Science.gov

Sample records for longitudinal aerodynamic characteristics

  1. Computer programs for calculating the static longitudinal aerodynamic characteristics of wing-body-tail configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Goodwin, F. K.; Dillenius, M. F. E.; Kline, D. M.

    1975-01-01

    Four computer programs developed to calculate the longitudinal aerodynamic characteristics of wing-body and wing-body-tail combinations are presented. The R1307 program is based on a linear method and is limited to the small range of angles of attack for which the lift and moment characteristics of wings and bodies are linear with angle of attack. The CRSFLW program is based on a crossflow method of predicting the forces and moments on bodies alone or wing-body combinations over a large angle of attack range. The SUBSON program predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at subsonic speeds and at angles of attack for which symmetrical pairs of vortices are shed from the body nose and the leading and side edges of the lifting surfaces. Program SUPSON predicts the longitudinal aerodynamic characteristics of wing-body-tail combinations at supersonic speeds in the same angle-of-attack range. A description of the use of each program, instructions for preparation of input, a description of the output, program listings, and sample cases for each program are included.

  2. Longitudinal aerodynamic characteristics of an externally blown flap powered lift model with several propulsive system simulators

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1974-01-01

    An investigation of a four-engine externally blown flap (EBF) powered-lift transport was conducted in the Langley V/STOL tunnel to determine the effect of different engine configurations on the longitudinal aerodynamic characteristics. The different engine configurations were simulated by five different sets of propulsion simulators on a single aircraft model. Longitudinal aerodynamic data were obtained for each simulator on each flap deflection corresponding to cruise, take-off, and landing at a range of angles of attack and various thrust coefficients. The bypass ratio (BPR) 6.2 engine simulator provided the best lift and drag characteristics of the five simulators tested in the take-off and landing configurations. The poor performance of the BPR 10.0 and 3.2 engine simulators can be attributed to a mismatch of engine-model sizes or poor engine location and orientation. Isolated engine wake surveys indicated that a reasonable assessment of the aerodynamic characteristics of an engine-wing-flap configuration could be made if qualitative information were available which defined the engine wake characteristics. All configurations could be trimmed easily with relatively small horizontal-tail incidence angles; however, the take-off landing configurations required a high-lift tail.

  3. Effect of symmetrical vortex shedding on the longitudinal aerodynamic characteristics of wing-body-tail combinations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Nielsen, J. N.

    1975-01-01

    An engineering prediction method for determining the longitudinal aerodynamic characteristics of wing-body-tail combinations is developed. The method includes the effects of nonlinear aerodynamics of components and the interference between components. Nonlinearities associated with symmetrical vortex shedding from the nose of the body are considered as well as the nonlinearities associated with the separation vortices from the leading edges and side edges of the lifting surfaces. The wing and tail characteristics are calculated using lifting surface theories which include effects of incidence, camber, twist, and induced velocities from external sources of disturbance such as bodies and vortices. The lifting surface theories calculate the distribution of leading edge and side edge suction which is converted to vortex lift using the Polhamus suction analogy. Correlation curves are developed to determine the fraction of the theoretical suction force which is converted into vortex lift. The prediction method is compared with experimental data on a variety of aircraft configurations to assess the accuracy and limitations of the method.

  4. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1979-01-01

    An investigation has been carried out to develop an engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blown (USB) high lift devices. Potential flow models of the lifting surfaces and the jet wakes are combined to calculate the induced interference of the engine wakes on the wing and flaps. The wing may have an arbitrary planform with camber and twist and multiple trailing edge flaps. The jet wake model has a rectangular cross section over its entire length and it is positioned such that the wake is tangent to the upper surfaces of the wing and flaps. Comparisons of measured and predicted pressure distributions, spanload distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are presented for a wide range of thrust coefficients and flap deflection angles.

  5. Prediction of longitudinal aerodynamic characteristics of STOL configurations with externally blown high lift devices

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1976-01-01

    A theoretical method has been developed to predict the longitudinal aerodynamic characteristics of engine-wing-flap combinations with externally blown flaps (EBF) and upper surface blowing (USB) high lift devices. Potential flow models of the lifting surfaces and the jet wake are combined to calculate the induced interference of the engine wakes on the lifting surfaces. The engine wakes may be circular, elliptic, or rectangular cross-sectional jets, and the lifting surfaces are comprised of a wing with multiple-slotted trailing-edge flaps or a deflected trailing-edge Coanda surface. Results are presented showing comparisons of measured and predicted forces, pitching moments, span-load distributions, and flow fields.

  6. Subsonic longitudinal and lateral aerodynamic characteristics for a systematic series of strake-wing configurations

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    1979-01-01

    A systematic wind tunnel study was conducted in the Langley 7 by 10 foot high speed tunnel to help establish a parametric data base of the longitudinal and lateral aerodynamic characteristics for configurations incorporating strake-wing geometries indicative of current and proposed maneuvering aircraft. The configurations employed combinations of strakes with reflexed planforms having exposed spans of 10%, 20%, and 30% of the reference wing span and wings with trapezoidal planforms having leading edge sweep angles of approximately 30, 40, 44, 50, and 60 deg. Tests were conducted at Mach numbers ranging from 0.3 to 0.8 and at angles of attack from approximately -4 to 48 deg at zero sideslip.

  7. Calculation of the longitudinal aerodynamic characteristics of wing-flap configurations with externally blown flaps

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.

    1976-01-01

    An analytical method for predicting the longitudinal aerodynamic characteristics of externally blown flap configurations is described. Two potential flow models make up the prediction method: a wing and flap lifting-surface model and a turbofan engine wake model. A vortex-lattice lifting-surface method is used to represent the wing and multiple-slotted trailing-edge flaps. The jet wake is represented by a series of closely spaced vortex rings normal to a centerline which is free to move to conform to the local flow field. The two potential models are combined in an iterative fashion to predict the jet wake interference effects on a typical EBF configuration. Comparisons of measured and predicted span-load distributions, individual surface forces, forces and moments on the complete configuration, and flow fields are included.

  8. Effect of wing design on the longitudinal aerodynamic characteristics of a wing-body model at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.; Huffman, J. K.

    1972-01-01

    An investigation has been conducted to determine the effects of wing camber and twist on the longitudinal aerodynamic characteristics of a wingbody configuration. Three wings were used each having the same planform (aspect ratio of 2.5 and leading-edge sweep angle of 44 deg.) but differing in amounts of camber and twist (wing design lift coefficient). The wing design lift coefficients were 0, 0.35, and 0.70. The investigation was conducted over a Mach number range from 0.20 to 0.70 at angles of attack up to about 22 deg. The effect of wing strakes on the aerodynamic characteristics of the cambered wings was also studied. A comparison of the experimentally determined aerodynamic characteristics with theoretical estimates is also included.

  9. Calculation of the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Spangler, S. B.

    1978-01-01

    An engineering method for predicting the longitudinal aerodynamic characteristics of wing-flap configurations with upper surface blowing (USB) was developed. Potential flow models were incorporated into the prediction method: a wing and flap lifting surface model and a jet wake model. The wing-flap model used a vortex-lattice to represent the wing and flaps. The wing had an arbitrary planform and camber and twist, and the flap system was made up of a Coanda flap and other flap segments of arbitrary size. The jet wake model consisted of a series of closely spaced rectangular vortex rings. The wake was positioned such that it was tangent to the upper surface of the wing and flap between the exhaust nozzle and the flap trailing edge. It was specified such that the mass, momentum, and spreading rates were similar to actual USB jet wakes. Comparisons of measured and predicted pressure distributions, span load distributions, and total lift and pitching-moment coefficients on swept and unswept USB configurations are included. A wide range of thrust coefficients and flap deflection angles were considered at angles of attack up to the onset of stall.

  10. Longitudinal aerodynamics of a low-wing lift-fan transport including hover characteristics in and out of ground effect

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Gentry, G. L., Jr.

    1975-01-01

    A wind-tunnel investigation was conducted in the Langley V/STOL tunnel to determine the longitudinal aerodynamic characteristics of a six-fan, tip-driven (remote) lift-fan VTOL transport throughout transition. The large midspan lift-fan pods and cruise fans were removed to determine their influence on the stability and control of the configuration. Data were obtained in the hovering mode for ranges of model height above ground. The data are presented without analysis or discussion.

  11. Low-speed longitudinal aerodynamic characteristics of a flat-plate planform model of an advanced fighter configuration

    NASA Technical Reports Server (NTRS)

    Mcgrath, Brian E.; Neuhart, Dan H.; Gatlin, Gregory M.; Oneil, Pat

    1994-01-01

    A flat-plate wind tunnel model of an advanced fighter configuration was tested in the NASA LaRC Subsonic Basic Research Tunnel and the 16- by 24-inch Water Tunnel. The test objectives were to obtain and evaluate the low-speed longitudinal aerodynamic characteristics of a candidate configuration for the integration of several new innovative wing designs. The flat plate test allowed for the initial evaluation of the candidate planform and was designated as the baseline planform for the innovative wing design study. Low-speed longitudinal aerodynamic data were obtained over a range of freestream dynamic pressures from 7.5 psf to 30 psf (M = 0.07 to M = 0.14) and angles-of-attack from 0 to 40 deg. The aerodynamic data are presented in coefficient form for the lift, induced drag, and pitching moment. Flow-visualization results obtained were photographs of the flow pattern over the flat plate model in the water tunnel for angles-of-attack from 10 to 40 deg. The force and moment coefficients and the flow-visualization photographs showed the linear and nonlinear aerodynamic characteristics due to attached flow and vortical flow over the flat plate model. Comparison between experiment and linear theory showed good agreement for the lift and induced drag; however, the agreement was poor for the pitching moment.

  12. Longitudinal aerodynamic characteristics of light, twin-engine, propeller-driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Representative state-of-the-art analytical procedures and design data for predicting the longitudinal static and dynamic stability and control characteristics of light, propeller-driven airplanes are presented. Procedures for predicting drag characteristics are also included. The procedures are applied to a twin-engine, propeller-driven airplane in the clean configuration from zero lift to stall conditions. The calculated characteristics are compared with wind-tunnel and flight data. Included in the comparisons are level-flight trim characteristics, period and damping of the short-period oscillatory mode, and windup-turn characteristics. All calculations are documented.

  13. Calculation of static longitudinal aerodynamic characteristics of STOL aircraft with upper surface blown flaps

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Perkin, S. C., Jr.; Goodwin, F. K.; Spangler, S. B.

    1975-01-01

    An existing prediction method developed for EBF aircraft configurations was applied to USB configurations to determine its potential utility in predicting USB aerodynamic characteristics. An existing wing-flap vortex-lattice computer program was modified to handle multiple spanwise flap segments at different flap angles. A potential flow turbofan wake model developed for circular cross-section jets was used to model a rectangular cross-section jet wake by placing a number of circular jets side by side. The calculation procedure was evaluated by comparison of measured and predicted aerodynamic characteristics on a variety of USB configurations. The method is limited to the case where the flow and geometry of the configuration are symmetric about a vertical plane containing the wing root chord. Comparison of predicted and measured lift and pitching moment coefficients were made on swept wings with one and two engines per wing panel, various flap deflection angles, and a range of thrust coefficients. The results indicate satisfactory prediction of lift for flap deflections up to 55 and thrust coefficients less than 2. The applicability of the prediction procedure to USB configurations is evaluated, and specific recommendations for improvements are discussed.

  14. Longitudinal aerodynamic characteristics of a low-wing lift-fan transport including hover characteristics in and out of ground effect

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.; Gentry, G. L., Jr.

    1977-01-01

    The longitudinal aerodynamic characteristics of a six-fan, tip-driven (remote) lift-fan VTOL transport through transition were determined by an investigation conducted in the Langley V/STOL tunnel. Tests were also made with the large midspan lift-fan pods and lift-cruise fans removed to determine their their influence on the stability and control of the configuration. Data were obtained for a range of model height above ground.

  15. Low-speed longitudinal and lateral-directional aerodynamic characteristics of the X-31 configuration

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Gatlin, Gregory M.; Paulson, John W., Jr.

    1992-01-01

    An experimental investigation of a 19 pct. scale model of the X-31 configuration was completed in the Langley 14 x 22 Foot Subsonic Tunnel. This study was performed to determine the static low speed aerodynamic characteristics of the basic configuration over a large range of angle of attack and sideslip and to study the effects of strakes, leading-edge extensions (wing-body strakes), nose booms, speed-brake deployment, and inlet configurations. The ultimate purpose was to optimize the configuration for high angle of attack and maneuvering-flight conditions. The model was tested at angles of attack from -5 to 67 deg and at sideslip angles from -16 to 16 deg for speeds up to 190 knots (dynamic pressure of 120 psf).

  16. Longitudinal aerodynamic characteristics of a generic fighter model with a wing designed for sustained transonic maneuver conditions

    NASA Technical Reports Server (NTRS)

    Ferris, J. C.

    1986-01-01

    A wind-tunnel investigation was made to determine the longitudinal aerodynamic characteristics of a fixed-wing generic fighter model with a wing designed for sustained transonic maneuver conditions. The airfoil sections on the wing were designed with a two-dimensional nonlinear computer code, and the root and tip section were modified with a three-dimensional code. The wing geometric characteristics were as follows: a leading-edge sweep of 45 degrees, a taper ratio of 0.2141, an aspect ratio of 3.30, and a thickness ratio of 0.044. The model was investigated at Mach numbers from 0.600 to 1.200, at Reynolds numbers, based on the model reference length, from 2,560,000 to 3,970,000, and through a model angle-of-attack range from -5 to +18 degrees.

  17. Error Estimate of the Ares I Vehicle Longitudinal Aerodynamic Characteristics Based on Turbulent Navier-Stokes Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2011-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on the unstructured grid, Reynolds-averaged Navier-Stokes flow solver USM3D, with an assumption that the flow is fully turbulent over the entire vehicle. This effort was designed to complement the prior computational activities conducted over the past five years in support of the Ares I Project with the emphasis on the vehicle s last design cycle designated as the A106 configuration. Due to a lack of flight data for this particular design s outer mold line, the initial vehicle s aerodynamic predictions and the associated error estimates were first assessed and validated against the available experimental data at representative wind tunnel flow conditions pertinent to the ascent phase of the trajectory without including any propulsion effects. Subsequently, the established procedures were then applied to obtain the longitudinal aerodynamic predictions at the selected flight flow conditions. Sample computed results and the correlations with the experimental measurements are presented. In addition, the present analysis includes the relevant data to highlight the balance between the prediction accuracy against the grid size and, thus, the corresponding computer resource requirements for the computations at both wind tunnel and flight flow conditions. NOTE: Some details have been removed from selected plots and figures in compliance with the sensitive but unclassified (SBU) restrictions. However, the content still conveys the merits of the technical approach and the relevant results.

  18. Effect of tail size reductions on longitudinal aerodynamic characteristics of a three surface F-15 model with nonaxisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Frassinelli, Mark C.; Carson, George T., Jr.

    1990-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas.

  19. Effect of underwing aft-mounted nacelles on the longitudinal aerodynamic characteristics of a high-wing transport airplane

    NASA Technical Reports Server (NTRS)

    Abeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    As part of a propulsion/airframe integration program, tests were conducted in the Langley 16-Foot Transonic Tunnel to determine the longitudinal aerodynamic effects of installing flow through engine nacelles in the aft underwing position of a high wing transonic transfer airplane. Mixed flow nacelles with circular and D-shaped inlets were tested at free stream Mach numbers from 0.70 to 0.85 and angles of attack from -2.5 deg to 4.0 deg. The aerodynamic effects of installing antishock bodies on the wing and nacelle upper surfaces as a means of attaching and supporting nacelles in an extreme aft position were investigated.

  20. Longitudinal aerodynamic characteristics of an elliptical body with a horizontal tail at Mach numbers from 2.3 to 4.63

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.; Robins, A. W.

    1982-01-01

    Longitudinal aerodynamic characteristics of a configuration consisting of an elliptical body with an in plane horizontal tail were investigated. The tests were conducted at Mach numbers of 2.3, 2.96, 4.0, and 4.63. In some cases, the configuration with negative tail deflections yielded higher values of maximum lift drag ratio than did the configuration with an undeflected tail. This was due to body upwash acting on the tail and producing an additional lift increment with essentially no drag penalty. Linear theory methods used to estimate some of the longitudinal aerodynamic characteristics of the model yielded results which compared well with experimental data for all Mach numbers in this investigation and for both small angles of attack and larger angles of attack where nonlinear (vortex) flow phenomena were present.

  1. Effect of location of aft-mounted nacelles on the longitudinal aerodynamic characteristics of a high-wing transport airplane

    NASA Technical Reports Server (NTRS)

    Abeyounis, William K.; Patterson, James C., Jr.

    1990-01-01

    As part of a propulsion/airframe integration program at Langley Research Center, tests were conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of locating flow-through mixed flow engine nacelles in several aft underwing positions on the longitudinal aerodynamics of a high wing transport airplane. D-shaped inlet nacelles were used in the test. Some configurations with antishock bodies and with nacelle toe-in were also tested. Data were obtained for a free stream Mach number range of 0.70 to 0.85 and a model angle-of-attack range from -2.5 to 4.0 degrees.

  2. Mathematical description of nonstationary aerodynamic characteristics of a passenger aircraft model in longitudinal motion at large angles of attack

    NASA Astrophysics Data System (ADS)

    Petoshin, V. I.; Chasovnikov, E. A.

    2011-05-01

    Aerodynamic loads in problems of flight dynamics of passenger aircraft in stalled flow regimes are described using a mathematical model that includes an ordinary linear first-order differential equation. A procedure for determining the parameters of the mathematical model is proposed which is based on approximating experimental frequency characteristics with the frequency characteristics of the linearized mathematical model. The mathematical model was verified by tests of a modern passenger aircraft model in a wind tunnel.

  3. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will design, build, and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604BOO02G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate the aerodynamic flight database for the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. Al these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  4. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database i n the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  5. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime. The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  6. X-33 Hypersonic Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Nowak, Robert J.; Thompson, Richard A.; Hollis, Brian R.; Prabhu, Ramadas K.

    1999-01-01

    Lockheed Martin Skunk Works, under a cooperative agreement with NASA, will build and fly the X-33, a half-scale prototype of a rocket-based, single-stage-to-orbit (SSTO), reusable launch vehicle (RLV). A 0.007-scale model of the X-33 604B0002G configuration was tested in four hypersonic facilities at the NASA Langley Research Center to examine vehicle stability and control characteristics and to populate an aerodynamic flight database in the hypersonic regime, The vehicle was found to be longitudinally controllable with less than half of the total body flap deflection capability across the angle of attack range at both Mach 6 and Mach 10. At these Mach numbers, the vehicle also was shown to be longitudinally stable or neutrally stable for typical (greater than 20 degrees) hypersonic flight attitudes. This configuration was directionally unstable and the use of reaction control jets (RCS) will be necessary to control the vehicle at high angles of attack in the hypersonic flight regime. Mach number and real gas effects on longitudinal aerodynamics were shown to be small relative to X-33 control authority.

  7. Effects of spanwise nozzle geometry and location on the longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Yip, L. P.

    1978-01-01

    A V/STOL tunnel study was performed to determine the effects of spanwise blowing on longitudinal aerodynamic characteristics of a model using a vectored-over-wing powered lift concept. The effects of spanwise nozzle throat area, internal and external nozzle geometry, and vertical and axial location were investigated. These effects were studied at a Mach number of 0.186 over an angle-of-attack range from 14 deg to 40 deg. A high pressure air system was used to provide jet-exhaust simulation. Engine nozzle pressure ratio was varied from 1.0 (jet off) to approximately 3.75.

  8. X-34 Vehicle Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.

    1998-01-01

    The X-34, being designed and built by the Orbital Sciences Corporation, is an unmanned sub-orbital vehicle designed to be used as a flying test bed to demonstrate key vehicle and operational technologies applicable to future reusable launch vehicles. The X-34 will be air-launched from an L-1011 carrier aircraft at approximately Mach 0.7 and 38,000 feet altitude, where an onboard engine will accelerate the vehicle to speeds above Mach 7 and altitudes to 250,000 feet. An unpowered entry will follow, including an autonomous landing. The X-34 will demonstrate the ability to fly through inclement weather, land horizontally at a designated site, and have a rapid turn-around capability. A series of wind tunnel tests on scaled models was conducted in four facilities at the NASA Langley Research Center to determine the aerodynamic characteristics of the X-34. Analysis of these test results revealed that longitudinal trim could be achieved throughout the design trajectory. The maximum elevon deflection required to trim was only half of that available, leaving a margin for gust alleviation and aerodynamic coefficient uncertainty. Directional control can be achieved aerodynamically except at combined high Mach numbers and high angles of attack, where reaction control jets must be used. The X-34 landing speed, between 184 and 206 knots, is within the capabilities of the gear and tires, and the vehicle has sufficient rudder authority to control the required 30-knot crosswind.

  9. Longitudinal aerodynamic and propulsion characteristics of a propulsive-wing V/STOL model at high subsonic speeds

    NASA Technical Reports Server (NTRS)

    Salters, L. B., Jr.; Schmeer, J. W.

    1973-01-01

    The aerodynamic and propulsion characteristics of a 1/6-scale propulsive-wing V/STOL air-powered model was investigated over the Mach number range from 0.40 to 0.96 and at angles of attack from -5 deg to 15 deg for several fan rotational speeds. Three fanduct-exit configurations were tested, including two exit areas. The model with 25-percent-thick wing had a drag-rise Mach number of 0.85, which is typical of aircraft with thinner, conventional, unswept wings.

  10. Some Effects of Nose Bluntness and Fineness Ratio on the Static Longitudinal Aerodynamic Characteristics of Bodies of Revolution at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Hayes, William C., Jr.; Henderson, William P.

    1961-01-01

    . The effects of a systematic variation of nose shape and fineness ratio on the longitudinal aerodynamic characteristics of bodies of revolution have been qualitatively determined at subsonic speeds. Six nose shapes were investigated, representing five corner radii which varied from 0 to 50 percent of the body diameter and three face radii which varied from 50 percent of the model diameter to infinity. The complete models had fineness ratios of 0.50 to 2.00. In addition, effects of boattailing the afterbody and removing or varying the transitions trips which had been attached to initiate a turbulent boundary layer were noted. Results are presented for an angle-of-attack range from -4 deg to 24 deg for Mach numbers from 0.25 to 0.80, and indicate that small variations of the model nose can produce large variations in the static longitudinal aerodynamic characteristics of the body. These variations may in turn be moderated by an increase in the model fineness ratio .

  11. Longitudinal Aerodynamic Characteristics of a Wing-Body-Tail Model Having a Highly Tapered, Cambered 45 degree Swept Wing of Aspect Ratio 4 at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    West, F. E., Jr.

    1959-01-01

    The longitudinal aerodynamic characteristics of a wing-body-horizontal-tail configuration designed for efficient performance at transonic speeds has been investigated at Mach numbers from 0.80 to 1.03 in the Langley 16-foot transonic tunnel. The effect of adding an outboard leading-edge chord-extension to the highly tapered 45 deg. swept wing was also obtained. The average Reynolds number for this investigation was 6.7 x 10(exp 6) based on the wing mean aerodynamic chord. The relatively low tail placement as well as the addition of a chord-extension achieved some alleviation of the pitchup tendencies of the wing-fuselage configuration. The maximum trimmed lift-drag ratio was 16.5 up to a Mach number of 0.9, with the moment center located at the quarter-chord point of the mean aerodynamic chord. For the untrimmed case, the maximum lift-drag ratio was approximately 19.5 up to a Mach number of 0.9.

  12. Wind-Tunnel Investigation of Subsonic Longitudinal Aerodynamic Characteristics of a Tiltable-Wing Vertical-Take-Off-and-Landing Supersonic Bomber Configuration Including Turbojet Power Effects

    NASA Technical Reports Server (NTRS)

    Thompson, Robert F.; Vogler, Raymond D.; Moseley, William C., Jr.

    1959-01-01

    Jet-powered model tests were made to determine the low-speed longitudinal aerodynamic characteristics of a vertical-take-off and-landing supersonic bomber configuration. The configuration has an unique engine-wing arrangement wherein six large turbojet engines (three on each side of the fuselage) are buried in a low-aspect-ratio wing which is tilted into the vertical plane for take-off. An essentially two-dimensional variable inlet, spanning the leading edge of each wing semispan, provides air for the engines. Jet flow conditions were simulated for a range of military (nonafterburner) and afterburner turbojet-powered flight at subsonic speeds. Three horizontal tails were tested at a station down-stream of the jet exit and at three heights above the jet axes. A semi-span model was used and test parameters covered wing-fuselage incidence angles from 0 deg to 15 deg, wing angles of attack from -4 deg to 36 deg, a variable range of horizontal-tail incidence angles, and some variations in power simulation conditions. Results show that, with all horizontal tails tested, there were large variations in static stability throughout the lift range. When the wing and fuselage were alined, the model was statically stable throughout the test range only with the largest tail tested (tail span of 1.25 wing span) and only when the tail was located in the low test position which placed the tail nearest to the undeflected jet. For transition flight conditions, none of the tail configurations provided satisfactory longitudinal stability or trim throughout the lift range. Jet flow was destabilizing for most of the test conditions, and varying the jet-exit flow conditions at a constant thrust coefficient had little effect on the stability of this model. Wing leading-edge simulation had some important effects on the longitudinal aerodynamic characteristics.

  13. Effects of wing leading-edge radius and Reynolds number on longitudinal aerodynamic characteristics of highly swept wing-body configurations at subsonic speeds

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.

    1976-01-01

    An investigation was conducted in the Langley low turbulence pressure tunnel to determine the effects of wing leading edge radius and Reynolds number on the longitudinal aerodynamic characteristics of a series of highly swept wing-body configurations. The tests were conducted at Mach numbers below 0.30, angles of attack up to 16 deg, and Reynolds numbers per meter from 6.57 million to 43.27 million. The wings under study in this investigation had leading edge sweep angles of 61.7 deg, 64.61 deg, and 67.01 deg in combination with trailing edge sweep angles of 0 deg and 40.6 deg. The leading edge radii of each wing planform could be varied from sharp to nearly round.

  14. Effects of wing leading-edge flap deflections on subsonic longitudinal aerodynamic characteristics of a wing-fuselage configuration with a 44 deg swept wing

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.

    1978-01-01

    An investigation was conducted to determine the effects of wing leading-edge flap deflections on the subsonic longitudinal aerodynamic characteristics of a wing-fuselage configuration with a 44 deg swept wing. The tests were conducted at Mach numbers from 0.40 to 0.85, corresponding to Reynolds numbers (based on wing mean geometric chord) of 2.37 x 1,000,000 to 4.59 x 1,000,000 and at angles of attack from -3 deg to 22 deg. The configurations under study included a wing-fuselage configuration and a wing-fuselage-strake configuration. Each configuration had multisegmented, constant-chord leading-edge flaps which could be deflected independently or in various combinations.

  15. Inclusion of unsteady aerodynamics in longitudinal parameter estimation from flight data. [use of vortices and mathematical models for parameterization from flight characteristics

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Wells, W. R.; Keskar, D. A.

    1979-01-01

    A simple vortex system, used to model unsteady aerodynamic effects into the rigid body longitudinal equations of motion of an aircraft, is described. The equations are used in the development of a parameter extraction algorithm. Use of the two parameter-estimation modes, one including and the other omitting unsteady aerodynamic modeling, is discussed as a means of estimating some acceleration derivatives. Computer generated data and flight data, used to demonstrate the use of the parameter-extraction algorithm are studied.

  16. Longitudinal Aerodynamic Characteristics to Large Angles of Attack of a Cruciform Missile Configuration at a Mach Number of 2

    NASA Technical Reports Server (NTRS)

    Spahr, J. R.

    1954-01-01

    The lift, pitching-moment, and drag characteristics of a missile configuration having a body of fineness ratio 9.33 and a cruciform triangular wing and tail of aspect ratio 4 were measured at a Mach number of 1.99 and a Reynolds number of 6.0 million, based on the body length. The tests were performed through an angle-of-attack range of -5 deg to 28 deg to investigate the effects on the aerodynamic characteristics of roll angle, wing-tail interdigitation, wing deflection, and interference among the components (body, wing, and tail). Theoretical lift and moment characteristics of the configuration and its components were calculated by the use of existing theoretical methods which have been modified for application to high angles of attack, and these characteristics are compared with experiment. The lift and drag characteristics of all combinations of the body, wing, and tail were independent of roll angle throughout the angle-of-attack range. The pitching-moment characteristics of the body-wing and body-wing-tail combinations, however, were influenced significantly by the roll angle at large angles of attack (greater than 10 deg). A roll from 0 deg (one pair of wing panels horizontal) to 45 deg caused a forward shift in the center of pressure which was of the same magnitude for both of these combinations, indicating that this shift originated from body-wing interference effects. A favorable lift-interference effect (lift of the combination greater than the sum of the lifts of the components) and a rearward shift in the center of pressure from a position corresponding to that for the components occurred at small angles of attack when the body was combined with either the exposed wing or tail surfaces. These lift and center-of-pressure interference effects were gradually reduced to zero as the angle of attack was increased to large values. The effect of wing-tail interference, which influenced primarily the pitching-moment characteristics, is dependent on the distance

  17. Longitudinal Aerodynamic Characteristics to Large Angles of Attack of a Cruciform Missile Configuration at a Mach Number of 2

    NASA Technical Reports Server (NTRS)

    Spahr, J Richard

    1954-01-01

    The lift, pitching-moment, and drag characteristics of a missile configuration having a body of fineness ratio 9.33 and a cruciform triangular wing and tail of aspect ratio 4 were measured at a Mach number of 1.99 and a Reynolds number of 6.0 million, based on the body length. The tests were performed through an angle-of-attack range of -5 deg to 28 deg to investigate the effects on the aerodynamic characteristics of roll angle, wing-tail interdigitation, wing deflection, and interference among the components (body, wing, and tail). Theoretical lift and moment characteristics of the configuration and its components were calculated by the use of existing theoretical methods which have been modified for application to high angles of attack, and these characteristics are compared with experiment. The lift and drag characteristics of all combinations of the body, wing, and tail were independent of roll angle throughout the angle-of-attack range. The pitching-moment characteristics of the body-wing and body-wing- tail combinations, however, were influenced significantly by the roll angle at large angles of attack (greater than 10 deg). A roll from 0 deg (one pair of wing panels horizontal) to 45 deg caused a forward shift in the center of pressure which was of the same magnitude for both of these combinations, indicating that this shift originated from body-wing interference effects. A favorable lift - interference effect (lift of the combination greater than the sum of the lifts of the components) and a rearward shift in the center of pressure from a position corresponding to that for the components occurred at small angles of attack when the body was combined with either the exposed wing or tail surfaces. These lift and center-of-pressure interference effects were gradually reduced to zero as the angle of attack was increased to large values. The effect of wing-tail interference, which influenced primarily the pitching-moment characteristics, is dependent on the

  18. Longitudinal aerodynamic characteristics of a wing-winglet model designed at M = 0.8, C sub L = 0.4 using linear aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.

    1983-01-01

    Wind tunnel test results have been presented herein for a subsonic transport type wing fitted with winglets. Wind planform was chosen to be representative of wings used on current jet transport aircraft, while wing and winglet camber surfaces were designed using two different linear aerodynamic design methods. The purpose of the wind tunnel investigation was to determine the effectiveness of these linear aerodynamic design computer codes in designing a non-planar transport configuration which would cruise efficiently. The design lift coefficient was chosen to be 0.4, at a design Mach number of 0.8. Force and limited pressure data were obtained for the basic wing, and for the wing fitted with the two different winglet designs, at Mach numbers of 0.60, 0.70, 0.75 and 0.80 over an angle of attack range of -2 to +6 degrees, at zero sideslip. The data have been presented without analysis to expedite publication.

  19. Effects of deflected thrust on the longitudinal aerodynamic characteristics of a close-coupled wing-canard configuration. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Yip, L. P.; Paulson, J. W., Jr.

    1977-01-01

    The effects of power on the longitudinal aerodynamic characteristics of a close-coupled wing-canard fighter configuration with partial-span rectangular nozzles at the trailing edge of the wing were investigated. Data were obtained on a basic wing-strake configuration for nozzle and flap deflections from 0 deg to 30 deg and for nominal thrust coefficients from 0 to 0.30. The model was tested over an angle-of-attack range from -2 deg to 40 deg at Mach numbers of 0.15 and 0.18. Results show substantial improvements in lift-curve slope, in maximum lift, and in drag-due-to-lift efficiency when the canard and strakes have been added to the basic wing-fuselage (wing-alone) configuration. Addition of power increased both lift-curve slope and maximum lift, improved longitudinal stability, and reduced drag due to lift on both the wing-canard and wing-canard-strake configurations. These beneficial effects are primarily derived from boundary-layer control due to moderate thrust coefficients which delay flow separation on the nozzle and inboard portion of the wing flaps.

  20. Parameter identification and modeling of longitudinal aerodynamics

    NASA Technical Reports Server (NTRS)

    Aksteter, J. W.; Parks, E. K.; Bach, R. E., Jr.

    1995-01-01

    Using a comprehensive flight test database and a parameter identification software program produced at NASA Ames Research Center, a math model of the longitudinal aerodynamics of the Harrier aircraft was formulated. The identification program employed the equation error method using multiple linear regression to estimate the nonlinear parameters. The formulated math model structure adhered closely to aerodynamic and stability/control theory, particularly with regard to compressibility and dynamic manoeuvring. Validation was accomplished by using a three degree-of-freedom nonlinear flight simulator with pilot inputs from flight test data. The simulation models agreed quite well with the measured states. It is important to note that the flight test data used for the validation of the model was not used in the model identification.

  1. Effects of Canard Planform and Wing-Leading-Edge Modification on Low-Speed Longitudinal Aerodynamic Characteristics of a Canard Airplane Configuration

    NASA Technical Reports Server (NTRS)

    Spencer, Bernard, Jr.

    1961-01-01

    An investigation has been conducted at low subsonic speeds to study the effects of canard planform and wing-leading-edge modification on the longitudinal aerodynamic characteristics of a general research canard airplane configuration. The basic wing of the model had a trapezoidal planform, an aspect ratio of 3.0, a taper ratio of 0.143, and an unswept 80-percent-chord line. Modifications to the wing included addition of full-span and partial-span leading-edge chord-extensions. Two canard planforms were employed in the study; one was a 60 deg sweptback delta planform and the other was a trapezoidal planform similar to that of the basic wing. Modifications to these canards included addition of a full-span leading-edge chord-extension to the trapezoidal planform and a fence to the delta planform. For the basic-wing-trapezoidal-canard configuration, rather abrupt increases in stability occurred at about 12 deg angle of attack. A slight pitch-up tendency occurred for the delta-canard configuration at approximately 8 deg angle of attack. A comparison of the longitudinal control effectiveness for the basic-wing-trapezoidal-canard combination and for the basic-wing-delta-canard combination indicates higher values of control effectiveness at law angles of attack for the trapezoidal canard. The control effectiveness for the delta-canard configuration, however, is seen to hold up for higher canard deflections and to higher angles of attack. Use of a full-span chord-extension deflected approximately 30 deg on the trapezoidal canard greatly improved the control characteristics of this configuration and enabled a sizeable increase in trim lift to be realized.

  2. Effect of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft model at supersonic speeds. [in the langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Monta, W. J.

    1980-01-01

    The effects of conventional and square stores on the longitudinal aerodynamic characteristics of a fighter aircraft configuration at Mach numbers of 1.6, 1.8, and 2.0 was investigated. Five conventional store configurations and six arrangements of a square store configuration were studied. All configurations of the stores produced small, positive increments in the pitching moment throughout the angle-of-attack range, but the configuration with area ruled wing tanks also had a slight decrease on stability at the higher angles of attack. There were some small changes in lift coefficient because of the addition of the stores, causing the drag increment to vary with the lift coefficient. As a result, there were corresponding changes in the increments of the maximum lift drag ratios. The store drag coefficient based on the cross sectional area of the stores ranged from a maximum of 1.1 for the configuration with three Maverick missiles to a minimum of about .040 for the two MK-84 bombs and the arrangements with four square stores touching or two square stores in tandem. Square stores located side by side yielded about 0.50 in the aft position compared to 0.74 in the forward position.

  3. Aerodynamic characteristics of the HL-20

    NASA Astrophysics Data System (ADS)

    Ware, George M.; Cruz, Christopher I.

    1993-09-01

    Wind tunnel tests were made from subsonic to hypersonic speeds to define the aerodynamic characteristics of the HL-20 lifting-body configuration. The data have been assembled into an aerodynamic database for flight analysis of this proposed vehicle. The wind tunnel data indicates that the model is longitudinally and laterally stable (about a center-of-gravity location of 0.54 body length) over the test range from Mach 20 to 0.3. At hypersonic speeds, the HL-20 model trimmed at a lift/drag (L/D) ratio of 1.4. This value gives the vehicle a crossrange capability similar to that of the space shuttle. At subsonic speeds, the HL-20 has a trimmed L/D ratio of about 3.6. Replacing the flat-plate outboard fins with fins having an airfoil shape increased the maximum subsonic trimmed L/D to 4.2.

  4. Longitudinal aerodynamic characteristics of a deflected-thrust propulsive-lift transport model. [wind tunnel tests of aircraft models of jet transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoad, D. R.

    1975-01-01

    A wind-tunnel investigation was conducted to determine the effect of deflecting the engine exit of a four-engine double-slotted flap transport to provide STOL performance. Longitudinal aerodynamic data were obtained at various engine exit positions and deflections. The data were obtained at three flap deflections representing cruise, take-off, and landing conditions for a range of angles of attack and various thrust coefficients. Downwash angles at the location of the horizontal tail were measured. The data are presented without analysis or discussion. Photographs of the test configurations are shown.

  5. Experimental effects of fuselage camber on longitudinal aerodynamic characteristics of a series of wing-fuselage configurations at a Mach number of 1.41

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Morris, O. A.; Adams, M. S.

    1976-01-01

    An experimental investigation was conducted to evaluate a method for the integration of a fighter-type fuselage with a theoretical wing to preserve desirable wing aerodynamic characteristics for efficient maneuvering. The investigation was conducted by using semispan wing fuselage models mounted on a splitter plate. The models were tested through an angle of attack range at a Mach number of 1.41. The wing had a leading edge sweep angle of 50 deg and an aspect ratio of 2.76; the wing camber surface was designed for minimum drag due to lift and was to be self trimming at a lift coefficient of 0.2 and at a Mach number of 1.40. A series of five fuselages of various camber was tested on the wing.

  6. Wake shape and its effects on aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Emdad, H.; Lan, C. E.

    1986-01-01

    The wake shape under symmetrical flight conditions and its effects on aerodynamic characteristics are examined. In addition, the effect of wake shape in sideslip and discrete vortices such as strake or forebody vortex on lateral characteristics is presented. The present numerical method for airplane configurations, which is based on discretization of the vortex sheet into vortex segments, verified the symmetrical and asymmetrical roll-up process of the trailing vortices. Also, the effect of wing wake on tail planes is calculated. It is concluded that at high lift the assumption of flat wake for longitudinal and lateral-directional characteristics should be reexamined.

  7. Aerodynamic characteristics of French consonants

    NASA Astrophysics Data System (ADS)

    Demolin, Didier; Hassid, Sergio; Soquet, Alain

    2004-05-01

    This paper reports some aerodynamic measurements made on French consonants with a group of ten speakers. Speakers were recorded while saying nonsense words in phrases such as papa, dis papa encore. The nonsense words in the study combined each of the French consonants with three vowels /i, a, u/ to from two syllables words with the first syllable being the same as the second. In addition to the audio signal, recordings were made of the oral airflow, the pressure of the air in the pharynx above the vocal folds and the pressure of the air in the trachea just below the vocal folds. The pharyngeal pressure was recorded via a catheter (i.d. 5 mm) passed through the nose so that its open end could be seen in the pharynx below the uvula. The subglottal pressure was recorded via a tracheal puncture between the first and the second rings of the trachea or between the cricoid cartilage and the first tracheal ring. Results compare subglottal presssure, pharyngeal pressure, and airflow values. Comparisons are made between values obtained with male and female subjects and various types of consonants (voiced versus voiceless at the same place of articulation, stops, fricatives, and nasals).

  8. Deep-Stall Aerodynamic Characteristics of T-Tail Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Robert T.; Ray, Edward J.

    1965-01-01

    A wind-tunnel research program has been under-taken by the NASA to study the aerodynamic characteristics of T-tail aircraft at high angles of attack. The program was designed to show the effects on longitudinal stability and control of several configuration variables. The results to date do not allow the formulation of general design rules, but the effects of several configuration variables have been noted to have a prime influence on the post-stall characteristics. An increase in tail size, changes in the location of fuselage-mounted engine nacelles, and reduced fuselage-forebody lift were all found to have a beneficial effect on static longitudinal stability at high angles of attack.

  9. Effects of Sweep and Thickness on the Static Longitudinal Aerodynamic Characteristics of a Series of Thin, Low-aspect-ratio, Highly Tapered Wings at Transonic Speeds : Transonic-bump Method

    NASA Technical Reports Server (NTRS)

    Fournier, Paul G; Few, Albert G , Jr

    1954-01-01

    An investigation by the transonic-bump technique of the static longitudinal aerodynamic characteristics of a series of thin, low-aspect-ratio, highly tapered wings has been made in the Langley high-speed 7- by 10-foot tunnel. The Mach number range extended from about 0.60 to 1.18, with corresponding Reynolds numbers ranging from about 0.75 x 10(6) to 0.95 x 10(6). The angle of attack range was from -10 degrees to approximately 32 degrees.The effects on drag and lift-drag ratio of a variation in sweep angle from -14.03 degrees to 45 degrees with respect to the quarter-chord line for wings of 3-percent-chord thickness was found to be small in comparison to the effects of a variation in thickness from 2 percent chord to 4.5 percent chord for wings with 14.03 degree sweepback. For the range of variables considered, variations in plan form were considerably more important with regard to longitudinal stability characteristics than the variations in thickness. For the series of basic wings having an aspect ratio of 4, the most hearly linear pitching-moment characteristics were obtained with 26.57 degree of sweepback of the quarter-chord line. However, for the modified series of wings (obtained by clipping the tips of the original wings parallel to the plane of symmetry to give an aspect ratio of 3 and a taper ratio of 0.143), the most nearly linear pitching-moment characteristics were obtained with 36.87 degrees of sweepback. By decreasing the thickness-to-chord ratios from 0.03 to 0.02, a large increase in lift-curve slope was obtained for both the basic and modified wings. All of the wings of both series had fairly large inward shifts of the lateral center-of-pressure location (indicative of tip stalling) with increasing lift coefficient, except those wings having minimum sweepback angles.

  10. Transonic aerodynamic characteristics of a proposed wing-body reusable launch vehicle concept

    NASA Technical Reports Server (NTRS)

    Springer, A. M.

    1995-01-01

    A proposed wing-body reusable launch vehicle was tested in the NASA Marshall Space Flight Center's 14 x 14-inch trisonic wind tunnel during the winter of 1994. This test resulted in the vehicle's subsonic and transonic, Mach 0.3 to 1.96, longitudinal and lateral aerodynamic characteristics. The effects of control surface deflections on the basic vehicle's aerodynamics, including a body flap, elevons, ailerons, and tip fins, are presented.

  11. Transonic Aerodynamic Characteristics of a Proposed Wing Body Reusable Launch Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Springer, Anthony M.

    1996-01-01

    A proposed wing body reusable launch vehicle was tested in the Marshall Space Flight Center (MSFC) 14 x 14 inch trisonic wind tunnel during the winter of 1994. this test resulted in the vehicle's subsonic and transonic (Mach 03 to 1.96) longitudinal and lateral aerodynamic characteristics. The effects of control surface deflections on the basic vehicle aerodynamics including a body flap, elevons, ailerons, and tip fins are presented.

  12. Experimental and analytical study of the longitudinal aerodynamic characteristics of analytically and empirically designed Strake-wing configurations at subcritical speeds

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.; Frink, N. T.

    1981-01-01

    Sixteen analytically and empirically designed strakes have been tested experimentally on a wing-body at three subcritical speeds in such a way as to isolate the strake-forebody loads from the wing-afterbody loads. Analytical estimates for these longitudinal results are made using the suction analogy and the augmented vortex lift concepts. The synergistic data are reasonably well estimated or bracketed by the high- and low-angle-of-attack vortex lift theories over the Mach number range and up to maximum lift or strake-vortex breakdown over the wing. Also, the strake geometry is very important in the maximum lift value generated and the lift efficiency of a given additional area. Increasing size and slenderness ratios are important is generating lift efficiently, but similar efficiency can also be achieved by designing a strake with approximately half the area of the largest gothic strake tested. These results correlate well with strake-vortex-breakdown observations in the water tunnel.

  13. Subsonic-to-Hypersonic Aerodynamic Characteristics for a Winged, Circular-Body, Single-Stage-to-Orbit Spacecraft Configuration

    NASA Technical Reports Server (NTRS)

    Phillips, W. P.; Engelund, W. C.

    1995-01-01

    Experimental aerodynamic characteristics were obtained for a generic, winged, circular-body, single-stage-to-orbit spacecraft configuration. The baseline configuration was longitudinally stable and trimmable at almost all Mach numbers from 0.15 to 10.0--with the exception occurring at low supersonic speeds. Landing speed and subsonic-to-hypersonic longitudinal stability and control appear to be within design guidelines. Lateral-directional instabilities found over the entire speed range, however, create a problem area for this configuration. Longitudinal aerodynamic predictions made utilizing the Aerodynamic Preliminary Analysis System (APAS) were in qualitative, often quantitative agreement with experimental values.

  14. Aerodynamic yawing moment characteristics of bird wings.

    PubMed

    Sachs, Gottfried

    2005-06-21

    The aerodynamic yawing moments due to sideslip are considered for wings of birds. Reference is made to the experience with aircraft wings in order to identify features which are significant for the yawing moment characteristics. Thus, it can be shown that wing sweep, aspect ratio and lift coefficient have a great impact. Focus of the paper is on wing sweep which can considerably increase the yawing moment due to sideslip when compared with unswept wings. There are many birds the wings of which employ sweep. To show the effect of sweep for birds, the aerodynamic characteristics of a gull wing which is considered as a representative example are treated in detail. For this purpose, a sophisticated aerodynamic method is used to compute results of high precision. The yawing moments of the gull wing with respect to the sideslip angle and the lift coefficient are determined. They show a significant level of yaw stability which strongly increases with the lift coefficient. It is particularly high in the lift coefficient region of best gliding flight conditions. In order to make the effect of sweep more perspicuous, a modification of the gull wing employing no sweep is considered for comparison. It turns out that the unswept wing yields yawing moments which are substantially smaller than those of the original gull wing with sweep. Another feature significant for the yawing moment characteristics concerns the fact that sweep is at the outer part of bird wings. By considering the underlying physical mechanism, it is shown that this feature is most important for the efficiency of wing sweep. To sum up, wing sweep provides a primary contribution to the yawing moments. It may be concluded that this is an essential reason why there is sweep in bird wings.

  15. Error Estimates of the Ares I Computed Turbulent Ascent Longitudinal Aerodynamic Analysis

    NASA Technical Reports Server (NTRS)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2012-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on an unstructured grid, Reynolds-averaged Navier-Stokes analysis. The validity of the approach to compute the associated error estimates, derived from a base grid to an extrapolated infinite-size grid, was first demonstrated on a sub-scaled wind tunnel model at representative ascent flow conditions for which the experimental data existed. Such analysis at the transonic flow conditions revealed a maximum deviation of about 23% between the computed longitudinal aerodynamic coefficients with the base grid and the measured data across the entire roll angles. This maximum deviation from the wind tunnel data was associated with the computed normal force coefficient at the transonic flow condition and was reduced to approximately 16% based on the infinite-size grid. However, all the computed aerodynamic coefficients with the base grid at the supersonic flow conditions showed a maximum deviation of only about 8% with that level being improved to approximately 5% for the infinite-size grid. The results and the error estimates based on the established procedure are also presented for the flight flow conditions.

  16. Experimental investigation of the aerodynamic characteristics for a winged-cone concept

    NASA Technical Reports Server (NTRS)

    Phillips, W. Pelham; Brauckmann, Gregory J.; Micol, John R.; Woods, William C.

    1987-01-01

    Experimental longitudinal and lateral-directional aerodynamics were obtained for a generic aerodynamics were obtaiend for a generic winged-cone configuration having possible application as a transatmospheric vehicle concept. Data were obtained at Mach numbers from 0.6 to 20.0; Reynolds numbers, based on model length, between 2.5 and 5.3 million; and angles of attack from -4 to 20 deg. Results indicate a longitudinal center-of-pressure travel of about 23 percent of the fuselage length for the test Mach number range, with longitudinal instabilities noted at high-supersonic to hypersonic Mach numbers. These instabilities are coupled with directional instability at similar Mach numbers. Predictions with analytic codes, namely, the USAF DATCOM and the tangent-cone option of the Hypersonic Arbitrary Body Program, provided fair agreement with the experimental aerodynamic characteristics at low angles-of-attack.

  17. Aerodynamic characteristics of flying fish in gliding flight.

    PubMed

    Park, Hyungmin; Choi, Haecheon

    2010-10-01

    The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar

  18. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part III - Longitudinal-Control Characteristics TED No. NACA DE308. Part 3; Longitudinal-Control Characteristics, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; King, Thomas J., Jr.

    1947-01-01

    Tests have been conducted in the Langley high speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0,08-scale model of the Chance Vought XF7U-1 airplane. The longitudinal-control characteristics of the complete model are presented in the present report with a limited analysis of the results.

  19. Aerodynamic characteristics of airplanes at high angles of attack

    NASA Technical Reports Server (NTRS)

    Chambers, J. R.; Grafton, S. B.

    1977-01-01

    An introduction to, and a broad overiew of, the aerodynamic characteristics of airplanes at high angles of attack are provided. Items include: (1) some important fundamental phenomena which determine the aerodynamic characteristics of airplanes at high angles of attack; (2) static and dynamic aerodynamic characteristics near the stall; (3) aerodynamics of the spin; (4) test techniques used in stall/spin studies; (5) applications of aerodynamic data to problems in flight dynamics in the stall/spin area; and (6) the outlook for future research in the area. Although stalling and spinning are flight dynamic problems of importance to all aircraft, including general aviation aircraft, commercial transports, and military airplanes, emphasis is placed on military configurations and the principle aerodynamic factors which influence the stability and control of such vehicles at high angles of attack.

  20. An analytical procedure for evaluating shuttle abort staging aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Meyer, R.

    1973-01-01

    An engineering analysis and computer code (AERSEP) for predicting Space Shuttle Orbiter - HO Tank longitudinal aerodynamic characteristics during abort separation has been developed. Computed results are applicable at Mach numbers above 2 for angle-of-attack between plus or minus 10 degrees. No practical restrictions on orbiter-tank relative positioning are indicated for tank-under-orbiter configurations. Input data requirements and computer running times are minimal facilitating program use for parametric studies, test planning, and trajectory analysis. In a majority of cases AERSEP Orbiter-Tank interference predictions are as accurate as state-of-the-art estimates for interference-free or isolated-vehicle configurations. AERSEP isolated-orbiter predictions also show excellent correlation with data.

  1. Modeling of aircraft unsteady aerodynamic characteristics. Part 1: Postulated models

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1994-01-01

    A short theoretical study of aircraft aerodynamic model equations with unsteady effects is presented. The aerodynamic forces and moments are expressed in terms of indicial functions or internal state variables. The first representation leads to aircraft integro-differential equations of motion; the second preserves the state-space form of the model equations. The formulations of unsteady aerodynamics is applied in two examples. The first example deals with a one-degree-of-freedom harmonic motion about one of the aircraft body axes. In the second example, the equations for longitudinal short-period motion are developed. In these examples, only linear aerodynamic terms are considered. The indicial functions are postulated as simple exponentials and the internal state variables are governed by linear, time-invariant, first-order differential equations. It is shown that both approaches to the modeling of unsteady aerodynamics lead to identical models.

  2. Longitudinal Aerodynamic Characteristics and Effect of Rocket Jet on Drag of Models of the Hermes A-3A and A-3B Missiles in Free Flight at Mach Numbers From 0.6 to 2.0

    NASA Technical Reports Server (NTRS)

    Jackson, H. Herbert

    1955-01-01

    A free-flight investigation over a Mach number range from 0.6 to 2.0 has been conducted to determine the longitudinal aerodynamic characteristics and effect of rocket jet on zero-lift drag of 1/5-scale models of two ballistic-type missiles, the Hermes A-3A and A-3B. Models of both types of missiles exhibited very nearly linear normal forces and pitching moments over the angle-of-attack range of 8 deg to -4 deg and Mach number range tested. The centers of pressure for both missiles were not appreciably affected by Mach number over the subsonic range; however, between a Mach number of 1.02 and 1.50 the center of pressure for the A-3A model moved forward 0.34 caliber with increasing Mach number. At a trim angle-of-attack of approximately 30 deg, the A-3A model indicated a total drag coefficient 30% higher than the power-off zero-lift drag over the subsonic Mach number range and 10% higher over the supersonic range. Under the conditions of the present test, and excluding the effect of the jet on base drag, there was no indicated effect of the propulsive jet on the total drag of the A-3A model. The propulsive jet operating at a jet pressure ratio p(sub j)/p(sub o) of 0.8 caused approximately 100% increase in base drag over the Mach number range M = 0.6 to 1.0. This increase in base drag amounts to 15% of the total drag. An underexpanded jet operating at jet pressure ratios corresponding approximately to those of the full-scale missile caused a 22% reduction in base drag at M = 1.55 (p(sub j)/p(sub o) = 1.76) but indicated no change at M = 1.30 (p(sub j)/p(sub o) = 1.43). At M = 1.1 and p(sub j)/p(sub o) = 1.55, the jet caused a 50% increase in base drag.

  3. An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part I - Basic Longitudinal Stability Characteristics, TED No. NACA DE308. Part 1; Basic Longitudinal Stability Characteristics, TED No. NACA DE308

    NASA Technical Reports Server (NTRS)

    Kemp, William B., Jr.; Kuhn, Richard E.; Goodson, Kenneth W.

    1947-01-01

    The stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane have been investigated over a Mach number range from 0.40 to 0.91. Results of the basic longitudinal tests of the complete model with undeflected control surfaces are given in the present report with a very limited analysis of the results.

  4. Comparison of the Aerodynamic Characteristics of Similar Models in Two Size Wind Tunnels at Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Springer, Anthony M.

    1998-01-01

    The aerodynamic characteristics of two similar models of a lifting body configuration were run in two transonic wind tunnels, one a 16 foot the other a 14-inch and are compared. The 16 foot test used a 2% model while the 14-inch test used a 0.7% scale model. The wind tunnel model configurations varied only in vertical tail size and an aft sting shroud. The results from these two tests compare the effect of tunnel size, Reynolds number, dynamic pressure and blockage on the longitudinal aerodynamic characteristics of the vehicle. The data accuracy and uncertainty are also presented. It was concluded from these tests that the data resultant from a small wind tunnel compares very well to that of a much larger wind tunnel in relation to total vehicle aerodynamic characteristics.

  5. Estimation of longitudinal aircraft characteristics using parameter identification techniques

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.

