulin, "Structural monitoring via microwave tomography-enhanced GPR: the Montagnole test site", Journal of Geophysics and Engineering, Volume 9, Number 4, August 2012, pp 100-107, IOP Science, doi:10.1088/1742-2132/9/4/S100.

  3. Toward achieving precision health

    PubMed Central

    Gambhir, Sanjiv Sam; Ge, T. Jessie; Vermesh, Ophir; Spitler, Ryan

    2018-01-01

    Health care systems primarily focus on patients after they present with disease, not before. The emerging field of precision health encourages disease prevention and earlier detection by monitoring health and disease based on an individual’s risk. Active participation in health care can be encouraged with continuous health-monitoring devices, providing a higher-resolution picture of human health and disease. However, the development of monitoring technologies must prioritize the collection of actionable data and long-term user engagement. PMID:29491186

  4. The Upper Rio Grande Basin as a Long-Term Hydrologic Observatory - Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Springer, E.; Duffy, C.; Phillips, F.; Hogan, J.; Winter, C. L.

    2001-12-01

    Long-term hydrologic observatories (LTHO) have been identified as a key element to advance hydrologic science. Issues to be addressed are the size and locations of LTHOs to meet research needs and address water resources management concerns. To date, considerable small watershed research has been performed, and these have provided valuable insights into processes governing hydrologic response on local scales. For hydrology to advance as a science, more complete and coherent data sets at larger scales are needed to tie together local studies and examine lower frequency long wavelength processes that may govern the water cycle at the scale of river basins and continents. The objective of this poster is to describe the potential opportunities and challenges for the upper Rio Grande as a LTHO. The presence of existing research programs and facilities can be leveraged by a LTHO to develop the required scientific measurements. Within the upper Rio Grande Basin, there are two Long-Term Ecological Research sites, Jornada and Sevilleta; Los Alamos National Laboratory, which monitors the atmosphere, surface water and groundwater; a groundwater study is being performed by the USGS in the Albuquerque Basin to examine recharge and water quality issues. Additionally, the upper Rio Grande basin served as an USGS-NAWQA study site starting in the early 1990's and is currently being studied by SAHRA (NSF-STC) to understand sources of salinity of the river system; such studies provide an existing framework on which to base long-term monitoring of water quality. The upper Rio Grande Basin has a wealth of existing long-term climate, hydrologic and geochemical records on which to base an LTHO. Within the basin there are currently 122 discharge gages operated by the USGS; and many of these gages have long-term records of discharge. Other organizations operate additional surface water gages in the lower part of the basin. Long-term records of river chemistry have been kept by the USGS, U. S. Bureau of Reclamation, IBWC and EBID. Significantly, these records extend through periods of climate extremes, notably the 1950's drought. One challenge that the Rio Grande faces as a LTHO is combining datasets maintained by different agencies in order to address research questions at this spatial and temporal scale. Challenges facing the development of a LTHO on the Rio Grande include instrumentation over steep topographic and biological gradients that exist. Political issues surrounding any basin can create problems for making long-term measurements. Current water resources management requires a greater scientific understanding of coupled processes, serious improvements in predictive capability and available computational resources, both of which require a comprehensive hydrologic monitoring system beyond any which exist today.

  5. An instrument system for long-term sediment transport studies on the continental shelf

    USGS Publications Warehouse

    Butman, Bradford; Folger, David W.

    1979-01-01

    A bottom-mounted instrument system has been designed and built to monitor processes of bottom sediment movement on the continental shelf. The system measures bottom current speed and direction, pressure, temperature, and light transmission and photographs the bottom. The system can be deployed for periods of 2–6 months to monitor intermitent processes of sediment movement such as storms and to assess seasonal variability. Deployments of the system on the U.S. east coast continental shelf show sediment resuspension and changes in bottom microtopography due to surface waves, tidal currents, and storms.

  6. CTFS/ForestGEO: A global network to monitor forest interactions with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Muller-Landau, H.; McMahon, S.; Davies, S. J.

    2013-12-01

    Forests are an influential component of the global carbon cycle and strongly influence Earth's climate. Climate change is altering the dynamics of forests globally, which may result in significant climate feedbacks. Forest responses to climate change entail both short-term ecophysiological responses and longer-term directional shifts in community composition. These short- and long-term responses of forest communities to climate change may be better understood through long-term monitoring of large forest plots globally using standardized methodology. Here, we describe a global network of forest research plots (CTFS/ForestGEO) of utility for understanding forest responses to climate change and consequent feedbacks to the climate system. CTFS/ForestGEO is an international network consisting of 51 sites ranging in size from 2-150 ha (median size: 25 ha) and spanning from 25°S to 52°N latitude. At each site, every individual > 1cm DBH is mapped and identified, and recruitment, growth, and mortality are monitored every 5 years. Additional measurements include aboveground productivity, carbon stocks, soil nutrients, plant functional traits, arthropod and vertebrates monitoring, DNA barcoding, airborne and ground-based LiDAR, micrometeorology, and weather monitoring. Data from this network are useful for understanding how forest ecosystem structure and function respond to spatial and temporal variation in abiotic drivers, parameterizing and evaluating ecosystem and earth system models, aligning airborne and ground-based measurements, and identifying directional changes in forest productivity and composition. For instance, CTFS/ForestGEO data have revealed that solar radiation and night-time temperature are important drivers of aboveground productivity in moist tropical forests; that tropical forests are mixed in terms of productivity and biomass trends over the past couple decades; and that the composition of Panamanian forests has shifted towards more drought-tolerant species. Ongoing monitoring will be vital to understanding global forest dynamics in an era of climate change.

  7. The Fresenius Medical Care home hemodialysis system.

    PubMed

    Schlaeper, Christian; Diaz-Buxo, Jose A

    2004-01-01

    The Fresenius Medical Care home dialysis system consists of a newly designed machine, a central monitoring system, a state-of-the-art reverse osmosis module, ultrapure water, and all the services associated with a successful implementation. The 2008K@home hemodialysis machine has the flexibility to accommodate the changing needs of the home hemodialysis patient and is well suited to deliver short daily or prolonged nocturnal dialysis using a broad range of dialysate flows and concentrates. The intuitive design, large graphic illustrations, and step-by-step tutorial make this equipment very user friendly. Patient safety is assured by the use of hydraulic systems with a long history of reliability, smart alarm algorithms, and advanced electronic monitoring. To further patient comfort with their safety at home, the 2008K@home is enabled to communicate with the newly designed iCare remote monitoring system. The Aquaboss Smart reverse osmosis (RO) system is compact, quiet, highly efficient, and offers an improved hygienic design. The RO module reduces water consumption by monitoring the water flow of the dialysis system and adjusting water production accordingly. The Diasafe Plus filter provides ultrapure water, known for its long-term benefits. This comprehensive approach includes planning, installation, technical and clinical support, and customer service.

  8. Long-term monitoring of the HPC Charenton Canal Bridge.

    DOT National Transportation Integrated Search

    2011-08-01

    The report contains long-term monitoring data collection and analysis of the first fully high : performance concrete (HPC) bridge in Louisiana, the Charenton Canal Bridge. The design of this : bridge started in 1997, and it was built and opened to tr...

  9. Long-Term Groundwater Monitoring Optimization, Clare Water Supply Superfund Site, Permeable Reactive Barrier and Soil Remedy Areas, Clare, Michigan

    EPA Pesticide Factsheets

    This report contains a review of the long-term groundwater monitoring network for the Permeable Reactive Barrier (PRB) and Soil Remedy Areas at the Clare Water Supply Superfund Site in Clare, Michigan.

  10. A Mobile Multi-Agent Information System for Ubiquitous Fetal Monitoring

    PubMed Central

    Su, Chuan-Jun; Chu, Ta-Wei

    2014-01-01

    Electronic fetal monitoring (EFM) systems integrate many previously separate clinical activities related to fetal monitoring. Promoting the use of ubiquitous fetal monitoring services with real time status assessments requires a robust information platform equipped with an automatic diagnosis engine. This paper presents the design and development of a mobile multi-agent platform-based open information systems (IMAIS) with an automated diagnosis engine to support intensive and distributed ubiquitous fetal monitoring. The automatic diagnosis engine that we developed is capable of analyzing data in both traditional paper-based and digital formats. Issues related to interoperability, scalability, and openness in heterogeneous e-health environments are addressed through the adoption of a FIPA2000 standard compliant agent development platform—the Java Agent Development Environment (JADE). Integrating the IMAIS with light-weight, portable fetal monitor devices allows for continuous long-term monitoring without interfering with a patient’s everyday activities and without restricting her mobility. The system architecture can be also applied to vast monitoring scenarios such as elder care and vital sign monitoring. PMID:24452256

  11. A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals.

    PubMed

    Lee, Seung Min; Kim, Jeong Hun; Byeon, Hang Jin; Choi, Yoon Young; Park, Kwang Suk; Lee, Sang-Hoon

    2013-06-01

    Long-term electroencephalogram (EEG) monitoring broadens EEG applications to various areas, but it requires cap-free recording of EEG signals. Our objective here is to develop a capacitive, small-sized, adhesive and biocompatible electrode for the cap-free and long-term EEG monitoring. We have developed an electrode made of polydimethylsiloxane (PDMS) and adhesive PDMS for EEG monitoring. This electrode can be attached to a hairy scalp and be completely hidden by the hair. We tested its electrical and mechanical (adhesive) properties by measuring voltage gain to frequency and adhesive force using 30 repeat cycles of the attachment and detachment test. Electrode performance on EEG was evaluated by alpha rhythm detection and measuring steady state visually evoked potential and N100 auditory evoked potential. We observed the successful recording of alpha rhythm and evoked signals to diverse stimuli with high signal quality. The biocompatibility of the electrode was verified and a survey found that the electrode was comfortable and convenient to wear. These results indicate that the proposed EEG electrode is suitable and convenient for long term EEG monitoring.

  12. Hydrological information system based on on-line monitoring--from strategy to implementation in the Brantas River Basin, East Java, Indonesia.

    PubMed

    Marini, G W; Wellguni, H

    2003-01-01

    The worsening environmental situation of the Brantas River, East Java, is addressed by a comprehensive basin management strategy which relies on accurate water quantity and quality data retrieved from a newly installed online monitoring network. Integrated into a Hydrological Information System, the continuously measured indicative parameters allow early warning, control and polluter identification. Additionally, long-term analyses have been initiated for improving modelling applications like flood forecasting, water resource management and pollutant propagation. Preliminary results illustrate the efficiency of the installed system.

  13. Long-term soil monitoring at U.S. Geological Survey reference watersheds

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason; Lawrence, Gregory B.; Mast, M. Alisa

    2014-01-01

    Monitoring the environment by making repeated measurements through time is essential to evaluate and track the health of ecosystems (fig. 1). Long-term datasets produced by such monitoring are indispensable for evaluating the effectiveness of environmental legislation and for designing mitigation strategies to address environmental changes in an era when human activities are altering the environment locally and globally.

  14. A wireless smart sensor network for automated monitoring of cable tension

    NASA Astrophysics Data System (ADS)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo

    2014-02-01

    As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.

  15. Using molt cycles to categorize the age of tropical birds: an integrative new system

    Treesearch

    Jared D. Wolfe; Thomas B. Ryder; Peter Pyle

    2010-01-01

    Accurately differentiating age classes is essential for the long-term monitoring of resident New World tropical bird species. Molt and plumage criteria have long been used to accurately age temperate birds, but application of temperate age-classification models to the Neotropics has been hindered because annual life-cycle events of tropical birds do not always...

  16. Long-term and short-term action-effect links and their impact on effect monitoring.

    PubMed

    Wirth, Robert; Steinhauser, Robert; Janczyk, Markus; Steinhauser, Marco; Kunde, Wilfried

    2018-04-23

    People aim to produce effects in the environment, and according to ideomotor theory, actions are selected and executed via anticipations of their effects. Further, to ensure that an action has been successful and an effect has been realized, we must be able to monitor the consequences of our actions. However, action-effect links might vary between situations, some might apply for a majority of situations, while others might only apply to special occasions. With a combination of behavioral and electrophysiological markers, we show that monitoring of self-produced action effects interferes with other tasks, and that the length of effect monitoring is determined by both, long-term action-effect links that hold for most situations, and short-term action-effect links that emerge from a current setting. Effect monitoring is fast and frugal when these action-effect links allow for valid anticipation of action effects, but otherwise effect monitoring takes longer and delays a subsequent task. Specific influences of long-term and short-term links on the P1/N1 and P3a further allow to dissect the temporal dynamics of when these links interact for the purpose of effect monitoring. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  17. Compilation of 1986 annual reports of the Navy ELF (extremely low frequency) communications system ecological-monitoring program. Volume 2. Tabs D-G. Annual progress report, January-December 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-07-01

    The U.S. Navy is conducting a long-term program to monitor for possible effects from the operation of its Extremely Low Frequency (ELF) Communications System to resident biota and their ecological relationships. This report documents progress of the following studies: Soil Amoeba; Soil and Litter Arthropoda and Earthworm Studies; Biological Studies on Pollinating insects: Megachilid Bees; and Small Vertebrates: Small Mammals and Nesting Birds.

  18. Long term monitoring system integrated in an elevational gradient in NW Argentina

    NASA Astrophysics Data System (ADS)

    Carilla, J.; Malizia, A.; Osinaga, O.; Blundo, C.; Grau, R.; Malizia, L.; Aráoz, E.

    2013-05-01

    Ecological trends and ranges of variability are poorly known in the tropical and subtropical Andes. Long term studies are powerful tools to detect the response of vegetation dynamics, biodiversity and hydrological cycle to these trends. We present a long term monitoring system in NW Argentinean mountains, including forest permanent plots at different elevations and high elevation grasslands, encompassing more than 3.000 m elevation range. Long term studies include: 1) 66 ha of mountain forest permanent plots along the Yungas elevational gradient from c. 400 to 2500 masl , and latitudinal gradient (22-28S) with 45 plots in mature forests and 28 in secondary forests originated in grazing, agriculture and selective logging. Some of these permanent plots have achieved 20 years of monitoring and all of them are included in the "Red de Bosques Andinos" a network created recently, together with c. 10 institutions and more than 130 (c. 120 ha) forest permanent plots from Argentina to Colombia Andes. 2) Two GLORIA (Global Observation Research Initiative in Alpine Environments) sites, above 4000 masl with more than 170 species recorded, including one re-measurement. This system is included in GLORIA network (www.gloria.ac.at) and in GLORIA Andes (http://www.condesan.org/gloria), and 3) more than 15 satellite monitored high Andean lakes and a wide extension of vegas (75800 ha in Argentinean puna). A digital database is being implemented to organize and provide access to the information generated by these three systems coordinated by the Instituto de Ecología Regional (http://www.iecologia.com.ar). These monitoring data are analyzed together with instrumental and dendrochronological data to describe the dynamics of these ecosystems over an area of 20 million hectares distributed between 22 and 28°S. Some of the most significant results to date include: 1) secondary mountain forests are expanding over grasslands and agriculture lands, and tend to converge toward mature forest composition over time, despite different previous land use. Floristic changes are also reflected in structural changes, showing an increasing trend in biomass in the last 15 years for most of the plots. Exotic tree species are expanding their distribution (e.g. Ligustrum lucidum) and have a strong influence on the structure and dynamics of some secondary forests. 2) High Andean vegetation diversity decrease with altitude, while several functional groups cover increase with temperature. 3) There is a clear association between lake fluctuations, ecosystem productivity and regional climatic patterns. The long term record provided by dendrochronology showed that plant productivity of the last decades is the lowest in the last 180 years, with a consistent drying trend in the last years. We are generating longer temporal series of meteorological data and biological ecosystems measurements; this will help to differentiate between the effect of climate change, land use change and natural ecosystems variability, to understand the way vegetation and ecosystems response to these changes.

  19. Scattering from Rock and Rock Outcrops

    DTIC Science & Technology

    2018-01-23

    scattering and rough areas as seen on the rock outcrop in Fig. 1, display high variability which could pose difficulty for target detection and...classification systems. The primary long-term goal of this research project is to increase understanding and modeling capabilities for high -frequency acoustic...Arlington, VA 22203-1995 10. SPONSOR/MONITOR’S ACRONYM(S) BD025 11. SPONSORING/MONITORING AGENCY REPORT NUMBER 12. DISTRIBUTION AVAILABILITY

  20. Optimizing Orbital Debris Monitoring with Optical Telescopes

    DTIC Science & Technology

    2010-09-01

    poses an increasing risk to manned space missions and operational satellites ; however, the majority of debris large enough to cause catastrophic...cameras hosted on GEO- based satellites for monitoring GEO. Performance analysis indicates significant potential contributions of these systems as a...concerns over the long term-viability of the space environment and the resulting economic impacts. The 2007 China anti- satellite test and the 2009

  1. Disbonding effects on elastic wave generation and reception by bonded piezoelectric sensor systems

    NASA Astrophysics Data System (ADS)

    Blackshire, James L.; Martin, Steven A.; Na, Jeong K.

    2007-04-01

    Durable integrated sensor systems are needed for long-term health monitoring evaluations of aerospace systems. For legacy aircraft the primary means of implementing a sensor system will be through surface mounting or bonding of the sensors to the structure. Previous work has shown that the performance of surface-bonded piezo sensors can degrade due to environmental effects such as vibrations, temperature fluctuations, and substrate flexure motions. This performance degradation included sensor cracking, disbonding, and general loss of efficiency over time. In this research effort, the bonding state of a piezo sensor system was systematically studied to understand and improve the long-term durability and survivability of the sensor system. Analytic and computational models were developed and used to understand elastic wave generation and reception performance for various states of sensor disbond. Experimental studies were also conducted using scanning laser vibrometry, pitch-catch ultrasound, and pulse-echo ultrasound methods to understand elastic wave propagation effects in thin plate materials. Significant performance loss was observed for increasing levels of sensor disbond as well as characteristic frequency signatures which may be useful in understanding sensor performance levels for future structural health monitoring systems.

  2. A pervasive health monitoring service system based on ubiquitous network technology.

    PubMed

    Lin, Chung-Chih; Lee, Ren-Guey; Hsiao, Chun-Chieh

    2008-07-01

    The phenomenon of aging society has derived problems such as shortage of medical resources and reduction of quality in healthcare services. This paper presents a system infrastructure for pervasive and long-term healthcare applications, i.e. a ubiquitous network composed of wireless local area network (WLAN) and cable television (CATV) network serving as a platform for monitoring physiological signals. Users can record vital signs including heart rate, blood pressure, and body temperature anytime either at home or at frequently visited public places in order to create a personal health file. The whole system was formally implemented in December 2004. Analysis of 2000 questionnaires indicates that 85% of users were satisfied with the provided community-wide healthcare services. Among the services provided by our system, health consultation services offered by family doctors was rated the most important service by 17.9% of respondents, and was followed by control of one's own health condition (16.4% of respondents). Convenience of data access was rated most important by roughly 14.3% of respondents. We proposed and implemented a long-term healthcare system integrating WLAN and CATV networks in the form of a ubiquitous network providing a service platform for physiological monitoring. This system can classify the health levels of the resident according to the variation tendency of his or her physiological signal for important reference of health management.

  3. Long-term Operation of an External Cavity Quantum Cascade Laser-based Trace-gas Sensor for Building Air Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Mark C.; Craig, Ian M.

    2013-11-03

    We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.

  4. Characterizing Long-Term Groundwater Conditions and Lithology for the Design of Large-Scale Borehole Heat Exchangers

    NASA Astrophysics Data System (ADS)

    Smith, David Charles

    Construction of large scale ground coupled heat pump (GCHP) systems that operate with hundreds or even thousands of boreholes for the borehole heat exchangers (BHE) has increased in recent years with many coming on line in the past 10 years. Many large institutions are constructing these systems because of their ability to store energy in the subsurface for indoor cooling during the warm summer months and extract that energy for heating during the cool winter months. Despite the increase in GCHP system systems constructed, there have been few long term studies on how these large systems interact with the subsurface. The thermal response test (TRT) is the industry standard for determining the thermal properties of the rock and soil. The TRT is limited in that it can only be used to determine the effective thermal conductivity over the whole length of a single borehole at the time that it is administered. The TRT cannot account for long-term changes in the aquifer saturation, changes in groundwater flow, or characterize different rock and soil units by effectiveness for heat storage. This study established new methods and also the need for the characterization of the subsurface for the purpose of design and long-term monitoring for GCHP systems. These new methods show that characterizing the long-term changes in aquifer saturation and groundwater flow, and characterizing different rock and soil units are an important part of the design and planning process of these systems. A greater understanding of how large-scale GCHP systems interact with the subsurface will result in designs that perform more efficiently over a longer period of time and expensive modifications due to unforeseen changes in system performance will be reduced.

  5. Flood effects on an Alaskan stream restoration project: the value of long-term monitoring

    USGS Publications Warehouse

    Densmore, Roseann V.; Karle, Kenneth F.

    2009-01-01

    On a nationwide basis, few stream restoration projects have long-term programs in place to monitor the effects of floods on channel and floodplain configuration and floodplain vegetation, but long-term and event-based monitoring is required to measure the effects of these stochastic events and to use the knowledge for adaptive management and the design of future projects. This paper describes a long-term monitoring effort (15 years) on a stream restoration project in Glen Creek in Denali National Park and Preserve in Alaska. The stream channel and floodplain of Glen Creek had been severely degraded over a period of 80 years by placer mining for gold, which left many reaches with unstable and incised streambeds without functioning vegetated floodplains. The objectives of the original project, initiated in 1991, were to develop and test methods for the hydraulic design of channel and floodplain morphology and for floodplain stabilization and riparian habitat recovery, and to conduct research and monitoring to provide information for future projects in similar degraded watersheds. Monitoring methods included surveyed stream cross-sections, vegetation plots, and aerial, ground, and satellite photos. In this paper we address the immediate and outlying effects of a 25-year flood on the stream and floodplain geometry and riparian vegetation. The long-term monitoring revealed that significant channel widening occurred following the flood, likely caused by excessive upstream sediment loading and the fairly slow development of floodplain vegetation in this climate. Our results illustrated design flaws, particularly in regard to identification and analysis of sediment sources and the dominant processes of channel adjustment.

  6. Advanced active health monitoring system of liquid rocket engines

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Wu, Zhanjun; Beard, Shawn; Chang, Fu-Kuo

    2008-11-01

    An advanced SMART TAPE system has been developed for real-time in-situ monitoring and long term tracking of structural integrity of pressure vessels in liquid rocket engines. The practical implementation of the structural health monitoring (SHM) system including distributed sensor network, portable diagnostic hardware and dedicated data analysis software is addressed based on the harsh operating environment. Extensive tests were conducted on a simulated large booster LOX-H2 engine propellant duct to evaluate the survivability and functionality of the system under the operating conditions of typical liquid rocket engines such as cryogenic temperature, vibration loads. The test results demonstrated that the developed SHM system could survive the combined cryogenic temperature and vibration environments and effectively detect cracks as small as 2 mm.

  7. Long-Term Water Quality Studies in a Eutrophic Lake Catchment: Slapton Ley, SW England

    NASA Astrophysics Data System (ADS)

    Burt, T. P.; Worrall, F.; Howden, N. J. K.

    2014-12-01

    Monitoring is the process by which we keep the behaviour of the environment in view, an essential way of discovering whether there are significant undesirable changes taking place. Long-term datasets reveal important patterns for scientists to explain and are essential for testing hypotheses undreamt of at the time monitoring scheme was set up. Many environmental processes take place over relatively long periods of time; very often, subtle processes are embedded within highly variable systems so that their weak signal cannot be extracted without a long record. Slapton Ley is a freshwater coastal lagoon in SW England. The Ley is part of a National Nature Reserve, wetland 116 ha in area which is divided into two basins: the Higher Ley (39 ha) is mainly reed swamp; the Lower Ley (77 ha) is open water. In the 1960s it became apparent that the Ley was becoming increasingly eutrophic. In order to gauge water, sediment and nutrient inputs into the lake, measurements began on the main catchments in late 1969. Continuous monitoring of discharge and a weekly water-sampling programme have been maintained by the Slapton Ley Field Centre ever since. The monitoring programme has been supplemented by a number of research projects which have sought to identify the salient hydrological processes operating within the Slapton catchments and to relate these to the delivery of sediment and solute to the stream system. The nitrate issue has been of particular interest at Slapton; although many longer series exist for large rivers like the Thames, the long record of nitrate data for the Slapton catchments is unique in Britain for small rural basins. Other issues to be explored will be the phosphorus legacy in lake sediments and a long-term decline in lake pH. The Slapton water quality record has confirmed that undesirable changes are taking place, revealed evidence of important patterns to be explained, allowed testing of new hypotheses (e.g. links with land-use change) and helped provide strategies for more successful management of the catchment area.

  8. Are we missing the boat? Current uses of long-term biological monitoring data in the evaluation and management of marine protected areas.

    PubMed

    Addison, P F E; Flander, L B; Cook, C N

    2015-02-01

    Protected area management agencies are increasingly using management effectiveness evaluation (MEE) to better understand, learn from and improve conservation efforts around the globe. Outcome assessment is the final stage of MEE, where conservation outcomes are measured to determine whether management objectives are being achieved. When quantitative monitoring data are available, best-practice examples of outcome assessments demonstrate that data should be assessed against quantitative condition categories. Such assessments enable more transparent and repeatable integration of monitoring data into MEE, which can promote evidence-based management and improve public accountability and reporting. We interviewed key informants from marine protected area (MPA) management agencies to investigate how scientific data sources, especially long-term biological monitoring data, are currently informing conservation management. Our study revealed that even when long-term monitoring results are available, management agencies are not using them for quantitative condition assessment in MEE. Instead, many agencies conduct qualitative condition assessments, where monitoring results are interpreted using expert judgment only. Whilst we found substantial evidence for the use of long-term monitoring data in the evidence-based management of MPAs, MEE is rarely the sole mechanism that facilitates the knowledge transfer of scientific evidence to management action. This suggests that the first goal of MEE (to enable environmental accountability and reporting) is being achieved, but the second and arguably more important goal of facilitating evidence-based management is not. Given that many MEE approaches are in their infancy, recommendations are made to assist management agencies realize the full potential of long-term quantitative monitoring data for protected area evaluation and evidence-based management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. GENASIS national and international monitoring networks for persistent organic pollutants

    NASA Astrophysics Data System (ADS)

    Brabec, Karel; Dušek, Ladislav; Holoubek, Ivan; Hřebíček, Jiří; Kubásek, Miroslav; Urbánek, Jaroslav

    2010-05-01

    Persistent organic pollutants (POPs) remain in the centre of scientific attention due to their slow rates of degradation, their toxicity, and potential for both long-range transport and bioaccumulation in living organisms. This group of compounds covers large number of various chemicals from industrial products, such as polychlorinated biphenyls, etc. The GENASIS (Global Environmental Assessment and Information System) information system utilizes data from national and international monitoring networks to obtain as-complete-as-possible set of information and a representative picture of environmental contamination by persistent organic pollutants (POPs). There are data from two main datasets on POPs monitoring: 1.Integrated monitoring of POPs in Košetice Observatory (Czech Republic) which is a long term background site of the European Monitoring and Evaluation Programme (EMEP) for the Central Europe; the data reveals long term trends of POPs in all environmental matrices. The Observatory is the only one in Europe where POPs have been monitored not only in ambient air, but also in wet atmospheric deposition, surface waters, sediments, soil, mosses and needles (integrated monitoring). Consistent data since the year 1996 are available, earlier data (up to 1998) are burdened by high variability and high detection limits. 2.MONET network is ambient air monitoring activities in the Central and Eastern European region (CEEC), Central Asia, Africa and Pacific Islands driven by RECETOX as the Regional Centre of the Stockholm Convention for the region of Central and Eastern Europe under the common name of the MONET networks (MONitoring NETwork). For many of the participating countries these activities generated first data on the atmospheric levels of POPs. The MONET network uses new technologies of air passive sampling, which was developed, tested, and calibrated by RECETOX in cooperation with Environment Canada and Lancaster University, and was originally launched as a model monitoring network providing public administration, private subject, and general public information about air pollution by POPs that had not been previously regularly monitored and whose measurement is further required by global monitoring plan of the Stockholm Convention. The MONET network is international project with many participants. Monitoring in the MONET-CZ network started in 2004 with the pilot project and continues to the current days, MONET CEEC started in 2006 and continues nowadays, MONET Africa started in 2008. The database of the GENASIS systems currently covers MONET-CZ data until the year 2008. The MONET network currently covers 37 countries in the Europe, Asia and Africa with more than 350 sampling sites. The paper will discuss about following topics * Data Fusion in GENASIS: how can GENASIS maximize the value and accuracy of the information gathered from heterogeneous data sources? * Sensor types in GENASIS: which POPs can be measured; what are the physical limitations to achievable accuracy, reliability, and long-term stability of miniaturized sensors; which applications can (not) be realized within these limitations?

  10. Home medical monitoring network based on embedded technology

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Deng, Wenyi; Yan, Bixi; Lv, Naiguang

    2006-11-01

    Remote medical monitoring network for long-term monitoring of physiological variables would be helpful for recovery of patients as people are monitored at more comfortable conditions. Furthermore, long-term monitoring would be beneficial to investigate slowly developing deterioration in wellness status of a subject and provide medical treatment as soon as possible. The home monitor runs on an embedded microcomputer Rabbit3000 and interfaces with different medical monitoring module through serial ports. The network based on asymmetric digital subscriber line (ADSL) or local area network (LAN) is established and a client - server model, each embedded home medical monitor is client and the monitoring center is the server, is applied to the system design. The client is able to provide its information to the server when client's request of connection to the server is permitted. The monitoring center focuses on the management of the communications, the acquisition of medical data, and the visualization and analysis of the data, etc. Diagnosing model of sleep apnea syndrome is built basing on ECG, heart rate, respiration wave, blood pressure, oxygen saturation, air temperature of mouth cavity or nasal cavity, so sleep status can be analyzed by physiological data acquired as people in sleep. Remote medical monitoring network based on embedded micro Internetworking technology have advantages of lower price, convenience and feasibility, which have been tested by the prototype.

  11. A civil structural monitoring system based on fiber grating sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Cai, Haiwen; Pastore, Robert; Ju, Jing; Zeng, Debing; Yin, Zhifan; Cui, Hong-Liang

    2003-08-01

    Optical fiber sensors based on Fiber Bragg Grating (FBG) technology have found many applications in the area of civil structural monitoring systems, such as in bridge monitoring and maintenance. FBG sensors can measure the deformation, overload and cracks on bridge with a high sensitivity. In this paper we report on our recent work a structural monitoring system using FBG sensors. Basic theoretical background and design of the system is described here, including the light source, FBG sensors, demodulator sensors, signal detection and processing schemes. The system will be installed on a major arch bridge currently under construction in Shanghai, China for long-term in situ health monitoring. The system schematic arrangement on the bridge is introduced in brief. Simulation experiments in the laboratory were carried out to test the performance of FBG strain sensors. The sensor response shows excellent linearity against the strain imposed on it. Traffic and overload monitoring on bridge using FBG sensors is also discussed and planned for the near future.

  12. Automated Remote Monitoring of Depression: Acceptance Among Low-Income Patients in Diabetes Disease Management.

    PubMed

    Ramirez, Magaly; Wu, Shinyi; Jin, Haomiao; Ell, Kathleen; Gross-Schulman, Sandra; Myerchin Sklaroff, Laura; Guterman, Jeffrey

    2016-01-25

    Remote patient monitoring is increasingly integrated into health care delivery to expand access and increase effectiveness. Automation can add efficiency to remote monitoring, but patient acceptance of automated tools is critical for success. From 2010 to 2013, the Diabetes-Depression Care-management Adoption Trial (DCAT)-a quasi-experimental comparative effectiveness research trial aimed at accelerating the adoption of collaborative depression care in a safety-net health care system-tested a fully automated telephonic assessment (ATA) depression monitoring system serving low-income patients with diabetes. The aim of this study was to determine patient acceptance of ATA calls over time, and to identify factors predicting long-term patient acceptance of ATA calls. We conducted two analyses using data from the DCAT technology-facilitated care arm, in which for 12 months the ATA system periodically assessed depression symptoms, monitored treatment adherence, prompted self-care behaviors, and inquired about patients' needs for provider contact. Patients received assessments at 6, 12, and 18 months using Likert-scale measures of willingness to use ATA calls, preferred mode of reach, perceived ease of use, usefulness, nonintrusiveness, privacy/security, and long-term usefulness. For the first analysis (patient acceptance over time), we computed descriptive statistics of these measures. In the second analysis (predictive factors), we collapsed patients into two groups: those reporting "high" versus "low" willingness to use ATA calls. To compare them, we used independent t tests for continuous variables and Pearson chi-square tests for categorical variables. Next, we jointly entered independent factors found to be significantly associated with 18-month willingness to use ATA calls at the univariate level into a logistic regression model with backward selection to identify predictive factors. We performed a final logistic regression model with the identified significant predictive factors and reported the odds ratio estimates and 95% confidence intervals. At 6 and 12 months, respectively, 89.6% (69/77) and 63.7% (49/77) of patients "agreed" or "strongly agreed" that they would be willing to use ATA calls in the future. At 18 months, 51.0% (64/125) of patients perceived ATA calls as useful and 59.7% (46/77) were willing to use the technology. Moreover, in the first 6 months, most patients reported that ATA calls felt private/secure (75.9%, 82/108) and were easy to use (86.2%, 94/109), useful (65.1%, 71/109), and nonintrusive (87.2%, 95/109). Perceived usefulness, however, decreased to 54.1% (59/109) in the second 6 months of the trial. Factors predicting willingness to use ATA calls at the 18-month follow-up were perceived privacy/security and long-term perceived usefulness of ATA calls. No patient characteristics were significant predictors of long-term acceptance. In the short term, patients are generally accepting of ATA calls for depression monitoring, with ATA call design and the care management intervention being primary factors influencing patient acceptance. Acceptance over the long term requires that the system be perceived as private/secure, and that it be constantly useful for patients' needs of awareness of feelings, self-care reminders, and connectivity with health care providers. ClinicalTrials.gov NCT01781013; https://clinicaltrials.gov/ct2/show/NCT01781013 (Archived by WebCite at http://www.webcitation.org/6e7NGku56).

  13. Permanent downhole fiber optic pressure and temperature monitoring during CO2 injection

    NASA Astrophysics Data System (ADS)

    Schmidt-Hattenberger, C.; Moeller, F.; Liebscher, A.; Koehler, S.

    2009-04-01

    Permanent downhole monitoring of pressure and temperature, ideally over the entire length of the injection string, is essential for any smooth and safe CO2 injection within the framework of geological CO2 storage: i) To avoid fracturing of the cap-rock, a certain, site dependent pressure threshold within the reservoir should not be exceeded; ii) Any CO2 phase transition within the injection string, i.e. either condensation or evaporation, should be avoided. Such phase transitions cause uncontrolled and undetermined P-T regimes within the injection string that may ultimately result in a shut-in of the injection facility; and iii) Precise knowledge of the P and T response of the reservoir to the CO2 injection is a prerequisite to any reservoir modeling. The talk will present first results from our permanent downhole P-T monitoring program from the Ketzin CO2 storage test site (CO2SINK). At Ketzin, a fiber Bragg grating pressure sensor has been installed at the end of the injection string in combination with distributed temperature profiling over the entire length (about 550 m) of the string for continuous P-T monitoring during operation. Such fiber optic monitoring technique is used by default in the oil and gas industry but has not yet been applied as standard on a long-term routine mode for CO2 injection. Pressure is measured every 5 seconds with a resolution of < 1 bar. The data are later processed by user-defined program. The temperature logs along the injection string are measured every 3 minutes with a spatial resolution of one meter and with a temperature resolution of about 0.1°C. The long-term stability under full operational conditions is currently under investigation. The main computer of the P-T system operates as a stand-alone data-acquisition unit, and is connected with a secure intranet in order to ensure remote data access and system maintenance. The on-line measurements are displayed on the operator panel of the injection facility for direct control. The monitoring program started already prior to CO2 injection and runs since 6 months without any fatal errors. The recorded data cover the pre-injection well-testing phase, the initial injection phase as well as several shut-in and re-start phases during routine injection. Especially during the initial and re-start phases the monitoring results significantly optimized and improved the operation of the injection facility in terms of injection rate and injection temperature. Due to the high qualitative and also quantitative resolution of this technique even shortest-term transient disturbances of the reservoir and injection regime could be monitored as they may occur due to fluid sampling or logging in neighboring wells. Such short-term transient effects are normally overlooked using non-permanent monitoring techniques. On the long-term perspective, this monitoring technique will also support the control of CO2 injection tubing integrity, which is a prerequisite for any secure long-lasting CO2 injection and storage.