    1978-01-01

    This study compares the results from different parameter identification methods used to determine longitudinal aircraft characteristics from flight data. In general, these comparisons have found that the estimated short-period dynamics (natural frequency, damping, transfer functions) are only weakly affected by the type of identification method, however, the estimated aerodynamic coefficients may be strongly affected by the type of identification method. The estimated values for aerodynamic coefficients were found to depend upon the type of math model and type of test data used with each of the identification methods. The use of fairly complete math models and the use of long data lengths, combining both steady and nonsteady motion, are shown to provide aerodynamic coefficient values that compare favorably with the results from other testing methods such as steady-state flight and full-scale wind-tunnel experiments.

  6. Predicted aerodynamic characteristics for HL-20 lifting-body using the aerodynamic preliminary analysis system (APAS)

    NASA Technical Reports Server (NTRS)

    Cruz, Christopher I.; Ware, George M.

    1992-01-01

    The aerodynamic characteristics of the HL-20 lifting body configuraiton obtained through the APAS and from wind-tunnel tests have been compared. The APAS is considered to be an easy-to-use, relatively simple tool for quick preliminary estimation of vehicle aerodynamics. The APAS estimates are found to be in good agreement with experimental results to be used for preliminary evaluation of the HL-20. The APAS accuracy in predicting aerodynamics of the HL-20 varied over the Mach range. The speed ranges of best agreement were subsonic and hypersonic, while least agreement was in the Mach range from 1.2 to about 2,5.

  7. Modeling the High Speed Research Cycle 2B Longitudinal Aerodynamic Database Using Multivariate Orthogonal Functions

    NASA Technical Reports Server (NTRS)

    Morelli, E. A.; Proffitt, M. S.

    1999-01-01

    The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.

  8. Calculation of aerodynamic characteristics of airplane configurations at high angles of attack

    NASA Technical Reports Server (NTRS)

    Tseng, J. B.; Lan, C. Edward

    1988-01-01

    Calculation of longitudinal and lateral directional aerodynamic characteristics of airplanes by the VORSTAB code is examined. The numerical predictions are based on the potential flow theory with corrections of high angle of attack phenomena; namely, vortex flow and boundary layer separation effects. To account for the vortex flow effect, vortex lift, vortex action point, augmented vortex lift and vortex breakdown effect through the method of suction analogy are included. The effect of boundary layer separation is obtained by matching the nonlinear section data with the three dimensional lift characteristics iteratively. Through correlation with results for nine fighter configurations, it is concluded that reasonably accurate prediction of longitudinal and static lateral directional aerodynamics can be obtained with the VORSTAB code up to an angle of attack at which wake interference and forebody vortex effect are not important. Possible reasons for discrepancy at higher angles of attack are discussed.

  9. Aerodynamic characteristics of reentry vehicles at supersonic velocities

    NASA Astrophysics Data System (ADS)

    Adamov, N. P.; Kharitonov, A. M.; Chasovnikov, E. A.; Dyad'kin, A. A.; Kazakov, M. I.; Krylov, A. N.; Skorovarov, A. Yu.

    2015-09-01

    Models of promising reentry vehicles, experimental equipment, and test program are described. The method used to determine the total aerodynamic characteristics of these models on the AB-313 mechanical balance in the T-313 supersonic wind tunnel and the method used for simulations are presented. The aerodynamic coefficients of the examined objects in wide ranges of Mach numbers and angles of attack are obtained. The experimental data are compared with the results of simulations.

  10. High Speed Aerodynamic Characteristics of the GAF0PH Aerofoil

    DTIC Science & Technology

    1980-09-01

    upper surface of the aerofoil for angles of incidence greater than 210. POSTAL ADDRESS: Chief Superintendent, Aeronautical Research Laboratories, Box...kCLAERO-.NOTE3 98 -AR-002-223 -LEVEL m DEPARTMENT OF DEFENCE 00 DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES...MELBOURNE, VICTORIA AERODYNAMICS NOTE 398 ’,\\ HIGH SPEED AERODYNAMIC CHARACTERISTICS OF THE GAFPH AEROFOIL by ~B D :, . , .IR-© Approved for Public Release

  11. Extended mapping and characteristics techniques for inverse aerodynamic design

    NASA Technical Reports Server (NTRS)

    Sobieczky, H.; Qian, Y. J.

    1991-01-01

    Some ideas for using hodograph theory, mapping techniques and methods of characteristics to formulate typical aerodynamic design boundary value problems are developed. The inverse method of characteristics is shown to be a fast tool for design of transonic flow elements as well as supersonic flows with given shock waves.

  12. Supersonic Aerodynamic Characteristics of Blunt Body Trim Tab Configurations

    NASA Technical Reports Server (NTRS)

    Korzun, Ashley M.; Murphy, Kelly J.; Edquist, Karl T.

    2013-01-01

    Trim tabs are aerodynamic control surfaces that can allow an entry vehicle to meet aerodynamic performance requirements while reducing or eliminating the use of ballast mass and providing a capability to modulate the lift-to-drag ratio during entry. Force and moment data were obtained on 38 unique, blunt body trim tab configurations in the NASA Langley Research Center Unitary Plan Wind Tunnel. The data were used to parametrically assess the supersonic aerodynamic performance of trim tabs and to understand the influence of tab area, cant angle, and aspect ratio. Across the range of conditions tested (Mach numbers of 2.5, 3.5, and 4.5; angles of attack from -4deg to +20deg; angles of sideslip from 0deg to +8deg), the effects of varying tab area and tab cant angle were found to be much more significant than effects from varying tab aspect ratio. Aerodynamic characteristics exhibited variation with Mach number and forebody geometry over the range of conditions tested. Overall, the results demonstrate that trim tabs are a viable approach to satisfy aerodynamic performance requirements of blunt body entry vehicles with minimal ballast mass. For a 70deg sphere-cone, a tab with 3% area of the forebody and canted approximately 35deg with no ballast mass was found to give the same trim aerodynamics as a baseline model with ballast mass that was 5% of the total entry mass.

  13. The effect of winglets on the static aerodynamic stability characteristics of a representative second generation jet transport model

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.; Flechner, S. G.

    1976-01-01

    A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.

  14. Upper surface blowing aerodynamic and acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Ryle, D. M., Jr.; Braden, J. A.; Gibson, J. S.

    1977-01-01

    Aerodynamic performance at cruise, and noise effects due to variations in nacelle and wing geometry and mode of operation are studied using small aircraft models that simulate upper surface blowing (USB). At cruise speeds ranging from Mach .50 to Mach .82, the key determinants of drag/thrust penalties are found to be nozzle aspect ratio, boattailing angle, and chordwise position; number of nacelles; and streamlined versus symmetric configuration. Recommendations are made for obtaining favorable cruise configurations. The acoustic studies, which concentrate on the noise created by the jet exhaust flow and its interaction with wing and flap surfaces, isolate several important sources of USB noise, including nozzle shape, exit velocity, and impingement angle; flow pathlength; and flap angle and radius of curvature. Suggestions for lessening noise due to trailing edge flow velocity, flow pathlength, and flow spreading are given, though compromises between some design options may be necessary.

  15. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept

    NASA Astrophysics Data System (ADS)

    Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei

    2016-06-01

    This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.

  16. Supersonic Aerodynamic Characteristics of Proposed Mars '07 Smart Lander Configurations

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Horvath, Thomas J.; Erickson, Gary E.; Green, Joseph M.

    2002-01-01

    Supersonic aerodynamic data were obtained for proposed Mars '07 Smart Lander configurations in NASA Langley Research Center's Unitary Plan Wind Tunnel. The primary objective of this test program was to assess the supersonic aerodynamic characteristics of the baseline Smart Lander configuration with and without fixed shelf/tab control surfaces. Data were obtained over a Mach number range of 2.3 to 4.5, at a free stream Reynolds Number of 1 x 10(exp 6) based on body diameter. All configurations were run at angles of attack from -5 to 20 degrees and angles of sideslip of -5 to 5 degrees. These results were complemented with computational fluid dynamic (CFD) predictions to enhance the understanding of experimentally observed aerodynamic trends. Inviscid and viscous full model CFD solutions compared well with experimental results for the baseline and 3 shelf/tab configurations. Over the range tested, Mach number effects were shown to be small on vehicle aerodynamic characteristics. Based on the results from 3 different shelf/tab configurations, a fixed control surface appears to be a feasible concept for meeting aerodynamic performance metrics necessary to satisfy mission requirements.

  17. Unsteady Aerodynamic Effects on the Flight Characteristics of an F-16XL Configuration

    NASA Technical Reports Server (NTRS)

    Wang, Zhongjun; Lan, C. Edward; Brandon, Jay M.

    2000-01-01

    Unsteady aerodynamic models based on windtunnel forced oscillation test data and analyzed with a fuzzy logic algorithm arc incorporated into an F-16XL flight simulation code. The reduced frequency needed in the unsteady models is numerically calculated by using a limited prior time history of state variables in a least-square sense. Numerical examples arc presented to show the accuracy of the calculated reduced frequency. Oscillatory control inputs are employed to demonstrate the differences in the flight characteristics based on unsteady and quasi-steady aerodynamic models. Application of the unsteady aerodynamic models is also presented and the results are compared with one set of F16XIL longitudinal maneuver flight data. It is shown that the main differences in dynamic response are in the lateral-directional characteristics, with the quasi-steady model being more stable than the flight vehicle, while the unsteady model being more unstable. Similar conclusions can also be made in a simulated rapid sideslipping roll. To improve unsteady aerodynamic modeling, it is recommended to acquire test data with coupled motions in pitch, roll and yaw.

  18. Aerodynamic Characteristics of Water Rocket and Stabilization of Flight Trajectory

    NASA Astrophysics Data System (ADS)

    Watanabe, Rikio; Tomita, Nobuyuki; Takemae, Toshiaki

    The aerodynamic characteristics of water rockets are analyzed experimentally by wind tunnel testing. Aerodynamic devices such as vortex generators and dimples are tested and their effectiveness to the flight performance of water rocket is discussed. Attaching vortex generators suppresses the unsteady body fluttering. Dimpling the nose reduces the drag coefficient in high angles of attack. Robust design approach is applied to water rocket design for flight stability and optimum water rocket configuration is determined. Semi-sphere nose is found to be effective for flight stability and it is desirable for the safety of landing point. Stiffed fin attachment is required for fins to work properly as aerodynamic device and it enhances the flight stability of water rockets.

  19. Aerodynamic Characteristics of Telescopic Aerospikes with Multiple-Row-Disk

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiroaki; Maru, Yusuke; Sato, Tetsuya

    This paper reports experimental studies on telescopic aerospikes with multiple disks. The telescopic aerospike is useful as an aerodynamic control device; however, changing its length causes a buzz phenomenon, which many researchers have reported. The occurrence of buzzing might be critical to the vehicle because it brings about severe pressure oscillations on the surface. Disks on the shaft produce stable recirculation regions by dividing the single separation flow into several conical cavity flows. The telescopic aerospikes with stabilizer disks are useful without any length constraints. Aerodynamic characteristics of the telescopic aerospikes were investigated through a series of wind tunnel tests. Transition of recirculation/reattachment flow modes of a plain spike causes a large change in the drag coefficient. Because of this hysteresis phenomenon and the buzzing, the plain spike is unsuitable for fine aerodynamic control devices. Adding stabilizer disks is effective for the improved control of aerospikes.

  20. Techniques for estimating Space Station aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Thomas, Richard E.

    1993-01-01

    A method was devised and calculations were performed to determine the effects of reflected molecules on the aerodynamic force and moment coefficients for a body in free molecule flow. A procedure was developed for determining the velocity and temperature distributions of molecules reflected from a surface of arbitrary momentum and energy accommodation. A system of equations, based on momentum and energy balances for the surface, incident, and reflected molecules, was solved by a numerical optimization technique. The minimization of a 'cost' function, developed from the set of equations, resulted in the determination of the defining properties of the flow reflected from the arbitrary surface. The properties used to define both the incident and reflected flows were: average temperature of the molecules in the flow, angle of the flow with respect to a vector normal to the surface, and the molecular speed ratio. The properties of the reflected flow were used to calculate the contribution of multiply reflected molecules to the force and moments on a test body in the flow. The test configuration consisted of two flat plates joined along one edge at a right angle to each other. When force and moment coefficients of this 90 deg concave wedge were compared to results that did not include multiple reflections, it was found that multiple reflections could nearly double lift and drag coefficients, with nearly a 50 percent increase in pitching moment for cases with specular or nearly specular accommodation. The cases of diffuse or nearly diffuse accommodation often had minor reductions in axial and normal forces when multiple reflections were included. There were several cases of intermediate accommodation where the addition of multiple reflection effects more than tripled the lift coefficient over the convex technique.

  1. Determination of longitudinal aerodynamic derivatives from steady-state measurement of an aircraft

    NASA Technical Reports Server (NTRS)

    Klein, V.

    1977-01-01

    A method for the estimation of aerodynamic derivatives from steady-state symmetric flight data is developed. The derivatives considered are the longitudinal static stability and control derivatives, damping derivatives due to tail, and the derivatives expressing the speed effect on the lift and pitching moment coefficients. The method is an extension of the well known theory of longitudinal static stability and control, and corresponding flight data interpretation. Measured data is assumed in the form of trim curves and lift vs angle of attack. The expressions for the derivative estimates are in the form of algebraic relationships containing known constants, and directly or indirectly measured quantities.

  2. Hypersonic aerodynamic characteristics of an all-body research aircraft configuration

    NASA Technical Reports Server (NTRS)

    Clark, L. E.

    1973-01-01

    An experimental investigation was conducted at Mach 6 to determine the hypersonic aerodynamic characteristics of an all-body, delta-planform, hypersonic research aircraft (HYFAC configuration). The aerodynamic characteristics were obtained at Reynolds numbers based on model length of 2.84 million and 10.5 million and over an angle-of-attack range from minus 4 deg to 20 deg. The experimental results show that the HYFAC configuration is longitudinally stable and can be trimmed over the range of test conditions. The configuration had a small degree of directional stability over the angle-of-attack range and positive effective dihedral at angles of attack greater than 2 deg. Addition of canards caused a decrease in longitudinal stability and an increase in directional stability. Oil-flow studies revealed extensive areas of separated and vortex flow on the fuselage lee surface. A limited comparison of wind-tunnel data with several hypersonic approximations indicated that, except for the directional stability, the tangent-cone method gave adequate agreement at control settings between 5 deg and minus 5 deg and positive lift coefficient. A limited comparison indicated that the HYFAC configuration had greater longitudinal stability than an elliptical-cross-section configuration, but a lower maximum lift-drag ratio.

  3. Supersonic aerodynamic characteristics of an advanced F-16 derivative aircraft configuration

    NASA Technical Reports Server (NTRS)

    Fox, Mike C.; Forrest, Dana K.

    1993-01-01

    A supersonic wind tunnel investigation was conducted in the NASA Langley Unitary Plan Wind Tunnel on an advanced derivative configuration of the United States Air Force F-16 fighter. Longitudinal and lateral directional force and moment data were obtained at Mach numbers of 1.60 to 2.16 to evaluate basic performance parameters and control effectiveness. The aerodynamic characteristics for the F-16 derivative model were compared with the data obtained for the F-16C model and also with a previously tested generic wing model that features an identical plan form shape and similar twist distribution.

  4. Aerodynamic Characteristics of Tracheostomy Speaking Valves.

    ERIC Educational Resources Information Center

    Fornataro-Clerici, Lisa; Zajac, David J.

    1993-01-01

    Pressure-flow characteristics were determined for four different one-way valves (Kisner, Montgomery, Olympic, and Passy-Muir) used for speech production in tracheotomy patients. Results indicated significant differences in resistance among the valves, with the resistance of one valve substantially greater than that of the normal upper airways.…

  5. Investigation of aerodynamic characteristics of subsonic wings

    NASA Technical Reports Server (NTRS)

    Dejarnette, F. R.; Frink, N. T.

    1979-01-01

    An analytical strake design procedure is investigated. A numerical solution to the governing strake design equation is used to generate a series of strakes which are tested in a water tunnel to study their vortex breakdown characteristics. The strakes are scaled for use on a half-scale model of the NASA-LaRC general research fuselage with a 44 degrees trapezoidal wing. An analytical solution to the governing design equation is obtained. The strake design procedure relates the potential-flow leading-edge suction and pressure distributions to vortex stability. Several suction distributions are studied and those which are more triangular and peak near the tip generate strakes that reach higher angles of attack before vortex breakdown occurs at the wing trailing edge. For the same suction distribution, a conical rather than three dimensional pressure specification results in a better strake shape as judged from its vortex breakdown characteristics.

  6. Aerodynamic and Aeroelastic Characteristics of a Tension Cone Inflatable Aerodynamic Decelerator

    NASA Technical Reports Server (NTRS)

    Clark, Ian G.; Cruz, Juan R.; Hughes, Monica F.; Ware, Joanne S.; Madlangbayan, Albert; Braun, Robert D.

    2009-01-01

    The supersonic aerodynamic and aeroelastic characteristics of a tension cone inflatable aerodynamic decelerator were investigated by wind tunnel testing. Two sets of tests were conducted: one using rigid models and another using textile models. Tests using rigid models were conducted over a Mach number range from 1.65 to 4.5 at angles of attack from -12 to 20 degrees. The axial, normal, and pitching moment coefficients were found to be insensitive to Mach number over the tested range. The axial force coefficient was nearly constant (C(sub A) = 1.45 +/- 0.05) with respect to angle of attack. Both the normal and pitching moment coefficients were nearly linear with respect to angle of attack. The pitching moment coefficient showed the model to be statically stable about the reference point. Schlieren images and video showed a detached bow shock with no evidence of large regions of separated flow and/or embedded shocks at all Mach numbers investigated. Qualitatively similar static aerodynamic coefficient and flow visualization results were obtained using textile models at a Mach number of 2.5. Using inflatable textile models the torus pressure required to maintain the model in the fully-inflated configuration was determined. This pressure was found to be sensitive to details in the structural configuration of the inflatable models. Additional tests included surface pressure measurements on rigid models and deployment and inflation tests with inflatable models.

  7. Comparison of aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks

    NASA Astrophysics Data System (ADS)

    Haque, Md. Naimul; Katsuchi, Hiroshi; Yamada, Hitoshi; Nishio, Mayuko

    2016-07-01

    Aerodynamics of the long-span bridge deck should be well understood for an efficient design of the bridge system. For practical bridges various deck shapes are being recommended and adopted, yet not all of their aerodynamic behaviors are well interpreted. In the present study, a numerical investigation was carried out to explore the aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks. A relative comparison of steady state aerodynamic responses was made and the flow field was critically analyzed for better understanding the aerodynamic responses. It was found that the hexagonal shaped bridge deck has better aerodynamic characteristics as compared to the pentagonal shaped bridge deck.

  8. Aerodynamic Characteristics of Two Waverider-Derived Hypersonic Cruise Configurations

    NASA Technical Reports Server (NTRS)

    Cockrell, Charles E., Jr.; Huebner, Lawrence D.; Finley, Dennis B.

    1996-01-01

    An evaluation was made on the effects of integrating the required aircraft components with hypersonic high-lift configurations known as waveriders to create hypersonic cruise vehicles. Previous studies suggest that waveriders offer advantages in aerodynamic performance and propulsion/airframe integration (PAI) characteristics over conventional non-waverider hypersonic shapes. A wind-tunnel model was developed that integrates vehicle components, including canopies, engine components, and control surfaces, with two pure waverider shapes, both conical-flow-derived waveriders for a design Mach number of 4.0. Experimental data and limited computational fluid dynamics (CFD) solutions were obtained over a Mach number range of 1.6 to 4.63. The experimental data show the component build-up effects and the aerodynamic characteristics of the fully integrated configurations, including control surface effectiveness. The aerodynamic performance of the fully integrated configurations is not comparable to that of the pure waverider shapes, but is comparable to previously tested hypersonic models. Both configurations exhibit good lateral-directional stability characteristics.

  9. Wind Tunnel Tests on Aerodynamic Characteristics of Advanced Solid Rocket

    NASA Astrophysics Data System (ADS)

    Kitamura, Keiichi; Fujimoto, Keiichiro; Nonaka, Satoshi; Irikado, Tomoko; Fukuzoe, Moriyasu; Shima, Eiji

    The Advanced Solid Rocket is being developed by JAXA (Japan Aerospace Exploration Agency). Since its configuration has been changed very recently, its aerodynamic characteristics are of great interest of the JAXA Advanced Solid Rocket Team. In this study, we carried out wind tunnel tests on the aerodynamic characteristics of the present configuration for Mach 1.5. Six test cases were conducted with different body configurations, attack angles, and roll angles. A six component balance, oilflow visualization, Schlieren images were used throughout the experiments. It was found that, at zero angle-of-attack, the flow around the body were perturbed and its drag (axial force) characteristics were significantly influenced by protruding body components such as flanges, cable ducts, and attitude control units of SMSJ (Solid Motor Side Jet), while the nozzle had a minor role. With angle-of-attack of five degree, normal force of CNα = 3.50±0.03 was measured along with complex flow features observed in the full-component model; whereas no crossflow separations were induced around the no-protuberance model with CNα = 2.58±0.10. These values were almost constant with respect to the angle-of-attack in both of the cases. Furthermore, presence of roll angle made the flow more complicated, involving interactions of separation vortices. These data provide us with fundamental and important aerodynamic insights of the Advanced Solid Rocket, and they will be utilized as reference data for the corresponding numerical analysis.

  10. Subsonic/supersonic aerodynamic characteristics for a tactical supercruiser

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Bare, E. A.; Hollenback, D.; Hutchison, R.

    1984-01-01

    A series of cooperative NASA-Langley/Boeing experimental investigations have been conducted to determine the aeropropulsive characteristics of an advanced tactical fighter designed for supersonic cruise. These investigations were conducted in the Langley 16-Foot Transonic and Lewis 10 x 10-Foot Supersonic Wind Tunnels at Mach numbers from 0.60 to 2.47. This fighter is a Mach 2.0, 49,000 pound class vehicle that features a close-coupled canard and underwing propulsion units that utilize multifunction two-dimensional exhaust nozzles. Tests were conducted to determine the basic aerodynamic characteristics of the configuration with flow-through nacelles in which the spillage effects of representative inlets were measured. The effects of thrust-induced forces on overall aerodynamic performance were evaluated with a series of multifunction nozzles installed on air-powered nacelles. An axisymmetric nozzle configuration was also tested to obtain comparative aeropropulsive performance. Trim aerodynamic characteristics for the flow-through and powered configurations and the effect of thrust vectoring at subsonic speeds are presented.

  11. Effect of winglets on a first-generation jet transport wing. 1: Longitudinal aerodynamic characteristics of a semispan model at subsonic speeds. [in the Langley 8 ft transonic tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.; Flechner, S. G.; Montoya, L. C.

    1977-01-01

    The effects of winglets and a simple wing-tip extension on the aerodynamic forces and moments and the flow-field cross flow velocity vectors behind the wing tip of a first generation jet transport wing were investigated in the Langley 8-foot transonic pressure tunnel using a semi-span model. The test was conducted at Mach numbers of 0.30, 0.70, 0.75, 0.78, and 0.80. At a Mach number of 0.30, the configurations were tested with combinations of leading- and trailing-edge flaps.

  12. Aerodynamic Characteristics of High Speed Trains under Cross Wind Conditions

    NASA Astrophysics Data System (ADS)

    Chen, W.; Wu, S. P.; Zhang, Y.

    2011-09-01

    Numerical simulation for the two models in cross-wind was carried out in this paper. The three-dimensional compressible Reynolds-averaged Navier-Stokes equations(RANS), combined with the standard k-ɛ turbulence model, were solved on multi-block hybrid grids by second order upwind finite volume technique. The impact of fairing on aerodynamic characteristics of the train models was analyzed. It is shown that, the flow separates on the fairing and a strong vortex is generated, the pressure on the upper middle car decreases dramatically, which leads to a large lift force. The fairing changes the basic patterns around the trains. In addition, formulas of the coefficient of aerodynamic force at small yaw angles up to 24° were expressed.

  13. Predicting aerodynamic characteristic of typical wind turbine airfoils using CFD

    SciTech Connect

    Wolfe, W.P.; Ochs, S.S.

    1997-09-01

    An investigation was conducted into the capabilities and accuracy of a representative computational fluid dynamics code to predict the flow field and aerodynamic characteristics of typical wind-turbine airfoils. Comparisons of the computed pressure and aerodynamic coefficients were made with wind tunnel data. This work highlights two areas in CFD that require further investigation and development in order to enable accurate numerical simulations of flow about current generation wind-turbine airfoils: transition prediction and turbulence modeling. The results show that the laminar-to turbulent transition point must be modeled correctly to get accurate simulations for attached flow. Calculations also show that the standard turbulence model used in most commercial CFD codes, the k-e model, is not appropriate at angles of attack with flow separation. 14 refs., 28 figs., 4 tabs.

  14. Experimental Investigation of the Low-Speed Aerodynamic Characteristics of a 5.8-Percent Scale Hybrid Wing Body Configuration

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.; Vicroy, Dan D.; Carter, Melissa B.

    2012-01-01

    A low-speed experimental investigation has been conducted on a 5.8-percent scale Hybrid Wing Body configuration in the NASA Langley 14- by 22-Foot Subsonic Tunnel. This Hybrid Wing Body (HWB) configuration was designed with specific intention to support the NASA Environmentally Responsible Aviation (ERA) Project goals of reduced noise, emissions, and fuel burn. This HWB configuration incorporates twin, podded nacelles mounted on the vehicle upper surface between twin vertical tails. Low-speed aerodynamic characteristics were assessed through the acquisition of force and moment, surface pressure, and flow visualization data. Longitudinal and lateral-directional characteristics were investigated on this multi-component model. The effects of a drooped leading edge, longitudinal flow-through nacelle location, vertical tail shape and position, elevon deflection, and rudder deflection have been studied. The basic configuration aerodynamics, as well as the effects of these configuration variations, are presented in this paper.

  15. Transonic Free-Flight Investigation of the Longitudinal Aerodynamic Characteristics of a 1/10-Scale Steel-Wing Model of the Northrop MX-775A Missile with Leading-Edge Extensions, Inboard Trailing-Edge Flaps, and a Speed Brake on the Vertical Tail

    NASA Technical Reports Server (NTRS)

    Arbic, R. G.

    1955-01-01

    Results are presented of a free-flight investigation between Mach numbers of 0.7 to 1.3 and Reynolds numbers of 3.1 x 10(exp 6) to 7.0 x 10(exp 6) to determine the longitudinal aerodynamic characteristics of the Northrop MX-775A missile. This missile has a weng, body, and vertical tail, but has no horizontal tail. The basic wing plan form has an aspect ratio of 5.5, 45 deg of sweepback of the 0.406 streamwise chord line, and a taper ratio of 0.4. A 1/10-scale steel-wing model of the missile was flown with modifications to the basic wing plan form consisting of leading-edge chord-extensions deflected 7 deg downward together with the forward 15 percent of the wing chord, and inboard trailing-edge flaps deflected 5 deg downward. In addition, the model had a static-pressure tube mounted at the tip of the vertical tail for position-error measurements and had a speed brake also mounted on the vertical tail to trim the model to positive lift coefficients and to permit determination of the trim and drag effectiveness of the brake. The data are uncorrected for the effects of wing elasticity, but experimental wing influence coefficients are presented.

  16. Locally linearized longitudinal and lateral-directional aerodynamic stability and control derivaties for the X-29A aircraft

    NASA Technical Reports Server (NTRS)

    Budd, G. D.

    1984-01-01

    The locally linearized longitudinal and lateral-directional aerodynamic stability and control derivatives for the X-29A aircraft were calculated for altitudes ranging from sea level to 50,000 ft, Mach numbers from 0.2 to 1.5, and angles of attack from -5 deg to 25 deg. Several other parameters were also calculated, including aerodynamic force and moment coefficients, control face position, normal acceleration, static margin, and reference angle of attack.

  17. Hydrodynamic Characteristics of an Aerodynamically Refined Planing-Tail Hull

    NASA Technical Reports Server (NTRS)

    McKann, Robert; Suydam, Henry B.

    1948-01-01

    The hydrodynamic characteristics of an aerodynamically refined planing-tail hull were determined from dynamic model tests in Langley tank no. 2. Stable take-off could be made for a wide range of locations of the center of gravity. The lower porpoising limit peak was high, but no upper limit was encountered. Resistance was high, being about the same as that of float seaplanes. A reasonable range of trims for stable landings was available only in the aft range of center-of-gravity locations.

  18. Effect of longitudinal ridges on the aerodynamic performance of a leatherback turtle model

    NASA Astrophysics Data System (ADS)

    Bang, Kyeongtae; Kim, Jooha; Kim, Heesu; Lee, Sang-Im; Choi, Haecheon

    2012-11-01

    Leatherback sea turtles (Dermochelys coriacea) are known as the fastest swimmer and the deepest diver in the open ocean among marine turtles. Unlike other marine turtles, leatherback sea turtles have five longitudinal ridges on their carapace. To investigate the effect of these longitudinal ridges on the aerodynamic performance of a leatherback turtle model, the experiment is conducted in a wind tunnel at Re = 1.0 × 105 - 1.4 × 106 (including that of real leatherback turtle in cruising condition) based on the model length. We measure the drag and lift forces on the leatherback turtle model with and without longitudinal ridges. The presence of longitudinal ridges increases both the lift and drag forces on the model, but increases the lift-to-drag ratio by 15 - 40%. We also measure the velocity field around the model with and without the ridges using particle image velocimetry. More details will be shown in the presentation. Supported by the NRF program (2011-0028032).

  19. Wind tunnel investigation of the aerodynamic characteristics of symmetrically deflected ailerons of the F-8C airplane. [conducted in the Langley 8-foot transonic pressure tunnel

    NASA Technical Reports Server (NTRS)

    Gera, J.

    1977-01-01

    A .042-scale model of the F-8C airplane was investigated in a transonic wind tunnel at high subsonic Mach numbers and a range of angles of attack between-3 and 20 degrees. The effect of symmetrically deflected ailerons on the longitudinal aerodynamic characteristics was measured. Some data were also obtained on the lateral control effectiveness of asymmetrically deflected horizontal tail surfaces.

  20. Aerodynamic characteristics of a distinct wing-body configuration at Mach 6: Experiment, theory, and the hypersonic isolation principle

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Pittman, J. L.

    1985-01-01

    An experimental investigation has been conducted to determine the effect of wing leading edge sweep and wing translation on the aerodynamic characteristics of a wing body configuration at a free stream Mach number of about 6 and Reynolds number (based on body length) of 17.9 x 10 to the 6th power. Seven wings with leading edge sweep angles from -20 deg to 60 deg were tested on a common body over an angle of attack range from -12 deg to 10 deg. All wings had a common span, aspect ratio, taper ratio, planform area, and thickness ratio. Wings were translated longitudinally on the body to make tests possible with the total and exposed mean aerodynamic chords located at a fixed body station. Aerodynamic forces were found to be independent of wing sweep and translation, and pitching moments were constant when the exposed wing mean aerodynamic chord was located at a fixed body station. Thus, the Hypersonic Isolation Principle was verified. Theory applied with tangent wedge pressures on the wing and tangent cone pressures on the body provided excellent predictions of aerodynamic force coefficients but poor estimates of moment coefficients.

  1. Extraction from flight data of longitudinal aerodynamic coefficients for F-8 aircraft with supercritical wing

    NASA Technical Reports Server (NTRS)

    Williams, J. L.; Suit, W. T.

    1974-01-01

    The longitudinal aerodynamic derivatives of the F-8 aircraft with supercritical wing were obtained from flight data by a parameter-extraction algorithm at Mach numbers of 0.8, 0.9, and 0.98. A set of derivatives were obtained from which calculated aircraft responses were correlated almost identically with actual flight responses. In general, the trends of the extracted derivatives obtained by the algorithm agreed with those obtained by a Newton-Raphson method and with preliminary data from the Langley 8-foot transonic pressure tunnel. The wind-tunnel damping derivatives were, however, substantially higher than the converged damping derivatives possibly because of Reynolds number differences between flight and model tests.

  2. Aerodynamic characteristics of a powered tilt-proprotor wind tunnel model

    NASA Technical Reports Server (NTRS)

    Wilson, J. C.; Mineck, R. E.; Freeman, C. E.

    1976-01-01

    An investigation was conducted in the Langley V/STOL tunnel to determine the performance, stability and control, and rotor-wake interaction effects of a powered tilt-proprotor aircraft model with gimbal-hub rotors. Tests were conducted at representative flight conditions for hover, helicopter, transition, and airplane flight. Force and moment data were obtained for the complete model and for each of the two rotors. In addition to wind-speed variation, the angle of attack, angle of sideslip, rotor speed, rotor collective pitch, longitudinal cyclic pitch, rotor pylon angle, and configuration geometry were varied. The results, presented in graphical form, are available in tabular form to facilitate the validation of analytical methods of defining the aerodynamic characteristics of tilt-proprotor configurations.

  3. X-31 aerodynamic characteristics determined from flight data

    NASA Technical Reports Server (NTRS)

    Kokolios, Alex

    1993-01-01

    The lateral aerodynamic characteristics of the X-31 were determined at angles of attack ranging from 20 to 45 deg. Estimates of the lateral stability and control parameters were obtained by applying two parameter estimation techniques, linear regression, and the extended Kalman filter to flight test data. An attempt to apply maximum likelihood to extract parameters from the flight data was also made but failed for the reasons presented. An overview of the System Identification process is given. The overview includes a listing of the more important properties of all three estimation techniques that were applied to the data. A comparison is given of results obtained from flight test data and wind tunnel data for four important lateral parameters. Finally, future research to be conducted in this area is discussed.

  4. Aerodynamic characteristics of proposed assured crew return capability (ACRC) configurations

    NASA Astrophysics Data System (ADS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1989-07-01

    The aerodynamic characteristics of seven reentry configurations suggested as possible candidate vehicles to return crew members from the U.S. Space Station Freedom to earth has been reviewed. The shapes varied from those capable of purely ballistic entry to those capable of gliding entry and fromk parachute landing to conventional landing. Data were obtained from existing (published and unpublished) sources and from recent wind tunnel tests. The lifting concepts are more versatile and satisfy all the mission requirements. Two of the lifting shapes studied appear promising - a lifting body and a deployable wing concept. The choice of an ACRC concept, however, will be made after all factors involving transportation from earth to orbit and back to earth again have been weighed.

  5. Low-speed aerodynamic characteristics of a twin-engine general aviation configuration with aft-fuselage-mounted pusher propellers

    NASA Technical Reports Server (NTRS)

    Dunham, Dana Morris; Gentry, Garl L., Jr.; Manuel, Gregory S.; Applin, Zachary T.; Quinto, P. Frank

    1987-01-01

    An investigation was conducted to determine the aerodynamic characteristics of an advanced turboprop aircraft model with aft-pylon-mounted pusher propellers. Tests were conducted through an angle-of-attack range of -8 to 28 degrees, and an angle-of-sideslip range of -20 to 20 degrees at free-stream conditions corresponding to Reynolds numbers of 0.55 to 2.14 x 10 to the 6th power based on mean aerodynamic chord. Test results show that for the unpowered configurations the maximum lift coefficients for the cruise, takeoff, and landing configurations are 1.45, 1.90, and 2.10, respectively. Nacelle installation results in a drag coefficient increase of 0.01. Increasing propeller thrust results in a significant increase in lift for angles of attack above stall and improves the longitudinal stability. The cruise configuration remains longitudinally stable to an angle of attack 5 degrees beyond the stall angle, the takeoff configuration is stable 4 degrees beyond stall angle, and the landing configuration is stable 3 degrees beyond stall angle. The predominant effect of symmetric thrust on the lateral-directional aerodynamic characteristics is in the post-stall region, where additional rudder control is available with power on.

  6. Status report on the Aeronautical Research Institute of Sweden version of the missile aerodynamics program LARV, for calculation of static aerodynamic properties and longitudinal aerodynamic damping derivatives. Part 1: Theory

    NASA Astrophysics Data System (ADS)

    Weibust, E.

    Improvements to a missile aerodynamics program which enable it to (a) calculate aerodynamic coefficients as input for a flight mechanics model, (b) check manufacturers' data or estimate performance from photographs, (c) reduce wind tunnel testing, and (d) aid optimization studies, are discussed. Slender body theory is used for longitudinal damping derivatives prediction. Program predictions were compared to known values. Greater accuracy is required in the estimation of drag due to excrescences on actual missile configurations, the influence of a burning motor, and nonlinear effects in the stall region. Prediction of pressure centers on wings and on bodies in presence of wings must be improved.

  7. Aerodynamic Characteristics of Three Deep-Stepped Planing-Tail Flying-Boat Hulls

    NASA Technical Reports Server (NTRS)

    Riebe, John M.; Naeseth, Rodger L.

    1947-01-01

    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of three deep-stepped planing-tail flying-boat hulls differing only in the amount of step fairing. The hulls were derived by increasing the unfaired step depth of a planing-tail hull of a previous aerodynamic investigation to a depth about 92 percent of the hull beam. Tests were also made on a transverse-stepped hull with an extended afterbody for the purpose of comparison and in order to extend and verify the results of a previous investigation. The investigation indicated that the extended afterbody hull had a minimum drag coefficient about the same as a conventional hull, 0.0066, and an angle-of-attack range for minimum drag coefficient of 0.0057 which was 14 percent less than the transverse stepped hull with extended afterbody; the hulls with step fairing had up to 44 percent less minimum drag coefficient than the transverse-stepped hull, or slightly more drag than a streamlined body having approximately the same length and volume. Longitudinal and lateral instability varied little with step fairing and was about the same as a conventional hull.

  8. High supersonic aerodynamic characteristics of five irregular planform wings with systematically varying wing fillet geometry tested in the NASA/LaRC 4-foot UPWT (LEG 2) (LA45A/B)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings is reported. The benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform fillet wing combination while providing the desired hypersonic trim angle and stability. The two prime areas of concern are to optimize shuttle orbiter landing and entry characteristics. Basic longitudinal aerodynamic characteristics at high supersonic speeds are developed.

  9. Computational modeling of aerodynamic characteristics in sprayed and spiraled precalciner

    NASA Astrophysics Data System (ADS)

    Li, Xiangguo; Ma, Baoguo; Hu, Zhenwu

    2008-08-01

    Based on the structural and work characteristics of a spiraled and sprayed precalciner, the RNG k- ɛ model and the SIMPLE method were used to simulate the aerodynamic characteristics in a sprayed and spiraled precalciner. The simulation results demonstrate that the flow area of airflow was increased abruptly due to the reduced part of the bottom of precalciners, which attributed to a sprayed effect. With the mix of the tertiary air with the swirl flow and secondary air, a high-speed zone was formed in the opposite side of the inlet of tertiary air, in which the highest speed was 32.97 m/s. Moreover, the inlet of raw meal designed in the high-speed zone can be propitious to the decentralization of the raw meal. A back-flow zone was formed near the side of the inlet of tertiary air, in which the velocity was negative. From the analysis of the results, the flow field of the precalciner is composed of a sprayed zone, a high-speed zone, a back-flow zone and cylinder zone; moreover, the simulation results agree with those of the engineering compared to the in situ results. The results also showed that the CFD method can be used to give the basis for optimizing the geometrical design and flow parameters of a precalciner.

  10. Mathematical modeling of the aerodynamic characteristics in flight dynamics

    NASA Technical Reports Server (NTRS)

    Tobak, M.; Chapman, G. T.; Schiff, L. B.

    1984-01-01

    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.

  11. Aerodynamic Characteristics, Database Development and Flight Simulation of the X-34 Vehicle

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Brauckmann, Gregory J.; Ruth, Michael J.; Fuhrmann, Henri D.

    2000-01-01

    An overview of the aerodynamic characteristics, development of the preflight aerodynamic database and flight simulation of the NASA/Orbital X-34 vehicle is presented in this paper. To develop the aerodynamic database, wind tunnel tests from subsonic to hypersonic Mach numbers including ground effect tests at low subsonic speeds were conducted in various facilities at the NASA Langley Research Center. Where wind tunnel test data was not available, engineering level analysis is used to fill the gaps in the database. Using this aerodynamic data, simulations have been performed for typical design reference missions of the X-34 vehicle.

  12. Unstructured Grid Euler Method Assessment for Longitudinal and Lateral/Directional Aerodynamic Performance Analysis of the HSR Technology Concept Airplane at Supersonic Cruise Speed

    NASA Technical Reports Server (NTRS)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a High Speed Civil Transport (HSCT) configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at M (sub infinity) = 2.4 for a range of angles-of-attack and sideslip. Although all the present computations are performed for the complete TCA configuration, appropriate assumptions derived from the fundamental supersonic aerodynamic principles have been made to extract aerodynamic predictions to complement the experimental data obtained from a 1.675%-scaled truncated (aft fuselage/empennage components removed) TCA model. The validity of the computational results, derived from the latter assumptions, are thoroughly addressed and discussed in detail. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex flow structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics for the truncated TCA configuration are shown to correlate very well with the corresponding wind-tunnel data across the examined range of angles-of-attack and sideslip. The complementary computational results for the longitudinal and lateral/directional performance characteristics for the complete TCA configuration are also presented along with the aerodynamic effects due to empennage components. Results are also presented to assess the computational method performance, solution sensitivity to grid refinement, and solution convergence characteristics.

  13. Aerodynamic characteristics of wheelchairs. [Langley V/STOL wind tunnel tests for human factors engineering

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.

    1979-01-01

    The overall aerodynamic drag characteristics of a conventional wheelchair were defined and the individual drag contributions of its components were determined. The results show that a fiftieth percentile man sitting in the complete wheelchair would experience an aerodynamic drag coefficient on the order of 1.4.

  14. Aerodynamic characteristics of a 1/6-scale powered model of the rotor systems research aircraft

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.; Freeman, C. E.

    1977-01-01

    A wind-tunnel investigation was conducted to determine the effects of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft (RSRA). For the investigation, a 1/6-scale model with a four-blade articulated main rotor was used. Tests were conducted with and without the main rotor. Both the helicopter and the compound helicopter were tested. The latter configuration included the auxiliary thrust engines and the variable-incidence wing. Data were obtained over ranges of angle of attack, angle of sideslip, and main-rotor collective pitch angle at several main-rotor advance ratios. Results are presented for the total loads on the airframe as well as the loads on the rotor, the wing, and the tail. The results indicated that without the effect of the rotor wake, the RSRA had static longitudinal and directional stability and positive effective dihedral. With the effect of the main rotor and its wake, the RSRA exhibited longitudinal instability but retained static directional stability and positive effective dihedral.

  15. Aerodynamic Characteristics of Caliber .22 Long Rifle Match Ammunition

    DTIC Science & Technology

    1990-11-01

    range. The Aerodynamic-s Range is an enclosed, cimate -controlled range, instrumented with spark-photography stations to record the motion of the...slant of groups in the wind from a right-hand twist of rifling is due to aerodynamic jump, which is an effective change in the vertical angle of...Director, USAHEL ATTN: SLCHE-IS, Mr. B. Corona Mr. P. Ellis Mr. J. Torre 64 USER EVALUArION SHEET/ CHANGE OF ADDRIESS9 This Uboray underk a c-effor- to imo t

  16. Characteristics of Pressure Sensitive Paint Intrusiveness Effects on Aerodynamic Data

    NASA Technical Reports Server (NTRS)

    Amer, Tahani R.; Liu, Tianshu; Oglesby, Donald M.

    2001-01-01

    One effect of using pressure sensitive paint (PSP) is the potential intrusiveness to the aerodynamic characteristics of the model. The paint thickness and roughness may affect the pressure distribution, and therefore, the forces and moments on the wind tunnel model. A study of these potential intrusive effects was carried out at NASA Langley Research Center where a series of wind tunnel tests were conducted using the Modem Design of Experiments (MDOE) test approach. The PSP effects on the integrated forces were measured on two different models at different test conditions in both the Low Turbulence Pressure Tunnel (LTPT) and the Unitary Plan Wind Tunnel (UPWT) at Langley. The paint effect was found to be very small over a range of Reynolds numbers, Mach numbers and angles of attack. This is due to the very low surface roughness of the painted surface. The surface roughness, after applying the NASA Langley developed PSP, was lower than that of the clean wing. However, the PSP coating had a localized effects on the pressure taps, which leads to an appreciable decrease in the pressure tap reading.

  17. Acoustic and aerodynamic characteristics of ejectives in Amharic

    NASA Astrophysics Data System (ADS)

    Demolin, Didier

    2004-05-01

    This paper invetsigates the main phonetic characteristics that distinguishes ejectives from pulmonic sounds in Amharic. In this language, there are five ejectives that can be phonemically singleton or geminate. Duration measurements have been made in intervocalic position for pulmonic stops and for each type of ejective, taking into account the overall duration and VOT. Results show that ejective stops have a higher amplitude burst than pulmonic stops. The duration of the noise is shorter for ejective fricatives compared to pulmonic fricatives. At the end of ejective fricatives, there is a 30-ms glottal lag that is not present in pulmonic fricatives. Geminate ejectives are realized by delaying the elevation of the larynx. This can be observed on the spectrographic data by an increase of the noise at the end of the geminate ejectives. Aerodynamic data have been collected in synchronization with the acoustic recordings. The main observations are that pharyngeal pressures values are much higher than what is usually assumed (up to 40 CmH2O for velars) and that the delayed command in the elevation of the larynx of geminate ejectives is shown by two phases in the rise of pharyngeal pressure.

  18. Aerodynamics of the Viggen 37 aircraft. Part 1: General characteristics at low speed

    NASA Technical Reports Server (NTRS)

    Karling, K.

    1986-01-01

    A description of the aerodynamics of the Viggen 37 and its performances, especially at low speeds is presented. The aerodynamic requirements for the design of the Viggen 37 aircraft are given, including the basic design, performance requirement, and aerodynamic characteristics, static and dynamic load test results and flight test results. The Viggen 37 aircraft is designed to be used for air attack, surveillance, pursuit, and training applications. It is shown that this aircraft is suitable for short runways, and has good maneuvering, acceleration, and climbing characteristics. The design objectives for this aircraft were met by utilizing the effect produced by the interference between two triangular wings, positioned in tandem.

  19. Hydrodynamic and Aerodynamic Characteristics of a Model of a Supersonic Multijet Water-Based Aircraft Equipped with Supercavitating Hydrofoils

    NASA Technical Reports Server (NTRS)

    McKann, Robert E.; Blanchard, Ulysse J.; Pearson, Albin O.

    1960-01-01

    The hydrodynamic and aerodynamic characteristics of a model of a multijet water-based Mach 2.0 aircraft equipped with hydrofoils have been determined. Takeoff stability and spray characteristics were very good, and sufficient excess thrust was available for takeoff in approximately 32 seconds and 4,700 feet at a gross weight of 225,000 pounds. Longitudinal and lateral stability during smooth-water landings were good. Lateral stability was good during rough-water landings, but forward location of the hydrofoils or added pitch damping was required to prevent diving. Hydrofoils were found to increase the aerodynamic lift-curve slope and to increase the aerodynamic drag coefficient in the transonic speed range, and the maximum lift-drag ratio decreased from 7.6 to 7.2 at the cruise Mach number of 0.9. The hydrofoils provided an increment of positive pitching moment over the Mach number range of the tests (0.6 to 1.42) and reduced the effective dihedral and directional stability.

  20. Design and aerodynamic characteristics of a span morphing wing

    NASA Astrophysics Data System (ADS)

    Yu, Yuemin; Liu, Yanju; Leng, Jinsong

    2009-03-01

    Flight vehicles are often designed to function around a primary operating point such as an efficient cruise or a high maneuverability mode. Performance and efficiency deteriorate rapidly as the airplane moves towards other portions of the flight envelope. One solution to this quandary is to radically change the shape of the aircraft. This yields both improved efficiency and a larger flight envelope. This global shape change is an example of morphing aircraft . One concept of morphing is the span morphing wing in which the wingspan is varied to accommodate multiple flight regimes. This type of design allows for at least two discreet modes of the aircraft. The original configuration, in which the extensible portion of the wing is fully retracted, yields a high speed dash mode. Fully extending the wing provides the aircraft with a low speed mode tailored for fine tracking and loiter tasks. This paper discusses the design of a span morphing wing that permits a change in the aspect ratio while simultaneously supporting structural wing loads. The wing cross section is maintained by NACA 4412 rib sections . The span morphing wing was investigated in different configurations. The wing area and the aspect ratio of the span morphing wing increase as the wings pan increases. Computational aerodynamics are used to estimate the performance and dynamic characteristics of each wing shape of this span morphing wing as its wingspan is changed. Results show that in order to obtain the same lift, the conventional wing requires a larger angle of attach(AOA) than that of the span morphing wing.The lift of the span morphing wing increases as the wing span ,Mach number and AOA increases.

  1. Aerodynamic characteristics and respiratory deposition of fungal fragments

    NASA Astrophysics Data System (ADS)

    Cho, Seung-Hyun; Seo, Sung-Chul; Schmechel, Detlef; Grinshpun, Sergey A.; Reponen, Tiina

    The purpose of this study was to investigate the aerodynamic characteristics of fungal fragments and to estimate their respiratory deposition. Fragments and spores of three different fungal species ( Aspergillus versicolor, Penicillium melinii, and Stachybotrys chartarum) were aerosolized by the fungal spore source strength tester (FSSST). An electrical low-pressure impactor (ELPI) measured the size distribution in real-time and collected the aerosolized fungal particles simultaneously onto 12 impactor stages in the size range of 0.3-10 μm utilizing water-soluble ZEF-X10 coating of the impaction stages to prevent spore bounce. For S. chartarum, the average concentration of released fungal fragments was 380 particles cm -3, which was about 514 times higher than that of spores. A. versicolor was found to release comparable amount of spores and fragments. Microscopic analysis confirmed that S. chartarum and A. versicolor did not show any significant spore bounce, whereas the size distribution of P. melinii fragments was masked by spore bounce. Respiratory deposition was calculated using a computer-based model, LUDEP 2.07, for an adult male and a 3-month-old infant utilizing the database on the concentration and size distribution of S. chartarum and A. versicolor aerosols measured by the ELPI. Total deposition fractions for fragments and spores were 27-46% and 84-95%, respectively, showing slightly higher values in an infant than in an adult. For S. chartarum, fragments demonstrated 230-250 fold higher respiratory deposition than spores, while the number of deposited fragments and spores of A. versicolor were comparable. It was revealed that the deposition ratio (the number of deposited fragments divided by that of deposited spores) in the lower airways for an infant was 4-5 times higher than that for an adult. As fungal fragments have been shown to contain mycotoxins and antigens, further exposure assessment should include the measurement of fungal fragments for

  2. On-orbit free molecular flow aerodynamic characteristics of a proposal space operations center configuration

    NASA Technical Reports Server (NTRS)

    Romere, P. O.

    1982-01-01

    A proposed configuration for a Space Operations Center is presented in its eight stages of buildup. The on orbit aerodynamic force and moment characteristics were calculated for each stage based upon free molecular flow theory. Calculation of the aerodynamic characteristics was accomplished through the use of an orbital aerodynamic computer program, and the computation method is described with respect to the free molecular theory used. The aerodynamic characteristics are presented in tabulated form for each buildup stage at angles of attack from 0 to 360 degrees and roll angles from -60 to +60 degrees. The reference altitude is 490 kilometers, however, the data should be applicable for altitudes below 490 kilometers down to approximately 185 kilometers.

  3. Nozzle and wing geometry effects on OTW aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Groesbeck, D.

    1976-01-01

    The effects of nozzle geometry and wing size on the aerodynamic performance of several 5:1 aspect ratio slot nozzles are presented for over-the-wing (OTW) configurations. Nozzle geometry variables include roof angle, sidewall cutback, and nozzle chordwise location. Wing variables include chord size, and flap deflection. Several external deflectors also were included for comparison. The data indicate that good flow turning may not necessarily provide the best aerodynamic performance. The results suggest that a variable exhaust nozzle geometry offers the best solution for a viable OTW configuration.

  4. Effect of twist and camber on the low-speed aerodynamic characteristics of a powered close-coupled wing-canard configuration

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.; Thomas, J. L.

    1978-01-01

    A series of wind-tunnel tests were conducted in a V/STOL tunnel to determine the low-speed longitudinal aerodynamic characteristics of a powered close-coupled wing/canard fighter configuration. The data was obtained for a high angle-of-attack maneuvering configuration and a takeoff and landing configuration. The data presented in tabulated form are intended for reference purposes.

  5. Static aerodynamic characteristics of a single-stage-to-orbit vehicle with low planform loading at Mach numbers from 0.3 to 4.63

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Fournier, R. H.

    1977-01-01

    Transonic pressure and wind tunnel studies were performed to determine the longitudinal and lateral aerodynamic characteristics of a single-stage-to-orbit vehicle which utilizes an all metallic, hot structure, thermal protection system resulting in low planform loading. The model was tested over a Mach number range from 0.3 to 4.63 for angles of attack from -4 deg to 32 deg at both 0 deg and 5 deg sideslip.

  6. Static aerodynamic characteristics of a winged single-stage-to-orbit vehicle at Mach numbers from 0.3 to 4.63

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Fournier, R. H.

    1978-01-01

    The Langley 8 foot transonic pressure tunnel and the Langley Unitary Plan wind tunnel used to determine the longitudinal and lateral-directional aerodynamic characteristics of a winged single-state-to-orbit vehicle was investigated. The model was tested over a Mach number range from 0.3 to 4.63 for an angle-of-attack range from 4 to 30 D at both 0 and 5 D sideslip.

  7. Navier-Stokes simulations of Orbiter aerodynamic characteristics including pitch trim and bodyflap

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. James; Gnoffo, Peter A.; Greene, Francis A.

    1994-01-01

    An analysis of the longitudinal aerodynamics of the shuttle orbiter in the hypersonic flight regime is made through the use of computational fluid dynamics. Particular attention is given to establishing the cause of the 'pitching moment anomaly,' which occurred on the orbiter's first flight, and to computing the aerodynamics of a complete orbiter configuration at flight conditions. Data from ground-based facilities as well as orbiter flight data are used to validate the computed results. Analysis shows that the pitching moment anomaly is a real-gas chemistry effect that was not simulated in ground-based facilities, which used air as a test gas. Computed flight aerodynamics for the orbiter are within 5% of the measured flight values and trim bodyflap deflections are predicted to within 10%.

  8. Effects of forebody strakes and Mach number on overall aerodynamic characteristics of configuration with 55 deg cropped delta wing

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Rogers, Lawrence W.

    1992-01-01

    A wind tunnel data base was established for the effects of chine-like forebody strakes and Mach number on the longitudinal and lateral-directional characteristics of a generalized 55 degree cropped delta wing-fuselage-centerline vertical tail configuration. The testing was conducted in the 7- by 10-Foot Transonic Tunnel at the David Taylor Research Center at free-stream Mach numbers of 0.40 to 1.10 and Reynolds numbers based on the wing mean aerodynamic chord of 1.60 x 10(exp 6) to 2.59 x 10(exp 6). The best matrix included angles of attack from 0 degree to a maximum of 28 degree, angles of sidesip of 0, +5, and -5 degrees, and wing leading-edge flat deflection angles of 0 and 30 degrees. Key flow phenomena at subsonic and transonic conditions were identified by measuring off-body flow visualization with a laser screen technique. These phenomena included coexisting and interacting vortex flows and shock waves, vortex breakdown, vortex flow interactions with the vertical tail, and vortices induced by flow separation from the hinge line of the deflected wing flap. The flow mechanisms were correlated with the longitudinal and lateral-directional aerodynamic data trends.

  9. High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1989-01-01

    Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.

  10. Aerodynamic characteristics of a propeller-powered high-lift semispan wing

    NASA Technical Reports Server (NTRS)

    Gentry, Garl L., Jr.; Takallu, M. A.; Applin, Zachary T.

    1994-01-01

    A small-scale semispan high-lift wing-flap system equipped under the wing with a turboprop engine assembly was tested in the LaRC 14- by 22-Foot Subsonic Tunnel. Experimental data were obtained for various propeller rotational speeds, nacelle locations, and nacelle inclinations. To isolate the effects of the high lift system, data were obtained with and without the flaps and leading-edge device. The effects of the propeller slipstream on the overall longitudinal aerodynamic characteristics of the wing-propeller assembly were examined. Test results indicated that the lift coefficient of the wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Decreasing the nacelle inclination (increased pitch down) enhanced the lift performance of the system much more than varying the vertical or horizontal location of the nacelle. Furthermore, decreasing the nacelle inclination led to higher lift curve slope values, which indicated that the powered wing could sustain higher angles of attack near maximum lift performance. Any lift augmentation was accompanied by a drag penalty due to the increased wing lift.

  11. Aerodynamic characteristics of NACA 4412 airfoil sction with flap

    NASA Astrophysics Data System (ADS)

    Ockfen, Alex E.; Matveev, Konstantin I.

    2009-09-01

    Wing-in-Ground vehicles and aerodynamically assisted boats take advantage of increased lift and reduced drag of wing sections in the ground proximity. At relatively low speeds or heavy payloads of these craft, a flap at the wing trailing-ground-effect flow id numerically investigated in this study. The computational method consists of a steady-state, incompressible, finite volume method utilizing the Spalart-Allmaras turbulence model. Grid generation and solution of the Navier-Stokes equations are completed flow with a flap, as well as ground-effect motion without a flap. Aerodynamic forces are plain flap. Changes in the flow introduced with the flap addition are also discussed. Overall, the use of a flap on wings with small attack angles is found to be beneficial for small flap deflections up to 5% of the chord, where the contribution of lift augmentation exceeds the drag increase, yielding an augmented lift-to-drag ratio

  12. Performance characteristics of aerodynamically optimum turbines for wind energy generators

    NASA Technical Reports Server (NTRS)

    Rohrbach, C.; Worobel, R.

    1975-01-01

    This paper presents a brief discussion of the aerodynamic methodology for wind energy generator turbines, an approach to the design of aerodynamically optimum wind turbines covering a broad range of design parameters, some insight on the effect on performance of nonoptimum blade shapes which may represent lower fabrication costs, the annual wind turbine energy for a family of optimum wind turbines, and areas of needed research. On the basis of the investigation, it is concluded that optimum wind turbines show high performance over a wide range of design velocity ratios; that structural requirements impose constraints on blade geometry; that variable pitch wind turbines provide excellent power regulation and that annual energy output is insensitive to design rpm and solidity of optimum wind turbines.

  13. Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1979-01-01

    An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.

  14. Effect of sweep and aspect ratio on the longitudinal aerodynamics of a spanloader wing in and out of ground effect. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Kjelgaard, S. O.; Paulson, J. W., Jr.

    1981-01-01

    A wind tunnel investigation was conducted in the Langley 4 by 7 meter tunnel to determine the effects of leading edge sweep, aspect ratio, flap deflection, and elevon deflection on the longitudinal aerodynamic characteristics of a span distributed load advanced cargo aircraft (spanloader). Model configurations consisted of leading edge sweeps of 0, 15, 30 and 45 deg and aspect ratios of approximately 2, 4, 6, and 8. Data were obtained for angles of attack of -8 to 18 deg out of ground effect and at angles of attack of -2, 0, and 2 deg in ground effect at Mach number equal 0.14. Flap and elevon deflections ranged from -20 to 20 deg. The data are represented in tabulated form.

  15. Unsteady aerodynamics of missiles. Part 3: Determination of the longitudinal stability of wings at high angles of attack in supersonic flight

    NASA Astrophysics Data System (ADS)

    Schneider, C. P.

    1980-05-01

    A theoretical method for the determination of unsteady aerodynamic coefficients associated with the longitudinal stability of slender wings in supersonic flight is presented. It is based on the indicial functional theory of Tobak. Extension to higher incidences is effected by combining the indicial functions with steady nonlinear coefficients derived from a semiempiricial procedure. The unsteady nonlinear aerodynamic coefficients are determined for delta wings with subsonic and supersonic leading edges, respectively.

  16. Investigation of aerodynamic characteristics of a hypersonic flow around bodies of revolution with a permeable tip

    NASA Astrophysics Data System (ADS)

    Sidnyaev, N. I.

    2007-03-01

    Results of experimental investigations of aerodynamic characteristics of models of high-velocity flying vehicles consisting of a combination of a blunt cone, a cylinder, and a conical tail fin are presented. The model forebody is cooled by porous blowing. The choice of such a configuration is determined by the necessity of optimizing the arrangement of high-velocity flying vehicles on the launcher and their aerodynamic characteristics under conditions of intense surface mass transfer (decrease in drag and heat transfer and increase in static and dynamic stability).

  17. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil

    PubMed Central

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    2016-01-01

    Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics

  18. Experimental and theoretical study of aerodynamic characteristics of some lifting bodies at angles of attack from -10 degrees to 53 degrees at Mach numbers from 2.30 to 4.62

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy; Torres, Abel O.

    1994-01-01

    Lifting bodies are of interest for possible use as space transportation vehicles because they have the volume required for significant payloads and the aerodynamic capability to negotiate the transition from high angles of attack to lower angles of attack (for cruise flight) and thus safely reenter the atmosphere and perform conventional horizontal landings. Results are presented for an experimental and theoretical study of the aerodynamic characteristics at supersonic speeds for a series of lifting bodies with 75 deg delta planforms, rounded noses, and various upper and lower surface cambers. The camber shapes varied in thickness and in maximum thickness location, and hence in body volume. The experimental results were obtained in the Langley Unitary Plan Wind Tunnel for both the longitudinal and the lateral aerodynamic characteristics. Selected experimental results are compared with calculated results obtained through the use of the Hypersonic Arbitrary-Body Aerodynamic Computer Program.

  19. Supersonic aerodynamic characteristics of a tail-control cruciform maneuverable missile with and without wings

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Fournier, R. H.

    1978-01-01

    The aerodynamic characteristics for a winged and a wingless cruciform missile are examined. The body was an ogive-cylinder with a 3.5 caliber forebody; an overall length-to-diameter ratio of 11.667; and has cruciform tails that were trapexoidal in planform. Tests were made both with and without 72.9 deg cruciform delta wings. The investigation was made for Mach numbers from 1.50 to 4.63, roll attitudes of 0 and 45 deg, angles of attack from -40 to 22 deg, and tail control deflections from 10 to -40 deg. The purpose is to determine the influence of the aerodynamic behavior on the design choice for maneuverable missiles intended primarily for air-to-air or surface-to-surface missions. The results indicate that the winged missile with its more linear aerodynamic characteristics and higher lift-curve slope, should provide the highest maneuverability over a large operational range.

  20. Aerodynamic Characteristics of Two Rotary Wing UAV Designs

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  1. AERODYNAMIC CHARACTERISTICS OF TWO ROTARY WING UAV DESIGNS

    NASA Technical Reports Server (NTRS)

    Jones, Henry E.; Wong, Oliver D.; Noonan, Kevin W.; Reis, Deane G.; Malovrh, Brendon D.

    2006-01-01

    This paper presents the results of an experimental investigation of two rotary-wing UAV designs. The primary goal of the investigation was to provide a set of interactional aerodynamic data for an emerging class of rotorcraft. The present paper provides an overview of the test and an introduction to the test articles, and instrumentation. Sample data in the form of a parametric study of fixed system lift and drag coefficient response to changes in configuration and flight condition for both rotor off and on conditions are presented. The presence of the rotor is seen to greatly affect both the character and magnitude of the response. The affect of scaled stores on body drag is observed to be dependent on body shape.

  2. Aerodynamic Characteristics of a Flying-Boat Hull Having a Length-Beam Ratio of 15, TED No. NACA 2206

    NASA Technical Reports Server (NTRS)

    Riebe, John M.; Naeseth, Rodger L.

    1951-01-01

    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of a flying-boat hull of a length-beam ratio of 15 in the presence of a wing. The investigation was an extension of previous tests made on hulls of length-beam ratios of 6, 9, and 12; these hulls were designed to have approximately the same hydrodynamic performance with respect to spray and resistance characteristics. Comparison with the previous investigation at lower length-beam ratios indicated a reduction in minimum drag coefficients of 0.0006 (10 peroent)with fixed transition when the length-beam ratio was extended from 12 to 15. As with the hulls of lower length-beam ratio, the drag reduction with a length-beam ratio of 15 occurred throughout the range of angle of attack tested and the angle of attack for minimum drag was in the range from 2deg to 3deg. Increasing the length-beam ratio from 12 to 15 reduced the hull longitudinal instability by an mount corresponding to an aerodynamic-center shift of about 1/2 percent of the mean aerodynamic chord of the hypothetical flying boat. At an angle of attack of 2deg, the value of the variation of yawing-moment coefficient with angle of yaw for a length-beam ratio of 15 was 0.00144, which was 0.00007 larger than the value for a length-beam ratio of 12.

  3. Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.

    1999-01-01

    An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.

  4. Aerodynamic Characteristics of Parachutes at Mach Numbers from 1.6 to 3

    NASA Technical Reports Server (NTRS)

    1961-01-01

    Aerodynamic Characteristics of Parachutes at Mach Numbers from 1.6 to 3. A wind-tunnel investigation was conducted to determine the parameters affecting the aerodynamic performance of drogue parachutes in the Mach number range from 1.6 to 3. Flow studies of both rigid and flexible-parachute models were made by means of high-speed schlieren motion pictures and drag coefficients of the flexible-parachute models were measured at simulated altitudes from about 50,000 to 120,000 feet. [Entire movie available on DVD from CASI as Doc ID 20070030970. Contact help@sti.nasa.gov

  5. Transonic aerodynamic characteristics of a supercritical-wing transport model with trailing-edge controls

    NASA Technical Reports Server (NTRS)

    Mann, M. J.; Langhans, R. A.

    1977-01-01

    The effects of wing trailing-edge control surfaces on the static transonic aerodynamic characteristics of a transport configuration with a supercritical wing were studied. The configuration was tested with both an area-ruled fuselage and a cylindrical fuselage. The Mach number range was from 0.80 to 0.96 and the angle of attack range was from -1 deg to 12 deg. The Reynolds number was 1,580,000 based on the mean aerodynamic chord. Tabular data are presented.

  6. Development of a morphing flap using shape memory alloy actuators: the aerodynamic characteristics of a morphing flap

    NASA Astrophysics Data System (ADS)

    Ko, Seung-Hee; Bae, Jae-Sung; Rho, Jin-Ho

    2014-07-01

    The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests.

  7. Effect of milling machine roughness and wing dihedral on the supersonic aerodynamic characteristics of a highly swept wing

    NASA Technical Reports Server (NTRS)

    Darden, Christine M.

    1989-01-01

    An experimental investigation was conducted to assess the effect of surface finish on the longitudinal and lateral aerodynamic characteristics of a highly-swept wing at supersonic speeds. A study of the effects of wing dihedral was also made. Included in the tests were four wing models: three models having 22.5 degrees of outboard dihedral, identical except for surface finish, and a zero-dihedral, smooth model of the same planform for reference. Of the three dihedral models, two were taken directly from the milling machine without smoothing: one having a maximum scallop height of 0.002 inches and the other a maximum scallop height of 0.005 inches. The third dihedral model was handfinished to a smooth surface. Tests were conducted in Test Section 1 of the Unitary Plan Wind Tunnel at NASA-Langley over a range of Mach numbers from 1.8 to 2.8, a range of angle of attack from -5 to 8 degrees, and at a Reynolds numbers per foot of 2 x 10(6). Selected data were also taken at a Reynolds number per foot of 6 x 10(6). Drag coefficient increases, with corresponding lift-drag ratio decreases were the primary aerodynamic effects attributed to increased surface roughness due to milling machine grooves. These drag and lift-drag ratio increments due to roughness increased as Reynolds number increased.

  8. Wind-tunnel studies of the effects of simulated damage on the aerodynamic characteristics of airplanes and missiles

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1979-01-01

    In order to assess the effects on static aerodynamic characteristics of battle damage to an aircraft or missile, wind tunnel studies were performed on models from which all or parts of the wing or horizontal or vertical tail had been removed. The effects of damage on the lift, longitudinal stability, lateral stability and directional stability of a swept-wing fighter are presented, along with the effects of wing removal on the control requirements of a delta-wing fighter. Results indicate that the loss of a major part of the vertical tail will probably result in the loss of the aircraft at any speed, while the loss of major parts of the horizontal tail generally results in catastrophic instability at subsonic speeds but, at low supersonic speeds, may allow the aircraft to return to friendly territory before pilot ejection. Major damage to the wing may be sustained without the loss of aircraft or pilot. The loss of some of the aerodynamic surfaces of cruise or surface-to-air missiles may result in catastrophic instability or may permit a ballistic trajectory to be maintained, depending upon the location of the lost surface with respect to the center of gravity of the missile.

  9. Aerodynamic characteristics of the Scout 133R vehicle determined from wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Abramson, F. B.; Muir, T. G., Jr.; Simmons, H. L.

    1972-01-01

    Bending moments and other associated parameters were measured on a Scout vehicle during a launch through high velocity horizontal winds. Comparison of the measured data with predictions revealed some unexplained discrepancies. Possible sources of error in the experimental data and predictions were considered; one of which is the predicted aerodynamic characteristics. A wind tunnel investigation was initiated, including supersonic force and pressure tests, to better define the aerodynamics. In addition to basic aerodynamic coefficients from the force test, detailed pressure and load distributions along the body were established from the pressure test. Pressure coefficients were integrated to determine normal load distributions, total normal force, and total pitching moment of the body. Comparison of the normal forces from pressure and force tests resulted in agreement within 15%. Comparison of pitching moment data from the two tests resulted in larger differences.

  10. Aerodynamic Characteristics and Glide-Back Performance of Langley Glide-Back Booster

    NASA Technical Reports Server (NTRS)

    Pamadi, Bandu N.; Covell, Peter F.; Tartabini, Paul V.; Murphy, Kelly J.

    2004-01-01

    NASA-Langley Research Center is conducting system level studies on an-house concept of a small launch vehicle to address NASA's needs for rapid deployment of small payloads to Low Earth Orbit. The vehicle concept is a three-stage system with a reusable first stage and expendable upper stages. The reusable first stage booster, which glides back to launch site after staging around Mach 3 is named the Langley Glide-Back Booster (LGBB). This paper discusses the aerodynamic characteristics of the LGBB from subsonic to supersonic speeds, development of the aerodynamic database and application of this database to evaluate the glide back performance of the LGBB. The aerodynamic database was assembled using a combination of wind tunnel test data and engineering level analysis. The glide back performance of the LGBB was evaluated using a trajectory optimization code and subject to constraints on angle of attack, dynamic pressure and normal acceleration.

  11. Vortex flap flow reattachment line and subsonic longitudinal aerodynamic data on 50 deg to 74 deg Delta wings on common fuselage

    NASA Technical Reports Server (NTRS)

    Frink, N. T.; Huffman, J. K.; Johnson, T. D., Jr.

    1983-01-01

    Positions of the primary vortex flow reattachment line and longitudinal aerodynamic data were obtained at Mach number 0.3 for a systematic series of vortex flaps on delta wing body configurations with leading edge sweeps of 50, 58, 66, and 74 deg. The investigation was performed to study the parametric effects of wing sweep, vortex flap geometry and deflection, canards, and trailing edge flaps on the location of the primary vortex reattachment line relative to the flap hinge line. The vortex reattachment line was located via surface oil flow photographs taken at selected angles of attack. Force and moment measurements were taken over an angle of attack range of -1 deg to 22 deg at zero sideslip angle for many configurations to further establish the data base and to assess the aforementioned parametric effects on longitudinal aerodynamics. Both the flow reattachment and aerodynamic data are presented.

  12. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    NASA Astrophysics Data System (ADS)

    Yongfeng, DENG; Jian, JIANG; Xianwei, HAN; Chang, TAN; Jianguo, WEI

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  13. Aerodynamic characteristics of the National Launch System (NLS) 1 1/2 stage launch vehicle

    NASA Technical Reports Server (NTRS)

    Springer, A. M.; Pokora, D. C.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) is studying ways of assuring more reliable and cost effective means to space. One launch system studied was the NLS which included the l l/2 stage vehicle. This document encompasses the aerodynamic characteristics of the 1 l/2 stage vehicle. To support the detailed configuration definition two wind tunnel tests were conducted in the NASA Marshall Space Flight Center's 14x14-Inch Trisonic Wind Tunnel during 1992. The tests were a static stability and a pressure test, each utilizing 0.004 scale models. The static stability test resulted in the forces and moments acting on the vehicle. The aerodynamics for the reference configuration with and without feedlines and an evaluation of three proposed engine shroud configurations were also determined. The pressure test resulted in pressure distributions over the reference vehicle with and without feedlines including the reference engine shrouds. These pressure distributions were integrated and balanced to the static stability coefficients resulting in distributed aerodynamic loads on the vehicle. The wind tunnel tests covered a Mach range of 0.60 to 4.96. These ascent flight aerodynamic characteristics provide the basis for trajectory and performance analysis, loads determination, and guidance and control evaluation.

  14. Characteristic boundary conditions for three-dimensional transonic unsteady aerodynamics

    NASA Technical Reports Server (NTRS)

    Whitlow, W., Jr.

    1984-01-01

    Characteristic far-field boundary conditions for the three-dimensional unsteady transonic small disturbance potential equation have been developed. The boundary conditions were implemented in the XTRAN3S finite difference code and tested for a flat plate rectangular wing with a pulse in angle of attack; the freestream Mach number was 0.85. The calculated force response shows that the characteristic boundary conditions reduce disturbances that are reflected from the computational boundaries.

  15. Aerodynamic characteristics of an all-body hypersonic aircraft configuration at Mach numbers from 0.65 to 10.6

    NASA Technical Reports Server (NTRS)

    Nelms, W. P., Jr.; Thomas, C. L.

    1971-01-01

    Aerodynamic characteristics of a model designed to represent an all body, hypersonic cruise aircraft are presented for Mach numbers from 0.65 to 10.6. The configuration had a delta planform with an elliptic cone forebody and an afterbody of elliptic cross section. Detailed effects of varying angle of attack (-2 to +15 deg), angle of sideslip (-2 to +8 deg), Mach number, and configuration buildup were considered. In addition, the effectiveness of horizontal tail, vertical tail, and canard stabilizing and control surfaces was investigated. The results indicate that all configurations were longitudinally stable near maximum lift drag ratio. The configurations with vertical tails were directionally stable at all angles of attack. Trim penalties were small at hypersonic speeds for a center of gravity location representative of the airplane, but because of the large rearward travel of the aerodynamic center, trim penalties were severe at transonic Mach numbers.

  16. Low-speed aerodynamic characteristics from wind-tunnel tests of a large-scale advanced arrow-wing supersonic-cruise transport concept

    NASA Technical Reports Server (NTRS)

    Smith, P. M.

    1978-01-01

    Tests have been conducted to extend the existing low speed aerodynamic data base of advanced supersonic-cruise arrow wing configurations. Principle configuration variables included wing leading-edge flap deflection, wing trailing-edge flap deflection, horizontal tail effectiveness, and fuselage forebody strakes. A limited investigation was also conducted to determine the low speed aerodynamic effects due to slotted training-edge flaps. Results of this investigation demonstrate that deflecting the wing leading-edge flaps downward to suppress the wing apex vortices provides improved static longitudinal stability; however, it also results in significantly reduced static directional stability. The use of a selected fuselage forebody strakes is found to be effective in increasing the level of positive static directional stability. Drooping the fuselage nose, which is required for low-speed pilot vision, significantly improves the later-directional trim characteristics.

  17. Low-speed aerodynamic characteristics of a model having a 42 deg swept low wing with a supercritical airfoil, double-slotted flaps, and a T-tail

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.; Sleeman, W. C., Jr.

    1972-01-01

    A low speed wind tunnel test was conducted in the Langley V/STOL tunnel to determine the static longitudinal and lateral stability characteristics of a general research model which simulated an advance configuration for a commercial transport airplane with a T tail. The model had a 42 deg swept, aspect ratio 6.78 wing with a supercritical airfoil and a high lift system which consisted of a leading edge slat and a double slotted flap. Various slat and flap deflection combinations represented clean, take off, and landing configurations. Effects on the longitudinal and lateral aerodynamic characteristics were determined for two flow through, simulated engine nacelles located on the sides of the fuselage near the rear of the model.

  18. Aerodynamic characteristics of a six-jet V/STOL configuration with four swing-out lift jets in the transition speed range

    NASA Technical Reports Server (NTRS)

    Carter, A. W.

    1970-01-01

    A wind-tunnel investigation has been made of the longitudinal aerodynamic characteristics and jet-interference effects of a model of a jet V/STOL variable-sweep fighter airplane that employs four direct-lift engines which swing out from the fuselage and two lift-cruise engines located in the rear part of the fuselage. Data were obtained with two wing areas for various forward speeds and power conditions in the transition speed range. The data are presented without analysis or discussion.

  19. Effect of nacelles on aerodynamic characteristics of an executive-jet model with simulated, partial-chord, laminar-flow-control wing glove

    NASA Technical Reports Server (NTRS)

    Campbell, R. L.

    1982-01-01

    Tests were conducted in the Langley High-Speed 7- by 10-Foot Tunnel using a 1/10-scale model of an executive jet to examine the effects of the nacelles on the wing pressures and model longitudinal aerodynamic characteristics. For the present investigation, each wing panel was modified with a simulated, partial-chord, laminar-flow-control glove. Horizontal-tail effects were also briefly examined. The tests covered a range of Mach numbers from 0.40 to 0.82 and lift coefficients from 0.20 to 0.55. Oil-flow photographs of the wing at selected conditions are included.

  20. The Aerodynamic Characteristics of a Slotted Clark Y Wing as Affected by the Auxiliary Airfoil Position

    NASA Technical Reports Server (NTRS)

    Wenzinger, Carl J; Shortal, Joseph A

    1932-01-01

    Aerodynamic force tests on a slotted Clark Y wing were conducted in a vertical wind tunnel to determine the best position for a given auxiliary airfoil with respect to the main wing. A systematic series of 100 changes in location of the auxiliary airfoil were made to cover all the probable useful ranges of slot gap, slot width, and slot depth. The results of the investigation may be applied to the design of automatic or controlled slots on wings with geometric characteristics similar to the wing tested. The best positions of the auxiliary airfoil were covered by the range of the tests, and the position for desired aerodynamic characteristics may easily be obtained from charts prepared especially for the purpose.

  1. The Practical Calculation of the Aerodynamic Characteristics of Slender Finned Vehicles

    NASA Technical Reports Server (NTRS)

    Barrowman, James S.

    1967-01-01

    The basic objective of this thesis is to provide a practical method of computing the aerodynamic characteristics of slender finned vehicles such as sounding rockets, high speed bombs, and guided missiles. The aerodynamic characteristics considered are the normal force coefficient derivative, c(sub N(sub alpha)); center of pressure, bar-X; roll forcing moment coefficient derivative, c(sub l(sub delta)); roll damping moment coefficient derivative, c(sub l(sub p)); pitch damping moment coefficient derivative, c(sub mq); and the drag coefficient, c (sub D). Equations are determined for both subsonic and supersonic flow. No attempts is made to analyze the transonic region. The general configuration to which the relations are applicable is a slender axisymmetric body having three or four fins.

  2. Aerodynamic characteristics at Mach 6 of a wing-body concept for a hypersonic research airplane

    NASA Technical Reports Server (NTRS)

    Dillon, J. L.; Pittman, J. L.

    1978-01-01

    The static aerodynamic characteristics of a 1/30 scale model of a wing-body concept for a high speed research airplane were investigated in the Langley 20 inch Mach six tunnel. The investigation consisted of configuration buildup from the basic body by adding a wing, center vertical tail, three-module scramjet, and six-module scramjet engine. The test Mach number was six at a Reynolds number, based on model fuselage length, of about 13,700,000. The test angle-of-attack range was 4 to 20 D at constant angles of sideslip of 0, 2, and 4 deg. The elevons were deflected from 10 to -15 D for pitch control. Roll and yaw control were investigated. Experimental aerodynamic characteristics are compared with analytical elements.

  3. Aerodynamic characteristics of supersonic fighter airplane configurations based on Soviet design concepts

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Fournier, R. H.; Lamb, M.

    1977-01-01

    The aerodynamic, stability, and control characteristics of several supersonic fighter airplane concepts are examined. The configurations, which are based on Soviet design concepts, include fixed-wing aircraft having delta wings, swept wings, and trapezoidal wings, and a variable wing-sweep aircraft. Each concept employs aft tail controls. The concepts vary from lightweight, single-engine, air superiority, point interceptor, or ground attack types to larger twin-engine interceptor and reconnaissance designs. Analytical and experimental results indicate that careful application of the transonic or supersonic area rule can provide nearly optimum shaping for minimum drag for a specified Mach number requirement. In addition, through the proper location of components and the exploitation of interference flow fields, the concepts provide linear pitching moment characteristics, high control effectiveness, and reasonably small variations in aerodynamic center location with a resulting high potential for maneuvering capability.

  4. Aerodynamic characteristics of the standard dynamics model in coning motion at Mach 0.6

    NASA Technical Reports Server (NTRS)

    Jermey, C.; Schiff, L. B.

    1985-01-01

    A wind tunnel test was conducted on the Standard Dynamics Model (a simplified generic fighter aircraft shape) undergoing coning motion at Mach 0.6. Six component force and moment data are presented for a range of angle of attack, sideslip, and coning rates. At the relatively low non-dimensional coning rate employed (omega b/2V less than or equal to 0.04), the lateral aerodynamic characteristics generally show a linear variation with coning rate.

  5. Estimation of Longitudinal Unsteady Aerodynamics of a Wing-Tail Combination From Wind Tunnel Data

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2006-01-01

    This paper presents an initial step toward model identification from wind tunnel data for an airliner configuration. Two approaches to modeling a transport configuration are considered and applied to both steady and large-amplitude forced-oscillation wind tunnel data taken over a wide range of angles of attack. Only limited conclusions could be drawn from this initial data set. Although model estimated time histories of normal force and pitching moment agree reasonably well with the corresponding measured values, model damping parameters did not, for some cases, have values consistent with small amplitude oscillatory data. In addition, large parameter standard errors implied poor information content for model structure determination and parameter estimation. Further investigation of the modeling problem for more general aerodynamic models is recommended with close attention to experiment design for obtaining parameters with high accuracy.

  6. Longitudinal stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA)

    NASA Technical Reports Server (NTRS)

    Stephenson, Jack D.; Hardy, Gordon H.

    1989-01-01

    Flight experiments were conducted to evaluate various aerodynamic characteristics of the Quiet Short-Haul Research Aircraft (QSRA), an experimental aircraft that makes use of the upper-surface blown (USB) powered-lift concept. Time-history records from maneuvers performed with the aircraft in landing-approach and take-off configurations (with its stability augmentation system disengaged) were analyzed to obtain longitudinal stability and control derivatives and performance characteristics. The experiments included measuring the aircraft responses to variations in the deflection of direct-lift control spoilers and to thrust variations as well as to elevator inputs. The majority of the results are given for the aircraft in a landing configuration with the USB flaps at 50 degrees. For this configuration, if the static longitudinal stability is defined as the variation of the pitching-moment coefficient with the lift coefficient at a constant thrust coefficient, this stability decreases significantly with increasing angle of attack above 9 degrees. For this configuration, at small and negative angles of attack and high levels of thrust, the elevators and the horizontal stabilizer lost effectiveness owing to incipent stalling, but this occurred only during unsteady maneuvers and for brief time intervals.

  7. Evaluation of VSAERO in prediction of aerodynamic characteristics of helicopter hub fairings

    NASA Technical Reports Server (NTRS)

    Louie, Alexander

    1989-01-01

    A low-order panel code, VSAERO, was used to predict the aerodynamic characteristics of helicopter hub fairings. Since the simulation of this kind of bluff body by VSAERO was not documented before, the VSAERO solutions were correlated with experimental data to establish their validity. The validation process revealed that simulation of the aerodynamic environment around a hub fairing was sensitive to several modeling parameters. Some of these parameters are body and wake panels arrangement, streamwise and spanwise separation location, and the most prominent one-the wake modeling. Three wake models were used: regular wake, separated wake, and jet model. The regular wake is a wake with negligible thickness (thin wake). It is represented by a single vortex sheet. The separated wake and the jet model in the present application are wakes with finite thickness (thick wake). They consist of a vortex sheet enclosing a region of low-energy flow. The results obtained with the reqular wake were marginally acceptable for sharp-edged hub fairings. For all other cases under consideration, the jet model results correlated slightly better. The separated wake, which seemed to be the most appropriate model, caused the solution to diverge. While the regular wake was straight-forward to apply in simulations, the jet model was not. It requires the user to provide information about the doublet strength gradient on wake panels by guessing the efflux velocities at the wake shedding location. In summary, VSAERO neither predicts accurately the aerodynamic characteristics of helicopter hub fairings nor was cost effective.

  8. Aerodynamic characteristics at Mach numbers from 0.6 to 2.16 of a supersonic cruise fighter configuration with a design Mach number of 1.8

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.

    1977-01-01

    An investigation was made in the Langley 8-foot transonic tunnel and the Langley Unitary Plan wind tunnel, over a Mach number range of 0.6 to 2.16, to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic-cruise fighter. The configuration, which is designed for efficient cruise at Mach number 1.8, is a twin-engine tailless arrow-wing concept with a single rectangular inlet beneath the fuselage and outboard vertical tails and ventral fins. It had untrimmed values of lift-drage ratio ranging from 10 at subsonic speeds to 6.4 at the design Mach number. The configuration was statically stable both longitudinally and laterally.

  9. Aerodynamic characteristics of a supersonic cruise airplane configuration at Mach numbers of 2.30, 2.96, and 3.30. [Langley Unitary Plan wind tunnel test

    NASA Technical Reports Server (NTRS)

    Shrout, B. L.; Fournier, R. H.

    1979-01-01

    An investigation was made in the Langley Unitary Plan wind tunnel at Mach numbers of 2.30, 2.96, and 3.30 to determine the static longitudinal and lateral aerodynamic characteristics of a model of a supersonic cruise airplane. The configuration, with a design Mach number of 3.0, has a highly swept arrow wing with tip panels of lesser sweep, a fuselage chine, outboard vertical tails, and outboard engines mounted in nacelles beneath the wings. For wind tunnel test conditions, a trimmed value above 6.0 of the maximum lift-drag ratio was obtained at the design Mach number. The configuration was statically stable, both longitudinally and laterally. Data are presented for variations of vertical-tail roll-out and toe-in and for various combinations of components. Some roll control data are shown as are data for the various sand grit sizes used in fixing the boundary layer transition location.

  10. Numerical Study of Aerodynamic Characteristics of a Symmetric NACA Section with Simulated Ice Shapes

    NASA Astrophysics Data System (ADS)

    Tabatabaei, N.; Cervantes, M. J.; Trivedi, C.; Aidanpää, Jan-Olof

    2016-09-01

    To develop a numerical model of icing on wind turbine blades, a CFD simulation was conducted to investigate the effect of critical ice accretions on the aerodynamic characteristics of a 0.610 m chord NACA 0011 airfoil section. Aerodynamic performance coefficients and pressure profile were calculated and compared with the available measurements for a chord Reynolds number of 1.83x106. Ice shapes were simulated with flat plates (spoiler-ice) extending along the span of the wing. Lift, drag, and pressure coefficients were calculated in zero angle of attack through the steady state and transient simulations. Different approaches of numerical studies have been applied to investigate the icing conditions on the blades. The simulated separated flow over the sharp spoilers is challenging and can be seen as a worst test case for validation. It allows determining a reliable strategy to simulate real ice shapes [1] for which the detailed validation cannot easily be provided.

  11. Entry dynamics of space shuttle orbiter with longitudinal stability and control uncertainties at supersonic and hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Stone, H. W.; Powell, R. W.

    1977-01-01

    A six-degree-of-freedom simulation analysis was conducted to examine the effects of longitudinal static aerodynamic stability and control uncertainties on the performance of the space shuttle orbiter automatic (no manual inputs) entry guidance and control systems. To establish the acceptable boundaries, the static aerodynamic characteristics were varied either by applying a multiplier to the aerodynamic parameter or by adding an increment. With either of two previously identified control system modifications included, the acceptable longitudinal aerodynamic boundaries were determined.

  12. Low-Speed Aerodynamic and Hydrodynamic Characteristics of a Proposed Supersonic Multijet Water-Based Hydro-Ski Aircraft with Upward-Rotating Engines

    NASA Technical Reports Server (NTRS)

    Petynia, William W.; Croom, Delwin R.; Davenport, Edwin E.

    1958-01-01

    The low-speed aerodynamic and hydrodynamic characteristics of a proposed multijet water-based aircraft configuration for supersonic operation have been investigated. The design features include upward-rotating engines, body indentation, a single hydro-ski, and a wing with an aspect ratio of 3.0, a taper ratio of 0.143, 36.90 sweepback of the quarter-chord line, and NACA 65AO04 airfoil sections. For the aerodynamic investigation, with the flaps retracted, the model was longitudinally and directionally stable up to the stall. The all-movable horizontal tail was capable of trimming the model up to a lift coefficient of approximately 0.87. All flap configurations investigated had a tendency to become longitudinally unstable at stall. The effectiveness of the all-movable horizontal tail increased with increasing lift coefficient for all flap configurations investigated; however, with the large static margin of the configuration with the center of gravity at 0.25 mean aerodynamic chord, the all-movable horizontal tail was not powerful enough to trim all the various flapped configurations investigated throughout the angle-of-attack range. For the hydrodynamic investigation, longitudinal stability during take-offs and landings was satisfactory. Decreasing the area of the hydro-ski 60 percent increased the maximum resistance and emergence speed 40 and 70 percent, respectively. Without the jet exhaust, the resistance was reduced by simulating the vertical-lift component of the forward engines rotated upward. However, the jet exhaust of the forward engines increased the maximum resistance approximately 60 percent. The engine inlets and horizontal tail were free from spray for all loads investigated and for both hydro-ski sizes.

  13. Determination of longitudinal aerodynamic derivatives using flight data from an icing research aircraft

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Reehorst, A. L.; Bond, T. H.; Batterson, J. G.; O'Mara, T. M.

    1989-01-01

    A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control

  14. Determination of longitudinal aerodynamic derivatives using flight data from an icing research aircraft

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Batterson, J. G.; Reehorst, A. L.; Bond, T. H.; Omara, T. M.

    1989-01-01

    A flight test was performed with the NASA Lewis Research Center's DH-6 icing research aircraft. The purpose was to employ a flight test procedure and data analysis method, to determine the accuracy with which the effects of ice on aircraft stability and control could be measured. For simplicity, flight testing was restricted to the short period longitudinal mode. Two flights were flown in a clean (baseline) configuration, and two flights were flown with simulated horizontal tail ice. Forty-five repeat doublet maneuvers were performed in each of four test configurations, at a given trim speed, to determine the ensemble variation of the estimated stability and control derivatives. Additional maneuvers were also performed in each configuration, to determine the variation in the longitudinal derivative estimates over a wide range of trim speeds. Stability and control derivatives were estimated by a Modified Stepwise Regression (MSR) technique. A measure of the confidence in the derivative estimates was obtained by comparing the standard error for the ensemble of repeat maneuvers, to the average of the estimated standard errors predicted by the MSR program. A multiplicative relationship was determined between the ensemble standard error, and the averaged program standard errors. In addition, a 95 percent confidence interval analysis was performed for the elevator effectiveness estimates, C sub m sub delta e. This analysis identified the speed range where changes in C sub m sub delta e could be attributed to icing effects. The magnitude of icing effects on the derivative estimates were strongly dependent on flight speed and aircraft wing flap configuration. With wing flaps up, the estimated derivatives were degraded most at lower speeds corresponding to that configuration. With wing flaps extended to 10 degrees, the estimated derivatives were degraded most at the higher corresponding speeds. The effects of icing on the changes in longitudinal stability and control

  15. Measurements of the Longitudinal Stability and Control and Stalling Characteristics of a North American P-51H Airplane (AAF No. 4-64164)

    NASA Technical Reports Server (NTRS)

    Kraft, Christopher C., Jr.; Reeder, J. P.

    1948-01-01

    Flight tests have been made to determine the longitudinal stability and control and stalling characteristics of a North American P-51H airplane. The results indicate that the airplane has satisfactory longitudinal stability in all the flight conditions tested at normal loadings up to 25,000 feet altitude. At Mach numbers above 0.7, the elevator push force required for longitudinal trim decreased somewhat because of compressibility effects. The elevator stick force per g in accelerated turns at the forward center-of-gravity position of 24 percent mean aerodynamic chord above 250 miles per hour was in excess of the required limits at both 5,000 and 25,OOO feet altitude. The longitudinal-trim-force changes due to flaps and power were small, but the rudder-trim-force change with power change was high. The stalling characteristics in all the conditions tested were satisfactory.

  16. Effect of Ground Proximity on the Aerodynamic Characteristics of Aspect-Ratio-1 Airfoils With and Without End Plates

    NASA Technical Reports Server (NTRS)

    Carter, Arthur W.

    1961-01-01

    An investigation has been made to determine the effect of ground proximity on the aerodynamic characteristics of aspect-ratio-1 airfoils. The investigation was made with the model moving over the water in a towing tank in order to eliminate the effects of wind-tunnel walls and of boundary layer on ground boards at small ground clearances. The results indicated that, as the ground was approached, the airfoils experienced an increase in lift-curve slope and a reduction in induced drag; thus, lift-drag ratio was increased. As the ground was approached, the profile drag remained essentially constant for each airfoil. Near the ground, the addition of end plates to the airfoil resulted in a large increase in lift-drag ratio. The lift characteristics of the airfoils indicated stability of height at positive angles of attack and instability of height at negative angles; therefore, the operating range of angles of attack would be limited to positive values. At positive angles of attack, the static longitudinal stability was increased as the height above the ground was reduced. Comparison of the experimental data with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77) indicated generally good agreement between experiment and theory for the airfoils without end plates.

  17. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattice method, L216 (DUBFLEX). Volume 2: Supplemental system design and maintenance document

    NASA Technical Reports Server (NTRS)

    Harrison, B. A.; Richard, M.

    1979-01-01

    The information necessary for execution of the digital computer program L216 on the CDC 6600 is described. L216 characteristics are based on the doublet lattice method. Arbitrary aerodynamic configurations may be represented with combinations of nonplanar lifting surfaces composed of finite constant pressure panel elements, and axially summetric slender bodies composed of constant pressure line elements. Program input consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic field (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  18. Measured and Computed Hypersonic Aerodynamic/Aeroheating Characteristics for an Elliptically Blunted Flared Cylinder

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.; Buck, Gregory M.; Wood, William A.

    2001-01-01

    Computational and experimental hypersonic aerodynamic forces and moments and aeroheating levels for Kistler Aerospace Corporation's baseline orbiter vehicle at incidence are presented. Experimental data were measured in ground-based facilities at the Langley Research Center and predictions were performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm code. The test parameters were incidence (-4 to 24 degrees), freestream Mach number (6 to 10), freestream ratio of specific heats (1.2 to 1.4), and freestream Reynolds number (0.5 to 8.0 million per foot). The effects of these parameters on aerodynamic characteristics, as well as the effects of Reynolds number on measured heating levels are discussed. Good agreement between computational and experimental aerodynamic and aeroheating values were observed over the wide range of test parameters examined. Reynolds number and ratio of specific heats were observed to significantly alter the trim L/D value. At Mach 6, laminar flow, was observed along the entire windward centerline up to the flare for all angles and Reynolds numbers tested. Flow over the flare transitioned front laminar to transitional turbulent between 4 and 8 million per foot at 8 and 12 degrees angle of attack, and near 4 million per foot at 16 degrees angle of attack.

  19. Measured and Computed Hypersonic Aerodynamic/Aeroheating Characteristics for an Elliptically Blunted Flared Cylinder

    NASA Technical Reports Server (NTRS)

    Greene, Francis A.; Buck, Gregory M.; Wood, William A.

    2001-01-01

    Computational and experimental hypersonic aerodynamic forces and moments and aeroheating levels for Kistler Aerospace Corporation's baseline orbiter vehicle at incidence are presented. Experimental data were measured in ground-based facilities at the Langley Research Center and predictions were performed using the Langley Aerothermodynamic Upwind Relaxation Algorithm code. The test parameters were incidence (-4 to 24 degrees), freestream Mach number (6 to 10),freestream ratio o specific heats (1.2 to 1.4), and freestream Reynolds number (0.5 to 8.0 million per foot). The effects of these parameters on aerodynamic characteristics, as well as the effects of Reynolds number on measured heating levels are discussed. Good agreement between computational and experimental aerodynamic and aeroheating values were observed over the wide range of test parameters examined. Reynolds number and ratio of specific heats were observed to significantly alter the trim L/D value. At Mach 6, laminar flow was observed along the entire windward centerline tip to the flare for all angles and Reynolds numbers tested. Flow over the flare transitioned from laminar to transitional/turbulent between 4 and 8 million per foot at 8 and 12 degrees angle of attack, and near 4 million per foot at 16 degrees angle of attack.

  20. Low-speed aerodynamic characteristics of a transport configuration having a 42 deg swept supercritical airfoil wing and three tail height positions

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.; Sleeman, W. C., Jr.

    1974-01-01

    A low speed investigation was conducted in the Langley V/STOL tunnel to define the static stability characteristics of an advanced high subsonic speed transport aircraft model in the cruise configuration (no high lift system). The wing of the model had 42 deg sweep of the quarter chord line, an aspect ratio of 6.78, and supercritical airfoil sections. Three different horizontal tail configurations (high, mid, and low) were investigated on the complete model and for the model with the wing removed in order to assess effects of the wing flow field on the tail contributions to both longitudinal and lateral stability characteristics. All the model configurations investigated were tested over an angle of attack range from approximately -5 to 23 deg. Some model configurations were also tested over an angle of attack range from about 11 to 38 deg in order to explore the aerodynamic characteristics in the deep stall region.

  1. Navier-Stokes simulations of the Shuttle Orbiter aerodynamic characteristics with emphasis on pitch trim and bodyflap

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Gnoffo, Peter A.; Greene, Francis A.

    1993-01-01

    An analysis of the longitudinal aerodynamics of the Shuttle Orbiter in the hypersonic flight regime is made through the use of computational fluid dynamics (CFD). Particular attention is given to establishing the cause of the 'pitching moment anomaly' which occurred on the Orbiter's first flight and to computing the aerodynamics of a complete Orbiter configuration at flight conditions. Data from ground based facilities as well as Orbiter flight data are used to validate the computed results. Analysis shows that the 'pitching moment anomaly' is a real gas chemistry effect which cannot be simulated in ground-based facilities. Computed flight aerodynamics for the Orbiter are within 5 percent of the measured flight values and trim bodyflap deflections are predicted to within 10 percent.

  2. Theoretical aerodynamic characteristics of a family of slender wing-tail-body combinations

    NASA Technical Reports Server (NTRS)

    Lomax, Harvard; Byrd, Paul F

    1951-01-01

    The aerodynamic characteristics of an airplane configuration composed of a swept-back, nearly constant chord wing and a triangular tail mounted on a cylindrical body are presented. The analysis is based on the assumption that the free-stream Mach number is near unity or that the configuration is slender. The calculations for the tail are made on the assumption that the vortex system trailing back from the wing is either a sheet lying entirely in the plane of the flat tail surface or has completely "rolled up" into two point vortices that lie either in, above, or below the plane of the tail surface.

  3. Prediction of Aerodynamic Characteristics of Fighter Wings at High Angles of Attack.

    DTIC Science & Technology

    1984-03-01

    method coupled with iterative routines for wake location, viscous effects and vortex flows. Applications of the techniques to a number of...AD-A145 1@7 PREDICTION OF AERODYNAMIC CHARACTERISTICS OF FIGHTER i/2 WIINGS AT HIGH ANGLES OF ATTACK(U) ANALYTICAL METHODS INC REDMOND WA B MASKEW ET...ATTACK I B. !4askew T.S. Vaidyanathan J.K. Nathman F.A. Dvorak Analytical Methods , Inc. 2047 - 152nd Avenue N.E. Redmond, Washington 98052 CONTRACT

  4. Supersonic aerodynamic characteristics of some reentry concepts for angles of attack to 90 deg

    NASA Astrophysics Data System (ADS)

    Spearman, M. L.

    1985-11-01

    Past studies of reentry vehicles tested to high angles of attack (up to 90 deg) in the Mach number range from 2 to 4.8 are reviewed. Two basic planforms are considered: highly-swept deltas and circular. The delta concepts include variations in cross section (and thus volume) and in camber distribution. The effectiveness of various types of aerodynamic control devices is also included. The purpose of the paper is to examine the characteristics of the vehicles with a view toward the potential usefulness of such concepts in a flight regime that would include reentry from space into the atmosphere followed by a transition to sustained atmospheric flight.

  5. The characteristics of the ground vortex and its effect on the aerodynamics of the STOL configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Vearle R.

    1988-01-01

    The interaction of the free stream velocity on the wall jet formed by the impingement of deflected engine thrust results in a rolled up vortex which exerts sizable forces on a short takeoff (STOL) airplane configuration. Some data suggest that the boundary layer under the free stream ahead of the configuration may be important in determining the extent of the travel of the wall jet into the oncoming stream. Here, early studies of the ground vortex are examined, and those results are compared to some later data obtained with moving a model over a fixed ground board. The effect of the ground vortex on the aerodynamic characteristics are discussed.

  6. Cylinder wake influence on the tonal noise and aerodynamic characteristics of a NACA0018 airfoil

    NASA Astrophysics Data System (ADS)

    Takagi, Y.; Fujisawa, N.; Nakano, T.; Nashimoto, A.

    2006-11-01

    The influence of cylinder wake on discrete tonal noise and aerodynamic characteristics of a NACA0018 airfoil is studied experimentally in a uniform flow at a moderate Reynolds number. The experiments are carried out by measuring sound pressure levels and spectrum, separation and the reattachment points, pressure distribution, fluid forces, mean-flow and turbulence characteristics around the airfoil with and without the cylinder wake. Present results indicate that the tonal noise from the airfoil is suppressed by the influence of the cylinder wake and the aerodynamic characteristics are improved in comparison with the case without the cylinder wake. These are mainly due to the separation control of boundary layers over the airfoil caused by the wake-induced transition, which is observed by surface flow visualization with liquid- crystal coating. The PIV measurements of the flow field around the airfoil confirm that highly turbulent velocity fluctuation of the cylinder wake induces the transition of the boundary layers and produces an attached boundary layer over the airfoil. Then, the vortex shedding phenomenon near the trailing edge of pressure surface is removed by the influence of the wake and results in the suppression of tonal noise.

  7. Longitudinal Stability and Control Characteristics from a Flight Investigation of a Cruciform Canard Missile Configuration Having an Exposed Wing-canard Area Ratio of 16:1

    NASA Technical Reports Server (NTRS)

    Moul, Martin T; Wineman, Andrew R

    1952-01-01

    A flight investigation has been made to determine the longitudinal stability and control characteristics of a 60 0 delta-wing-canard missile configuration with an exposed wing-canard area ratio of 16:1. The results presented include the longitudinal stability derivatives, control effectiveness, and drag characteristics for a Mach number range of 0.75 to 1.80 and are compared with the results of a similar configuration having larger 6ontrols. Stability characteristics are also presented from the flights of an interdigitated canard configuration at a Mach number of 2.08 and a wing-body configuration at Mach numbers of 1.25 to 1.45. The stability derivatives varied gradually with Mach number with the exception of the damping-in-pitch derivative. Aerodynamic damping in pitch decreased to a minimum at a Mach number of 1.0 3, then increased to a peak value at a Mach number of 1.26 followed by a gradual decrease at higher Mach numbers. The aerodynamic-center location of the in-line canard configuration shifted rearward 13 percent of the mean aerodynamic chord at transonic speeds. The pitching-moment curve slope was 25 percent greater for the model having no canards than for the in-line configuration. No large effects of interdigitation were noted in the stability derivatives. Pitching effectiveness of the in-line configuration was maintained throughout the Mach number range. A comparison of the stability and control characteristics of two canard configurations having different area controls showed that decreasing the control area 44 percent decreased the pitching effectiveness proportionally, shifted the aerodynamic-center location rearward 9 to 14 percent of the mean aerodynamic chord, and reduced the total hinge moments required for 10 trimmed flight about 50 percent at transonic speeds.

  8. Large-scale aerodynamic characteristics of airfoils as tested in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N; Anderson, Raymond F

    1931-01-01

    In order to give the large-scale characteristics of a variety of airfoils in a form which will be of maximum value, both for airplane design and for the study of airfoil characteristics, a collection has been made of the results of airfoil tests made at full-scale values of the reynolds number in the variable density wind tunnel of the National Advisory Committee for Aeronautics. They have been corrected for tunnel wall interference and are presented not only in the conventional form but also in a form which facilitates the comparison of airfoils and from which corrections may be easily made to any aspect ratio. An example showing the method of correcting the results to a desired aspect ratio has been given for the convenience of designers. In addition, the data have been analyzed with a view to finding the variation of the aerodynamic characteristics of airfoils with their thickness and camber.

  9. Some effects of wing and body geometry on the aerodynamic characteristics of configurations designed for high supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.; Tice, David C.; Braswell, Dorothy O.

    1992-01-01

    Experimental and theoretical results are presented for a family of aerodynamic configurations for flight Mach numbers as high as Mach 8. All of these generic configurations involved 70-deg sweep delta planform wings of three different areas and three fuselage shapes with circular-to-elliptical cross sections. It is noted that fuselage ellipticity enhances lift-curve slope and maximum L/D, while decreasing static longitudinal stability (especially with smaller wing areas).

  10. Aerodynamic characteristics at Mach numbers of 1.5, 1.8, and 2.0 of a blended wing-body configuration with and without integral canards

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Lamb, M.; Miller, D. S.

    1979-01-01

    An exploratory, experimental, and theoretical investigation was made of a cambered, twisted, and blended wing-body concept with and without integral canard surfaces. Theoretical calculations of the static longitudinal and lateral aerodynamic characteristics of the wing-body configurations were compared with the characteristics obtained from tests of a model in the Langley Unitary Plan wind tunnel. Mach numbers of 1.5, 1.8, and 2.0 and a Reynolds number per meter of 6.56 million were used in the calculations and tests. Overall results suggest that planform selection is extremely important and that the supplemental application of new calculation techniques should provide a process for the design of supersonic wings in which spanwise distribution of upwash and leading-edge thrust might be rationally controlled and exploited.

  11. Aerodynamic characteristics and pressure distributions for an executive-jet baseline airfoil section

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Mineck, Raymond E.

    1993-01-01

    A wind tunnel test of an executive-jet baseline airfoil model was conducted in the adaptive-wall test section of the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. The primary goal of the test was to measure airfoil aerodynamic characteristics over a wide range of flow conditions that encompass two design points. The two design Mach numbers were 0.654 and 0.735 with corresponding Reynolds numbers of 4.5 x 10(exp 6) and 8.9 x 10(exp 6) based on chord, respectively, and normal-force coefficients of 0.98 and 0.51, respectively. The tests were conducted over a Mach number range from 0.250 to 0.780 and a chord Reynolds number range from 3 x 10(exp 6) to 18 x 10(exp 6). The angle of attack was varied from -2 deg to a maximum below 10 deg with one exception in which the maximum was 14 deg for a Mach number of 0.250 at a chord Reynolds number of 4.5 x 10(exp 6). Boundary-layer transition was fixed at 5 percent of chord on both the upper and lower surfaces of the model for most of the test. The adaptive-wall test section had flexible top and bottom walls and rigid sidewalls. Wall interference was minimized by the movement of the adaptive walls, and the airfoil aerodynamic characteristics were corrected for any residual top and bottom wall interference.

  12. Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2015-01-01

    This paper lays out a comprehensive methodology for computing a low-speed, high-lift polar, without requiring additional details about the aircraft design beyond what is typically available at the conceptual design stage. Introducing low-order, physics-based aerodynamic analyses allows the methodology to be more applicable to unconventional aircraft concepts than traditional, fully-empirical methods. The methodology uses empirical relationships for flap lift effectiveness, chord extension, drag-coefficient increment and maximum lift coefficient of various types of flap systems as a function of flap deflection, and combines these increments with the characteristics of the unflapped airfoils. Once the aerodynamic characteristics of the flapped sections are known, a vortex-lattice analysis calculates the three-dimensional lift, drag and moment coefficients of the whole aircraft configuration. This paper details the results of two validation cases: a supercritical airfoil model with several types of flaps; and a 12-foot, full-span aircraft model with slats and double-slotted flaps.

  13. Aerodynamic characteristics of the orbital reentry vehicle experimental probe fins in a supersonic flow

    NASA Astrophysics Data System (ADS)

    Watanabe, Mitsunori; Sekine, Hideo; Tate, Atsushi; Noda, Junichi

    1994-04-01

    The aerodynamic characteristics of probe fins with a sweep angle of 60 deg, which are equipped on the Orbital Reentry Experiment (OREX) vehicle to measure the surrounding ionized gas temperature and electron number density distributions in the high temperature communication black out regions, have been measured in the supersonic wind tunnel of the National Aerospace Laboratory and compared with those of the fins of 0 deg sweep angles. Since the probes are to be embedded in the boundary layer where the local Mach number is less than 2.5 over the OREX surface at a hypersonic flight speed, the aerodynamic characteristics in supersonic regions are needed to estimate the rolling moments of fins caused by the error of the installation angles. The lift coefficient slope of the probe fins decreases as the Mach number increases, being less than the values for the 0 deg sweep fins. The drag coefficient depends highly on the sweep angle of the fins in Mach number regions less than 2.5.

  14. A numerical investigation into the aerodynamic characteristics and aeroelastic stability of a footbridge

    NASA Astrophysics Data System (ADS)

    Taylor, I. J.; Vezza, M.

    2009-01-01

    The results of a numerical investigation into the aerodynamic characteristics and aeroelastic stability of a proposed footbridge across a highway in the north of England are presented. The longer than usual span, along with the unusual nature of the pedestrian barriers, indicated that the deck configuration was likely to be beyond the reliable limits of the British design code BD 49/01. The calculations were performed using the discrete vortex method, DIVEX, developed at the Universities of Glasgow and Strathclyde. DIVEX has been successfully validated on a wide range of problems, including the aeroelastic response of bridge deck sections. In particular, the investigation focussed on the effects of non-standard pedestrian barriers on the structural integrity of the bridge. The proposed deck configuration incorporated a barrier comprised of angled flat plates, and the bridge was found to be unstable at low wind speeds, with the plates having a strong turning effect on the flow at the leading edge of the deck. These effects are highlighted in both a static and dynamic analysis of the bridge deck, along with modifications to the design that aim to improve the aeroelastic stability of the deck. Proper orthogonal decomposition (POD) was also used to investigate the unsteady pressure field on the upper surface of the static bridge deck. The results of the flutter investigation and the POD analysis highlight the strong influence of the pedestrian barriers on the overall aerodynamic characteristics and aeroelastic stability of the bridge.