  14. Long-term monitoring of a pretensioned concrete bridge near Winfield, Kansas.

    DOT National Transportation Integrated Search

    2016-10-01

    The following report is an expansion of previous work conducted at Kansas State University and published as FHWA-KS-07-1 in April 2007 (Larson, Peterman, & Esmaeily, 2007). It details the findings from the long-term monitoring of a five-span bridge t...

  15. Development of side-chain NLO polymer materials with high electro-optic activity and long-term stability

    NASA Astrophysics Data System (ADS)

    Huang, Diyun; Parker, Timothy; Guan, Hann Wen; Cong, Shuxin; Jin, Danliang; Dinu, Raluca; Chen, Baoquan; Tolstedt, Don; Wolf, Nick; Condon, Stephen

    2005-01-01

    The electro-optic coefficient and long-term dipole alignment stability are two major factors in the development of high performance NLO materials for the application of high-speed EO devices. We have developed a high performance non-linear organic chromophore and incorporated it into a crosslinkable side-chain polyimide system. The polymer was synthesized through stepwise grafting of the crosslinker followed by the chromophore onto the polyimide backbone via esterification. Different chromophore loading levels were achieved by adjusting the crosslinker/chromophore feeding ratio. The polyimides films were contact-poled with second-harmonic generation monitoring. A large EO coefficient value was obtained and good long-term thermal stability at 85°C was observed.

  16. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-02-01

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclearmore » Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.« less

  17. EVALUATION OF THE ABILITY OF CHLORINE TO INACTIVATE SELECTED ORGANISMS FROM THE BIOFILM OF A DRINKING WATER DISTRIBUTION SYSTEM SIMULATOR FOLLOWING A LONG-TERM WASTEWATER CROSS-CONNECTION

    EPA Science Inventory

    The drinking water distribution system simulator (DSS) from the U.S. EPA was operated with a direct cross-connection of 0.3% wastewater to system volume per day for 70 d. During the cross-connection, tap water, wastewater, and system discharge water were monitored to ensure that ...

  18. Long open-path TDL based system for monitoring the background concentration for deployment at Jungfraujoch High Altitude Research Station- Switzerland

    NASA Astrophysics Data System (ADS)

    Simeonov, V.; van den Bergh, H.; Parlange, M. B.

    2009-12-01

    A new long-open-path instrument developed at EPFL for methane and water vapor observation will be presented. The instrument is developed and will be used within the GAW+ CH program and aims at long-term monitoring of background methane concentration at the High Altitude Research Station Jungfraujoch (3580 mASL). The instrument is built on the monostatic scheme (transceiver -distant retroreflector) using a 1.65 nm tunable diode laser (TDL) and a retroreflector at 1200 m from the transceiver. The data will be compared with in-situ measurements to evaluate the effect of the station on the in-situ data.

  19. Multichannel lens-free CMOS sensors for real-time monitoring of cell growth.

    PubMed

    Chang, Ko-Tung; Chang, Yu-Jen; Chen, Chia-Ling; Wang, Yao-Nan

    2015-02-01

    A low-cost platform is proposed for the growth and real-time monitoring of biological cells. The main components of the platform include a PMMA cell culture microchip and a multichannel lens-free CMOS (complementary metal-oxide-semiconductor) / LED imaging system. The PMMA microchip comprises a three-layer structure and is fabricated using a low-cost CO2 laser ablation technique. The CMOS / LED monitoring system is controlled using a self-written LabVIEW program. The platform has overall dimensions of just 130 × 104 × 115 mm(3) and can therefore be placed within a commercial incubator. The feasibility of the proposed system is demonstrated using HepG2 cancer cell samples with concentrations of 5000, 10 000, 20 000, and 40 000 cells/mL. In addition, cell cytotoxicity tests are performed using 8, 16, and 32 mM cyclophosphamide. For all of the experiments, the cell growth is observed over a period of 48 h. The cell growth rate is found to vary in the range of 44∼52% under normal conditions and from 17.4∼34.5% under cyclophosphamide-treated conditions. In general, the results confirm the long-term cell growth and real-time monitoring ability of the proposed system. Moreover, the magnification provided by the lens-free CMOS / LED observation system is around 40× that provided by a traditional microscope. Consequently, the proposed system has significant potential for long-term cell proliferation and cytotoxicity evaluation investigations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Long-term field monitoring of paving fabric interlayer systems to reduce reflective cracking.

    DOT National Transportation Integrated Search

    2016-06-01

    The formation of reflective cracking of pavement overlays has confronted highway engineers for many years. Stress-relieving interlayers, such as paving fabrics, have been used in an attempt to reduce or delay reflective cracking. The primary objectiv...

  1. Highway-railway at-grade crossing structures : long term settlement measurements and assessments.

    DOT National Transportation Integrated Search

    2016-03-22

    A common maintenance technique to correct track geometry at bridge transitions is hand tamping. The first section presents a non-invasive track monitoring system involving high-speed video cameras that evaluates the change in track behavior before an...

  2. In-Vehicle Safety Advisory And Warning System (Ivsaws), Volume V: Appendices L Through V

    DOT National Transportation Integrated Search

    1999-09-01

    To better understand the environmental factors and their effects on pavement performance, the Long Term Pavement Performance (LTPP) Seasonal Monitoring Program (SMP) was initiated during 1992. Sixty-four LTPP pavement sections were identified to be i...

  3. A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation.

    PubMed

    Pérez, Alberto J; González-Peña, Rolando J; Braga, Roberto; Perles, Ángel; Pérez-Marín, Eva; García-Diego, Fernando J

    2018-01-11

    Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation.

  4. Instrumentation Guidelines for the Advanced National Seismic System

    USGS Publications Warehouse

    Working Group on Instrumentation, Siting

    2008-01-01

    This document provides guidelines for the seismic-monitoring instrumentation used by long-term earthquake-monitoring stations that will sense ground motion, digitize and store the resulting signals in a local data acquisition unit, and optionally transmit these digital data. These guidelines are derived from specifications and requirements for data needed to address the nation's emergency response, engineering, and scientific needs as identified in U.S. Geological Survey Circular 1188 (1999). Data needs are discussed in terms of national, regional, and urban scales of monitoring in section 3. Functional performance specifications for instrumentation are introduced in section 4.3 and discussed in detail in section 6 in terms of instrument classes and definitions described in section 5. System aspects and testing recommendations are discussed in sections 7 and 8, respectively. Although U.S. Geological Survey Circular 1188 (1999) recommends that the Advanced National Seismic System (ANSS) include portable instrumentation, performance specifications for this element are not specifically addressed in this document. Nevertheless, these guidelines are largely applicable to portable instrumentation. Volcano monitoring instrumentation is also beyond the scope of this document. Guidance for ANSS structural-response monitoring is discussed briefly herein but details are deferred to the ANSS document by the ANSS Structural Response Monitoring Committee (U.S. Geological Survey, 2005). Aspects of station planning, siting, and installation other than instrumentation are beyond the scope of this document.

  5. Design of a Hybrid (Wired/Wireless) Acquisition Data System for Monitoring of Cultural Heritage Physical Parameters in Smart Cities

    PubMed Central

    García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma

    2015-01-01

    Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board’s designs and more than 5000 algorithm lines. System tests have shown an adequate system operation. PMID:25815447

  6. Design of a hybrid (wired/wireless) acquisition data system for monitoring of cultural heritage physical parameters in Smart Cities.

    PubMed

    García Diego, Fernando-Juan; Esteban, Borja; Merello, Paloma

    2015-03-25

    Preventive conservation represents a working method and combination of techniques which helps in determining and controlling the deterioration process of cultural heritage in order to take the necessary actions before it occurs. It is acknowledged as important, both in terms of preserving and also reducing the cost of future conservation measures. Therefore, long-term monitoring of physical parameters influencing cultural heritage is necessary. In the context of Smart Cities, monitoring of cultural heritage is of interest in order to perform future comparative studies and load information into the cloud that will be useful for the conservation of other heritage sites. In this paper the development of an economical and appropriate acquisition data system combining wired and wireless communication, as well as third party hardware for increased versatility, is presented. The device allows monitoring a complex network of points with high sampling frequency, with wired sensors in a 1-wire bus and a wireless centralized system recording data for monitoring of physical parameters, as well as the future possibility of attaching an alarm system or sending data over the Internet. This has been possible with the development of three board's designs and more than 5000 algorithm lines. System tests have shown an adequate system operation.

  7. A critical friend: monitoring and evaluation systems, development cooperation and local government. The case of Tuscany.

    PubMed

    Rossignoli, Serena; Coticchia, Fabrizio; Mezzasalma, Annarosa

    2015-06-01

    The role of monitoring and evaluation (M&E) systems in the field of development cooperation has globally increased in last decades. International and regional organizations, as well as states, local governments and NGOs have largely adopted the tools provided by M&E in order to enhance transparency, effectiveness and efficiency. The paper aims at verifying how and to what extent the implementation of M&E systems has affected the overall quality of international cooperation projects financed by a local government. After a literature review on M&E in development cooperation, the research analyzes the wide range of activities (evaluation ex-ante, mid-term, final, monitoring, consultancy) carried out by the Evaluation Team of the XY in the last eight years in behalf of an Italian local government: the Region of Tuscany. The paper reveals the strategic significance of adopting M&E systems in the medium-long term. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Long-term monitoring of a pretensioned concrete bridge near Winfield, Kansas : [technical summary].

    DOT National Transportation Integrated Search

    2016-10-01

    The following report is an expansion of previous work conducted at Kansas State University and published as FHWA-KS-07-1 in April 2007 (Larson, Peterman, & Esmaeily, 2007). It details the findings from the long-term monitoring of a five-span bridge t...

  9. Smartphone based monitoring system for long-term sleep assessment.

    PubMed

    Domingues, Alexandre

    2015-01-01

    The diagnosis of sleep disorders, highly prevalent in Western countries, typically involves sophisticated procedures and equipment that are highly intrusive to the patient. The high processing capabilities and storage capacity of current portable devices, together with a big range of available sensors, many of them with wireless capabilities, create new opportunities and change the paradigms in sleep studies. In this work, a smartphone based sleep monitoring system is presented along with the details of the hardware, software and algorithm implementation. The aim of this system is to provide a way for subjects, with no pre-diagnosed sleep disorders, to monitor their sleep habits, and on the initial screening of abnormal sleep patterns.

  10. Sensors for Environmental Control

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Under a Kennedy Space Center Small Business Innovation Research contract, GEO-CENTERS, Inc. developed a sensing element or 'optrode,' which NASA needed for space life support research to measure a hydroponic culture's pH factor. The company then commercialized the technology in the PC Based pH Monitoring System. The system employs the optrode to enable long term continuous monitoring of the pH level of fluids in standing and flowing conditions, an optoelectronic board with light sensors and detectors that fits into a desktop computer, and a fiber optic cable that connects the two. The system is effective in monitoring the pH output of industries to maintain ranges acceptable to the Environmental Protection Agency.

  11. Protocols for long-term monitoring of seabird ecology in the Gulf of Alaska

    USGS Publications Warehouse

    Piatt, John F.; Byrd, G. Vernon; Harding, Ann M.A.; Kettle, Arthur B.; Kitaysky, Sasha; Litzow, Michael A.; Roseneau, David G.; Shultz, Michael T.; van Pelt, Thomas I.

    2003-01-01

    Seabird populations will need to be monitored for many years to assess both recovery and ecological conditions affecting recovery. Detailed studies of individual seabird colonies and marine ecosystems in the Gulf of Alaska have been conducted by the U.S. Geological Survey and U.S. Fish and Wildlife Service under the auspices of damage assessment and restoration programs of the Trustee Council. Much has been learned about factors influencing seabird populations and their capacity to recover from the spill in the Gulf of Alaska. As the restoration program moves toward long-term monitoring of populations, however, protocols and long-term monitoring strategies that focus on key parameters of interest and that are inexpensive, practical, and applicable over a large geographic area need to be developed.

  12. Remote monitoring to Improve long-term prognosis in heart failure patients with implantable cardioverter-defibrillators.

    PubMed

    Ono, Maki; Varma, Niraj

    2017-05-01

    Strong evidence exists for the utility of remote monitoring in cardiac implantable electronic devices for early detection of arrhythmias and evaluation of system performance. The application of remote monitoring for the management of chronic disease such as heart failure has been an active area of research. Areas covered: This review aims to cover the latest evidence of remote monitoring of implantable cardiac defibrillators in terms of heart failure prognosis. This article also updates the current technology relating to the method and discusses key factors to be addressed in order to better use the approach. PubMed and internet searches were conducted to acquire most recent data and technology information. Expert commentary: Multiparameter monitoring with automatic transmission is useful for heart failure management. Improved adherence to remote monitoring and an optimal algorithm for transmitted alerts and their management are warranted in the management of heart failure.

  13. Test results of six-month test of two water electrolysis systems

    NASA Technical Reports Server (NTRS)

    Mills, E. S.; Wells, G. W.

    1972-01-01

    The two water electrolysis systems used in the NASA space station simulation 90-day manned test of a regenerative life support system were refurbished as required and subjected to 26-weeks of testing. The two electrolysis units are both promising systems for oxygen and hydrogen generation and both needed extensive long-term testing to evaluate the performance of the respective cell design and provide guidance for further development. Testing was conducted to evaluate performance in terms of current, pressure, variable oxygen demands, and orbital simulation. An automatic monitoring system was used to record, monitor and printout performance data at one minute, ten minute or one-hour intervals. Performance data is presented for each day of system operation for each module used during the day. Failures are analyzed, remedial action taken to eliminate problems is discussed and recommendations for redesign for future space applications are stated.

  14. Final Environmental Assessment (EA), Long-Term Integrated Management of Mission-Generated Solid Waste, Edwards Air Force Base, California

    DTIC Science & Technology

    2016-11-28

    infrastructure typically include energy, water, wastewater, electricity, natural gas , liquid fuel distribution systems, communication lines (e.g...with state off-road regulations would further reduce air quality and greenhouse gas emissions. Cultural Resources. The waste footprint as well as...maintenance of the prescriptive final cover and erosion control, landfill gas monitoring and well maintenance, groundwater monitoring and well maintenance

  15. Long term SAR interferometry monitoring for assessing changing levels of slope instability hazards

    NASA Astrophysics Data System (ADS)

    Wasowski, J.; Ferretti, A.

    The population growth with increasing impact of man on the environment and urbanisation of areas susceptible to slope failures coupled with the ongoing change in climate patterns will require a shift in the approaches to landslide hazard reduction Indeed there is evidence that landslide activity and related socio-economic loss are increasing in both rich and less developed countries throughout the world Because of this and because the urbanisation of hillside and mountain slopes prone to failure will likely continue in the future the protection of new and pre-existing developed areas via traditional engineering stabilisation works and in situ monitoring is not considered economically feasible Furthermore in most cases the ground control systems are installed post-factum and for short term monitoring and hence their role in preventing disasters is limited Considering the global dimension of the slope instability problem a sustainable road to landslide hazard reduction seems to be via exploitation of EO systems with focus on early detection long term monitoring and early warning Thanks to the wide-area coverage regular schedule and improving resolution of space-borne sensors the EO can foster the auspicious shift from a culture of repair to a culture of awarness and prevention Under this scenario the space-borne synthetic aperture radar differential interferometry DInSAR is attractive because of its capability to provide both wide-area and spatially dense information on surface displacements Since the presence of movements represents a direct evidence of

  16. A Wearable Cardiac Monitor for Long-Term Data Acquisition and Analysis

    PubMed Central

    Winokur, Eric S.; Delano, Maggie K.; Sodini, Charles G.

    2015-01-01

    A low-power wearable ECG monitoring system has been developed entirely from discrete electronic components and a custom PCB. This device removes all loose wires from the system and minimizes the footprint on the user. The monitor consists of five electrodes, which allow a cardiologist to choose from a variety of possible projections. Clinical tests to compare our wearable monitor with a commercial clinical ECG recorder are conducted on ten healthy adults under different ambulatory conditions, with nine of the datasets used for analysis. Data from both monitors were synchronized and annotated with PhysioNet's waveform viewer WAVE (physionet.org) [1]. All gold standard annotations are compared to the results of the WQRS detection algorithm [2] provided by PhysioNet. QRS sensitivity and QRS positive predictability are extracted from both monitors to validate the wearable monitor. PMID:22968205

  17. Selecting optimal monitoring site locations for peak ambient particulate material concentrations using the MM5-CAMx4 numerical modelling system.

    PubMed

    Sturman, Andrew; Titov, Mikhail; Zawar-Reza, Peyman

    2011-01-15

    Installation of temporary or long term monitoring sites is expensive, so it is important to rationally identify potential locations that will achieve the requirements of regional air quality management strategies. A simple, but effective, numerical approach to selecting ambient particulate matter (PM) monitoring site locations has therefore been developed using the MM5-CAMx4 air pollution dispersion modelling system. A new method, 'site efficiency,' was developed to assess the ability of any monitoring site to provide peak ambient air pollution concentrations that are representative of the urban area. 'Site efficiency' varies from 0 to 100%, with the latter representing the most representative site location for monitoring peak PM concentrations. Four heavy pollution episodes in Christchurch (New Zealand) during winter 2005, representing 4 different aerosol dispersion patterns, were used to develop and test this site assessment technique. Evaluation of the efficiency of monitoring sites was undertaken for night and morning aerosol peaks for 4 different particulate material (PM) spatial patterns. The results demonstrate that the existing long term monitoring site at Coles Place is quite well located, with a site efficiency value of 57.8%. A temporary ambient PM monitoring site (operating during winter 2006) showed a lower ability to capture night and morning peak aerosol concentrations. Evaluation of multiple site locations used during an extensive field campaign in Christchurch (New Zealand) in 2000 indicated that the maximum efficiency achieved by any site in the city would be 60-65%, while the efficiency of a virtual background site is calculated to be about 7%. This method of assessing the appropriateness of any potential monitoring site can be used to optimize monitoring site locations for any air pollution measurement programme. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Long-term real-time structural health monitoring using wireless smart sensor

    NASA Astrophysics Data System (ADS)

    Jang, Shinae; Mensah-Bonsu, Priscilla O.; Li, Jingcheng; Dahal, Sushil

    2013-04-01

    Improving the safety and security of civil infrastructure has become a critical issue for decades since it plays a central role in the economics and politics of a modern society. Structural health monitoring of civil infrastructure using wireless smart sensor network has emerged as a promising solution recently to increase structural reliability, enhance inspection quality, and reduce maintenance costs. Though hardware and software framework are well prepared for wireless smart sensors, the long-term real-time health monitoring strategy are still not available due to the lack of systematic interface. In this paper, the Imote2 smart sensor platform is employed, and a graphical user interface for the long-term real-time structural health monitoring has been developed based on Matlab for the Imote2 platform. This computer-aided engineering platform enables the control, visualization of measured data as well as safety alarm feature based on modal property fluctuation. A new decision making strategy to check the safety is also developed and integrated in this software. Laboratory validation of the computer aided engineering platform for the Imote2 on a truss bridge and a building structure has shown the potential of the interface for long-term real-time structural health monitoring.

  19. Resolving drivers of variability in estuarine metabolism from sustained observations of water quality in the SE US

    EPA Science Inventory

    We examine trends in water quality in long-term monitoring (10-15 y) data collected at 5 estuarine systems of NOAA’s National Estuarine Research Reserve System: Grand Bay, MS; Weeks Bay, AL; Apalachicola Bay, FL; Rookery Bay, FL, and Guana Tolomatos and Matanzas Rivers, FL. These...

  20. Monitoring Heritage Buildings with Open Source Hardware Sensors: A Case Study of the Mosque-Cathedral of Córdoba

    PubMed Central

    Mesas-Carrascosa, Francisco Javier; Verdú Santano, Daniel; Meroño de Larriva, Jose Emilio; Ortíz Cordero, Rafael; Hidalgo Fernández, Rafael Enrique; García-Ferrer, Alfonso

    2016-01-01

    A number of physical factors can adversely affect cultural heritage. Therefore, monitoring parameters involved in the deterioration process, principally temperature and relative humidity, is useful for preventive conservation. In this study, a total of 15 microclimate stations using open source hardware were developed and stationed at the Mosque-Cathedral of Córdoba, which is registered with UNESCO for its outstanding universal value, to assess the behavior of interior temperature and relative humidity in relation to exterior weather conditions, public hours and interior design. Long-term monitoring of these parameters is of interest in terms of preservation and reducing the costs of future conservation strategies. Results from monitoring are presented to demonstrate the usefulness of this system. PMID:27690056

  1. Longitudinal study of radiation exposure in computed tomography with an in-house developed dose monitoring system

    NASA Astrophysics Data System (ADS)

    Renger, Bernhard; Rummeny, Ernst J.; Noël, Peter B.

    2013-03-01

    During the last decades, the reduction of radiation exposure especially in diagnostic computed tomography is one of the most explored topics. In the same time, it seems challenging to quantify the long-term clinical dose reduction with regard to new hardware as well as software solutions. To overcome this challenge, we developed a Dose Monitoring System (DMS), which collects information from PACS, RIS, MPPS and structured reports. The integration of all sources overcomes the weaknesses of single systems. To gather all possible information, we integrated an optical character recognition system to extract, for example, information from the CT-dose-report. All collected data are transferred to a database for further evaluation, e.g., for calculations of effective as well as organ doses. The DMS provides a single database for tracking all essential study and patient specific information across different modality as well as different vendors. As an initial study, we longitudinally investigated the dose reduction in CT examination when employing a noise-suppressing reconstruction algorithm. For this examination type a significant long-term reduction in radiation exposure is reported, when comparing to a CT-system with standard reconstruction. In summary our DMS tool not only enables us to track radiation exposure on daily bases but further enables to analyses the long term effect of new dose saving strategies. In the future the statistical analyses of all retrospective data, which are available in a modern imaging department, will provide a unique overview of advances in reduction of radiation exposure.

  2. Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Lingyu

    Interim storage of spent nuclear fuel from reactor sites has gained additional importance and urgency for resolving waste-management-related technical issues. To ensure that nuclear power remains clean energy, monitoring has been identified by DOE as a high priority cross-cutting need, necessary to determine and predict the degradation state of the systems, structures, and components (SSCs) important to safety (ITS). Therefore, nondestructive structural condition monitoring becomes a need to be installed on existing or to be integrated into future storage system to quantify the state of health or to guarantee the safe operation of nuclear power plants (NPPs) during their extendedmore » life span. In this project, the lead university and the collaborating national laboratory teamed to develop a nuclear structural health monitoring (n-SHM) system based on in-situ piezoelectric sensing technologies that can monitor structural degradation and aging for nuclear spent fuel DCSS and similar structures. We also aimed to identify and quantify possible influences of nuclear spent fuel environment (temperature and radiation) to the piezoelectric sensor system and come up with adequate solutions and guidelines therefore. We have therefore developed analytical model for piezoelectric based n-SHM methods, with considerations of temperature and irradiation influence on the model of sensing and algorithms in acoustic emission (AE), guided ultrasonic waves (GUW), and electromechanical impedance spectroscopy (EMIS). On the other side, experimentally the temperature and irradiation influence on the piezoelectric sensors and sensing capabilities were investigated. Both short-term and long-term irradiation investigation with our collaborating national laboratory were performed. Moreover, we developed multi-modal sensing, validated in laboratory setup, and conducted the testing on the We performed multi-modal sensing development, verification and validation tests on very complex structures including a medium-scale vacuum drying chamber and a small-scale mockup canister available for the desired testing. Our work developed the potential candidate for long term structural health monitoring of spent fuel canister through piezoelectric wafer sensors and provided the sensing methodologies based on AE and GUW methodologies. It overall provides an innovative system and methodology for enhancing the safe operation of nuclear power plant. All major accomplishments planned in the original proposal were successfully achieved.« less

  3. Monitoring issues from a modeling perspective

    NASA Technical Reports Server (NTRS)

    Mahlman, Jerry D.

    1993-01-01

    Recognition that earth's climate and biogeophysical conditions are likely changing due to human activities has led to a heightened awareness of the need for improved long-term global monitoring. The present long-term measurement efforts tend to be spotty in space, inadequately calibrated in time, and internally inconsistent with respect to other instruments and measured quantities. In some cases, such as most of the biosphere, most chemicals, and much of the ocean, even a minimal monitoring program is not available. Recently, it has become painfully evident that emerging global change issues demand information and insights that the present global monitoring system simply cannot supply. This is because a monitoring system must provide much more than a statement of change at a given level of statistical confidence. It must describe changes in diverse parts of the entire earth system on regional to global scales. It must be able to provide enough input to allow an integrated physical characterization of the changes that have occurred. Finally, it must allow a separation of the observed changes into their natural and anthropogenic parts. The enormous policy significance of global change virtually guarantees an unprecedented level of scrutiny of the changes in the earth system and why they are happening. These pressures create a number of emerging challenges and opportunities. For example, they will require a growing partnership between the observational programs and the theory/modeling community. Without this partnership, the scientific community will likely fall short in the monitoring effort. The monitoring challenge before us is not to solve the problem now, but rather to set appropriate actions in motion so as to create the required framework for solution. Each individual piece needs to establish its role in the large problem and how the required interactions are to take place. Below, we emphasize some of the needs and opportunities that could and should be addressed through participation by the theoreticians and modelers in the global change monitoring effort.

  4. Quantitative genetics in natural populations: Means of monitoring natural biological processes

    Treesearch

    Brook G. Milligan

    2001-01-01

    One of the goals of conservation biology is to maintain the integrity of natural processes in populations of rare plants. In the short term one of the main concerns is often whether the mating system of rare plants is disrupted, for example, by fragmentation. In the long term one of the main concerns is often whether small isolated populations maintain enough genetic...

  5. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals

    NASA Astrophysics Data System (ADS)

    Lee, Seung Min; Byeon, Hang Jin; Lee, Joong Hoon; Baek, Dong Hyun; Lee, Kwang Ho; Hong, Joung Sook; Lee, Sang-Hoon

    2014-08-01

    The long-term, continuous, inconspicuous, and noiseless monitoring of bioelectrical signals is critical to the early diagnosis of disease and monitoring health and wellbeing. However, it is a major challenge to record the bioelectrical signals of patients going about their daily lives because of the difficulties of integrating skin-like conducting materials, the measuring system, and medical technologies in a single platform. In this study, we developed a thin epidermis-like electronics that is capable of repeated self-adhesion onto skin, integration with commercial electronic components through soldering, and conformal contact without serious motion artifacts. Using well-mixed carbon nanotubes and adhesive polydimethylsiloxane, we fabricated an epidermal carbon nanotube electronics which maintains excellent conformal contact even within wrinkles in skin, and can be used to record electrocardiogram signals robustly. The electrode is biocompatible and can even be operated in water, which means patients can live normal lives despite wearing a complicated recording system.

  6. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals

    PubMed Central

    Lee, Seung Min; Byeon, Hang Jin; Lee, Joong Hoon; Baek, Dong Hyun; Lee, Kwang Ho; Hong, Joung Sook; Lee, Sang-Hoon

    2014-01-01

    The long-term, continuous, inconspicuous, and noiseless monitoring of bioelectrical signals is critical to the early diagnosis of disease and monitoring health and wellbeing. However, it is a major challenge to record the bioelectrical signals of patients going about their daily lives because of the difficulties of integrating skin-like conducting materials, the measuring system, and medical technologies in a single platform. In this study, we developed a thin epidermis-like electronics that is capable of repeated self-adhesion onto skin, integration with commercial electronic components through soldering, and conformal contact without serious motion artifacts. Using well-mixed carbon nanotubes and adhesive polydimethylsiloxane, we fabricated an epidermal carbon nanotube electronics which maintains excellent conformal contact even within wrinkles in skin, and can be used to record electrocardiogram signals robustly. The electrode is biocompatible and can even be operated in water, which means patients can live normal lives despite wearing a complicated recording system. PMID:25123356

  7. Noninvasive Real-Time Assessment of Cell Viability in a Three-Dimensional Tissue.

    PubMed

    Mahfouzi, Seyed Hossein; Amoabediny, Ghassem; Doryab, Ali; Safiabadi-Tali, Seyed Hamid; Ghanei, Mostafa

    2018-04-01

    Maintaining cell viability within 3D tissue engineering scaffolds is an essential step toward a functional tissue or organ. Assessment of cell viability in 3D scaffolds is necessary to control and optimize tissue culture process. Monitoring systems based on respiration activity of cells (e.g., oxygen consumption) have been used in various cell cultures. In this research, an online monitoring system based on respiration activity was developed to monitor cell viability within acellular lung scaffolds. First, acellular lung scaffolds were recellularized with human umbilical cord vein endothelial cells, and then, cell viability was monitored during a 5-day period. The real-time monitoring system generated a cell growth profile representing invaluable information on cell viability and proliferative states during the culture period. The cell growth profile obtained by the monitoring system was consistent with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analysis and glucose consumption measurement. This system provided a means for noninvasive, real-time, and repetitive investigation of cell viability. Also, we showed the applicability of this monitoring system by introducing shaking as an operating parameter in a long-term culture.

  8. A wearable wireless ECG monitoring system with dynamic transmission power control for long-term homecare.

    PubMed

    Wang, Yishan; Doleschel, Sammy; Wunderlich, Ralf; Heinen, Stefan

    2015-03-01

    This paper presents a wearable wireless ECG monitoring system based on novel 3-Lead electrode placements for long-term homecare. The experiment for novel 3-Lead electrode placements is carried out, and the results show that the distance between limb electrodes can be significantly reduced. Based on the new electrode position, a small size sensor node, which is powered by a rechargeable battery, is designed to detect, amplify, filter and transmit the ECG signals. The coordinator receives the data and sends it to PC. Finally the signals are displayed on the GUI. In order to control the power consumption of sensor node, a dynamic power adjustment method is applied to automatically adjust the transmission power of the sensor node according to the received signal strength indicator (RSSI), which is related to the distance and obstacle between sensor node and coordinator. The system is evaluated when the user, who wears the sensor, is walking and running. A promising performance is achieved even under body motion. The power consumption can be significantly reduced with this dynamic power adjustment method.

  9. PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    QIAN,S.; TAKACS,P.

    2000-07-30

    The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less

  10. IoT based Growth Monitoring System of Guava (Psidium guajava L.) Fruits

    NASA Astrophysics Data System (ADS)

    Slamet, W.; Irham, N. M.; Sutan, M. S. A.

    2018-05-01

    Growth monitoring of plant is important especially to evaluate the influence of environment or growing condition on its productivity. One way to monitor the plant growth is by measuring the radial growth (i.e., the change of circumference) of certain part of plant such as trunk, branch, and fruit. In this study we develop an internet of things (IoT) based monitoring system of radial growth of plant using a low-cost optoelectronic sensor. The system was applied to monitor radial growth of guava fruits (Psidium guajava L.). The principle of the developed sensor is based on the optoelectronic sensor which detects alternating white and black narrow bar printed on reflective tapes. Reflective tape was installed encircling the fruit. The movement of reflective tapes will follow the radial growth of the fruit so that the infrared sensor on the optoelectronic would response reflective tapes movement. This device is designed to measure object continuously and long-term monitor with minimum maintenance. The data collected by the sensors are then sent to the server and also can be monitored in real-time. Based on field test, at current stage, the developed sensor could measure the radial growth of the fruits with a maximum error 2 mm. In term of data transfer, the success rate of the developed system was 97.54%. The result indicated that the developed system can be used as an effective tool for growth monitoring of plant.

  11. Development of the Internet-Enabled System for Exercise Telerehabilitation and Cardiovascular Training.

    PubMed

    Dedov, Vadim N; Dedova, Irina V

    2015-07-01

    Sustained exercise training could significantly improve patient rehabilitation and management of noncommunicable diseases in the community. This study aimed to develop a universal telecare system for delivery of exercise rehabilitation and cardiovascular training services at home. An innovative bilateral leg training device was equipped with an electronic system for the ongoing measurement of training activities with the device. A single-item parameter reflecting the intensity of training was monitored using several modern telecommunication technologies. According to the application protocol, eight volunteers first tried the device for 30-60 min to determine their personal training capacity. Then, they were provided with equipment to use at home for 4 weeks. Adherence to daily training was assessed by the number of training days per week, training intensity, and duration of training sessions. The system provided reliable recording of training activities with the device using (1) long-term data logging without an ongoing connection to the computer, (2) wireless monitoring and recording of training activities on a stand-alone computer, and (3) a secure cloud-based monitoring over the Internet connection using electronic devices, including smartphones. Overall analysis of recordings and phone feedbacks to participants took only approximately 5 h for the duration of study. This study, although of a pilot nature, described the comprehensive exercise telerehabilitation system integrating mobile training equipment with personalized training protocols and remote monitoring. A single-item electronic parameter of the system usage facilitated time-effective data management. Wireless connection allowed various locations of device application and several monitoring arrangements ranging from real-time monitoring to long-term recording of exercise activities. A cloud-based software platform enabled management of multiple users at distance. Implementation of this model may facilitate both accessibility and availability of personalized exercise telerehabilitation services. Further studies would validate it in the clinical and healthcare environment.

  12. A Multimodel Global Drought Information System (GDIS) for Near Real-Time Monitoring of Surface Water Conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Nijssen, B.

    2013-12-01

    While the absolute magnitude of economic losses associated with weather and climate disasters such as droughts is greatest in the developed world, the relative impact is much larger in the developing world, where agriculture typically constitutes a much larger percentage of the labor force and food insecurity is a major concern. Nonetheless, our ability to monitor and predict the development and occurrence of droughts at a global scale in near real-time is limited and long-term records of soil moisture are essentially non-existent globally The problem is particularly critical given that many of the most damaging droughts occur in parts of the world that are most deficient in terms of in situ precipitation observations. In recent years, a number of near real-time drought monitoring systems have been developed with regional or global extent. While direct observations of key variables such as moisture storage are missing, the evolution of land surface models that are globally applicable provides a means of reconstructing them. The implementation of a multi-model drought monitoring system is described, which provides near real-time estimates of surface moisture storage for the global land areas between 50S and 50N with a time lag of about one day. Near real-time forcings are derived from satellite-based precipitation estimates and modeled air temperatures. The system is distinguished from other operational systems in that it uses multiple land surface models to simulate surface moisture storage, which are then combined to derive a multi-model estimate of drought. Previous work has shown that while land surface models agree in broad context, particularly in terms of soil moisture percentiles, important differences remain, which motivates a multi-model ensemble approach. The system is an extension of similar systems developed by at the University of Washington for the Pacific Northwest and for the United States, but global application of the protocols used in the U.S. systems poses new challenges, particularly with respect to the generation of meteorological forcings that drive the land surface models. Agricultural and hydrological droughts are inherently defined in the context of a long-term climatology. Changes in observing platforms can be misinterpreted as droughts (or as excessively wet periods). This problem cannot simply be addressed through the addition of more observations or through the development of new observing platforms. Instead, it will require careful (re)construction of long-term records that are updated in near real-time in a consistent manner so that changes in surface meteorological forcings reflect actual conditions rather than changes in methods or sources.

  13. A Fully Implantable, NFC Enabled, Continuous Interstitial Glucose Monitor

    PubMed Central

    Anabtawi, Nijad; Freeman, Sabrina; Ferzli, Rony

    2017-01-01

    This work presents an integrated system-on-chip (SoC) that forms the core of a long-term, fully implantable, battery assisted, passive continuous glucose monitor. It integrates an amperometric glucose sensor interface, a near field communication (NFC) wireless front-end and a fully digital switched mode power management unit for supply regulation and on board battery charging. It uses 13.56 MHz (ISM) band to harvest energy and backscatter data to an NFC reader. System was implemented in 14nm CMOS technology and validated with post layout simulations. PMID:28702512

  14. A Fully Implantable, NFC Enabled, Continuous Interstitial Glucose Monitor.

    PubMed

    Anabtawi, Nijad; Freeman, Sabrina; Ferzli, Rony

    2016-02-01

    This work presents an integrated system-on-chip (SoC) that forms the core of a long-term, fully implantable, battery assisted, passive continuous glucose monitor. It integrates an amperometric glucose sensor interface, a near field communication (NFC) wireless front-end and a fully digital switched mode power management unit for supply regulation and on board battery charging. It uses 13.56 MHz (ISM) band to harvest energy and backscatter data to an NFC reader. System was implemented in 14nm CMOS technology and validated with post layout simulations.