  15. Numerical and Experimental Study on Aerodynamic Characteristics of Basic Airfoils at Low Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuya; Kawakita, Masatoshi; Iijima, Takayoshi; Koga, Mitsuhiro; Kihira, Mitsuhiko; Funaki, Jiro

    The aerodynamic characteristics of airfoils have been researched in higher Reynolds-number ranges more than 106, in a historic context closely related with the developments of airplanes and fluid machineries in the last century. However, our knowledge is not enough at low and middle Reynolds-number ranges. So, in the present study, we investigate such basic airfoils as a NACA0015, a flat plate and the flat plates with modified fore-face and after-face geometries at Reynolds number Re < 1.0×105, using two- and three-dimensional computations together with wind-tunnel and water-tank experiments. As a result, we have revealed the effect of the Reynolds number Re upon the minimum drag coefficient CDmin. Besides, we have shown the effects of attack angle α upon various aerodynamic characteristics such as the lift coefficient CL, the drag coefficient CD and the lift-to-drag ratio CL/CD at Re = 1.0×102, discussing those effects on the basis of both near-flow-field information and surface-pressure profiles. Such results suggest the importance of sharp leading edges, which implies the possibility of an inversed NACA0015. Furthermore, concerning the flat-plate airfoil, we investigate the influences of fore-face and after-face geometries upon such effects.

  16. A longitudinal aerodynamic data repeatability study for a commercial transport model test in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Wahls, R. A.; Adcock, J. B.; Witkowski, D. P.; Wright, F. L.

    1995-01-01

    A high Reynolds number investigation of a commercial transport model was conducted in the National Transonic Facility (NTF) at Langley Research Center. This investigation was part of a cooperative effort to test a 0.03-scale model of a Boeing 767 airplane in the NTF over a Mach number range of 0.70 to 0.86 and a Reynolds number range of 2.38 to 40.0 x 10(exp 6) based on the mean aerodynamic chord. One of several specific objectives of the current investigation was to evaluate the level of data repeatability attainable in the NTF. Data repeatability studies were performed at a Mach number of 0.80 with Reynolds numbers of 2.38, 4.45, and 40.0 x 10(exp 6) and also at a Mach number of 0.70 with a Reynolds number of 40.0 x 10(exp 6). Many test procedures and data corrections are addressed in this report, but the data presented do not include corrections for wall interference, model support interference, or model aeroelastic effects. Application of corrections for these three effects would not affect the results of this study because the corrections are systematic in nature and are more appropriately classified as sources of bias error. The repeatability of the longitudinal stability-axis force and moment data has been accessed. Coefficients of lift, drag, and pitching moment are shown to repeat well within the pretest goals of plus or minus 0.005, plus or minus 0.0001, and plus or minus 0.001, respectively, at a 95-percent confidence level over both short- and near-term periods.

  17. Effect of the Surface Condition of a Wing on the Aerodynamic Characteristics of an Airplane

    NASA Technical Reports Server (NTRS)

    Defrance, S J

    1934-01-01

    In order to determine the effect of the surface conditions of a wing on the aerodynamic characteristics of an airplane, tests were conducted in the N.A.C.A. full-scale wind tunnel on the Fairchild F-22 airplane first with normal commercial finish of wing surface and later with the same wing polished. Comparison of the characteristics of the airplane with the two surface conditions shows that the polish caused a negligible change in the lift curve, but reduced the minimum drag coefficient by 0.001. This reduction in drag if applied to an airplane with a given speed of 200 miles per hour and a minimum drag coefficient of 0.025 would increase the speed only 2.9 miles per hour, but if the speed remained the same, the power would be reduced 4 percent.

  18. Experimental aerodynamic characteristics of a generic hypersonic accelerator configuration at Mach numbers 1.5 and 2.0. [conducted in the Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Walker, Ira J.; Covell, Peter F.; Forrest, Dana K.

    1993-01-01

    An experimental investigation of the static longitudinal and lateral-directional aerodynamic characteristics of a generic hypersonic research vehicle was conducted in the Langley Unitary Plan Wind Tunnel (UPWT). A parametric study was performed to determine the interference effects of various model components. Configuration variables included delta and trapezoidal canards; large and small centerline-mounted vertical tails, along with a set of wing-mounted vertical tails; and a set of model noses with different degrees of bluntness. Wing position was varied by changing the longitudinal location and the incidence angle. The test Mach numbers were 1.5 and 2.0 at Reynolds numbers of 1 x 10(exp 6) per foot, 2 x 10(exp 6) per foot, and 4 x 10(exp 6) per foot. Angle of attack was varied from -4 degrees to 27 degrees, and sideslip angle was varied from -8 degrees to 8 degrees. Generally, the effect of Reynolds number did not deviate from conventional trends. The longitudinal stability and lift-curve slope decreased with increasing Mach number. As the wing was shifted rearward, the lift-curve slope decreased and the longitudinal stability increased. Also, the wing-mounted vertical tails resulted in a more longitudinally stable configuration. In general, the lift-drag ratio was not significantly affected by vertical-tail arrangement. The best lateral-directional stability was achieved with the large centerline-mounted tail, although the wing-mounted vertical tails exhibited the most favorable characteristics at the higher angles of attack.

  19. Wind-tunnel investigation of the powered low-speed longitudinal aerodynamics of the Vectored-Engine-Over (VEO) wing fighter configuration

    NASA Technical Reports Server (NTRS)

    Paulson, J. W.; Whitten, P. D.; Stumpfl, S. C.

    1982-01-01

    A wind-tunnel investigation incorporating both static and wind-on testing was conducted in the Langley 4- by 7-Meter Tunnel to determine the effects of vectored thrust along with spanwise blowing on the low-speed aerodynamics of an advanced fighter configuration. Data were obtained over a large range of thrust coefficients corresponding to takeoff and landing thrust settings for many nozzle configurations. The complete set of static thrust data and the complete set of longitudinal aerodynamic data obtained in the investigation are presented. These data are intended for reference purposes and, therefore, are presented without analysis or comment. The analysis of the thrust-induced effects found in the investigation are not discussed.

  20. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Kulkarni, Prateek P.; Manimala, James M.

    2016-06-01

    Longitudinal elastic wave propagation characteristics of acoustic metamaterials with various inerter configurations are investigated using their representative one-dimensional discrete element lattice models. Inerters are dynamic mass-amplifying mechanical elements that are activated by a difference in acceleration across them. They have a small device mass but can provide a relatively large dynamic mass presence depending on accelerations in systems that employ them. The effect of introducing inerters both in local attachments and in the lattice was examined vis-à-vis the propagation characteristics of locally resonant acoustic metamaterials. A simple effective model based on mass, stiffness, or their combined equivalent was used to establish dispersion behavior and quantify attenuation within bandgaps. Depending on inerter configurations in local attachments or in the lattice, both up-shift and down-shift in the bandgap frequency range and their extent are shown to be possible while retaining static mass addition to the host structure to a minimum. Further, frequency-dependent negative and even extreme effective-stiffness regimes are encountered. The feasibility of employing tuned combinations of such mass-delimited inertant configurations to engineer acoustic metamaterials that act as high-pass filters without the use of grounded elements or even as complete longitudinal wave inhibitors is shown. Potential device implications and strategies for practical applications are also discussed.

  1. Steady-state and transitional aerodynamic characteristics of a wing in simulated heavy rain

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Bezos, Gaudy M.

    1989-01-01

    The steady-state and transient effects of simulated heavy rain on the subsonic aerodynamic characteristics of a wing model were determined in the Langley 14- by 22-Foot Subsonic Tunnel. The 1.29 foot chord wing was comprised of a NACA 23015 airfoil and had an aspect ratio of 6.10. Data were obtained while test variables of liquid water content, angle of attack, and trailing edge flap angle were parametrically varied at dynamic pressures of 10, 30, and 50 psf (i.e., Reynolds numbers of .76x10(6), 1.31x10(6), and 1.69x10(6)). The experimental results showed reductions in lift and increases in drag when in the simulated rain environment. Accompanying this was a reduction of the stall angle of attack by approximately 4 deg. The transient aerodynamic performance during transition from dry to wet steady-state conditions varied between a linear and a nonlinear transition.

  2. Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    NASA Technical Reports Server (NTRS)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.

    1992-01-01

    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.

  3. Experimental and theoretical aerodynamic characteristics of a high-lift semispan wing model

    NASA Technical Reports Server (NTRS)

    Applin, Zachary T.; Gentry, Garl L., Jr.

    1990-01-01

    Experimental and theoretical aerodynamic characteristics were compared for a high-lift, semispan wing configuration that incorporated a slightly modified version of the NASA Advanced Laminar Flow Control airfoil section. The experimental investigation was conducted in the Langley 14- by 22-Foot Subsonic Tunnel at chord Reynolds numbers of 2.36 and 3.33 million. A two-dimensional airfoil code and a three-dimensional panel code were used to obtain aerodynamic predictions. Two-dimensional data were corrected for three-dimensional effects. Comparisons between predicted and measured values were made for the cruise configuration and for various high-lift configurations. Both codes predicted lift and pitching moment coefficients that agreed well with experiment for the cruise configuration. These parameters were overpredicted for all high-lift configurations. Drag coefficient was underpredicted for all cases. Corrected two-dimensional pressure distributions typically agreed well with experiment, while the panel code overpredicted the leading-edge suction peak on the wing. One important feature missing from both of these codes was a capability for separated flow analysis. The major cause of disparity between the measured data and predictions presented herein was attributed to separated flow conditions.

  4. Wind-tunnel investigation of aerodynamic characteristics and wing pressure distributions of an airplane with variable-sweep wings modified for laminar flow

    NASA Technical Reports Server (NTRS)

    Hallissy, James B.; Phillips, Pamela S.

    1989-01-01

    A wind tunnel test was conducted to evaluate the aerodynamic characteristics and wing pressure distributions of a variable wing sweep aircraft having wing panels that are modified to promote laminar flow. The modified wing section shapes were incorporated over most of the exposed outer wing panel span and were obtained by extending the leading edge and adding thickness to the existing wing upper surface forward of 60 percent chord. Two different wing configurations, one each for Mach numbers 0.7 and 0.8, were tested on the model simultaneously, with one wing configuration on the left side and the other on the right. The tests were conducted at Mach numbers 0.20 to 0.90 for wing sweep angles of 20, 25, 30, and 35 degrees. Longitudinal, lateral and directional aerodynamic characteristics of the modified and baseline configurations, and selected pressure distributions for the modified configurations, are presented in graphical form without analysis. A tabulation of the pressure data for the modified configuration is available as microfiche.

  5. Effect of rotor wake on aerodynamic characteristics of a 1/6 scale model of the rotor systems research aircraft. [in the Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Mineck, R. E.

    1977-01-01

    Tests were conducted in the Langley V/STOL tunnel to determine the effect of the main-rotor wake on the aerodynamic characteristics of the rotor systems research aircraft. A 1/6-scale model with a 4-blade articulated rotor was used to determine the effect of the rotor wake for the compound configuration. Data were obtained over a range of angles of attack, angles of sideslip, auxiliary engine thrusts, rotor collective pitch angles, and rotor tip-path plane angles for several main-rotor advance ratios. Separate results are presented for the forces and moments on the airframe, the wing, and the tail. An analysis of the test data indicates significant changes in the aerodynamic characteristics. The rotor wake increases the longitudinal static stability, the effective dihedral, and the lateral static stability of the airframe. The rotor induces a downwash on the wing. This downwash decreases the wing lift and increases the drag. The asymmetrical rotor wake induces a differential lift across the wing and a subsequent rolling moment. These rotor induced effects on the wing become smaller with increasing forward speed.

  6. Aerodynamic characteristics of two single-stage-to-orbit vehicles at Mach 20.3

    NASA Technical Reports Server (NTRS)

    Bernot, P. T.

    1977-01-01

    The hypersonic stability, control, and performance characteristics of two configurations have been determined. Each configuration had a 50 deg swept delta wing, a vertical tail, and a body flap. One model represented a control configured vehicle with a reduced level of longitudinal static stability; the other model was designed for a conventional level of stability. Data were obtained over an angle of attack range of 0 deg to 50 deg and included effects of component buildup. In addition, the effects of the vertical tail on the lateral directional characteristics were obtained.

  7. Aerodynamic characteristics of a large scale model with a swept wing and augmented jet flap

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Koenig, D. G.

    1971-01-01

    Data of tests of a large-scale swept augmentor wing model in the 40- by 80-foot wind tunnel are presented. The data includes longitudinal characteristics with and without a horizontal tail as well as results of preliminary investigation of lateral-directional characteristics. The augmentor flap deflection was varied from 0 deg to 70.6 deg at isentropic jet thrust coefficients of 0 to 1.47. The tests were made at a Reynolds number from 2.43 to 4.1 times one million.

  8. Aerodynamic Characteristics of a Refined Deep-step Planing-tail Flying-boat Hull with Various Forebody and Afterbody Shapes

    NASA Technical Reports Server (NTRS)

    Riebe, John M; Naeseth, Rodger L

    1952-01-01

    An investigation was made in the Langley 300-mph 7- by 10-foot tunnel to determine the aerodynamic characteristics of a refined deep-step planing-tail hull with various forebody and afterbody shapes and, for comparison, a streamline body simulating the fuselage of a modern transport airplane. The results of the tests indicated that the configurations incorporating a forebody with a length-beam ratio of 7 had lower minimum drag coefficients than the configurations incorporating a forebody with length-beam ratio of 5. The lowest minimum drag coefficients, which were considerably less than that of a conventional hull and slightly less than that of a streamline body, were obtained on the length-beam-ratio-7 forebody, alone and with round center boom. Drag coefficients and longitudinal- and lateral-stability parameters presented include the interference of a 21-percent-thick support wing.

  9. Aerodynamic Characteristics of a Refined Deep-Step Planing-Tail Flying-Boat Hull with Various Forebody and Afterbody Shapes

    NASA Technical Reports Server (NTRS)

    Riebe, John M; Naeseth, Rodger L

    1953-01-01

    An investigation was made in the Langley 300 mph 7-by 10-foot tunnel to determine the aerodynamic characteristics of a refined deep-step planing-tail hull with various forebody and afterbody shapes. For comparison, tests were made on a streamline body simulating the fuselage of a modern transport airplane. The results of the tests, which include the interference effects of a 21-percent-thick support wing, indicated that for corresponding configurations the hull models incorporating a forebody with a length-beam ratio of 7 had lower minimum drag coefficients than the hull models incorporating a forebody with a length-beam ratio of 5. Longitudinal and lateral stability was generally about the same for all hull models tested and about the same as that of a conventional hull.

  10. Wake structure and aerodynamic characteristics of an auto-propelled pitching airfoil

    NASA Astrophysics Data System (ADS)

    Hanchi, S.; Benkherouf, T.; Mekadem, M.; Oualli, H.; Keirsbulck, L.; Labraga, L.

    2013-05-01

    In the present study, we investigate the wake configuration as well as the flow aerodynamic and propulsive characteristics of a system equipped with a nature-inspired propulsion system. The study focuses on the effect of a set of pitching frequency and amplitude values on the flow behavior for a symmetric foil performing pitching sinusoidal rolling oscillations. The viscous, non-stationary flow around the pitching foil is simulated using ANSYS FLUENT 13. The foil movement is reproduced using the dynamic mesh technique and an in-house developed UDF (User Define Function). Our results show the influence of the pitching frequency and the amplitude on the wake. We provide the mechanisms relating the system behavior to the applied forces. The frequency varies from 1 to 400Hz and the considered amplitudes are 18%, 24%, 30%, 37%, 53%, 82% and 114% of the foil chord.

  11. Aerodynamic stability and control characteristics of TBC shuttle booster AR-11981-3

    NASA Technical Reports Server (NTRS)

    Phelps, E. R.; Watts, L. L.; Ainsworth, R. W.

    1972-01-01

    A scale model of the Boeing Company space shuttle booster configuration 3 was tested in the MSFC 14-inch trisonic wind tunnel. This test was proposed to fill-in the original test run schedule as well as to investigate the aerodynamic stability and control characteristics of the booster with three wing configurations not previously tested. The configurations tested included: (1) a cylindrical booster body with an axisymmetric nose, (2) clipped delta canards that had variable incidence from 0 deg to -60 deg, (3) different aft body mounted wing configurations, (4) two vertical fin configurations, and (5) a Grumman G-3 orbiter configuration. Tests were conducted over a Mach range from 0.6 to 5.0.

  12. An experimental investigation of the aerodynamic characteristics of slanted base ogive cylinders using magnetic suspension technology

    NASA Technical Reports Server (NTRS)

    Alcorn, Charles W.; Britcher, Colin

    1988-01-01

    An experimental investigation is reported on slanted base ogive cylinders at zero incidence. The Mach number range is 0.05 to 0.3. All flow disturbances associated with wind tunnel supports are eliminated in this investigation by magnetically suspending the wind tunnel models. The sudden and drastic changes in the lift, pitching moment, and drag for a slight change in base slant angle are reported. Flow visualization with liquid crystals and oil is used to observe base flow patterns, which are responsible for the sudden changes in aerodynamic characteristics. Hysteretic effects in base flow pattern changes are present in this investigation and are reported. The effect of a wire support attachment on the 0 deg slanted base model is studied. Computational drag and transition location results using VSAERO and SANDRAG are presented and compared with experimental results. Base pressure measurements over the slanted bases are made with an onboard pressure transducer using remote data telemetry.

  13. Aerodynamic characteristics of the ventilated design for flapping wing micro air vehicle.

    PubMed

    Zhang, G Q; Yu, S C M

    2014-01-01

    Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the "ventilation" in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds.

  14. Aerodynamic Characteristics of the Ventilated Design for Flapping Wing Micro Air Vehicle

    PubMed Central

    Zhang, G. Q.; Yu, S. C. M.

    2014-01-01

    Inspired by superior flight performance of natural flight masters like birds and insects and based on the ventilating flaps that can be opened and closed by the changing air pressure around the wing, a new flapping wing type has been proposed. It is known that the net lift force generated by a solid wing in a flapping cycle is nearly zero. However, for the case of the ventilated wing, results for the net lift force are positive which is due to the effect created by the “ventilation” in reducing negative lift force during the upstroke. The presence of moving flaps can serve as the variable in which, through careful control of the areas, a correlation with the decrease in negative lift can be generated. The corresponding aerodynamic characteristics have been investigated numerically by using different flapping frequencies and forward flight speeds. PMID:24683339

  15. Low speed aerodynamic characteristics of a 17 percent thick airfoil section designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1973-01-01

    Wind-tunnel tests have been conducted to determine the low-speed two-dimensional aerodynamic characteristics of a 17-percent-thick airfoil designed for general aviation applications (GA(W)-1). The results were compared with predictions based on a theoretical method for calculating the viscous flow about the airfoil. The tests were conducted over a Mach number range from 0.10 to 0.28. Reynolds numbers based on airfoil chord varied from 2.0 million to 20.0 million. Maximum section lift coefficients greater than 2.0 were obtained and section lift-drag ratio at a lift coefficient of 1.0 (climb condition) varied from about 65 to 85 as the Reynolds number increased from about 2.0 million to 6.0 million.

  16. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  17. A simulator investigation of the influence of engine response characteristics on the approach and landing for an externally blown flap aircraft. Part 2: Aerodynamic model

    NASA Technical Reports Server (NTRS)

    Ciffone, D. L.; Robinson, G. H.

    1973-01-01

    An analysis of the influence of engine response characteristics on the approach and landing of an externally blown flap aircraft was conducted using flight simulator facilities. The configuration of the aerodynamic model is described. The aerodynamic characteristics as a function of angle of attack, thrust coefficient, and flap deflection are presented in tabular form and as graphs.

  18. Aerodynamic Characteristics in Pitch and Sideslip at High Subsonic Speeds of a 1/14-Scale Model of the Grumman XF104 Airplane with Wing Sweepback of 42.5 Degrees

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Draper, John W.

    1953-01-01

    An investigation has been made at high subsonic speeds of the aerodynamic'characteristics in pitch and sideslip of a l/l4-scale model of the Grumman XF10F airplane with a wing sweepback angle of 42.5. The longitudinal stability characteristics (with the horizontal tail fixed) indicate a pitch-up near the stall; however, this was somewhat alleviated by the addition of fins to the side of the fuselage below the horizontal tail. The original model configuration became directionally unstable for small sideslip angles at Mach numbers above 0.8; however, the instability was eliminated by several different modifications.

  19. Effect of Length-Beam Ratio on the Aerodynamic Characteristics of Flying-Boat Hulls without Wing Interference

    NASA Technical Reports Server (NTRS)

    Lowry, John G.; Riebe, John M.

    1948-01-01

    Contains experimental results of an investigation of the aerodynamic characteristics of a family of flying boat hulls of length beam ratios 6, 9, 12, and 15 without wing interference. The results are compared with those taken on the same family of hulls in the presence of a wing.

  20. Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.; Babb, C. Donald

    1968-01-01

    An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.

  1. Aerodynamic characteristics of a wing with Fowler flaps including flap loads, downwash, and calculated effect on take-off

    NASA Technical Reports Server (NTRS)

    Platt, Robert C

    1936-01-01

    This report presents the results of wind tunnel tests of a wing in combination with each of three sizes of Fowler flap. The purpose of the investigation was to determine the aerodynamic characteristics as affected by flap chord and position, the air loads on the flaps, and the effect of flaps on the downwash.

  2. Experimental aerodynamic characteristics of two V/STOL fighter/attack aircraft configurations at Mach numbers from 0.4 to 1.4

    NASA Technical Reports Server (NTRS)

    Nelms, W. P.; Durston, D. A.; Lummus, J. R.

    1980-01-01

    A wind tunnel test was conducted to measure the aerodynamic characteristics of two horizontal attitude takeoff and landing V/STOL fighter/attack aircraft concepts. In one concept, a jet diffuser ejector was used for the vertical lift system; the other used a remote augmentation lift system (RALS). Wind tunnel tests to investigate the aerodynamic uncertainties and to establish a data base for these types of concepts were conducted over a Mach number range from 0.2 to 2.0. The present report covers tests, conducted in the 11 foot transonic wind tunnel, for Mach numbers from 0.4 to 1.4. Detailed effects of varying the angle of attack (up to 27 deg), angle of sideslip (-4 deg to +8 deg), Mach number, Reynolds number, and configuration buildup were investigated. In addition, the effects of wing trailing edge flap deflections, canard incidence, and vertical tail deflections were explored. Variable canard longitudinal location and different shapes of the inboard nacelle body strakes were also investigated.

  3. Effect of posture on the aerodynamic characteristics during take-off in ski jumping.

    PubMed

    Yamamoto, Keizo; Tsubokura, Makoto; Ikeda, Jun; Onishi, Keiji; Baleriola, Sophie

    2016-11-07

    The purpose of this study was to investigate the effects of posture of a ski jumper on aerodynamic characteristics during the take-off using computational fluid dynamics (CFD). The CFD method adopted for this study was based on Large-Eddy Simulation. Body surface data were obtained by 3-D laser scanning of an active ski jumper. Based on video analysis of the actual take-off movement, two sets of motion data were generated (world-class jumper A and less-experienced jumper B). The inlet flow velocity that corresponds to the in-run velocity in actual ski jumping was set to 23.23m/s in the CFD. The aerodynamic force, flow velocity, and vortexes for each model were compared between models. The total drag force acting upon jumper A was lower than that acting upon jumper B through the whole movement. Regarding the total lift force, although jumper A׳s total lift force was less in the in-run posture, it became greater than that of jumper B at the end of the movement. In the latter half of the movement, low air-speed domain expansion was observed at the model׳s back. This domain of jumper B was larger. There were two symmetric vortexes in the wake of jumper A, but the disordered vortexes were observed behind the jumper B. In the case of jumper A, these two distinct vortexes generated by the arms produced a downwash flow in the wake. It is considered that the positioning of the arms in a very low position strongly influences the flow structure.

  4. An Investigation of Two-Propeller Tilt Wing V/STOL Aircraft Flight Characteristics

    DTIC Science & Technology

    1992-01-01

    aerodynamic input files or using manual input data. The output provides static aircraft longitudinal parameters for determining performance...wing aircraft so configured, the NASA Ames computer code TWANG is used for simulation of aircraft longitudinal stability and performance characteristics

  5. Simulator study of stall/post-stall characteristics of a fighter airplane with relaxed longitudinal static stability. [F-16

    NASA Technical Reports Server (NTRS)

    Nguyen, L. T.; Ogburn, M. E.; Gilbert, W. P.; Kibler, K. S.; Brown, P. W.; Deal, P. L.

    1979-01-01

    A real-time piloted simulation was conducted to evaluate the high-angle-of-attack characteristics of a fighter configuration based on wind-tunnel testing of the F-16, with particular emphasis on the effects of various levels of relaxed longitudinal static stability. The aerodynamic data used in the simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative low-speed combat maneuvering. Results of the investigation show that the airplane with the basic control system was resistant to the classical yaw departure; however, it was susceptible to pitch departures induced by inertia coupling during rapid, large-amplitude rolls at low airspeed. The airplane also exhibited a deep-stall trim which could be flown into and from which it was difficult to recover. Control-system modifications were developed which greatly decreased the airplane susceptibility to the inertia-coupling departure and which provided a reliable means for recovering from the deep stall.

  6. Low Speed Aerodynamic Characteristics of Wings of Aspect Ratios 3 and 4 Equipped with High Lift Systems

    DTIC Science & Technology

    1980-05-01

    Trailing Edge in CCW Configuration without Tip Fence ................. ... 47 16 - Effect of a Nonround Coanda Trailing Edge on an Aspect Ratio 3 Wing in...fence installed. Figure 16 summarizes the effect of the noncircular Coanda surface on the lift characteristics. The aerodynamic characteristics of the...that of the round Coanda trailing edge depending on the value of a and C Figure 17 is a crossplot of all of the CCW data showing the effect of a wing tip

  7. Prediction of dynamic and aerodynamic characteristics of the centrifugal fan with forward curved blades

    NASA Astrophysics Data System (ADS)

    Polanský, Jiří; Kalmár, László; Gášpár, Roman

    2013-12-01

    The main aim of this paper is determine the centrifugal fan with forward curved blades aerodynamic characteristics based on numerical modeling. Three variants of geometry were investigated. The first, basic "A" variant contains 12 blades. The geometry of second "B" variant contains 12 blades and 12 semi-blades with optimal length [1]. The third, control variant "C" contains 24 blades without semi-blades. Numerical calculations were performed by CFD Ansys. Another aim of this paper is to compare results of the numerical simulation with results of approximate numerical procedure. Applied approximate numerical procedure [2] is designated to determine characteristics of the turbulent flow in the bladed space of a centrifugal-flow fan impeller. This numerical method is an extension of the hydro-dynamical cascade theory for incompressible and inviscid fluid flow. Paper also partially compares results from the numerical simulation and results from the experimental investigation. Acoustic phenomena observed during experiment, during numerical simulation manifested as deterioration of the calculation stability, residuals oscillation and thus also as a flow field oscillation. Pressure pulsations are evaluated by using frequency analysis for each variant and working condition.

  8. High-Speed Longitudinal-Stability and Control Characteristics of the Consolidated Vultee Lark Missile as Predicted from Wind-Tunnel Tests (TED No. NACA 2391)

    NASA Technical Reports Server (NTRS)

    Axelson, John A.; Martin, Andrew

    1946-01-01

    A high-speed wind-tunnel investigation of the aerodynamic characteristics of a full-scale model of the Consolidated Vultee Lark indicates that the missile possesses satisfactory longitudinal-stability and-control characteristics throughout the Mach number range from 0.2 to 0.85, but that the maximum lift coefficients developed are not high enough to insure interception of the target at high altitudes. A reduction in wing loading appears advisable. Although the static longitudinal stability at zero angle of attack changes with Mach number and with lift coefficient, satisfactory control should be possible at all times as the tails retain their relatively large effectiveness throughout the range of Mach numbers and lift coefficients tested. Minimum stability and maximum maneuverability occur around 0.80 Mach number and 0.2 lift coefficient, which corresponds to level flight conditions of the missile. The optimum ratio of tail-to-wing deflection is 0.4.

  9. Supersonic aerodynamic characteristics of a variable-geometry spacecraft designed for high hypersonic performance

    NASA Technical Reports Server (NTRS)

    Spencer, B., Jr.; Fournier, R. H.

    1973-01-01

    An investigation was made in the high Mach number test section of the Langley Unitary Plan wind tunnel on a variable-geometry high hypersonic performance spacecraft concept at Mach numbers from 2.30 to 4.63. The basic lifting body is designed for hypersonic lift-drag ratio near 3.0. The variable-geometry feature is a single-pivot two-position high wing which is deployed at subsonic speeds to improve vehicle landing characteristics. For the present investigation the wing was maintained in a stowed position, and the effects of horizontal stabilizer dihedral, elevon control effectiveness, and the addition of either a conventional single vertical tail or dorsal-fin-type vertical stabilizers on the longitudinal and lateral-directional stability and control characteristics were studied.

  10. A Parametric Study of the Aerodynamic Characteristics of Nose-Cylinder-Flare Bodies at a Mach Number of 6.0

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Cary, Aubrey M., Jr.

    1965-01-01

    Force tests were conducted at a Mach number of 6.0 on nose-cylinder-flare bodies to determine the effect of nose shape, cylinder length, flare angle, and flare length on the longitudinal aerodynamic characteristics. A particular investigation was conducted to determine the effect of flare angle for constant flare length, surface area, and diameter. Results indicated that at a Reynolds number of approximately 0.92 x l0 (exp 6) (based on body diameter), the boundary-layer separation effects were significant only with respect to the slope of the normal-force and pitching-moment curve at low angles of attack. The variations of the aerodynamic characteristics with the various parameters were, in general, similar to those predicted by Newtonian theory below a flare angle of 30 degrees and a ratio of flare base diameter to cylinder diameter of less than approximately 2.2. The limiting diameter ratio is consistent with the extent of the low-constant dynamic-pressure region near the body caused by the bow-shock influences as predicted by axisymmetric characteristic theory. The effects of the various parameters for the flares that exceeded the limiting diameter ratio follow the trends predicted by the computed flow-field properties. The axial force for these flare configurations at zero angle of attack was, in general, computed within 10 percent by using these properties. For a constant flare length and surface area the flare effectiveness increased with increasing flare angle; however, for constant flare diameter only the axial-force coefficient was affected by flare angle.

  11. Aerodynamic characteristics of a rotorcraft airfoil designed for the tip region of a main rotor blade

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.

    1991-01-01

    A wind tunnel investigation was conducted to determine the 2-D aerodynamic characteristics of a new rotorcraft airfoil designed for application to the tip region (stations outboard of 85 pct. radius) of a helicopter main rotor blade. The new airfoil, the RC(6)-08, and a baseline airfoil, the RC(3)-08, were investigated in the Langley 6- by 28-inch transonic tunnel at Mach numbers from 0.37 to 0.90. The Reynolds number varied from 5.2 x 10(exp 6) at the lowest Mach number to 9.6 x 10(exp 6) at the highest Mach number. Some comparisons were made of the experimental data for the new airfoil and the predictions of a transonic, viscous analysis code. The results of the investigation indicate that the RC(6)-08 airfoil met the design goals of attaining higher maximum lift coefficients than the baseline airfoil while maintaining drag divergence characteristics at low lift and pitching moment characteristics nearly the same as those of the baseline airfoil. The maximum lift coefficients of the RC(6)-08 varied from 1.07 at M=0.37 to 0.94 at M=0.52 while those of the RC(3)-08 varied from 0.91 to 0.85 over the same Mach number range. At lift coefficients of -0.1 and 0, the drag divergence Mach number of both the RC(6)-08 and the RC(3)-08 was 0.86. The pitching moment coefficients of the RC(6)-08 were less negative than those of the RC(3)-08 for Mach numbers and lift coefficients typical of those that would occur on a main rotor blade tip at high forward speeds on the advancing side of the rotor disk.

  12. Improvement of aerodynamic characteristics of a thick airfoil with a vortex cell in sub- and transonic flow

    NASA Astrophysics Data System (ADS)

    Isaev, Sergey; Baranov, Paul; Popov, Igor; Sudakov, Alexander; Usachov, Alexander

    2017-03-01

    The modified SST model (2005) is verified using Rodi- Leschziner-Isaev's approach and the multiblock computational technologies are validated in the VP2/3 code on different-structure overlapping grids by comparing the numerical predictions with the experimental data on transonic flow around an NACA0012 airfoil at an angle of attack of 4o for M=0.7 and Re=4×106. It is proved that the aerodynamic characteristics of a thick (20% of the chord) MQ airfoil mounted at an angle of attack of 2o for Re=107 and over the Mach number range 0.3-0.55 are significantly improved because an almost circular small-size (0.12) vortex cell with a defined volumetric flow rate coefficient of 0.007 during slot suction has been located on the upper airfoil section and an intense trapped vortex has been formed in it. A detailed analysis of buffeting within the self-oscillatory regime of flow around the MQ airfoil with a vortex cell has demonstrated the periodic changes in local and integral characteristics; the lift and the aerodynamic efficiency remain quite high, but inferior to the similar characteristics at M=0.55. It is found that the vortex cell at M=0.7 is inactive, and the aerodynamic characteristics of the MQ airfoil with a vortex cell are close to those of a smooth airfoil without a cell.

  13. Program VSAERO theory document: A computer program for calculating nonlinear aerodynamic characteristics of arbitrary configurations

    NASA Technical Reports Server (NTRS)

    Maskew, Brian

    1987-01-01

    The VSAERO low order panel method formulation is described for the calculation of subsonic aerodynamic characteristics of general configurations. The method is based on piecewise constant doublet and source singularities. Two forms of the internal Dirichlet boundary condition are discussed and the source distribution is determined by the external Neumann boundary condition. A number of basic test cases are examined. Calculations are compared with higher order solutions for a number of cases. It is demonstrated that for comparable density of control points where the boundary conditions are satisfied, the low order method gives comparable accuracy to the higher order solutions. It is also shown that problems associated with some earlier low order panel methods, e.g., leakage in internal flows and junctions and also poor trailing edge solutions, do not appear for the present method. Further, the application of the Kutta conditions is extremely simple; no extra equation or trailing edge velocity point is required. The method has very low computing costs and this has made it practical for application to nonlinear problems requiring iterative solutions for wake shape and surface boundary layer effects.

  14. An experimental study of the aerodynamic characteristics of planar and non-planar outboard wing planforms

    NASA Technical Reports Server (NTRS)

    Naik, D. A.; Ostowari, C.

    1987-01-01

    A series of wind tunnel experiments have been conducted to investigate the aerodynamic characteristics of several planar and nonplanar wingtip planforms. Seven different configurations: base-line rectangular, elliptical, swept and tapered, swept and tapered with dihedral, swept and tapered with anhedral, rising arc, and drooping arc, were investigated for two different spans. The data are available in terms of coefficient plots of force data, flow visualization photographs, and velocity and pressure flowfield surveys. All planforms, particularly the nonplanar, have some advantages over the baseline rectangular planform. Span efficiencies up to 20-percent greater than baseline are a possibility. However, it is suggested that the span efficiency concept might need refinement for nonplanar wings. Flow survey data show the change in effective span with vortex roll-up. The flow visualization shows the occurrence of mushroom-cell-separation flow patterns at angles of attack corresponding to stall. These grow with an increase in post-stall angle of attack. For the larger aspect ratios, the cells are observed to split into sub-cells at the higher angles of attack. For all angles of attack, some amount of secondary vortex flow is observed for the planar and nonplanar out-board planforms with sweep and taper.

  15. The aerodynamic characteristics of vortex ingestion for the F/A-18 inlet duct

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1991-01-01

    A Reduced Navier-Stokes (RNS) solution technique was successfully combined with the concept of partitioned geometry and mesh generation to form a very efficient 3D RNS code aimed at the analysis-design engineering environment. Partitioned geometry and mesh generation is a pre-processor to augment existing geometry and grid generation programs which allows the solver to (1) recluster an existing gridlife mesh lattice, and (2) perturb an existing gridfile definition to alter the cross-sectional shape and inlet duct centerline distribution without returning to the external geometry and grid generator. The present results provide a quantitative validation of the initial value space marching 3D RNS procedure and demonstrates accurate predictions of the engine face flow field, with a separation present in the inlet duct as well as when vortex generators are installed to supress flow separation. The present results also demonstrate the ability of the 3D RNS procedure to analyze the flow physics associated with vortex ingestion in general geometry ducts such as the F/A-18 inlet. At the conditions investigated, these interactions are basically inviscid like, i.e., the dominant aerodynamic characteristics have their origin in inviscid flow theory.

  16. Aerodynamic characteristics of the Toroidal Accelerator Rotor Platform (TARP) wind energy conversion system

    SciTech Connect

    Not Available

    1980-02-01

    This report describes an analytical and experimental research program that has been conducted at Rensselaer Polytechnic Institute for the purpose of evaluating the aerodynamic characteristics of the Toroidal Accelerator Rotor Platform (TARP) wind energy conversion system. The TARP is an obstruction type flow concentrator and accelerator which converts ambient winds into low pressure, high kinetic energy zones in the immediate proximity of a wind energy conversion unit. A TARP may be described as being substantially the shape of an inner section of a hollow toroid. A twin rotor system of any kind may be mounted within the peripheral flow channel about a TARP structure such that each rotor is situated in the optimum accelerated flow velocity region for best energy recovery. In a series of preliminary experimental tests, the pressure distribution about the basic TARP configuration was obtained at Reynolds numbers based on the TARP's minimum diameter ranging from about 1.1 x 10/sup 5/ to 9.0 x 10/sup 5/.

  17. Numerical Simulations of the Steady and Unsteady Aerodynamic Characteristics of a Circulation Control Wing Airfoil

    NASA Technical Reports Server (NTRS)

    Liu, Yi; Sankar, Lakshmi N.; Englar, Robert J.; Ahuja, Krishan K.

    2003-01-01

    The aerodynamic characteristics of a Circulation Control Wing (CCW) airfoil have been numerically investigated, and comparisons with experimental data have been made. The configuration chosen was a supercritical airfoil with a 30 degree dual-radius CCW flap. Steady and pulsed jet calculations were performed. It was found that the use of steady jets, even at very small mass flow rates, yielded a lift coefficient that is comparable or superior to conventional high-lift systems. The attached flow over the flap also gave rise to lower drag coefficients, and high L/D ratios. Pulsed jets with a 50% duty cycle were also studied. It was found that they were effective in generating lift at lower reduced mass flow rates compared to a steady jet, provided the pulse frequency was sufficiently high. This benefit was attributable to the fact that the momentum coefficient of the pulsed jet, during the portions of the cycle when the jet was on, was typically twice as much as that of a steady jet.

  18. Investigation of Aerodynamic and Icing Characteristics of a Flush Alternate Inlet Induction System Air Scoop

    NASA Technical Reports Server (NTRS)

    Lewis, James P.

    1953-01-01

    An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.

  19. Numerical Analysis on Aerodynamic Characteristics of Delta Wing with Variable Geometry Device in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Kanamori, Masashi; Imamura, Osamu; Suzuki, Kojiro

    The application of the variable geometry (VG) wing to a lifting re-entry body is expected to enhance the control capability of its aerodynamic characteristics and, as a result, to widen the corridor for the flight trajectory. In the present study, the flow field around a plain delta wing having three chord-wise hinges, one is on the wing root and the others on both sides of the mid-span of the wing, at Mach number 3 is numerically investigated by solving the Euler equations. The effects of the angle of attack and the “tip-down” bending angles around these hinges are clarified. The results show that the lift-to-drag ratio is hardly affected by the tip-down angle and that the overall lift and drag forces vary almost proportional to the change in the projected wing area by taking the tip-down configuration. The center of pressure moves backward by the tip-down effect.

  20. Aerodynamic characteristics of Lockheed delta-body orbiter and stage-and-one-half launch vehicle

    NASA Technical Reports Server (NTRS)

    Velligan, F. A.; Svendsen, H. O.

    1971-01-01

    An experimental wind tunnel test program was conducted to investigate the subsonic through high supersonic aerodynamic characteristics of the Lockheed delta lifting body orbiter and stage-and-one-half launch vehicle. Analyses and results of these data are presented. A 0.01-scale model of the LS 200-5 system was designed and fabricated for testing in wind tunnels. Orbiter and launch configurations were tested over a speed range of Mach 0.6 to 2.0, whereas only the orbiter was tested over a speed range of Mach 2.3 to 4.6. Six-component force and moment data, base pressures, and schlieren photos were obtained at various angles-of-attack and sideslip. A 0.03-scale model of the orbiter was also designed, fabricated, and tested in a wind tunnel. Six-component force and moment data, base pressure, and a limited amount of tuft flow visualization data were obtained on a variety of configuration combinations.

  1. Low-speed, high-lift aerodynamic characteristics of slender, hypersonic accelerator-type configurations

    NASA Technical Reports Server (NTRS)

    Gatlin, Gregory M.

    1989-01-01

    Two investigations were conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the low-speed aerodynamic characteristics of a generic hypersonic accelerator-type configuration. The model was a delta wing configuration incorporating a conical forebody, a simulated wrap-around engine package, and a truncated conical aftbody. Six-component force and moment data were obtained over a range of attack from -4 to 30 degrees and for a sideslip range of + or - 20 degrees. In addition to tests of the basic configuration, component build-up tests were conducted; and the effects of power, forebody nose geometry, canard surfaces, fuselage strakes, and engines on the lower surface alone were also determined. Control power available from deflections of wing flaps and aftbody flaps was also investigated and found to be significantly increased during power-on conditions. Large yawing moments resulted from asymmetric flow fields exhibited by the forebody as revealed by both surface pressure data and flow visualization. Increasing nose bluntness reduced the yawing-moment asymmetry, and the addition of a canard eliminated the yawing-moment asymmetry.

  2. Analysis of some aerodynamic characteristics due to wing-jet interaction

    NASA Technical Reports Server (NTRS)

    Fillman, G. L.; Lan, C. E.

    1979-01-01

    The results of two separate theoretical investigations are presented. A program was used which is capable of predicting the aerodynamic characteristics of both upper-surface blowing (USB) and over-wing blowing (OWB) configurations. A theoretical analysis of the effects of over-wing blowing jets on the induced drag of a 50 deg sweep back wing was developed. Experiments showed net drag reductions associated with the well known lift enhancement due to over-wing blowing. The mechanisms through which this drag reduction is brought about are presented. Both jet entrainment and the so called wing-jet interaction play important roles in this process. The effects of a rectangular upper-surface blowing jet were examined for a wide variety of planforms. The isolated effects of wing taper, sweep, and aspect ratio variations on the incremental lift due to blowing are presented. The effects of wing taper ratio and sweep angle were found to be especially important parameters when considering the relative levels of incremental lift produced by an upper-surface blowing configuration.

  3. Investigation of Aerodynamic and Icing Characteristics of Recessed Fuel-Vent Configurations

    NASA Technical Reports Server (NTRS)

    Ruggeri, Robert S.; VonGlahn, Uwe H.; Rollins, Vern G.

    1949-01-01

    An investigation has been conducted in the NACA Cleveland icing research tunnel to determine the aerodynamic and icing characteristics of several recessed fuel-vent configurations. The vents were investigated aerodynamically to obtain vent-tube pressures and pressure distributions on the ramp surface as functions of tunnel-air velocity and angle of attack. Icing investigations were made to determine the vent-tube pressure losses for several icing conditions at tunnel-air velocities ranging from 220 to 440 feet per second. In general, under nonicing conditions, the configurations with diverging ramp walls maintained, vent-tube pressures greater than the required marginal value of 2 inches of water positive pressure differential between the fuel cell and the compartment containing the fuel cell for a range of angles of attack from 0 to 14deg at a tunnel-air velocity of approximately 240 feet per second. A configuration haying divergIng ramp sldewalls, a 7deg ramp angle; and vent tubes manifold,ed to a common plenum chamber opening through a slot In the ramp floor gave the greatest vent-tube pressures for all the configurations investigated. The use of the plenum chamber resulted in uniform pressures in all vent tubes. In a cloud-icing condition, roughness caused by ice formations on the airfoil surface ahead of the vent ramp, rather than icing of the vent configuration, caused a rapid loss in vent-tube pressures during the first few minutes of an icing period. Only the configuration having diverging ramp sidewalls, a 7 ramp angle, and a common plenum chamber maintained the required vent-tube pressures throughout a 60-minute icing period, although the ice formations on this configuration were more severe than those observed for the other configurations. No complete closure of vent-tube openings occurred for the configurations investigated. A simulated freezing-rain condition caused a greater and more rapid vent-tube pressure loss than was observed for a cloud

  4. Aerodynamic characteristics of a high-wing transport configuration with a over-the-wing nacelle-pylon arrangement

    NASA Technical Reports Server (NTRS)

    Henderson, W. P.; Abeyounis, W. K.

    1985-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on the aerodynamic characteristics of a high-wing transport configuration of installing an over-the-wing nacelle-pylon arrangement. The tests are conducted at Mach numbers from 0.70 to 0.82 and at angles of attack from -2 deg to 4 deg. The configurational variables under study include symmetrical and contoured nacelles and pylons, pylon size, and wing leading-edge extensions. The symmetrical nacelles and pylons reduce the lift coefficient, increase the drag coefficient, and cause a nose-up pitching-moment coefficient. The contoured nacelles significantly reduce the interference drag, though it is still excessive. Increasing the pylon size reduces the drag, whereas adding wing leading-edge extension does not affect the aerodynamic characteristics significantly.

  5. Power Effects on the Longitudinal Characteristics of Single-Engine Propeller-Driven Aircraft

    DTIC Science & Technology

    1983-02-01

    ACDF depends on the vertical c.g. position, but is generally small compared with "the other contributions. -The net trim change due to these individual...upsweep and attachment, but aerodynamic and stability characteristics are also important. In addition, where spin recovery is required, the relative

  6. Longitudinal Aerodynamic Modeling of the Adaptive Compliant Trailing Edge Flaps on a GIII Airplane and Comparisons to Flight Data

    NASA Technical Reports Server (NTRS)

    Smith, Mark S.; Bui, Trong T.; Garcia, Christian A.; Cumming, Stephen B.

    2016-01-01

    A pair of compliant trailing edge flaps was flown on a modified GIII airplane. Prior to flight test, multiple analysis tools of various levels of complexity were used to predict the aerodynamic effects of the flaps. Vortex lattice, full potential flow, and full Navier-Stokes aerodynamic analysis software programs were used for prediction, in addition to another program that used empirical data. After the flight-test series, lift and pitching moment coefficient increments due to the flaps were estimated from flight data and compared to the results of the predictive tools. The predicted lift increments matched flight data well for all predictive tools for small flap deflections. All tools over-predicted lift increments for large flap deflections. The potential flow and Navier-Stokes programs predicted pitching moment coefficient increments better than the other tools.

  7. Effects of thickness on the aerodynamic characteristics of an initial low-speed family of airfoils for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1976-01-01

    Wind tunnel tests were conducted to determine the effects of airfoil thickness-ratio on the low speed aerodynamic characteristics of an initial family of airfoils. The results were compared with theoretical predictions obtained from a subsonic viscous method. The tests were conducted over a Mach number range from 0.10 to 0.28. Chord Reynolds numbers varied from about 2.0 x 1 million to 9.0 x 1 million.

  8. Tests of Four Full-scale Propellers to Determine the Effect of Trailing-edge Extensions on Propeller Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Maynard, Julian D.; Evans, Albert J

    1945-01-01

    Propellers with trailing-edge extensions were studied to determine aerodynamic characteristics. Trailing-edge extension increased power absorbed by propeller with little loss in efficiency. Power coefficient for maximum efficiency was greater for 20% camber type extension than for 20% straight type extension over range of advance ratio of 1.0 to 2.5 although camber type was less efficient. Efficiency was about the same for cruising and high-speed at a high power coefficient for propeller with extension.

  9. Development and validation of the V/STOL aerodynamics and stability and control manual

    NASA Technical Reports Server (NTRS)

    Henderson, C.; Walters, M. M.

    1981-01-01

    A V/STOL Aerodynamics and Stability and Control Manual was developed to provide prediction methods which are applicable to a wide range of V/STOL configurations in hover and transition flight, in and out of ground effect. Propulsion-induced effects have been combined with unpowered aerodynamics in a buildup of total forces and moments for the jet-lift concept, so that total aerodynamics can be used to predict aircraft stability, control, and flying qualities characteristics. Results of longitudinal aerodynamic predictions have been compared with test data, and indicate that the methods are fast, inexpensive, and within the desired accuracy for the objective preliminary design stage.

  10. Aerodynamic characteristics of the HL-20 and HL-20A lifting-body configurations

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Spencer, Bernard, Jr.; Micol, John R.

    1991-01-01

    The data show that the HL-20 is longitudinally and laterally stable over the test range from Mach 10 to 0.2. At hypersonic speeds it has a trimmed lift/drag ratio of 1.4. This values gives the vehicle a cross range capability similar to that of the Space Shuttle. At subsonic speeds, the HL-20 has a trimmed lift/drag ratio of about 3.6. Replacing the flat plate outboard fins with fins having an airfoil shape, increased the maximum trimmed L/D to 4.3. Preliminary evaluation of configuration modifications (the HL-20A series), indicates that trim at higher values of lift at hypersonic speeds could be achieved with an L/D of about 1.0. In the supersonic range, the lift and directional stability characteristics were improved. The untrimmed subsonic L/D was increased to 5.8 with airfoil fins.

  11. Supersonic aerodynamic characteristics of a series of wrap-around-fin missile configurations

    NASA Technical Reports Server (NTRS)

    Fournier, R. H.

    1977-01-01

    A parametric study of wrap-around-fin missile configurations was conducted at Mach numbers from 1.60 to 2.86 in the Langley Unitary Plan wind tunnel. The fin configurations investigated included variations in chord length, leading edge sweep, thickness ratio, and leading edge shape. The investigation also included a smooth and a stepped-down afterbody required for flush retraction of the wrap-around-fin configuration. The investigation indicated no unusual longitudinal characteristics; however, all the wrap-around-fin configurations tested indicated erratic lateral behavior, particularly in the form of induced roll at zero angle of attack and irregular variations of roll with angle of attack and Mach number. The magnitude of rolling moment at an angle of attack of 0 deg is estimated to represent approximately 0.25 deg or less roll control deflection. The stepped-down afterbody has a marked effect on reducing the induced roll.

  12. Analysis of wind tunnel test results for a 9.39-per cent scale model of a VSTOL fighter/attack aircraft. Volume 1: Study overview. [aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Lummus, J. R.; Joyce, G. T.; Omalley, C. D.

    1980-01-01

    The ability of current methodologies to accurately predict the aerodynamic characteristics identified as uncertainties was evaluated for two aircraft configurations. The two wind tunnel models studied horizontal altitude takeoff and landing V/STOL fighter aircraft derivatives.

  13. Investigation of Aerodynamic and Icing Characteristics of Water-Inertia-Separation Inlets for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Blatz, R. E.

    1950-01-01

    The results of an investigation of several internal water-inertia-separation inlets consisting of a main duct and an alternate duct designed to prevent automatically the entrance of large quantities of water into a turbojet engine in icing conditions are presented. Total-pressure losses and icing characteristics for a direct-ram inlet and the inertia-separation inlets are compared at similar aerodynamic and simulated icing conditions. Complete ice protection for inlet guide vanes could not be achieved with the inertia-separation inlets investigated. Approximately 8 percent of the volume of water entering the nacelles remained. In the air passing into the compressor inlet. Heavy alternate-duct-elbow ice formations caused by secondary inertia separation resulted in rapid total-pressure losses and decreases in mass flow. The duration in an icing condition for an inertia-separation- inlet, without local surface heating, was increased approximately four times above that for a direct-ram inlet with a compressor-inlet screen. For normal nonicing operation, the inertia-separation- inlet total-pressure losses were comparable to a direct-ram installation. The pressure losses and the circumferential uniformity of the mass flow in all the inlets were relatively independent of angle of attack. Use of an inertia-separation inlet would in most cases require a larger diameter nacelle than a direct-ram inlet in order to obtain an alternate duct sufficiently large to pass the required engine air flow at duct Mach numbers below 1.0 at the minimum area.

  14. Experimental Study on Aerodynamic Characteristics of a Stepped-Nose Obstacle

    NASA Astrophysics Data System (ADS)

    Cakrawala, Anang; Umemura, Akira

    Wind tunnel experiments were conducted to obtain a comprehensive understanding of the aerodynamic characteristics of two-dimensional stepped-nose obstacles. In our previous numerical study on the flow around stepped-nose obstacles at a zero angle of attack, the following favorable properties have been found for such step configuration that the flow separating from the front corners reattaches to the leading edges of the side surfaces. (1) The strong vortices trapped in the step region produce the suction forces acting on the step walls to cancel the drag force acting the front surface. (2) The suppression of large-scale flow separation on the obstacle’s sides reduces not only the suction force acting on the back surface, but also the lateral force fluctuation to a great degree. (3) The resulting net drag coefficient is much smaller than that of square/rectangular obstacles. In the present experimental study, the drag coefficient of stepped-nosed obstacles with various step height and length, at zero angle of attack, was measured to identify the optimum step configuration for large drag reduction. The effect of attack angle on drag, lift and moment coefficients was examined to gain insight into the static and dynamic stability of stepped-nose obstacles. The effect of step configuration on the Strouhal number was also examined. It was found that the stepped nose brought about static stability to the obstacle with a rather large step length-to-height ratio, but neither static nor dynamic stability was derived for the optimal step configuration with maximum drag reduction.

  15. Aerodynamic Characteristics and Control Effectiveness of the HL-20 Lifting Body Configuration at Mach 10 in Air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1999-01-01

    A 0.0196-scale model of the HL-20 lifting-body, one of several configurations proposed for future crewed spacecraft, was tested in the Langley 31-Inch Mach 10 Tunnel. The purpose of the tests was to determine the effectiveness of fin-mounted elevons, a lower surface flush-mounted body flap, and a flush-mounted yaw controller at hypersonic speeds. The nominal angle-of-attack range, representative of hypersonic entry, was 2 deg to 41 deg, the sideslip angles were 0 deg, 2 deg, and -2 deg, and the test Reynolds number was 1.06 x 10 E6 based on model reference length. The aerodynamic, longitudinal, and lateral control effectiveness along with surface oil flow visualizations are presented and discussed. The configuration was longitudinally and laterally stable at the nominal center of gravity. The primary longitudinal control, the fin-mounted elevons, could not trim the model to the desired entry angle of attack of 30 deg. The lower surface body flaps were effective for roll control and the associated adverse yawing moment was eliminated by skewing the body flap hinge lines. A yaw controller, flush-mounted on the lower surface, was also effective, and the associated small rolling moment was favorable.