  15. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks

    PubMed Central

    Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi

    2017-01-01

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks (LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods. PMID:28146106

  16. Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks.

    PubMed

    Zhao, Rui; Yan, Ruqiang; Wang, Jinjiang; Mao, Kezhi

    2017-01-30

    In modern manufacturing systems and industries, more and more research efforts have been made in developing effective machine health monitoring systems. Among various machine health monitoring approaches, data-driven methods are gaining in popularity due to the development of advanced sensing and data analytic techniques. However, considering the noise, varying length and irregular sampling behind sensory data, this kind of sequential data cannot be fed into classification and regression models directly. Therefore, previous work focuses on feature extraction/fusion methods requiring expensive human labor and high quality expert knowledge. With the development of deep learning methods in the last few years, which redefine representation learning from raw data, a deep neural network structure named Convolutional Bi-directional Long Short-Term Memory networks (CBLSTM) has been designed here to address raw sensory data. CBLSTM firstly uses CNN to extract local features that are robust and informative from the sequential input. Then, bi-directional LSTM is introduced to encode temporal information. Long Short-Term Memory networks(LSTMs) are able to capture long-term dependencies and model sequential data, and the bi-directional structure enables the capture of past and future contexts. Stacked, fully-connected layers and the linear regression layer are built on top of bi-directional LSTMs to predict the target value. Here, a real-life tool wear test is introduced, and our proposed CBLSTM is able to predict the actual tool wear based on raw sensory data. The experimental results have shown that our model is able to outperform several state-of-the-art baseline methods.

  17. Development of a real time monitor and multivariate method for long term diagnostics of atmospheric pressure dielectric barrier discharges: application to He, He/N2, and He/O2 discharges.

    PubMed

    O'Connor, N; Milosavljević, V; Daniels, S

    2011-08-01

    In this paper we present the development and application of a real time atmospheric pressure discharge monitoring diagnostic. The software based diagnostic is designed to extract latent electrical and optical information associated with the operation of an atmospheric pressure dielectric barrier discharge (APDBD) over long time scales. Given that little is known about long term temporal effects in such discharges, the diagnostic methodology is applied to the monitoring of an APDBD in helium and helium with both 0.1% nitrogen and 0.1% oxygen gas admixtures over periods of tens of minutes. Given the large datasets associated with the experiments, it is shown that this process is much expedited through the novel application of multivariate correlations between the electrical and optical parameters of the corresponding chemistries which, in turn, facilitates comparisons between each individual chemistry also. The results of these studies show that the electrical and optical parameters of the discharge in helium and upon the addition of gas admixtures evolve over time scales far longer than the gas residence time and have been compared to current modelling works. It is envisaged that the diagnostic together with the application of multivariate correlations will be applied to rapid system identification and prototyping in both experimental and industrial APDBD systems in the future.

  18. Long-Term Monitoring of Mini-Split Ductless Heat Pumps in the Northeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueno, K.; Loomis, H.

    Transformations, Inc. has extensive experience building their high performance housing at a variety of Massachusetts locations, in both a production and custom home setting. The majority of their construction uses mini-split heat pumps (MSHPs) for space conditioning. This research covered the long-term performance of MSHPs in Zone 5A; it is the culmination of up to 3 years' worth of monitoring in a set of eight houses. This research examined electricity use of MSHPs, distributions of interior temperatures and humidity when using simplified (two-point) heating systems in high-performance housing, and the impact of open-door/closed-door status on temperature distributions. The use ofmore » simplified space conditioning distribution (through use of MSHPs) provides significant first cost savings, which are used to offset the increased investment in the building enclosure.« less

  19. Highway-railway at-grade crossing structures : long term settlement measurements and assessments.

    DOT National Transportation Integrated Search

    2009-05-01

    The purpose of this research to evaluate the long-term settlements for a wide variety of at-grade crossings. Twenty-four highway crossings were monitored to determine the effects of enhanced support on minimizing long-term settlements of the crossing...

  20. Definition of air quality measurements for monitoring space shuttle launches

    NASA Technical Reports Server (NTRS)

    Thorpe, R. D.

    1978-01-01

    A description of a recommended air quality monitoring network to characterize the impact on ambient air quality in the Kennedy Space Center (KSC) (area) of space shuttle launch operations is given. Analysis of ground cloud processes and prevalent meteorological conditions indicates that transient HCl depositions can be a cause for concern. The system designed to monitor HCl employs an extensive network of inexpensive detectors combined with a central analysis device. An acid rain network is also recommended. A quantitative measure of projected minimal long-term impact involves the limited monitoring of NOx and particulates. All recommended monitoring is confined ti KSC property.

  1. Field Assessment of the Village Green Project: An Autonomous Community Air Quality Monitoring System

    EPA Science Inventory

    Recent findings on air pollution levels in communities motivate new technologies to assess air pollution at finer spatial scale. The Village Green Project (VGP) is a novel approach using commercially-available technology for long-term community environments air pollution measure...

  2. Global Scale Remote Sensing Monitoring of Endorheic Lake Systems

    NASA Astrophysics Data System (ADS)

    Scuderi, L. A.

    2010-12-01

    Semi-arid regions of the world contain thousands of endorheic lakes in large shallow basins. Due to their generally remote locations few are continuously monitored. Documentation of recent variability is essential to assessing how endorheic lakes respond to short-term meteorological conditions and longer-term decadal-scale climatic variability and is critical in determining future disturbance of hydrological regimes with respect to predicted warming and drying in the mid-latitudes. Short- and long-term departures from climatic averages, rapid environmental shifts and increased population pressures may result in significant fluctuations in the hydrologic budgets of these lakes and adversely impact endorheic lake/basin ecosystems. Information on flooding variability is also critical in estimating changes in P/E balances and on the production of exposed and easily deflated surfaces that may impact dust loading locally and regionally. In order to provide information on how these lakes respond we need to understand how entire systems respond hydrologically to different climatic inputs. This requires monitoring and analysis of regional to continental-scale systems. To date, this level of monitoring has not been achieved in an operational system. In order to assess the possibility of creating a global-scale lake inundation database we analyzed two contrasting lake systems in western North America (Mexico and New Mexico, USA) and China (Inner Mongolia). We asked two major questions: 1) is it possible to quickly and accurately quantify current lake inundation events in near real time using remote sensing? and, 2) is it possible to differentiate variable meteorological sources and resultant lake inundation responses using this type of database? With respect to these results we outline an automated lake monitoring approach using MODIS data and real-time processing systems that may provide future global monitoring capabilities.

  3. A multiparametric automatic method to monitor long-term reproducibility in digital mammography: results from a regional screening programme.

    PubMed

    Gennaro, G; Ballaminut, A; Contento, G

    2017-09-01

    This study aims to illustrate a multiparametric automatic method for monitoring long-term reproducibility of digital mammography systems, and its application on a large scale. Twenty-five digital mammography systems employed within a regional screening programme were controlled weekly using the same type of phantom, whose images were analysed by an automatic software tool. To assess system reproducibility levels, 15 image quality indices (IQIs) were extracted and compared with the corresponding indices previously determined by a baseline procedure. The coefficients of variation (COVs) of the IQIs were used to assess the overall variability. A total of 2553 phantom images were collected from the 25 digital mammography systems from March 2013 to December 2014. Most of the systems showed excellent image quality reproducibility over the surveillance interval, with mean variability below 5%. Variability of each IQI was 5%, with the exception of one index associated with the smallest phantom objects (0.25 mm), which was below 10%. The method applied for reproducibility tests-multi-detail phantoms, cloud automatic software tool to measure multiple image quality indices and statistical process control-was proven to be effective and applicable on a large scale and to any type of digital mammography system. • Reproducibility of mammography image quality should be monitored by appropriate quality controls. • Use of automatic software tools allows image quality evaluation by multiple indices. • System reproducibility can be assessed comparing current index value with baseline data. • Overall system reproducibility of modern digital mammography systems is excellent. • The method proposed and applied is cost-effective and easily scalable.

  4. The Chaotic Long-term X-ray Variability of 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Phillipson, R. A.; Boyd, P. T.; Smale, A. P.

    2018-04-01

    The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a timescale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from December 1995 through May 2014. The combined ASM-MAXI data provide a continuous time series over fifty times the length of the timescale of interest. Topological analysis can help us identify 'fingerprints' in the phase-space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled nonlinear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.

  5. A Summary of Aquatic Vegetation Monitoring at Selected Locations in Pools 4, 8, 13, and 26 and La Grange Pool of the Upper Mississippi River System. 1993 Annual Status Report,

    DTIC Science & Technology

    1998-07-01

    responsibility. The mode of operation and respective roles of the agencies are outlined in a 1988 Memorandum of Agreement. The UMRS encompasses the...University of Wisconsin Press, Madison. 405 pp. Gleason, H. A ., and A . Cronquist . 1991. A manual of vascular plants of northeastern United States...Long Term Resource Monitoring Program Program Report 98-P007 1993 Annual Status Report A Summary of Aquatic Vegetation Monitoring at Selected

  6. Measuring sports injuries on the pitch: a guide to use in practice

    PubMed Central

    Hespanhol, Luiz C.; Barboza, Saulo D.; van Mechelen, Willem; Verhagen, Evert

    2015-01-01

    Sports participation is a major ally for the promotion of physical activity. However, sports injuries are important adverse effects of sports participation and should be monitored in sports populations. The purpose of this paper is to review the basic concepts of injury monitoring and discuss the implementation of these concepts in practice. The aspects discussed are: (1) sports injury definition; (2) classification of sports injuries; (3) population at risk, prevalence, and incidence; (4) severity measures; (5) economic costs; (6) systems developed to monitor sports injuries; and (7) online technology. Only with reliable monitoring systems applied in a continuous and long-term manner will it be possible to identify the burden of injuries, to identify the possible cases at an early stage, to implement early interventions, and to generate data for sports injury prevention. The implementation of sports injuries monitoring systems in practice is strongly recommended. PMID:26537807

  7. 2011 Updates on the Long-term Glacier Monitoring Program in Denali National Park and Preserve

    NASA Astrophysics Data System (ADS)

    Burrows, R. A.; Adema, G. W.; Herreid, S. J.; Arendt, A. A.; Larsen, C. F.

    2011-12-01

    The area of Denali National Park and Preserve (DENA) dominated by ice is vast, with glaciers covering 3,780 km^2, approximately one sixth of the park's area. They are integral components of the region's hydrologic, ecologic, and geologic systems - with changes to the glacier systems driving the dependent ecosystems. The National Park Service (NPS) conducts long term monitoring of glaciers in Denali with a variety of methods at a range of spatial and temporal scales. This includes seasonal mass balance and surface movement data collection, annual searches for surging glaciers, and decadal areal extent mapping and volume change estimates of all glaciers in the park. If a glacier surge is detected, the event is documented via photography and surface measurements, when possible. In addition, more intensive ground-based GPS surveys of termini and ice surface elevations are conducted on ten study glaciers every 5-10 years, on a rotating basis. Many of the glaciers are located in designated Wilderness, hence the use of mechanized transport is reduced as much as possible. Monitoring objectives are accomplished by park staff and with cooperative agreements with other agencies and universities. Research to understand the context of the long term data is encouraged and supported as much as possible by the NPS and has recently yielded significant results. The year 2011 marks the 20th anniversary of glacier mass balance monitoring on Kahiltna and Traleika Glaciers, located on the south and north sides of Mt. McKinley respectively. A single "index" site near the ELA of each glacier provides an index of winter, summer, and net balances each year as well as flow velocities and changes in surface elevation. Long-term net balance trends are positive from 1991-2003, and negative since 2003, including the 2009-2010 balance year. The average flow velocity at the Kahiltna index site is 200 +/- 21 m/year with a neutral to slightly negative trend, while on Traleika average velocity is 67 +/- 29 m/year with a positive trend. Monitoring glacier behavior and trends using a variety of techniques provides insight to the complexity of glacier change and increases our ability to distinguish local effects from regional and global trends. Parkwide analysis of glacier extent change since the 1950's shows a consistent trend of retreat, except for glaciers that have surged. Longitudinal surface elevation profiling and comparative photography shows relative stability in larger glaciers, but dramatic long-term mass loss on small, relatively low elevation, valley glaciers characteristic of the eastern portion of DENA. These patterns of ice loss are somewhat unique to the Alaska Range and contrast with big losses of ice mass from large glaciers that border the Gulf of Alaska.

  8. Automated Remote Monitoring of Depression: Acceptance Among Low-Income Patients in Diabetes Disease Management

    PubMed Central

    Ramirez, Magaly; Jin, Haomiao; Ell, Kathleen; Gross-Schulman, Sandra; Myerchin Sklaroff, Laura; Guterman, Jeffrey

    2016-01-01

    Background Remote patient monitoring is increasingly integrated into health care delivery to expand access and increase effectiveness. Automation can add efficiency to remote monitoring, but patient acceptance of automated tools is critical for success. From 2010 to 2013, the Diabetes-Depression Care-management Adoption Trial (DCAT)–a quasi-experimental comparative effectiveness research trial aimed at accelerating the adoption of collaborative depression care in a safety-net health care system–tested a fully automated telephonic assessment (ATA) depression monitoring system serving low-income patients with diabetes. Objective The aim of this study was to determine patient acceptance of ATA calls over time, and to identify factors predicting long-term patient acceptance of ATA calls. Methods We conducted two analyses using data from the DCAT technology-facilitated care arm, in which for 12 months the ATA system periodically assessed depression symptoms, monitored treatment adherence, prompted self-care behaviors, and inquired about patients’ needs for provider contact. Patients received assessments at 6, 12, and 18 months using Likert-scale measures of willingness to use ATA calls, preferred mode of reach, perceived ease of use, usefulness, nonintrusiveness, privacy/security, and long-term usefulness. For the first analysis (patient acceptance over time), we computed descriptive statistics of these measures. In the second analysis (predictive factors), we collapsed patients into two groups: those reporting “high” versus “low” willingness to use ATA calls. To compare them, we used independent t tests for continuous variables and Pearson chi-square tests for categorical variables. Next, we jointly entered independent factors found to be significantly associated with 18-month willingness to use ATA calls at the univariate level into a logistic regression model with backward selection to identify predictive factors. We performed a final logistic regression model with the identified significant predictive factors and reported the odds ratio estimates and 95% confidence intervals. Results At 6 and 12 months, respectively, 89.6% (69/77) and 63.7% (49/77) of patients “agreed” or “strongly agreed” that they would be willing to use ATA calls in the future. At 18 months, 51.0% (64/125) of patients perceived ATA calls as useful and 59.7% (46/77) were willing to use the technology. Moreover, in the first 6 months, most patients reported that ATA calls felt private/secure (75.9%, 82/108) and were easy to use (86.2%, 94/109), useful (65.1%, 71/109), and nonintrusive (87.2%, 95/109). Perceived usefulness, however, decreased to 54.1% (59/109) in the second 6 months of the trial. Factors predicting willingness to use ATA calls at the 18-month follow-up were perceived privacy/security and long-term perceived usefulness of ATA calls. No patient characteristics were significant predictors of long-term acceptance. Conclusions In the short term, patients are generally accepting of ATA calls for depression monitoring, with ATA call design and the care management intervention being primary factors influencing patient acceptance. Acceptance over the long term requires that the system be perceived as private/secure, and that it be constantly useful for patients’ needs of awareness of feelings, self-care reminders, and connectivity with health care providers. Trial Registration ClinicalTrials.gov NCT01781013; https://clinicaltrials.gov/ct2/show/NCT01781013 (Archived by WebCite at http://www.webcitation.org/6e7NGku56) PMID:26810139

  9. 77 FR 57545 - Long Term 2 Enhanced Surface Water Treatment Rule: Public Meeting on Monitoring Data Analysis...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-18

    ... on the occurrence of Cryptosporidium or E. coli in their source waters. Systems that are placed into... categories (i.e., bins) a public drinking water system (PWS) should be placed. The second topic is the... of Escherichia coli as a screen to identify small filtered PWSs that need to perform Cryptosporidium...

  10. Using Modern Digital Photography Tools to Guide Management Decisions on Forested Land

    ERIC Educational Resources Information Center

    Craft, Brandon; Barlow, Rebecca; Kush, John; Hemard, Charles

    2016-01-01

    Forestland management depends on assessing changes that occur over time. Long-term photo point monitoring is a low-cost method for documenting these changes. Using forestry as an example, this article highlights the idea that long-term photo point monitoring can be used to improve many types of land management decision making. Guidance on…

  11. Development of a bench-top device for parallel climate-controlled recordings of neuronal cultures activity with microelectrode arrays.

    PubMed

    Regalia, Giulia; Biffi, Emilia; Achilli, Silvia; Ferrigno, Giancarlo; Menegon, Andrea; Pedrocchi, Alessandra

    2016-02-01

    Two binding requirements for in vitro studies on long-term neuronal networks dynamics are (i) finely controlled environmental conditions to keep neuronal cultures viable and provide reliable data for more than a few hours and (ii) parallel operation on multiple neuronal cultures to shorten experimental time scales and enhance data reproducibility. In order to fulfill these needs with a Microelectrode Arrays (MEA)-based system, we designed a stand-alone device that permits to uninterruptedly monitor neuronal cultures activity over long periods, overcoming drawbacks of existing MEA platforms. We integrated in a single device: (i) a closed chamber housing four MEAs equipped with access for chemical manipulations, (ii) environmental control systems and embedded sensors to reproduce and remotely monitor the standard in vitro culture environment on the lab bench (i.e. in terms of temperature, air CO2 and relative humidity), and (iii) a modular MEA interface analog front-end for reliable and parallel recordings. The system has been proven to assure environmental conditions stable, physiological and homogeneos across different cultures. Prolonged recordings (up to 10 days) of spontaneous and pharmacologically stimulated neuronal culture activity have not shown signs of rundown thanks to the environmental stability and have not required to withdraw the cells from the chamber for culture medium manipulations. This system represents an effective MEA-based solution to elucidate neuronal network phenomena with slow dynamics, such as long-term plasticity, effects of chronic pharmacological stimulations or late-onset pathological mechanisms. © 2015 Wiley Periodicals, Inc.

  12. Long-term monitoring and field testing of an innovative multistory timber building

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; Morris, Hugh; Worth, Margaret; Kohli, Varun; Uma, S. R.

    2011-04-01

    An innovative three-story timber building, using self-centering, post-tensioned timber shear walls as the main horizontal load resisting system and lightweight composite timber-concrete floors, has recently been completed in Nelson, New Zealand. It is expected to be the trailblazer for similar but taller structures to be more widely adopted. Performance based standards require an advanced understanding of building responses and in order to meet the need for in-situ performance data the building has been subjected to forced vibration testing and instrumented for continuous monitoring using a total of about 90 data channels to capture its dynamic and long-term responses. The first part of the paper presents a brief discussion of the existing research on the seismic performance of timber frame buildings and footfall induced floor vibrations. An outline of the building structural system, focusing on the novel design solutions, is then discussed. This is followed by the description of the monitoring system. The paper emphasizes the need for optimal placement of a limited number of sensors and demonstrates how this was achieved for monitoring floor vibrations with the help of the effective independence-driving point residue (EfI-DPR) technique. A novel approach to the EfI-DPR method proposed here uses a combinatorial search algorithm that increases the chances of obtaining the globally optimal solution. Finally, the results from the forced vibration tests conducted on the whole building at different construction stages are reviewed.

  13. Long-term monitoring for conservation management: Lessons from a case study integrating remote sensing and field approaches in floodplain forests.

    PubMed

    Rodríguez-González, Patricia María; Albuquerque, António; Martínez-Almarza, Miguel; Díaz-Delgado, Ricardo

    2017-11-01

    Implementing long-term monitoring programs that effectively inform conservation plans is a top priority in environmental management. In floodplain forests, historical pressures interplay with the complex multiscale dynamics of fluvial systems and require integrative approaches to pinpoint drivers for their deterioration and ecosystem services loss. Combining a conceptual framework such as the Driver-Pressure-State-Impact-Response (DPSIR) with the development of valid biological indicators can contribute to the analysis of the driving forces and their effects on the ecosystem in order to formulate coordinated conservation measures. In the present study, we evaluate the initial results of a decade (2004-2014) of floodplain forest monitoring. We adopted the DPSIR framework to summarize the main drivers in land use and environmental change, analyzed the effects on biological indicators of foundation trees and compared the consistency of the main drivers and their effects at two spatial scales. The monitoring program was conducted in one of the largest and best preserved floodplain forests in SW Europe located within Doñana National Park (Spain) which is dominated by Salix atrocinerea and Fraxinus angustifolia. The program combined field (in situ) surveys on a network of permanent plots with several remote sensing sources. The accuracy obtained in spectral classifications allowed shifts in species cover across the whole forest to be detected and assessed. However, remote sensing did not reflect the ecological status of forest populations. The field survey revealed a general decline in Salix populations, especially in the first five years of sampling -a factor probably associated with a lag effect from past human impact on the hydrology of the catchment and recent extreme climatic episodes (drought). In spite of much reduced seed regeneration, a resprouting strategy allows long-lived Salix individuals to persist in complex spatial dynamics. This suggests the beginning of a recovery resulting from recent coordinated societal responses to control excessive water extraction in the catchment, highlighting the need for continuing long-term monitoring. The DPSIR framework proved useful as a conceptual tool in analyzing the entire environmental system, while both field and remote sensing approaches complemented each other in quantifying indicator trends, improving the monitoring design and informing conservation plans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. NOAA's Scientific Data Stewardship Program

    NASA Astrophysics Data System (ADS)

    Bates, J. J.

    2004-12-01

    The NOAA mission is to understand and predict changes in the Earth's environment and conserve and manage coastal and marine resources to meet the Nation's economic, social and environmental needs. NOAA has responsibility for long-term archiving of the United States environmental data and has recently integrated several data management functions into a concept called Scientific Data Stewardship. Scientific Data Stewardship a new paradigm in data management consisting of an integrated suite of functions to preserve and exploit the full scientific value of NOAA's, and the world's, environmental data These functions include careful monitoring of observing system performance for long-term applications, the generation of authoritative long-term climate records from multiple observing platforms, and the proper archival of and timely access to data and metadata. NOAA has developed a conceptual framework to implement the functions of scientific data stewardship. This framework has five objectives: 1) develop real-time monitoring of all satellite observing systems for climate applications, 2) process large volumes of satellite data extending up to decades in length to account for systematic errors and to eliminate artifacts in the raw data (referred to as fundamental climate data records, FCDRs), 3) generate retrieved geophysical parameters from the FCDRs (referred to as thematic climate data records TCDRs) including combining observations from all sources, 4) conduct monitoring and research by analyzing data sets to uncover climate trends and to provide evaluation and feedback for steps 2) and 3), and 5) provide archives of metadata, FCDRs, and TCDRs, and facilitate distribution of these data to the user community. The term `climate data record' and related terms, such as climate data set, have been used for some time, but the climate community has yet to settle on a concensus definition. A recent United States National Academy of Sciences report recommends using the following definition: a climate data record (CDR) is a time series of measurements of sufficient length, consistency, and continuity to determine climate variability and change.

  15. APDS: the autonomous pathogen detection system.

    PubMed

    Hindson, Benjamin J; Makarewicz, Anthony J; Setlur, Ujwal S; Henderer, Bruce D; McBride, Mary T; Dzenitis, John M

    2005-04-15

    We have developed and tested a fully autonomous pathogen detection system (APDS) capable of continuously monitoring the environment for airborne biological threat agents. The system was developed to provide early warning to civilians in the event of a bioterrorism incident and can be used at high profile events for short-term, intensive monitoring or in major public buildings or transportation nodes for long-term monitoring. The APDS is completely automated, offering continuous aerosol sampling, in-line sample preparation fluidics, multiplexed detection and identification immunoassays, and nucleic acid-based polymerase chain reaction (PCR) amplification and detection. Highly multiplexed antibody-based and duplex nucleic acid-based assays are combined to reduce false positives to a very low level, lower reagent costs, and significantly expand the detection capabilities of this biosensor. This article provides an overview of the current design and operation of the APDS. Certain sub-components of the ADPS are described in detail, including the aerosol collector, the automated sample preparation module that performs multiplexed immunoassays with confirmatory PCR, and the data monitoring and communications system. Data obtained from an APDS that operated continuously for 7 days in a major U.S. transportation hub is reported.

  16. Hyperspectral remote sensing and long term monitoring reveal watershed-estuary ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D. H.; Santos, M. J.; Greenberg, J. A.; Morgan-King, T.; Khanna, S.; Ustin, S.

    2016-02-01

    Estuarine ecosystems and their biogeochemical processes are extremely vulnerable to climate and environmental changes, and are threatened by sea level rise and upstream activities such as land use/land cover and hydrological changes. Despite the recognized threat to estuaries, most aspects of how change will affect estuaries are not well understood due to the poorly resolved understanding of the complex physical, chemical and biological processes and their interactions in estuarine systems. Remote sensing technologies such as high spectral resolution optical systems enable measurements of key environmental parameters needed to establish baseline conditions and improve modeling efforts. The San Francisco Bay-Delta is a highly modified estuary system in a state of ecological crisis due to the numerous threats to its sustainability. In this study, we used a combination of hyperspectral remote sensing and long-term in situ monitoring records to investigate how water clarity has been responding to extreme climatic events, anthropogenic watershed disturbances, and submerged aquatic vegetation (SAV) invasions. From the long-term turbidity monitoring record, we found that water clarity underwent significant increasing step changes associated with sediment depletion and El Nino-extreme run-off events. Hyperspectral remote sensing data revealed that invasive submerged aquatic pant species have facultative C3 and C4-like photosynthetic pathways that give them a competitive advantage under the changing water clarity conditions of the Bay-Delta system. We postulate that this adaptation facilitated the rapid expansion of SAV following the significant step changes in increasing water clarity caused by watershed disturbances and the 1982-1983 El Nino events. Using SAV maps from hyperspectral remote sensing, we estimate that SAV-water clarity feedbacks were responsible for 20-70% of the increasing water clarity trend in the Bay-Delta. Ongoing and future developments in airborne and global mapping hyperspectral satellite missions will enable full canopy-to-benthos characterization of estuarine ecosystems. When coupled with synoptic watershed measurements, these will improve understanding of watershed-estuary interactions for improved sustainable management.

  17. Development of motion resistant instrumentation for ambulatory near-infrared spectroscopy

    PubMed Central

    Zhang, Quan; Yan, Xiangguo; Strangman, Gary E.

    2011-01-01

    Ambulatory near-infrared spectroscopy (aNIRS) enables recording of systemic or tissue-specific hemodynamics and oxygenation during a person's normal activities. It has particular potential for the diagnosis and management of health problems with unpredictable and transient hemodynamic symptoms, or medical conditions requiring continuous, long-duration monitoring. aNIRS is also needed in conditions where regular monitoring or imaging cannot be applied, including remote environments such as during spaceflight or at high altitude. One key to the successful application of aNIRS is reducing the impact of motion artifacts in aNIRS recordings. In this paper, we describe the development of a novel prototype aNIRS monitor, called NINscan, and our efforts to reduce motion artifacts in aNIRS monitoring. Powered by 2 AA size batteries and weighting 350 g, NINscan records NIRS, ECG, respiration, and acceleration for up to 14 h at a 250 Hz sampling rate. The system's performance and resistance to motion is demonstrated by long term quantitative phantom tests, Valsalva maneuver tests, and multiparameter monitoring during parabolic flight and high altitude hiking. To the best of our knowledge, this is the first report of multiparameter aNIRS monitoring and its application in parabolic flight. PMID:21895335

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lill, R.; Sereno, N.; Yang, B.

    The Advanced Photon Source (APS) is currently in the preliminary design phase for the multi-bend achromat (MBA) lattice upgrade. Beam stability is critical for the MBA and will require long term drift defined as beam mo-tion over a seven-day timescale to be no more than 1 mi-cron at the insertion device locations and beam angle change no more than 0.25 micro-radian. Mechanical stabil-ity of beam position monitor (BPM) pickup electrodes mounted on insertion device vacuum chambers place a fun-damental limitation on long-term beam stability for inser-tion device beamlines. We present the design and imple-mentation of prototype mechanical motion system (MMS)more » instrumentation for quantifying this type of motion specif-ically in the APS accelerator tunnel and experiment hall floor under normal operating conditions. The MMS pres-ently provides critical position information on the vacuum chamber and BPM support systems. Initial results of the R&D prototype systems have demonstrated that the cham-ber movements far exceed the long-term drift tolerance specified for the APS Upgrade MBA storage ring.« less

  19. New solutions for standardization, monitoring and quality management of fluorescence-based imaging systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Royon, Arnaud; Papon, Gautier

    2016-03-01

    Fluorescence microscopes have become ubiquitous in life sciences laboratories, including those focused on pharmaceuticals, diagnosis, and forensics. For the past few years, the need for both performance guarantees and quantifiable results has driven development in this area. However, the lack of appropriate standards and reference materials makes it difficult or impossible to compare the results of two fluorescence microscopes, or to measure performance fluctuations of one microscope over time. Therefore, the operation of fluorescence microscopes is not monitored as often as their use warrants - an issue that is recognized by both systems manufacturers and national metrology institutes. We have developed a new process that enables the etching of long-term stable fluorescent patterns with sub-micrometer sizes in three dimensions inside glass. In this paper, we present, based on this new process, a fluorescent multi-dimensional ruler and a dedicated software that are suitable for monitoring and quality management of fluorescence-based imaging systems (wide-field, confocal, multiphoton, high content machines). In addition to fluorescence, the same patterns exhibit bright- and dark-field contrast, DIC, and phase contrast, which make them also relevant to monitor these types of microscopes. Non-exhaustively, this new solution enables the measurement of: The stage repositioning accuracy; The illumination and detection homogeneities; The field flatness; The detectors' characteristics; The lateral and axial spatial resolutions; The spectral response (spectrum, intensity and lifetime) of the system. Thanks to the stability of the patterns, microscope performance assessment can be carried out as well in a daily basis as in the long term.

  20. Research notes : developing corridor-level truck travel time estimates and other freight performance measures from archived ITS data.

    DOT National Transportation Integrated Search

    2010-02-01

    This research project demonstrated that it is feasible to use the WIM data to develop long-term corridor performance monitoring of truck travel. From the perspective of a realtime traveler information system, there are too many shortcomings mainl...

  1. Infrared Thermographic Measurement of Long Term Circulatory Compromise in Trenchfoot Injured Argentine Soldiers

    DTIC Science & Technology

    1989-02-17

    surface pain, cold sensitivity or hyperhidrosis . Equipment The subject’s temperatures were monitored by utilizing an AGEMA TIC-8000 Infrared System...injury; the patient’s reports of cold intolerance, weight bearing surface pain and hyperhidrosis six years post injury support this conclusion. It

  2. LONG-TERM PERFORMANCE CHARACTERISTICS OF FINE PORE CERAMIC DIFFUSERS AT MONROE, WISCONSIN

    EPA Science Inventory

    A study of the fine pore aeration system at the Monroe, Wisconsin wastewater treatment plant was conducted to monitor, over a 2-year period, the oxygen transfer efficiency (OTE) and fouling tendencies of four different effective pore size ceramic discs. The plant treats a mixtur...

  3. Long term monitoring of carbon composite strands in the Penobscot-Narrows bridge.

    DOT National Transportation Integrated Search

    2015-06-01

    The Penobscot-Narrows Bridge was constructed between May 2003 and December 2006. The bridge is a cable-stayed design with twin pylons and a 2,120-foot span. This cable-stayed bridge features a cradle stay system that : allows for each cable strand in...

  4. Evaluating measures to assess soil health in long-term agroecosystem trials

    USDA-ARS?s Scientific Manuscript database

    Monitoring and assessing soil health is an important component of any land management system with a vision of sustaining soil resources. Soil organic matter(SOM)characteristics are key to soil health and responsive to tillage regime and crop management. As metrics of soil health, we evaluated surfac...

  5. MEASUREMENT AND MODELING OF ATMOSPHERIC MERCURY SPECIES AND RELATED POLLUTANTS IN SOUTH FLORIDA FROM 2000-2005

    EPA Science Inventory

    In 2000, Florida DEP, USEPA, and Broward EPD located an atmospheric mercury monitoring site adjacent to the Everglades in southeast Florida for the purposes of field testing the Tekran mercury speciation system under long-term operational conditions and evaluating the impact of e...

  6. Using fiber-optic sensor technology to measure strains under the asphalt layer of a flexible pavement structure.

    DOT National Transportation Integrated Search

    2006-01-01

    In this study, a flexible pavement system was instrumented using fiber-optic strain sensors (FOSS). The purpose of this study was to demonstrate the feasibility of a FOSS installation, monitor the long-term strains under repeated traffic loading, and...

  7. An Integrated Patient Information and In-Home Health Monitoring System Using Smartphones and Web Services.

    PubMed

    Sorwar, Golam; Ali, Mortuza; Islam, Md Kamrul; Miah, Mohammad Selim

    2016-01-01

    Modern healthcare systems are undergoing a paradigm shift from in-hospital care to in-home monitoring, leveraging the emerging technologies in the area of bio-sensing, wireless communication, mobile computing, and artificial intelligence. In-home monitoring promises to significantly reduce healthcare spending by preventing unnecessary hospital admissions and visits to healthcare professionals. Most of the in-home monitoring systems, proposed in the literature, focus on monitoring a set of specific vital signs. However, from the perspective of caregivers it is infeasible to maintain a collection of specialized monitoring systems. In this paper, we view the problem of in-home monitoring from the perspective of caregivers and present a framework that supports various monitoring capabilities while making the complexity transparent to the end users. The essential idea of the framework is to define a 'general purpose architecture' where the system specifies a particular protocol for communication and makes it public. Then any bio-sensing system can communicate with the system as long as it conforms to the protocol. We then argue that as the system grows in terms of number of patients and bio-sensing systems, artificial intelligence technologies need to be employed for patients' risk assessment, prioritization, and recommendation. Finally, we present an initial prototype of the system designed according to the proposed framework.

  8. Long-Term Monitoring of Pavement Maintenance Materials Test Sites

    DOT National Transportation Integrated Search

    1998-06-01

    The Strategic Highway Research Program's {SHRP) H-106 pothole repair experiment was part of the most extensive pavement maintenance experiment ever conducted. Started under SHRP and continued under the Long-Term Pavement Performance program's Long-Te...

  9. Surprises and insights from long-term aquatic datasets and experiments

    Treesearch

    Walter K. Dodds; Christopher T. Robinson; Evelyn E. Gaiser; Gretchen J.A. Hansen; Heather Powell; Joseph M. Smith; Nathaniel B. Morse; Sherri L. Johnson; Stanley V. Gregory; Tisza Bell; Timothy K. Kratz; William H. McDowell

    2012-01-01

    Long-term research on freshwater ecosystems provides insights that can be difficult to obtain from other approaches. Widespread monitoring of ecologically relevant water-quality parameters spanning decades can facilitate important tests of ecological principles. Unique long-term data sets and analytical tools are increasingly available, allowing for powerful and...

  10. Monitoring that matters

    USGS Publications Warehouse

    Johnson, Douglas H.; Gitzen, Robert A.; Millspaugh, Joshua J.; Cooper, Andrew B.; Licht, Daniel S.

    2012-01-01

    Monitoring is a critically important activity for assessing the status of a system, such as the health of an individual, the balance in one's checking account, profits and losses of a business, the economic activity of a nation, or the size of an animal population. Monitoring is especially vital for evaluating changes in the system associated with specific known impacts occurring to the system. It is also valuable for detecting unanticipated changes in the system and identifying plausible causes of such changes, all in time to take corrective action. Before proceeding, we should define "monitoring." One definition of "monitor" (Microsoft Corporation 2009) is "to check something at regular intervals in order to find out how it is progressing or developing." The key point here is "at regular intervals," suggesting a continuing process. Some definitions do not indicate the repetitive nature of monitoring and are basically synonymous with "observing." Most monitoring, in the strict sense of the word, is intended to persist for long periods of time, perhaps indefinitely or permanently. Similarly, Thompson et al. (1998: 3) referred to the "repeated assessment of status" of something, but noted that the term "monitor" is sometimes used for analogous activities such as collecting baseline information or evaluating projects for either implementation or effectiveness. For their purposes, they restricted the term to involve repeated measurements collected at a specified frequency of time units. Let us adopt that definition, recognizing that repeated measurements imply collecting comparable information on each occasion.

  11. Ultra-low power wireless sensing for long-term structural health monitoring

    NASA Astrophysics Data System (ADS)

    Bilbao, Argenis; Hoover, Davis; Rice, Jennifer; Chapman, Jamie

    2011-04-01

    Researchers have made significant progress in recent years towards realizing long-term structural health monitoring (SHM) utilizing wireless smart sensor networks (WSSNs). These efforts have focused on improving the performance and robustness of such networks to achieve high quality data acquisition and in-network processing. One of the primary challenges still facing the use of smart sensors for long-term monitoring deployments is their limited power resources. Periodically accessing the sensor nodes to change batteries is not feasible or economical in many deployment cases. While energy harvesting techniques show promise for prolonging unattended network life, low-power design and operation are still critically important. This research presents a new, fully integrated ultra-low power wireless smart sensor node and a flexible base station, both designed for long-term SHM applications. The power consumption of the sensor nodes and base station has been minimized through careful hardware selection and the implementation of power-aware network software, without sacrificing flexibility and functionality.

  12. A Novel Ideal Radionuclide Imaging System for Non-invasively Cell Monitoring built on Baculovirus Backbone by Introducing Sleeping Beauty Transposon

    PubMed Central

    Lv, Jing; Pan, Yu; Ju, Huijun; Zhou, Jinxin; Cheng, Dengfeng; Shi, Hongcheng; Zhang, Yifan

    2017-01-01

    Sleeping Beauty (SB) transposon is an attractive tool in stable transgene integration both in vitro and in vivo; and we introduced SB transposon into recombinant sodium-iodide symporter baculovirus system (Bac-NIS system) to facilitate long-term expression of recombinant sodium-iodide symporter. In our study, two hybrid baculovirus systems (Bac-eGFP-SB-NeoR and Bac-NIS-SB-NeoR) were successfully constructed and used to infect U87 glioma cells. After G418 selection screening, the Bac-eGFP-SB-NeoR-U87 cells remained eGFP positive, at the 18th and 196th day post transfection (96.03 ± 0.21% and 97.43 ± 0.81%), while eGFP positive population declined significantly at 18 days in cells transfected with unmodified baculovirus construct. NIS gene expression by Bac-NIS-SB-NeoR-U87 cells was also maintained for 28 weeks as determined by radioiodine uptake assay, reverse transcription-polymerase chain reaction (RT-PCR) and Western Blot (WB) assay. When transplanted in mice, Bac-NIS-SB-NeoR-U87 cells also expressed NIS gene stably as monitored by SPECT imaging for 43 days until the tumor-bearing mice were sacrificed. Herein, we showed that incorporation of SB in Bac-NIS system (hybrid Bac-NIS-SB-NeoR) can achieve a long-term transgene expression and can improve radionuclide imaging in cell tracking and monitoring in vivo. PMID:28262785

  13. New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System

    PubMed Central

    Lee, Jae Kang; Lee, Jae One; Kim, Jung Ok

    2016-01-01

    This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS) positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS) based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA) technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased. PMID:27240375

  14. New Quality Control Algorithm Based on GNSS Sensing Data for a Bridge Health Monitoring System.

    PubMed

    Lee, Jae Kang; Lee, Jae One; Kim, Jung Ok

    2016-05-27

    This research introduces an improvement plan for the reliability of Global Navigation Satellite System (GNSS) positioning solutions. It should be considered the most suitable methodology in terms of the adjustment and positioning of GNSS in order to maximize the utilization of GNSS applications. Though various studies have been conducted with regards to Bridge Health Monitoring System (BHMS) based on GNSS, the outliers which depend on the signal reception environment could not be considered until now. Since these outliers may be connected to GNSS data collected from major bridge members, which can reduce the reliability of a whole monitoring system through the delivery of false information, they should be detected and eliminated in the previous adjustment stage. In this investigation, the Detection, Identification, Adaptation (DIA) technique was applied and implemented through an algorithm. Moreover, it can be directly applied to GNSS data collected from long span cable stayed bridges and most of outliers were efficiently detected and eliminated simultaneously. By these effects, the reliability of GNSS should be enormously improved. Improvement on GNSS positioning accuracy is directly linked to the safety of bridges itself, and at the same time, the reliability of monitoring systems in terms of the system operation can also be increased.

  15. A Portable Dynamic Laser Speckle System for Sensing Long-Term Changes Caused by Treatments in Painting Conservation

    PubMed Central

    Pérez, Alberto J.; Braga, Roberto; Perles, Ángel; Pérez–Marín, Eva; García-Diego, Fernando J.

    2018-01-01

    Dynamic laser speckle (DLS) is used as a reliable sensor of activity for all types of materials. Traditional applications are based on high-rate captures (usually greater than 10 frames-per-second, fps). Even for drying processes in conservation treatments, where there is a high level of activity in the first moments after the application and slower activity after some minutes or hours, the process is based on the acquisition of images at a time rate that is the same in moments of high and low activity. In this work, we present an alternative approach to track the drying process of protective layers and other painting conservation processes that take a long time to reduce their levels of activity. We illuminate, using three different wavelength lasers, a temporary protector (cyclododecane) and a varnish, and monitor them using a low fps rate during long-term drying. The results are compared to the traditional method. This work also presents a monitoring method that uses portable equipment. The results present the feasibility of using the portable device and show the improved sensitivity of the dynamic laser speckle when sensing the long-term process for drying cyclododecane and varnish in conservation. PMID:29324692

  16. Scientific Understanding from Long Term Observations: Insights from the Long Term Ecological Research (LTER) Program

    NASA Astrophysics Data System (ADS)

    Gosz, J.

    2001-12-01

    The network dedicated to Long Term Ecological Research (LTER) in the United States has grown to 24 sites since it was formed in 1980. Long-term research and monitoring are performed on parameters thatare basic to all ecosystems and are required to understand patterns, processes, and relationship to change. Collectively, the sites in the LTER Network provide opportunities to contrast marine, coastal, and continental regions, the full range of climatic gradients existing in North America, and aquatic and terrestrial habitats in a range of ecosystem types. The combination of common core areas and long-term research and monitoring in many habitats have allowed unprecedented abilities to understand and compare complex temporal and spatial dynamics associated with issues like climate change, effects of pollution, biodiversity and landuse. For example, McMurdo Dry Valley in the Antarctic has demonstrated an increase in glacier mass since 1993 which coincides with a period of cooler than normal summers and more than average snowfall. In contrast, the Bonanza Creek and Toolik Lake sites in Alaska have recorded a warming period unprecedented in the past 200 years. Nitrogen deposition effects have been identified through long-term watershed studies on biogeochemical cycles, especially at Coweeta Hydrological Lab, Harvard Forest, and the Hubbard Brook Experimental Forest. In aquatic systems, such as the Northern Temperate Lakes site, long-term data revealed time lags in effects of invaders and disturbance on lake communities. Biological recovery from an effect such as lake acidification was shown to lag behind chemical recovery. The long-term changes documented over 2 decades have been instrumental in influencing management practices in many of the LTER areas. In Puerto Rico, the Luquillo LTER demonstrated that dams obstruct migrations of fish and freshwater shrimp and water abstraction at low flows can completely obliterate downstream migration of juveniles and damage estuaries below by removing all incoming freshwater. At Toolik Lake, long-term experiments of removing top predators from the good web of lakes showed dramatic alterations of lake populations of small fish and zooplankton. In New Mexico, LTER research on small mammal populations is successfully predicting rodent increases and the potential for increased zoonotic diseases such as Hantavirus and bubonic plague. This ability to forecast based on El Nino prediction is being used to increase scientific awareness and public health awareness through media based communication with the public. In Oregon, the Andrews Forest LTER program has had long, strong links with natural resource policy and management. Basic understanding of forest-stream interactions, characteristics of old-growth forests, roles of woody debris in temperate forest ecosystems, invertebrate biodiversity and ecosystem function have been incorporated in management guidelines, plans and regulations for public and private lands throughout the Pacific Northwest. Other examples of the values of long-term research and monitoring will be presented.

  17. Integrated active sensor system for real time vibration monitoring.

    PubMed

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  18. Integrated active sensor system for real time vibration monitoring

    PubMed Central

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-01-01

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0–60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems. PMID:26538293

  19. Telemetric implantable pressure sensor for short- and long-term monitoring of intracranial pressure.

    PubMed

    Frischholz, M; Sarmento, L; Wenzel, M; Aquilina, K; Edwards, R; Coakham, H B

    2007-01-01

    Patients with hydrocephalus, idiopathic intracranial hypertension and head injury frequently require monitoring of intracranial pressure (ICP) and may need repeated episodes of monitoring months or years apart. The gold standard for measurement of ICP remains the external ventricular catheter. This is a fluid-filled catheter transducer system that allows regular recalibration and correction of zero drift by its position relative to a fixed anatomical reference. It also allows drainage of cerebrospinal fluid (CSF), providing a means of lowering the ICP. Several catheter tip transducer systems are currently in clinical use, including using strain gauges or fiber-optical pressure sensing techniques. In these devices, zero drift and calibration cannot be checked in vivo. All the ICP monitoring devices in current clinical use require a physical connection between the brain and the external environment. This is a source of infection and limits the duration of monitoring. A number of telemetric monitoring devices, in which data is in some way transmitted transcutaneously, have been developed over the last twenty years, but significant technical problems have precluded their use in routine clinical practice. All current ICP monitors are temporary percutaneous implanted devices. Placement of these devices carries significant morbidity, particularly infection. Patients undergoing repeated monitoring require multiple surgical procedures. Apart from decreasing the risk of infection in patients with severe head injury, the clinical value of an accurate telemetric ICP monitoring system which maintains its reliability over a long period of implantation is high.

  20. Photonic sensing of arterial distension

    PubMed Central

    Ruh, Dominic; Subramanian, Sivaraman; Sherman, Stanislav; Ruhhammer, Johannes; Theodor, Michael; Dirk, Lebrecht; Foerster, Katharina; Heilmann, Claudia; Beyersdorf, Friedhelm; Zappe, Hans; Seifert, Andreas

    2016-01-01

    Most cardiovascular diseases, such as arteriosclerosis and hypertension, are directly linked to pathological changes in hemodynamics, i.e. the complex coupling of blood pressure, blood flow and arterial distension. To improve the current understanding of cardiovascular diseases and pave the way for novel cardiovascular diagnostics, innovative tools are required that measure pressure, flow, and distension waveforms with yet unattained spatiotemporal resolution. In this context, miniaturized implantable solutions for continuously measuring these parameters over the long-term are of particular interest. We present here an implantable photonic sensor system capable of sensing arterial wall movements of a few hundred microns in vivo with sub-micron resolution, a precision in the micrometer range and a temporal resolution of 10 kHz. The photonic measurement principle is based on transmission photoplethysmography with stretchable optoelectronic sensors applied directly to large systemic arteries. The presented photonic sensor system expands the toolbox of cardiovascular measurement techniques and makes these key vital parameters continuously accessible over the long-term. In the near term, this new approach offers a tool for clinical research, and as a perspective, a continuous long-term monitoring system that enables novel diagnostic methods in arteriosclerosis and hypertension research that follow the trend in quantifying cardiovascular diseases by measuring arterial stiffness and more generally analyzing pulse contours. PMID:27699095

  1. Understanding causality and uncertainty in volcanic observations: An example of forecasting eruptive activity on Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Sheldrake, T. E.; Aspinall, W. P.; Odbert, H. M.; Wadge, G.; Sparks, R. S. J.

    2017-07-01

    Following a cessation in eruptive activity it is important to understand how a volcano will behave in the future and when it may next erupt. Such an assessment can be based on the volcano's long-term pattern of behaviour and insights into its current state via monitoring observations. We present a Bayesian network that integrates these two strands of evidence to forecast future eruptive scenarios using expert elicitation. The Bayesian approach provides a framework to quantify the magmatic causes in terms of volcanic effects (i.e., eruption and unrest). In October 2013, an expert elicitation was performed to populate a Bayesian network designed to help forecast future eruptive (in-)activity at Soufrière Hills Volcano. The Bayesian network was devised to assess the state of the shallow magmatic system, as a means to forecast the future eruptive activity in the context of the long-term behaviour at similar dome-building volcanoes. The findings highlight coherence amongst experts when interpreting the current behaviour of the volcano, but reveal considerable ambiguity when relating this to longer patterns of volcanism at dome-building volcanoes, as a class. By asking questions in terms of magmatic causes, the Bayesian approach highlights the importance of using short-term unrest indicators from monitoring data as evidence in long-term forecasts at volcanoes. Furthermore, it highlights potential biases in the judgements of volcanologists and identifies sources of uncertainty in terms of magmatic causes rather than scenario-based outcomes.

  2. Practicability of patient self-testing of oral anticoagulant therapy by the international normalized ratio (INR) using a portable whole blood monitor. A pilot investigation.

    PubMed

    Hasenkam, J M; Knudsen, L; Kimose, H H; Grønnesby, H; Attermann, J; Andersen, N T; Pilegaard, H K

    1997-01-01

    The prophylactic efficacy of long-term oral anticoagulant treatment (OAT) has been demonstrated in a number of clinical conditions with increased tendency to thromboembolism, and the number of individuals subjected to OAT in the industrialised world has increased substantially in recent years. Since this therapy requires considerable resources from both the health care system and the patients, the feasibility of patients' self-monitoring and self-management of OAT has been investigated (1,2,3). The anticipated advantages of this approach include improved convenience and compliance for the patient, who may increase his apprehension for managing the treatment. In addition, self-testing allows for more frequent control compared to the conventional out-patient approach. Importantly, a prerequisite for conceiving a safe and operational concept for patient self-management (PSM) is the availability of a portable INR monitoring system with an accuracy, precision, reproducibility, and long-term reliability comparable to standard coagulometric equipment. The purpose of the present study was to evaluate the feasibility of a commercially available INR-monitor. CoaguChek, for patient self-testing, through a step-wise investigation of the performance characteristics of the equipment in the laboratory, in command of the patient, and during self-testing and self-adjustment of treatment at home. Laboratory INR values were used as reference.

  3. Long-term solar-terrestrial observations

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The results of an 18-month study of the requirements for long-term monitoring and archiving of solar-terrestrial data is presented. The value of long-term solar-terrestrial observations is discussed together with parameters, associated measurements, and observational problem areas in each of the solar-terrestrial links (the sun, the interplanetary medium, the magnetosphere, and the thermosphere-ionosphere). Some recommendations are offered for coordinated planning for long-term solar-terrestrial observations.

  4. Estimating site occupancy and detection probabilities for cooper's and sharp-shinned hawks in the Southern Sierra Nevada

    Treesearch

    Jennifer E. Carlson; Douglas D. Piirto; John J. Keane; Samantha J. Gill

    2015-01-01

    Long-term monitoring programs that can detect a population change over time can be useful for managers interested in assessing population trends in response to forest management activities for a particular species. Such long-term monitoring programs have been designed for the Northern Goshawk (Accipiter gentilis), but not for the more elusive Sharp...

  5. Engineering and Design: Structural Deformation Surveying

    DTIC Science & Technology

    2002-06-01

    loading deformations. Long-term measurements are far more common and somewhat more complex given their external nature . Long-term monitoring of a...fitting of structural elements, environmental protection, and development of mitigative measures in the case of natural disasters (land slides, earthquakes...of additional localized monitoring points (i.e., points not intended for routine observation) to determine the nature and extent of large displacements

  6. Net change in forest density, 1873-2001. Using historical maps to monitor long-term forest trends.

    Treesearch

    Greg C. Liknes; Mark D. Nelson; Daniel J. Kaisershot

    2013-01-01

    European settlement of the United States and utilization of forests are inextricably linked. Forest products fueled development, providing the building blocks for railroads, bridges, ships, and homes. Perhaps because of the importance of its forests, the United States has a rich cartographic history documenting its resources. Long-term, broad-scale monitoring efforts...

  7. Cascabel prescribed fire long-term watershed study: an opportunity to monitor climate change

    Treesearch

    Gerald Gottfried; Daniel Neary; Peter Ffolliott; Karen Koestner

    2012-01-01

    Experimental watershed studies can provide answers to new challenges facing land managers and society including the impacts of fires and climate change on upstream and regional hydrology. The Cascabel Watersheds long-term prescribed fire study provides a unique opportunity to monitor climate change because of its location in an oak savanna situated between deserts or...

  8. Long-term stream chemistry monitoring on the fernow experiment forest: implications for sustainable management of hardwood forests

    Treesearch

    Mary Beth Adams; James N. Kochenderfer

    2007-01-01

    Long-term monitoring of stream chemistry of forested watersheds on the Fernow Experimental Forest in West Virginia has been conducted to determine the effects of both human induced and natural disturbances on nutrient cycling and stream chemistry. We compare mean annual stream water pH, and nitrate (NO3), sulfate (SO4), and...

  9. Long Term Ecological Monitoring Program on the Kenai National Wildlife Refuge, Alaska: An FIA adjunct inventory

    Treesearch

    Bowser John M. Morton; Edward Berg; Dawn Magness; Todd Eskelin

    2009-01-01

    Kenai National Wildlife Refuge (KENWR) has a legislative mandate "to conserve fish and wildlife populations and habitats in their natural diversity". To improve our understanding of spatial and temporal variation at the landscape level, we are developing the Long Term Ecological Monitoring Program (LTEMP) to assess change in biota on the sample frame used by...

  10. Development and Performance of a Filter Radiometer Monitor System for Integrating Sphere Sources

    NASA Technical Reports Server (NTRS)

    Ding, Leibo; Kowalewski, Matthew G.; Cooper, John W.; Smith, GIlbert R.; Barnes, Robert A.; Waluschka, Eugene; Butler, James J.

    2011-01-01

    The NASA Goddard Space Flight Center (GSFC) Radiometric Calibration Laboratory (RCL) maintains several large integrating sphere sources covering the visible to the shortwave infrared wavelength range. Two critical, functional requirements of an integrating sphere source are short and long-term operational stability and repeatability. Monitoring the source is essential in determining the origin of systemic errors, thus increasing confidence in source performance and quantifying repeatability. If monitor data falls outside the established parameters, this could be an indication that the source requires maintenance or re-calibration against the National Institute of Science and Technology (NIST) irradiance standard. The GSFC RCL has developed a Filter Radiometer Monitoring System (FRMS) to continuously monitor the performance of its integrating sphere calibration sources in the 400 to 2400nm region. Sphere output change mechanisms include lamp aging, coating (e.g. BaSO4) deterioration, and ambient water vapor level. The Filter Radiometer Monitor System (FRMS) wavelength bands are selected to quantify changes caused by these mechanisms. The FRMS design and operation are presented, as well as data from monitoring four of the RCL s integrating sphere sources.

  11. Taking the pulse of a river system: first 20 years

    USGS Publications Warehouse

    Leake, Linda; Johnson, Barry

    2006-01-01

    Your doctor would not base decisions for your health care today on one physical examination when you were age three! You would reasonably expect decisions to be based on records from over your lifetime. Likewise, those responsible for monitoring the health of the Upper Mississippi River System want a more comprehensive way to diagnose problems and find treatment options. To begin developing a comprehensive view of the river, the five neighboring states of the Upper Mississippi River System and several Federal agencies formed a partnership in 1986 to monitor river conditions and long-term trends in the Upper Mississippi and Illinois Rivers.

  12. Development of mHealth system for supporting self-management and remote consultation of skincare.

    PubMed

    Parmanto, Bambang; Pramana, Gede; Yu, Daihua X; Fairman, Andrea D; Dicianno, Brad E

    2015-12-30

    Individuals with spina bifida (SB) are vulnerable to chronic skin complications such as wounds on the buttocks and lower extremities. Most of these complications can be prevented with adherence to self-care routines. We have developed a mobile health (mHealth) system for supporting self-care and management of skin problems called SkinCare as part of an mHealth suite called iMHere (interactive Mobile Health and Rehabilitation). The objective of this research is to develop an innovative mHealth system to support self-skincare tasks, skin condition monitoring, adherence to self-care regimens, skincare consultation, and secure two-way communications between patients and clinicians. In order to support self-skincare tasks, the SkinCare app requires three main functions: (1) self-care task schedule and reminders, (2) skin condition monitoring and communications that include imaging, information about the skin problem, and consultation with clinician, and (3) secure two-way messaging between the patient and clinician (wellness coordinator). The SkinCare system we have developed consists of the SkinCare app, a clinician portal, and a two-way communication protocol connecting the two. The SkinCare system is one component of a more comprehensive system to support a wellness program for individuals with SB. The SkinCare app has several features that include reminders to perform daily skin checks as well as the ability to report skin breakdown and injury, which uses a combination of skin images and descriptions. The SkinCare app provides reminders to visually inspect one's skin as a preventative measure, often termed a "skin check." The data is sent to the portal where clinicians can monitor patients' conditions. Using the two-way communication, clinicians can receive pictures of the skin conditions, track progress in healing over time, and provide instructions for how to best care for the wound. The system was capable of supporting self-care and adherence to regimen, monitoring adherence, and supporting clinician engagement with patients, as well as testing its feasibility in a long-term implementation. The study shows the feasibility of a long-term implementation of skincare mHealth systems to support self-care and two-way interactions between patients and clinicians.

  13. Infectious disease control in a long-term refugee camp: the role of epidemiologic surveillance and investigation.

    PubMed Central

    Elias, C J; Alexander, B H; Sokly, T

    1990-01-01

    This report demonstrates the role of epidemiologic surveillance and investigation in the control of infectious diseases in a long-term refugee camp. The applications of simple epidemiologic methods in a refugee camp on the Thai-Cambodian border are described for a one-year period. The development of a Health Information Office facilitated the collection of demographic and vital statistics data, administration of a disease surveillance system, regular monitoring of hospital and outpatient discharge diagnoses, and investigation of disease outbreaks. This office also organized community health education campaigns and disease control efforts. Examples of specific disease investigations are provided to demonstrate the utility of epidemiologic surveillance in the control of infectious disease. We conclude that simple epidemiologic methods play an important role in health planning in long-term refugee camps. PMID:2356906

  14. Remote Arrhythmia Monitoring System Developed

    NASA Technical Reports Server (NTRS)

    York, David W.; Mackin, Michael A.; Liszka, Kathy J.; Lichter, Michael J.

    2004-01-01

    Telemedicine is taking a step forward with the efforts of team members from the NASA Glenn Research Center, the MetroHealth campus of Case Western University, and the University of Akron. The Arrhythmia Monitoring System is a completed, working test bed developed at Glenn that collects real-time electrocardiogram (ECG) signals from a mobile or homebound patient, combines these signals with global positioning system (GPS) location data, and transmits them to a remote station for display and monitoring. Approximately 300,000 Americans die every year from sudden heart attacks, which are arrhythmia cases. However, not all patients identified at risk for arrhythmias can be monitored continuously because of technological and economical limitations. Such patients, who are at moderate risk of arrhythmias, would benefit from technology that would permit long-term continuous monitoring of electrical cardiac rhythms outside the hospital environment. Embedded Web Technology developed at Glenn to remotely command and collect data from embedded systems using Web technology is the catalyst for this new telemetry system (ref. 1). In the end-to-end system architecture, ECG signals are collected from a patient using an event recorder and are transmitted to a handheld personal digital assistant (PDA) using Bluetooth, a short-range wireless technology. The PDA concurrently tracks the patient's location via a connection to a GPS receiver. A long distance link is established via a standard Internet connection over a 2.5-generation Global System for Mobile Communications/General Packet Radio Service (GSM/GPRS)1 cellular, wireless infrastructure. Then, the digital signal is transmitted to a call center for monitoring by medical professionals.

  15. Long-term observing system for the oceanic regime of Filchner-Ronne Ice Shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Østerhus, Svein; Schröder, Michael; Hellmer, Hartmunt; Darelius, Elin; Nicholls, Keith; Makinson, Keith

    2014-05-01

    Long term observations of the flow of dense waters from their area of formation to the abyss of the World Ocean, and the return flow of warm waters, are central to climate research. For the Weddell Sea an important component of such a system entails monitoring the formation of High Salinity Shelf Water (HSSW) on the continental shelf north of Ronne Ice Front, the transformation to Ice Shelf Water (ISW) beneath the floating Filchner-Ronne ice shelf, and the flux of ISW overflowing the shelf break to the deep Weddell Sea. Equally important is the return flow of warm water toward the Filchner-Ronne Ice Shelf system. AWI, BAS and UNI/UIB operate a number of monitoring stations in the southern Weddell Sea. The systems build upon techniques and methods developed over several decades and have a proven record of high data return. Here we present plans for extending, integrating and operating the existing long term observatories to increase our knowledge of the natural variability of the ocean-ice shelf system, and to allow early identification of possible changes of regional or global importance. The S2 observatory at the Filchner sill was established in 1977 and continues to deliver the longest existing marine time series from Antarctica. As a key site for monitoring the ISW overflow S2 is a part of the global net of monitoring sites under CLIVAR Southern Ocean Observing System (SOOS) and OceanSITES. The existing S2 observatory consists of a sub-surface mooring carrying sensors for current velocity, temperature, salinity and dissolved oxygen measurements. Observations at the Filchner sill also show a seasonal inflow of relatively warm water that is able to reach Filchner Ice Front. New model results indicate that this flow of water might increase in the future and we have deployed a number of instrumented moorings in the Filchner Depression to estimate the heat flux towards the ice shelf. In 1999 we established Site 5 on Ronne Ice Shelf using a hot-water drill to access the 402 m of water underlying the 763-m thick ice. Results from the multiyear time series show the sensitivity of the sub-ice shelf circulation to changes in conditions over the continental shelf and highlight the importance of monitoring the ice shelf cavity. We will reoccupy Site 5 in the 2014/15 season to deploy a suite of observing systems for long time monitoring of the circulation below Ronne Ice Shelf. The systems will consist of sub-ice shelf oceanographic moorings instrumented with high quality sensors. They will transmit in real-time and are designed to operate for more than 10 years. In 2015/16 we will extend the observing network by deploying observatories on Filchner Ice Shelf. The Filchner-Ronne Ice Shelf and S2 observatories will provide the first ever concurrent observations from the ice-shelf cavity where ISW is formed, and the sill where it starts its descent towards the deep Weddell Sea, and will provide a unique dataset allowing us to link processes and variability within the cavity directly to overflow properties and deep water formation.

  16. The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records

    NASA Astrophysics Data System (ADS)

    O'Loingsigh, T.; McTainsh, G. H.; Tews, E. K.; Strong, C. L.; Leys, J. F.; Shinkfield, P.; Tapper, N. J.

    2014-03-01

    Wind erosion of soils is a natural process that has shaped the semi-arid and arid landscapes for millennia. This paper describes the Dust Storm Index (DSI); a methodology for monitoring wind erosion using Australian Bureau of Meteorology (ABM) meteorological observational data since the mid-1960s (long-term), at continental scale. While the 46 year length of the DSI record is its greatest strength from a wind erosion monitoring perspective, there are a number of technical challenges to its use because when the World Meteorological Organisation (WMO) recording protocols were established the use of the data for wind erosion monitoring was never intended. Data recording and storage protocols are examined, including the effects of changes to the definition of how observers should interpret and record dust events. A method is described for selecting the 180 long-term ABM stations used in this study and the limitations of variable observation frequencies between stations are in part resolved. The rationale behind the DSI equation is explained and the examples of temporal and spatial data visualisation products presented include; a long term national wind erosion record (1965-2011), continental DSI maps, and maps of the erosion event types that are factored into the DSI equation. The DSI is tested against dust concentration data and found to provide an accurate representation of wind erosion activity. As the ABM observational records used here were collected according to WMO protocols, the DSI methodology could be used in all countries with WMO-compatible meteorological observation and recording systems.

  17. Long term (2006-2016) seasonal and inter-annual variability of soil electrical resistivity in a Laotian catchment of the OZCAR network. Impact of land use change, soil type and rainfall

    NASA Astrophysics Data System (ADS)

    Robain, Henri; Ribolzi, Olivier; De Rouw, Anneke; Silvera, Norbert; Souniaphong, Phabvilay; Soulileuth, Bousamai; Latchasak, Keooudone; Sengtaheuanghoung, Oloth; Valentin, Christian; Gaillardet, Jerome

    2017-04-01

    The MSEC(1) observatory of the critical zone in south-east Asia, which is part of the OZCAR(2) Network, has been monitored since 1999 (Laos, Thailand, Vietnam) to study the long term impact of land use changes in tropical mountainous regions, in terms of soil properties (porosity, depth, SOC, nutrients…), biodiversity (weeds, soil macro fauna), plant roots (architecture, functions,…), and transfers within the critical zone at various temporal and space scales: partition between infiltration and runoff, water quality (physical, chemical and bacteriological) and erosion processes (splash, inter-rill and rill, tillage, mass-movement). In the Houay Pano catchment located in Northern Laos, a long-term monitoring system was implemented in 2006 combining Electrical Resistivity Tomography (ERT), with soil and hydrological equipments to better analyse the interactions between bank and hillslopes groundwater, and streamwater, in a context of steep slopes (>50%) and rapid land use change (conversion of annual crops to teak plantation). This continuous ERT monitoring has been carried out along a representative 100 m long transect in the middle of the 65 ha catchment perpendicular to the stream. The data were collected every week during rainy season and every second week during dry season. It has been associated with hydrological monitoring (piezometers, limnimeters, gauging weirs). Such high resolution geophysical monitoring data set (approx. 900 apparent resistivity measurements for each acquisition) provides an invaluable non-invasive proxy of soil water content variations in the different layers of the vadose zone. It demonstrates: i) the influence of plant cover on water infiltration; ii) the pathways for vertical and horizontal water fluxes within the soil cover; iii) the control of soil organisation along the hillslope over the hydrological behaviour of the unsaturated part of the critical zone. (1) «Multi-Scale Environmental Changes» : http://msec.obs-mip.fr/ (2) «Observatoires de la Zone Critique Applications et Recherches» Including the former RBV (Réseau de Bassins Versants) : http://portailrbv.sedoo.fr/

  18. Time vs. Money: A Quantitative Evaluation of Monitoring Frequency vs. Monitoring Duration.

    PubMed

    McHugh, Thomas E; Kulkarni, Poonam R; Newell, Charles J

    2016-09-01

    The National Research Council has estimated that over 126,000 contaminated groundwater sites are unlikely to achieve low ug/L clean-up goals in the foreseeable future. At these sites, cost-effective, long-term monitoring schemes are needed in order to understand the long-term changes in contaminant concentrations. Current monitoring optimization schemes rely on site-specific evaluations to optimize groundwater monitoring frequency. However, when using linear regression to estimate the long-term zero-order or first-order contaminant attenuation rate, the effect of monitoring frequency and monitoring duration on the accuracy and confidence for the estimated attenuation rate is not site-specific. For a fixed number of monitoring events, doubling the time between monitoring events (e.g., changing from quarterly monitoring to semi-annual monitoring) will double the accuracy of estimated attenuation rate. For a fixed monitoring frequency (e.g., semi-annual monitoring), increasing the number of monitoring events by 60% will double the accuracy of the estimated attenuation rate. Combining these two factors, doubling the time between monitoring events (e.g., quarterly monitoring to semi-annual monitoring) while decreasing the total number of monitoring events by 38% will result in no change in the accuracy of the estimated attenuation rate. However, the time required to collect this dataset will increase by 25%. Understanding that the trade-off between monitoring frequency and monitoring duration is not site-specific should simplify the process of optimizing groundwater monitoring frequency at contaminated groundwater sites. © 2016 The Authors. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  19. A Framework for Long-term Ecological Monitoring in Olympic National Park: Prototype for the Coniferous Forest Biome

    USGS Publications Warehouse

    Jenkins, Kurt; Woodward, Andrea; Schreiner, Ed

    2003-01-01

    This report is the result of a five-year collaboration between scientists of the U.S. Geological Survey Forest and Rangeland Ecosystem Science Center, Olympic Field Station, and the natural resources staff of Olympic National Park to develop a comprehensive strategy for monitoring natural resources of Olympic National Park. Olympic National Park is the National Park Serviceʼs prototype monitoring park, representing parks in the coniferous forest biome. Under the umbrella of the National Park Serviceʼs prototype parks program, U.S. Geological Survey and Olympic National Park staffs are obligated to:develop strategies and designs for monitoring the long-term health and integrity of national park ecosystems with a significant coniferous forest component.design exportable monitoring protocols that can be used by other parks within the coniferous forest biome (i.e., parks having similar environments), andcreate a demonstration area and ʻcenter of excellenceʼ for assisting other parks in developing ecological monitoring programs.Olympic National Park is part of the North Coast and Cascades Network, a network of seven Pacific Northwestern park units created recently by the National Park Serviceʼs Inventory and Monitoring Program to extend the monitoring of ʻvital signsʼ of park health to all National Park Service units. It is our intent and hope that the monitoring strategies and conceptual models described here will meet the overall purpose of the prototype parks monitoring program in proving useful not only to Olympic National Park, but also to parks within the North Coast and Cascades Network and elsewhere. Part I contains the conceptual design and sampling framework for the prototype long-term monitoring program in Olympic National Park. In this section, we explore key elements of monitoring design that help to ensure the spatial, ecological, and temporal integration of monitoring program elements and discuss approaches used to design an ecosystem-based monitoring program. Basic monitoring components include ecosystem drivers, (e.g., climate, atmospheric inputs, human pressures), indicators of ecosystem integrity (e.g., biogeochemical indicators), known threats (e.g., impacts of introduced mountain goats), and focal or ʻkeyʼ species (e.g., rare or listed species, Roosevelt elk). Monitoring system drivers and key indicators of ecosystem integrity provide the long-term baseline needed to judge what constitutes ʻunnaturalʼ variation in park resources and provide the earliest possible warning of unacceptable change. Monitoring effects of known threats and the status of focal species will provide information useful to park managers for dealing with current park issues. In Part I we describe the process of identifying potential indicators of ecological condition and present conceptual models of park ecosystems. In addition we report results from several workshops held in conjunction with Olympic National Park aimed at identifying potential indicators of change in the parkʼs ecosystem. First, we describe the responses of Olympic National Park staff to the generic question, “What is the most important resource to monitor in Olympic National Park and why?” followed by the responses from resource and land managers from areas adjoining the park. We also catalogue the responses of various expert groups that we asked to help identify the most appropriate system drivers and indicators of change in the Olympic National Park ecosystems. Results of the workshops provided the justification for selecting basic indicators of ecosystem integrity, effects of current threats to park resources, and focal resources of parks to detect both the currently evident and unforeseeable changes in park resources. We conclude Part I by exploring several generic statistical issues relevant to monitoring natural resources in Olympic National Park. Specifically we discuss trade-offs associated with sampling extensively versus sampling intensively in smaller geographic regions and describe a conceptual framework to guide development of a generic sampling frame for monitoring. We recommend partitioning Olympic National Park into three zones of decreasing accessibility to maximize monitoring efficiency. We present examples of how the generic sampling frame could be used to help ensure spatial integration of individual monitoring projects. Part II of the report is a record of the potential monitoring questions and indicators identified to date in our workshops. The presentation is organized according to the major system drivers, components, and processes identified in the intermediate-level working model of the Olympic National Park ecosystem. For each component of the park system, we develop the need and justification for monitoring, articulate park management issues, and describe key resources and ecosystem functions. We also present a pictorial conceptual model of each ecological subsystem, identify monitoring questions, and list potential indicators for each monitoring question. We conclude each section by identifying linkages of indicators to other ecological subsystems in our general ecosystem model, spatial and temporal contexts for monitoring (where and how often to monitor), and research and development needs. Part II represents the most current detailed listing of potential indicators—the material for subsequent discussions of monitoring priorities and selection of indicators for protocol development.Collectively, the sections of this report contain a comprehensive list of the important monitoring questions and potential indicators as well as recommendations for designing an integrated monitoring program. In Part I, Chapter 6 we provide recommendations on how to proceed with the important next steps in the design process: establishing priorities among the many possible monitoring questions and indicators, and beginning to research and design effective long-term monitoring protocols.