  16. Longitudinal aerodynamic characteristics of a subsonic, energy-efficient transport configuration in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Jacobs, Peter F.; Gloss, Blair B.

    1989-01-01

    The Reynolds number, aeroelasticity, boundary layer transition, and nonadiabatic wall temperature effects, and data repeatability was determined in the National Transonic Facility (NTF) for a subsonic, energy efficient transport model. The model was tested over a Mach number range of 0.50 to 0.86 and a Reynolds number range of 1.9 million to approximately 23.0 million (based on mean geometric chord). The majority of the data was taken using cryogenic nitrogen (data at 1.9 million Reynolds number was taken in air). Force and moment, wing pressure, and wing thermocouple data are presented. The data indicate that increasing Reynolds number resulted in greater effective camber of the supercritical wing and horizontal tail, resulting in greater lift and pitching moment coefficients at nearly all angles of attack for M = 0.82. As Reynolds number was increased, untrimmed L/D increased, the angle of attack for maximum L/D decreased, drag creep was reduced significantly, and drag divergence Mach number increased slightly. Data repeatability for both modes of operation of the NTF (air and cryogenic nitrogen) was generally very good, and nonadiabatic wall effects were estimated to be small. Transition-free and transition-fixed configurations had significantly different force and moment data at M = 0.82 for low Reynolds number, and very small differences were noted at high Reynolds numbers.

  17. Effects of stores on longitudinal aerodynamic characteristics of a fighter at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.; Sangiorgio, G.; Monta, W. J.

    1978-01-01

    Experimental investigations of single and twin stores representative of advanced, elliptical cross section missile concepts were made at Mach numbers from 1.60 to 2.16 to substantiate theoretically predicted results. The stores were mounted on the fuselage of a model representing a fighter configuration. Store base closure effects in the carriage condition were also obtained through tests with and without base closure fairings.

  18. Aerodynamic characteristics of a canard-controlled missile at Mach numbers of 1.5 and 2.0.

    NASA Technical Reports Server (NTRS)

    Kassner, D. L.; Wettlaufer, B.

    1977-01-01

    A typical missile model with nose mounted canards and cruciform tail surfaces was tested in the Ames 6- by 6-Foot Wind Tunnel to determine the contributions of the component aerodynamic surfaces to the static aerodynamic characteristics at Mach numbers of 1.5 and 2.0 and Reynolds number of 1 million based on body diameter. Data were obtained at angles of attack ranging from -3 deg to 12 deg for various stages of model build-up (i.e., with and without canard and/or tail surfaces). Results were obtained both with the model unrolled and rolled 45 deg. For the canard and tail arrangements investigated, the model was trimmable at angles of attack up to about 10 deg with canard deflections of 9 deg. Also, the tail arrangements studied provided ample pitch stability. there were no appreciable effects of model roll orientation.

  19. Comparison of theoretically predicted lateral-directional aerodynamic characteristics with full-scale wind tunnel data on the ATLIT airplane

    NASA Technical Reports Server (NTRS)

    Griswold, M.; Roskam, J.

    1980-01-01

    An analytical method is presented for predicting lateral-directional aerodynamic characteristics of light twin engine propeller-driven airplanes. This method is applied to the Advanced Technology Light Twin Engine airplane. The calculated characteristics are correlated against full-scale wind tunnel data. The method predicts the sideslip derivatives fairly well, although angle of attack variations are not well predicted. Spoiler performance was predicted somewhat high but was still reasonable. The rudder derivatives were not well predicted, in particular the effect of angle of attack. The predicted dynamic derivatives could not be correlated due to lack of experimental data.

  20. Estimation of the longitudinal and lateral-directional aerodynamic parameters from flight data for the NASA F/A-18 HARV

    NASA Technical Reports Server (NTRS)

    Napolitano, Marcello R.

    1996-01-01

    This progress report presents the results of an investigation focused on parameter identification for the NASA F/A-18 HARV. This aircraft was used in the high alpha research program at the NASA Dryden Flight Research Center. In this study the longitudinal and lateral-directional stability derivatives are estimated from flight data using the Maximum Likelihood method coupled with a Newton-Raphson minimization technique. The objective is to estimate an aerodynamic model describing the aircraft dynamics over a range of angle of attack from 5 deg to 60 deg. The mathematical model is built using the traditional static and dynamic derivative buildup. Flight data used in this analysis were from a variety of maneuvers. The longitudinal maneuvers included large amplitude multiple doublets, optimal inputs, frequency sweeps, and pilot pitch stick inputs. The lateral-directional maneuvers consisted of large amplitude multiple doublets, optimal inputs and pilot stick and rudder inputs. The parameter estimation code pEst, developed at NASA Dryden, was used in this investigation. Results of the estimation process from alpha = 5 deg to alpha = 60 deg are presented and discussed.

  1. Experimental Hypersonic Aerodynamic Characteristics of the 2001 Mars Surveyor Precision Lander with Flap

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; OConnell, Tod F.; Cheatwood, F. McNeil; Prabhu, Ramadas K.; Alter, Stephen J.

    2002-01-01

    Aerodynamic wind-tunnel screening tests were conducted on a 0.029 scale model of a proposed Mars Surveyor 2001 Precision Lander (70 deg half angle spherically blunted cone with a conical afterbody). The primary experimental objective was to determine the effectiveness of a single flap to trim the vehicle at incidence during a lifting hypersonic planetary entry. The laminar force and moment data, presented in the form of coefficients, and shock patterns from schlieren photography were obtained in the NASA Langley Aerothermodynamic Laboratory for post-normal shock Reynolds numbers (based on forebody diameter) ranging from 2,637 to 92,350, angles of attack ranging from 0 tip to 23 degrees at 0 and 2 degree sideslip, and normal-shock density ratios of 5 and 12. Based upon the proposed entry trajectory of the 2001 Lander, the blunt body heavy gas tests in CF, simulate a Mach number of approximately 12 based upon a normal shock density ratio of 12 in flight at Mars. The results from this experimental study suggest that when traditional means of providing aerodynamic trim for this class of planetary entry vehicle are not possible (e.g. offset c.g.), a single flap can provide similar aerodynamic performance. An assessment of blunt body aerodynamic effects attributed to a real gas were obtained by synergistic testing in Mach 6 ideal-air at a comparable Reynolds number. From an aerodynamic perspective, an appropriately sized flap was found to provide sufficient trim capability at the desired L/D for precision landing. Inviscid hypersonic flow computations using an unstructured grid were made to provide a quick assessment of the Lander aerodynamics. Navier-Stokes computational predictions were found to be in very good agreement with experimental measurement.

  2. Supersonic Aerodynamic Characteristics of a Low-Drag Aircraft Configuration having an Arrow Wing of Aspect Ratio 1.86 and a Body of Fineness Ratio 20

    NASA Technical Reports Server (NTRS)

    Gillespie, Warren, Jr.

    1960-01-01

    A free-flight rocket-propelled-model investigation was conducted at Mach numbers of 1.2 to 1.9 to determine the longitudinal and lateral aero-dynamic characteristics of a low-drag aircraft configuration. The model consisted of an aspect-ratio -1.86 arrow wing with 67.5 deg. leading-edge sweep and NACA 65A004 airfoil section and a triangular vertical tail with 60 deg. sweep and NACA 65A003 section in combination with a body of fineness ratio 20. Aerodynamic data in pitch, yaw, and roll were obtained from transient motions induced by small pulse rockets firing at intervals in the pitch and yaw directions. From the results of this brief aerodynamic investigation, it is observed that very slender body shapes can provide increased volumetric capacity with little or no increase in zero-lift drag and that body fineness ratios of the order of 20 should be considered in the design of long-range supersonic aircraft. The zero-lift drag and the drag-due-to-lift parameter of the test configuration varied linearly with Mach number. The maximum lift-drag ratio was 7.0 at a Mach number of 1.25 and decreased slightly to a value of 6.6 at a Mach number of 1.81. The optimum lift coefficient, normal-force-curve slope, lateral-force-curve slope, static stability in pitch and yaw, time to damp to one-half amplitude in pitch and yaw, the sum of the rotary damping derivatives in pitch and also in yaw, and the static rolling derivatives all decreased with an increase in Mach number. Values of certain rolling derivatives were obtained by application of the least-squares method to the differential equation of rolling motion. A comparison of the experimental and calculated total rolling-moment-coefficient variation during transient oscillations of the model indicated good agreement when the damping-in-roll contribution was included with the static rolling-moment terms.

  3. Baseline patient characteristics and mortality associated with longitudinal intervention compliance.

    PubMed

    Lin, Julia Y; Ten Have, Thomas R; Bogner, Hillary R; Elliott, Michael R

    2007-12-10

    Lin et al. (http://www.biostatsresearch.com/upennbiostat/papers/, 2006) proposed a nested Markov compliance class model in the Imbens and Rubin compliance class model framework to account for time-varying subject noncompliance in longitudinal randomized intervention studies. We use superclasses, or latent compliance class principal strata, to describe longitudinal compliance patterns, and time-varying compliance classes are assumed to depend on the history of compliance. In this paper, we search for good subject-level baseline predictors of these superclasses and also examine the relationship between these superclasses and all-cause mortality. Since the superclasses are completely latent in all subjects, we utilize multiple imputation techniques to draw inferences. We apply this approach to a randomized intervention study for elderly primary care patients with depression.

  4. Approach to establishing the effect of aeroelasticity on aerodynamic characteristics of the space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Schlosser, D. C.; Dominik, D. F.

    1983-01-01

    The static aeroelastic effects on the longitudinal stability and elevon/aileron effectiveness of the space transportation system (STS) Space Shuttle orbiter were estimated by a simplified approach called the elevon torsional stiffness (ETS) method. This method employs rigid model wind tunnel test results to predict aeroelastic effects. Lateral/directional stability and rudder effectiveness were based on results of a wind tunnel test in which a flexible tail model was used. Comparisons with selective flight data are made in this paper. Results of correlations with flight data (although limited at the present time) verify the predicted aeroelastic effects for the orbiter. The orbiter's structural characteristics are such that the effects of aeroelasticity, whether estimated using analytical techniques or simplified methods, do not appear to affect the vehicle performance to any great extent. The large amount of scatter in the flight-extracted data made verification of the aeroelastic corrections very difficult. Generally, the simplified elevon torsional stiffness method provided better correlation with flight test results than he analytical method and reduced the verification effort and cost.

  5. Aerodynamic Characteristics of a Canard and an Outboard-Tail Airplane Model at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Fournier, Paul G.

    1961-01-01

    An investigation has been made in the Langley high-speed 7- by 10-foot tunnel through a range of Mach numbers from 0.60 to 0.95 of the static longitudinal and lateral stability and control characteristics of a canard airplane configuration and an outboard-tail configuration. The canard model had a twisted wing with approximately 67 deg of sweepback and an aspect ratio of 2.91 and was tested with three trapezoidal canard surfaces having ratios of exposed area to wing area of 0.032, 0.076, and 0.121. The canard model had a single body-mounted vertical tail. The outboard-tail model had its horizontal- and vertical-tail surfaces mounted on slender bodies attached to the wing tips and located to the rear and outboard of the 67 deg sweptback wing of aspect ratio 1.00. The data, which are presented with limited analysis, provide information at high subsonic speeds on these two types of high-speed airplanes which have previously been tested at supersonic speeds and reported in NACA RM L58BO7 and NACA RM L58E20.

  6. Transonic Aerodynamic Loading Characteristics of a Wing-Body-Tail Combination Having a 52.5 deg. Sweptback Wing of Aspect Ratio 3 With Conical Wing Camber and Body Indentation for a Design Mach Number of Square Root of 2

    NASA Technical Reports Server (NTRS)

    Cassetti, Marlowe D.; Re, Richard J.; Igoe, William B.

    1961-01-01

    An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5 deg. with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0 deg. to 14 deg., with Reynolds numbers based on mean aerodynamic chord varying from 7 x 10(exp 6) to 8 x 10(exp 6). Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced the transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.

  7. Experimental study of aerodynamic characteristics of a reentry vehicle on a setup with free oscillations at supersonic velocities

    NASA Astrophysics Data System (ADS)

    Adamov, N. P.; Kharitonov, A. M.; Chasovnikov, E. A.; Dyad'kin, A. A.; Krylov, A. N.; Aleksandrov, E. N.

    2016-11-01

    A setup with free oscillations containing a transverse sting for holding the test model and possible test regimes are described. The method of testing and data processing is presented. Aerodynamic characteristics of the pitching moment of the model in a wide range of Mach numbers are obtained. Comparisons of quasi-steady data with numerical predictions and of damping derivatives with those obtained previously in tests of the model mounted on the base sting and with calculated results are performed. The model is found to be statically and dynamically stable except for regimes with M = 1.75 and 2.25, where nondecaying oscillations are excited.

  8. Transonic aerodynamic characteristics associated with variations in the geometry of the forward portion of irregular planform wings

    NASA Technical Reports Server (NTRS)

    Spencer, B., Jr.; Stone, D. R.

    1973-01-01

    The experimental aerodynamic characteristics of three basic wing planforms on a conceptual orbiter fuselage (designated the LO-100) have been obtained in the 8-Foot Transonic Pressure Tunnel. The study included variations in the forward portion (fillet) of each basic wing. Fillet sweeps to 78 deg were investigated while holding the spanwise intersection of the fillet and wing constant. The data were obtained at Mach numbers of 0.35 to 1.2 and at Reynolds number (depending on Mach number) of 1.9 million to 2.11 million per foot. The angle of attack was varied from about minus 2 deg to 22 deg at 0 deg of sideslip.

  9. Aerodynamic Characteristics of a Model of an Inflatable-Sphere Launching Vehicle under Simulated Conditions of Mach Number and Altitude

    NASA Technical Reports Server (NTRS)

    Robinson, Ross B.; Morris, Odell A.

    1960-01-01

    An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the aerodynamic characteristics in pitch of a two-stage-rocket model configuration which simulated the last two stages of the launching vehicle for an inflatable sphere. Tests were made through an angle-of-attack range from -6 deg to 18 deg at dynamic pressures of 102 and 255 pounds per square foot with corresponding Mach numbers of 1.89 and 1.98 for the model both with and without a bumper arrangement designed to protect the rocket casing from the outer shell of the vehicle.

  10. Aerodynamic Characteristics at High Speeds of Related Full-Scale Propellers Having Different Blade-Section Cambers

    NASA Technical Reports Server (NTRS)

    Maynard, Julian D; Salters, Leland B , Jr

    1957-01-01

    Wind-tunnel tests of a full-scale two-blade NACA 10-(10)(08)-03 (high camber) propeller have been made for a range of blade angles from 20 degrees to 55 degrees at airspeeds up to 500 miles per hour. The results of these tests have been compared with results from previous tests of the NACA 10-(3) (08)-03 (low camber) and NACA 10-(5)(08)-03 (medium camber) propellers to evaluate the effects of blade-section camber on propeller aerodynamic characteristics.

  11. Aerodynamic Characteristics of a Slender Cone-cylinder Body of Revolution at a Mach Number of 3.85

    NASA Technical Reports Server (NTRS)

    Jack, John R

    1951-01-01

    An experimental investigation of the aerodynamics of a slender cone-cylinder body of revolution was conducted at a Mach number of 3.85 for angles of attack of 0 degree to 10 degrees and a Reynolds number of 3.85x10(exp 6). Boundary-layer measurements at zero angle of attack are compared with the compressible-flow formulations for predicting laminar boundary-layer characteristics. Comparison of experimental pressure and force values with theoretical values showed relatively good agreement for small angles of attack. The measured mean skin-friction coefficients agreed well with theoretical values obtained for laminar flow over cones.

  12. Flight Test Determined Aerodynamics Force and Moment Characteristics of the X-43A Research Vehicle at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; White, J. Terry

    2006-01-01

    The second flight of the HYPER-X Program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe integrated scramjet powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pull-up/push-over maneuvers performed throughout the X-43A cowl-closed descent phase. The subject flight research maneuvers were conducted in a Mach number range of 6.8 to 0.95 at altitudes from 92,000 ft to sea level. In this flight regime, the dynamic pressure varied from 1300 psf to 400 psf with angle-of-attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with pre-flight predictions based on wind tunnel test data. The X-43A flight-derived axial force was found to be 10 to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers greater than 4, the X-43A flight-derived stability and control characteristics resulted in larger than predicted static margins, with the largest discrepancy approximately 5-inches forward along the X(CG) at Mach 6. This would result in less static margin in pitch. The X-43A predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle-of-sideslip.

  13. Flight-Test-Determined Aerodynamic Force and Moment Characteristics of the X-43A at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis. Marl C.; White, J. Terry

    2006-01-01

    The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets; frequency sweeps; and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80 to 0.95 and altitudes from 92,000 ft msl to sea level. The dynamic pressure varied from 1300 psf to 400 psf with the angle of attack ranging from 0 deg to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel-test data. The X-43A flight-derived axial force was found to be 10 percent to 15 percent higher than prediction. Under-predictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.

  14. X-43A Flight-Test-Determined Aerodynamic Force and Moment Characteristics at Mach 7.0

    NASA Technical Reports Server (NTRS)

    Davis, Mark C.; White, J. Terry

    2008-01-01

    The second flight of the Hyper-X program afforded a unique opportunity to determine the aerodynamic force and moment characteristics of an airframe-integrated scramjet-powered aircraft in hypersonic flight. These data were gathered via a repeated series of pitch, yaw, and roll doublets, frequency sweeps, and pushover-pullup maneuvers performed throughout the X-43A cowl-closed descent. Maneuvers were conducted at Mach numbers of 6.80-0.95 and at altitudes from 92,000 ft mean sea level to sea level. The dynamic pressure varied from 1300 to 400 psf with the angle of attack ranging from 0 to 14 deg. The flight-extracted aerodynamics were compared with preflight predictions based on wind-tunnel test data. The X-43A flight-derived axial force was found to be 10-15%higher than prediction. Underpredictions of similar magnitude were observed for the normal force. For Mach numbers above 4.0, the flight-derived stability and control characteristics resulted in larger-than-predicted static margins, with the largest discrepancy approximately 5 in. forward along the x-axis center of gravity at Mach 6.0. This condition would result in less static margin in pitch. The predicted lateral-directional stability and control characteristics matched well with flight data when allowance was made for the high uncertainty in angle of sideslip.

  15. An experimental and theoretical study of the aerodynamic characteristics of some generic missile concepts at Mach numbers from 2 to 6.8

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy; Braswell, Dorothy O.

    1994-01-01

    A study has been made of the experimental and theoretical aerodynamic characteristics for some generic high-speed missile concepts at Mach numbers from 2 to 6.8. The basic body for this study had a length-to-diameter ratio of 10 with the forward half being a modified blunted ogive and the rear half being a cylinder. Modifications made to the basic body included the addition of an after body flare, the addition of highly swept cruciform wings and the addition of highly swept aft tails. The effects of some controls were also investigated with all-moving wing controls on the flared body and trailing-edge flap controls on the winged body. The results indicated that the addition of a flare, wings, or tails to the basic body all provided static longitudinal stability with varying amounts of increased axial force. The control arrangements were effective in producing increments of normal-force and pitching-moment at the lower Mach numbers. At the highest Mach number, the flap control on the winged body was ineffective in producing normal-force or pitching-moment but the all-moving wing control on the flared body, while losing pitch effectiveness, still provided normal-force increments. Calculated results obtained through the use of hypersonic impact theory were in generally good agreement with experiment at the higher Mach numbers but were not accurate at the lower Mach numbers.

  16. Aerodynamic Characteristics of an Aerospace Vehicle During a Subsonic Pitch-Over Maneuver

    NASA Technical Reports Server (NTRS)

    Kleb, William L.

    1996-01-01

    Time-dependent CFD has been used to predict aerospace vehicle aerodynamics during a subsonic rotation maneuver. The inviscid 3D3U code is employed to solve the 3-D unsteady flow field using an unstructured grid of tetrahedra. As this application represents a challenge to time-dependent CFD, observations concerning spatial and temporal resolution are included. It is shown that even for a benign rotation rate, unsteady aerodynamic effects are significant during the maneuver. Possibly more significant, however, the rotation maneuver creates ow asymmetries leading to yawing moment, rolling moment, and side force which are not present in the quasi-steady case. A series of steady solutions at discrete points in the maneuver are also computed for comparison with wind tunnel measurements and as a means of quantifying unsteady effects.

  17. Modeling of aircraft unsteady aerodynamic characteristics. Part 2: Parameters estimated from wind tunnel data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1995-01-01

    Aerodynamic equations with unsteady effects were formulated for an aircraft in one-degree-of-freedom, small-amplitude, harmonic motion. These equations were used as a model for aerodynamic parameter estimation from wind tunnel oscillatory data. The estimation algorithm was based on nonlinear least squares and was applied in three examples to the oscillatory data in pitch and roll of 70 deg triangular wing and an X-31 model, and in-sideslip oscillatory data of the High Incidence Research Model 2 (HIRM 2). All three examples indicated that a model using a simple indicial function can explain unsteady effects observed in measured data. The accuracy of the estimated parameters and model verification were strongly influenced by the number of data points with respect to the number of unknown parameters.

  18. Plasma Influence on Characteristics of Aerodynamic Friction and Separation Flow Location

    DTIC Science & Technology

    2007-11-02

    Mirror- galvanometer oscillograph NO43.1 (6); • · Shadow Schlieren device IAB-451 (7-10). After a modernization the oscilloscope “Tektronix TDS...amplifier is transmitted to the mirror- galvanometer oscillograph (6), which in turn records the pressure variation diagram on a Plasma Aerodynamics...balance (4) is used, the signal from which is also transmitted to the 8-ANCh amplifier and then to the mirror- galvanometer oscillograph and is

  19. Experimental Hypersonic Aerodynamic Characteristics of the Space Shuttle Orbiter for a Range of Damage Scenarios

    NASA Technical Reports Server (NTRS)

    Brauckman, Gregory J.; Scallion, William I.

    2003-01-01

    Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch Mach 6 CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter (approximately 10 inches in length). Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parameters include angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.26 to 3.0 x10^6 per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (Mach 6 CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface acreage thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), holes through the wing from the windward surface to the leeside, deformation of the wing windward surface, and main landing gear door and/or gear deployment. The aerodynamic data were compared to the magnitudes and directions observed in flight, and the heating images were evaluated in terms of the location of the generated disturbances and how these disturbance might relate to the response of discrete gages on the Columbia Orbiter vehicle during entry. The measured aerodynamic increments were generally small in magnitude, as were the flight-derived values during most of the entry. Asymmetric boundary layer transition (ABLT) results were consistent with the flight-derived Shuttle ABLT model, but not with the observed flight trends for STS-107. The partially missing leading edge panel results best matched both the early aerodynamic and heating trends observed in flight. A progressive damage scenario is presented that qualitatively matches the flight observations for the full entry.

  20. Aerodynamic and Flight Dynamic Characteristics of the New Family of 5. 56mm NATO Ammunition

    DTIC Science & Technology

    1985-10-01

    5 LIST OF TABLES .... 7 I. INTRODUCTION ........... ......, 9..,,.......,,.,.., .-. IeI TEST MATERIEL AND PROCEDURE...transonic and subsonic speeds. All Phase II aeroballistic tests were fired in the BRL Aerodynamics Range, using the same Phase I weapon mounting...shown in Figure 1. - The Phase III testing also used the weapon mounting system of Figure 1, but with the gun moved to one of the three firing positions

  1. The influence of vehicle aerodynamic and control response characteristics on driver-vehicle performance

    NASA Technical Reports Server (NTRS)

    Alexandridis, A. A.; Repa, B. S.; Wierwille, W. W.

    1978-01-01

    The effects of changes in understeer, control sensitivity, and location of the lateral aerodynamic center of pressure (c.p.) of a typical passenger car on the driver's opinion and on the performance of the driver-vehicle system were studied in a moving-base driving simulator. Twelve subjects with no prior experience on the simulator and no special driving skills performed regulation tasks in the presence of both random and step wind gusts.

  2. A Subsonic Wind-Tunnel Study to Determine the Buffet and Static Aerodynamic Characteristics of a Systematic Series of Wings. Phase 1

    NASA Technical Reports Server (NTRS)

    Ray, Edward J.; Taylor, Robert T.

    1968-01-01

    A wind-tunnel investigation has been conducted in the Langley High-Speed 7- by 10-Foot Tunnel to determine the buffet and static aerodynamic characteristics of a systematic wing series at Mach numbers ranging from 0.23 to 0.94. The results have indicated that for a given Mach number, the wings which display superior aerodynamic efficiency characteristics generally display the highest buffet free lift coefficient. The characteristics exhibited by the wings which were considered have indicated that correlations can be made between the onset of buffet and selected divergences in the static aerodynamic characteristics. Axial force has been found to be the most sensitive static component to the onset of buffeting.

  3. An experimental and theoretical analysis of the aerodynamic characteristics of a biplane-winglet configuration. M.D. Thesis

    NASA Technical Reports Server (NTRS)

    Gall, P. D.

    1984-01-01

    Improving the aerodynamic characteristics of an airplane with respect to maximizing lift and minimizing induced and parasite drag are of primary importance in designing lighter, faster, and more efficient aircraft. Previous research has shown that a properly designed biplane wing system can perform superiorly to an equivalent monoplane system with regard to maximizing the lift-to-drag ratio and efficiency factor. Biplanes offer several potential advantages over equivalent monoplanes, such as a 60-percent reduction in weight, greater structural integrity, and increased roll response. The purpose of this research is to examine, both theoretically and experimentally, the possibility of further improving the aerodynamic characteristics of the biplanes configuration by adding winglets. Theoretical predictions were carried out utilizing vortex-lattice theory, which is a numerical method based on potential flow theory. Experimental data were obtained by testing a model in the Pennsylvania State University's subsonic wind tunnel at a Reynolds number of 510,000. The results showed that the addition of winglets improved the performance of the biplane with respect to increasing the lift-curve slope, increasing the maximum lift coefficient, increasing the efficiency factor, and decreasing the induced drag. A listing of the program is included in the Appendix.

  4. Numerical investigation of the aerodynamic and structural characteristics of a corrugated wing

    NASA Astrophysics Data System (ADS)

    Hord, Kyle

    Previous experimental studies on static, bio-inspired corrugated wings have shown that they produce favorable aerodynamic properties such as delayed stall compared to streamlined wings and flat plates at high Reynolds numbers (Re ≥ 4x104). The majority of studies have been carried out with scaled models of dragonfly forewings from the Aeshna Cyanea in either wind tunnels or water channels. In this thesis, the aerodynamics of a corrugated airfoil was studied using computational fluid dynamics methods at a low Reynolds number of 1000. Structural analysis was also performed using the commercial software SolidWorks 2009. The flow field is described by solving the incompressible Navier-Stokes equations on an overlapping grid using the pressure-Poisson method. The equations are discretized in space with second-order accurate central differences. Time integration is achieved through the second-order Crank-Nicolson implicit method. The complex vortex structures that form in the corrugated airfoil valleys and around the corrugated airfoil are studied in detail. Comparisons are made with experimental measurements from corrugated wings and also with simulations of a flat plate. Contrary to the studies at high Reynolds numbers, our study shows that at low Reynolds numbers the wing corrugation does not provide any aerodynamic benefit compared to a smoothed flat plate. Instead, the corrugated profile generates more pressure drag which is only partially offset by the reduction of friction drag, leading to more total drag than the flat plate. Structural analysis shows that the wing corrugation can increase the resistance to bending moments on the wing structure. A smoothed structure has to be three times thicker to provide the same stiffness. It was concluded the corrugated wing has the structural benefit to provide the same resistance to bending moments with a much reduced weight.

  5. Measured unsteady transonic aerodynamic characteristics of an elastic supercritical wing with an oscillating control surface

    NASA Technical Reports Server (NTRS)

    Seidel, D. A.; Sandford, M. C.; Eckstrom, C. V.

    1985-01-01

    Transonic steady and unsteady aerodynamic data were measured on a large elastic wing in the NASA Langley Transonic Dynamics Tunnel. The wing had a supercritical airfoil shape and a leading-edge sweepback of 28.8 deg. The wing was heavily instrumented to measure both static and dynamic pressures and deflections. A hydraulically driven outboard control surface was oscillated to generate unsteady airloads on the wing. Representative results from the wind tunnel tests are presented and discussed, and the unexpected occurrence of an unusual dynamic wing instability, which was sensitive to angle of attack, is reported.

  6. Aerodynamic characteristics of airfoils VI : continuation of reports nos. 93, 124, 182, 244, and 286

    NASA Technical Reports Server (NTRS)

    1930-01-01

    This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for use of designing engineers and for purposes of general reference. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and year of test.

  7. Analysis of preflutter and postflutter characteristics with motion-matched aerodynamic forces

    NASA Technical Reports Server (NTRS)

    Cunningham, H. J.

    1978-01-01

    The development of the equations of dynamic equilibrium for a lifting surface from Lagrange's equation is reviewed and restated for general exponential growing and decaying oscillatory motion. Aerodynamic forces for this motion are obtained from the three-dimensional supersonic kernel function that is newly generalized to complex reduced frequencies. Illustrative calculations were made for two flutter models at supersonic Mach numbers. Preflutter and postflutter motion isodecrement curves were obtained. This type of analysis can be used to predict preflutter behavior during flutter testing and to predict postflutter behavior for use in the design of flutter suppression systems.

  8. Calculation of the aerodynamic characteristics of tapered wings with partial-span flaps

    NASA Technical Reports Server (NTRS)

    Person, Henry A; Anderson, Raymond F

    1939-01-01

    Factors derived from wing theory are presented. By means of these factors, the angle of zero lift, the lift-curve slope, the pitching moment, the aerodynamic-center position, and the induced drag of tapered wings with partial-span flaps may be calculated. The factors are given for wings of aspect ratios 6 and 10 , of taper ratios from 0.25 to 1.00, and with flaps of various length. An example is presented of the method of application of the factors. Fair agreement with experimental results is shown for two wings of different taper ratio having plain flaps of various spacing.

  9. Predicting aerodynamic characteristics of vortical flows on three-dimensional configurations using a surface-singularity panel method

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1983-01-01

    A general low-order surface-singularity panel method is used to predict the aerodynamic characteristics of a problem where a wing-tip vortex from one wing closely interacts with an aft mounted wing in a low Reynolds Number flow; i.e., 125,000. Nonlinear effects due to wake roll-up and the influence of the wings on the vortex path are included in the calculation by using a coupled iterative wake relaxation scheme. The interaction also affects the wing pressures and boundary layer characteristics: these effects are also considered using coupled integral boundary layer codes and preliminary calculations using free vortex sheet separation modelling are included. Calculated results are compared with water tunnel experimental data with generally remarkably good agreement.

  10. Experimental study of the effects of Reynolds number on high angle of attack aerodynamic characteristics of forebodies during rotary motion

    NASA Technical Reports Server (NTRS)

    Pauley, H.; Ralston, J.; Dickes, E.

    1995-01-01

    The National Aeronautics and Space Administration and the Defense Research Agency (United Kingdom) have ongoing experimental research programs in rotary-flow aerodynamics. A cooperative effort between the two agencies is currently underway to collect an extensive database for the development of high angle of attack computational methods to predict the effects of Reynolds number on the forebody flowfield at dynamic conditions, as well as to study the use of low Reynolds number data for the evaluation of high Reynolds number characteristics. Rotary balance experiments, including force and moment and surface pressure measurements, were conducted on circular and rectangular aftbodies with hemispherical and ogive noses at the Bedford and Farnborough wind tunnel facilities in the United Kingdom. The bodies were tested at 60 and 90 deg angle of attack for a wide range of Reynolds numbers in order to observe the effects of laminar, transitional, and turbulent flow separation on the forebody characteristics when rolling about the velocity vector.

  11. Low-speed aerodynamic characteristics of a 13 percent thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.

    1979-01-01

    Wind tunnel tests were conducted to determine the low speed, two dimensional aerodynamic characteristics of a 13percent thick medium speed airfoil designed for general aviation applications. The results were compared with data for the 13 percent thick low speed airfoil. The tests were conducted over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2.0 x 10 to the 6th power to 12.0 x 10 to the 6th power, and an angle of attack frange from about -8 deg to 10 deg. The objective of retaining good high-lift low speed characteristics for an airfoil designed to have good medium speed cruise performance was achieved.

  12. Low-speed aerodynamic characteristics of a 17-percent-thick medium speed airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beaseley, W. D.

    1980-01-01

    Wind tunnel tests were conducted to determine the low speed two dimensional aerodynamic characteristics of a 17 percent thick medium speed airfoil (MS(1)-0317) designed for general aviation applications. The results were compared with data for the 17 percent thick low speed airfoil (LS(1)-0417) and the 13 percent thick medium speed airfoil (MS(1)-0313). Theoretical predictions of the drag rise characteristics of this airfoil are also provided. The tests were conducted in the Langley low turbulence pressure tunnel over a Mach number range from 0.10 to 0.32, a chord Reynolds number range from 2 million to 12 million, and an angle of attack range from about -8 to 20 deg.

  13. QCSEE under-the-wing engine-wing-flap aerodynamic profile characteristics

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Samanich, N. E.

    1982-01-01

    As part of a broad-based NASA program to provide a technology base for future propulsion requirements for powered-lift aircraft, the Quiet, Clean, Short-Haul, Experimental Engine (QCSEE) program was begun by the Lewis Research Center in 1974. The initial buildup of the under-the-wing (UTW) engine was tested by the contractor at his test site. The UTW engine was delivered to Lewis in 1978 for further testing with wing and flap segments simulating an installation on a short-haul transport aircraft. The engine was also tested alone as an aid in identifying the various noise sources and their levels. As part of these tests the aerodynamic profiles at the exhaust nozzle and on the surfaces and in the wake of the wing-flap system were measured. This report documents, in plots and tabular form, the significant results from those tests. The results are presented as tabulations of aerodynamic data for all of the test points and as profiles of pressure, temperature, velocity, and normalized velocity and pressure for selected conditions. One of the main conclusions was that the measured flap surface temperatures were surprisingly low for both approach and takeoff flap settings.

  14. Aerodynamics of cyclist posture, bicycle and helmet characteristics in time trial stage.

    PubMed

    Chabroux, Vincent; Barelle, Caroline; Favier, Daniel

    2012-07-01

    The present work is focused on the aerodynamic study of different parameters, including both the posture of a cyclist's upper limbs and the saddle position, in time trial (TT) stages. The aerodynamic influence of a TT helmet large visor is also quantified as a function of the helmet inclination. Experiments conducted in a wind tunnel on nine professional cyclists provided drag force and frontal area measurements to determine the drag force coefficient. Data statistical analysis clearly shows that the hands positioning on shifters and the elbows joined together are significantly reducing the cyclist drag force. Concerning the saddle position, the drag force is shown to be significantly increased (about 3%) when the saddle is raised. The usual helmet inclination appears to be the inclination value minimizing the drag force. Moreover, the addition of a large visor on the helmet is shown to provide a drag coefficient reduction as a function of the helmet inclination. Present results indicate that variations in the TT cyclist posture, the saddle position and the helmet visor can produce a significant gain in time (up to 2.2%) during stages.

  15. Experimental Hypersonic Aerodynamic Characteristics of the Space Shuttle Orbiter for a Range of Damage Scenarios

    NASA Technical Reports Server (NTRS)

    Brauckmann, Gregory J.; Scallion, William I.

    2004-01-01

    Aerodynamic tests in support of the Columbia accident investigation were conducted in two hypersonic wind tunnels at the NASA Langley Research Center, the 20-Inch Mach 6 Air Tunnel and the 20-Inch CF4 Tunnel. The primary purpose of these tests was to measure the forces and moments generated by a variety of outer mold line alterations (damage scenarios) using 0.0075-scale models of the Space Shuttle Orbiter. Simultaneously acquired global heat transfer mappings were obtained for a majority of the configurations tested. Test parametrics included angles of attack from 38 to 42 deg, unit Reynolds numbers from 0.3 x 10(exp 6) to 3.0 x 10(exp 6) per foot, and normal shock density ratios of 5 (Mach 6 air) and 12 (CF4). The damage scenarios evaluated included asymmetric boundary layer transition, gouges in the windward surface thermal protection system tiles, wing leading edge damage (partially and fully missing reinforced carbon-carbon (RCC) panels), deformation of the wing windward surface, and main landing gear and/or door deployment. The measured aerodynamic increments for the damage scenarios examined were generally small in magnitude, as were the flight-derived values during most of the entry prior to loss of communication. A progressive damage scenario is presented that qualitatively matches the flight observations for the STS-107 entry.

  16. Effects of independent variation of Mach and Reynolds numbers on the low-speed aerodynamic characteristics of the NACA 0012 airfoil section

    NASA Technical Reports Server (NTRS)

    Ladson, Charles L.

    1988-01-01

    A comprehensive data base is given for the low speed aerodynamic characteristics of the NACA 0012 airfoil section. The Langley low-turbulence pressure tunnel is the facility used to obtain the data. Included in the report are the effects of Mach number and Reynolds number and transition fixing on the aerodynamic characteristics. Presented are also comparisons of some of the results with previously published data and with theoretical estimates. The Mach number varied from 0.05 to 0.36. The Reynolds number, based on model chord, varied from 3 x 10 to the 6th to 12 x 10 to the 6th power.

  17. Longitudinal and Lateral Stability and Control Characteristics and Vertical-Tail-Load Measurements for a 0.03-Scale Model of the Avro CF-105 Airplane at Mach Numbers of 1.60, 1.80, and 2.00

    NASA Technical Reports Server (NTRS)

    Silvers, H. Norman; Fournier, Roger H.; Wills, Jane S.

    1958-01-01

    An investigation has been made in the Langley Unitary Plan wind tunnel at Mach numbers of 1.60, 1.80, and 2.00 to determine the aerodynamic characteristics of a 0.03-scale model of the Avro CF-105 airplane. The investigation included the determination of the static longitudinal and lateral stability, the control and the hinge-moment characteristics of the elevator, rudder, and aileron, as well as the vertical-tail-load characteristics. Although the data are presented without analysis, a limited inspection of the longitudinal control results indicates a loss in maximum lift-drag ratio due to trimming of about 1.8 because of the large static margin. A reduction in static margin would be expected to improve the trim lift-drag ratio but would also reduce the directional stability. With the existing static margin, the configuration is directionally unstable at angles of attack above about 6 deg or 8 deg.

  18. Aerodynamic Characteristics of a Feathered Dinosaur Measured Using Physical Models. Effects of Form on Static Stability and Control Effectiveness

    PubMed Central

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While M. gui lived after Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. PMID:24454820

  19. Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap

    NASA Technical Reports Server (NTRS)

    Hassan, Ahmed

    1999-01-01

    Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

  20. Wing-Alone Aerodynamic Characteristics to High Angles of Attack at Subsonic and Transonic Speeds.

    DTIC Science & Technology

    1982-11-01

    indicators of symmetry since the wings were unbanked within the limits of tolerances and flow angularity. Longitudinal, spanwise, and vertical... unbanked wings at subsonic and transonic speeds from low to high angles of attack. The wing planforms varied in aspect ratio and taper ratio with

  1. On the aerodynamic characteristics of hovering rigid and flexible hawkmoth-like wings

    NASA Astrophysics Data System (ADS)

    Lua, K. B.; Lai, K. C.; Lim, T. T.; Yeo, K. S.

    2010-12-01

    Insect wings are subjected to fluid, inertia and gravitational forces during flapping flight. Owing to their limited rigidity, they bent under the influence of these forces. Numerical study by Hamamoto et al. (Adv Robot 21(1-2):1-21, 2007) showed that a flexible wing is able to generate almost as much lift as a rigid wing during flapping. In this paper, we take a closer look at the relationship between wing flexibility (or stiffness) and aerodynamic force generation in flapping hovering flight. The experimental study was conducted in two stages. The first stage consisted of detailed force measurement and flow visualization of a rigid hawkmoth-like wing undergoing hovering hawkmoth flapping motion and simple harmonic flapping motion, with the aim of establishing a benchmark database for the second stage, which involved hawkmoth-like wing of different flexibility performing the same flapping motions. Hawkmoth motion was conducted at Re = 7,254 and reduced frequency of 0.26, while simple harmonic flapping motion at Re = 7,800 and 11,700, and reduced frequency of 0.25. Results show that aerodynamic force generation on the rigid wing is governed primarily by the combined effect of wing acceleration and leading edge vortex generated on the upper surface of the wing, while the remnants of the wake vortices generated from the previous stroke play only a minor role. Our results from the flexible wing study, while generally supportive of the finding by Hamamoto et al. (Adv Robot 21(1-2):1-21, 2007), also reveal the existence of a critical stiffness constant, below which lift coefficient deteriorates significantly. This finding suggests that although using flexible wing in micro air vehicle application may be beneficial in term of lightweight, too much flexibility can lead to deterioration in flapping performance in terms of aerodynamic force generation. The results further show that wings with stiffness constant above the critical value can deliver mean lift coefficient

  2. Investigation on aerodynamic characteristics of baseline-II E-2 blended wing-body aircraft with canard via computational simulation

    NASA Astrophysics Data System (ADS)

    Nasir, Rizal E. M.; Ali, Zurriati; Kuntjoro, Wahyu; Wisnoe, Wirachman

    2012-06-01

    Previous wind tunnel test has proven the improved aerodynamic charasteristics of Baseline-II E-2 Blended Wing-Body (BWB) aircraft studied in Universiti Teknologi Mara. The E-2 is a version of Baseline-II BWB with modified outer wing and larger canard, solely-designed to gain favourable longitudinal static stability during flight. This paper highlights some results from current investigation on the said aircraft via computational fluid dynamics simulation as a mean to validate the wind tunnel test results. The simulation is conducted based on standard one-equation turbulence, Spalart-Allmaras model with polyhedral mesh. The ambience of the flight simulation is made based on similar ambience of wind tunnel test. The simulation shows lift, drag and moment results to be near the values found in wind tunnel test but only within angles of attack where the lift change is linear. Beyond the linear region, clear differences between computational simulation and wind tunnel test results are observed. It is recommended that different type of mathematical model be used to simulate flight conditions beyond linear lift region.

  3. Analysis of the effect of engine characteristics on the external aerodynamics of STOL wing propulsion systems

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1972-01-01

    The effects of engine presssure ratio, engine size, and engine location on the pressure distribution, lift coefficient, and flow field of a STOL wing propulsion system are presented. The flow variables of the engines are included in the two-dimensional potential flow analysis by considering the effects of mass flow coefficient at the engine inlet and thrust coefficient at the engine exit. A functional relation between these coefficients and engine pressure ratio is given. The results of this study indicate that the effect of engine pressure ratio on the external aerodynamics is a function of engine location. For engines located on the bottom of the wing, the highest pressure ratio engine resulted in the highest lift coefficient. For engines located on the top of the wing, the lowest pressure ratio engine resulted in the highest lift coefficient.

  4. Impact of pulsed blowing jet on aerodynamic characteristics of wind turbine airfoils

    NASA Astrophysics Data System (ADS)

    Bobonea, Andreea

    2012-11-01

    Wind turbine growth in size and weight made it impossible to control turbines passively as they were controlled in the past. Current efforts focus on increasing their aerodynamic efficiency and operational range through active flow control methods. One of the main methods of active flow control is the usage of blowing devices with constant or pulsed jets. By adding stored high-momentum air through slots into the boundary layer, they overcome adverse pressure gradients and postpone separation. Pulsed blowing sends short pulses rather than a continuous jet of fluid into the boundary layer and has been found to be more effective. Through CFD simulations over a 2D wind turbine airfoil, this research highlights the impact of different slot geometries with constant/pulsed blowing, on the effectiveness of this active flow control technique.

  5. Space shuttle: Aerodynamic characteristics of a 162-inch diameter solid rocket booster with and without strakes

    NASA Technical Reports Server (NTRS)

    Johnson, J. D.; Radford, W. D.; Rampy, J. M.

    1973-01-01

    Tests conducted at NASA-Langley have shown that a small flap or strake can generate a significant amount of lift on a circular cylinder with large cross flow. If strakes are placed on the opposite sides and ends on a circular body, a moment will be produced about the center of mass of the body. The purpose of this test was to determine the static-aerodynamic forces and moments of a 162-inch diameter SRB (PRR) with and without strakes. The total angle-of-attack range of the SRB test was from -10 to 190 degrees. Model roll angles were 0, 45, 90, and 135 degrees with some intermediate angles. The Mach range was from 0.6 to 3.48. The 0.00494 scale model was designated as MSFC No. 449.

  6. A Fundamental Study for Aerodynamic Characteristics of Supersonic Biplane Wing and Wing-Body Configurations

    NASA Astrophysics Data System (ADS)

    Odaka, Yusuke; Kusunose, Kazuhiro

    In order to develop a quiet supersonic transport, it is necessary to reduce shock waves around the transport. Shock waves, in general, are the cause of the airplane's sonic boom. Authors have been studying an aerodynamic feasibility of supersonic biplanes based on the concept of the Busemann biplane. In this paper, the three dimensional effect of wing geometries on their wave drags, including wing tip effects and the interference effects between the wing and a body (Wing-Body configurations) are investigated, using CFD code in Euler (inviscid) mode. As a result, we can conclude that the supersonic biplane wings at their design Mach number (M∞=1.7) are still capable of reducing wave drag significantly similar to that of the 2-D supersonic biplane.

  7. DSMC method on aerodynamic heating and temperature characteristic of hypersonic rarefied flows

    NASA Astrophysics Data System (ADS)

    Ma, Jing; Bao, Xingdong; Mao, Hongxia; Dong, Yanbing

    2016-10-01

    Aerodynamic heating is one of important factors affecting hypersonic aircraft design. The Direct Simulation Monte Carlo method (DSMC) has evolved years into a powerful numerical technique for the computation of complex, non-equilibrium gas flows. In atmospheric target, non-equilibrium conditions occur at high altitude and in regions of flow fields with small length scales. In this paper, the theoretical basis of the DSMC technique is discussed. In addition, the methods used in DSMC are described for simulation of high temperature, real gas effects and gas-surface interactions. Combined with the solution of heat transfer in material, heat-flux distribution and temperature distribution of the different shape structures was calculated in rarefied conditions.

  8. Measurements in Flight of the Longitudinal-Stability Characteristics of a Republic YF-84A Airplane (Army Serial No. 45-59488) at High Subsonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Turner, Howard L.; Cooper, George E.

    1948-01-01

    A brief investigation was made of the longitudinal-stability characteristics of a YF-84A airplane (Army Serial No. 45-79488). The airplane developed a pitching-up tendency at approximately 0.80 Mach number which necessitated large push forces and down-elevator deflections for further increases in speed. In steady turns at 35,000 feet with the center of gravity at 28.3 percent mean aerodynamic chord for normal accelerations up to the maximum test value, the control-force gradients were excessive at Mach numbers over 0.78. Airplane buffeting did not present a serious problem in accelerated or unaccelerated flight at 15,000 and 35,000 feet up to the maximum test Mach number of 0.84. It is believed that excessive control force would be the limiting factor in attaining speeds in excess of 0.84 Mach number, especially at altitudes below 35,000 feet.

  9. Aerodynamic preliminary analysis system 2. Part 1: Theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1991-01-01

    An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations having multiple nonplanar surfaces of arbitrary planform and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. The program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  10. Space Shuttle Orbiter trimmed center-of-gravity extension study. Volume 8: Effects of configuration modifications on the aerodynamic characteristics of the 140 A/B Orbiter at a Mach number of 5.97

    NASA Technical Reports Server (NTRS)

    Phillips, W. P.

    1984-01-01

    Aerodynamic characteristics at M=5.97 for the 140 A/B Space Shuttle Orbiter configuration and for the configuration modified by geometric changes in the wing planform fillet region and the fuselage forebody are presented. The modifications, designed to extend the orbiter's longitudinal trim capability to more forward center of gravity locations, include reshaping the baseline wing fillet, changing the fuselage forebody camber, and adding canards. The Langley 20 inch Mach 6 Tunnel at a Reynolds number of approximately 6 million based on fuselage reference length was used. The angle of attack range of the investigation varied from about 15 deg to 35 deg at 0 deg and -5 deg sideslip angles. Data are obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.

  11. The equivalent angle-of-attack method for estimating the nonlinear aerodynamic characteristics of missile wings and control surfaces

    NASA Technical Reports Server (NTRS)

    Hemsch, M. J.; Nielsen, J. N.

    1982-01-01

    A method has been developed for estimating the nonlinear aerodynamic characteristics of missile wing and control surfaces. The method is based on the following assumption: if a fin on a body has the same normal-force coefficient as a wing alone composed of two of the same fins joined together at their root chords, then the other force and moment coefficients of the fin and the wing alone are the same including the nonlinearities. The method can be used for deflected fins at arbitrary bank angles and at high angles of attack. In the paper, a full derivation of the method is given, its accuracy demonstrated and its use in extending missile data bases is shown.

  12. Effect of aileron deflections on the aerodynamic characteristics of a semispan model of a subsonic energy-efficient transport

    NASA Technical Reports Server (NTRS)

    Jacobs, P. F.

    1985-01-01

    An investigation was conducted in the Langley 8 Foot Transonic Pressure Tunnel to determine the effect of aileron deflections on the aerodynamic characteristics of a subsonic energy efficient transport (EET) model. The semispan model had an aspect ratio 10 supercritical wing and was configured with a conventionally located set of ailerons (i.e., a high speed aileron located inboard and a low speed aileron located outboard). Data for the model were taken over a Mach number range from 0.30 to 0.90 and an angle of attack range from approximately -2 deg to 10 deg. The Reynolds number was 2.5 million per foot for Mach number = 0.30 and 4 million per foot for the other Mach numbers. Model force and moment data, aileron effectiveness parameters, aileron hinge moment data, otherwise pressure distributions, and spanwise load data are presented.

  13. PROGRAM VSAERO: A computer program for calculating the non-linear aerodynamic characteristics of arbitrary configurations: User's manual

    NASA Technical Reports Server (NTRS)

    Maskew, B.

    1982-01-01

    VSAERO is a computer program used to predict the nonlinear aerodynamic characteristics of arbitrary three-dimensional configurations in subsonic flow. Nonlinear effects of vortex separation and vortex surface interaction are treated in an iterative wake-shape calculation procedure, while the effects of viscosity are treated in an iterative loop coupling potential-flow and integral boundary-layer calculations. The program employs a surface singularity panel method using quadrilateral panels on which doublet and source singularities are distributed in a piecewise constant form. This user's manual provides a brief overview of the mathematical model, instructions for configuration modeling and a description of the input and output data. A listing of a sample case is included.

  14. A computer program for calculating aerodynamic characteristics of low aspect-ratio wings with partial leading-edge separation

    NASA Technical Reports Server (NTRS)

    Mehrotra, S. C.; Lan, C. E.

    1978-01-01

    The necessary information for using a computer program to predict distributed and total aerodynamic characteristics for low aspect ratio wings with partial leading-edge separation is presented. The flow is assumed to be steady and inviscid. The wing boundary condition is formulated by the Quasi-Vortex-Lattice method. The leading edge separated vortices are represented by discrete free vortex elements which are aligned with the local velocity vector at midpoints to satisfy the force free condition. The wake behind the trailing edge is also force free. The flow tangency boundary condition is satisfied on the wing, including the leading and trailing edges. The program is restricted to delta wings with zero thickness and no camber. It is written in FORTRAN language and runs on CDC 6600 computer.

  15. Transonic aerodynamic characteristics of a supersonic cruise aircraft research model with the engines suspended above the wing

    NASA Technical Reports Server (NTRS)

    Mercer, C. E.; Carson, G. T., Jr.

    1979-01-01

    The influence of upper-surface nacelle exhaust flow on the aerodynamic characteristics of a supersonic cruise aircraft research configuration was investigated in a 16 foot transonic tunnel over a range of Mach numbers from 0.60 to 1.20. The arrow-wing transport configuration with engines suspended over the wing was tested at angles of attack from -4 deg to 6 deg and jet total pressure ratios from 1 to approximately 13. Wing-tip leading edge flap deflections of -10 deg to 10 deg were tested with the wing-body configuration. Various nacelle locations (chordwise, spanwise, and vertical) were tested over the ranges of Mach numbers, angles of attack, and jet total-pressure ratios. The results show that reflecting the wing-tip leading edge flap from 0 deg to -10 deg increased the maximum lift-drag ratio by 1.0 at subsonic speeds. Jet exhaust interference effects were negligible.

  16. Two-dimensional aerodynamic characteristics of several rotorcraft airfoils at Mach numbers from 0.35 to 0.90

    NASA Technical Reports Server (NTRS)

    Noonan, K. W.; Bingham, G. J.

    1977-01-01

    An investigation was conducted in the Langley 6- by 28-inch transonic tunnel and the 6- by 19-inch transonic tunnel to determine the two-dimensional aerodynamic characteristics of several rotorcraft airfoils at Mach numbers from 0.35 to 0.90. The airfoils differed in thickness, thickness distribution, and camber. The FX69-H-098, the BHC-540, and the NACA 0012 airfoils were investigated in the 6- by 28-inch tunnel at Reynolds numbers (based on chord) from about 4.7 to 9.3 million at the lowest and highest test Mach numbers respectively. The FX69-H-098, the NLR-1, the BHC-540, and the NACA 23012 airfoils were investigated in the 6- by 19-inch tunnel at Reynolds numbers from about 0.9 to 2.2 million at the lowest and highest test Mach numbers respectively.

  17. Aerodynamic Characteristics of a 14-Percent-Thick NASA Supercritical Airfoil Designed for a Normal-Force Coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1975-01-01

    This report documents the experimental aerodynamic characteristics of a 14 percent thick supercritical airfoil based on an off design sonic pressure plateau criterion. The design normal force coefficient was 0.7. The results are compared with those of the family related 10 percent thick supercritical airfoil 33. Comparisons are also made between experimental and theoretical characteristics and composite drag rise characteristics derived for a full scale Reynolds number of 40 million.

  18. Individual and Environmental Characteristics Associated with Cognitive Development in Down Syndrome: A Longitudinal Study

    ERIC Educational Resources Information Center

    Couzens, Donna; Haynes, Michele; Cuskelly, Monica

    2012-01-01

    Background: Associations among cognitive development and intrapersonal and environmental characteristics were investigated for 89 longitudinal study participants with Down syndrome to understand developmental patterns associated with cognitive strengths and weaknesses. Materials and Methods: Subtest scores of the Stanford-Binet IV collected…

  19. Parenting characteristics and adolescent psychological well-being: a longitudinal study in a Chinese context.

    PubMed

    Shek, D T

    1999-02-01

    In this longitudinal study, the relationships between perceived parenting characteristics and adolescent psychological well-being were examined in a sample of Hong Kong Chinese adolescents (N = 378). The results indicated that global parenting styles and specific parenting behaviors are concurrently related to hopelessness, life satisfaction, self-esteem, purpose in life, and general psychiatric morbidity at Time 1 and Time 2. Longitudinal and prospective analyses (Time 1 predictors of Time 2 criterion variables) suggested that the relations between parenting characteristics and adolescent psychological well-being are bidirectional in nature. The results indicated that the strengths of association between perceived parenting characteristics and adolescent psychological well-being are stronger in female than in male adolescents. Relative to maternal parenting characteristics, paternal parenting was found to exert a stronger influence on adolescent psychological well-being.