  20. AMON: a wearable multiparameter medical monitoring and alert system.

    PubMed

    Anliker, Urs; Ward, Jamie A; Lukowicz, Paul; Tröster, Gerhard; Dolveck, François; Baer, Michel; Keita, Fatou; Schenker, Eran B; Catarsi, Fabrizio; Coluccini, Luca; Belardinelli, Andrea; Shklarski, Dror; Alon, Menachem; Hirt, Etienne; Schmid, Rolf; Vuskovic, Milica

    2004-12-01

    This paper describes an advanced care and alert portable telemedical monitor (AMON), a wearable medical monitoring and alert system targeting high-risk cardiac/respiratory patients. The system includes continuous collection and evaluation of multiple vital signs, intelligent multiparameter medical emergency detection, and a cellular connection to a medical center. By integrating the whole system in an unobtrusive, wrist-worn enclosure and applying aggressive low-power design techniques, continuous long-term monitoring can be performed without interfering with the patients' everyday activities and without restricting their mobility. In the first two and a half years of this EU IST sponsored project, the AMON consortium has designed, implemented, and tested the described wrist-worn device, a communication link, and a comprehensive medical center software package. The performance of the system has been validated by a medical study with a set of 33 subjects. The paper describes the main concepts behind the AMON system and presents details of the individual subsystems and solutions as well as the results of the medical validation.

  1. Development and Sensing Properties Study of Underwater Assembled Water Depth-Inclination Sensors for a Multi-Component Mooring System, Using a Self-Contained Technique

    PubMed Central

    Wu, Wenhua; Feng, Jiaguo; Xie, Bin; Tang, Da; Yue, Qianjin; Xie, Ribin

    2016-01-01

    Prototype monitoring techniques play an important role in the safety guarantee of mooring systems in marine engineering. In general, the complexities of harsh ocean environmental conditions bring difficulties to the traditional monitoring methods of application, implementation and maintenance. Large amounts of existing mooring systems still lack valid monitoring strategies. In this paper, an underwater monitoring method which may be used to achieve the mechanical responses of a multi-point catenary mooring system, is present. A novel self-contained assembled water depth-inclination (D-I) sensor is designed and manufactured. Several advanced technologies, such as standalone, low power consumption and synchronism, are considered to satisfy the long-term implementation requirements with low cost during the design process. The design scheme of the water resistance barrel and installation clamp, which satisfies the diver installation, are also provided in the paper. An on-site test has previously been carried out on a production semisubmersible platform in the South China Sea. The prototype data analyses, including the D-I value in the time domain (including the data recorded during the mooring retraction and release process) and spectral characteristics, are presented to reveal the accuracy, feasibility and stability of the sensor in terms of fitting for the prototype monitoring of catenary mooring systems, especially for in-service aging platforms. PMID:27854357

  2. Risk Assessment and Control through Countermeasure System Iplementation for Long-term Crew Exposure to Microgravity

    NASA Technical Reports Server (NTRS)

    Gernand, Jeremy M.

    2004-01-01

    Experience with the International Space Station (ISS) program demonstrates the degree to which engineering design and operational solutions must protect crewmembers from health risks due to long-term exposure to the microgravity environment. Risks to safety and health due to degradation in the microgravity environment include crew inability to complete emergency or nominal activities, increased risk of injury, and inability to complete safe return to the ground due to reduced strength or embrittled bones. These risks without controls slowly increase in probability for the length of the mission and become more significant for increasing mission durations. Countermeasures to microgravity include hardware systems that place a crewmember s body under elevated stress to produce an effect similar to daily exposure to gravity. The ISS countermeasure system is predominately composed of customized exercise machines. Historical treatment of microgravity countermeasure systems as medical research experiments unintentionally reduced the foreseen importance and therefore the capability of the systems to function in a long-term operational role. Long-term hazardous effects and steadily increasing operational risks due to non-functional countermeasure equipment require a more rigorous design approach and incorporation of redundancy into seemingly non- mission-critical hardware systems. Variations in the rate of health degradation and responsiveness to countermeasures among the crew population drastically increase the challenge for design requirements development and verification of the appropriate risk control strategy. The long-term nature of the hazards and severe limits on logistical re-supply mass, volume and frequency complicates assessment of hardware availability and verification of an adequate maintenance and sparing plan. Design achievement of medically defined performance requirements by microgravity countermeasure systems and incorporation of adequate failure tolerance significantly reduces these risks. Future implementation of on-site monitoring hardware for critical health parameters such as bone mineral density would allow greater responsiveness, efficiency, and optimized design of the countermeasures system.

  3. Mapping timing, extent, type and magnitude of disturbances across the national forest system, 1990–2011

    Treesearch

    Alexander Hernandez; Sean P. Healey; Chenquan Huang; R. Douglas Ramsey

    2015-01-01

    As part of the U.S. Forest Service (USFS), National Forest System (NFS) comprehensive plan for carbon monitoring, a detailed temporal mapping of forest disturbances across all National Forests in the United States has been conducted. A long-term annual time series of data layers that show the timing, extent, type, and magnitude of disturbance beginning in 1990 and...

  4. Ongoing right ventricular hemodynamics in heart failure: clinical value of measurements derived from an implantable monitoring system.

    PubMed

    Adamson, Philip B; Magalski, Anthony; Braunschweig, Frieder; Böhm, Michael; Reynolds, Dwight; Steinhaus, David; Luby, Allyson; Linde, Cecilia; Ryden, Lars; Cremers, Bodo; Takle, Teri; Bennett, Tom

    2003-02-19

    This study examined the characteristics of continuously measured right ventricular (RV) hemodynamic information derived from an implantable hemodynamic monitor (IHM) in heart failure patients. Hemodynamic monitoring might improve the day-to-day management of patients with chronic heart failure (CHF). Little is known about the characteristics of long-term hemodynamic information in patients with CHF or how such information relates to meaningful clinical events. Thirty-two patients with CHF received a permanent RV IHM system similar to a single-lead pacemaker. Right ventricular systolic and diastolic pressures, heart rate, and pressure derivatives were continuously measured for nine months without using the data for clinical decision-making or management of patients. Data were then made available to clinical providers, and the patients were followed up for 17 months. Pressure characteristics during optimal volume, clinically determined volume-overload exacerbations, and volume depletion events were examined. The effect of IHM on hospitalizations was examined using the patients' historical controls. Long-term RV pressure measurements had either marked variability or minimal time-related changes. During 36 volume-overload events, RV systolic pressures increased by 25 +/- 4% (p < 0.05) and heart rate increased by 11 +/- 2% (p < 0.05). Pressure increases occurred in 9 of 12 events 4 +/- 2 days before the exacerbations requiring hospitalization. Hospitalizations before using IHM data for clinical management averaged 1.08 per patient year and decreased to 0.47 per patient-year (57% reduction, p < 0.01) after hemodynamic data were used. Long-term ambulatory pressure measurements from an IHM may be helpful in guiding day-to-day clinical management, with a potentially favorable impact on CHF hospitalizations.

  5. Single-Frequency Ultrasound-Based Respiration Rate Estimation with Smartphones.

    PubMed

    Ge, Linfei; Zhang, Jin; Wei, Jing

    2018-01-01

    Respiration monitoring is helpful in disease prevention and diagnosis. Traditional respiration monitoring requires users to wear devices on their bodies, which is inconvenient for them. In this paper, we aim to design a noncontact respiration rate detection system utilizing off-the-shelf smartphones. We utilize the single-frequency ultrasound as the media to detect the respiration activity. By analyzing the ultrasound signals received by the built-in microphone sensor in a smartphone, our system can derive the respiration rate of the user. The advantage of our method is that the transmitted signal is easy to generate and the signal analysis is simple, which has lower power consumption and thus is suitable for long-term monitoring in daily life. The experimental result shows that our system can achieve accurate respiration rate estimation under various scenarios.

  6. [Long-term oxygen therapy (LTOT)--what should physicians, homecare-providers and health insurance companies know?].

    PubMed

    Koehler, U; Hildebrandt, O; Jerrentrup, L; Koehler, K-I; Kianinejad, P; Sohrabi, K; Schäfer, H; Kenn, K

    2014-03-01

    Long-term oxygen treatment (LTOT) has been demonstrated to improve prognosis in patients with chronic respiratory insufficiency. In terms of pathogenesis, improved oxygenation, reduction of pulmonary artery pressure as well as reduction of respiratory work are important. Since there are considerable differences between the LTOT systems, individually tailored therapy is needed. In particular, the mobility aspects of the patients must be taken into consideration. It is important to distinguish between stationary/mobile devices with a liquid oxygen system and stationary/mobile devices with oxygen concentrator. Oxygen titration should be performed in relation to rest and activity phases (e. g. 6 minute walk test) as well as in relation to the sleep phase. Employing devices with demand-controlled valves should be critically examined. This can be undertaken only under physician orders and requires continuous monitoring. © Georg Thieme Verlag KG Stuttgart · New York.

  7. CAPSTONE REPORT ON THE APPLICATION, MONITORING, AND PERFORMANCE OF PERMEABLE REACTIVE BARRIERS FOR GROUND-WATER REMEDIATION: VOL. 2 LONG-TERM MONITORING OF PRBS: SOIL AND GROUND WATER SAMPLING

    EPA Science Inventory

    This report discusses soil and ground-water sampling methods and procedures used to evaluate the long-term performance of permeable reactive barriers (PRBS) at two sites, Elizabeth City, NC, and the Denver Federal Center near Lakewood, CO. Both PRBs were installed in 1996 and hav...

  8. Long-term monitoring of air pollution effects on selected forest ecosystems in the Bucegi-Piatra Craiului and Retezat Mountains, southern Carpathians (Romania)

    Treesearch

    O. Badea; S. Neagu; Andrzej Bytnerowicz; D. Silaghi; I. Barbu; C. Iacoban; F. Popescu; M. Andrei; E. Preda; C. Iacob; I. Dumitru; H. Iuncu; C. Vezeanu; V. Huber

    2011-01-01

    The monitoring studies carried out in the southern Romanian Carpathians (Retezat and Bucegi - Piatra Craiului Mts) provide a scientific support for long term ecosystem research (LTER). Their general objective is to characterize the air pollution and its potential effects upon forest ecosystems' status and biodiversity in close connection with climatic changes. Two...

  9. Improving the Navys Passive Underwater Acoustic Monitoring of Marine Mammal Populations

    DTIC Science & Technology

    2015-09-30

    DISTRIBUTION STATEMENT A: Distribution approved for public release; distribution is unlimited. Improving the Navy’s Passive Underwater Acoustic...mpl.ucsd.edu LONG-TERM GOALS The long-term goals of this research effort are to improve the Navy’s passive underwater acoustic monitoring of marine...research of a graduate student in marine bioacoustics and ocean acoustics at the Scripps Institution of Oceanography. OBJECTIVES The

  10. Assessing dry weather flow contribution in TSS and COD storm events loads in combined sewer systems.

    PubMed

    Métadier, M; Bertrand-Krajewski, J L

    2011-01-01

    Continuous high resolution long term turbidity measurements along with continuous discharge measurements are now recognised as an appropriate technique for the estimation of in sewer total suspended solids (TSS) and Chemical Oxygen Demand (COD) loads during storm events. In the combined system of the Ecully urban catchment (Lyon, France), this technique is implemented since 2003, with more than 200 storm events monitored. This paper presents a method for the estimation of the dry weather (DW) contribution to measured total TSS and COD event loads with special attention devoted to uncertainties assessment. The method accounts for the dynamics of both discharge and turbidity time series at two minutes time step. The study is based on 180 DW days monitored in 2007-2008. Three distinct classes of DW days were evidenced. Variability analysis and quantification showed that no seasonal effect and no trend over the year were detectable. The law of propagation of uncertainties is applicable for uncertainties estimation. The method has then been applied to all measured storm events. This study confirms the interest of long term continuous discharge and turbidity time series in sewer systems, especially in the perspective of wet weather quality modelling.

  11. The impact of opioids on the endocrine system.

    PubMed

    Katz, Nathaniel; Mazer, Norman A

    2009-02-01

    Opioids have been used for medicinal and analgesic purposes for centuries. However, their negative effects on the endocrine system, which have been known for some times, are barely discussed in modern medicine. Therefore, we conducted a systematic review of the impact of opioids on the endocrine system. A review of the English language literature on preclinical and clinical studies of any type on the influence of opioids on the endocrine system was conducted. Preliminary recommendations for monitoring and managing these problems were provided. Long-term opioid therapy for either addiction or chronic pain often induces hypogonadism owing to central suppression of hypothalamic secretion of gonadotropin-releasing hormone. Symptoms of opioid-induced hypogonadism include loss of libido, infertility, fatigue, depression, anxiety, loss of muscle strength and mass, osteoporosis, and compression fractures in both men and women; impotence in men; and menstrual irregularities and galactorrhea in women. In view of the increased use of opioids for chronic pain, it has become increasingly important to monitor patients taking opioids and manage endocrine complications. Therefore, patients on opioid therapy should be routinely screened for such symptoms and for laboratory abnormalities in sex hormones. Opioid-induced hypogonadism seems to be a common complication of therapeutic or illicit opioid use. Patients on long-term opioid therapy should be prospectively monitored, and in cases of opioid-induced hypogonadism, we recommend nonopioid pain management, opioid rotation, or sex hormone supplementation after careful consideration of the risks and benefits.

  12. Long-term strategy for the statistical design of a forest health monitoring system

    Treesearch

    Hans T. Schreuder; Raymond L. Czaplewski

    1993-01-01

    A conceptual framework is given for a broad-scale survey of forest health that accomplishes three objectives: generate descriptive statistics; detect changes in such statistics; and simplify analytical inferences that identify, and possibly establish cause-effect relationships. Our paper discusses the development of sampling schemes to satisfy these three objectives,...

  13. 40 CFR 63.11395 - What are the standards and compliance requirements for existing sources?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... routine and long-term maintenance) and continuous monitoring system. (4) A list of operating parameters... polymerization process equipment and monomer recovery process equipment and convey the collected gas stream.... (2) 0.05 lb/hr of AN from the control device for monomer recovery process equipment. (3) If you do...

  14. 40 CFR 63.11395 - What are the standards and compliance requirements for existing sources?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... routine and long-term maintenance) and continuous monitoring system. (4) A list of operating parameters... polymerization process equipment and monomer recovery process equipment and convey the collected gas stream.... (2) 0.05 lb/hr of AN from the control device for monomer recovery process equipment. (3) If you do...

  15. 40 CFR 63.11395 - What are the standards and compliance requirements for existing sources?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... routine and long-term maintenance) and continuous monitoring system. (4) A list of operating parameters... polymerization process equipment and monomer recovery process equipment and convey the collected gas stream.... (2) 0.05 lb/hr of AN from the control device for monomer recovery process equipment. (3) If you do...

  16. Improving Reference Service: The Case for Using a Continuous Quality Improvement Method.

    ERIC Educational Resources Information Center

    Aluri, Rao

    1993-01-01

    Discusses the evaluation of library reference service; examines problems with past evaluations, including the lack of long-term planning and a systems perspective; and suggests a method for continuously monitoring and improving reference service using quality improvement tools such as checklists, cause and effect diagrams, Pareto charts, and…

  17. Boreal partners in flight: Working together to build a regional research and monitoring program

    USGS Publications Warehouse

    Handel, Colleen M.; Bonney, Rick; Pashley, David N.; Cooper, Robert J.; Niles, Larry

    1999-01-01

    Boreal regions of western North America regularly support breeding populations of 130 species of landbirds, including 68 Nearctic-Neotropical migrants. Primary conservation concerns within the region include increased timber harvesting, insect outbreaks, fire suppression, mining, impacts of military training activities, urbanization, and recreational activities. Under auspices of Partners in Flight, biologists, land and resource managers, and conservationists from Alaska and western Canada have combined efforts to develop a regional research and monitoring program for landbirds. An experimental monitoring program has been under way during the past four years to test the relative statistical power and cost-effectiveness of various monitoring methods in Alaska. Joint efforts currently include the Alaska Checklist Project on National Wildlife Refuges, 75 Breeding Bird Surveys along the road system, 122 Off-road Point Count routes, 27 Monitoring Avian Productivity and Survivorship banding sites, and 8 migration banding stations. The ultimate goal is to design a comprehensive monitoring program that is sensitive to changes in population size, survival rates, and productivity, but robust enough to accommodate logistical constraints that arise when working in vast, roadless areas with limited funds and staff. Primary challenges that must be faced to assure the long-term future of such a program are obtaining long-term commitment from resource agencies in the region, integrating this program with other national and regional programs that address those species and habitats that are inadequately monitored by established techniques, and developing cooperative research, monitoring, and management programs at the landscape level.

  18. Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring.

    PubMed

    Everss-Villalba, Estrella; Melgarejo-Meseguer, Francisco Manuel; Blanco-Velasco, Manuel; Gimeno-Blanes, Francisco Javier; Sala-Pla, Salvador; Rojo-Álvarez, José Luis; García-Alberola, Arcadi

    2017-10-25

    Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported, showing the statistical and temporal correspondences and properties with respect to EER signals used to create the gold standard for clinical noise. The proposed noise maps, together with the statistical consistency of the characterization of the noise clinical severity, paves the way towards forthcoming systems providing us with noise maps of the noise clinical severity, allowing the user to process different ECG segments with different techniques and in terms of different measured clinical parameters.

  19. Monitoring California Hardwood Rangeland Resources: An Adaptive Approach

    Treesearch

    Raul Tuazon

    1991-01-01

    This paper describes monitoring hardwood rangelands in California within the context of an adaptive or anticipatory approach. A heuristic process of policy evolution under conditions of complexity and uncertainty is presented. Long-term, short-term and program effectiveness monitoring for hardwood rangelands are discussed relative to the process described. The...

  20. Structural Monitoring and Field Test for Kao Ping Hsi Cable-Stayed Bridge in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Chern-Hwa

    2010-05-01

    This work applies system identification techniques to analyze the measured data from structural monitoring system and field test for Kao Ping Hsi cable-stayed bridge in Taiwan. The continuous wavelet transform algorithm can be used to identify the dynamic characteristics of the cable-stayed bridge under environmental vibration. The identified results with traffic flow were compared with those obtained from ambient vibration test. The excellent agreement both the identified results from different traffic conditions indicates that the traffic flow would not significantly change the natural frequencies of the cable-stayed bridge. The modal parameters identified from the field vibration test will be compared with those used in the finite element analysis. The results obtained herein will be used as the damage detection for monitoring the long-term safety of the Kao Ping Hsi cable-stayed bridge by using structural monitoring system.

  1. Development of an integrated sensor module for a non-invasive respiratory monitoring system

    NASA Astrophysics Data System (ADS)

    Kang, Seok-Won; Chang, Keun-Shik

    2013-09-01

    A respiratory monitoring system has been developed for analyzing the carbon dioxide (CO2) and oxygen (O2) concentrations in the expired air using gas sensors. The data can be used to estimate some medical conditions, including diffusion capability of the lung membrane, oxygen uptake, and carbon dioxide output. For this purpose, a 3-way valve derived from a servomotor was developed, which operates synchronously with human respiratory signals. In particular, the breath analysis system includes an integrated sensor module for valve control, data acquisition through the O2 and CO2 sensors, and respiratory rate monitoring, as well as software dedicated to analysis of respiratory gasses. In addition, an approximation technique for experimental data based on Haar-wavelet-based decomposition is explored to remove noise as well as to reduce the file size of data for long-term monitoring.

  2. New challenges and opportunities in the eddy-covariance methodology for long-term monitoring networks

    NASA Astrophysics Data System (ADS)

    Papale, Dario; Fratini, Gerardo

    2013-04-01

    Eddy-covariance is the most direct and most commonly applied methodology for measuring exchange fluxes of mass and energy between ecosystems and the atmosphere. In recent years, the number of environmental monitoring stations deploying eddy-covariance systems increased dramatically at the global level, exceeding 500 sites worldwide and covering most climatic and ecological regions. Several long-term environmental research infrastructures such as ICOS, NEON and AmeriFlux selected the eddy-covariance as a method to monitor GHG fluxes and are currently collaboratively working towards defining common measurements standards, data processing approaches, QA/QC procedures and uncertainty estimation strategies, to the aim of increasing defensibility of resulting fluxes and intra and inter-comparability of flux databases. In the meanwhile, the eddy-covariance research community keeps identifying technical and methodological flaws that, in some cases, can introduce - and can have introduced to date - significant biases in measured fluxes or increase their uncertainty. Among those, we identify three issues of presumably greater concern, namely: (1) strong underestimation of water vapour fluxes in closed-path systems, and its dependency on relative humidity; (2) flux biases induced by erroneous measurement of absolute gas concentrations; (3) and systematic errors due to underestimation of vertical wind variance in non-orthogonal anemometers. If not properly addressed, these issues can reduce the quality and reliability of the method, especially as a standard methodology in long-term monitoring networks. In this work, we review the status of the art regarding such problems, and propose new evidences based on field experiments as well as numerical simulations. Our analyses confirm the potential relevance of these issues but also hint at possible coping approaches, to minimize problems during setup design, data collection and post-field flux correction. Corrections are under implementation in eddy-covariance processing software and will be readily applicable by individual investigators as well as by centralized processing facilities of long-term research infrastructures. This new understandings suggest that a reanalysis of eddy-covariance data collected in the last 20 years may be appropriate in order to obtain more accurate and consistent flux time series. The availability of dedicated powerful computing facilities at the research infrastructures today makes this goal achievable at an affordable cost.

  3. Development of a Fault Monitoring Technique for Wind Turbines Using a Hidden Markov Model.

    PubMed

    Shin, Sung-Hwan; Kim, SangRyul; Seo, Yun-Ho

    2018-06-02

    Regular inspection for the maintenance of the wind turbines is difficult because of their remote locations. For this reason, condition monitoring systems (CMSs) are typically installed to monitor their health condition. The purpose of this study is to propose a fault detection algorithm for the mechanical parts of the wind turbine. To this end, long-term vibration data were collected over two years by a CMS installed on a 3 MW wind turbine. The vibration distribution at a specific rotating speed of main shaft is approximated by the Weibull distribution and its cumulative distribution function is utilized for determining the threshold levels that indicate impending failure of mechanical parts. A Hidden Markov model (HMM) is employed to propose the statistical fault detection algorithm in the time domain and the method whereby the input sequence for HMM is extracted is also introduced by considering the threshold levels and the correlation between the signals. Finally, it was demonstrated that the proposed HMM algorithm achieved a greater than 95% detection success rate by using the long-term signals.

  4. The chaotic long-term X-ray variability of 4U 1705-44

    NASA Astrophysics Data System (ADS)

    Phillipson, R. A.; Boyd, P. T.; Smale, A. P.

    2018-07-01

    The low-mass X-ray binary 4U1705-44 exhibits dramatic long-term X-ray time variability with a time-scale of several hundred days. The All-Sky Monitor (ASM) aboard the Rossi X-ray Timing Explorer (RXTE) and the Japanese Monitor of All-sky X-ray Image (MAXI) aboard the International Space Station together have continuously observed the source from 1995 December through 2014 May. The combined ASM-MAXI data provide a continuous time series over 50 times the length of the time-scale of interest. Topological analysis can help us identify `fingerprints' in the phase space of a system unique to its equations of motion. The Birman-Williams theorem postulates that if such fingerprints are the same between two systems, then their equations of motion must be closely related. The phase-space embedding of the source light curve shows a strong resemblance to the double-welled non-linear Duffing oscillator. We explore a range of parameters for which the Duffing oscillator closely mirrors the time evolution of 4U1705-44. We extract low period, unstable periodic orbits from the 4U1705-44 and Duffing time series and compare their topological information. The Duffing and 4U1705-44 topological properties are identical, providing strong evidence that they share the same underlying template. This suggests that we can look to the Duffing equation to help guide the development of a physical model to describe the long-term X-ray variability of this and other similarly behaved X-ray binary systems.

  5. Optical monitoring of cerebral microcirculation in neurointensive care.

    PubMed

    Rejmstad, Peter; Haj-Hosseini, Neda; Åneman, Oscar; Wårdell, Karin

    2017-12-08

    Continuous optical monitoring of local cerebral microcirculation could benefit neurointensive care patients treated for subarachnoid hemorrhage (SAH). The aim of the study was to evaluate laser Doppler flowmetry (LDF) and diffuse reflectance spectroscopy (DRS) for long-term monitoring of brain microcirculation and oxygen saturation (SO 2 ) in the neurointensive care unit (NICU). A fiber optic probe was designed for intraparenchymal use and connected to LDF and DRS for assessment of the local blood flow (perfusion and tissue reflectance (TLI)) and SO 2 in the brain. The optically monitored parameters were compared with conventional NICU monitors and Xe-CT. The LDF signals were low with median and 25 to 75% interquartiles of perfusion = 70 (59 to 83) a.u. and TLI = 2.0 (1.0 to 2.4) a.u. and showed correlation with the NICU monitors in terms of heart rate. Median and interquartiles of SO 2 were 17.4 (15.7 to 19.8) %. The lack of correlation between local perfusion and cerebral perfusion pressure indicated intact cerebral autoregulation. The systems were capable of monitoring both local perfusion and SO 2 with stable signals in the NICU over 4 days. Further clinical studies are required to evaluate the optical systems' potential for assessing the onset of secondary brain injury.

  6. An integrated approach to monitoring ecosystem services and agriculture: implications for sustainable agricultural intensification in Rwanda.

    PubMed

    Rosa, Melissa F; Bonham, Curan A; Dempewolf, Jan; Arakwiye, Bernadette

    2017-01-01

    Maintaining the long-term sustainability of human and natural systems across agricultural landscapes requires an integrated, systematic monitoring system that can track crop productivity and the impacts of agricultural intensification on natural resources. This study presents the design and practical implementation of a monitoring framework that combines satellite observations with ground-based biophysical measurements and household surveys to provide metrics on ecosystem services and agricultural production at multiple spatial scales, reaching from individual households and plots owned by smallholder farmers to 100-km 2 landscapes. We developed a set of protocols for monitoring and analyzing ecological and agricultural household parameters within two 10 × 10-km landscapes in Rwanda, including soil fertility, crop yield, water availability, and fuelwood sustainability. Initial results suggest providing households that rely on rainfall for crop irrigation with timely climate information and improved technical inputs pre-harvest could help increase crop productivity in the short term. The value of the monitoring system is discussed as an effective tool for establishing a baseline of ecosystem services and agriculture before further change in land use and climate, identifying limitations in crop production and soil fertility, and evaluating food security, economic development, and environmental sustainability goals set forth by the Rwandan government.

  7. Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection.

    PubMed

    Son, Junggab; Park, Juyoung; Oh, Heekuck; Bhuiyan, Md Zakirul Alam; Hur, Junbeom; Kang, Kyungtae

    2017-06-12

    Long-term electrocardiogram (ECG) monitoring, as a representative application of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number of previous studies has explored monitoring techniques and the automated analysis of sensing data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support server that interconnects these components. The decision support server analyzes the heart activity, using the Pan-Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our system protects sensing data and user privacy, which is an essential attribute of dependability, by adopting signal scrambling and anonymous identity schemes. We also employ a public key cryptosystem to enable secure communication between the entities. Simulations using data from the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully preserving privacy and securing communications among the involved entities.

  8. Privacy-Preserving Electrocardiogram Monitoring for Intelligent Arrhythmia Detection †

    PubMed Central

    Son, Junggab; Park, Juyoung; Oh, Heekuck; Bhuiyan, Md Zakirul Alam; Hur, Junbeom; Kang, Kyungtae

    2017-01-01

    Long-term electrocardiogram (ECG) monitoring, as a representative application of cyber-physical systems, facilitates the early detection of arrhythmia. A considerable number of previous studies has explored monitoring techniques and the automated analysis of sensing data. However, ensuring patient privacy or confidentiality has not been a primary concern in ECG monitoring. First, we propose an intelligent heart monitoring system, which involves a patient-worn ECG sensor (e.g., a smartphone) and a remote monitoring station, as well as a decision support server that interconnects these components. The decision support server analyzes the heart activity, using the Pan–Tompkins algorithm to detect heartbeats and a decision tree to classify them. Our system protects sensing data and user privacy, which is an essential attribute of dependability, by adopting signal scrambling and anonymous identity schemes. We also employ a public key cryptosystem to enable secure communication between the entities. Simulations using data from the MIT-BIH arrhythmia database demonstrate that our system achieves a 95.74% success rate in heartbeat detection and almost a 96.63% accuracy in heartbeat classification, while successfully preserving privacy and securing communications among the involved entities. PMID:28604628

  9. Wireless implantable electronic platform for chronic fluorescent-based biosensors.

    PubMed

    Valdastri, Pietro; Susilo, Ekawahyu; Förster, Thilo; Strohhöfer, Christof; Menciassi, Arianna; Dario, Paolo

    2011-06-01

    The development of a long-term wireless implantable biosensor based on fluorescence intensity measurement poses a number of technical challenges, ranging from biocompatibility to sensor stability over time. One of these challenges is the design of a power efficient and miniaturized electronics, enabling the biosensor to move from bench testing to long term validation, up to its final application in human beings. In this spirit, we present a wireless programmable electronic platform for implantable chronic monitoring of fluorescent-based autonomous biosensors. This system is able to achieve extremely low power operation with bidirectional telemetry, based on the IEEE802.15.4-2003 protocol, thus enabling over three-year battery lifetime and wireless networking of multiple sensors. During the performance of single fluorescent-based sensor measurements, the circuit drives a laser diode, for sensor excitation, and acquires the amplified signals from four different photodetectors. In vitro functionality was preliminarily tested for both glucose and calcium monitoring, simply by changing the analyte-binding protein of the biosensor. Electronics performance was assessed in terms of timing, power consumption, tissue exposure to electromagnetic fields, and in vivo wireless connectivity. The final goal of the presented platform is to be integrated in a complete system for blood glucose level monitoring that may be implanted for at least one year under the skin of diabetic patients. Results reported in this paper may be applied to a wide variety of biosensors based on fluorescence intensity measurement.

  10. Monitoring long-term evolution of engineered barrier systems using magnets: Magnetic response.

    PubMed

    Rigonat, N; Isnard, O; Harley, S L; Butler, I B

    2018-01-05

    Remote and non-destructive monitoring of the stability and performance of Engineered Barrier Systems for Geological Disposal Facility of is gaining considerable importance in establishing the safety cases for Higher Activity Wastes disposal. This study offers an innovative use of mineral magnetism for monitoring groundwater saturation of the barrier. Four mixtures of permanent magnets (Nd-Fe-B, coated and uncoated; SmCo and AlNiCo) and bentonite were reacted for 4, 8 and 12 months with mildly-saline, high-pH leachates, representing the fluids saturating a time-evolved engineered barrier. Coupled hysteresis and thermomagnetic analyses demonstrate how Nd-Fe-B feature a time-dependent transition from square-like ferromagnetic to superparamagnetic loop via pot-bellied and wasp-waist loops, whereas SmCo and AlNiCo do not show so extensive corrosion-related variations of the intrinsic and extrinsic magnetic properties. This study allowed to identify magnetic materials suitable for shorter- (Nd-Fe-B) and longer-term (SmCo and AlNiCo) monitoring purposes. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Plan for the control of Legionella infections in long-term care facilities: role of environmental monitoring.

    PubMed

    Cristino, Sandra; Legnani, Pier Paolo; Leoni, Erica

    2012-04-01

    In accordance with the international and national guidelines, the Emilia-Romagna Region (Italy) has established regional guidelines for the surveillance and prevention of legionellosis based on the concept of risk assessment, with particular attention to environmental monitoring. The aim of this study was to verify how environmental surveillance in the context of risk assessment plans could help to guide decisions about preventive strategies against Legionella infections in Long Term Care Facilities (LTCF). In six LTCFs in the city of Bologna (Emilia-Romagna Region) a self-control plan was implemented that included the environmental monitoring of Legionella spp. and the surveillance of hospital-acquired Legionnaires' Disease. At baseline, four hot water systems were colonized by Legionella pneumophila (3 LCTFs) and Legionella londiniensis (1 LCTF). In each establishment specific control measures were adopted based on the characteristics of the system, the virulence of the strain and the level of the contamination. The monitoring, carried out for around two years, was also extended to the ways in which the system and the distal water distribution points were used and maintained with respect to the good practices in operation and management. The adopted actions (shock and/or continuous disinfection treatments) and the implementation of the good practice measures reduced the contamination to acceptable and stable levels. No cases of hospital-acquired legionellosis occurred during the period of study. The environmental surveillance was successful in evaluating the risk and identifying the most suitable preventive strategies. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. AMMA-CATCH a Hydrological, Meteorological and Ecological Long Term Observatory on West Africa : Some Recent Results

    NASA Astrophysics Data System (ADS)

    Galle, S.; Grippa, M.; Peugeot, C.; Bouzou Moussa, I.; Cappelaere, B.; Demarty, J.; Mougin, E.; Lebel, T.; Chaffard, V.

    2015-12-01

    AMMA-CATCH is a multi-scale observation system dedicated to long-term monitoring of the water cycle, the vegetation dynamics and their interaction with climate and water resources in West Africa. In the context of the global change, long-term observations are required to i) gain understanding in eco-hydrological processes over this highly contrasted region, ii) help their representation in Earth System Models, and iii) detect trends and infer their impacts on water resources and living conditions. It is made of three meso-scale sites (~ 1°x1°) in Mali, Niger and Benin, extending along the West African eco-climatic gradient. Within this regional window (5° by 9°), each of the three sites comprises a multi-scale set-up which helps documenting the components of the hydrologic budget and the evolutions of the surface conditions over a range of time scales: raingages, piezometers, river discharge stations, soil moisture and temperature profiles, turbulent fluxes measurements, LAI/biomass monitoring. This observation system has been continuously generating coherent datasets for 10 to 25 years depending on the datasets. It is jointly operated by French and African (Mali, Niger and Benin) research institutions. The data-base is available to the community through the website (www.amma-catch.org). AMMA-CATCH is a member of the French critical zone observatory network "Réseau des Bassins Versants", (RBV). AMMA-CATH participates to several global or regional observation networks, such as FluxNet, CarboAfrica, International Soil Moisture Networks (ISMN) and to calibration/validation campaigns for satellite missions such as SMOS (CNES, ESA), MEGHA-TROPIQUES (France/India) or SWAP(NASA). AMMA-CATCH fills a gap over a region, West Africa, where environmental data are largely lacking, and thus, it can usefully contribute to the international networking effort for environmental monitoring and research. Recent results on regional evolution of land cover, rainfall intensity and their consequences on eco-hydrological processes and hydrosystems will be presented.

  13. iCalm: wearable sensor and network architecture for wirelessly communicating and logging autonomic activity.

    PubMed

    Fletcher, Richard Ribon; Dobson, Kelly; Goodwin, Matthew S; Eydgahi, Hoda; Wilder-Smith, Oliver; Fernholz, David; Kuboyama, Yuta; Hedman, Elliott Bruce; Poh, Ming-Zher; Picard, Rosalind W

    2010-03-01

    Widespread use of affective sensing in healthcare applications has been limited due to several practical factors, such as lack of comfortable wearable sensors, lack of wireless standards, and lack of low-power affordable hardware. In this paper, we present a new low-cost, low-power wireless sensor platform implemented using the IEEE 802.15.4 wireless standard, and describe the design of compact wearable sensors for long-term measurement of electrodermal activity, temperature, motor activity, and photoplethysmography. We also illustrate the use of this new technology for continuous long-term monitoring of autonomic nervous system and motion data from active infants, children, and adults. We describe several new applications enabled by this system, discuss two specific wearable designs for the wrist and foot, and present sample data.

  14. Long term evolution of surface features on the unusual close binary V361 Lyr

    NASA Astrophysics Data System (ADS)

    Lister, T. A.

    2009-02-01

    V361 Lyr has been recognized as an unusual, possibly unique, pre-contact binary which is though to be evolving from a detached binary system into a W UMa contact binary system due to Angular Momentum Loss (AML) and mass transfer. The mass transfer and resulting hot spot on the secondary star allow the physics of accretion to be studied without the normal difficulties of disks and winds that are present in T Tauri stars. I present light curves obtained over a 10 year period as part of long term monitoring program obtained with a variety of telescopes, collect all available times of minima from the literature along with those determined from the light curves and determine the rate of period change.

  15. Analysis of long-term water quality for effective river health monitoring in peri-urban landscapes--a case study of the Hawkesbury-Nepean river system in NSW, Australia.

    PubMed

    Pinto, U; Maheshwari, B L; Ollerton, R L

    2013-06-01

    The Hawkesbury-Nepean River (HNR) system in South-Eastern Australia is the main source of water supply for the Sydney Metropolitan area and is one of the more complex river systems due to the influence of urbanisation and other activities in the peri-urban landscape through which it flows. The long-term monitoring of river water quality is likely to suffer from data gaps due to funding cuts, changes in priority and related reasons. Nevertheless, we need to assess river health based on the available information. In this study, we demonstrated how the Factor Analysis (FA), Hierarchical Agglomerative Cluster Analysis (HACA) and Trend Analysis (TA) can be applied to evaluate long-term historic data sets. Six water quality parameters, viz., temperature, chlorophyll-a, dissolved oxygen, oxides of nitrogen, suspended solids and reactive silicates, measured at weekly intervals between 1985 and 2008 at 12 monitoring stations located along the 300 km length of the HNR system were evaluated to understand the human and natural influences on the river system in a peri-urban landscape. The application of FA extracted three latent factors which explained more than 70 % of the total variance of the data and related to the 'bio-geographical', 'natural' and 'nutrient pollutant' dimensions of the HNR system. The bio-geographical and nutrient pollution factors more likely related to the direct influence of changes and activities of peri-urban natures and accounted for approximately 50 % of variability in water quality. The application of HACA indicated two major clusters representing clean and polluted zones of the river. On the spatial scale, one cluster was represented by the upper and lower sections of the river (clean zone) and accounted for approximately 158 km of the river. The other cluster was represented by the middle section (polluted zone) with a length of approximately 98 km. Trend Analysis indicated how the point sources influence river water quality on spatio-temporal scales, taking into account the various effects of nutrient and other pollutant loads from sewerage effluents, agriculture and other point and non-point sources along the river and major tributaries of the HNR. Over the past 26 years, water temperature has significantly increased while suspended solids have significantly decreased (p < 0.05). The analysis of water quality data through FA, HACA and TA helped to characterise the key sections and cluster the key water quality variables of the HNR system. The insights gained from this study have the potential to improve the effectiveness of river health-monitoring programs in terms of cost, time and effort, particularly in a peri-urban context.

  16. Feasibility assessment of Doppler radar long-term physiological measurements.

    PubMed

    Massagram, Wansuree; Lubecke, Victor M; Boric-Lubecke, Olga

    2011-01-01

    In this paper we examine the feasibility of applying doppler radar technique for a long-term health monitoring. Doppler radar was used to detect and eliminate periods of significant motion. This technique was verified using a human study on 17 subjects, and it was determined that for 15 out of 17 subjects there was no significant motion for over 85% of the measurement interval in supine positions. Majority of subjects exhibited significantly less motion in supine position, which is promising for sleep monitoring, and monitoring of hospitalized patients.

  17. Monitoring long-term oral corticosteroids

    PubMed Central

    Mundell, Lewis; Lindemann, Roberta; Douglas, James

    2017-01-01

    Corticosteroids are synthetic analogues of human hormones normally produced by the adrenal cortex. They have both glucocorticoid and mineralocorticoid properties. The glucocortoid components are anti-inflammatory, immunosuppressive, anti-proliferative and vasoconstrictive. They influence the metabolism of carbohydrate and protein, in addition to playing a key role in the body’s stress response. Mineralocorticoid’s main significance is in the balance of salt and water concentrations. Due to the combination of these effects, corticosteroids can cause many adverse effects. Oral corticosteroids are absorbed systemically and are therefore more likely to cause adverse effects than topical or inhaled corticosteroids. Furthermore, it is assumed that greater duration of treatment will lead to a greater number of adverse effects, and therefore the most at risk group are those taking high dose, long-term oral corticosteroids (LTOC). High dose is defined as a prescription of >5 mg oral prednisolone and long term as duration of treatment >1 month (based on National Institute for Health and Care Excellence guidance for patient’s ’at risk' of systemic side effects). Parameters to be monitored in primary care include weight, blood pressure, triglycerides, glucose and urea and electrolytes. From clinical experience within the general practice setting, the authors propose that these patients do not receive adequate baseline monitoring before starting corticosteroids nor are these markers monitored consistently thereafter. This project intended to evidence this claim, evaluate the adverse effect profile and improve monitoring in this patient group. The initial audit of 22 patients, within a single general practice, detected at least one documented adverse effect in 64% of patients, while 41% reported more than one adverse effect. 45% had recorded weight gain, 18% had recorded osteoporosis, 18% had at least one recorded cataract, 14% had recorded Hypertension, 14% had recorded diabetes mellitus, 9% had recorded dyspepsia and 5% had a recorded psychiatric complaint. All of these recorded conditions were either directly attributed to steroid medication or occurred since LTOC were prescribed. The aim of this project was to increase the percentage of patients on LTOC with complete baseline monitoring to 100%. ’Baseline monitoring' was defined as a measurement taken within the previous 5 years. Although somewhat arbitrary, 5 years was felt to be the maximum timeframe in which monitoring would still be relevant for comparison following introduction of LTOC. Quality improvement methodology was used throughout this project with multiple PDSA (Plan, Study, Do and Act) cycles. Through this, a monitoring system and protocol for patients taking LTOC was developed. As a result of this project, five adverse effects were detected in five different patients. These included two cases of secondary hypertension, one case of diabetes mellitus, one cataract and one case of adrenal insufficiency. 12 out of 20 patients achieved complete baseline monitoring. While this study did not fully achieve its aim, the aim was deliberately ambitious. As not all patients in this study attended for monitoring, a figure of 100% was impossible to achieve. The remaining ’incompletely monitored patients' had some but not all parameters measured. The creation of a staff protocol and increased clinical experience will ensure that complete monitoring takes place in the future. In conclusion, this project has shown that adverse effects from LTOC are prevalent in a single general practice population. It is also shown that monitoring for LTOC adverse effects is inadequate but can be improved relatively easily as skills and competencies from other medication monitoring systems already exist within healthcare settings and are immediately transferable. PMID:29450303

  18. Monitoring long-term oral corticosteroids.

    PubMed

    Mundell, Lewis; Lindemann, Roberta; Douglas, James

    2017-01-01

    Corticosteroids are synthetic analogues of human hormones normally produced by the adrenal cortex. They have both glucocorticoid and mineralocorticoid properties. The glucocortoid components are anti-inflammatory, immunosuppressive, anti-proliferative and vasoconstrictive. They influence the metabolism of carbohydrate and protein, in addition to playing a key role in the body's stress response. Mineralocorticoid's main significance is in the balance of salt and water concentrations. Due to the combination of these effects, corticosteroids can cause many adverse effects. Oral corticosteroids are absorbed systemically and are therefore more likely to cause adverse effects than topical or inhaled corticosteroids. Furthermore, it is assumed that greater duration of treatment will lead to a greater number of adverse effects, and therefore the most at risk group are those taking high dose, long-term oral corticosteroids (LTOC). High dose is defined as a prescription of >5 mg oral prednisolone and long term as duration of treatment >1 month (based on National Institute for Health and Care Excellence guidance for patient's 'at risk' of systemic side effects). Parameters to be monitored in primary care include weight, blood pressure, triglycerides, glucose and urea and electrolytes. From clinical experience within the general practice setting, the authors propose that these patients do not receive adequate baseline monitoring before starting corticosteroids nor are these markers monitored consistently thereafter. This project intended to evidence this claim, evaluate the adverse effect profile and improve monitoring in this patient group. The initial audit of 22 patients, within a single general practice, detected at least one documented adverse effect in 64% of patients, while 41% reported more than one adverse effect. 45% had recorded weight gain, 18% had recorded osteoporosis, 18% had at least one recorded cataract, 14% had recorded Hypertension, 14% had recorded diabetes mellitus, 9% had recorded dyspepsia and 5% had a recorded psychiatric complaint. All of these recorded conditions were either directly attributed to steroid medication or occurred since LTOC were prescribed. The aim of this project was to increase the percentage of patients on LTOC with complete baseline monitoring to 100%. 'Baseline monitoring' was defined as a measurement taken within the previous 5 years. Although somewhat arbitrary, 5 years was felt to be the maximum timeframe in which monitoring would still be relevant for comparison following introduction of LTOC. Quality improvement methodology was used throughout this project with multiple PDSA (Plan, Study, Do and Act) cycles. Through this, a monitoring system and protocol for patients taking LTOC was developed. As a result of this project, five adverse effects were detected in five different patients. These included two cases of secondary hypertension, one case of diabetes mellitus, one cataract and one case of adrenal insufficiency. 12 out of 20 patients achieved complete baseline monitoring. While this study did not fully achieve its aim, the aim was deliberately ambitious. As not all patients in this study attended for monitoring, a figure of 100% was impossible to achieve. The remaining 'incompletely monitored patients' had some but not all parameters measured. The creation of a staff protocol and increased clinical experience will ensure that complete monitoring takes place in the future. In conclusion, this project has shown that adverse effects from LTOC are prevalent in a single general practice population. It is also shown that monitoring for LTOC adverse effects is inadequate but can be improved relatively easily as skills and competencies from other medication monitoring systems already exist within healthcare settings and are immediately transferable.

  19. Development of Hybrid pH sensor for long-term seawater pH monitoring.

    NASA Astrophysics Data System (ADS)

    Nakano, Y.; Egashira, T.; Miwa, T.; Kimoto, H.

    2016-02-01

    We have been developing the in situ pH sensor (Hybrid pH sensor: HpHS) for the long-term seawater pH monitoring. We are planning to provide the HpHS for researchers and environmental consultants for observation of the CCS (Carbon dioxide Capture and Storage) monitoring system, the coastal environment monitoring system (e.g. Blue Carbon) and ocean acidification. The HpHS has two types of pH sensors (i.e. potentiometric pH sensor and spectrophotometric pH sensor). The spectrophotometric pH sensor can measure pH correctly and stably, however it needs large power consumption and a lot of reagents in a long period of observation. The pH sensor used m-cresol purple (mCP) as an indicator of pH (Clayton and Byrne, 1993 and Liu et al., 2011). We can choose both coefficients before deployment. On the other hand, although the potentiometric pH sensor is low power consumption and high-speed response (within 10 seconds), drifts in the pH of the potentiometric measurements may possibly occur for a long-term observation. The HpHS can measure in situ pH correctly and stably combining advantage of both pH sensors. The HpHS consists of an aluminum pressure housing with optical cell (main unit) and an aluminum silicon-oil filled, pressure-compensated vessel containing pumps and valves (diaphragm pump and valve unit) and pressure-compensated reagents bags (pH indicator, pure water and Tris buffer or certified reference material: CRM) with an ability to resist water pressure to 3000m depth. The main unit holds system control boards, pump drivers, data storage (micro SD card), LED right source, photodiode, optical cell and pressure proof windows. The HpHS also has an aluminum pressure housing that holds a rechargeable lithium-ion battery or a lithium battery for the power supply (DC 24 V). The HpHS is correcting the value of the potentiometric pH sensor (measuring frequently) by the value of the spectrophotometric pH sensor (measuring less frequently). It is possible to calibrate in situ with Tris buffer or CRM on the spectrophotometric pH sensor. Therefore, the drifts in the value of potentiometric pH measurements can be compensated using the pH value obtained from the spectrophotometric pH measurements. Thereby, the sensor can measure accurately the value of pH over a long period of time with low power consumption.

  20. Science Writers' Guide to TERRA

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The launch of NASA's Terra spacecraft marks a new era of comprehensive monitoring of the Earth's atmosphere, oceans, and continents from a single space-based platform. Data from the five Terra instruments will create continuous, long-term records of the state of the land, oceans, and atmosphere. Together with data from other satellite systems launched by NASA and other countries, Terra will inaugurate a new self-consistent data record that will be gathered over the next 15 years. The science objectives of NASAs Earth Observing System (EOS) program are to provide global observations and scientific understanding of land cover change and global productivity, climate variability and change, natural hazards, and atmospheric ozone. Observations by the Terra instruments will: provide the first global and seasonal measurements of the Earth system, including such critical functions as biological productivity of the land and oceans, snow and ice, surface temperature, clouds, water vapor, and land cover; improve our ability to detect human impacts on the Earth system and climate, identify the "fingerprint" of human activity on climate, and predict climate change by using the new global observations in climate models; help develop technologies for disaster prediction, characterization, and risk reduction from wildfires, volcanoes, floods, and droughts, and start long-term monitoring of global climate change and environmental change.

  1. Optical measurement of medical aerosol media parameters

    NASA Astrophysics Data System (ADS)

    Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.

    2000-07-01

    The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.

  2. Population Parameters of Blainvilles and Cuviers Beaked Whales

    DTIC Science & Technology

    2015-09-30

    cetacean populations. Long-term monitoring of beaked whale populations in El Hierro , a nearly pristine habitat far from areas of sonar testing or...marine industry, enables valuable studies of demographic trends and life history dictated mainly by natural parameters. El Hierro is in process of...functioning (expected in 2018-2019), it is essential to continue monitoring the populations in El Hierro to obtain an uninterrupted long-term dataset of

  3. The Effects of Harvesting on Long-Term Soil Productivity in Southern Indiana Oak-Hickory Forests

    Treesearch

    Travis W. Idol; Phillip E. Pope; Felix Ponder

    2002-01-01

    Timber harvesting has the potential to alter long-term soil productivity in a variety of forest ecosystems. We monitored the effects of harvesting on N cycling processes in upland oak-hickory forests of southern Indiana, using a chronosequence of stands ranging in age from 1 year to 100 years after harvest. N cycling pools and processes were monitored from 1995-1999....

  4. Long-term residual dry matter mapping for monitoring California hardwood rangelands

    Treesearch

    Norman R. Harris; William E. Frost; Neil K. McDougald; Melvin R. George; Donald L. Nielsen

    2002-01-01

    Long-term residual dry matter mapping on the San Joaquin Experimental Range provides a working example of this monitoring technique for grazing management and research. Residual dry matter (RDM) is the amount of old plant material left on the ground at the beginning of a new growing season. RDM indicates the previous season’s use and can be used to describe the health...

  5. Preconcentration for Improved Long-term Monitoring of Contaminants in Groundwater

    DTIC Science & Technology

    2014-04-10

    Johnson of the US Army Corps of Engineers, Tulsa District (recently retired) provided sites in northeastern Oklahoma for field trials as well as...neighboring wildlife is also a concern. Long-term monitoring of sites undergoing remediation as well as sites that may eventually require cleanup is...Activated charcoal and peroxide cleanup steps offer potential avenues for addressing this problem. The materials may be of value in isotopic analysis of

  6. Space life support engineering program

    NASA Technical Reports Server (NTRS)

    Seagrave, Richard C.

    1991-01-01

    This report covers the first six months of work performed under the NASA University Grant awarded to Iowa State University to perform research on two topics relating to the development of closed-loop long-term life support systems. A comprehensive study to develop software to simulate the dynamic operation of water reclamation systems in long-term closed-loop life support systems is being carried out as part of an overall program for the design of systems for a Mars voyage. This project is being done in parallel with a similar effort in the Department of Chemistry to develop durable accurate low-cost sensors for monitoring of trace chemical and biological species in recycled water supplies. Aspen-Plus software is being used on a group of high-performance workstations to develop the steady state descriptions for a number of existing technologies. Following completion, a dynamic simulation package will be developed for determining the response of such systems to changes in the metabolic needs of the crew and to upsets in system hardware performance.

  7. Wireless system for long-term EEG monitoring of absence epilepsy

    NASA Astrophysics Data System (ADS)

    Whitchurch, Ashwin K.; Ashok, B. H.; Kumaar, R. V.; Saurkesi, K.; Varadan, Vijay K.

    2002-11-01

    Absence epilepsy is a form of epilepsy common mostly in children. The most common manifestations of Absence epilepsy are staring and transient loss of responsiveness. Also, subtle motor activities may occur. Due to the subtle nature of these symptoms, episodes of absence epilepsy may often go unrecognized for long periods of time or be mistakenly attributed to attention deficit disorder or daydreaming. Spells of absence epilepsy may last about 10 seconds and occur hundreds of times each day. Patients have no recollections of the events that occurred during those seizures and will resume normal activity without any postictal symptoms. The EEG during such episodes of Absence epilepsy shows intermittent activity of 3 Hz generalized spike and wave complexes. As EEG is the only way of detecting such symptoms, it is required to monitor the EEG of the patient for a long time and thus remain only in bed. So, effectively the EEG is being monitored only when the patient is stationary. The wireless monitoring sys tem described in this paper aims at eliminating this constraint and enables the physicial to monitor the EEG when the patient resumes his normal activities. This approach could even help the doctor identify possible triggers of absence epilepsy.

  8. The effects of short- and long-term air pollutants on plant phenology and leaf characteristics.

    PubMed

    Jochner, Susanne; Markevych, Iana; Beck, Isabelle; Traidl-Hoffmann, Claudia; Heinrich, Joachim; Menzel, Annette

    2015-11-01

    Pollution adversely affects vegetation; however, its impact on phenology and leaf morphology is not satisfactorily understood yet. We analyzed associations between pollutants and phenological data of birch, hazel and horse chestnut in Munich (2010) along with the suitability of leaf morphological parameters of birch for monitoring air pollution using two datasets: cumulated atmospheric concentrations of nitrogen dioxide and ozone derived from passive sampling (short-term exposure) and pollutant information derived from Land Use Regression models (long-term exposure). Partial correlations and stepwise regressions revealed that increased ozone (birch, horse chestnut), NO2, NOx and PM levels (hazel) were significantly related to delays in phenology. Correlations were especially high when rural sites were excluded suggesting a better estimation of long-term within-city pollution. In situ measurements of foliar characteristics of birch were not suitable for bio-monitoring pollution. Inconsistencies between long- and short-term exposure effects suggest some caution when interpreting short-term data collected within field studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity

    PubMed Central

    Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R.; Baldelli, Pietro; Benfenati, Fabio

    2013-01-01

    Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows. PMID:23970852

  10. Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity.

    PubMed

    Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R; Baldelli, Pietro; Benfenati, Fabio

    2013-01-01

    Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows.

  11. Elements of an integrated health monitoring framework

    NASA Astrophysics Data System (ADS)

    Fraser, Michael; Elgamal, Ahmed; Conte, Joel P.; Masri, Sami; Fountain, Tony; Gupta, Amarnath; Trivedi, Mohan; El Zarki, Magda

    2003-07-01

    Internet technologies are increasingly facilitating real-time monitoring of Bridges and Highways. The advances in wireless communications for instance, are allowing practical deployments for large extended systems. Sensor data, including video signals, can be used for long-term condition assessment, traffic-load regulation, emergency response, and seismic safety applications. Computer-based automated signal-analysis algorithms routinely process the incoming data and determine anomalies based on pre-defined response thresholds and more involved signal analysis techniques. Upon authentication, appropriate action may be authorized for maintenance, early warning, and/or emergency response. In such a strategy, data from thousands of sensors can be analyzed with near real-time and long-term assessment and decision-making implications. Addressing the above, a flexible and scalable (e.g., for an entire Highway system, or portfolio of Networked Civil Infrastructure) software architecture/framework is being developed and implemented. This framework will network and integrate real-time heterogeneous sensor data, database and archiving systems, computer vision, data analysis and interpretation, physics-based numerical simulation of complex structural systems, visualization, reliability & risk analysis, and rational statistical decision-making procedures. Thus, within this framework, data is converted into information, information into knowledge, and knowledge into decision at the end of the pipeline. Such a decision-support system contributes to the vitality of our economy, as rehabilitation, renewal, replacement, and/or maintenance of this infrastructure are estimated to require expenditures in the Trillion-dollar range nationwide, including issues of Homeland security and natural disaster mitigation. A pilot website (http://bridge.ucsd.edu/compositedeck.html) currently depicts some basic elements of the envisioned integrated health monitoring analysis framework.

  12. Multispectral Image Processing for Plants

    NASA Technical Reports Server (NTRS)

    Miles, Gaines E.

    1991-01-01

    The development of a machine vision system to monitor plant growth and health is one of three essential steps towards establishing an intelligent system capable of accurately assessing the state of a controlled ecological life support system for long-term space travel. Besides a network of sensors, simulators are needed to predict plant features, and artificial intelligence algorithms are needed to determine the state of a plant based life support system. Multispectral machine vision and image processing can be used to sense plant features, including health and nutritional status.

  13. Listening to old beech and young cherry trees - long-term research in the Alleghenies

    Treesearch

    Susan L. Stout; Coeli M. Hoover; Todd E. Ristau

    2006-01-01

    Long-term research results have been a foundation of forestry practice on the Allegheny Plateau since the 1970s. This includes results from monitoring reference conditions in areas set aside for this purpose and from long-running manipulative studies, some dating back to the 1920s. The success of long-term research in this region reflects the commitment of a handful of...

  14. An advanced design of non-radioactive image capturing and management system for applications in non-invasive skin disorder diagnosis

    NASA Astrophysics Data System (ADS)

    Liu, Carol Y. B.; Luk, David C. K.; Zhou, Kany S. Y.; So, Bryan M. K.; Louie, Derek C. H.

    2015-03-01

    Due to the increasing incidences of malignant melanoma, there is a rising demand for assistive technologies for its early diagnosis and improving the survival rate. The commonly used visual screening method is with limited accuracy as the early phase of melanoma shares many clinical features with an atypical nevus, while conventional dermoscopes are not user-friendly in terms of setup time and operations. Therefore, the development of an intelligent and handy system to assist the accurate screening and long-term monitoring of melanocytic skin lesions is crucial for early diagnosis and prevention of melanoma. In this paper, an advanced design of non-invasive and non-radioactive dermoscopy system was reported. Computer-aided simulations were conducted for optimizing the optical design and uniform illumination distribution. Functional prototype and the software system were further developed, which could enable image capturing at 10x amplified and general modes, convenient data transmission, analysis of dermoscopic features (e.g., asymmetry, border irregularity, color, diameter and dermoscopic structure) for assisting the early detection of melanoma, extract patient information (e.g. code, lesion location) and integrate with dermoscopic images, thus further support long term monitoring of diagnostic analysis results. A clinical trial study was further conducted on 185 Chinese children (0-18 years old). The results showed that for all subjects, skin conditions diagnosed based on the developed system accurately confirmed the diagnoses by conventional clinical procedures. Besides, clinical analysis on dermoscopic features and a potential standard approach by the developed system to support identifying specific melanocytic patterns for dermoscopic examination in Chinese children were also reported.

  15. Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1985

    USGS Publications Warehouse

    Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.A.; Janik, C.J.; Winnett, T.L.; Clark, M.D.

    1987-01-01

    Hydrologic and geochemical monitoring, to detect changes caused by magmatic and tectonic processes in the Long Valley caldera has continued through 1985. The monitoring included the collection of the following types of data: chemical and isotopic composition of water and gases from springs, wells, and steam vents; temperatures in wells, springs, and steam vents; flow rates of springs and streams; water levels in wells; and barometric pressure and precipitation at several sites. In addition, reservoir temperatures for the geothermal system were estimated from computations based on chemical geothermometers applied to fluid samples from wells and springs. Estimates of thermal water discharged from springs were made on the basis of boron and chloride fluxes in surface waters for selected sites in the Casa Diablo area and along the Mammoth-Hot Creek drainage. These data are presented in tables and graphs. The Long Valley area was relatively quiescent throughout 1985 in terms of geodetic changes and seismic activity. As a consequence , the hydrologic system varied mainly in response to seasonal influences of temperature, atmospheric pressure, and precipitation. However, spring flows near Casa Diablo were influenced by pumping at the geothermal production well field nearby. (Author 's abstract)

  16. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    PubMed

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  17. Stream Nitrate Concentrations in a Small Catchment in South West England over a Period of 35 Years (1970-2005)

    NASA Astrophysics Data System (ADS)

    Burt, T.; Worrall, F.

    2008-12-01

    A 35-year record of nitrate concentration for the Slapton Wood stream, a small agricultural catchment in south west England, is presented. The study reconsiders earlier work in order to assess whether upward trends have been maintained and how controls on catchment nitrate processes have altered. The study has shown that: (i) the catchment has reached a new position of equilibrium and increases in nitrate concentration have levelled off; (ii) the occurrence of severe droughts means that records of less than a decade are misleading and only longer records can illustrate changes of system state; (iii) the change of state observed in the catchment is illustrated in the switching of long-term memory effects from a negative to a positive annual memory; (iv) a significant long-term impulsivity relationship with rainfall becomes insignificant over the course of the study period. The study shows the importance of long records in exposing changes in state in catchment systems and understanding the time constants of a range of driving processes. The study by its very nature also demonstrates the importance of maintaining long-term monitoring programmes.

  18. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring

    PubMed Central

    Lou, Cunguang; Li, Ruikai; Li, Zhaopeng; Liang, Tie; Wei, Zihui; Run, Mingtao; Yan, Xiaobing; Liu, Xiuling

    2016-01-01

    This paper describes the development of a graphene-based dry flexible electrocardiography (ECG) electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET) substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM), and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR) ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults. PMID:27809270

  19. Seeing the light: Applications of in situ optical measurements for understanding DOM dynamics in river systems (Invited)

    NASA Astrophysics Data System (ADS)

    Pellerin, B. A.; Bergamaschi, B. A.; Downing, B. D.; Saraceno, J.; Fleck, J.; Shanley, J. B.; Aiken, G.; Boss, E.; Fujii, R.

    2009-12-01

    A critical challenge for understanding the sources, character and cycling of dissolved organic matter (DOM) is making measurements at the time scales in which changes occur in aquatic systems. Traditional approaches for data collection (daily to monthly discrete sampling) are often limited by analytical and field costs, site access and logistical challenges, particularly for long-term sampling at a large number of sites. The ability to make optical measurements of DOM in situ has been known for more than 50 years, but much of the work on in situ DOM absorbance and fluorescence using commercially-available instruments has taken place in the last few years. Here we present several recent examples that highlight the application of in situ measurements for understanding DOM dynamics in riverine systems at intervals of minutes to hours. Examples illustrate the utility of in situ optical sensors for studies of DOM over short-duration events of days to weeks (diurnal cycles, tidal cycles, storm events and snowmelt periods) as well as longer-term continuous monitoring for months to years. We also highlight the application of in situ optical DOM measurements as proxies for constituents that are significantly more difficult and expensive to measure at high frequencies (e.g. methylmercury, trihalomethanes). Relatively simple DOM absorbance and fluorescence measurements made in situ could be incorporated into short and long-term ecological research and monitoring programs, resulting in advanced understanding of organic matter sources, character and cycling in riverine systems.

  20. Adaptive function allocation reduces performance costs of static automation

    NASA Technical Reports Server (NTRS)

    Parasuraman, Raja; Mouloua, Mustapha; Molloy, Robert; Hilburn, Brian

    1993-01-01

    Adaptive automation offers the option of flexible function allocation between the pilot and on-board computer systems. One of the important claims for the superiority of adaptive over static automation is that such systems do not suffer from some of the drawbacks associated with conventional function allocation. Several experiments designed to test this claim are reported in this article. The efficacy of adaptive function allocation was examined using a laboratory flight-simulation task involving multiple functions of tracking, fuel-management, and systems monitoring. The results show that monitoring inefficiency represents one of the performance costs of static automation. Adaptive function allocation can reduce the performance cost associated with long-term static automation.

  1. 'Where's the flux' star: Where's the excess?

    NASA Astrophysics Data System (ADS)

    Meng, Huan; Boyajian, Tabetha; Kennedy, Grant; Lisse, Carey; Marengo, Massimo; Wright, Jason; Wyatt, Mark

    2018-05-01

    KIC 8462852 provides, in real time, the rare chance to observe cataclysmic events happening in a mature extrasolar planetary system. The Kepler light curve of the star sees two major dips 750 days apart with depths of 20%, as well as a number of smaller dips ( 1%) at apparently random time. A series of new, shallow (2-4% in flux) dips has been observed since May 2017 and as late as March 2018. In addition to the days-long dips, the star has also been found to have long-term variations over years, and possibly centuries. Conclusions from existing observations suggest that the dips and long-term variations are likely caused by transits of dust clumps in front of the star. We have observed KIC 8462852 with Spitzer/IRAC since cycle 12. We propose to continue the monitoring in cycle 14 to track the long-term variations of the stellar flux, measure the optical properties of the transit dust, and look for possible transient excess if new dips happen close in time to our observations.

  2. Monitoring system of arch bridge for safety network management

    NASA Astrophysics Data System (ADS)

    Joo, Bong Chul; Yoo, Young Jun; Lee, Chin Hyung; Park, Ki Tae; Hwang, Yoon Koog

    2010-03-01

    Korea has constructed the safety management network monitoring test systems for the civil infrastructure since 2006 which includes airport structure, irrigation structure, railroad structure, road structure, and underground structure. Bridges among the road structure include the various superstructure types which are Steel box girder bridge, suspension bridge, PSC-box-girder bridge, and arch bridge. This paper shows the process of constructing the real-time monitoring system for the arch bridge and the measured result by the system. The arch type among various superstructure types has not only the structural efficiency but the visual beauty, because the arch type superstructure makes full use of the feature of curve. The main measuring points of arch bridges composited by curved members make a difference to compare with the system of girder bridges composited by straight members. This paper also shows the method to construct the monitoring system that considers the characteristic of the arch bridge. The system now includes strain gauges and thermometers, and it will include various sensor types such as CCTV, accelerometers and so on additionally. For the long term and accuracy monitoring, the latest optical sensors and equipments are applied to the system.

  3. A comparative analysis of hydrologic responses of tropical deciduous and temperate deciduous watershed ecosystems to climatic change

    Treesearch

    James M. Vose; Jose Manuel Maass

    1999-01-01

    Long-term monitoring of ecological and hydrological processes is critical to understanding ecosystem function and responses to anthropogenic and natural disturbances. Much of the world's knowledge of ecosystem responses to disturbance comes from long-term studies on gaged watersheds. However, there are relatively few long-term sites due to the large cost and...

  4. Long-term monitoring of persistent organic pollutants (POPs) at the Norwegian Troll station in Dronning Maud Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Kallenborn, R.; Breivik, K.; Eckhardt, S.; Lunder, C. R.; Manø, S.; Schlabach, M.; Stohl, A.

    2013-07-01

    A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007-2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m-3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).

  5. Long term trending of engineering data for the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Cox, Ross M.

    1993-01-01

    A major goal in spacecraft engineering analysis is the detection of component failures before the fact. Trending is the process of monitoring subsystem states to discern unusual behaviors. This involves reducing vast amounts of data about a component or subsystem into a form that helps humans discern underlying patterns and correlations. A long term trending system has been developed for the Hubble Space Telescope. Besides processing the data for 988 distinct telemetry measurements each day, it produces plots of 477 important parameters for the entire 24 hours. Daily updates to the trend files also produce 339 thirty day trend plots each month. The total system combines command procedures to control the execution of the C-based data processing program, user-written FORTRAN routines, and commercial off-the-shelf plotting software. This paper includes a discussion the performance of the trending system and of its limitations.

  6. Coastal Louisiana Wetlands Restoration Monitoring with Global Fiducials Program (GFP) Imagery

    NASA Astrophysics Data System (ADS)

    Fisher, G.

    2012-12-01

    Coastal Louisiana has experienced dramatic landscape change over the past century due to human induced changes to the environment as well as an onslaught of major coastal storms. Coastal Louisiana loses on average 25-35 square miles of land per year. The USGS has partnered with the National Oceanographic and Atmospheric Administration (NOAA) - National Marine Fisheries Service to provide cyclical remote sensing data for selected restoration sites along the coast of Louisiana. Three of these sites are actively maintained in the GFP archive - Atchafalaya River Delta, East Timbalier Island, and Pecan Island. These three sites coincide with NOAA restoration sites that have been monitored since early 2000. The GFP has provided a consistent set of remote sensing data that has greatly benefited the long-term monitoring of these restoration sites. Long-term monitoring of these sites includes both pre- and post-hurricane season data collection used to identify landscape change along the coast. The long-term monitoring also has helped to identify areas of success in the restoration projects, as well as areas that have continued to decline in spite of restoration efforts. These three sites are significant to the program because they provide a variety of coastal landscape types: an open water barrier island environment at East Timbalier Island; coastal wetlands at Pecan Island, which have experienced subsidence of the marsh and convergence to an open water environment; and a deltaic marsh environment at Atchafalaya River Delta. Long-term monitoring of these sites has provided a wealth of knowledge about the changes occurring, as well as a valuable tool for reliable shoreline measurements. Continued monitoring is necessary to accurately assess the condition of these areas as environmental conditions continue to shape the landscape.

  7. Long-term monitoring of UK river basins: the disconnections between the timescales of hydrological processes and watershed management planning

    NASA Astrophysics Data System (ADS)

    Howden, N. J. K.; Burt, T.; Worrall, F.

    2016-12-01

    The UK has a wealth of hydrological monitoring data that has both good coverage in space since the early 1970s, and also a few locations where records have been kept continuously for almost 150 years. Such datasets offer unique opportunities for the hydrologist to consider how the concepts of stationarity, change, and definitions of "baseline" resources should be used to shape how we build models of these systems, and how we devise appropriate and sustainable watershed management strategies. In this paper we consider some of the UK's longest hydrological and biogeochemical records, to explore how long records can be used to shape such understanding and, in some cases, how they can be used to identify new modes of behaviour that need to be incorporated into management planning, from the scale of individual watersheds right up to the national scale. We also consider how key timescales of hydrological responses that are evident within the data may pose major problems for watershed management unless appropriate attention is paid to the potential impacts of processes that work over decadal timescales - much longer than sub-decadal water industry investment cycles or short-term projects for watershed management planning. We use our long-term records to show how key processes can be identified, and to illustrate how careful interpretation of shorter term records will improve decision-making for water resource management.

  8. A portable data-logging system for industrial hygiene personal chlorine monitoring.

    PubMed

    Langhorst, M L; Illes, S P

    1986-02-01

    The combination of suitable portable sensors or instruments with small microprocessor-based data-logger units has made it possible to obtain detailed monitoring data for many health and environmental applications. Following data acquisition in field use, the logged data may be transferred to a desk-top personal computer for complete flexibility in manipulation of data and formating of results. A system has been assembled from commercial components and demonstrated for chlorine personal monitoring applications. The system consists of personal chlorine sensors, a Metrosonics data-logger and reader unit, and an Apple II Plus personal computer. The computer software was developed to handle sensor calibration, data evaluation and reduction, report formating and long-term storage of raw data on a disk. This system makes it possible to generate time-concentration profiles, evaluate dose above a threshold, quantitate short-term excursions and summarize time-weighted average (TWA) results. Field data from plant trials demonstrated feasibility of use, ruggedness and reliability. No significant differences were found between the time-weighted average chlorine concentrations determined by the sensor/logger system and two other methods: the sulfamic acid bubbler reference method and the 3M Poroplastic diffusional dosimeter. The sensor/data-logger system, however, provided far more information than the other two methods in terms of peak excursions, TWAs and exposure doses. For industrial hygiene applications, the system allows better definition of employee exposures, particularly for chemicals with acute as well as chronic health effects.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Test-bed for the remote health monitoring system for bridge structures using FBG sensors

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Hyung; Park, Ki-Tae; Joo, Bong-Chul; Hwang, Yoon-Koog

    2009-05-01

    This paper reports on test-bed for the long-term health monitoring system for bridge structures employing fiber Bragg grating (FBG) sensors, which is remotely accessible via the web, to provide real-time quantitative information on a bridge's response to live loading and environmental changes, and fast prediction of the structure's integrity. The sensors are attached on several locations of the structure and connected to a data acquisition system permanently installed onsite. The system can be accessed through remote communication using an optical cable network, through which the evaluation of the bridge behavior under live loading can be allowed at place far away from the field. Live structural data are transmitted continuously to the server computer at the central office. The server computer is connected securely to the internet, where data can be retrieved, processed and stored for the remote web-based health monitoring. Test-bed revealed that the remote health monitoring technology will enable practical, cost-effective, and reliable condition assessment and maintenance of bridge structures.