  20. Modeling of Aircraft Unsteady Aerodynamic Characteristics/Part 3 - Parameters Estimated from Flight Data. Part 3; Parameters Estimated from Flight Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Noderer, Keith D.

    1996-01-01

    A nonlinear least squares algorithm for aircraft parameter estimation from flight data was developed. The postulated model for the analysis represented longitudinal, short period motion of an aircraft. The corresponding aerodynamic model equations included indicial functions (unsteady terms) and conventional stability and control derivatives. The indicial functions were modeled as simple exponential functions. The estimation procedure was applied in five examples. Four of the examples used simulated and flight data from small amplitude maneuvers to the F-18 HARV and X-31A aircraft. In the fifth example a rapid, large amplitude maneuver of the X-31 drop model was analyzed. From data analysis of small amplitude maneuvers ft was found that the model with conventional stability and control derivatives was adequate. Also, parameter estimation from a rapid, large amplitude maneuver did not reveal any noticeable presence of unsteady aerodynamics.

  1. Supersonic aerodynamic characteristics of a Sparrow 3 type missile model with wing controls and comparison with existing tail-control results

    NASA Technical Reports Server (NTRS)

    Monta, W. J.

    1977-01-01

    An experimental investigation was conducted on a model of a wing control version of the Sparrow III type missile to determine the static aerodynamic characteristics over an angle of attack range from 0 deg to 40 deg for Mach numbers from 1.50 to 4.60.

  2. Longitudinal Trim and Tumble Characteristics of a 0.057-Scale Model of the Chance Vought XF7U-1 Airplane, TED NO. NACA DE311

    NASA Technical Reports Server (NTRS)

    Bryant, Robert L.

    1948-01-01

    Based on results of longitudinal trim and tumble tests of a 0.057-scale model of the Chance Vought XF7U-1 airplane, the following conclusions regarding the trim and tumble characteristics of the airplane have been drawn: 1. The airplane will not trim at any unusual or uncontrolled angles of attack. 2. The airplane will not tumble with the center of gravity located forward of 24 percent of the mean aerodynamic chord. When the center of gravity is located at 24 percent of the mean aerodynamic chord and slats are extended and elevators are deflected full up, the airplane may tumble if given an external positive pitching moment. 3. The tumbling motion obtained will be readily terminated by deflecting the elevators full down so as to oppose the rotation. 4. The accelerations encountered during an established tumble may be dangerous to the pilot and, therefore, action should be taken to terminate a tumble immediately upon its inception. 5. Simultaneous opening of two wing-tip parachutes having diameters of 4 feet or larger and having drag coefficients of approximately 0.7 will effectively terminate the tumble. 6. Model results indicate that the pilot will not be struck by the airplane if it becomes necessary to leave the airplane during a tumble. The pilot may require aid from an ejection-seat arrangement.

  3. Applicability of commercial CFD tools for assessment of heavy vehicle aerodynamic characteristics.

    SciTech Connect

    Pointer, W. D.; Sofu, T.; Chang, J.; Weber, D.; Nuclear Engineering Division

    2008-12-01

    In preliminary validation studies, computational predictions from the commercial CFD codes Star-CD were compared with detailed velocity, pressure and force balance data from experiments completed in the 7 ft. by 10 ft. wind tunnel at NASA Ames using a Generic Conventional Model (GCM) that is representative of typical current-generation tractor-trailer geometries. Lessons learned from this validation study were then applied to the prediction of aerodynamic drag impacts associated with various changes to the GCM geometry, including the addition of trailer based drag reduction devices and modifications to the radiator and hood configuration. Add-on device studies have focused on ogive boat tails, with initial results indicating that a seven percent reduction in drag coefficient is easily achievable. Radiator and hood reconfiguration studies have focused on changing only the size of the radiator and angle of the hood components without changes to radii of curvature between the radiator grill and hood components. Initial results indicate that such changes lead to only modest changes in drag coefficient.

  4. High-Speed Wind-Tunnel Investigation of the Longitudinal Stability and Control Characteristics of a 0.10-Scale Model of the Grumman XF9F-2 Airplane, TED No. NACA DE301

    NASA Technical Reports Server (NTRS)

    Polhamus, Edward C.; King, Thomas J., Jr.

    1948-01-01

    An investigation was made in the Langley high-speed 7-by 10-foot tunnel to determine the high-speed longitudinal stability end con&o1 characteristics of a 0.01-scale model of the Grumman XF9F-2 airplane in the Mach number range from 0.40 to 0.85. The results indicated that the lift and drag force breaks occurred at a Mach number of about 0.76. The aerodynamic-center position moved rearward after the force break and control position stability was present for all Mach numbers up to a Mach number of 0.80.

  5. Static Longitudinal Stability and Control Characteristics At A Mach Number of 1.99 of a Lenticular-Shaped Reentry Vehicle

    NASA Technical Reports Server (NTRS)

    Jackson, Charles M., Jr.; Harris, Roy V., Jr.

    1960-01-01

    An investigation has been made in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.99 to determine the longitudinal stability and control characteristics of a reentry model consisting of a lenticular-shaped body with two fin configurations (horizontal fins with end plates). Effects of deflecting the larger size fins as pitch-control surfaces were also investigated. The results indicate that the body alone was unstable from an angle of attack of 0 deg to about 55 deg where it became stable and remained so to 90 deg. The addition of fins provided positive longitudinal stability throughout the angle-of-attack range and increased the lift-drag ratio of the configuration. Reducing the horizontal-fin area at the inboard trailing edge of the fin had only a small effect on the aerodynamic characteristics of the vehicle for the condition of no fin deflection. Deflecting the fins, appeared to be an effective means of pitch control and had only a small effect on lift-drag ratio.

  6. Relation Between Discharge Length and Laser Pulse Characteristics in Longitudinally Excited CO2 Laser

    NASA Astrophysics Data System (ADS)

    Uno, Kazuyuki; Dobashi, Kazuma; Akitsu, Tetsuya; Jitsuno, Takahisa

    2013-04-01

    A longitudinally excited CO2 laser pumped by a fast discharge emits a short laser pulse, similarly to TEA and Q-switched CO2 lasers. We investigated the relation between the discharge length and the laser pulse characteristics to develop a longitudinally excited CO2 laser producing a high spike laser pulse. We examined discharge lengths of 30, 45, and 60 cm, using the same mirrors and the same excitation circuit with the same input energy. A longer discharge length increased the discharge volume and improved the laser output energy. However, the longer discharge length caused a long discharge formation time (a slow fall time of the discharge voltage) due to the higher discharge impedance, which resulted in a long laser pulse tail. Therefore, the longitudinally excited CO2 laser had optimum conditions for obtaining a high spike laser pulse effectively.

  7. Supersonic aerodynamic characteristics of a circular body Earth-to-Orbit vehicle

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Engelund, Walter C.; Macconochie, Ian O.

    1994-01-01

    The circular body configuration is a generic single- or multi-stage reusable Earth-to-orbit transport. A thick clipped-delta wing is the major lifting surface. For directional control, three different vertical fin arrangements were investigated: a conventional aft-mounted center fin, wingtip fins, and a nose-mounted fin. The tests were conducted in the Langley Unitary Plan Wind Tunnel. The configuration is longitudinally stable about the estimated center of gravity of 0.72 body length up to a Mach number of about 3.0. Above Mach 3.0, the model is longitudinally unstable at low angles of attack but has a stable secondary trim point at angles of attack above 30 deg. The model has sufficient pitch control authority with elevator and body flap to produce stable trim over the test range. The model with the center fin is directionally stable at low angles of attack up to a Mach number of 3.90. The rudder-like surfaces on the tip fins and the all-movable nose fin are designed as active controls to produce artificial directional stability and are effective in producing yawing moment. The wing trailing-edge aileron surfaces are effective in producing rolling moment, but they also produce large adverse yawing moment.

  8. Subsonic aerodynamic characteristics of the HL-20 lifting-body configuration

    NASA Technical Reports Server (NTRS)

    Ware, George M.; Cruz, Christopher I.

    1993-01-01

    The HL-20 is proposed as a possible future manned spacecraft. The configuration consists of a low-aspect-ratio body with a flat undersurface. Three fins (a small centerline fin and two outboard (tip) fins set at a dihedral angle of 50 deg) are mounted on the aft body. The control system consists of elevon surfaces on the outboard fins, a set of four body flaps on the upper and lower aft body, and an all-movable center fin. Both the elevons and body flaps were capable of trimming the model to angles of attack from -2 deg to above 20 deg. The maximum trimmed lift-drag ratio was 3.6. Replacing the flat-plate tip fins with airfoil tip fins increased the maximum trimmed lift-drag ratio to 4.2. The elevons were effective as a roll control, but they produced about as much yawing moment as rolling moment because of the tip-fin dihedral angle. The body flaps produced less rolling moment than the elevons and only small values of yawing moment. A limited investigation of the effect of varying tip-fin dihedral angle indicated that a dihedral angle of 50 deg was a reasonable compromise for longitudinal and lateral stability, longitudinal trim, and performance at subsonic speeds.

  9. Aerodynamic characteristics of a feathered dinosaur measured using physical models. Effects of form on static stability and control effectiveness.

    PubMed

    Evangelista, Dennis; Cardona, Griselda; Guenther-Gleason, Eric; Huynh, Tony; Kwong, Austin; Marks, Dylan; Ray, Neil; Tisbe, Adrian; Tse, Kyle; Koehl, Mimi

    2014-01-01

    We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur, [Formula: see text]Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. While [Formula: see text]M. gui lived after [Formula: see text]Archaeopteryx and likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies are tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver.

  10. Transonic Aerodynamic Characteristics of Two Wedge Airfoil Sections Including Unsteady Flow Studies

    NASA Technical Reports Server (NTRS)

    Johnston, Patrick J.

    1959-01-01

    A two-dimensional wind-tunnel investigation has been conducted on a 20-percent-thick single-wedge airfoil section. Steady-state forces and moments were determined from pressure measurements at Mach numbers from 0.70 to about 1.25. Additional information on the flows about the single wedge is provided by means of instantaneous pressure measurements at Mach numbers up to unity. Pressure distributions were also obtained on a symmetrical double-wedge or diamond-shaped profile which had the same leading-edge included angle as the single-wedge airfoil. A comparison of the data on the two profiles to provide information on the effects of the afterbody showed that with the exception of drag, the single-wedge profile proved to be aerodynamically superior to the diamond profile in all respects. The lift effectiveness of the single-wedge airfoil section far exceeded that of conventional thin airfoil sections over the speed range of the investigation. Pitching-moment irregularities, caused by negative loadings near the trailing edge, generally associated with conventional airfoils of equivalent thicknesses were not exhibited by the single-wedge profile. Moderately high pulsating pressures existing over the base of the single-wedge airfoil section were significantly reduced as the Mach number was increased beyond 0.92 and the boundaries of the dead airspace at the base of the model converged to eliminate the vortex street in the wake. Increasing the leading-edge radius from 0 to 1 percent of the chord had a minor effect on the steady-state forces and generally raised the level of pressure pulsations over the forward part of the single-wedge profile.

  11. Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils

    DTIC Science & Technology

    2003-12-01

    Development, and Engineering Command Ames Research Center Moffett Field, California December 2003 National Aeronautics and Space Administration Ames...60A ROTOR BLADE AND AIRFOILS ................................................................................... 2 EVALUATION OF SECTION CHARACTERISTICS...Characteristics of SC1095 and SC1094 R8 Airfoils WILLIAM G. BOUSMAN Aeroflightdynamics Directorate U.S. Army Research, Development, and Engineering Command Ames

  12. Aerodynamic characteristics of a propulsive wing-canard concept at STOL speeds

    NASA Technical Reports Server (NTRS)

    Stewart, V. R.

    1985-01-01

    A full span model of a wing/canard concept representing a fighter configuration has been tested at STOL conditions in the NASA Langley 4 x 7 meter tunnel. The results of this test are presented, and comparisons are made to previous data of the same configuration tested as a semispan model. The potential of the propulsive wing/canard to develop very high lift coefficients was investigated with several nozzle spans (nozzle aspect ratios). Although longitudinal trim was not accomplished with the blowing distributions and configurations tested, the propulsive wing/canard appears to offer an approach to managing the large negative pitching moments associated with trailing edge flap blowing. Also presented are data showing the effects of large flap deflections and relative wing/canard positions. Presented in the appendix to the report are limited lateral-directional and ground effects data, as well as wing downwash measurements.

  13. Low-speed aerodynamic characteristics of a 16-percent-thick variable-geometry airfoil designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Barnwell, R. W.; Noonan, K. W.; Mcghee, R. J.

    1978-01-01

    Tests were conducted in the Langley low-turbulence pressure tunnel to determine the aerodynamic characteristics of climb, cruise, and landing configurations. These tests were conducted over a Mach number range from 0.10 to 0.35, a chord Reynolds number range from 2.0 x 1 million to 20.0 x 1 million, and an angle-of-attack range from -8 deg to 20 deg. Results show that the maximum section lift coefficients increased in the Reynolds number range from 2.0 x 1 million to 9.0 x 1 million and reached values of approximately 2.1, 1.8, and 1.5 for the landing, climb, and cruise configurations, respectively. Stall characteristics, although of the trailing-edge type, were abrupt. The section lift-drag ratio of the climb configuration with fixed transition near the leading edge was about 78 at a lift coefficient of 0.9, a Mach number of 0.15, and a Reynolds number of 4.0 x 1 million. Design lift coefficients of 0.9 and 0.4 for the climb and cruise configurations were obtained at the same angle of attack, about 6 deg, as intended. Good agreement was obtained between experimental results and the predictions of a viscous, attached-flow theoretical method.

  14. Two-dimensional aerodynamic characteristics of several polygon-shaped cross-sectional models applicable to helicopter fuselages

    NASA Technical Reports Server (NTRS)

    Kelley, Henry L.; Crowell, Cynthia A.; Wilson, John C.

    1992-01-01

    A wind-tunnel investigation was conducted to determine 2-D aerodynamic characteristics of nine polygon-shaped models applicable to helicopter fuselages. The models varied from 1/2 to 1/5 scale and were nominally triangular, diamond, and rectangular in shape. Side force and normal force were obtained at increments of angle of flow incidence from -45 to 90 degrees. The data were compared with results from a baseline UH-60 tail-boom cross-section model. The results indicate that the overall shapes of the plots of normal force and side force were similar to the characteristic shape of the baseline data; however, there were important differences in magnitude. At a flow incidence of 0 degrees, larger values of normal force for the polygon models indicate an increase in fuselage down load of 1 to 2.5 percent of main-rotor thrust compared with the baseline value. Also, potential was indicated among some of the configurations to produce high fuselage side forces and yawing moments compared with the baseline model.

  15. The aerodynamic characteristics of eight very thick airfoils from tests in the variable density wind tunnel

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1932-01-01

    Report presents the results of wind tunnel tests on a group of eight very thick airfoils having sections of the same thickness as those used near the roots of tapered airfoils. The tests were made to study certain discontinuities in the characteristic curves that have been obtained from previous tests of these airfoils, and to compare the characteristics of the different sections at values of the Reynolds number comparable with those attained in flight. The discontinuities were found to disappear as the Reynolds number was increased. The results obtained from the large-scale airfoil, a symmetrical airfoil having a thickness ratio of 21 per cent, has the best general characteristics.

  16. Aerodynamic Characteristics of NACA 23012 and 23021 Airfoils with 20-Percent-chord External-Airfoil Flaps of NACA 23012 Section

    NASA Technical Reports Server (NTRS)

    Platt, Robert C; Abbott, Ira H

    1937-01-01

    Report presents the results of an investigation of the general aerodynamic characteristics of the NACA 23012 and 23021 airfoils, each equipped with a 0.20c external flap of NACA 23012 section. The tests were made in the NACA 7 by 10-foot and variable-density wind tunnels and covered a range of Reynolds numbers that included values corresponding to those for landing conditions of a wide range of airplanes. Besides a determination of the variation of lift and drag characteristics with position of the flap relative to the main airfoil, complete aerodynamic characteristics of the airfoil-flap combination with a flap hinge axis selected to give small hinge moments were measured in the two tunnels. Some measurements of air loads on the flap itself in the presence of the wing were made in the 7 by 10-foot wind tunnel.

  17. Summary of low-speed aerodynamic characteristics of upper-surface-blown jet-flap configurations

    NASA Technical Reports Server (NTRS)

    Phelps, A. E., III; Johnson, J. L., Jr.; Margason, R. J.

    1976-01-01

    The results of recent wind tunnel investigations to provide fundamental information on the upper surface blown (USB) jet flap concept demonstrated that the USB concept provides good high-lift performance. It is shown that the low speed performance is dependent upon the jet turning angle and turning efficiency and on the use of proper leading and trailing edge treatment to prevent premature flow separation. The best means of achieving good turning performance in any particular USB application must be determined from overall operational considerations in which high speed performance, structures and noise, as well as low speed performance, are evaluated. The large diving moments generated at high lift coefficients can be trimmed satisfactorily with a large, conventional horizontal tail; a high tail position is best from longitudinal stability considerations. Large rolling and yawing moments are introduced with the loss of an engine, but these moments can be trimmed satisfactorily through the use of asymmetrical boundary layer control and through the use of spoiler and rudder deflection as needed.

  18. Lateral-directional aerodynamic characteristics of light, twin-engine, propeller driven airplanes

    NASA Technical Reports Server (NTRS)

    Wolowicz, C. H.; Yancey, R. B.

    1972-01-01

    Analytical procedures and design data for predicting the lateral-directional static and dynamic stability and control characteristics of light, twin engine, propeller driven airplanes for propeller-off and power-on conditions are reported. Although the consideration of power effects is limited to twin engine airplanes, the propeller-off considerations are applicable to single engine airplanes as well. The procedures are applied to a twin engine, propeller driven, semi-low-wing airplane in the clean configuration through the linear lift range. The calculated derivative characteristics are compared with wind tunnel and flight data. Included in the calculated characteristics are the spiral mode, roll mode, and Dutch roll mode over the speed range of the airplane.

  19. Aerodynamic characteristics of seven symmetrical airfoil sections through 180-degree angle of attack for use in aerodynamic analysis of vertical axis wind turbines

    SciTech Connect

    Sheldahl, R E; Klimas, P C

    1981-03-01

    When work began on the Darrieus vertical axis wind turbine (VAWT) program at Sandia National Laboratories, it was recognized that there was a paucity of symmetrical airfoil data needed to describe the aerodynamics of turbine blades. Curved-bladed Darrieus turbines operate at local Reynolds numbers (Re) and angles of attack (..cap alpha..) seldom encountered in aeronautical applications. This report describes (1) a wind tunnel test series conducted at moderate values of Re in which 0 less than or equal to ..cap alpha.. less than or equal to 180/sup 0/ force and moment data were obtained for four symmetrical blade-candidate airfoil sections (NACA-0009, -0012, -0012H, and -0015), and (2) how an airfoil property synthesizer code can be used to extend the measured properties to arbitrary values of Re (10/sup 4/ less than or equal to Re less than or equal to 10/sup 7/) and to certain other section profiles (NACA-0018, -0021, -0025).

  20. The Effects of a Highly Cambered Low-Drag Wing and of Auxiliary Flaps on the High-Speed Aerodynamic Characteristics of a Twin-Engine Pursuit Airplane Model

    NASA Technical Reports Server (NTRS)

    Ganzer, Victor M

    1944-01-01

    Results are presented for tests of two wings, an NACA 230-series wing and a highly-cambered NACA 66-series wing on a twin-engine pursuit airplane. Auxiliary control flaps were tested in combinations with each wing. Data showing comparison of high-speed aerodynamic characteristics of the model when equipped with each wing, the effect of the auxiliary control flaps on aerodynamic characteristics, and elevator effectiveness for the model with the 66-series wing are presented. High-speed aerodynamic characteristics of the model were improved with the 66-series wing.

  1. Wind tunnel investigation of aerodynamic and tail buffet characteristics of leading-edge extension modifications to the F/A-18

    NASA Technical Reports Server (NTRS)

    Shah, Gautam H.

    1991-01-01

    The impact of leading-edge extension (LEX) modifications on aerodynamic and vertical tail buffet characteristics of a 16-percent scale F/A-18 model has been investigated in the NASA Langley 30-foot by 60-foot tunnel. Modifications under consideration include variations in LEX chord and span, addition of upper surface fences, and removal of the LEX. Both buffeting and high-angle-of-attack aerodynamics are found to be strongly dependent upon the LEX geometry, which directly influences the strength, position, and breakdown characteristics of the vortex flow field. Concepts aimed at influencing the development of vortical flow field are considered to have much greater potential in design application than those geared toward altering already established flow fields. It is recommended that configuration effects on structural and aerodynamic characteristics be evaluated in parallel, so that trade-off studies can be conducted to ensure adequate structural fatigue life and desired high-angle-of-attack stability and control characteristics in the design of future high performance aircraft.

  2. Effects of empennage surface location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles

    NASA Technical Reports Server (NTRS)

    Capone, Francis J.; Carson, George T., Jr.

    1985-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10 deg to 20 deg for one selected configuration. Tests were conducted at Mach number 0.60 to 1.20 and at angles of attack -3 to 9 deg. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.

  3. Aerodynamic characteristics of two rotorcraft airfoils designed for application to the inboard region of a main rotor blade

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.

    1990-01-01

    A wind tunnel investigation was conducted to determine the 2-D aerodynamic characteristics of two new rotorcraft airfoils designed especially for application to the inboard region of a helicopter main rotor blade. The two new airfoils, the RC(4)-10 and RC(5)-10, and a baseline airfoil, the VR-7, were all studied in the Langley Transonic Tunnel at Mach nos. from about 0.34 to 0.84 and at Reynolds nos. from about 4.7 to 9.3 x 10 (exp 6). The VR-7 airfoil had a trailing edge tab which is deflected upwards 4.6 degs. In addition, the RC(4)-10 airfoil was studied in the Langley Low Turbulence Pressure Tunnel at Mach nos. from 0.10 to 0.44 and at Reynolds nos. from 1.4 to 5.4 x 10 (exp 6) respectively. Some comparisons were made of the experimental data for the new airfoils and the predictions of two different theories. The results of this study indicates that both of the new airfoils offer advantages over the baseline airfoil. These advantages are discussed.

  4. Prediction of the hub vortex instability within wind turbine wakes and effects of the incoming wind and turbine aerodynamic characteristics

    NASA Astrophysics Data System (ADS)

    Iungo, Giacomo Valerio; Viola, Francesco; Camarri, Simone; Porté-Agel, Fernando; Gallaire, Francois

    2014-11-01

    Instability of the hub vortex, which is a vorticity structure present in wind turbine near-wake and mainly oriented along the streamwise direction, is predicted from wake velocity measurements. In this work, stability analysis is performed on wind tunnel velocity measurements acquired in the wake produced from a wind turbine model immersed in a uniform flow. Turbulence effects on wake dynamics are taken into account by modeling the Reynolds stresses through eddy-viscosity models, which are calibrated on the wind tunnel data. This formulation leads to the identification of one dominant mode associated with the hub vortex instability, which is characterized by a counter-winding single-helix mode. Moreover, this analysis also predicts accurately the frequency of the hub vortex instability observed experimentally. The hub vortex instability is also investigated by considering incoming wind fields with different turbulence characteristics, different turbine aerodynamic designs and operational regimes, which affect the morphology of the wake vorticity structures and their dynamics. The ultimate goal of this work consists in providing useful information for predicting wind turbine wake dynamics and their effects on downstream wake recovery, thus to maximize wind power harvesting.

  5. Aerodynamic and propeller performance characteristics of a propfan-powered, semispan model

    NASA Technical Reports Server (NTRS)

    Levin, Alan D.; Smith, Ronald C.; Wood, Richard D.

    1985-01-01

    A semispan wing/body model with a powered propeller was tested to provide data on a total powerplant installation drag penalty of advanced propfan-powered aircraft. The test objectives were to determine the total power plant installation drag penalty on a representative propfan aircraft; to study the effect of configuration modifications on the installed powerplant drag; and to determine performance characteristics of an advanced design propeller which was mounted on a representative nacelle in the presence of a wing.

  6. Longitudinal Vibration Characteristics Required to Cut a Circle by Ultrasonic Vibration

    NASA Astrophysics Data System (ADS)

    Asami, Takuya; Miura, Hikaru

    2010-07-01

    Currently, lasers and water jets are used to cut circles in brittle materials such as ceramics. However, a disadvantage of these methods is that the conventional equipment is large and complex. To resolve this issue, a method using the ultrasonic vibration of a hollow-type stepped horn for cutting is developed. We consider that this equipment can be simplified and miniaturized. The shape of the hollow-type stepped horn and the characteristics of the longitudinal vibration required to obtain excellent cutting properties were examined. As a result, the most appropriate depth of the hollow part is one-quarter of the wavelength for a hollow-type stepped horn that vibrates longitudinally. The amplification factor is proportional to the cross-sectional ratio providing the cross-sectional ratio does not exceed 4.6. The characteristics of the longitudinal vibration of the hollow-type stepped horn when the static pressing force at the tip of the horn is varied were also examined. It was clarified that the ultrasonic vibration of a hollow-type stepped horn can be used to cut brittle materials.

  7. Lateral and longitudinal aerodynamic stability and control parameters of the basic vortex flap research aircraft as determined from flight test data

    NASA Technical Reports Server (NTRS)

    Suit, W. T.; Batterson, J. G.

    1986-01-01

    The aerodynamics of the basic F-106B were determined at selected points in the flight envelope. The test aircraft and flight procedures were presented. Aircraft instrumentation and the data system were discussed. The parameter extraction procedure was presented along with a discussion of the test flight results. The results were used to predict the aircraft motions for maneuvers that were not used to determine the vehicle aerodynamics. The control inputs used to maneuver the aircraft to get data for the determination of the aerodynamic parameters were discussed in the flight test procedures. The results from the current flight tests were compared with the results from wind tunnel test of the basic F-106B.

  8. Investigation of the influence of wind shear on the aerodynamic characteristics of aircraft using a vortex-lattice method

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1988-01-01

    The objective was to investigate and characterize the aerodynamic effect of shear flow through a series of sensitivity studies of the wind velocity gradients and wing planform geometry parameters. The wind shear effect was computed using a modified vortex-lattice computer program and characterized through the formulation of wind shear aerodynamic coefficients. The magnitude of the aerodynamic effect was demonstrated by computing the resultant change in the aerodynamics of a conventional wing and tail combination on a fixed flight path through a simulated microburst. The results of the study indicate that a significant amount of the control authority of an airplane may be required to counteract the wind shear induced forces and moments in the microburst environment.

  9. Supersonic aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform at Mach 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Blair, A. B., Jr.

    1972-01-01

    An investigation has been made in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a lifting-body orbiter model with a blunted delta planform. The model was tested at Mach numbers from 2.30 to 4.60, at nominal angles of attack from -4 deg to 60 deg and angles of sideslip from -4 deg to 10 deg, and at a Reynolds number of 2.5 million per foot.

  10. The Effect of Blade-Section Thickness Ratio on the Aerodynamic Characteristics of Related Full-Scale Propellers at Mach Numbers up to 0.65

    NASA Technical Reports Server (NTRS)

    Maynard, Julian D; Steinberg, Seymour

    1953-01-01

    The results of an investigation of two 10-foot-diameter, two-blade NACA propellers are presented for a range of blade angles from 20 degrees to 55 degrees at airspeeds up to 500 miles per hour. These results are compared with those from previous investigations of five related NACA propellers in order to evaluate the effects of blade-section thickness ratios on propeller aerodynamic characteristics.

  11. Wind Tunnel Investigation at Low Speed of Aerodynamic Characteristics of Army Chemical Corps Model E-112 Bomblets with Span Chord Ratio of 2 - 1

    NASA Technical Reports Server (NTRS)

    Letko, W.

    1956-01-01

    An experimental investigation has been made in the Langley stability tunnel to determine the aerodynamic characteristics of the Army Chemical Corps model E-112 bomblets with span-chord ratio of 2:1. A detailed analysis has not been made; however, the results showed that all the models were spirally unstable and that a large gap between the model tips and end plates tended to reduce the instability.

  12. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    NASA Technical Reports Server (NTRS)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  13. Calculation of Aerodynamic Loading and Twist Characteristics of a Flexible Wing at Mach Numbers Approaching 1.0 and Comparison with Experiment

    NASA Technical Reports Server (NTRS)

    Mugler, John P., Jr.

    1960-01-01

    An iteration method is presented by which the detailed aerodynamic loading and twist characteristics of a flexible wing with known elastic properties may be calculated. The method is applicable at Mach numbers approaching 1.0 as well as at subsonic Mach numbers. Calculations were made for a wing-body combination; the wing was swept back 45 deg and had an aspect ratio of 4. Comparisons were made with experimental results at Mach numbers from.0.80 to 0.98.

  14. Low-speed aerodynamic characteristics of a 14-percent-thick NASA phase 2 supercritical airfoil designed for a lift coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.; Mcghee, R. J.; Allison, D. O.

    1980-01-01

    The low speed aerodynamic characteristics of a 14 percent thick supercritical airfoil are documented. The wind tunnel test was conducted in the Low Turbulence Pressure Tunnel. The effects of varying chord Reynolds number from 2,000,000 to 18,000,000 at a Mach number of 0.15 and the effects of varying Mach number from 0.10 to 0.32 at a Reynolds number of 6,000,000 are included.

  15. Characteristic systolic waveform of left ventricular longitudinal strain rate in patients with hypertrophic cardiomyopathy.

    PubMed

    Okada, Kazunori; Kaga, Sanae; Mikami, Taisei; Masauzi, Nobuo; Abe, Ayumu; Nakabachi, Masahiro; Yokoyama, Shinobu; Nishino, Hisao; Ichikawa, Ayako; Nishida, Mutsumi; Murai, Daisuke; Hayashi, Taichi; Shimizu, Chikara; Iwano, Hiroyuki; Yamada, Satoshi; Tsutsui, Hiroyuki

    2016-10-18

    We analyzed the waveform of systolic strain and strain-rate curves to find a characteristic left ventricular (LV) myocardial contraction pattern in patients with hypertrophic cardiomyopathy (HCM), and evaluated the utility of these parameters for the differentiation of HCM and LV hypertrophy secondary to hypertension (HT). From global strain and strain-rate curves in the longitudinal and circumferential directions, the time from mitral valve closure to the peak strains (T-LS and T-CS, respectively) and the peak systolic strain rates (T-LSSR and T-CSSR, respectively) were measured in 34 patients with HCM, 30 patients with HT, and 25 control subjects. The systolic strain-rate waveform was classified into 3 patterns ("V", "W", and "√" pattern). In the HCM group, T-LS was prolonged, but T-LSSR was shortened; consequently, T-LSSR/T-LS ratio was distinctly lower than in the HT and control groups. The "√" pattern of longitudinal strain-rate waveform was more frequently seen in the HCM group (74 %) than in the control (4 %) and HT (20 %) groups. Similar but less distinct results were obtained in the circumferential direction. To differentiate HCM from HT, the sensitivity and specificity of the T-LSSR/T-LS ratio <0.34 and the "√"-shaped longitudinal strain-rate waveform were 85 and 63 %, and 74 and 80 %, respectively. In conclusion, in patients with HCM, a reduced T-LSSR/T-LS ratio and a characteristic "√"-shaped waveform of LV systolic strain rate was seen, especially in the longitudinal direction. The timing and waveform analyses of systolic strain rate may be useful to distinguish between HCM and HT.

  16. Effect of wing flexibility on the experimental aerodynamic characteristics of an oblique wing

    NASA Technical Reports Server (NTRS)

    Hopkins, E. J.; Yee, S. C.

    1977-01-01

    A solid-aluminum oblique wing was designed to deflect considerably under load so as to relieve the asymmetric spanwise stalling that is characteristic of this type of wing by creating washout on the trailing wing panel and washin on the leading wing panel. Experimental forces, and pitching, rolling and yawing moments were measured with the wing mounted on a body of revolution. In order to vary the dynamic pressure, measurements were made at several unit Reynolds numbers, and at Mach numbers. The wing was investigated when unswept (at subsonic Mach numbers only) and when swept 45 deg, 50 deg, and 60 deg. The wing was straight tapered in planform, had an aspect ratio of 7.9 (based on the unswept span), and a profile with a maximum thickness of 4 percent chord. The results substantiate the concept that an oblique wing designed with the proper amount of flexibility self relieves itself of asymmetric spanwise stalling and the associated nonlinear moment curves.

  17. A program to compute three-dimensional subsonic unsteady aerodynamic characteristics using the doublet lattic method, L216 (DUBFLX). Volume 1: Engineering and usage

    NASA Technical Reports Server (NTRS)

    Richard, M.; Harrison, B. A.

    1979-01-01

    The program input presented consists of configuration geometry, aerodynamic parameters, and modal data; output includes element geometry, pressure difference distributions, integrated aerodynamic coefficients, stability derivatives, generalized aerodynamic forces, and aerodynamic influence coefficient matrices. Optionally, modal data may be input on magnetic file (tape or disk), and certain geometric and aerodynamic output may be saved for subsequent use.

  18. Aerodynamic flow quality and acoustic characteristics of the 40- by 80-foot test section circuit of the National Full-Scale Aerodynamic Complex

    NASA Technical Reports Server (NTRS)

    Olson, Lawrence E.; Zell, Peter T.; Soderman, Paul T.; Falarski, Michael D.; Corsiglia, Victor R.; Edenborough, H. Kipling

    1988-01-01

    The 40- by 80-foot wind tunnel circuit of the National Full-Scale Aerodynamic Complex (NFAC) has recently undergone major modifications and subsequently completed final acceptance testing. The initial testing and calibration of the wind tunnel are described and in many cases these results are compared with predictions derived from model tests and theoretical analyses. The wind tunnel meets or exceeds essentially all performance objectives. The facility runs smoothly and routinely at its maximum test-section velocity of 300 knots (Mach number = 0.45). An effective cooling air exchange system enables the wind tunnel to operate indefinitely at this maximum power condition. Throughout the operating envelope of the wind tunnel the test-section dynamic pressure is uniform to within + or - 0.5 deg, and the axial component of turbulence is generally less than 0.5 percent. Acoustic measurements indicate that, due to the low noise fans and acoustic treatment in the wind-tunnel circuit and test section, the background noise level in the test section is comparable to other large-scale acoustic wind tunnels in the United States and abroad.

  19. Longitudinal and Lateral Stability, Control Characteristics, and Vertical-Tail-Load Measurements for 0.03-Scale Model of the Avro CF-105 Airplane at Mach Number 1.41

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy; Robinson, Ross B.; Driver, Cornelius

    1956-01-01

    An investigation has been made in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 1.41 to determine the aerodynamic characteristics of an 0.03-scale model of the Avro CF-105 airplane. The investigation included the determination of the static longitudinal and lateral stability, the control and the hinge-moment characteristics of the elevator, the aileron, and the rudder, as well as the vertical-tail-load characteristics. The results indicated a minimum drag coefficient of about 0.0270, and a maximum trimmed lift-drag ratio of about 4.25 which occurs at a lift coefficient of 0.16. The directional stability decreased with increasing angle of attack until a region of static instability occurred above an angle of attack of about 9 deg.

  20. Subsonic Aerodynamic Characteristics of an Airplane Configuration with a 63 deg Sweptback Wing and Twin-Boom Tails

    NASA Technical Reports Server (NTRS)

    Savage, Howard F.; Edwards, George G.

    1959-01-01

    A wind-tunnel investigation has been conducted to determine the effects of an unconventional tail arrangement on the subsonic static longitudinal and lateral stability characteristics of a model having a 63 deg sweptback wing of aspect ratio 3.5 and a fuselage. Tail booms, extending rearward from approximately the midsemispan of each wing panel, supported independent tail assemblies well outboard of the usual position at the rear of the fuselage. The horizontal-tail surfaces had the leading edge swept back 45 deg and an aspect ratio of 2.4. The vertical tail surfaces were geometrically similar to one panel of the horizontal tail. For comparative purposes, the wing-body combination was also tested with conventional fuselage-mounted tail surfaces. The wind-tunnel tests were conducted at Mach numbers from 0.25 to 0.95 with a Reynolds number of 2,000,000, at a Mach number of 0.46 with a Reynolds number of 3,500,000, and at a Mach number of 0.20 with a Reynolds number of 7,000,000. The results of the investigation indicate that longitudinal stability existed to considerably higher lift coefficients for the outboard tail configuration than for the configuration with conventional tail. Wing fences were necessary with both configurations for the elimination of sudden changes in longitudinal stability at lift coefficients between 0.3 and 0.5. Sideslip angles up to 15 deg had only small effects upon the pitching-moment characteristics of the outboard tail configuration. There was an increase in the directional stability for the outboard tail configuration at the higher angles of attack as opposed to a decrease for the conventional tail configuration at most of the Mach numbers and Reynolds numbers of this investigation. The dihedral effect increased rapidly with increasing angle of attack for both the outboard and the conventional tail configurations but the increase was greater for the outboard tail configuration. The data indicate that the outboard tail is an effective

  1. Low-speed aerodynamic characteristics of an airfoil optimized for maximum lift coefficient

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Chen, A. W.

    1972-01-01

    An investigation has been conducted in the Langley low-turbulence pressure tunnel to determine the two-dimensional characteristics of an airfoil optimized for maximum lift coefficient. The design maximum lift coefficient was 2.1 at a Reynolds number of 9.7 million. The airfoil with a smooth surface and with surface roughness was tested at angles of attack from 6 deg to 26 deg, Reynolds numbers (based on airfoil chord) from 2.0 million to 12.9 million, and Mach numbers from 0.10 to 0.35. The experimental results are compared with values predicted by theory. The experimental pressure distributions observed at angles of attack up to at least 12 deg were similar to the theoretical values except for a slight increase in the experimental upper-surface pressure coefficients forward of 26 percent chord and a more severe gradient just behind the minimum-pressure-coefficient location. The maximum lift coefficients were measured with the model surface smooth and, depending on test conditions, varied from 1.5 to 1.6 whereas the design value was 2.1.

  2. Modulating flow and aerodynamic characteristics of a square cylinder in crossflow using a rear jet injection

    NASA Astrophysics Data System (ADS)

    Huang, Rong F.; Hsu, Ching M.; Chen, Yu T.

    2017-01-01

    The temporally evolved flow behaviors around a square cylinder subject to modulation of a planar jet issued from the cylinder's downstream surface into the wake were studied using the laser-assisted smoke flow visualization method and synchronized hot-wire anemometers. The drag force asserted on the square cylinder was obtained by measuring the surface pressures. Four characteristic flow modes (wake-dominated, transitional, critical, and jet-dominated) were observed in different regimes of freestream Reynolds number and jet injection ratio. In the wake-dominated mode, the jet swung periodically back and forth on the downstream surface due to the wake vortex shedding. In the transitional mode, the vortex shedding in the wake vanished so that the flow around the cylinder presented no periodic oscillations. In the critical mode, the wake width became smaller and therefore made the vortex shedding frequency larger than that observed in the wake dominated mode. In the jet-dominated mode, the jet had a large momentum that entrained wake fluids and therefore stabilized the instabilities of the wake, separated boundary layers on lateral surfaces, and stagnation point on the upstream surface. Two standing vortices appeared in the near wake beside the high-momentum jet. The width of the wake was decreased substantially by jet entrainment. The drag coefficient decreased with an increase in the jet injection ratio. The downstream surface jet injection caused the pressure coefficients to decrease at the upstream surface and to increase at the downstream surface. Therefore, the drag coefficients were decreased significantly by 26%, 33%, and 38% at the injection ratios of 0.5, 1.5, and 2.5, respectively.

  3. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1977-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. The angles of attack extend from 0 deg to 180 deg for M = 2.9 from 0 deg to 60 deg for M = 0.6 to 2.0. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 deg to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. Vapor-screen and oil-flow pictures are shown for many body, body-wing and body-wing-tail configurations. When spearation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  4. Prediction of static aerodynamic characteristics for slender bodies alone and with lifting surfaces to very high angles of attack

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1976-01-01

    An engineering-type method is presented for computing normal-force and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. In this method, a semi-empirical term representing viscous-separation crossflow is added to a term representing potential-theory crossflow. For many bodies of revolution, computed aerodynamic characteristics are shown to agree with measured results for investigated free-stream Mach numbers from 0.6 to 2.9. For several bodies of elliptic cross section, measured results are also predicted reasonably well over the investigated Mach number range from 0.6 to 2.0 and at angles of attack from 0 to 60 deg. As for the bodies of revolution, the predictions are best for supersonic Mach numbers. For body-wing and body-wing-tail configurations with wings of aspect ratios 3 and 4, measured normal-force coefficients and centers are predicted reasonably well at the upper test Mach number of 2.0. However, with a decrease in Mach number to 0.6, the agreement for C sub N rapidly deteriorates, although the normal-force centers remain in close agreement. Vapor-screen and oil-flow pictures are shown for many body, body-wing, and body-wing-tail configurations. When separation and vortex patterns are asymmetric, undesirable side forces are measured for the models even at zero sideslip angle. Generally, the side-force coefficients decrease or vanish with the following: increase in Mach number, decrease in nose fineness ratio, change from sharp to blunt nose, and flattening of body cross section (particularly the body nose).

  5. Two-dimensional aerodynamic characteristics of three rotorcraft airfoils at Mach numbers from 0.35 to 0.90

    NASA Technical Reports Server (NTRS)

    Bingham, G. J.; Noonan, K. W.

    1982-01-01

    Three airfoils designed for helicopter rotor application were investigated in the Langley 6- by 28-inch Transonic Tunnel to determine the two dimensional aerodynamic characteristics at Mach numbers from 0.34 to 0.88 and respective Reynolds numbers from about 4.4 x 10(6) power to 9.5 x 10(6) power. The airfoils have thickness-to-chord ratios of 0.08, 0.10, and 0.12. Trailing-edge reflex was applied to minimize pitching moment. The maximum normal-force coefficient of the RC(3)-12 airfoil is from 0.1 to 0.2 higher, depending on Mach number M, than that of the NACA 0012 airfoil tested in the same facility. The maximum normal-force coefficient of the RC(3)-10 is about equal to that of the NACA 0012 at Mach numbers to 0.40 and is higher than that of the NACA 0012 at Mach numbers above 0.40. The maximum normal force coefficient of the RC(3)-08 is about 0.19 lower than that of the NACA 0012 at a Mach number of 0.35 and about 0.05 lower at a Mach number of 0.54. The drag divergence Mach number of the RC(3)-08 airfoil at normal-force coefficients below 0.1 was indicated to be greater than the maximum test Mach number of 0.88. At zero lift, the drag-divergence Mach numbers of the RC(3)-12 and the RC(3)-10 are about 0.77 and 0.82, respectively.

  6. Micro air vehicle motion tracking and aerodynamic modeling

    NASA Astrophysics Data System (ADS)

    Uhlig, Daniel V.

    Aerodynamic performance of small-scale fixed-wing flight is not well understood, and flight data are needed to gain a better understanding of the aerodynamics of micro air vehicles (MAVs) flying at Reynolds numbers between 10,000 and 30,000. Experimental studies have shown the aerodynamic effects of low Reynolds number flow on wings and airfoils, but the amount of work that has been conducted is not extensive and mostly limited to tests in wind and water tunnels. In addition to wind and water tunnel testing, flight characteristics of aircraft can be gathered through flight testing. The small size and low weight of MAVs prevent the use of conventional on-board instrumentation systems, but motion tracking systems that use off-board triangulation can capture flight trajectories (position and attitude) of MAVs with minimal onboard instrumentation. Because captured motion trajectories include minute noise that depends on the aircraft size, the trajectory results were verified in this work using repeatability tests. From the captured glide trajectories, the aerodynamic characteristics of five unpowered aircraft were determined. Test results for the five MAVs showed the forces and moments acting on the aircraft throughout the test flights. In addition, the airspeed, angle of attack, and sideslip angle were also determined from the trajectories. Results for low angles of attack (less than approximately 20 deg) showed the lift, drag, and moment coefficients during nominal gliding flight. For the lift curve, the results showed a linear curve until stall that was generally less than finite wing predictions. The drag curve was well described by a polar. The moment coefficients during the gliding flights were used to determine longitudinal and lateral stability derivatives. The neutral point, weather-vane stability and the dihedral effect showed some variation with different trim speeds (different angles of attack). In the gliding flights, the aerodynamic characteristics

  7. Seismotectonic characteristics of the northernmost Longitudinal Valley, eastern Taiwan: Structural development of a vanishing suture

    NASA Astrophysics Data System (ADS)

    Shyu, J. Bruce H.; Chen, Chun-Fu; Wu, Yih-Min

    2016-12-01

    The Longitudinal Valley in eastern Taiwan is generally considered as the suture of the collision between the Philippine Sea and the Eurasian plates, and has attracted numerous geologic and seismologic studies. In the northernmost part of the valley, however, constraints on how structures develop as the suture turns into the Ryukyu subduction system offshore are still very limited. Therefore, we analyzed relocated seismicity distributions and focal mechanisms of earthquake sequences, together with tectonic geomorphic investigations to further understand the seismotectonic characteristics of this area. In our seismologic observations, we found two previously unidentified reverse faults in the northernmost part of the Longitudinal Valley suture. One is an E-W striking, south-dipping reverse fault near the Liwu River fan delta, and the other is a N-S striking, east-dipping reverse fault near the eastern Central Range front. Both these structures connect with a detachment at 10 km deep, and may connect with each other to form a curved structural system. The Meilun fault, a well-known active structure that ruptured in a M7.3 earthquake in October 1951, is not seismically active in the past two decades, and may just be part of a secondary branch of the major structural system. In the northernmost part of the Longitudinal Valley suture, we propose that as the Coastal Range bedrocks subduct northward beneath the Eurasian plate with the Philippine Sea plate, the shallow sediments of the Longitudinal Valley, being a buoyant block, do not subduct, but overthrust northward and westward instead.

  8. Aerodynamic characteristics of a hypersonic research airplane concept having a 70 deg swept double-delta wing at Mach numbers from 0.80 to 1.20, with summary of data from 0.20 to 6.0. [Langley 8-ft transonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Hallissy, J. B.; Dillon, J. L.

    1979-01-01

    The static longitudinal, lateral, and directional stability characteristics of a hypersonic research airplane concept having a 70 deg swept double-delta wing were investigated. Force tests were conducted in the Langley 8 foot transonic pressure tunnel for a Reynolds number (based on fuselage length) range of 6.30 x 10 to the 6th power to 7.03 x 10 to the 6th power, at angles of attack from about -4 deg to 23 deg, and at angles of sideslip of 0 deg and 5 deg. The configuration variables included the wing planform, tip fins, the center vertical tail, and scramjet engine modules. Variations of the more important aerodynamic parameters with Mach number for Mach numbers from 0.20 to 6.0 are summarized. A state-of-the-art example of theoretically predicting performance parameters and static longitudinal and directional stability over the Mach number range is included.

  9. Effects of wing leading-edge deflection on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Weston, R. P.

    1978-01-01

    Wing leading-edge deflection effects on the low-speed aerodynamic characteristics of a low-aspect-ratio highly swept arrow-wing configuration were determined. Static force tests were conducted in a V/STOL tunnel at a Reynolds number of about 2.5 x 1 million for an angle-of-attack range from -10 deg to 17 deg and an angle-of-sideslip range from -5 deg to 5 deg. Limited flow visualization studies were also conducted in order to provide a qualitative assessment of leading-edge upwash characteristics.

  10. Effects of upper-surface blowing and thrust vectoring on low-speed aerodynamic characteristics of a large-scale supersonic transport model

    NASA Technical Reports Server (NTRS)

    Coe, P. L., Jr.; Mclemore, H. C.; Shivers, J. P.

    1975-01-01

    Tests were conducted in the Langley full-scale tunnel to determine the low-speed aerodynamic characteristics of a large-scale arrow-wing supersonic transport configured with engines mounted above the wing for upper surface blowing, and conventional lower surface engines with provisions for thrust vectoring. A limited number of tests were conducted for the upper surface engine configuration in the high lift condition for beta = 10 in order to evaluate lateral directional characteristics, and with the right engine inoperative to evaluate the engine out condition.

  11. Longitudinal Stability Characteristics of a 1/40-Scale Model of a Proposed Configuration of the XF-91 Airplane Measured by the Wing-Flow Method

    NASA Technical Reports Server (NTRS)

    Crane, Harold L.; Beckhardt, Arnold R.

    1948-01-01

    This report presents the results of an investigation in the transonic speed range of the longitudinal stability characteristics of a proposed configuration for the Republic XF-91 airplane. The tests covered a Mach number range of 0.55 to 1.05 and a Reynolds number range from 400,000 to 1,375,000. Lift, pitching-moment, and rolling-moment characteristics of the half model and the hinge moments on the all-moving tail were measured. The downwash factor delta x epsilon / delta x alpha at the tail was determined from the pitching-moment data. A calculation of the elevator deflection and stick force required for trim was also made. It was found that the variation of force and moment coefficients was linear through the test angle-of-attack range of -1 deg to 8 deg at any Mach number; that the stability increased markedly at Mach numbers above 0.85; that the effectiveness of the tail in producing pitching moments decreased about one-third with increasing Mach numbers and that the value of the downwash factor, delta x epsilon / delta x alpha, at the tail decreased from about 0.35 at a Mach number of 0.85 to about zero at a Mach number near 0.95 and became slightly negative at higher Mach numbers. The calculated values of stick force per g and elevator deflection per g, assuming no aerodynamic balance, increased rapidly above a Mach number of 0.85.

  12. Aerodynamic Characteristics at Mach Numbers of 1.41 and 2.01 of a Series of Cranked Wings Ranging in Aspect Ratio from 4.00 to 1.74 in Combination with a Body

    NASA Technical Reports Server (NTRS)

    Sevier, John R., Jr.

    1960-01-01

    A program has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the effects of certain wing plan-form variations on the aerodynamic characteristics of wing-body combinations at supersonic speeds. The present report deals with the results of tests of a family of cranked wing plan forms in combination with an ogive-cylinder body of revolution. Tests were made at Mach numbers of 1.41 and 2.01 at corresponding values of Reynolds number per foot of 3.0 x 10(exp 6) and 2.5 x 10(exp 6). Results of the tests indicate that the best overall characteristics were obtained with the low-aspect-ratio wings. Plan-form changes which involved decreasing the aspect ratio resulted in higher values of maximum lift-drag ratio, in addition to large increases in wing volume. Indications are that this trend would have continued to exist at aspect ratios even lower than the lowest considered in the present tests. Increases in the maximum lift-drag ratio of about 15 percent over the basic wing were achieved with practically no increase in drag. The severe longitudinal stability associated with the basic cranked wing was no longer present (within the limits of the present tests) on the wings of lower aspect ratio formed by sweeping forward the inboard portion of the trailing edge.

  13. Traveltime, longitudinal-dispersion, reaeration, and basin characteristics of the White River, Colorado and Utah

    USGS Publications Warehouse

    Boyle, J.M.; Spahr, N.E.

    1985-01-01

    Traveltime and longitudinal-dispersion characteristics were measured for the White River using dye tracers. Discharges ranged from 281 to 1,840 cubic feet per second and velocities ranged from 1.26 to 3.17 miles per hour. Traveltimes were determined for discharges other than measured discharges by a graphical method and a linear-regression method. Longitudinal-dispersion coefficients ranged from 284 square feet per second at a discharge of 539 cubic feet per second to 5,430 square feet per second at a discharge of 1,580 cubic feet per second. Reaeration was measured in four reaches of the White River during a medium-flow period in August 1982. Reaeration coefficients at 20 degrees Celsius ranged from 5.3 to 25.3 per day. The results of a comparison with measured reaeration coefficients and reaeration coefficients predicted using empirical equations showed that the most accurate equations were by Bennett and Rathbun (1972) and Isaacs and Gaudy (1968). Basin characteristics were computed using U.S. Geological Survey topographic maps, precipitation data from the National Weather Service, and aerial photographs taken on September 11, 1981. (USGS)

  14. Attention-deficit hyperactivity disorder: a longitudinal case study of handwriting characteristics.

    PubMed

    Peeples, E E; Searls, D T; Wellingham-Jones, P

    1995-12-01

    This longitudinal case study focuses on handwriting samples of a female diagnosed with Attention-Deficit/Hyperactivity Disorder from 12 years of age to 21 years of age. Diaries and journals produced for class assignments and later for this research yielded 293 handwriting samples. 15 characteristics of handwriting were measured and statistically analyzed to follow changes in handwriting across time. At seven years of age while in elementary school the subject was diagnosed with ADHD and placed on Ritalin (methylphenidate). At puberty the drug was discontinued. During two summers she visited grandparents, once alone and once with two sisters with whom she was in conflict. Her handwriting deviated from its pattern of general decrease in size and increase in uniformity during these visits. The changes over time of three handwriting characteristics (slant of "l," heights and areas of the lower loop of the "g," and area of the left loop of the "I") also deviated from the general pattern of her handwriting change.

  15. Aerodynamic Characteristics of Controls.

    DTIC Science & Technology

    1979-09-01

    Aerospace Company D -3300 Braunschweig, Germany Mail Stop 41-18 PO Box 3999 Stattle, WA 98124, USA PANEL EXECUTIVE Robert H.Rollins I1 CONTENTS Page...vz _a [ + O U = O d When the Mach ntmber comes near I or exceeds 3 nonlinear terms of the full potential equation have to be taken into account...potential flow about arbitrary bodies. In: D . Ki chemann et al: SMI-TH, A.M.O. Progress in Aeronautical Sciences, Vol. 8, Pergamon Press, Oxford, 1967, p. 1

  16. Advanced missile technology. A review of technology improvement areas for cruise missiles. [including missile design, missile configurations, and aerodynamic characteristics

    NASA Technical Reports Server (NTRS)

    Cronvich, L. L.; Liepman, H. P.

    1979-01-01

    Technology assessments in the areas of aerodynamics, propulsion, and structures and materials for cruise missile systems are discussed. The cruise missiles considered cover the full speed, altitude, and target range. The penetrativity, range, and maneuverability of the cruise missiles are examined and evaluated for performance improvements.

  17. Longitudinal Aerodynamic Characteristics and Wing Pressure Distributions of a Blended-Wing-Body Configuration at Low and High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Re, Richard J.

    2005-01-01

    Force balance and wing pressure data were obtained on a 0.017-Scale Model of a blended-wing-body configuration (without a simulated propulsion system installation) to validate the capability of computational fluid dynamic codes to predict the performance of such thick sectioned subsonic transport configurations. The tests were conducted in the National Transonic Facility of the Langley Research Center at Reynolds numbers from 3.5 to 25.0 million at Mach numbers from 0.25 to 0.86. Data were obtained in the pitch plane only at angles of attack from -1 to 8 deg at Mach numbers greater than 0.25. A configuration with winglets was tested at a Reynolds number of 25.0 million at Mach numbers from 0.83 to 0.86.

  18. A computer program to calculate the longitudinal aerodynamic characteristics of upper-surface-blown wing-flap configurations

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.

    1978-01-01

    A user's manual is presented for a computer program in which a vortex-lattice lifting-surface method is used to model the wing and multiple flaps. The engine wake model consists of a series of closely spaced vortex rings with rectangular cross sections. The jet wake is positioned such that the lower boundary of the jet is tangent to the wing and flap upper surfaces. The two potential flow models are used to calculate the wing-flap loading distribution including the influence of the wakes from up to two engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord. The results include total configuration forces and moments, individual lifting-surface load distributions, pressure distributions, flap hinge moments, and flow field calculation at arbitrary field points. The use of the program, preparation of input, the output, program listing, and sample cases are described.