  10. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock-walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-06-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock-walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a Wireless Sensor Network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock-wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock-wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock-wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock-fall hazard surveillance or structural monitoring of concrete structures.

  11. A custom acoustic emission monitoring system for harsh environments: application to freezing-induced damage in alpine rock walls

    NASA Astrophysics Data System (ADS)

    Girard, L.; Beutel, J.; Gruber, S.; Hunziker, J.; Lim, R.; Weber, S.

    2012-11-01

    We present a custom acoustic emission (AE) monitoring system designed to perform long-term measurements on high-alpine rock walls. AE monitoring is a common technique for characterizing damage evolution in solid materials. The system is based on a two-channel AE sensor node (AE-node) integrated into a wireless sensor network (WSN) customized for operation in harsh environments. This wireless architecture offers flexibility in the deployment of AE-nodes at any position of the rock wall that needs to be monitored, within a range of a few hundred meters from a core station connected to the internet. The system achieves near real-time data delivery and allows the user to remotely control the AE detection threshold. In order to protect AE sensors and capture acoustic signals from specific depths of the rock wall, a special casing was developed. The monitoring system is completed by two probes that measure rock temperature and liquid water content, both probes being also integrated into the WSN. We report a first deployment of the monitoring system on a rock wall at Jungfraujoch, 3500 m a.s.l., Switzerland. While this first deployment of the monitoring system aims to support fundamental research on processes that damage rock under cold climate, the system could serve a number of other applications, including rock fall hazard surveillance or structural monitoring of concrete structures.

  12. Innovative Visualizations Shed Light on Avian Nocturnal Migration

    PubMed Central

    Farnsworth, Andrew; Aelterman, Bart; Alves, Jose A.; Azijn, Kevin; Bernstein, Garrett; Branco, Sérgio; Desmet, Peter; Dokter, Adriaan M.; Horton, Kyle; Kelling, Steve; Kelly, Jeffrey F.; Leijnse, Hidde; Rong, Jingjing; Sheldon, Daniel; Van den Broeck, Wouter; Van Den Meersche, Jan Klaas; Van Doren, Benjamin Mark; van Gasteren, Hans

    2016-01-01

    Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals’ life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human–wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement. PMID:27557096

  13. The Australian SuperSite Network: A continental, long-term terrestrial ecosystem observatory.

    PubMed

    Karan, Mirko; Liddell, Michael; Prober, Suzanne M; Arndt, Stefan; Beringer, Jason; Boer, Matthias; Cleverly, James; Eamus, Derek; Grace, Peter; Van Gorsel, Eva; Hero, Jean-Marc; Hutley, Lindsay; Macfarlane, Craig; Metcalfe, Dan; Meyer, Wayne; Pendall, Elise; Sebastian, Alvin; Wardlaw, Tim

    2016-10-15

    Ecosystem monitoring networks aim to collect data on physical, chemical and biological systems and their interactions that shape the biosphere. Here we introduce the Australian SuperSite Network that, along with complementary facilities of Australia's Terrestrial Ecosystem Research Network (TERN), delivers field infrastructure and diverse, ecosystem-related datasets for use by researchers, educators and policy makers. The SuperSite Network uses infrastructure replicated across research sites in different biomes, to allow comparisons across ecosystems and improve scalability of findings to regional, continental and global scales. This conforms with the approaches of other ecosystem monitoring networks such as Critical Zone Observatories, the U.S. National Ecological Observatory Network; Analysis and Experimentation on Ecosystems, Europe; Chinese Ecosystem Research Network; International Long Term Ecological Research network and the United States Long Term Ecological Research Network. The Australian SuperSite Network currently involves 10 SuperSites across a diverse range of biomes, including tropical rainforest, grassland and savanna; wet and dry sclerophyll forest and woodland; and semi-arid grassland, woodland and savanna. The focus of the SuperSite Network is on using vegetation, faunal and biophysical monitoring to develop a process-based understanding of ecosystem function and change in Australian biomes; and to link this with data streams provided by the series of flux towers across the network. The Australian SuperSite Network is also intended to support a range of auxiliary researchers who contribute to the growing body of knowledge within and across the SuperSite Network, public outreach and education to promote environmental awareness and the role of ecosystem monitoring in the management of Australian environments. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Endangered and Threatened Species at Kennedy Space Center Merritt Island National Wildlife Refuge

    NASA Technical Reports Server (NTRS)

    Galdolfi, Catherine

    2010-01-01

    Throughout my internship, I assisted with the long-term monitoring of the Florida Scrub- Jay (Aphelocoma coerulescens), a threatened species endemic to Florida. The Florida Scrub Jay diet consists of insects and small vertebrates throughout most of the year; however, during the winter their primary diet is acorns because the insect population is low. Furthermore, the Florida Scrub-Jay is a habitat specialist that lives in a disappearing plant community called the scrub, which consists of sand live oak, myrtle oak and chapman oak. The Florida Scrub-Jay is considered threatened because its numbers are decreasing primarily due to the loss of habitat that it needs to survive. Scrub habitat is highly desirable for human development because it is high, dry, and sandy. Periodic controlled burns maintain the scrub in a low, open condition favored by Scrub-Jays. Florida Scrub-Jays build their nests approximately 3-5 feet (approximately 1.5 m) above the ground in shrubby oaks (Breininger 153), mate for life and are cooperative breeders; which means that the young jays remain in their natal territory for at least a year to help their parents defend their territory, feed the young, and mob predators. (Breininger 152). I assisted in conducting monthly censuses at long-term monitoring sites and a juvenile in July survey to determine reproductive success for the year. In addition, to Scrub-Jay monitoring, I also had the opportunity to assist with some long term monitoring of ecosystem recovery. Scrub is a fire maintained system. Fire maintains the structure of scrub necessary for many of the threatened species that reside in the scrub habitat.

  15. Innovative Visualizations Shed Light on Avian Nocturnal Migration.

    PubMed

    Shamoun-Baranes, Judy; Farnsworth, Andrew; Aelterman, Bart; Alves, Jose A; Azijn, Kevin; Bernstein, Garrett; Branco, Sérgio; Desmet, Peter; Dokter, Adriaan M; Horton, Kyle; Kelling, Steve; Kelly, Jeffrey F; Leijnse, Hidde; Rong, Jingjing; Sheldon, Daniel; Van den Broeck, Wouter; Van Den Meersche, Jan Klaas; Van Doren, Benjamin Mark; van Gasteren, Hans

    2016-01-01

    Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals' life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human-wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.

  16. Long-Term Structural Health Monitoring System for a High-Speed Railway Bridge Structure.

    PubMed

    Ding, You-Liang; Wang, Gao-Xin; Sun, Peng; Wu, Lai-Yi; Yue, Qing

    2015-01-01

    Nanjing Dashengguan Bridge, which serves as the shared corridor crossing Yangtze River for both Beijing-Shanghai high-speed railway and Shanghai-Wuhan-Chengdu railway, is the first 6-track high-speed railway bridge with the longest span throughout the world. In order to ensure safety and detect the performance deterioration during the long-time service of the bridge, a Structural Health Monitoring (SHM) system has been implemented on this bridge by the application of modern techniques in sensing, testing, computing, and network communication. The SHM system includes various sensors as well as corresponding data acquisition and transmission equipment for automatic data collection. Furthermore, an evaluation system of structural safety has been developed for the real-time condition assessment of this bridge. The mathematical correlation models describing the overall structural behavior of the bridge can be obtained with the support of the health monitoring system, which includes cross-correlation models for accelerations, correlation models between temperature and static strains of steel truss arch, and correlation models between temperature and longitudinal displacements of piers. Some evaluation results using the mean value control chart based on mathematical correlation models are presented in this paper to show the effectiveness of this SHM system in detecting the bridge's abnormal behaviors under the varying environmental conditions such as high-speed trains and environmental temperature.

  17. Synthetic Electric Microbial Biosensors

    DTIC Science & Technology

    2017-06-10

    In particular, monitoring of heavy metals in the environment, drinking water, food , and biological fluids is of interest. Conventional techniques...instances of contamination , and the potential for deliberate spills, interest has grown in portable devices for onsite long-term detection using sensor...biosensor systems for the online detection of a range of contaminants . Synthetic Biology and biosensors Synthetic biology has gained much interest

  18. Bamboo vs. crops: An integrated emergy and economic evaluation of using bamboo to replace crops in south Sichuan Province, China

    EPA Science Inventory

    Based on long-term monitoring conducted in Chang-ning county, a pilot site of the ‘Grain for Green Program’ (GFGP), an integrated emergy and economic method was applied to evaluate the dynamic ecological-economic performance of 3 kinds of bamboo systems planted on slo...

  19. Five years of monitoring infection and mortality in redwood tanoak forests

    Treesearch

    Richard C. Cobb; Shannon C. Lynch; Ross K. Meentemeyer; David M. Rizzo

    2008-01-01

    Rates of disease incidence and tree mortality in redwood-tanoak forests were determined by repeated sampling across a system of 120 plots at five long-term research sites from 2001 through 2006. Plots were located within the known geographic area of Phytophthora ramorum in California, ranging from Monterey to Sonoma counties. All overstory species...

  20. 1993 Earth Observing System reference handbook

    NASA Technical Reports Server (NTRS)

    Asrar, Ghassem (Editor); Dokken, David Jon (Editor)

    1993-01-01

    Mission to Planet Earth (MTPE) is a NASA-sponsored concept that uses space- and ground-based measurement systems to provide the scientific basis for understanding global change. The space-based components of MTPE will provide a constellation of satellites to monitor the Earth from space. Sustained observations will allow researchers to monitor climate variables overtime to determine trends; however, space-based monitoring alone is not sufficient. A comprehensive data and information system, a community of scientists performing research with the data acquired, and extensive ground campaigns are all important components. Brief descriptions of the various elements that comprise the overall mission are provided. The Earth Observing System (EOS) - a series of polar-orbiting and low-inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans - is the centerpiece of MTPE. The elements comprising the EOS mission are described in detail.

  1. Single-Frequency Ultrasound-Based Respiration Rate Estimation with Smartphones

    PubMed Central

    Wei, Jing

    2018-01-01

    Respiration monitoring is helpful in disease prevention and diagnosis. Traditional respiration monitoring requires users to wear devices on their bodies, which is inconvenient for them. In this paper, we aim to design a noncontact respiration rate detection system utilizing off-the-shelf smartphones. We utilize the single-frequency ultrasound as the media to detect the respiration activity. By analyzing the ultrasound signals received by the built-in microphone sensor in a smartphone, our system can derive the respiration rate of the user. The advantage of our method is that the transmitted signal is easy to generate and the signal analysis is simple, which has lower power consumption and thus is suitable for long-term monitoring in daily life. The experimental result shows that our system can achieve accurate respiration rate estimation under various scenarios. PMID:29853985

  2. It's worth how much?!? Incorporating valuation metrics into long-term goals in Tampa Bay, Florida, USA

    EPA Science Inventory

    The establishment of science-based long-term environmental management goals is just the first step in what is typically a decades-long process to restore estuarine and coastal ecosystems. In addition to adequate monitoring and reporting, maintaining public interest, financial sup...

  3. Long term pavement performance program protocol for calibrating traffic data collection equipment

    DOT National Transportation Integrated Search

    1998-05-10

    This document describes the procedures that the Long Term Pavement Performance (LTPP) program recommends for ensuring that traffic data collection equipment used for LTPP traffic monitoring efforts operates correctly and collects valid data.

  4. An inventory and monitoring plan for a Sonoran Desert ecosystem; Barry M. Goldwater Range-West

    USGS Publications Warehouse

    Villarreal, Miguel L.; van Riper, Charles; Lovich, Robert E.; Palmer, Robert L.; Nauman, Travis; Studd, Sarah E.; Drake, Sam; Rosenberg, Abigail S.; Malusa, Jim; Pearce, Ronald L.

    2011-01-01

    Marine Corps Air Station Yuma manages the Barry M. Goldwater Range-West, which encompasses approximately 2,800 square kilometers of Sonoran Desert habitat in southwestern Arizona. The Barry M. Goldwater Range is a major U.S. military installation designed as an air combat training location for the U.S. Marine Corps and U.S. Air Force, but it also includes some of the most pristine desert habitat in the United States. In an effort to ensure the long-term viability of this unique natural resource, the U.S. Geological Survey (USGS) has developed an Integrated Natural Resources Management Plan and Inventory and Monitoring Plan to guide natural resource management of the Barry M. Goldwater Range-West. This Inventory and Monitoring Plan provides a framework for long-term ecosystem monitoring on Barry M. Goldwater Range-West lands by identifying existing and potential threats to ecosystem function, prioritizing resources for monitoring, and providing information and protocols necessary to initiate a long-term ecosystem monitoring program. The Inventory and Monitoring Plan and related protocols were developed through extensive review of existing Sonoran Desert monitoring programs and monitoring literature and through a 2-day workshop with resource managers, monitoring experts, and other stakeholders. The Barry M. Goldwater Range-West Inventory and Monitoring Plan stresses the importance of regional monitoring partnerships and protocol standardization for understanding landscape-scale ecosystem changes in the Sonoran Desert; information and protocols contained within the plan may also be of interest to land managers engaged in large-scale ecosystem monitoring and adaptive management of other arid regions.

  5. A Blueprint for the Ecological Monitoring of Australia's Oceans.

    NASA Astrophysics Data System (ADS)

    Bax, N. J.; Hayes, K. R.; Dambacher, J. M.; Hosack, G. R.; Dunstan, P. K.; Fulton, E.; Thompson, P. A.; Hartog, J. R.; Hobday, A. J.; Bradford, R.; Foster, S.; Hedge, P.; Smith, D.; Marshall, C. M.

    2016-02-01

    Monitoring Australia's marine area is fundamental to understanding and documenting how the ocean is changing in response to human pressures. Fifty-four key ecological features (KEFs) were identified as areas of particular value to the Australian Government over the last 8 years. These were divided into six reporting groups: areas of enhanced pelagic productivity, canyons, deep seabeds, seamounts, shelf reefs and seabeds. Ecosystem models were built for 33 KEF systems that have the strongest datasets, based on a theoretical understanding of how they function. Human pressures were identified by regional specialists and combined with the KEF models to create a set of medium-term pressure scenarios for each KEF. Between four and 25 pressure scenarios were identified for each KEF. Examples of human pressures include the strengthening of the East Australian Current and shifts in ocean upwelling due to climate change, major fluctuations in pelagic fish and fur seal populations, and fishing, shipping and oil and gas activities. KEF models encompass parts of the ecosystem that have potential to be monitored as long-term indicators that increase, decrease, or remain unchanged under each pressure scenario. Suitable indicators are those that respond in predictable ways across all pressure scenarios for a KEF. Results from pressure scenarios developed to test indicators for Australia's nine enhanced pelagic productivity KEFs will be presented. Satellite observations were analysed to tease out the long-term trend in phytoplankton and ocean upwelling. The comparison of predicted and observed trends in indicators leads to an improved understanding of KEF systems and the utility of the indicators. A change in indicator is a signal that something was happening to a valued system. The prediction-observation process would explain why. This process is repeatable and can be updated as new information comes available.

  6. Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.

    2016-12-01

    Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.

  7. Challenges to natural resource monitoring in a small border park: terrestrial mammals at Coronado National Memorial, Cochise County, Arizona

    USGS Publications Warehouse

    Swann, Don E.; Bucci, Melanie; Kuenzi, Amy J.; Alberti, Barbara N.; Schwalbe, Cecil R.; Halvorson, William L.; van Riper, Charles; Schwalbe, Cecil R.

    2010-01-01

    Long-term monitoring in national parks is essential to meet National Park Service and other important public goals. Terrestrial mammals are often proposed for monitoring because large mammals are of interest to visitors and small mammals are important as prey. However, traditional monitoring strategies for mammals are often too expensive and complex to sustain for long periods, particularly in small parks. To evaluate potential strategies for long-term monitoring in small parks, we conducted an intensive one-year inventory of terrestrial mammals at Coronado National Memorial, located in Arizona on the U.S.-Mexico international border, then continued less-intensive monitoring at the site for 7 additional years. During 1996-2003 we confirmed 44 species of terrestrial mammals. Most species (40) were detected in the intensive first year of the study, but we continued to detect new species in later years. Mark-recapture data on small mammals indicated large inter-annual fluctuations in population size, but no significant trend over the 7-year period. Issues associated with the international border affected monitoring efforts and increased sampling costs. Our study confirms that sustained annual monitoring of mammals is probably not feasible in small park units like Coronado. However, comparisons of our data with past studies provide insight into important changes in the mammal community since the 1970s, including an increase in abundance and diversity of grassland rodents. Our results suggest that intensive inventories every 10-20 years may be a valuable and cost-effective approach for detecting long-term trends in terrestrial mammal communities in small natural areas.

  8. Functional Analysis in Long-Term Operation of High Power UV-LEDs in Continuous Fluoro-Sensing Systems for Hydrocarbon Pollution

    PubMed Central

    Arques-Orobon, Francisco Jose; Nuñez, Neftali; Vazquez, Manuel; Gonzalez-Posadas, Vicente

    2016-01-01

    This work analyzes the long-term functionality of HP (High-power) UV-LEDs (Ultraviolet Light Emitting Diodes) as the exciting light source in non-contact, continuous 24/7 real-time fluoro-sensing pollutant identification in inland water. Fluorescence is an effective alternative in the detection and identification of hydrocarbons. The HP UV-LEDs are more advantageous than classical light sources (xenon and mercury lamps) and helps in the development of a low cost, non-contact, and compact system for continuous real-time fieldwork. This work analyzes the wavelength, output optical power, and the effects of viscosity, temperature of the water pollutants, and the functional consistency for long-term HP UV-LED working operation. To accomplish the latter, an analysis of the influence of two types 365 nm HP UV-LEDs degradation under two continuous real-system working mode conditions was done, by temperature Accelerated Life Tests (ALTs). These tests estimate the mean life under continuous working conditions of 6200 h and for cycled working conditions (30 s ON & 30 s OFF) of 66,000 h, over 7 years of 24/7 operating life of hydrocarbon pollution monitoring. In addition, the durability in the face of the internal and external parameter system variations is evaluated. PMID:26927113

  9. Functional Analysis in Long-Term Operation of High Power UV-LEDs in Continuous Fluoro-Sensing Systems for Hydrocarbon Pollution.

    PubMed

    Arques-Orobon, Francisco Jose; Nuñez, Neftali; Vazquez, Manuel; Gonzalez-Posadas, Vicente

    2016-02-26

    This work analyzes the long-term functionality of HP (High-power) UV-LEDs (Ultraviolet Light Emitting Diodes) as the exciting light source in non-contact, continuous 24/7 real-time fluoro-sensing pollutant identification in inland water. Fluorescence is an effective alternative in the detection and identification of hydrocarbons. The HP UV-LEDs are more advantageous than classical light sources (xenon and mercury lamps) and helps in the development of a low cost, non-contact, and compact system for continuous real-time fieldwork. This work analyzes the wavelength, output optical power, and the effects of viscosity, temperature of the water pollutants, and the functional consistency for long-term HP UV-LED working operation. To accomplish the latter, an analysis of the influence of two types 365 nm HP UV-LEDs degradation under two continuous real-system working mode conditions was done, by temperature Accelerated Life Tests (ALTs). These tests estimate the mean life under continuous working conditions of 6200 h and for cycled working conditions (30 s ON & 30 s OFF) of 66,000 h, over 7 years of 24/7 operating life of hydrocarbon pollution monitoring. In addition, the durability in the face of the internal and external parameter system variations is evaluated.

  10. Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring

    PubMed Central

    Lazarescu, Mihai T.

    2015-01-01

    Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery. PMID:25912349

  11. The baric probe: a novel long-term implantable intracranial pressure monitor with ultrasound-based interrogation.

    PubMed

    Limbrick, David D; Lake, Stephen; Talcott, Michael; Alexander, Benjamin; Wight, Samuel; Willie, Jon T; Richard, William D; Genin, Guy M; Leuthardt, Eric C

    2012-12-01

    Prompt diagnosis of shunt malfunction is critical in preventing neurological morbidity and death in individuals with hydrocephalus; however, diagnostic methods for this condition remain limited. For several decades, investigators have sought a long-term, implantable intracranial pressure (ICP) monitor to assist in the diagnosis of shunt malfunction, but efforts have been impeded by device complexity, marked measurement drift, and limited instrumentation lifespan. In the current report, the authors introduce an entirely novel, simple, compressible gas design that addresses each of these problems. The device described herein, termed the "baric probe," consists of a subdural fluid bladder and multichannel indicator that monitors the position of an air-fluid interface (AFI). A handheld ultrasound probe is used to interrogate the baric probe in vivo, permitting noninvasive ICP determination. To assess the function of device prototypes, ex vivo experiments were conducted using a water column, and short- and long-term in vivo experiments were performed using a porcine model with concurrent measurements of ICP via a fiberoptic monitor. Following a toe region of approximately 2 cm H(2)O, the baric probe's AFI demonstrated a predictable linear relationship to ICP in both ex vivo and in vivo models. After a 2-week implantation of the device, this linear relationship remained robust and reproducible. Further, changes in ICP were observed with the baric probe, on average, 3 seconds in advance of the fiberoptic ICP monitor reading. The authors demonstrate "proof-of-concept" and feasibility for the baric probe, a long-term implantable ICP monitor designed to facilitate the prompt and accurate diagnosis of shunt malfunction. The baric probe showed a consistent linear relationship between ICP and the device's AFI in ex vivo and short- and long-term in vivo models. With a low per-unit cost, a reduced need for radiography or CT, and an indicator that can be read with a handheld ultrasound probe that interfaces with any smart phone, the baric probe promises to simplify the care of patients with shunt-treated hydrocephalus throughout both the developed and the developing world.

  12. Long Term Geoelectrical Monitoring of Deep-water Horizon Oil Spill in the Gulf Coast

    NASA Astrophysics Data System (ADS)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.; Atekwana, E. A.; Ross, C.; Nolan, J. T.; Atekwana, E. A.

    2011-12-01

    In the aftermath of the catastrophic Deep-water Horizon (DWH) spill in the Gulf Coast, opportunities exist to study the evolution of fresh crude oil contamination in beach sediments and marshes. Grand Terre 1 Island, off the coast of Grand Isle in southern Louisiana, is an uninhabited barrier island, heavily impacted by the DWH spill, and ideal for undisturbed long term monitoring of crude oil degradation processes. A 10 channel Syscal-Pro resistivity / IP instrument (IRIS Instruments, France) is the heart of the fully autonomous geoelectrical monitoring system; the system, which is housed in a weatherproof container, relies solely on solar power, is controlled by an energy efficient PC and can be accessed remotely via web tools. The monitoring scheme involves collecting bi-daily resistivity measurements from surface and shallow boreholes, ranging from January 2011 to the present; environmental parameters, such as T, are continuously recorded at several depths. During regular field trips we perform larger scale geophysical surveys, and geochemical measurements (pH, DO, T, fluid C) to support the continuous geophysical monitoring. The contaminated layer on site is a visually distinctive layer of crude oil, isolated by cleaner sands above and below which is identified by a clear and obvious resistive anomaly in preliminary surveys. Early results show a decrease in average of the resistance values of each dataset over time. Further processing of the data yields a linearly shaped resistive anomaly, which coincides with the location of the oil layer. The changes in subsurface resistivity appear to be focused within this anomaly. Time filtering of the data by the time that they were collected, morning or evening, reveals a diurnal variation. While both time frames follow the same overall trend, the measurements in the morning are slightly more resistive than those in the evening. This indicates that there are environmental factors, such as temperature, that need to be accounted for when analyzing the data for evidence of biological processes. These preliminary findings indicate changes in the subsurface properties of the contaminated area and suggest that geoelectrical methods are sensitive to contamination evolution processes. Such geophysical data, constrained by geochemical and microbiological information, have the potential to be used as a long term monitoring tool for biological and geochemical processes in the subsurface.

  13. Monitoring of formaldehyde in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balmat, J.L.; Meadows, G.W.

    1985-10-01

    Any one of several monitoring methods, depending on requirement and circumstance, can be used to measure employee exposure to formaldehyde. Ordinarily, monitoring at DuPont is performed by sampling with impingers containing 1% aqueous sodium bisulfite or with silica gel tubes. The collected formaldehyde is measured spectrophotometrically after reaction with chromotropic acid. Results from studies on a selected number of formaldehyde monitoring methods reveal that reliable methods are available for area and personnel monitoring over both short term and long term. Accurate results are obtained from short-term monitoring (15 min at 1 L/min) with impingers of formaldehyde concentrations as low asmore » 0.14 ppm. The current studies show that long-term monitoring (8 hr at 0.5 L/min) can be performed accurately at concentrations as low as 0.05 ppm. Accurate results also are obtained from short-term monitoring (15 min at 500 mL/min) with silica gel tubes of concentrations as low as 0.11 ppm formaldehyde. Passive monitors provide the most convenient means of obtaining 8-hour time-weighted average (TWA) data. The Pro-Tek Formaldehyde Badge was demonstrated to reliably monitor formaldehyde concentrations varying from 0-0.5 ppm or 0-3 ppm. Investigation of the Lion Formaldemeter disclosed that instantaneous and accurate (+/- 5%) measurement of formaldehyde in air can be made over a concentration range of 0.3-5 ppm in the absence of other substances that are oxidizable in its fuel cell detector.« less

  14. Historical Prediction Modeling Approach for Estimating Long-Term Concentrations of PM2.5 in Cohort Studies before the 1999 Implementation of Widespread Monitoring.

    PubMed

    Kim, Sun-Young; Olives, Casey; Sheppard, Lianne; Sampson, Paul D; Larson, Timothy V; Keller, Joshua P; Kaufman, Joel D

    2017-01-01

    Recent cohort studies have used exposure prediction models to estimate the association between long-term residential concentrations of fine particulate matter (PM2.5) and health. Because these prediction models rely on PM2.5 monitoring data, predictions for times before extensive spatial monitoring present a challenge to understanding long-term exposure effects. The U.S. Environmental Protection Agency (EPA) Federal Reference Method (FRM) network for PM2.5 was established in 1999. We evaluated a novel statistical approach to produce high-quality exposure predictions from 1980 through 2010 in the continental United States for epidemiological applications. We developed spatio-temporal prediction models using geographic predictors and annual average PM2.5 data from 1999 through 2010 from the FRM and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks. Temporal trends before 1999 were estimated by using a) extrapolation based on PM2.5 data in FRM/IMPROVE, b) PM2.5 sulfate data in the Clean Air Status and Trends Network, and c) visibility data across the Weather Bureau Army Navy network. We validated the models using PM2.5 data collected before 1999 from IMPROVE, California Air Resources Board dichotomous sampler monitoring (CARB dichot), the Children's Health Study (CHS), and the Inhalable Particulate Network (IPN). In our validation using pre-1999 data, the prediction model performed well across three trend estimation approaches when validated using IMPROVE and CHS data (R2 = 0.84-0.91) with lower R2 values in early years. Model performance using CARB dichot and IPN data was worse (R2 = 0.00-0.85) most likely because of fewer monitoring sites and inconsistent sampling methods. Our prediction modeling approach will allow health effects estimation associated with long-term exposures to PM2.5 over extended time periods ≤ 30 years. Citation: Kim SY, Olives C, Sheppard L, Sampson PD, Larson TV, Keller JP, Kaufman JD. 2017. Historical prediction modeling approach for estimating long-term concentrations of PM2.5 in cohort studies before the 1999 implementation of widespread monitoring. Environ Health Perspect 125:38-46; http://dx.doi.org/10.1289/EHP131.

  15. The nature of earthquake prediction

    USGS Publications Warehouse

    Lindh, A.G.

    1991-01-01

    Earthquake prediction is inherently statistical. Although some people continue to think of earthquake prediction as the specification of the time, place, and magnitude of a future earthquake, it has been clear for at least a decade that this is an unrealistic and unreasonable definition. the reality is that earthquake prediction starts from the long-term forecasts of place and magnitude, with very approximate time constraints, and progresses, at least in principle, to a gradual narrowing of the time window as data and understanding permit. Primitive long-term forecasts are clearly possible at this time on a few well-characterized fault systems. Tightly focuses monitoring experiments aimed at short-term prediction are already underway in Parkfield, California, and in the Tokai region in Japan; only time will tell how much progress will be possible. 

  16. Nanotechnology and MEMS-based systems for civil infrastructure safety and security: Opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Robinson, Nidia; Saafi, Mohamed

    2006-03-01

    Critical civil infrastructure systems such as bridges, high rises, dams, nuclear power plants and pipelines present a major investment and the health of the United States' economy and the lifestyle of its citizens both depend on their safety and security. The challenge for engineers is to maintain the safety and security of these large structures in the face of terrorism threats, natural disasters and long-term deterioration, as well as to meet the demands of emergency response times. With the significant negative impact that these threats can have on the structural environment, health monitoring of civil infrastructure holds promise as a way to provide information for near real-time condition assessment of the structure's safety and security. This information can be used to assess the integrity of the structure for post-earthquake and terrorist attacks rescue and recovery, and to safely and rapidly remove the debris and to temporary shore specific structural elements. This information can also be used for identification of incipient damage in structures experiencing long-term deterioration. However, one of the major obstacles preventing sensor-based monitoring is the lack of reliable, easy-to-install, cost-effective and harsh environment resistant sensors that can be densely embedded into large-scale civil infrastructure systems. Nanotechnology and MEMS-based systems which have matured in recent years represent an innovative solution to current damage detection systems, leading to wireless, inexpensive, durable, compact, and high-density information collection. In this paper, ongoing research activities at Alabama A&M University (AAMU) Center for Transportation Infrastructure Safety and Security on the application of nanotechnology and MEMS to Civil Infrastructure for health monitoring will presented. To date, research showed that nanotechnology and MEMS-based systems can be used to wirelessly detect and monitor different damage mechanisms in concrete structures as well as monitor critical structures' stability during floods and barge impact. However, some technical issues that needs to be addressed before full implementation of these new systems and will also be discussed in this paper.

  17. Development and application of a long dynamic range nitrous oxide monitoring system.

    PubMed

    Ward, B G

    1985-12-01

    The laboratory and field evaluation of a nitrous oxide monitor for an extremely wide range of cumulative exposures are reviewed. The passive sampling behavior and high analyte capacity show it to be useful for short-term and full workweek exposure monitoring. The monitor has application for both area and personnel surveillance. The principal criterion is for an accurate report of exposure time of the monitor. Application of the monitor to real workplace environments--with and without a reference method--demonstrated the ability of workweek monitoring as a valuable and potentially superior way of documenting exposure stress of employees. Environmental factors such as humidity and temperature variation are shown to have acceptably small effects on both short- and long-term exposure data; barometric pressure affects the data in a predictable manner. Paired dosimeters show good agreement in the workplace environment throughout the range of 6-40 cumulative hours of exposure. In both hospital and dental operating suites, work logistics and work group relationships were readily traceable on a week-by-week basis during a continuous weekly monitoring program. Source emissions and appropriate worker and work area exposure relationships were clearly evident, with appropriate reduction of all exposures as a result of an abbreviated work schedule. The ability to effectively track employee and area exposure excursions in an integrated weekly manner leads to a whole series of new applications and concepts of industrial hygiene surveillance. Such approaches could effectively replace the speculative statistical approaches currently in use with actual data on a cost effective basis.

  18. Long Term Resource Monitoring Program procedures: fish monitoring

    USGS Publications Warehouse

    Ratcliff, Eric N.; Glittinger, Eric J.; O'Hara, T. Matt; Ickes, Brian S.

    2014-01-01

    This manual constitutes the second revision of the U.S. Army Corps of Engineers’ Upper Mississippi River Restoration-Environmental Management Program (UMRR-EMP) Long Term Resource Monitoring Program (LTRMP) element Fish Procedures Manual. The original (1988) manual merged and expanded on ideas and recommendations related to Upper Mississippi River fish sampling presented in several early documents. The first revision to the manual was made in 1995 reflecting important protocol changes, such as the adoption of a stratified random sampling design. The 1995 procedures manual has been an important document through the years and has been cited in many reports and scientific manuscripts. The resulting data collected by the LTRMP fish component represent the largest dataset on fish within the Upper Mississippi River System (UMRS) with more than 44,000 collections of approximately 5.7 million fish. The goal of this revision of the procedures manual is to document changes in LTRMP fish sampling procedures since 1995. Refinements to sampling methods become necessary as monitoring programs mature. Possible refinements are identified through field experiences (e.g., sampling techniques and safety protocols), data analysis (e.g., planned and studied gear efficiencies and reallocations of effort), and technological advances (e.g., electronic data entry). Other changes may be required because of financial necessity (i.e., unplanned effort reductions). This version of the LTRMP fish monitoring manual describes the most current (2014) procedures of the LTRMP fish component.

  19. Bio-integrated electronics and sensor systems

    NASA Astrophysics Data System (ADS)

    Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.

    2013-05-01

    Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.

  20. Measuring Success in Obesity Prevention: A Synthesis of Health Promotion Switzerland's Long-Term Monitoring and Evaluation Strategy

    PubMed Central

    Ackermann, Günter; Kirschner, Michael; Guggenbühl, Lisa; Abel, Bettina; Klohn, Axel; Mattig, Thomas

    2015-01-01

    Aims Since 2007, Health Promotion Switzerland has implemented a national priority program for a healthy body weight. This article provides insight into the methodological challenges and results of the program evaluation. Methods Evaluation of the long-term program required targeted monitoring and evaluation projects addressing different outcome levels. The evaluation was carried out according to the Swiss Model for Outcome Classification (SMOC), a model designed to classify the effects of health promotion and prevention efforts. Results The results presented in this article emphasize both content and methods. The national program successfully achieved outcomes on many different levels within complex societal structures. The evaluation system built around the SMOC enabled assessment of program progress and the development of key indicators. However, it is not possible to determine definitively to what extent the national program helped stabilize the prevalence of obesity in Switzerland. Conclusion The model has shown its utility in providing a basis for evaluation and monitoring of the national program. Continuous analysis of data from evaluation and monitoring has made it possible to check the plausibility of suspected causal relationships as well as to establish an overall perspective and assessment of effectiveness supported by a growing body of evidence. PMID:25765161

  1. Re-establishing glacier monitoring in Kyrgyzstan and Uzbekistan, Central Asia

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Azisov, Erlan; Barandun, Martina; Huss, Matthias; Farinotti, Daniel; Gafurov, Abror; Hagg, Wilfried; Kenzhebaev, Ruslan; Kronenberg, Marlene; Machguth, Horst; Merkushkin, Alexandr; Moldobekov, Bolot; Petrov, Maxim; Saks, Tomas; Salzmann, Nadine; Schöne, Tilo; Tarasov, Yuri; Usubaliev, Ryskul; Vorogushyn, Sergiy; Yakovlev, Andrey; Zemp, Michael

    2017-10-01

    Glacier mass loss is among the clearest indicators of atmospheric warming. The observation of these changes is one of the major objectives of the international climate monitoring strategy developed by the Global Climate Observing System (GCOS). Long-term glacier mass balance measurements are furthermore the basis for calibrating and validating models simulating future runoff of glacierised catchments. This is essential for Central Asia, which is one of the driest continental regions of the Northern Hemisphere. In the highly populated regions, water shortage due to decreased glacierisation potentially leads to pronounced political instability, drastic ecological changes and endangered food security. As a consequence of the collapse of the former Soviet Union, however, many valuable glacier monitoring sites in the Tien Shan and Pamir Mountains were abandoned. In recent years, multinational actors have re-established a set of important in situ measuring sites to continue the invaluable long-term data series. This paper introduces the applied monitoring strategy for selected glaciers in the Kyrgyz and Uzbek Tien Shan and Pamir, highlights the existing and the new measurements on these glaciers, and presents an example for how the old and new data can be combined to establish multi-decadal mass balance time series. This is crucial for understanding the impact of climate change on glaciers in this region.

  2. Large-scale, long-term silvicultural experiments in the United States: historical overview and contemporary examples.

    Treesearch

    R. S. Seymour; J. Guldin; D. Marshall; B. Palik

    2006-01-01

    This paper provides a synopsis of large-scale, long-term silviculture experiments in the United States. Large-scale in a silvicultural context means that experimental treatment units encompass entire stands (5 to 30 ha); long-term means that results are intended to be monitored over many cutting cycles or an entire rotation, typically for many decades. Such studies...