  19. Subsonic longitudinal aerodynamic characteristics of a vectored-engine-over-wing configuration having spanwise leading-edge vortex enhancement

    NASA Technical Reports Server (NTRS)

    Huffman, J. K.; Fox, C. H., Jr.

    1977-01-01

    A configuration which integrates a close coupled canard wing combination, spanwise blowing for enhancement of the wing leading edge vortex, an engine-over-wing concept, and a wing trailing edge coanda-effect flap is studied. The data on the configuration are presented in tabular from without discussion. The investigation was conducted in the Langley 7- by 10-foot high speed tunnel at a Mach number of 0.166 through an angle-of-attack range from -2 to 22 deg. Rectangular main engine nozzles of aspect ratio 4, 6, and 8 were tested over a momentum coefficient range from 1.0 to 1.8.

  20. A computer program to calculate the longitudinal aerodynamic characteristics of wing-flap configurations with externally blown flaps

    NASA Technical Reports Server (NTRS)

    Mendenhall, M. R.; Goodwin, F. K.; Spangler, S. B.

    1976-01-01

    A vortex lattice lifting-surface method is used to model the wing and multiple flaps. Each lifting surface may be of arbitrary planform having camber and twist, and the multiple-slotted trailing-edge flap system may consist of up to ten flaps with different spans and deflection angles. The engine wakes model consists of a series of closely spaced vortex rings with circular or elliptic cross sections. The rings are normal to a wake centerline which is free to move vertically and laterally to accommodate the local flow field beneath the wing and flaps. The two potential flow models are used in an iterative fashion to calculate the wing-flap loading distribution including the influence of the waves from up to two turbofan engines on the semispan. The method is limited to the condition where the flow and geometry of the configurations are symmetric about the vertical plane containing the wing root chord. The calculation procedure starts with arbitrarily positioned wake centerlines and the iterative calculation continues until the total configuration loading converges within a prescribed tolerance. Program results include total configuration forces and moments, individual lifting-surface load distributions, including pressure distributions, individual flap hinge moments, and flow field calculation at arbitrary field points.

  1. Effect of empennage location on twin-engine afterbody-nozzle aerodynamic characteristics at Mach Numbers from 0.6 to 1.2. [wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.

    1983-01-01

    The Langley 16-foot transonic tunnel was used to determine the effects of several empennage and afterbody parameters on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. Model variables were as follows: horizontal tail axial location and incidence, vertical tail axial location and configuration (twin- versus single-tail arrangements), tail booms, and nozzle power setting. Tests were conducted over a Mach number range from 0.6 to 1.2 and over an angle-of-attack from -2 deg to 10 deg. Jet total-pressure ratio was varied from jet off to approximately 10.0.

  2. Investigation of the Aerodynamic Characteristics of a Model Wing-Propeller Combination and of the Wing and Propeller Separately at Angles of Attack up to 90 Degrees

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E; Draper, John W

    1956-01-01

    This report presents the results of an investigation conducted in the Langley 300 mph 7- by 10-foot wind tunnel for the purpose of determining the aerodynamic characteristics of a model wing-propeller combination, and of the wing and propeller separately at angles of attack up to 90 degrees. The tests covered thrust coefficients corresponding to free-stream velocities from zero forward speed to the normal range of cruising speeds. The results indicate that increasing the thrust coefficient increases the angle of attack for maximum lift and greatly diminishes the usual reduction in lift above the angle of attack for maximum lift.

  3. Low-speed aerodynamic characteristics of a 42 deg swept high-wing model having a double-slotted flap system and a supercritical airfoil

    NASA Technical Reports Server (NTRS)

    Fournier, P. G.; Goodson, K. W.

    1974-01-01

    A low-speed investigation was conducted over an angle-of-attack range from about -4 deg to 20 deg in the Langley V/STOL tunnel to determine the effects of a double-slotted flap, high-lift system on the aerodynamic characteristics of a 42 deg swept high-wing model having a supercritical airfoil. The wing had an aspect ratio of 6.78 and a taper ratio of 0.36; the double-slotted flap consisted of a 35-percent-chord flap with a 15-percent-chord vane. The model was tested with a 15-percent-chord leading-edge slat.

  4. Low subsonic aerodynamic characteristics of five irregular planform wings with systematically varying wing fillet geometry tested in the NASA/Ames 12 foot pressure tunnel (LA65)

    NASA Technical Reports Server (NTRS)

    Ball, J. W.; Watson, D. B.

    1976-01-01

    An experimental and analytical aerodynamic program to develop predesign guides for irregular planform wings (also referred to as cranked leading edge or double delta wings is reported; the benefits are linearization of subsonic lift curve slope to high angles of attack and avoidance of subsonic pitch instabilities at high lift by proper tailoring of the planform-fillet-wing combination while providing the desired hypersonic trim angle and stability. Because subsonic and hypersonic conditions were the two prime areas of concern in the initial application of this program to optimize shuttle orbiter landing and entry characteristics, the study was designated the Subsonic/Hypersonic Irregular Planforms Study (SHIPS).

  5. A computer program for calculating symmetrical aerodynamic characteristics and lateral-directional stability derivatives of wing-body combinations with blowing jets

    NASA Technical Reports Server (NTRS)

    Lan, C. E.; Mehrotra, S. C.; Fox, C. H., Jr.

    1978-01-01

    The necessary information for using a computer program to calculate the aerodynamic characteristics under symmetrical flight conditions and the lateral-directional stability derivatives of wing-body combinations with upper-surface-blowing (USB) or over-wing-blowing (OWB) jets are described. The following new features were added to the program: (1) a fuselage of arbitrary body of revolution has been included. The effect of wing-body interference can now be investigated, and (2) all nine lateral-directional stability derivatives can be calculated. The program is written in FORTRAN language and runs on CDC Cyber 175 and Honeywell 66/60 computers.

  6. Effects of twin-vertical-tail parameters on twin-engine afterbody/nozzle aerodynamic characteristics. [Langley 16-ft transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Leavitt, L. D.; Bare, E. A.

    1983-01-01

    The Langley 16-foot transonic tunnel was used to determine the effects of several empennage and afterbody parameters on twin-engine aft-end aerodynamic characteristics. Model variables included twin-vertical-tail cant angle, toe angle, airfoil camber, and root-chord length and afterbody/engine interfairing shape. Tests were conducted over a Mach number range from 0.6 to 1.2 and over an angle-of-attack range from 2 deg to 10 deg. Nozzle pressure ratio was varied from 1.0 (jet off) to approximately 10.0.

  7. Aerodynamic characteristics of a vane flow angularity sensor system capable of measuring flight path accelerations for the Mach number range from 0.40 to 2.54

    NASA Technical Reports Server (NTRS)

    Sakamoto, G. M.

    1976-01-01

    The aerodynamic characteristics of the angle of attack vane and the angle of sideslip vane are summarized. The test conditions ranged in free stream Mach number from 0.40 to 2.54, in angle of attack from -2 deg to 22 deg, in angle of sideslip from -2 deg to 12 deg, and in Reynolds number from 590,000 per meter to 1.8 million per meter. The results of the wind tunnel investigation are compared with results obtained with similar vane configurations. Comparisons with a NACA vane configuration are also made. In addition, wind tunnel-derived upwash for the test installation is compared with analytical predictions.

  8. Seismotectonic characteristics of the northernmost part of the Longitudinal Valley suture, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Shyu, J. H.; Chen, C.; Wu, Y.

    2012-12-01

    The island of Taiwan is located at the collisional boundary between the Philippine Sea and the Eurasian plates. In eastern Taiwan, the Longitudinal Valley between the Central Range and the Coastal Range is generally considered as the suture zone. The Ryukyu subduction system, on the other hand, extends southwestward from offshore eastern Taiwan, and intersects with the northernmost Longitudinal Valley suture. As a result, this area is characterized by frequent earthquakes and complex geological structures. Although there have been several tectonic investigations in this area, detailed knowledge of seismotectonic characteristics of this complicated region is still very limited. Recently, we have obtained high resolution earthquake data by combining records from seismic stations of the Japan Meteorological Agency (JMA) and data from Taiwan Central Weather Bureau Seismic Network (CWBSN) and Taiwan Strong Motion Instrumentation Program (TSMIP). Therefore, we attempted to analyze this area in detail using these high resolution seismic data, together with tectonic geomorphic investigations. The distribution of background seismicity shows that many earthquakes occurred at about 10 km deep in this area, and a linear seismicity band extends to the surface west of the Hualien City. We infer that this band of seismicity represents a structure that crops out within the eastern flank of the Central Range. This structure would be different from the Milun fault, which is a known structure in the Hualien area and ruptured during an M7.3 earthquake in October 1951. Another major feature in this area is a listric band of seismicity that appears to extend to the surface near the Liwu River mouth, north of the Hualien City. This seismicity band likely represents an E-W striking structure that dips to the south. Based on the focal mechanisms of several recent moderate earthquakes that occurred within these seismic bands, we suggest that these two structures are reverse faults. These

  9. New literal approximations for the longitudinal dynamic characteristics of flexible flight vehicles

    NASA Technical Reports Server (NTRS)

    Livneh, Rafael; Schmidt, David K.

    1992-01-01

    The goal of the literal approximation method is to obtain simple literal (analytical) approximations for key dynamic characteristics of flexible flight vehicles. A basic question regarding the method is its usefulness as an additional design tool for existing design and simulation procedures. Two aspects of this question are: (1) ease of derivation and use of the literal approximations, and (2) the suitability of one set of literal approximations to describe the dynamics of a large set of significantly different vehicles. These issues are addressed by incorporating symbolic manipulation software into the literal approximation method for the analysis of a fifth order model of the longitudinal dynamics of a flexible flight vehicle. The automated literal approximation generated in this fashion reduces the manual derivation time by an approximate factor of four. A single set of literal approximations is shown to provide adequate approximations for the dynamics of significantly different flight vehicles configurations, such as an aircraft, a missile, and a hypersonic vehicle.

  10. A Longitudinal Multilevel Study of Individual Characteristics and Classroom Norms in Explaining Bullying Behaviors.

    PubMed

    Sentse, Miranda; Veenstra, René; Kiuru, Noona; Salmivalli, Christina

    2015-07-01

    This three-wave longitudinal study was set out to examine the interplay between individual characteristics (social standing in the classroom) and descriptive and injunctive classroom norms (behavior and attitudes, respectively) in explaining subsequent bullying behavior, defined as initiating, assisting, or reinforcing bullying. The target sample contained fourth- to sixth-grade students (n = 2,051) who attended the control schools in the Finnish evaluation of the KiVa antibullying program. Random slope multilevel analyses revealed that, over time, higher popularity or rejection, or lower acceptance were associated with increases in bullying behaviors, especially in classrooms with a high descriptive bullying norm. In contrast, the injunctive norm did not moderate the associations between social standing and engagement in bullying, except for children high on popularity. Theoretical and practical implications of the results are discussed.

  11. A ballistic investigation of the aerodynamic characteristics of a blunt vehicle at hypersonic speeds in carbon dioxide and air

    NASA Technical Reports Server (NTRS)

    Packard, James D.; Griffith, Wayland C.; Yates, Leslie A.; Strawa, Anthony W.

    1992-01-01

    Missions to Mars require the successful development of aerobraking technology, and therefore a blunt cone representative of aerobrake shapes is investigated. Ballistic tests of the Pioneer Venus configuration are conducted in carbon dioxide and air at Mach numbers from 7 to 20 and Reynolds numbers from 0.1 x 10 exp 5 to 4 x 10 exp 6. Experimental results show that for defined conditions aerodynamic research can be conducted in air rather than carbon dioxide, providing savings in time and money. In addition, the results offer a prediction of flight aerodynamics during entry into the Martian atmosphere. Also discussed is a comparison of results from two data-reduction techniques showing that a five-degree-of-freedom routine employing weighted least-squares with differential corrections analyzes ballistic data more accurately.

  12. How Changes in Psychosocial Job Characteristics Impact Burnout in Nurses: A Longitudinal Analysis

    PubMed Central

    Pisanti, Renato; van der Doef, Margot; Maes, Stan; Meier, Laurenz Linus; Lazzari, David; Violani, Cristiano

    2016-01-01

    Aims: The main aim of this longitudinal study was to test the Job Demand-Control-Support (JDCS) model and to analyze whether changes in psychosocial job characteristics are related to (changes in) burnout. Background: Previous studies on the effects of JDCS variables on burnout dimensions have indicated that the iso-strain hypothesis (i.e., high job demands, low control, and low support additively predict high stress reactions) and the buffer hypotheses (i.e., high job control and/or social support is expected to moderate the negative impact of high demands on stress reactions) have hardly been examined concurrently in a longitudinal design; and that the effects of changes of psychosocial job variables on burnout dimensions have hardly been analyzed. Design: This two wave study was carried out over a period of 14 months in a sample of 217 Italian nurses. Method: Hierarchical regression analyses were used to test the cross lagged main and interactive effects of JDCS variables, and to analyse the across-time effects of changes in JDCS dimensions on burnout variables. Results: The Time 1 job characteristics explained 2–8% of the variance in the Time 2 burnout dimensions, but no support for the additive, or the buffer hypothesis of the JDCS model was found. Changes in job characteristics explained an additional 3–20% of variance in the Time 2 burnout dimensions. Specifically, high levels of emotional exhaustion at Time 2 were explained by high levels of social support at Time 1, and unfavorable changes in demands, control, and support over time; high depersonalization at Time 2 was explained by high social support at time 1 and by an increase in demands over time; and high personal accomplishment at Time 2 was predicted by high demands, high control, interactive effect demands × control × social support, at Time 1, and by a decrease in demands over time. No reversed effects of burnout on work characteristics have been found. Conclusion: Our findings suggest that

  13. Aerodynamic Loading Characteristics Including Effects of Aeroelasticity of a Thin-Trapezoidal-Wing-Body Combination at Mach Number of 1.43

    NASA Technical Reports Server (NTRS)

    Kelly, Thomas C.

    1959-01-01

    Results have been obtained in the Langley 8-foot transonic pressure tunnel at a Mach number of 1.43 and at angles of attack from 0 deg to about 24 deg which indicate the static-aerodynamic-loads characteristics for a 2-percent-thick trapezoidal wing in combination with a body. Included are the effects of changing Reynolds number and of fixing boundary-layer transition. The results show that aerodynamic loading characteristics at a Mach number of 1.43 are similar to those reported in NACA RM L56Jl2a for the same configuration at a Mach number of 1.115. Reducing the Reynolds number resulted in reductions in the deflection of the wing and caused a slight increase in the relative loading over the outboard wing sections since the deflections were in a direction to unload the tip sections. Little or no effects were seen to result from fixing boundary-layer transition at a tunnel stagnation pressure of 1,950 pounds per square foot.

  14. Aeroelastic characteristics of a rapid prototype multi-material wind tunnel model of a mechanically deployable aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Raskin, Boris

    Scaled wind tunnel models are necessary for the development of aircraft and spacecraft to simulate aerodynamic behavior. This allows for testing multiple iterations of a design before more expensive full-scale aircraft and spacecraft are built. However, the cost of building wind tunnel models can still be high because they normally require costly subtractive manufacturing processes, such as machining, which can be time consuming and laborious due to the complex surfaces of aerodynamic models. Rapid prototyping, commonly known as 3D printing, can be utilized to save on wind tunnel model manufacturing costs. A rapid prototype multi-material wind tunnel model was manufactured for this thesis to investigate the possibility of using PolyJet 3D printing to create a model that exhibits aeroelastic behavior. The model is of NASA's Adaptable Deployable entry and Placement (ADEPT) aerodynamic decelerator, used to decelerate a spacecraft during reentry into a planet's atmosphere. It is a 60° cone with a spherically blunted nose that consists of a 12 flexible panels supported by a rigid structure of nose, ribs, and rim. The novel rapid prototype multi-material model was instrumented and tested in two flow conditions. Quantitative comparisons were made of the average forces and dynamic forces on the model, demonstrating that the model matched expected behavior for average drag, but not Strouhal number, indicating that there was no aeroelastic behavior in this particular case. It was also noted that the dynamic properties (e.g., resonant frequency) associated with the mounting scheme are very important and may dominate the measured dynamic response.

  15. Subsonic aerodynamic and flutter characteristics of several wings calculated by the SOUSSA P1.1 panel method

    NASA Technical Reports Server (NTRS)

    Yates, E. C., Jr.; Cunningham, H. J.; Desmarais, R. N.; Silva, W. A.; Drobenko, B.

    1982-01-01

    The SOUSSA (steady, oscillatory, and unsteady subsonic and supersonic aerodynamics) program is the computational implementation of a general potential flow analysis (by the Green's function method) that can generate pressure distributions on complete aircraft having arbitrary shapes, motions and deformations. Some applications of the initial release version of this program to several wings in steady and oscillatory motion, including flutter are presented. The results are validated by comparisons with other calculations and experiments. Experiences in using the program as well as some recent improvements are described.

  16. Aerodynamic Database Development for Mars Smart Lander Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Bobskill, Glenn J.; Parikh, Paresh C.; Prabhu, Ramadas K.; Tyler, Erik D.

    2002-01-01

    An aerodynamic database has been generated for the Mars Smart Lander Shelf-All configuration using computational fluid dynamics (CFD) simulations. Three different CFD codes, USM3D and FELISA, based on unstructured grid technology and LAURA, an established and validated structured CFD code, were used. As part of this database development, the results for the Mars continuum were validated with experimental data and comparisons made where applicable. The validation of USM3D and LAURA with the Unitary experimental data, the use of intermediate LAURA check analyses, as well as the validation of FELISA with the Mach 6 CF(sub 4) experimental data provided a higher confidence in the ability for CFD to provide aerodynamic data in order to determine the static trim characteristics for longitudinal stability. The analyses of the noncontinuum regime showed the existence of multiple trim angles of attack that can be unstable or stable trim points. This information is needed to design guidance controller throughout the trajectory.

  17. The Effects of Streamwise-Deflected Wing Tips on the Aerodynamic Characteristics of an Aspect Ratio-2 Triangular Wing, Body, and Tail Combination

    NASA Technical Reports Server (NTRS)

    Peterson, Victor L.

    1959-01-01

    An investigation has been conducted on a triangular wing and body combination to determine the effects on the aerodynamic characteristics resulting from deflecting portions of the wing near the tips 900 to the wing surface about streamwise hinge lines. Experimental data were obtained for Mach numbers of 0.70, 1.30, 1.70, and 2.22 and for angles of attack ranging from -5 deg to +18 deg at sideslip angles of 0 deg and 5 deg. The results showed that the aerodynamic center shift experienced by the triangular wing and body combination as the Mach number was increased from subsonic to supersonic could be reduced by about 40 percent by deflecting the outboard 4 percent of the total area of each wing panel. Deflection about the same hinge line of additional inboard surfaces consisting of 2 percent of the total area of each wing panel resulted in a further reduction of the aerodynamic center travel of 10 percent. The resulting reductions in the stability were accompanied by increases in the drag due to lift and, for the case of the configuration with all surfaces deflected, in the minimum drag. The combined effects of reduced stability and increased drag of the untrimmed configuration on the trimmed lift-drag ratios were estimated from an analysis of the cases in which the wing-body combination with or without tips deflected was assumed to be controlled by a canard. The configurations with deflected surfaces had higher trimmed lift-drag ratios than the model with undeflected surfaces at Mach numbers up to about 1.70. Deflecting either the outboard surfaces or all of the surfaces caused the directional stability to be increased by increments that were approximately constant with increasing angle of attack at each Mach number. The effective dihedral was decreased at all angles of attack and Mach numbers when the surfaces were deflected.

  18. Measured and predicted aerodynamic coefficients and shock shapes for Aeroassist Flight Experiment (AFE) configuration

    NASA Technical Reports Server (NTRS)

    Wells, William L.

    1989-01-01

    Two scaled models of the Aeroassist Flight Experiment (AFE) vehicle were tested in two air wind tunnels and one CF4 tunnel. The tests were to determine the static longitudinal aerodynamic characteristics, and shock shapes for the configuration in hypersonic continuum flow. The tests were conducted with a range of angle of attack to evaluate the effects of Mach number, Reynolds numbers, and normal shock density ratio.

  19. Aerodynamic Characteristics of a Large-Scale Unswept Wing-Body-Tail Configuration with Blowing Applied Over the Flap and Wind Leading Edge

    NASA Technical Reports Server (NTRS)

    McLemore, H. Clyde; Peterson, John B., Jr.

    1960-01-01

    An investigation has been conducted in the Langley full-scale tunnel to determine the effects of a blowing boundary-layer-control lift-augmentation system on the aerodynamic characteristics of a large-scale model of a fighter-type airplane. The wing was unswept at the 70-percent- chord station, had an aspect ratio of 2.86, a taper ratio of 0.40, and 4-percent-thick biconvex airfoil sections parallel to the plane of symmetry. The tests were conducted over a range of angles of attack from approximately -4 deg to 23 deg for a Reynolds number of approximately 5.2 x 10(exp 6) which corresponds to a Mach number of 0.08. Blowing rates were normally restricted to values just sufficient to control air-flow separation. The results of this investigation showed that wing leading-edge blowing in combination with large values of wing leading-edge-flap deflection was a very effective leading-edge flow-control device for wings having highly loaded trailing-edge flaps. With leading-edge blowing there was no hysteresis of the lift, drag, and pitching-moment characteristics upon recovery from stall. End plates were found to improve the lift and drag characteristics of the test configuration in the moderate angle-of-attack range, and blockage to one-quarter of the blowing-slot area was not detrimental to the aerodynamic characteristics. Blowing boundary-layer control resulted in a considerably reduced landing speed and reduced landing and take-off distances. The ailerons were very effective lateral-control devices when used with blowing flaps.

  20. Effects of a sweptback hydrofoil on the force and longitudinal stability characteristics of a typical high-speed airplane

    NASA Technical Reports Server (NTRS)

    Wood, Raymond B

    1948-01-01

    An investigation was conducted in the Langley 8-foot high-speed tunnel to determine the effects of a sweptback hydrofoil on the force and longitudinal stability characteristics of a typical high-speed airplane. The Mach number range for this investigation was from 0.60 to 0.95 and at M = 1.20. The effects of the hydrofoil on the lift, drag, and pitching-moment characteristics are presented.

  1. Seismotectonic characteristics of the northernmost part of the Longitudinal Valley suture, eastern Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C.-F.; Shyu, J. B. H.; Wu, Y.-M.

    2012-04-01

    The island of Taiwan is located at the collisional boundary between the Philippine Sea and the Eurasian plates. In eastern Taiwan, the Longitudinal Valley between the Central Range and the Coastal Range is generally considered as the suture zone. The Ryukyu subduction system, on the other hand, extends southwestward from offshore eastern Taiwan, and intersects with the northernmost Longitudinal Valley suture. As a result, this area is characterized by frequent earthquakes and complex geological structures. Although there have been several tectonic investigations in this area, detailed knowledge of seismotectonic characteristics of this complicated region is still very limited. Recently, we have obtained high resolution earthquake data by combining records from seismic stations of the Japan Meteorological Agency (JMA) and data from Taiwan Central Weather Bureau Seismic Network (CWBSN) and Taiwan Strong Motion Instrumentation Program (TSMIP). Therefore, we attempted to analyze this area in detail using these high resolution seismic data, together with tectonic geomorphic investigations. The distribution of background seismicity shows that many earthquakes occurred at about 10 km deep in this area, and a linear seismicity cluster extends to the surface west of the Hualien City. We infer that this seismicity cluster represents a structure that crops out within the eastern flank of the Central Range. This structure would be different from the Milun fault, which is a known structure in the Hualien area and ruptured during an M7.3 earthquake in October 1951. Another major feature in this area is a listric cluster of seismicity that appears to extend to the surface near the Liwu River mouth, north of the Hualien City. This cluster likely represents an E-W striking structure that dips to the south. Based on the focal mechanisms of several recent moderate earthquakes that occurred within these seismic clusters, we suggest that these two structures are reverse faults. We are

  2. Exploring bird aerodynamics using radio-controlled models.

    PubMed

    Hoey, Robert G

    2010-12-01

    A series of radio-controlled glider models was constructed by duplicating the aerodynamic shape of soaring birds (raven, turkey vulture, seagull and pelican). Controlled tests were conducted to determine the level of longitudinal and lateral-directional static stability, and to identify the characteristics that allowed flight without a vertical tail. The use of tail-tilt for controlling small bank-angle changes, as observed in soaring birds, was verified. Subsequent tests, using wing-tip ailerons, inferred that birds use a three-dimensional flow pattern around the wing tip (wing tip vortices) to control adverse yaw and to create a small amount of forward thrust in gliding flight.

  3. Supplementary Investigation to Determine the Effects of Center-of-Gravity Position on the Spin, Longitudinal-Trim, and Tumbling Characteristics of a 1/20-Scale Model of the Consolidated Vultee 7002 Airplane (Flying Mock-up of XF-92)

    NASA Technical Reports Server (NTRS)

    Klinar, Walter J.; Jones, Ira P., Jr.

    1948-01-01

    A supplementary wind-tunnel investigation has been conducted to determine the effect of rearward positions of the center of gravity on the spin, longitudinal-trim, and tumbling characteristics of the 1/20-scale model of the Consolidated Vultee 7002 airplane equipped with the single vertical tail. A few tests were also made with dual vertical tails added to the model. The model was ballasted to represent, the airplane in its approximate design gross weight for two center-of-gravity positions, 3O and 35 percent of the mean aerodynamic chord. The original tests previously reported were for a center-of-gravity position of 24 percent of the mean aerodynamic chord.

  4. Space shuttle: Aerodynamic stability, control effectiveness and drag characteristics of a shuttle orbiter configuration at Mach numbers from 0.6 to 4.96

    NASA Technical Reports Server (NTRS)

    Ramsey, P. E.

    1972-01-01

    Experimental aerodynamic investigations were conducted in the NASA/MSFC 14-inch Trisonic Wind Tunnel from Sept. 27 to Oct. 7, 1972 on a 0.004 scale model of the NR ATP baseline shuttle orbiter configuration. Six component aerodynamic force and moment data were recorded at 0 deg sideslip angle over an angle of attack range from 0 to 20 deg for Mach numbers of 0.6 to 4.96, 20 to 40 deg for Mach numbers of 0.6, 0.9, 2.99, and 4.96, and 40 to 60 deg for Mach numbers of 2.99 and 4.96. Data were obtained over a sideslip range of -10 to 10 deg at 0, 10, and 20 deg angles of attack over the Mach range and 30 and 50 deg at Mach numbers of 2.99 and 4.96. The purpose of the test was to define the buildup, performance, stability, and control characteristics of the orbiter configuration. The model parameters, were: body alone; body-wing; body-wing-tail; elevon deflections of 0, 10, -20, and -40 deg both full and split); aileron deflections of plus or minus 10 deg (full and split); rudder flares of 10 and 40 deg, and a rudder deflection of 15 deg about the 10 and 40 deg flare positions.

  5. Aerodynamic Characteristics of a Four-Propeller Tilt-Wing VTOL Model with Twin Vertical Tails, Including Effects of Ground Proximity

    NASA Technical Reports Server (NTRS)

    Grunwald, Kalman J.

    1961-01-01

    Results are presented of a wind-tunnel investigation of the aerodynamic stability, control, and performance characteristics of a model of a four-propeller tilt-wing VTOL airplane employing flaps and speed brakes through the transition speed range. The results indicate that the wing was stalled for steady level flight for all conditions of the investigation; however, the flapped configuration did produce a higher maximum lift. The effectiveness of the flap in delaying the stall in the present investigation was not as great as in some previous investigations because the flap used was smaller than that used previously. The wing stall resulted in an appreciable reduction of aileron effectiveness during the transition. Out of ground effect the low horizontal tail did not appear to be in an adverse flow field as had been expected and showed no erratic changes in effectiveness; however, in ground effect a large nose-down moment was experienced by the model. In general, the lateral aerodynamic data indicate that the configuration is directionally stable and possesses positive dihedral effect throughout the transition, and the data show no signs of erratic flow at the vertical tails.

  6. Aerodynamics of Sounding-Rocket Geometries

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1982-01-01

    Theoretical aerodynamics program TAD predicts aerodynamic characteristics of vehicles with sounding-rocket configurations. These slender, Axisymmetric finned vehicles have a wide range of aeronautical applications from rockets to high-speed armament. TAD calculates characteristics of separate portions of vehicle, calculates interference between portions, and combines results to form total vehicle solution.

  7. Chaff Aerodynamics

    DTIC Science & Technology

    1975-11-01

    further improve the contrast all of the interior surfaces of the test chamber are painted flat black and the bac!-,ground walls in view of the cameras...to be adequate to eliminate wall effects on the chaff aerodynamics. Secondly, the chamber air mass had to be sufficiently small that it would damp out...independently- supported special rotating-shutter system to "strobe" the dipole images. The integral shutter in each lens assembly is also retained for

  8. Hurricane Isaac: A Longitudinal Analysis of Storm Characteristics and Power Outage Risk.

    PubMed

    Tonn, Gina L; Guikema, Seth D; Ferreira, Celso M; Quiring, Steven M

    2016-10-01

    In August 2012, Hurricane Isaac, a Category 1 hurricane at landfall, caused extensive power outages in Louisiana. The storm brought high winds, storm surge, and flooding to Louisiana, and power outages were widespread and prolonged. Hourly power outage data for the state of Louisiana were collected during the storm and analyzed. This analysis included correlation of hourly power outage figures by zip code with storm conditions including wind, rainfall, and storm surge using a nonparametric ensemble data mining approach. Results were analyzed to understand how correlation of power outages with storm conditions differed geographically within the state. This analysis provided insight on how rainfall and storm surge, along with wind, contribute to power outages in hurricanes. By conducting a longitudinal study of outages at the zip code level, we were able to gain insight into the causal drivers of power outages during hurricanes. Our analysis showed that the statistical importance of storm characteristic covariates to power outages varies geographically. For Hurricane Isaac, wind speed, precipitation, and previous outages generally had high importance, whereas storm surge had lower importance, even in zip codes that experienced significant surge. The results of this analysis can inform the development of power outage forecasting models, which often focus strictly on wind-related covariates. Our study of Hurricane Isaac indicates that inclusion of other covariates, particularly precipitation, may improve model accuracy and robustness across a range of storm conditions and geography.

  9. A Longitudinal Study of Speech Perception Skills and Device Characteristics of Adolescent Cochlear Implant Users

    PubMed Central

    Robinson, Elizabeth J.; Davidson, Lisa S.; Uchanski, Rosalie M.; Brenner, Christine M.; Geers, Ann E.

    2012-01-01

    Background For pediatric cochlear implant (CI) users, CI processor technology, map characteristics and fitting strategies are known to have a substantial impact on speech perception scores at young ages. It is unknown whether these benefits continue over time as these children reach adolescence. Purpose To document changes in CI technology, map characteristics, and speech perception scores in children between elementary grades and high school, and to describe relations between map characteristics and speech perception scores over time. Research Design A longitudinal design with participants 8–9 years old at session 1 and 15–18 years old at session 2. Study Sample Participants were 82 adolescents with unilateral CIs, who are a subset of a larger longitudinal study. Mean age at implantation was 3.4 years (range: 1.7 – 5.4), and mean duration of device use was 5.5 years (range: 3.8–7.5) at session 1 and 13.3 years (range: 10.9–15) at session 2. Data Collection and Analysis Speech perception tests at sessions 1 and 2 were the Lexical Neighborhood word Test (LNT-70) and Bamford-Kowal-Bench sentences in quiet (BKB-Q), presented at 70 dB SPL. At session 2, the LNT was also administered at 50 dB SPL (LNT-50) and BKB sentences were administered in noise with a +10 dB SNR (BKB-N). CI processor technology type and CI map characteristics (coding strategy, number of electrodes, map threshold levels [T levels], and map comfort levels [C levels]) were obtained at both sessions. Electrical dynamic range [EDR] was computed [C level – T level], and descriptive statistics, correlations, and repeated-measures ANOVAs were employed. Results Participants achieved significantly higher LNT and BKB scores, at 70 dB SPL, at ages 15-18 than at ages 8-9 years. Forty-two participants had 1-3 electrodes either activated or deactivated in their map between test sessions, and 40 had no change in number of active electrodes (mean change: -0.5; range: -3 to +2). After conversion from

  10. Aerodynamic interactions between a 1/6 scale helicopter rotor and a body of revolution

    NASA Technical Reports Server (NTRS)

    Betzina, M. D.; Shinoda, P.

    1982-01-01

    A wind-tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24-m-diam, two bladed helicopter rotor and a body of revolution. The objective was to determine the interaction of the body on the rotor performance and the effect of the rotor on the body aerodynamics for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body nose geometry. Results show that a body of revolution near the rotor can produce significant favorable or unfavorable effects on rotor performance, depending on the operating condition. Body longitudinal aerodynamic characteristics are significantly modified by the presence of an operating rotor and hub.

  11. Longitudinal development of anthropometric and physical characteristics within academy rugby league players.

    PubMed

    Till, Kevin; Jones, Ben; Darrall-Jones, Josh; Emmonds, Stacey; Cooke, Carlton

    2015-06-01

    The purpose of this study was to evaluate the annual and long-term (i.e., 4 years) development of anthropometric and physical characteristics in academy (16-20 years) rugby league players. Players were assessed at the start of preseason over a 6-year period and were required to be assessed on consecutive years to be included in the study (Under 16-17, n = 35; Under 17-18, n = 44; Under 18-19, n = 35; Under 19-20, n = 16). A subset of 15 players were assessed for long-term changes over 4 years (Under 16-19). Anthropometric (height, body mass, sum of 4 skinfolds) and physical (10- and 20-m sprint, 10-m momentum, vertical jump, yo-yo intermittent recovery test level 1, 1 repetition maximum [1RM] squat, bench press, and prone row) assessments were collected. Paired t-tests and repeated measures analysis of variance demonstrated significant annual (e.g., body mass, U16 = 76.4 ± 8.4, U17 = 81.3 ± 8.3 kg; p < 0.001, d = 0.59) and long-term (e.g., vertical jump, Under 16 = 44.1 ± 3.8, Under 19 = 52.1 ± 5.3 cm; p < 0.001, d = 1.74) changes in anthropometric and physical characteristics. Greater percentage changes were identified between the Under 16-17 age categories compared with the other ages (e.g., 1RM squat, U16-17 = 22.5 ± 19.5 vs. U18-19 = 4.8 ± 6.4%). Findings demonstrate the annual and long-term development of anthropometric and physical characteristics in academy rugby league players establishing greater changes occur at younger ages upon the commencement of a structured training program within an academy. Coaches should understand the long-term development of physical characteristics and use longitudinal methods for monitoring and evaluating player performance and development.

  12. The aerodynamic and acoustic characteristics of an over-the-wing target-type thrust reverser model

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.

    1976-01-01

    A static test of a large-scale, over-the-wing (OTW) powered-lift model was performed. The OTW propulsion system had been modified to incorporate a simple target-type thrust reverser as well as the normal rectangular OTW exhaust nozzle. Tests were performed in both the reverse thrust and approach configurations. The thrust reverser noise created by jet turbulence mixing and the OTW approach noise were both low frequency and broadband. When scaled to a 45,400-kg (100,000-lb) aircraft, the thrust reverser and approach configurations produced peak 152-m (500-ft) sideline perceived noise levels of 110 and 105 PNdB, respectively. The aerodynamic performance of the model showed that 50% or greater reverser effectiveness can be achieved without experiencing ingestion of exhaust gas or ground debris into the engine inlets.

  13. Unsteady aerodynamic characteristics of a fighter model undergoing large-amplitude pitching motions at high angles of attack

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Shah, Gautam H.

    1990-01-01

    The effects of harmonic or constant-rate-ramp pitching motions (giving angles of attack from 0 to 75 deg) on the aerodynamic performance of a fighter-aircraft model with highly swept leading-edge extensions are investigated experimentally in the NASA Langley 12-ft low-speed wind tunnel. The model configuration and experimental setup are described, and the results of force and moment measurements and flow visualizations are presented graphically and discussed in detail. Large force overshoots and hysteresis are observed and attributed to lags in vortical-flow development and breakup. The motion variables have a strong influence on the persistence of dynamic effects, which are found to affect pitch-rate capability more than flight-path turning performance.

  14. Space shuttle orbiter trimmed center-of-gravity extension study. Volume 5: Effects of configuration modifications on the aerodynamic characteristics of the 140A/B orbiter at Mach numbers of 2.5, 3.95 and 4.6

    NASA Technical Reports Server (NTRS)

    Phillips, W. P.; Fournier, R. H.

    1979-01-01

    Supersonic aerodynamic characteristics are presented for the 140A/B space shuttle orbiter configuration (0.010 scale) and for the configuration modified to incorporate geometry changes in the wing planform fillet region. The modifications designed to extend the orbiter's longitudinal trim capability to more forward center-of-gravity locations, included reshaping of the baseline wing planform fillet and adding canards. The investigation was made in the high Mach number test section of the Langley Unitary Plan Wind Tunnel at a Reynolds number of approximately 2.2 million based on fuselage reference length. The angle-of-attack range for the investigation extended from -1 deg to 31 deg. Data were obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.

  15. Aerodynamic characteristics of some modified conical bodies with low lift-drag ratios at Mach numbers of 2.30 and 4.63

    NASA Technical Reports Server (NTRS)

    Davenport, E. E.

    1972-01-01

    A wind-tunnel investigation was conducted at Mach numbers of 2.30 and 4.63 to determine the static aerodynamic characteristics of three 60 deg half-angle cone models. Configuration 1 was obtained by raking off a symmetrical cone at a base angle of 6.15 deg, and configuration 2 and 3 were obtained by adding flaps to a symmetrical cone. The models were tested at angles of attack from about -5 deg to about 20 deg at roll angles of 0 deg to -180 deg and at a freestream Reynolds number of 1.09 x one million, based on body diameter. The results showed that all three configurations produced finite values of lift-drag ratio useful for lifting planetary entry. All three configurations exhibited increases in yawing moment and side force with roll angle; thus, the capability for lateral trajectory control is provided.

  16. Reynolds number effects on the aerodynamic characteristics of irregular planform wings at Mach number 0.3. [in the Ames 12 ft pressure wind tunnel

    NASA Technical Reports Server (NTRS)

    Kruse, R. L.; Lovette, G. H.; Spencer, B., Jr.

    1977-01-01

    The subsonic aerodynamic characteristics of a series of irregular planform wings were studied in wind tunnel tests conducted at M = 0.3 over a range of Reynolds numbers from 1.6 million to 26 million/m. The five basic wing planforms varied from a trapezoidal to a delta shape. Leading edge extensions, added to the basic shape, varied in approximately 5 deg increments from the wing leading edge sweep-back angle to a maximum 80 deg. Most of the tests were conducted using an NACA 0008 airfoil section with grit boundary layer trips. Tests were also conducted using an NACA 0012 airfoil section and an 8% thick wedge. In addition, the effect of free transition (no grit) was investigated. A body was used on all models.

  17. PREFACE: Aerodynamic sound Aerodynamic sound

    NASA Astrophysics Data System (ADS)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  18. Longitudinal and Local Variability in Streambed Habitat Characteristics, Upper Green River, Kentucky

    NASA Astrophysics Data System (ADS)

    Kenworthy, S. T.

    2006-05-01

    The Upper Green River in south-central Kentucky is one of the most biologically diverse waterways in the United States and supports populations of several threatened and endangered species. A combination of bed material sampling, benthic macroinvertebrate sampling, and analysis of hydrologic records was undertaken to evaluate riffle and landscape scale relationships between streambed habitat variability and benthic community characteristics. Streambed material samples were collected from riffles and bars at 12 sites along a 200 km segment of the main channel between Green River Lake and Lock and Dam #6 below Mammoth Cave National Park. At five of these mainstem sites, benthic macroinvertebrates were collected from 12 patches in a nested quadrat arrangement. Field and lab sieving was used to quantify the size distribution of the bed material from each patch sampled for benthic invertebrates. Additional sediment samples were collected from major tributaries along this portion of the river to characterize these sources of bed material to the mainstem. At the landscape scale, the sand content of the bed material increased downstream from <5% to >35% as a result of tributary inputs and the local hydraulic effects of the navigation dam. Along with this geographic variation in fine sediment content, the median grain size decreased by a factor of six over the length of the study segment. At the scale of individual sampled riffles, sand content and median grain size typically varied among sampled patches by a factor of two or three. These spatial patterns, along with decreasing influence of flow regulation and increasing peak flows in the lower reaches of the study segment, suggest that the frequency and intensity of streambed mobilization also increase downstream. These patterns in streambed habitat heterogeneity and stability are potentially important influences on benthic population densities and on longitudinal patterns in macroinvertebrate community composition.

  19. Characteristics of azathioprine use and cessation in a longitudinal lupus cohort

    PubMed Central

    Croyle, Lucy; Hoi, Alberta; Morand, Eric F

    2015-01-01

    Objective Guidelines for azathioprine (AZA) use in systemic lupus erythematosus (SLE), including indications for initiation and cessation, are lacking. Clinical decision-making could be improved if reasons for cessation of AZA treatment were standardised. Methods We determined the characteristics of AZA use in a cohort of patients with SLE and evaluated reasons for AZA cessation. Patients with SLE in a single centre had longitudinal recording of disease activity (Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI)-2k), laboratory investigations and treatment from 2007 to 2012. Results Of 183 patients studied, 67 used AZA on at least one occasion. There was no significant difference between AZA users and non-users in age or American College of Rheumatology criteria. Compared with those not treated with AZA, patients treated with AZA had higher disease activity (time-adjusted mean SLEDAI 5.2±0.3 vs 3.8±0.3, p=0.0028) and damage (Systemic Lupus International Collaborating Clinics (SLICC)-SDI 1.6±0.3 vs 1.2±0.1, p=0.0445), and were more likely to have a positive dsDNA (p=0.0130) and receive glucocorticoids (p<0.0001). AZA therapy was ceased in 30/67 (45%) patients. The predominant reasons for cessation were treatment de-escalation 14 (47%), treatment failure 12 (40%) and toxicity 3 (10%). AZA was switched to mycophenolate mofetil (MMF) in 9/12 (75%) of treatment failures, and this choice was strongly associated with active lupus nephritis. Conclusions AZA toxicity was uncommon, and many patients ceased therapy in the context of treatment de-escalation. However, the frequent development of active lupus nephritis requiring MMF suggests the need to distinguish refractoriness, under-treatment and non-adherence to AZA in patients with SLE. These findings suggest that future studies of AZA metabolite measurement could prove valuable in the management of SLE. PMID:26322237

  20. Longitudinal aerodynamic performance of a series of power-law and minimum wave drag bodies at Mach 6 and several Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.

    1974-01-01

    Experimental data have been obtained for two series of bodies at Mach 6 and Reynolds numbers, based on model length, from 1.4 million to 9.5 million. One series consisted of axisymmetric power-law bodies geometrically constrained for constant length and base diameter with values of the exponent n of 0.25, 0.5, 0.6, 0.667, 0.75, and 1.0. The other series consisted of positively and negatively cambered bodies of polygonal cross section, each having a constant longitudinal area distribution conforming to that required for minimizing zero-lift wave drag at hypersonic speeds under the geometric constraints of given length and volume. At the highest Reynolds number, the power-law body for minimum drag is blunter (exponent n lower) than predicted by inviscid theory (n approximately 0.6 instead of n = 0.667); however, the peak value of lift-drag ratio occurs at n = 0.667. Viscous effects were present on the bodies of polygonal cross section but were less pronounced than those on the power-law bodies. The trapezoidal bodies with maximum width at the bottom were found to have the highest maximum lift-drag ratio and the lowest mimimum drag.

  1. Low Reynolds Number Aerodynamic Characteristics of Several Airplane Configurations Designed to Fly in the Mars Atmosphere at Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Re, Richard J.; Pendergraft, Odis C., Jr.; Campbell, Richard L.

    2006-01-01

    A 1/4-scale wind tunnel model of an airplane configuration developed for short duration flight at subsonic speeds in the Martian atmosphere has been tested in the Langley Research Center Transonic Dynamics Tunnel. The tunnel was pumped down to extremely low pressures to represent Martian Mach/Reynolds number conditions. Aerodynamic data were obtained and upper and lower surface wind pressures were measured at one spanwise station on some configurations. Three unswept wings of the same planform but different airfoil sections were tested. Horizontal tail incidence was varied as was the deflection of plain and split trailing-edge flaps. One unswept wing configuration was tested with the lower part of the fuselage removed and the vertical/horizontal tail assembly inverted and mounted from beneath the fuselage. A sweptback wing was also tested. Tests were conducted at Mach numbers from 0.50 to 0.90. Wing chord Reynolds number was varied from 40,000 to 100,000 and angles of attack and sideslip were varied from -10deg to 20deg and -10deg to 10deg, respectively.

  2. Effect of Target-type Thrust Reverser on Transonic Aerodynamic Characteristics of a Single-engine Fighter Model

    NASA Technical Reports Server (NTRS)

    Swihert, John M

    1958-01-01

    A brief investigation of a target-type thrust reverser on a single-engine fighter model has been conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.20 to 1.05.At Mach numbers of 0.80, 0.92, and 1.05, a hydrogen peroxide turbojet-engine simulator was operated with the thrust reverser extended. The angle of attack was varied from 0 degrees to 5 degrees at these Mach numbers. The Reynolds number of the free stream, based on the mean aerodynamic chord, was about 5 x 10(6). It was estimated that reversed jet operations separated the model boundary-layer flow over the upper surface of the horizontal tail and upper part of the afterbody. This resulted in a positive pitch increment due to reversed jet operation. Jet-on operation also tended to stabilize the severe lateral oscillations which occurred with the reverser extended and the jet off. It appeared that these jet-off oscillations were the result of an alternating separation and reattachment of the flow on the rearmost portions of the fuselage afterbody.

  3. Influence of the down-draft secondary air on the furnace aerodynamic characteristics of a down-fired boiler

    SciTech Connect

    Feng Ren; Zhengqi Li; Zhichao Chen; Jingjie Wang; Zhao Chen

    2009-05-15

    The operation of down-fired boilers can suffer from problems of high carbon content in the fly ash. This is because horizontally fed secondary air keeps the fuel-rich flow from going deep down into the lower furnace and the recirculation zones in the furnace hopper area are too large. To improve the burnout of coal in down-fired boilers, a retrofit modification was devised and validated. The modification lowered the angle of flow of the secondary air to a down-draft. Experiments were carried out on a single-phase test facility to investigate the influence of down-draft secondary air on the aerodynamic field in the furnace. The depth reached by the fuel-rich flow in the down-furnace, the volume of dead recirculation zone, the angle of the mixed air in the airflow zone of secondary air, and the turbulence intensity in certain cross sections were investigated. The results show when the flow of secondary air was lowered to an optimized angle, the primary air can reach a deeper position in the lower furnace without washing the furnace hopper, and consequently the dead recirculation zone shrinks. The influence of the secondary air ratio distribution on the flow field was also investigated. 6 refs., 13 figs., 5 tabs.

  4. TAD- THEORETICAL AERODYNAMICS PROGRAM

    NASA Technical Reports Server (NTRS)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  5. Methods Used in the NACA Tank for the Investigation of the Longitudinal-Stability Characteristics of Models of Flying Boats

    NASA Technical Reports Server (NTRS)

    Olson, Roland E; Land, Norman S

    1943-01-01

    Report presents the results of tests of longitudinal stability characteristics of models of several flying boats conducted in the NACA Tank No. 1. These investigations were made for the purpose of (1) determining suitable methods for evaluating the stability characteristics of models of flying boats, and (2) determining the design parameters which have an important effect on the porpoising. This report is mainly concerned with the construction of suitable models, the apparatus, and methods used in the tests. The effect of changes in some design parameters is discussed.

  6. Effects of relaxed static longitudinal stability on a single-stage-to-orbit vehicle design

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Wilhite, A. W.

    1979-01-01

    The effects of relaxing longitudinal stability requirements on single stage to orbit space vehicles is studied. A comparison of the mass and performance characteristics of two vehicles, one designed for positive levels of longitudinal stability and the other designed with relaxed stability requirements in a computer aided design process is presented. Both vehicles, required to meet the same mission characteristics are described. Wind tunnel tests, conducted over a Mach number range from 0.3 to 4.63 to verify estimated aerodynamic characteristics, are discussed.

  7. The aerodynamics of small Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Schmitz, F. W.

    1980-01-01

    Aerodynamic characteristics of wing model gliders and bird wings in particular are discussed. Wind tunnel measurements and aerodynamics of small Reynolds numbers are enumerated. Airfoil behavior in the critical transition from laminar to turbulent boundary layer, which is more important to bird wing models than to large airplanes, was observed. Experimental results are provided, and an artificial bird wing is described.

  8. A Longitudinal Examination of Agitation and Resident Characteristics in the Nursing Home

    ERIC Educational Resources Information Center

    Burgio, Louis D.; Park, Nan Sook; Hardin, J. Michael; Sun, Fei

    2007-01-01

    Purpose: Agitation frequently accompanies cognitive decline among nursing home residents. This study used cross-sectional and longitudinal (up to 18 months) methods to examine agitation among profoundly and moderately impaired residents using both staff report and direct observation methods. Design and Methods: The study included participants (N =…

  9. Characteristics of Schools Successful in STEM: Evidence from Two States' Longitudinal Data

    ERIC Educational Resources Information Center

    Hansen, Michael

    2014-01-01

    Present federal education policies promote learning in science, technology, engineering, and mathematics (STEM) and the participation of minority students in these fields. Using longitudinal data on students in Florida and North Carolina, value-added estimates in mathematics and science are generated to categorize schools into performance levels…

  10. An aerodynamic load criterion for airships

    NASA Technical Reports Server (NTRS)

    Woodward, D. E.

    1975-01-01

    A simple aerodynamic bending moment envelope is derived for conventionally shaped airships. This criterion is intended to be used, much like the Naval Architect's standard wave, for preliminary estimates of longitudinal strength requirements. It should be useful in tradeoff studies between speed, fineness ratio, block coefficient, structure weight, and other such general parameters of airship design.

  11. Low-speed aerodynamic characteristics of a highly swept arrow wing configuration with several deflected leading edge concepts

    NASA Technical Reports Server (NTRS)

    Gentry, G. L., Jr.; Coe, P. L., Jr.

    1980-01-01

    The effectiveness of leading edge concepts for minimizing or controlling leading edge flow separation was studied. Emphasis was placed on low speed performance, stability, and control characteristics of configurations with highly swept wings. Simple deflection of the leading edge, a variable camber leading edge system, and a leading edge vortex flow system were among the concepts studied. The data are presented without analysis.

  12. The Aerodynamic Characteristics of Wrap-Around Fins, Including Fold Angle at Mach Numbers from 0.5 to 1.3

    DTIC Science & Technology

    1974-12-20

    PHI (A) 121-132 Aerodynamic Stability Coefficients- MACH CR/D w 1.75, THETA - 112.5 PHI (A) 133-144 Effect of Reynolds Number - Body Alone Aerodynamic...Stability PT (B) 145-146 ;i3 INDEX OF DATA FIGURES (Continued) PLOTTED CONDITIONS COEFFICIENTS TITLE VARYING SCHEDULE PAGE Effect of Step Down Body...THETA 0.0 Configura- (B) 147-148 tion Effect of Roll on Aerodynamic Coef- ficients, CR/D = 1.75, LAMBDA = 46.9 Degrees PHI (B) 149-150 Effect of Roll on

  13. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan B.; Krainak, Michael A.

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064-nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Especially, using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to104 at 10 mHz. The PW-ECLs compactness and low cost make it a candidate to replace traditional Nd:YAGnon-planar ring oscillators and fiber lasers in applications which require a single longitudinal-mode.

  14. Characteristics of the Single-Longitudinal-Mode Planar-Waveguide External Cavity Diode Laser at 1064 nm

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael

    2014-01-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 104 at 10 mHz. The PWECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.

  15. On the Specification of the Damping Ratio and the Characteristic Frequency for the Longitudinal Control of Airplanes

    NASA Astrophysics Data System (ADS)

    Jikuya, Ichiro; Hodaka, Ichijo

    The singular perturbation approach is applied to the longitudinal motion of airplanes, whose linearlized model has well known two-time scale structure in the presence of a slow (phugoid) mode and a fast (short-period) mode. Such a linearlized model is transformed into the singularly perturbed form via scaling of the state. First the flight control systems are separately designed for each mode via state feedback. Then the slow and fast designs are composed, and are applied to the full model. The composite flight control systems are shown to guarantee the damping ratio and the characteristic frequency specified by JIS W 0402.

  16. Characteristics of the single-longitudinal-mode planar-waveguide external cavity diode laser at 1064 nm.

    PubMed

    Numata, Kenji; Alalusi, Mazin; Stolpner, Lew; Margaritis, Georgios; Camp, Jordan; Krainak, Michael

    2014-04-01

    We describe the characteristics of the planar-waveguide external cavity diode laser (PW-ECL). To the best of our knowledge, it is the first butterfly-packaged 1064 nm semiconductor laser that is stable enough to be locked to an external frequency reference. We evaluated its performance from the viewpoint of precision experiments. Using a hyperfine absorption line of iodine, we suppressed its frequency noise by a factor of up to 10(4) at 10 mHz. The PW-ECL's compactness and low cost make it a candidate to replace traditional Nd:YAG nonplanar ring oscillators and fiber lasers in applications that require a single longitudinal mode.

  17. Aerodynamic Characteristics at a Mach Number of 3.10 of Several Fourth-Stage Shapes of the Scout Research Vehicle

    NASA Technical Reports Server (NTRS)

    Jaquet, Byron M.

    1961-01-01

    A wind-tunnel investigation was made at a Mach number of 3.10 (Reynolds number per foot of 16.3 x 10(exp 6) to 16.9 x 10(exp 6)) to determine the aerodynamic characteristics of various modifications of the payload section of the fourth stage of the Scout research vehicle. It was found that, for the combination of stages 3 and 4, increasing the size of the nose of the basic Scout to provide a cylindrical section of the same diameter as the third stage increased the normal-force slope by about 30 percent, the axial force by about 39 percent, and moved the center of pressure forward by about one fourth-stage base diameter. By reducing the diameter of the cylinder, at about one nose length behind the base of the enlarged nose frustum, to that of the basic Scout and thereafter retaining the shape of the basic Scout, the center of pressure was moved rearward by about one-half fourth-stage base diameter at the expense of an additional 19-percent increase in axial force. A spike-hemisphere configuration had the largest forces and moments and the most forward center-of-pressure location of the configurations considered. Except for the axial force and pitching-moment slope, the experimental trends or magnitudes could not be estimated with the desired accuracy by Newtonian or-slender body theory.

  18. Aerodynamic Assessment of Flight-Determined Subsonic Lift and Drag Characteristics of Seven Lifting-Body and Wing-Body Reentry Vehicle Configurations

    NASA Technical Reports Server (NTRS)

    Saltzman, Edwin J.; Wang, K. Charles; Iliff, Kenneth W.