  3. Monitoring Accreting X-ray Pulsars with the GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Wilson, Colleen A.; Finger, Mark H.; Patel, Sandeep K.; Bhat, P. Narayana; Preece, Robert D.; Meegan, Charles A.

    2007-01-01

    Accreting pulsars are exceptionally good laboratories for probing the detailed physics of accretion onto magnetic stars. While similar accretion flows also occur in other types of astrophysical systems, e.g. magnetic CVs, only neutron stars have a small enough moment of inertia for the accretion of angular momentum to result in measurable changes in spin-frequency in a timescale of days. Long-term monitoring of accreting pulsar spin-frequencies and fluxes was demonstrated with the Burst and Transient Source Experiment (BATSE) on the Compton Gamma Ray Observatory. Here we present sample results from BATSE, discuss measurement techniques appropriate for GBM, and estimate the expected GBM sensitivity.

  4. Long term pavement performance computed parameter : moisture content

    DOT National Transportation Integrated Search

    2008-01-01

    A study was conducted to compute in situ soil parameters based on time domain reflectometry (TDR) traces obtained from Long Term Pavement Performance (LTPP) test sections instrumented for the seasonal monitoring program (SMP). Ten TDR sensors were in...

  5. Hardware-software and algorithmic provision of multipoint systems for long-term monitoring of dynamic processes

    NASA Astrophysics Data System (ADS)

    Yakunin, A. G.; Hussein, H. M.

    2017-08-01

    An example of information-measuring systems for climate monitoring and operational control of energy resources consumption of the university campus that is functioning in the Altai State Technical University since 2009. The advantages of using such systems for studying various physical processes are discussed. General principles of construction of similar systems, their software, hardware and algorithmic support are considered. It is shown that their fundamental difference from traditional SCADA - systems is the use of databases for storing the results of the observation with a specialized data structure, and by preprocessing of the input signal for its compression. Another difference is the absence of clear criteria for detecting the anomalies in the time series of the observed process. The examples of algorithms that solve this problem are given.

  6. Four‐and‐one‐half years' experience in monitoring of reproducibility of an MR spectroscopy system — application of in vitro results to interpretation of in vivo data

    PubMed Central

    Wicher, Magdalena; Banasik, Tomasz; Jamroz, Ewa; Paprocka, Justyna; Kiettyka, Aleksandra; Sokót, Maria; Konopka, Marek

    2014-01-01

    The primary purpose of this work was to assess long‐term in vitro reproducibility of metabolite levels measured using 1H MRS (proton magnetic resonance spectroscopy). The secondary purpose was to use the in vitro results for interpretation of ‘H MRS in vivo spectra acquired from patients diagnosed with Canavan disease. 1H MRS measurements were performed in the period from April 2006 to September 2010. 118 short and 116 long echo spectra were acquired from a stable phantom during this period. Change‐point analysis of the in vitro N‐acetylaspartate levels was exploited in the computation of fT factor (ratio of the actual to the reference N‐acetylaspartate level normalized by the reciprocity principle). This coefficient was utilized in the interpretation of in vivo spectra analyzed using absolute reference technique. The monitored time period was divided into six time intervals based on short echo in vitro data (seven time intervals based on long echo in vitro data) characterized by fT coefficient ranging from 0.97 to 1.09 (based on short echo data) and from 1.0 to 1.11 (based on long echo data). Application of this coefficient to interpretation of in vivo spectra confirmed increased N‐acetylaspartate level in Canavan disease. Long‐term monitoring of an MRS system reproducibility, allowing for absolute referencing of metabolite levels, facilitates interpretation of metabolic changes in white matter disorders. PACS numbers: 87.19.lf, 87.61.Tg, 87.64.K‐, 87.64.kj PMID:24892353

  7. NASA's Current Earth Science Program

    NASA Technical Reports Server (NTRS)

    Charles, Leslie Bermann

    1998-01-01

    NASA's Earth science program is a scientific endeavor whose goal is to provide long-term understanding of the Earth as an integrated system of land, water, air and life. A highly developed scientific knowledge of the Earth system is necessary to understand how the environment affects humanity, and how humanity may be affecting the environment. The remote sensing technologies used to gather the global environmental data used in such research also have numerous practical applications. Current applications of remote sensing data demonstrate their practical benefits in areas such as the monitoring of crop conditions and yields, natural disasters and forest fires; hazardous waste clean up; and tracking of vector-borne diseases. The long-term availability of environmental data is essential for the continuity of important research and applications efforts. NASA's Earth observation program has undergone many changes in the recent past.

  8. Electronic Monitoring Systems to Assess Urinary Incontinence: A Health Technology Assessment

    PubMed Central

    Nevis, Immaculate; Kabali, Conrad; Anh Tu, Hong; Ekanayake, Samanthika; Mistry, Jigna; Wells, David; Ali, Arshia; Walter, Melissa; Higgins, Caroline

    2018-01-01

    Background Urinary incontinence is involuntary leakage of urine and can affect people of all ages. Incidence rises as people age, often because of reduced mobility or conditions affecting the nervous system, such as dementia and stroke. Urinary incontinence can be a distressing condition and can harm a person's physical, financial, social, and emotional well-being. People with urinary incontinence are susceptible to skin irritation, pressure sores, and urinary tract infections. Urinary incontinence is also associated with an increased risk of falls in older adults. This health technology assessment examined the effectiveness of, budget impact of, and patient values and preferences about electronic monitoring systems to assess urinary incontinence for residents of long-term care homes or geriatric hospital inpatients with complex conditions. Methods A clinical evidence review of the published clinical literature was conducted to June 9, 2017. Critical appraisal of the clinical evidence included assessment of risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria to reflect the certainty of the evidence. We calculated the funding required for an electronic urinary incontinence monitoring system in the first year of implementation (when facilities would buy the systems) and in subsequent years. We interviewed six people with urinary incontinence and two caregivers, who described ways urinary incontinence affected daily life. Results We included one observational study in the clinical review. Most of the 31 participants in the observational study were female (78%) and required high levels of care, primarily because of cognitive impairment. The quality of evidence for all outcomes was very low owing to potential risk of bias and indirectness. We are consequently uncertain about how electronic monitoring systems affect management of urinary incontinence. For patients living in long-term care homes who are eligible for the technology, we estimated that an electronic monitoring system to assess urinary incontinence would cost $6.4 million in the first year of implementation and $1.6 million in subsequent years. Patients said urinary incontinence reduced their independence and social life and adversely affected their quality of life. Incontinence made them embarrassed and reduced their self-esteem. Several respondents mentioned how expensive supplies to manage incontinence were. Conclusions The effectiveness of using the electronic monitoring system to assess urinary incontinence is uncertain because of the very low quality of the evidence. Introducing electronic monitoring systems would result in incremental costs, and there would be savings only if the systems substantially reduced incontinence. PMID:29844845

  9. Electronic Monitoring Systems to Assess Urinary Incontinence: A Health Technology Assessment.

    PubMed

    2018-01-01

    Urinary incontinence is involuntary leakage of urine and can affect people of all ages. Incidence rises as people age, often because of reduced mobility or conditions affecting the nervous system, such as dementia and stroke. Urinary incontinence can be a distressing condition and can harm a person's physical, financial, social, and emotional well-being. People with urinary incontinence are susceptible to skin irritation, pressure sores, and urinary tract infections. Urinary incontinence is also associated with an increased risk of falls in older adults.This health technology assessment examined the effectiveness of, budget impact of, and patient values and preferences about electronic monitoring systems to assess urinary incontinence for residents of long-term care homes or geriatric hospital inpatients with complex conditions. A clinical evidence review of the published clinical literature was conducted to June 9, 2017. Critical appraisal of the clinical evidence included assessment of risk of bias and the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria to reflect the certainty of the evidence.We calculated the funding required for an electronic urinary incontinence monitoring system in the first year of implementation (when facilities would buy the systems) and in subsequent years.We interviewed six people with urinary incontinence and two caregivers, who described ways urinary incontinence affected daily life. We included one observational study in the clinical review. Most of the 31 participants in the observational study were female (78%) and required high levels of care, primarily because of cognitive impairment. The quality of evidence for all outcomes was very low owing to potential risk of bias and indirectness. We are consequently uncertain about how electronic monitoring systems affect management of urinary incontinence.For patients living in long-term care homes who are eligible for the technology, we estimated that an electronic monitoring system to assess urinary incontinence would cost $6.4 million in the first year of implementation and $1.6 million in subsequent years.Patients said urinary incontinence reduced their independence and social life and adversely affected their quality of life. Incontinence made them embarrassed and reduced their self-esteem. Several respondents mentioned how expensive supplies to manage incontinence were. The effectiveness of using the electronic monitoring system to assess urinary incontinence is uncertain because of the very low quality of the evidence. Introducing electronic monitoring systems would result in incremental costs, and there would be savings only if the systems substantially reduced incontinence.

  10. Tuning Into Brown Dwarfs: Long-Term Radio Monitoring of Two Very Low Mass Dwarfs

    NASA Astrophysics Data System (ADS)

    Van Linge, Russell; Burgasser, Adam J.; Melis, Carl; Williams, Peter K. G.

    2017-01-01

    The very lowest-mass (VLM) stars and brown dwarfs, with effective temperatures T < 3000 K, exhibit mixed magnetic activity trends, with H-alpha and X-ray emission that declines rapidly beyond type M7/M8, but persistent radio emission in roughly 10-20% of sources. The dozen or so VLM radio emitters known show a broad range of emission characteristics and time-dependent behavior, including steady persistent emission, periodic oscillations, periodic polarized bursts, and aperiodic flares. Understanding the evolution of these variability patterns, and in particular whether they undergo solar-like cycles, requires long-term monitoring. We report the results of a long-term JVLA monitoring program of two magnetically-active VLM dwarf binaries, the young M7 2MASS 1314+1320AB and older L5 2MASS 1315-2649AB. On the bi-weekly cadence, 2MASS 1314 continues to show variability by revealing regular flaring while 2MASS 1315 continues to be a quiescent emitter. On the daily time scale, both sources show a mean flux density that can vary significantly just over a few days. These results suggest long-term radio behavior in radio-emitting VLM dwarfs is just as diverse and complex as short-term behavior.

  11. On estimating the accuracy of monitoring methods using Bayesian error propagation technique

    NASA Astrophysics Data System (ADS)

    Zonta, Daniele; Bruschetta, Federico; Cappello, Carlo; Zandonini, R.; Pozzi, Matteo; Wang, Ming; Glisic, B.; Inaudi, D.; Posenato, D.; Zhao, Y.

    2014-04-01

    This paper illustrates an application of Bayesian logic to monitoring data analysis and structural condition state inference. The case study is a 260 m long cable-stayed bridge spanning the Adige River 10 km north of the town of Trento, Italy. This is a statically indeterminate structure, having a composite steel-concrete deck, supported by 12 stay cables. Structural redundancy, possible relaxation losses and an as-built condition differing from design, suggest that long-term load redistribution between cables can be expected. To monitor load redistribution, the owner decided to install a monitoring system which combines built-on-site elasto-magnetic and fiber-optic sensors. In this note, we discuss a rational way to improve the accuracy of the load estimate from the EM sensors taking advantage of the FOS information. More specifically, we use a multi-sensor Bayesian data fusion approach which combines the information from the two sensing systems with the prior knowledge, including design information and the outcomes of laboratory calibration. Using the data acquired to date, we demonstrate that combining the two measurements allows a more accurate estimate of the cable load, to better than 50 kN.

  12. Time Analyzer for Time Synchronization and Monitor of the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Cole, Steven; Gonzalez, Jorge, Jr.; Calhoun, Malcolm; Tjoelker, Robert

    2003-01-01

    A software package has been developed to measure, monitor, and archive the performance of timing signals distributed in the NASA Deep Space Network. Timing signals are generated from a central master clock and distributed to over 100 users at distances up to 30 kilometers. The time offset due to internal distribution delays and time jitter with respect to the central master clock are critical for successful spacecraft navigation, radio science, and very long baseline interferometry (VLBI) applications. The instrument controller and operator interface software is written in LabView and runs on the Linux operating system. The software controls a commercial multiplexer to switch 120 separate timing signals to measure offset and jitter with a time-interval counter referenced to the master clock. The offset of each channel is displayed in histogram form, and "out of specification" alarms are sent to a central complex monitor and control system. At any time, the measurement cycle of 120 signals can be interrupted for diagnostic tests on an individual channel. The instrument also routinely monitors and archives the long-term stability of all frequency standards or any other 1-pps source compared against the master clock. All data is stored and made available for

  13. The value of long-term monitoring in the development of ground-water-flow models

    USGS Publications Warehouse

    Feinstein, Daniel T.; Hart, David J.; Krohelski, James T.

    2004-01-01

    As environmental issues have come to the forefront of public concern, so has the awareness of the importance of ground water in the overall water cycle and as a source of the Nation’s drinking water. Heightened interest has spawned a host of scientific enterprises (Taylor and Alley, 2001). Some activities are directed toward collection of water-level data and related information to monitor the physical and chemical state of the resource. Other activities are directed at interpretive studies undertaken, for example, to optimize the location of new water-supply wells or to protect rivers and lakes fed by ground water. An important type of interpretive study is the computer ground-water-flow model that inte- grates field data in a mathematical framework. Long-term, systematic collection of hydro- logic data is crucial to the construction and testing of ground-water models so that they can reproduce the evolution of flow systems and forecast future conditions. 

  14. A Power-Efficient Bio-Potential Acquisition Device with DS-MDE Sensors for Long-Term Healthcare Monitoring Applications

    PubMed Central

    Chang, Chia-Lin; Chang, Chih-Wei; Huang, Hong-Yi; Hsu, Chen-Ming; Huang, Chia-Hsuan; Chiou, Jin-Chern; Luo, Ching-Hsing

    2010-01-01

    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery. PMID:22399907

  15. A power-efficient bio-potential acquisition device with DS-MDE sensors for long-term healthcare monitoring applications.

    PubMed

    Chang, Chia-Lin; Chang, Chih-Wei; Huang, Hong-Yi; Hsu, Chen-Ming; Huang, Chia-Hsuan; Chiou, Jin-Chern; Luo, Ching-Hsing

    2010-01-01

    This work describes a power-efficient bio-potential acquisition device for long-term healthcare applications that is implemented using novel microelectromechanical dry electrodes (MDE) and a low power bio-potential processing chip. Using micromachining technology, an attempt is also made to enhance the sensing reliability and stability by fabricating a diamond-shaped MDE (DS-MDE) that has a satisfactory self-stability capability and superior electric conductivity when attached onto skin without any extra skin tissue injury technology. To acquire differential bio-potentials such as ECG signals, the proposed processing chip fabricated in a standard CMOS process has a high common mode rejection ratio (C.M.R.R.) differential amplifier and a 12-bit analog-to-digital converter (ADC). Use of the proposed system and integrate simple peripheral commercial devices can obtain the ECG signal efficiently without additional skin tissue injury and ensure continuous monitoring more than 70 hours with a 400 mAh battery.

  16. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Battista, L.

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  17. A new system for continuous and remote monitoring of patients receiving home mechanical ventilation.

    PubMed

    Battista, L

    2016-09-01

    Home mechanical ventilation is the treatment of patients with respiratory failure or insufficiency by means of a mechanical ventilator at a patient's home. In order to allow remote patient monitoring, several tele-monitoring systems have been introduced in the last few years. However, most of them usually do not allow real-time services, as they have their own proprietary communication protocol implemented and some ventilation parameters are not always measured. Moreover, they monitor only some breaths during the whole day, despite the fact that a patient's respiratory state may change continuously during the day. In order to reduce the above drawbacks, this work reports the development of a novel remote monitoring system for long-term, home-based ventilation therapy; the proposed system allows for continuous monitoring of the main physical quantities involved during home-care ventilation (e.g., differential pressure, volume, and air flow rate) and is developed in order to allow observations of different remote therapy units located in different places of a city, region, or country. The developed remote patient monitoring system is able to detect various clinical events (e.g., events of tube disconnection and sleep apnea events) and has been successfully tested by means of experimental tests carried out with pulmonary ventilators typically used to support sick patients.

  18. Superfund record of decision amendment (EPA Region 5): H. Brown Company, Inc., Grand Rapids, MI, February 25, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This decision document amends the September 29, 1995, Record of Decision (ROD) Amendment for the H. Brown Co., Inc. site, in Walker, Michigan. The major components of the selected remedy include: Consolidating contaminated surface soil and sediment requiring cleanup onto the H. Brown property (2200 Turner Avenue N.W.); Redevelopment of the site, by private parties, with warehousing facilities constructed above the contaminated soil; A cover system comprised of clean fill to develop appropriate grades and elevations, concrete slab foundations, asphalt parking areas, and landscaped areas; Long-term maintenance of the cover system to ensure that the cover will continue to preventmore » direct contact with contaminated soil and minimize infiltration of precipitation; Long-term monitoring of the shallow and intermediate aquifers to monitor the effectiveness of the remedy; Monitoring and/or treatment of landfill gas; Restricting the use of the land and the groundwater; Demolishing on-site buildings to accommodate redevelopment; and Cleanup standards for soil will remain the same as in the 1992 ROD. The purpose of this ROD Amendment is to facilitate the re-development of the H. Brown Co., Inc. Site, and if re-development does not occur or proves to be unsuccessful then the remedy selected in the September 29, 1995 ROD Amendment will be implemented.« less

  19. Developing an operational rangeland water requirement satisfaction index

    USGS Publications Warehouse

    Senay, Gabriel B.; Verdin, James P.; Rowland, James

    2011-01-01

    Developing an operational water requirement satisfaction index (WRSI) for rangeland monitoring is an important goal of the famine early warning systems network. An operational WRSI has been developed for crop monitoring, but until recently a comparable WRSI for rangeland was not successful because of the extremely poor performance of the index when based on published crop coefficients (K c) for rangelands. To improve the rangeland WRSI, we developed a simple calibration technique that adjusts the K c values for rangeland monitoring using long-term rainfall distribution and reference evapotranspiration data. The premise for adjusting the K c values is based on the assumption that a viable rangeland should exhibit above-average WRSI (values >80%) during a normal year. The normal year was represented by a median dekadal rainfall distribution (satellite rainfall estimate from 1996 to 2006). Similarly, a long-term average for potential evapotranspiration was used as input to the famine early warning systems network WRSI model in combination with soil-water-holding capacity data. A dekadal rangeland WRSI has been operational for east and west Africa since 2005. User feedback has been encouraging, especially with regard to the end-of-season WRSI anomaly products that compare the index's performance to ‘normal’ years. Currently, rangeland WRSI products are generated on a dekadal basis and posted for free distribution on the US Geological Survey early warning website at http://earlywarning.usgs.gov/adds/

  20. Fiber optic sensing subsystem for temperature monitoring in space in-flight applications

    NASA Astrophysics Data System (ADS)

    Abad, S.; Araujo, F.; Pinto, F.; González Torres, J.; Rodriguez, R.; Moreno, M. A.

    2017-11-01

    Fiber Optic Sensor (FOS) technology presents long recognized advantages which enable to mitigate deficient performance of conventional technology in hazard-environments common in spacecraft monitoring applications, such as: multiplexing capability, immunity to EMI/RFI, remote monitoring, small size and weight, electrical insulation, intrinsically safe operation, high sensibility and long term reliability. A key advantage is also the potential reduction of Assembly Integration and Testing (AIT) time achieved by the multiplexing capability and associated reduced harness. In the frame of the ESA's ARTES5.2 and FLPP-Phase 3 programs, Airbus DS-Crisa and FiberSensing are developing a Fiber Bragg Grating (FBG) - based temperature monitoring system for application in space telecommunication platforms and launchers. The development encompasses both the interrogation unit and the FBG temperature sensors and associated fiber harness. In parallel Airbus DS - Crisa is developing a modular RTU (RTU2015) to provide maximum flexibility and mission-customization capability for RTUs maintaining the ESA's standards at I/O interface level [1]. In this context, the FBG interrogation unit is designed as a module to be compatible, in both physical dimensions and electrical interfaces aspects, with the Electrical Internal Interface Bus of the RTU2015, thus providing the capability for a hybrid electrical and optical monitoring system.

  1. Cooperative water-resources monitoring in the St. Clair River/Lake St. Clair Basin, Michigan

    USGS Publications Warehouse

    Rheaume, Stephen J.; Neff, Brian P.; Blumer, Stephen P.

    2007-01-01

    As part of the Lake St. Clair Regional Monitoring Project, this report describes numerous cooperative water-resources monitoring efforts conducted in the St. Clair River/Lake St. Clair Basin over the last 100 years. Cooperative monitoring is a tool used to observe and record changes in water quantity and quality over time. This report describes cooperative efforts for monitoring streamflows and flood magnitudes, past and present water-quality conditions, significant human-health threats, and flow-regime changes that are the result of changing land use. Water-resources monitoring is a long-term effort that can be made cost-effective by leveraging funds, sharing data, and avoiding duplication of effort. Without long-term cooperative monitoring, future water-resources managers and planners may find it difficult to establish and maintain public supply, recreational, ecological, and esthetic water-quality goals for the St. Clair River/Lake St. Clair Basin.

  2. Optical storage media data integrity studies

    NASA Technical Reports Server (NTRS)

    Podio, Fernando L.

    1994-01-01

    Optical disk-based information systems are being used in private industry and many Federal Government agencies for on-line and long-term storage of large quantities of data. The storage devices that are part of these systems are designed with powerful, but not unlimited, media error correction capacities. The integrity of data stored on optical disks does not only depend on the life expectancy specifications for the medium. Different factors, including handling and storage conditions, may result in an increase of medium errors in size and frequency. Monitoring the potential data degradation is crucial, especially for long term applications. Efforts are being made by the Association for Information and Image Management Technical Committee C21, Storage Devices and Applications, to specify methods for monitoring and reporting to the user medium errors detected by the storage device while writing, reading or verifying the data stored in that medium. The Computer Systems Laboratory (CSL) of the National Institute of Standard and Technology (NIST) has a leadership role in the development of these standard techniques. In addition, CSL is researching other data integrity issues, including the investigation of error-resilient compression algorithms. NIST has conducted care and handling experiments on optical disk media with the objective of identifying possible causes of degradation. NIST work in data integrity and related standards activities is described.

  3. Humans in earth orbit and planetary exploration missions; IAA Man in Space Symposium, 8th, Tashkent, Uzbek SSR, Sept. 29-Oct. 3, 1990, Selection of Papers

    NASA Technical Reports Server (NTRS)

    Grigor'ev, A. I. (Editor); Klein, K. E. (Editor); Nicogossian, A. (Editor)

    1991-01-01

    The present conference on findings from space life science investigations relevant to long-term earth orbit and planetary exploration missions, as well as considerations for future research projects on these issues, discusses the cardiovascular system and countermeasures against its deterioration in the microgravity environment, cerebral and sensorimotor functions, findings to date in endocrinology and immunology, the musculoskeletal system, and health maintenance and medical care. Also discussed are radiation hazards and protective systems, life-support and habitability factors, and such methodologies and equipment for long space mission research as the use of animal models, novel noninvasive techniques for space crew health monitoring, and an integrated international aerospace medical information system.

  4. Global, long-term surface reflectance records from Landsat

    USDA-ARS?s Scientific Manuscript database

    Global, long-term monitoring of changes in Earth’s land surface requires quantitative comparisons of satellite images acquired under widely varying atmospheric conditions. Although physically based estimates of surface reflectance (SR) ultimately provide the most accurate representation of Earth’s s...

  5. Long term monitoring of broken and seated pavements : executive summary.

    DOT National Transportation Integrated Search

    2002-05-01

    This report presents details of a study conducted by the University of Cincinnati (UC), in association : with the Ohio Department of Transportation (ODOT), to evaluate the long term performance of asphalt : overlays on broken and seated (B/S) concret...

  6. Aquifer Thermal Energy Storage in the US

    NASA Astrophysics Data System (ADS)

    Kannberg, L. D.

    1985-06-01

    DOE has funded investigation of Aquifer Thermal Energy Storage (ATES) since 1975. The scope of the ATES investigation has encompassed numerical modeling, field testing, economic analyses, and evaluation of institutional issues. ATES has received the bulk of the attention because of its widespread potential in the US. US efforts are now concentrated on a high temperature (up to 150C) ATES field test on the St. Paul campus of the University of Minnesota. Four short-term test cycles and the first of two long-term test cycles have been completed at this site. Utilization of chill ATES to meet summer air conditioning demands has been monitored at two operating sites in Tuscaloosa, Alabama. The systems utilize a cooling tower to directly chill groundwater pumped from a water table aquifer for storage in the same aquifer. The first of the two systems has exhibited relatively poor performance. More comprehensive monitoring has recently been undertaken at another site.

  7. Telefetalcare: a first prototype of a wearable fetal electrocardiograph.

    PubMed

    Fanelli, A; Signorini, M G; Ferrario, M; Perego, P; Piccini, L; Andreoni, G; Magenes, G

    2011-01-01

    Fetal heart rate monitoring is fundamental to infer information about fetal health state during pregnancy. The cardiotocography (CTG) is the most common antepartum monitoring technique. Abdominal ECG recording represents the most valuable alternative to cardiotocography, as it allows passive, non invasive and long term fetal monitoring. Unluckily fetal ECG has low SNR and needs to be extracted from abdominal recordings using ad hoc algorithms. This work describes a prototype of a wearable fetal ECG electrocardiograph. The system has flat band frequency response between 1-60 Hz and guarantees good signal quality. It was tested on pregnant women between the 30(th) and 34(th) gestational week. Several electrodes configurations were tested, in order to identify the best solution. Implementation of a simple algorithm for FECG extraction permitted the reliable detection of maternal and fetal QRS complexes. The system will allow continuative and deep screening of fetal heart rate, introducing the possibility of home fetal monitoring.

  8. Closed loop tracked Doppler optical coherence tomography based heart monitor for the Drosophila melanogaster larvae.

    PubMed

    Zurauskas, Mantas; Bradu, Adrian; Ferguson, Daniel R; Hammer, Daniel X; Podoleanu, Adrian

    2016-03-01

    This paper presents a novel instrument for biosciences, useful for studies of moving embryos. A dual sequential imaging/measurement channel is assembled via a closed-loop tracking architecture. The dual channel system can operate in two regimes: (i) single-point Doppler signal monitoring or (ii) fast 3-D swept source OCT imaging. The system is demonstrated for characterizing cardiac dynamics in Drosophila melanogaster larva. Closed loop tracking enables long term in vivo monitoring of the larvae heart without anesthetic or physical restraint. Such an instrument can be used to measure subtle variations in the cardiac behavior otherwise obscured by the larvae movements. A fruit fly larva (top) was continuously tracked for continuous remote monitoring. A heartbeat trace of freely moving larva (bottom) was obtained by a low coherence interferometry based doppler sensing technique. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Quantifiable long-term monitoring on parks and nature preserves

    USGS Publications Warehouse

    Beck, Scott; Moorman, Christopher; DePerno, Christopher S.; Simons, Theodore R.

    2013-01-01

    Herpetofauna have declined globally, and monitoring is a useful approach to document local and long-term changes. However, monitoring efforts often fail to account for detectability or follow standardized protocols. We performed a case study at Hemlock Bluffs Nature Preserve in Cary, NC to model occupancy of focal species and demonstrate a replicable long-term protocol useful to parks and nature preserves. From March 2010 to 2011, we documented occupancy of Ambystoma opacum(Marbled Salamander), Plethodon cinereus (Red-backed Salamander), Carphophis amoenus (Eastern Worm Snake), and Diadophis punctatus (Ringneck Snake) at coverboard sites and estimated breeding female Ambystoma maculatum (Spotted Salamander) abundance via dependent double-observer egg-mass counts in ephemeral pools. Temperature influenced detection of both Marbled and Red-backed Salamanders. Based on egg-mass data, we estimated Spotted Salamander abundance to be between 21 and 44 breeding females. We detected 43 of 53 previously documented herpetofauna species. Our approach demonstrates a monitoring protocol that accounts for factors that influence species detection and is replicable by parks or nature preserves with limited resources.

  10. A comparison of methods to assess long-term changes in Sonoran Desert vegetation

    USGS Publications Warehouse

    Munson, S.M.; Webb, R.H.; Hubbard, J.A.

    2011-01-01

    Knowledge about the condition of vegetation cover and composition is critical for assessing the structure and function of ecosystems. To effectively quantify the impacts of a rapidly changing environment, methods to track long-term trends of vegetation must be precise, repeatable, and time- and cost-efficient. Measuring vegetation cover and composition in arid and semiarid regions is especially challenging because vegetation is typically sparse, discontinuous, and individual plants are widely spaced. To meet the goal of long-term vegetation monitoring in the Sonoran Desert and other arid and semiarid regions, we determined how estimates of plant species, total vegetation, and soil cover obtained using a widely-implemented monitoring protocol compared to a more time- and resource-intensive plant census. We also assessed how well this protocol tracked changes in cover through 82 years compared to the plant census. Results from the monitoring protocol were comparable to those from the plant census, despite low and variable plant species cover. Importantly, this monitoring protocol could be used as a rapid, "off-the shelf" tool for assessing land degradation (or desertification) in arid and semiarid ecosystems.

  11. Life Sciences and Space Research 25 (2) Radiation Biology: Topical Meeting of the COSPAR Interdisciplinary Scientific Commission F of the COSPAR 29th Plenary Meeting, Washington, DC, Aug. 28-Sep. 5, 1992

    NASA Technical Reports Server (NTRS)

    Horneck, G. (Editor); Buecher, H. (Editor); Cox, A. (Editor); Todd, P. (Editor); Yang, T. C. (Editor); Worgul, B. V. (Editor); Donlon, M. (Editor); Atwell, W. (Editor); Shea, M. A. (Editor); Smart, D. F. (Editor)

    1994-01-01

    Papers presented on long-term exposure to ionizing radiation, obtained from the Long Duration Exposure Facility, included radiation monitoring, radiation effects, and dosimetry. Mechanisms of biological systems, especially cells, under ionizing radiation and relative biological effectiveness were compared. The role of HZE particles as agents of mutation were reported from plant, animal, and in vitro models. Data on known and predicted effects of cosmic rays and other solar radiation on biological systems included differences related to Linear Energy Transfer and heavy ion particles.

  12. 40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...

  13. 40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...

  14. 40 CFR 86.107-96 - Sampling and analytical systems; evaporative emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... profile throughout the test, and an average tolerance of 2.0 °F over the duration of the test (where the... about the desired long-term ambient temperature profile. Interior surface temperatures shall not be less... monitor the atmosphere within the enclosure (a heated FID (HFID)(235°±15 °F (113±8 °C)) is recommended for...

  15. An approach for the long-term 30-m land surface snow-free albedo retrieval from historic Landsat surface reflectance and MODIS-based a priori anisotropy knowledge

    USDA-ARS?s Scientific Manuscript database

    Land surface albedo has been recognized by the Global Terrestrial Observing System (GTOS) as an essential climate variable crucial for accurate modeling and monitoring of the Earth’s radiative budget. While global climate studies can leverage albedo datasets from MODIS, VIIRS, and other coarse-reso...

  16. An eco-hydrological project on Turkey Creek watershed, South Carolina, U.S.A.

    Treesearch

    Devendra Amatya; Carl Trettin

    2008-01-01

    The low-gradient, forested wetland landscape of the southeastern United States’ Coastal Plain represents an important eco-hydrologic system, yet there is a very little information available on the region’s ecological, hydrological and biogeochemical processes. Long-term hydrologic monitoring can provide the information needed to understand basic hydrologic processes...

  17. A plan for the North American Bat Monitoring Program (NABat)

    USGS Publications Warehouse

    Loeb, Susan C.; Rodhouse, Thomas J.; Ellison, Laura E.; Lausen, Cori L.; Reichard, Jonathan D.; Irvine, Kathryn M.; Ingersoll, Thomas E.; Coleman, Jeremy; Thogmartin, Wayne E.; Sauer, John R.; Francis, Charles M.; Bayless, Mylea L.; Stanley, Thomas R.; Johnson, Douglas H.

    2015-01-01

    The purpose of the North American Bat Monitoring Program (NABat) is to create a continent-wide program to monitor bats at local to rangewide scales that will provide reliable data to promote effective conservation decisionmaking and the long-term viability of bat populations across the continent. This is an international, multiagency program. Four approaches will be used to gather monitoring data to assess changes in bat distributions and abundances: winter hibernaculum counts, maternity colony counts, mobile acoustic surveys along road transects, and acoustic surveys at stationary points. These monitoring approaches are described along with methods for identifying species recorded by acoustic detectors. Other chapters describe the sampling design, the database management system (Bat Population Database), and statistical approaches that can be used to analyze data collected through this program.

  18. Long-term monitoring of streambed sedimentation and scour in a dynamic stream based on streambed temperature time series.

    PubMed

    Sebok, Eva; Engesgaard, Peter; Duque, Carlos

    2017-08-24

    This study presented the monitoring and quantification of streambed sedimentation and scour in a stream with dynamically changing streambed based on measured phase and amplitude of the diurnal signal of sediment temperature time series. With the applied method, changes in streambed elevation were estimated on a sub-daily scale with 2-h intervals without continuous maintenance of the measurement system, thus making both high temporal resolution and long-term monitoring of streambed elevations possible. Estimates of streambed elevation showed that during base flow conditions streambed elevation fluctuates by 2-3 cm. Following high stream stages, scouring of 2-5 cm can be observed even at areas with low stream flow and weak currents. Our results demonstrate that weather variability can induce significant changes in the stream water and consequently sediment temperatures influencing the diurnal temperature signal in such an extent that the sediment thickness between paired temperature sensors were overestimated by up to 8 cm. These observations have significant consequences on the design of vertical sensor spacing in high-flux environments and in climates with reduced diurnal variations in air temperature.

  19. Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet.

    PubMed

    Georgiev, Georgi T; Butler, James J

    2007-11-10

    Long-term calibration monitoring of the bidirectional reflectance distribution function (BRDF) of Spectralon diffusers in the air-ultraviolet is presented. Four Spectralon diffusers were monitored in this study. Three of the diffusers, designated as H1, H2, and H3, were used in the prelaunch radiance calibration of the Solar Backscatter Ultraviolet/2 (SBUV/2) satellite instruments on National Oceanic and Atmospheric Administration (NOAA) 14 and 16. A fourth diffuser, designated as the 400 diffuser, was used in the prelaunch calibration of the Ozone Mapping and Profiler Suite (OMPS) instrument scheduled for initial flight in 2009 on the National Polar Orbiting Environmental Satellite System Preparatory Project. The BRDF data of this study were obtained between 1994 and 2005 using the scatterometer located in the National Aeronautics and Space Administration Goddard Space Flight Center Diffuser Calibration Laboratory. The diffusers were measured at 13 wavelengths between 230 and 425 nm at the incident and scatter angles used in the prelaunch calibrations of SBUV/2 and OMPS. Spectral features in the BRDF of Spectralon are also discussed. The comparison shows how the air-ultraviolet BRDF of these Spectralon samples changed over time under clean room deployment conditions.

  20. Real-Time N2O Gas Detection System for Agricultural Production Using a 4.6-μm-Band Laser Source Based on a Periodically Poled LiNbO3 Ridge Waveguide

    PubMed Central

    Tokura, Akio; Asobe, Masaki; Enbutsu, Koji; Yoshihara, Toshihiro; Hashida, Shin-nosuke; Takenouchi, Hirokazu

    2013-01-01

    This article describes a gas monitoring system for detecting nitrous oxide (N2O) gas using a compact mid-infrared laser source based on difference-frequency generation in a quasi-phase-matched LiNbO3 waveguide. We obtained a stable output power of 0.62 mW from a 4.6-μm-band continuous-wave laser source operating at room temperature. This laser source enabled us to detect atmospheric N2O gas at a concentration as low as 35 parts per billion. Using this laser source, we constructed a new real-time in-situ monitoring system for detecting N2O gas emitted from potted plants. A few weeks of monitoring with the developed detection system revealed a strong relationship between nitrogen fertilization and N2O emission. This system is promising for the in-situ long-term monitoring of N2O in agricultural production, and it is also applicable to the detection of other greenhouse gases. PMID:23921829

Top