    2002-01-01

    This report examines subsonic flight-measured lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations with truncated bases. The seven vehicles are the full-scale M2-F1, M2-F2, HL-10, X-24A, X-24B, and X-15 vehicles and the Space Shuttle Enterprise. Subsonic flight lift and drag data of the various vehicles are assembled under aerodynamic performance parameters and presented in several analytical and graphical formats. These formats are intended to unify the data and allow a greater understanding than individually studying the vehicles allows. Lift-curve slope data are studied with respect to aspect ratio and related to generic wind-tunnel model data and to theory for low-aspect-ratio platforms. The definition of reference area is critical for understanding and comparing the lift data. The drag components studied include minimum drag coefficient, lift-related drag, maximum lift-to drag ratio, and, where available, base pressure coefficients. The influence of forebody drag on afterbody and base drag at low lift is shown to be related to Hoerner's compilation for body, airfoil, nacelle, and canopy drag. This feature may result in a reduced need of surface smoothness for vehicles with a large ratio of base area to wetted area. These analyses are intended to provide a useful analytical framework with which to compare and evaluate new vehicle configurations of the same generic family.

  19. Effect of Ground Proximity on Aerodynamic Characteristics of Two Horizontal-Attitude Jet Vertical-Take-Off-and-Landing Airplane Models

    NASA Technical Reports Server (NTRS)

    Newsom, William A., Jr.

    1960-01-01

    An investigation has been made to study the effect of ground proximity on the aerodynamic characteristics of two jet vertical-take-off-and-landing airplane models in which the fuselage remains in a horizontal attitude for the take-off and landing. The first model (called the tilt-wing model) had a tilting wing-engine assembly which was set at 90 deg incidence for the take-off and landing. The second model, called the deflected-jet model) had a cascade of retractable turning vanes to deflect the exhaust of the horizontally mounted jet engines downward for vertical take-off and landing while the entire model remained in a horizontal attitude. With the models at various heights above the ground in the take-off and landing configuration, the lift, drag, and pitching moment were measured and tuft surveys were made to determine the flow field caused by the jet exhaust. The tilt-wing model experienced a loss of lift of less than 3 percent near the ground. The deflected-jet model, however, suffered losses in lift as high as 45 percent near the ground because of a low pressure region under the model caused by the entrainment of air by the jet exhaust as it spread out along the ground. This loss in lift for the deflected-jet configuration could probably be reduced to less than 5 percent by the use of a longer landing gear and a high wing location.

  20. Aerodynamic Characteristics of a Circular Cylinder at Mach Number of 6.86 and Angles of Attack up to 90 Degrees

    NASA Technical Reports Server (NTRS)

    Penland, Jim A

    1954-01-01

    Pressure-distribution and force tests of a circular cylinder have been made in the Langley 11-inch hypersonic tunnel at a Mach number of 6.86, a Reynolds number of 129,000 based on diameter, and angles of attack up to 90 degrees. The results are compared with the hypersonic approximation of Grimminger, Williams, and Young and with a simple modification of the Newtonian flow theory. The comparison of experimental results shows that either theory gives adequate general aerodynamic characteristics but that the modified Newtonian theory gives a more accurate prediction of the pressure distribution. The calculated crossflow drag coefficients plotted as a function of crossflow Mach number were found to be in reasonable agreement with similar results obtained from other investigations at lower supersonic Mach numbers. Comparison of the results of this investigation with data obtained at a lower Mach number indicates that the drag coefficient of a cylinder normal to the flow is relatively constant for Mach numbers above about 4.

  1. Aerodynamic characteristics at Mach numbers from 0.33 to 1.20 of a wing-body design concept for a hypersonic research airplane

    NASA Technical Reports Server (NTRS)

    Dillon, J. L.; Pittman, J. L.

    1977-01-01

    An experimental investigation of the static aerodynamic characteristics of a model of one design concept for the proposed National Hypersonic Flight Research Facility was conducted in the Langley 8 foot transonic pressure tunnel. The experiment consisted of configuration buildup from the basic body by adding a wing, center vertical tail, and a three module or six module scramjet engine. The freestream test Mach numbers were 0.33, 0.80, 0.90, 0.95, 0.98, 1.10, and 1.20 at Reynolds numbers per meter ranging from 4.8 x 1 million to 10.4 x 1 million. The test angle of attack range was approximately -4 deg to 22 deg at constant angles of sideslip of 0 deg and 4 deg; the angle of sideslip ranged from about -6 deg to 6 deg at constant angles of attack of 0 deg and 17 deg. The elevons were deflected 0 deg, -10 deg, and -20 deg with rudder deflections of 0 deg and 15.6 deg.

  2. Longitudinal Hydrodynamic Characteristics in Reservoir Tributary Embayments and Effects on Algal Blooms

    PubMed Central

    Dai, Huichao; Mao, Jingqiao; Jiang, Dingguo; Wang, Lingling

    2013-01-01

    Three Gorges Reservoir (TGR) is one of the largest man-made lakes in the world. Since the impoundment in 2003, however, algal blooms have been often observed in the tributary embayments. To control the algal blooms, a thorough understanding of the hydrodynamics (e.g., flow regime, velocity gradient, and velocity magnitude and direction) in the tributary embayments is particularly important. Using a calibrated three-dimensional hydrodynamic model, we carried out a hydrodynamic analysis of a typical tributary embayment (i.e., Xiangxi Bay) with emphasis on the longitudinal patterns. The results show distinct longitudinal gradients of hydrodynamics in the study area, which can be generally characterized as four zones: riverine, intermediate, lacustrine, and mainstream influenced zones. Compared with the typical longitudinal zonation for a pure reservoir, there is an additional mainstream influenced zone near the mouth due to the strong effects of TGR mainstream. The blooms are prone to occur in the intermediate and lacustrine zones; however, the hydrodynamic conditions of riverine and mainstream influence zones are not propitious for the formation of algal blooms. This finding helps to diagnose the sensitive areas for algal bloom occurrence. PMID:23874534

  3. Low-speed aerodynamic characteristics of a 13-percent-thick airfoil section designed for general aviation applications

    NASA Technical Reports Server (NTRS)

    Mcghee, R. J.; Beasley, W. D.; Somers, D. M.

    1975-01-01

    Wind-tunnel tests were conducted to determine the low-speed section characteristics of a 13 percent-thick airfoil designed for general aviation applications. The results were compared with NACA 12 percent-thick sections and with the 17 percent-thick NASA airfoil. The tests were conducted ovar a Mach number range from 0.10 to 0.35. Chord Reynolds numbers varied from about 2,000,000 to 9,000,000.

  4. Experimental aerodynamic characteristics at Mach numbers from 0.60 to 2.70 of two supersonic cruise fighter configurations

    NASA Technical Reports Server (NTRS)

    Dollyhigh, S. M.

    1979-01-01

    Two 0.085-scale full span wind-tunnel models of a Mach 1.60 design supercruiser configuration were tested at Mach numbers from 0.60 to 2.70. One model incorporated a varying dihedral (swept-up) wing to obtain the desired lateral-directional characteristics; the other incorporated more conventional twin vertical tails. The data from the wind-tunnel tests are presented without analysis.

  5. The effect of wall interference upon the aerodynamic characteristics of an airfoil spanning a closed-throat circular wind tunnel

    NASA Technical Reports Server (NTRS)

    Vincenti, Walter G; Graham, Donald J

    1946-01-01

    The results of a theoretical and experimental investigation of wall interference for an airfoil spanning a closed-throat circular wind tunnel are presented. Analytical equations are derived which relate the characteristics of an airfoil in the tunnel at subsonic speeds with the characteristics in free air. The analysis takes into consideration the effect of fluid compressibility and is based upon the assumption that the chord of the airfoil is small as compared with the diameter of the tunnel. The development is restricted to an untwisted, constant-chord airfoil spanning the middle of the tunnel. Brief theoretical consideration is also given to the problem of choking at high speeds. Results are then presented of tests to determine the low-speed characteristics of an NACA 4412 airfoil for two chord-diameter ratios. While, on the basis of these experiments, no appraisal is possible of the accuracy of the corrections at high speeds, the data indicate that at low Mach numbers the analytical results are valid, even for relatively large values of the chord-diameter ratio.

  6. Configuration Aerodynamics: Past - Present - Future

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Agrawal, Shreekant; Bencze, Daniel P.; Kulfan, Robert M.; Wilson, Douglas L.

    1999-01-01

    The Configuration Aerodynamics (CA) element of the High Speed Research (HSR) program is managed by a joint NASA and Industry team, referred to as the Technology Integration Development (ITD) team. This team is responsible for the development of a broad range of technologies for improved aerodynamic performance and stability and control characteristics at subsonic to supersonic flight conditions. These objectives are pursued through the aggressive use of advanced experimental test techniques and state of the art computational methods. As the HSR program matures and transitions into the next phase the objectives of the Configuration Aerodynamics ITD are being refined to address the drag reduction needs and stability and control requirements of High Speed Civil Transport (HSCT) aircraft. In addition, the experimental and computational tools are being refined and improved to meet these challenges. The presentation will review the work performed within the Configuration Aerodynamics element in 1994 and 1995 and then discuss the plans for the 1996-1998 time period. The final portion of the presentation will review several observations of the HSR program and the design activity within Configuration Aerodynamics.

  7. Aerodynamic characteristics of an improved 10-percent-thick NASA supercritical airfoil. [Langley 8 foot transonic tunnel tests

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1974-01-01

    Refinements in a 10 percent thick supercritical airfoil produced improvements in the overall drag characteristics at normal force coefficients from about 0.30 to 0.65 compared with earlier supercritical airfoils which were developed for a normal force coefficient of 0.7. The drag divergence Mach number of the improved supercritical airfoil (airfoil 26a) varied from approximately 0.82 at a normal force coefficient to of 0.30, to 0.78 at a normal force coefficient of 0.80 with no drag creep evident. Integrated section force and moment data, surface pressure distributions, and typical wake survey profiles are presented.

  8. [Effect of work and organizational characteristics on workers in call centers: longitudinal study in an information service company].

    PubMed

    Tei, Maki; Yamazaki, Yoshihiko

    2005-09-01

    To investigate the effect of work and organizational characteristics on workers' health status, with job dissatisfaction and intentions to leave as "organizational health", we conducted a longitudinal study using a questionnaire survey in call centers of an information service company from July to August in 2001 and 2002. The response rates were 96.2% and 92.0%, respectively. For the statistical analysis, the completed data of 296 technical support staff, which was more than 80% of the data, was used. We identified seven subscales composed of 29 items of work and organizational characteristics as scales of "organizational characteristics" and "work and workplace characteristics". The results of hierarchical multiple regression analysis showed quantitative and qualitative job-overload influenced psychological health status and poor supervisor support influenced all outcome variables. Moreover, "organizational characteristics" influenced cumulative fatigue and job dissatisfaction, showing an indirect effect with poor supervisor support and coworker support. This study suggests that measures of work and organizational characteristics are useful interventions for "organizational health".

  9. A Pressure-distribution Investigation of the Aerodynamic Characteristics of a Body of Revolution in the Vicinity of a Reflection Plane at Mach Numbers of 1.41 and 2.01

    NASA Technical Reports Server (NTRS)

    Gapcynski, John P; Carlson, Harry W

    1955-01-01

    The changes in the aerodynamic characteristics of a body of revolution with a fineness ratio of 8 have been determined at Mach numbers of 1.41 and 2.01, a Reynolds number, based on body length, of 4.54 x 10 to the 6th power, and angles of incidence of 0 degrees and plus or minus 3 degrees as the position of the body is varied with respect to a reflection plane. The data are compared with theoretical results.

  10. Effect of Groundboard Height on the Aerodynamic Characteristics of a Lifting Circular Cylinder Using Tangential Blowing from Surface Slots for Lift Generation

    NASA Technical Reports Server (NTRS)

    Lockwood, Vernard E.

    1961-01-01

    A wind-tunnel investigation has been made to determine the ground effect on the aerodynamic characteristics of a lifting circular cylinder using tangential blowing from surface slots to generate high lift coefficients. The tests were made on a semispan model having a length 4 times the cylinder diameter and an end plate of 2.5 diameters. The tests were made at low speeds at a Reynolds number of approximately 290,000, over a range of momentum coefficients from 0.14 to 4.60, and over a range of groundboard heights from 1.5 to 10 cylinder diameters. The investigation showed an earlier stall angle and a large loss of lift coefficient as the groundboard was brought close to the cylinder when large lift coefficients were being generated. For example, at a momentum coefficient of 4.60 the maximum lift coefficient was reduced from a value of 20.3 at a groundboard height of 10 cylinder diameters to a value of 8.7 at a groundboard height of 1.5 cylinder diameters. In contrast to this there was little effect on the lift characteristics of changes in groundboard height when lift coefficients of about 4.5 were being generated. At a height of 1.5 cylinder diameters the drag coefficients generally increased rapidly when the slot position angle for maximum lift was exceeded. Slightly below the slot position angle for maximum lift, the groundboard had a beneficial effect, that is, the drag for a given lift was less near the groundboard than away from the groundboard. The variation of maximum circulation lift coefficient (maximum lift coefficient minus momentum coefficient) obtained in this investigation is in general agreement with a theory developed for a jet-flap wing which assumes that the loss in circulation is the result of blockage of the main stream beneath the wing.

  11. Aerodynamic characteristics of a hypersonic research airplane concept having a 70 degree swept double delta wing at Mach numbers from 1.50 to 2.86

    NASA Technical Reports Server (NTRS)

    Penland, J. A.; Fournier, R. H.; Marcum, D. C., Jr.

    1975-01-01

    An experimental investigation of the static longitudinal, lateral, and directional stability characteristics of a hypersonic research airplane concept having a 70 deg swept double-delta wing was conducted in the Langley unitary plan wind tunnel. The configuration variables included wing planform, tip fins, center fin, and scramjet engine modules. The investigation was conducted at Mach numbers from 1.50 to 2.86 and at a constant Reynolds number, based on fuselage length, of 3,330,000. Tests were conducted through an angle-of-attack range from about -4 deg to 24 deg with angles of sideslip of 0 deg and 3 deg and at elevon deflections of 0, -10, and -20 deg. The complete configuration was trimmable up to angles of attack of about 22 deg with the exception of regions at low angles of attack where positive elevon deflections should provide trim capability. The angle-of-attack range for which static longitudinal stability also exists was reduced at the higher Mach numbers due to the tendency of the complete configuration to pitch up at the higher angles of attack. The complete configuration was statically stable directionally up to trimmed angles of attack of at least 20 deg for all Mach numbers M with the exception of a region near 4 deg at M = 2.86 and exhibited positive effective dihedral at all positive trimmed angles of attack.

  12. A longitudinal study of multidimensional performance characteristics related to physical capacities in youth handball.

    PubMed

    Matthys, Stijn P J; Vaeyens, Roel; Fransen, Job; Deprez, Dieter; Pion, Johan; Vandendriessche, Joric; Vandorpe, Barbara; Lenoir, Matthieu; Philippaerts, Renaat

    2013-01-01

    Longitudinal research provides valuable information about change and progress towards elite performance. Unfortunately, there is a lack of longitudinal research in handball. In this study, 94 youth handball players (oldest group: n = 41; age 15-17 and youngest group: n = 53; age 13-15) were followed over a three-year period. Repeated measures ANCOVA was conducted to reveal longitudinal changes in anthropometry and physical performance between elite and non-elite players, controlling for maturation. Maturation effects were found for anthropometry (P < 0.01) and some physical performance measures in strength and speed (P < 0.05). The lack of significant interaction effects revealed that during the three years of the study the elite players did not improve their physical performance more rapidly than the non-elites. Furthermore, they had a similar anthropometric profile to the non-elites. Elite players performed better on the Yo-Yo Intermittent Recovery test (P < 0.01; on average 24.0 in the youngest group and 25.2% in the oldest group over the three years) and on the speed and coordination items (P < 0.05; shuttle run: 3.6 and 5.1%; cross hopping: 11.0 and 14.8%, handball-specific shuttle run: 7.6 and 7.7%; slalom dribble test: 10.7 and 8.9%; sprint 30 m: 4.9 and 3.9%). Additionally, Yo-Yo performance and coordination with and without a ball were the most discriminating factors between the playing levels. In conclusion, youth coaches and scouts within team handball should recognise the importance of good skills and an excellent endurance for talent identification purposes.

  13. Reciprocal Associations Among Maternal and Child Characteristics of At-Risk Families: A Longitudinal Actor-Partner Interdependence Model.

    PubMed

    Claridge, Amy M; Wojciak, Armeda S; Lettenberger-Klein, Cassandra G; Pettigrew, Haley V; McWey, Lenore M; Chaviano, Casey L

    2015-07-01

    Researchers have found linear associations among maternal and child characteristics. However, family systems theorists suggest that relationships are more complex and family members are interdependent. We used actor-partner interdependence modeling to unravel associations among maternal and child characteristics to predict outcomes in adolescence. We used data from 361 mother-child dyads from the Longitudinal Studies of Child Abuse and Neglect and found both actor and partner effects. Maternal depression and history of victimization were associated with children's later reports of lower mother-adolescent relationship quality. Children's perceptions of relationship quality were also associated with mothers' later depressive symptoms and perceptions of relationship quality. Overall, results highlighted interdependence among mothers and their children over time. We discuss implications for marriage and family therapists.

  14. Transonic Aerodynamic Characteristics of a Model of a Proposed Six-Engine Hull-Type Seaplane Designed for Supersonic Flight

    NASA Technical Reports Server (NTRS)

    Wornom, Dewey E.

    1960-01-01

    Force tests of a model of a proposed six-engine hull-type seaplane were performed in the Langley 8-foot transonic pressure tunnel. The results of these tests have indicated that the model had a subsonic zero-lift drag coefficient of 0.0240 with the highest zero-lift drag coefficient slightly greater than twice the subsonic drag level. Pitchup tendencies were noted for subsonic Mach numbers at relatively high lift coefficients. Wing leading-edge droop increased the maximum lift-drag ratio approximately 8 percent at a Mach number of 0.80 but this effect was negligible at a Mach number of 0.90 and above. The configuration exhibited stable lateral characteristics over the test Mach number range.

  15. Effect of dynamic and thermal prehistory on aerodynamic characteristics and heat transfer behind a sudden expansion in a round tube

    NASA Astrophysics Data System (ADS)

    Terekhov, V. I.; Bogatko, T. V.

    2017-03-01

    The results of a numerical study of the influence of the thicknesses of dynamic and thermal boundary layers on turbulent separation and heat transfer in a tube with sudden expansion are presented. The first part of this work studies the influence of the thickness of the dynamic boundary layer, which was varied by changing the length of the stabilization area within the maximal extent possible: from zero to half of the tube diameter. In the second part of the study, the flow before separation was hydrodynamically stabilized and the thermal layer before the expansion could simultaneously change its thickness from 0 to D1/2. The Reynolds number was varied in the range of {Re}_{{{{D}}1 }} = 6.7 \\cdot 103 {{to}} 1.33 \\cdot 105, and the degree of tube expansion remained constant at ER = ( D 2/ D 1)2 = 1.78. A significant effect of the thickness of the separated boundary layer on both dynamic and thermal characteristics of the flow is shown. In particular, it was found out that with an increase in the thickness of the boundary layer the recirculation zone increases and the maximal Nusselt number decreases. It was determined that the growth of the heat layer thickness does not affect the hydrodynamic characteristics of the flow after separation but does lead to a reduction of heat transfer intensity in the separation area and removal of the coordinates of maximal heat transfer from the point of tube expansion. The generalizing dependence for the maximal Nusselt number at various thermal layer thicknesses is given. Comparison with experimental data confirmed the main trends in the behavior of heat and mass transfer processes in separated flows behind a step with different thermal prehistories.

  16. Classical Aerodynamic Theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  17. Aerodynamics at NASA JSC

    NASA Technical Reports Server (NTRS)

    Vicker, Darby

    2006-01-01

    A viewgraph presentation describing aerodynamics at NASA Johnson Space Center is shown. The topics include: 1) Personal Background; 2) Aerodynamic Tools; 3) The Overset Computational Fluid Dynamics (CFD) Process; and 4) Recent Applicatoins.

  18. Performance and test section flow characteristics of the National Full-Scale Aerodynamics Complex 80- by 120-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Zell, Peter T.

    1993-01-01

    Results from the performance and test section flow calibration of the 80- by 120-Foot Wind Tunnel are presented. Measurements indicating the 80- by 120-ft test section flow quality were obtained throughout the tunnel operational envelope and for atmospheric wind speeds up to approximately 20 knots. Tunnel performance characteristics and a dynamic pressure system calibration were also documented during the process of mapping the test section flow field. Experimental results indicate that the test section flow quality is relatively insensitive to dynamic pressure and the level of atmospheric winds experienced during the calibration. The dynamic pressure variation in the test section is within +/-75 percent of the average. The axial turbulence intensity is less than 0.5 percent up to the maximum test section speed of 100 knots, and the vertical and lateral flow angle variations are within +/-5 deg and +/-7 deg, respectively. Atmospheric winds were found to affect the pressure distribution in the test section only at high ratios of wind speed to test section speed.

  19. Quiet Clean Short-Haul Experimental Engine (QCSEE) aerodynamic characteristics of 30.5 centimeter diameter inlets

    NASA Technical Reports Server (NTRS)

    Paul, D. L.

    1975-01-01

    A low speed test program was conducted in a 9- by 15-foot V/STOL wind tunnel to investigate internal performance characteristics and determine key design features required for an inlet to meet the demanding operational conditions of the QCSEE application. Four models each having a design average throat Mach number of 0.79 were tested over a range of incidence angle, throat Mach number, and freestream velocity. Principal design variable was internal lip diameter ratio. Stable, efficient inlet performance was found to be feasible at and beyond the 50 deg incidence angle required by the QCSEE application at its 41.2 m/sec (80 knot) nominal takeoff velocity, through suitably designed inlet lip and diffuser components. Forebody design was found to significantly impact flow stability via nose curvature. Measured inlet wall pressures were used to select a location for the inlet throat Mach number control's static pressure port that properly balanced the conflicting demands of relative insensitivity to flow incidence and sufficiently high response to changes in engine flow demand.

  20. Longitudinal Stability and Control Characteristics at Transonic Speeds of a 1/30-Scale Model of the Republic XF-103 Airplane

    NASA Technical Reports Server (NTRS)

    Luoma, Arvo A.

    1954-01-01

    The longitudinal stability and control characteristics of a 1/30-scale model of the Republic XF-103 airplane were investigated in the Langley 8-foot transonic tunnel. The effect of speed brakes located at the end of the fuselage was also investigated. The main part of the investigation was made with internal flow in the model, but some data were obtained with no internal flow. The longitudinal stability and control at transonic-speeds appeared satisfactory. The transonic drag rise was small. The speed brakes had no adverse effects on longitudinal stability.

  1. The Longitudinal Stability, Control Effectiveness, and Control Hinge Moment Characteristics Obtained from a Flight Investigation of a Canard Missile Configuration at Transonic and Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Niewald, Roy J; Moul, Martin T

    1950-01-01

    A 60 degree delta wing canard missile configuration was flight-tested at the Langley pilotless aircraft research station at Wallops Island, Va. The results include the longitudinal stability derivatives, control effectiveness, drag characteristics, and control-surface hinge-moment characteristics for a Mach number range of 0.7 to 1.45.

  2. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Williams, Louis J.; Hessenius, Kristin A.; Corsiglia, Victor R.; Hicks, Gary; Richardson, Pamela F.; Unger, George; Neumann, Benjamin; Moss, Jim

    1992-01-01

    The annual accomplishments is reviewed for the Aerodynamics Division during FY 1991. The program includes both fundamental and applied research directed at the full spectrum of aerospace vehicles, from rotorcraft to planetary entry probes. A comprehensive review is presented of the following aerodynamics elements: computational methods and applications; CFD validation; transition and turbulence physics; numerical aerodynamic simulation; test techniques and instrumentation; configuration aerodynamics; aeroacoustics; aerothermodynamics; hypersonics; subsonics; fighter/attack aircraft and rotorcraft.

  3. Vertical Landing Aerodynamics of Reusable Rocket Vehicle

    NASA Astrophysics Data System (ADS)

    Nonaka, Satoshi; Nishida, Hiroyuki; Kato, Hiroyuki; Ogawa, Hiroyuki; Inatani, Yoshifumi

    The aerodynamic characteristics of a vertical landing rocket are affected by its engine plume in the landing phase. The influences of interaction of the engine plume with the freestream around the vehicle on the aerodynamic characteristics are studied experimentally aiming to realize safe landing of the vertical landing rocket. The aerodynamic forces and surface pressure distributions are measured using a scaled model of a reusable rocket vehicle in low-speed wind tunnels. The flow field around the vehicle model is visualized using the particle image velocimetry (PIV) method. Results show that the aerodynamic characteristics, such as the drag force and pitching moment, are strongly affected by the change in the base pressure distributions and reattachment of a separation flow around the vehicle.

  4. NASA aerodynamics program

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.; Schairer, Edward; Hicks, Gary; Wander, Stephen; Blankson, Isiaiah; Rose, Raymond; Olson, Lawrence; Unger, George

    1990-01-01

    Presented here is a comprehensive review of the following aerodynamics elements: computational methods and applications, computational fluid dynamics (CFD) validation, transition and turbulence physics, numerical aerodynamic simulation, drag reduction, test techniques and instrumentation, configuration aerodynamics, aeroacoustics, aerothermodynamics, hypersonics, subsonic transport/commuter aviation, fighter/attack aircraft and rotorcraft.

  5. Peer Relations and Behavioral Characteristics of Isolated Children in Elementary School: A Longitudinal Investigation

    ERIC Educational Resources Information Center

    Norwalk, Kate E.

    2013-01-01

    Research clearly shows that heterogeneity exists in the etiology, associated characteristics, and outcomes of social withdrawal/isolation. While individual level characteristics are thought to contribute to withdrawal and isolation, research suggests that peer relations may play an important role in the extent to which social withdrawal/isolation…

  6. Space Shuttle Orbiter trimmed center-of-gravity extension study. Volume 7: Effects of configuration modifications on the subsonic aerodynamic characteristics of the 1140 A/B orbbiter at high Reynolds numbers. [Langley low turbulence pressure tunnel

    NASA Technical Reports Server (NTRS)

    Phillips, W. P.

    1981-01-01

    Subsonic longitudinal andd laternal directional characteristics were obtained for several modified configurations of the 140 A/B orbiter (0.010 scale). These modifications, designed to extend longitudinal trim capability forward of the 65 percent fuselage length station, consisted of modified wing planform fillet and a canard. Tests were performed in the Langley Low Turbulence Pressure Tunnel at Reynolds numbers from about 4.2 million to 14.3 million based on the fuselage reference length.

  7. Measurement and relevance of personality characteristics in persons with dementia: a longitudinal perspective.

    PubMed

    Twigg, Prudence; Burgener, Sandy C; Popovich, Ann

    2007-01-01

    Studies of personality and outcomes in persons with dementia (PWD) have focused primarily on disease stages or change from premorbid personality following diagnosis. Data from a longitudinal study of 96 caregiver/PWD dyads was used to evaluate psychometric properties of two personality measures: one rated by proxies, the other by PWD. Proxy ratings indicate change in strength of personality traits across disease stages; self-ratings were stable, excepting decreased extroversion. Items detracting from reliability of some subscales reflected disease-related changes in PWD rather than true shifts in personality. Findings support importance of collecting both proxy and self-ratings of personality, examining individual items contributing to low reliability, and evaluating change in personality within the context of expected changes inherent in dementia.

  8. Characteristics of a Linearly Tapered Slot Antenna (LTSA) Conformed Longitudinally Around a Cylinder

    NASA Technical Reports Server (NTRS)

    Jordan, Jennifer L.; Ponchak, George E.; Tavassolian, Negar; Tentzeris, Manos M.

    2007-01-01

    The family of tapered slot antennas (TSA s) is suitable for numerous applications. Their ease of fabrication, wide bandwidth, and high gain make them desirable for military and commercial systems. Fabrication on thin, flexible substrates allows the TSA to be conformed over a given body, such as an aircraft wing or a piece of clothing for wearable networks. Previously, a Double Exponentially Tapered Slot Antenna (DETSA) was conformed around an exponential curvature, which showed that the main beam skewed towards the direction of curvature. This paper presents a Linearly Tapered Slot Antenna (LTSA) conformed longitudinally around a cylinder. Measured and simulated radiation patterns and the direction of maximum H co-polarization (Hco) as a function of the cylinder radius are presented.

  9. Results of tests to determine the aerodynamic characteristics of two potential aeromaneuvering orbit-to-orbit shuttle (AMOOS) vehicle configurations in the NASA-Ames 3.5 foot hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Ketter, F. C., Jr.

    1974-01-01

    An aerodynamic wind tunnel investigation was conducted in the NASA-Ames Research Center (ARC) 3.5-foot hypersonic facility to provide data for use in obtaining experimental force and static stability characteristics of two potential aeromaneuvering orbit-to-orbit shuttle (AMOOS) vehicle configurations. The experimental data were compared with the aerodynamic characteristics estimated using Newtonian theory, thus establishing the usefulness of these predictions. The candidate AMOOS configurations selected for the wind tunnel tests were the AMOOS 5B and HB configurations. Two flap configurations were tested for each candidate - a forward or compression surface flap and an aft or expansion flap. Photographs and sketches of the two configurations with different control surfaces are shown. It was determined that Newtonian theory generally predicted the aerodynamics of the 5B configuration with acceptable accuracy for all expansion flap deflections and for compression flap deflections less than or equal to 10 degrees. Flow separation upstream of large compression flap deflections was detected from the experimental data.

  10. Aerodynamic challenges of ALT

    NASA Technical Reports Server (NTRS)

    Hooks, I.; Homan, D.; Romere, P. O.

    1985-01-01

    The approach and landing test (ALT) of the Space Shuttle Orbiter presented a number of unique challenges in the area of aerodynamics. The purpose of the ALT program was both to confirm the use of the Boeing 747 as a transport vehicle for ferrying the Orbiter across the country and to demonstrate the flight characteristics of the Orbiter in its approach and landing phase. Concerns for structural fatigue and performance dictated a tailcone be attached to the Orbiter for ferry and for the initial landing tests. The Orbiter with a tailcone attached presented additional challenges to the normal aft sting concept of wind tunnel testing. The landing tests required that the Orbiter be separated from the 747 at approximately 20,000 feet using aerodynamic forces to fly the vehicles apart. The concept required a complex test program to determine the relative effects of the two vehicles on each other. Also of concern, and tested, was the vortex wake created by the 747 and the means for the Orbiter to avoid it following separation.

  11. Low-speed stability and control characteristics of a transport model with aft-fuselage-mounted advanced turboprops

    NASA Technical Reports Server (NTRS)

    Applin, Z. T.; Coe, P. L., Jr.

    1986-01-01

    A limited experimental investigation was conducted in the Langley 4- by 7-Meter Tunnel to explore the effects of aft-fuselage-mounted advanced turboprop installations on the low-speed stability and control characteristics of a representative transport aircraft in a landing configuration. In general, the experimental results indicate that the longitudinal and lateral-directional stability characteristics for the aft-fuselage-mounted single-rotation tractor and counter-rotation pusher propeller configurations tested during this investigation are acceptable aerodynamically. For the single-rotation tractor configuration, the propeller-induced aerodynamics are significantly influenced by the interaction of the propeller slipstream with the pylon and nacelle. The stability characteristics for the counter-rotation pusher configuration are strongly influenced by propeller normal forces. The longitudinal and directional control effectiveness, engine-out characteristics, and ground effects are also presented. In addition, a tabulated presentation of all aerodynamic data presented in this report is included as an appendix.

  12. Adolescent bariatric surgery program characteristics: the Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study experience.

    PubMed

    Michalsky, Marc P; Inge, Thomas H; Teich, Steven; Eneli, Ihuoma; Miller, Rosemary; Brandt, Mary L; Helmrath, Michael; Harmon, Carroll M; Zeller, Meg H; Jenkins, Todd M; Courcoulas, Anita; Buncher, Ralph C

    2014-02-01

    The number of adolescents undergoing weight loss surgery (WLS) has increased in response to the increasing prevalence of severe childhood obesity. Adolescents undergoing WLS require unique support, which may differ from adult programs. The aim of this study was to describe institutional and programmatic characteristics of centers participating in Teen Longitudinal Assessment of Bariatric Surgery (Teen-LABS), a prospective study investigating safety and efficacy of adolescent WLS. Data were obtained from the Teen-LABS database, and site survey completed by Teen-LABS investigators. The survey queried (1) institutional characteristics, (2) multidisciplinary team composition, (3) clinical program characteristics, and (4) clinical research infrastructure. All centers had extensive multidisciplinary involvement in the assessment, pre-operative education, and post-operative management of adolescents undergoing WLS. Eligibility criteria and pre-operative clinical and diagnostic evaluations were similar between programs. All programs have well-developed clinical research infrastructure, use adolescent-specific educational resources, and maintain specialty equipment, including high weight capacity diagnostic imaging equipment. The composition of clinical team and institutional resources is consistent with current clinical practice guidelines. These characteristics, coupled with dedicated research staff, have facilitated enrollment of 242 participants into Teen-LABS.

  13. Aerodynamically landing reentry vehicles

    NASA Astrophysics Data System (ADS)

    Widjaja, I.

    This article represents a continuation of a paper in the preceding edition of this journal. The longitudinal stability of the reentry vehicle configuration 24B is discussed, taking into account an evaluation of the possibilities for lateral control, aileron effectiveness, and rudder effectiveness. It is pointed out that regarding the selection of the characteristics of the descent trajectory, there are apparently no constraints related to stability or controllability limits. In the hypersonic range, large reciprocal lift drag ratios can also be obtained without positive flap displacement. Attention is given to angle of sideslip relations, a cylindrical body with flat nose and trim tabs, the flow characteristics in the case of a cylinder with a flat nose, graphical relations describing longitudinal stability and controllability in the hypersonic range, and relations involving lift, drag, and the lift drag ratio.

  14. Wind-tunnel results of the aerodynamic characteristics of a 1/8-scale model of a twin engine short-haul transport. [in Langley V/STOL tunnel

    NASA Technical Reports Server (NTRS)

    Paulson, J. W., Jr.

    1977-01-01

    A wind tunnel test was conducted in the Langley V/STOL tunnel to define the aerodynamic characteristics of a 1/8-scale twin-engine short haul transport. The model was tested in both the cruise and approach configurations with various control surfaces deflected. Data were obtained out of ground effect for the cruise configuration and both in and out of ground effect for the approach configuration. These data are intended to be a reference point to begin the analysis of the flight characteristics of the NASA terminal configured vehicle (TCV) and are presented without analysis.

  15. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Deloach, Richard

    2008-01-01

    A collection of statistical and mathematical techniques referred to as response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration using data obtained on small-scale models at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. The simulated Mach 3 staging was dominated by multiple shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. This motivated a partitioning of the overall inference space into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using cuboidal and spherical central composite designs capable of fitting full second-order response functions. The primary goal was to approximate the underlying overall aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle using relatively simple, lower-order polynomial functions that were piecewise-continuous across the full independent variable ranges of interest. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. The potential benefits of augmenting the central composite designs to full third order using computer-generated D-optimality criteria were also evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting low-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  16. Estimation of Supersonic Stage Separation Aerodynamics of Winged-Body Launch Vehicles Using Response Surface Methods

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2010-01-01

    Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.

  17. High performance parallelized implicit Euler solver for the analysis of unsteady aerodynamic flows

    NASA Astrophysics Data System (ADS)

    Borel, C.; Bredif, M.

    Simulation of transient flows is more and more useful for industrial applications in aeronautics. For instance, the unsteady aerodynamic coefficients can be of great importance in order to predict the behavior of flying bodies: this is in particular the case for missiles which are spun around their longitudinal axis. It is also well known that the experimental tools used to evaluate the unsteady aerodynamic characteristics present a certain number of limitations: complexity of the experiments, limited degree of accuracy, high costs and delays. In this context, the Computational Aerodynamics Department of Matra Defense has been developing a software library called AEROLOG for the prediction of the steady and unsteady aerodynamics of tactical missiles using Computational Fluid Dynamics (CFD) techniques. The aim of this paper is as follows: (1) Detailed presentation of the numerical method, with particular emphasis on the high performances in terms of computational time achieved thanks to the use of an implicit scheme combined with a domain decomposition of structured mesh well suited for vector and parallel implementation, and (2) Analysis of 2-D and 3-D unsteady numerical simulations corresponding to academic and industrial cases, showing the accuracy of the method together with its range of applications.

  18. Lateral and longitudinal stability and control parameters for the space shuttle discovery as determined from flight test data

    NASA Technical Reports Server (NTRS)

    Suit, William T.; Schiess, James R.

    1988-01-01

    The Discovery vehicle was found to have longitudinal and lateral aerodynamic characteristics similar to those of the Columbia and Challenger vehicles. The values of the lateral and longitudinal parameters are compared with the preflight data book. The lateral parameters showed the same trends as the data book. With the exception of C sub l sub Beta for Mach numbers greater than 15, C sub n sub delta r for Mach numbers greater than 2 and for Mach numbers less than 1.5, where the variation boundaries were not well defined, ninety percent of the extracted values of the lateral parameters fell within the predicted variations. The longitudinal parameters showed more scatter, but scattered about the preflight predictions. With the exception of the Mach 1.5 to .5 region of the flight envelope, the preflight predictions seem a reasonable representation of the Shuttle aerodynamics. The models determined accounted for ninety percent of the actual flight time histories.

  19. Characteristics of Double Exponentially Tapered Slot Antenna (DETSA) Conformed in the Longitudinal Direction Around a Cylindrical Structure

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Chevalier, Christine T.

    2006-01-01

    The characteristics of a double exponentially tapered slot antenna (DETSA) as a function of the radius that the DETSA is conformed to in the longitudinal direction is presented. It is shown through measurements and simulations that the radiation pattern of the conformed antenna rotates in the direction through which the antenna is curved, and that diffraction affects the radiation pattern if the radius of curvature is too small or the frequency too high. The gain of the antenna degrades by only 1 dB if the radius of curvature is large and more than 2 dB for smaller radii. The main effect due to curving the antenna is an increased cross-polarization in the E-plane.

  20. Borderline Personality Disorder Symptoms and Newlyweds’ Observed Communication, Partner Characteristics, and Longitudinal Marital Outcomes

    PubMed Central

    Lavner, Justin A.; Lamkin, Joanna; Miller, Joshua D.

    2015-01-01

    Given borderline personality disorder (BPD)’s relation with interpersonal dysfunction, there is substantial interest in understanding BPD’s effect on marriage. The current study used data from a community sample of 172 newlywed couples to examine spouses’ BPD symptoms in relation to their observed communication, partner BPD symptoms, 4-year marital quality trajectories, and 10-year divorce rates. BPD symptoms were correlated cross-sectionally with more negative skills during observational problem-solving and social support tasks, and spouses reporting more BPD symptoms were married to partners reporting more BPD symptoms. Longitudinally, hierarchical linear modeling of newlyweds’ 4-year marital trajectories indicated that BPD symptoms predicted the intercept of marital quality for spouses and their partners, reflecting lower levels of marital satisfaction and higher levels of marital problems. BPD symptoms did not predict 10-year divorce rates. These findings highlight the chronic relationship impairment associated with BPD symptoms, indicate that distress begins early in marriage, and suggest that partners with higher levels of BPD symptoms remain in more troubled marriages. PMID:26348097

  1. Effect of Convex Longitudinal Curvature on the Planing Characteristics of a Surface Without Dead Rise

    NASA Technical Reports Server (NTRS)

    Mottard, Elmo J.

    1959-01-01

    A hydrodynamic investigation was made in Langley tank no. 1 of a planing surface which was curved longitudinally in the shape of a circular arc with the center of curvature above the model and had a beam of inches and a radius of curvature of 20 beams. The planing surface had length-beam ratio of 9 and an angle of dead rise of 0 deg. Wetted length, resistance, and trimming moment were determined for values of load coefficient C(sub Delta) from -4.2 to 63.9 and values of speed coefficient C(sub V) from 6 to 25. The effects of convexity were to increase the wetted length-beam ratio (for a given lift), to decrease the lift-drag ratio, to move the center of pressure forward, and ta increase the trim for maximum lift-drag ratio as compared with values for a flat surface. The effects were greatest at low trims and large drafts. The maximum negative lift coefficient C(sub L,b) obtainable with a ratio of the radius of curvature to the beam of 20 was -0.02. The effects of camber were greater in magnitude for convexity than for the same amount of concavity.

  2. Investigation at High Subsonic Speeds of the Static Longitudinal and Lateral Stability Characteristics of Two Canard Airplane Configurations

    NASA Technical Reports Server (NTRS)

    Sleeman, William C., Jr.

    1957-01-01

    The present investigation was conducted in the Langley high-speed 7-by 10-foot tunnel to determine the static longitudinal and lateral stability characteristics at high subsonic speeds of two canard airplane configurations previously tested at supersonic speeds. The Mach number range of this investigation extended from 0.60 to 0.94 and a maximum angle-of-attack range of -2dewg to 24deg was obtained at the lowest test Mach number. Two wing plan forms of equal area were studied in the present tests; one was a 60deg delta wing and the other was a trapezoid wing having an aspect ratio of 3, taper ratio of 0.143, and an unswept 80-percent-chord line. The canard control had a trapezoidal plan form and its area was approximately 11.5 percent of the wing area. The model also had a low-aspect-ratio highly swept vertical tail and twin ventral fins. The longitudinal control characteristics of the models were consistent with past experience at low speed on canard configurations in that stalling of the canard surface occurred at moderate and high control deflections for moderate values of angle of attack. This stalling could impose appreciable limitations on the maximum trim-lift coefficient attainable. The control effectiveness and maximum value of trim-lift was significantly increased by addition of a body flap having a conical shape and located slightly behind the canard surface on the bottom of the body. Addition of the canard surface at 0deg deflection had relatively little effect on overall directional stability of the delta-wing configuration; however, deflection of the canard surface from 0deg to 10deg had a large favorable effect on directional stability at high angles of attack for both the trapezoid- and delta-wing configurations.

  3. Longitudinal Changes in Nursing Home Resident-Reported Quality of Life: The Role of Facility Characteristics.

    PubMed

    Shippee, Tetyana P; Hong, Hwanhee; Henning-Smith, Carrie; Kane, Robert L

    2015-08-01

    Improving quality of nursing homes (NHs) is a major social priority, yet few studies examine the role of facility characteristics for residents' quality of life (QOL). This study goes beyond cross-sectional analyses by examining the predictors of NH residents' QOL on the facility level over time. We used three data sources, namely resident interviews using a multidimensional measure of QOL collected in all Medicaid-certified NHs in Minnesota (N = 369), resident clinical data from the minimum data set, and facility-level characteristics. We examined change in six QOL domains from 2007 to 2010, using random coefficient models. Eighty-one facilities improved across most domains and 85 facilities declined. Size, staffing levels (especially activities staff), and resident case mix are some of the most salient predictors of QOL over time, but predictors differ by facility performance status. Understanding the predictors of facility QOL over time can help identify facility characteristics most appropriate for targeting with policy and programmatic interventions.

  4. Aerodynamic characteristics of anemometer cups

    NASA Technical Reports Server (NTRS)

    Brevoort, M J; Joyner, U T

    1934-01-01

    The static lift and drag forces on three hemispherical and two conical cups were measured over a range of angles of attack from 0 degrees to 180 degrees and a range of Reynolds Numbers from very small up to 400,000. The problems of supporting the cup for measurement and the effect of turbulence were also studied. The results were compared with those of other investigators.

  5. Residential mobility impacts exposure assessment and community socioeconomic characteristics in longitudinal epidemiology studies

    PubMed Central

    Brokamp, Cole; LeMasters, Grace K; Ryan, Patrick H

    2016-01-01

    Epidemiologic studies commonly use residential locations to estimate environmental exposures or community-level characteristics. The impact of residential mobility on these characteristics, however, is rarely considered. The objective of this analysis was to examine the effect of residential mobility on estimates of traffic-related air pollution (TRAP), greenspace, and community-level characteristics. All residential addresses were reported from birth through age seven for children enrolled in the Cincinnati Childhood Allergy and Air Pollution Study. Exposure to TRAP at each address was estimated using a land use model. Greenspace was estimated using satellite imagery. Indices of neighborhood deprivation and race were created based on socioeconomic-census tract measures. Exposure estimates using the birth record address, the last known address, and the annual address history were used to determine exposure estimation error and bias in the association with asthma at age seven. Overall, 54% of the cohort moved at least once prior to age seven. Each move was separated by a median of 4 miles and associated with a median decrease of 4.4% in TRAP exposure, a 5.3% increase in greenspace, an improved deprivation index, and no change in the race index. Using the birth record address or the last known address instead of the annual address history resulted in exposure misclassification leading to a bias toward the null when associating the exposures with asthma. Using a single address to estimate environmental exposures and community-level characteristics over a time period may result in differential assessment error. PMID:26956935

  6. Aerodynamics as a subway design parameter

    NASA Technical Reports Server (NTRS)

    Kurtz, D. W.

    1976-01-01

    A parametric sensitivity study has been performed on the system operational energy requirement in order to guide subway design strategy. Aerodynamics can play a dominant or trivial role, depending upon the system characteristics. Optimization of the aerodynamic parameters may not minimize the total operational energy. Isolation of the station box from the tunnel and reduction of the inertial power requirements pay the largest dividends in terms of the operational energy requirement.

  7. Aerodynamic preliminary analysis system 2. Part 2: User's manual

    NASA Technical Reports Server (NTRS)

    Sova, G.; Divan, P.; Spacht, L.

    1991-01-01

    An aerodynamic analysis system based on potential theory at subsonic and/or supersonic speeds and impact type finite element solutions at hypersonic conditions is described. Three dimensional configurations have multiple nonplanar surfaces of arbitrary planforms and bodies of noncircular contour may be analyzed. Static, rotary, and control longitudinal and lateral-directional characteristics may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis. Computation times on an IBM 3081 are typically less than one minute of CPU/Mach number at subsonic, supersonic, or hypersonic speeds. This is a user manual for the computer programming.

  8. Nonaxisymmetric Body Supersonic, Aerodynamic Prediction

    DTIC Science & Technology

    1987-08-01

    wing - tail configuration are compared in Figure 27. CN comparisons are good. C. is a sensitive computation for xcp close to x’. 7.2...Analytical and Experimental Supersonic Aerodynamic Characteristics of a Forward Control Missile , AIAA Paper No. 81-0398, AIAA 19th Aerospace Sciences...body diameter. The next computational example is for a body- wing - tail configuration from Reference 32 A body-alone comparison has been made earlier in

  9. Low speed aerodynamic characteristics of an 0.075-scale F-15 airplane model at high angles of attack and sideslip

    NASA Technical Reports Server (NTRS)

    Petroff, D. N.; Scher, S. H.; Cohen, L. E.

    1974-01-01

    An 0.075 scale model representative of the F-15 airplane was tested in the Ames 12 foot pressure wind tunnel at a Mach number of 0.16 to determine static longitudinal and lateral directional characteristics at spin attitudes for Reynolds numbers from 1.48 to 16.4 million per meter (0.45 to 5.0 million per foot). Angles of attack ranged from 0 to +90 deg and from -40 deg to -80 deg while angles of sideslip were varied from -20 deg to +30 deg. Data were obtained for nacelle inlet ramp angles of 0 to 11 deg with the left and right stabilators deflected 0, -25 deg, and differentially 5 deg and -5 deg. The normal pointed nose and two alternate nose shapes were also tested along with several configurations of external stores. Analysis of the results indicate that at higher Reynolds numbers there is a slightly greater tendency to spin inverted than at lower Reynolds numbers. Use of a hemispherical nose in place of the normal pointed nose provided an over correction in simulating yawing moment effects at high Reynolds numbers.

  10. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-70-1). 3: A comparison between characteristics predicted from wind-tunnel measurements and those measured in flight

    NASA Technical Reports Server (NTRS)

    Arnaiz, H. H.; Peterson, J. B., Jr.; Daugherty, J. C.

    1980-01-01

    A program was undertaken by NASA to evaluate the accuracy of a method for predicting the aerodynamic characteristics of large supersonic cruise airplanes. This program compared predicted and flight-measured lift, drag, angle of attack, and control surface deflection for the XB-70-1 airplane for 14 flight conditions with a Mach number range from 0.76 to 2.56. The predictions were derived from the wind-tunnel test data of a 0.03-scale model of the XB-70-1 airplane fabricated to represent the aeroelastically deformed shape at a 2.5 Mach number cruise condition. Corrections for shape variations at the other Mach numbers were included in the prediction. For most cases, differences between predicted and measured values were within the accuracy of the comparison. However, there were significant differences at transonic Mach numbers. At a Mach number of 1.06 differences were as large as 27 percent in the drag coefficients and 20 deg in the elevator deflections. A brief analysis indicated that a significant part of the difference between drag coefficients was due to the incorrect prediction of the control surface deflection required to trim the airplane.

  11. Longitudinal MRI Evaluation of Intracranial Development and Vascular Characteristics of Breast Cancer Brain Metastases in a Mouse Model

    PubMed Central

    Zhou, Heling; Chen, Min; Zhao, Dawen

    2013-01-01

    Longitudinal MRI was applied to monitor intracranial initiation and development of brain metastases and assess tumor vascular volume and permeability in a mouse model of breast cancer brain metastases. Using a 9.4T system, high resolution anatomic MRI and dynamic susceptibility contrast (DSC) perfusion MRI were acquired at different time points after an intracardiac injection of brain-tropic breast cancer MDA-MB231BR-EGFP cells. Three weeks post injection, multifocal brain metastases were first observed with hyperintensity on T2-weighted images, but isointensity on T1-weighted post contrast images, indicating that blood-tumor-barrier (BTB) at early stage of brain metastases was impermeable. Follow-up MRI revealed intracranial tumor growth and increased number of metastases that distributed throughout the whole brain. At the last scan on week 5, T1-weighted post contrast images detected BTB disruption in 160 (34%) of a total of 464 brain metastases. Enhancement in some of the metastases was only seen in partial regions of the tumor, suggesting intratumoral heterogeneity of BTB disruption. DSC MRI measurements of relative cerebral blood volume (rCBV) showed that rCBV of brain metastases was significantly lower (mean  = 0.89±0.03) than that of contralateral normal brain (mean  = 1.00±0.03; p<0.005). Intriguingly, longitudinal measurements revealed that rCBV of individual metastases at early stage was similar to, but became significantly lower than that of contralateral normal brain with tumor growth (p<0.05). The rCBV data were concordant with histological analysis of microvascular density (MVD). Moreover, comprehensive analysis suggested no significant correlation among tumor size, rCBV and BTB permeability. In conclusion, longitudinal MRI provides non-invasive in vivo assessments of spatial and temporal development of brain metastases and their vascular volume and permeability. The characteristic rCBV of brain metastases may have a diagnostic value. PMID

  12. A longitudinal linear model of patient characteristics to predict failure to attend an inner-city chronic pain clinic

    PubMed Central

    Shaparin, N; White, RS; Andreae, MH; Hall, CB; Kaufman, AG

    2014-01-01

    Patients often fail to attend appointments in chronic pain clinics for unknown reasons. We hypothesized that certain patient characteristics predict failure to attend scheduled appointments pointing to systematic barriers to access chronic pain services for certain underserved populations. We collected retrospective data from a longitudinal observational cohort of patients at an academic pain clinic in Newark, New Jersey. To examine the effect of demographic factors on appointment status, we fit a marginal logistic regression using generalized estimating equations with exchangeable correlation. 1394 patients with 3488 total encounters between January 1, 2006 and December 31, 2009 were included. Spanish spoken as a primary language (alternatively Hispanic or other race) and living between five and ten miles from the clinic were associated with reduced odds of arriving for an appointment; making an appointment for a particular complaint such as cancer pain or back pain, an interventional pain procedure scheduled in connection with the appointment, unemployed status, and continuity of care (as measured by office visit number) were associated with increased odds of arriving. Spanish spoken as primary language and distance to the pain clinic predicted failure to attend a scheduled appointment in our cohort. If these constitute systematic barriers to access, they may be amendable to targeted interventions. Perspective We identified certain patient characteristics, specifically Spanish spoken as primary language and geographic distance from the clinic, that predict failure to attend an inner-city chronic pain clinic. These identified barriers to access chronic pain services may be modifiable by simple cost effective interventions. PMID:24747766

  13. Wind-Tunnel Investigation of the Low-Speed Static Longitudinal Characteristics of the Republic RF-84F Airplane

    NASA Technical Reports Server (NTRS)

    Hunton, Lynn W.; Griffin, Roy N., Jr.; James, Harry A.

    1952-01-01

    Tests in the Ames 40- by 80-foot wind tunnel of the static longitudinal characteristics of the Republic RF-84F were made to determine both the origin and a suitable remedy for a pitch up tendency of the airplane encountered at moderate lift coefficients. The results indicated that the pitch-up at moderate lift coefficients was caused by an abrupt change in downwash at the tail which in turn was traceable presumably to flow conditions associated with the inlet-to-wing leading-edge discontinuity.. Attempts to eliminate this pitch-up characteristic with various fairings and stall-control devices. were not wholly successful. The investigation revealed, however, that significant gains in the performance of the airplane could be achieved in the upper lift range.. Three different configurations consisting of a partial-span modified leading edge combined with one or with two-fenees or a leading-edge extension each delayed the onset of separation to higher lift coefficients and provided large improvements in the stability of the airplane in the upper lift range.

  14. Characteristics of sunspot longitudinal distribution and their correlation with solar activity in pre-Greenwich data

    NASA Astrophysics Data System (ADS)

    Ivanov, V. G.; Miletsky, E. V.

    2016-12-01

    We study and compare characteristics of the sunspot group latitude distribution in two catalogs: extended Greenwich (1874-2014) and Schwabe (1825-1867) (Arlt et al., 2013). We show that both datasets reveal similar correlations between the latitude and amplitude characteristics of the 11-year cycle: the latitude dispersion correlates with the current activity and the sunspot mean latitude at the cycle's maximum is proportional to its amplitude. This agrees with the conclusions drawn in (Ivanov et al., 2011; Ivanov and Miletsky, 2014) for the Greenwich catalog. We show that the latitude properties of the sunspot distribution are much more tolerant to gaps in observational data than traditional amplitude indices of activity. Therefore, the discovered correlations can be used for estimation of the observation quality and independent normalization of the activity levels in spotty pre-Greenwich data. We exemplified this using the Schwabe catalog. In addition, we show that the first part of the Schwabe data probably contains errors in sunspot latitudes, which lead to overestimation of the sunspot latitude dispersions.

  15. A method for estimating static aerodynamic characteristics for slender bodies of circular and noncircular cross section alone and with lifting surfaces at angles of attack from 0 deg to 90 deg

    NASA Technical Reports Server (NTRS)

    Jorgensen, L. H.

    1973-01-01

    An engineering-type method is presented for estimating normal-force, axial-force, and pitching-moment coefficients for slender bodies of circular and noncircular cross section alone and with lifting surfaces. Static aerodynamic characteristics computed by the method are shown to agree closely with experimental results for slender bodies of circular and elliptic cross section and for winged-circular and winged-elliptic cones. However, the present experimental results used for comparison with the method are limited to angles of attack only up to about 20 deg and Mach numbers from 2 to 4.

  16. Effects of reaction control system jet flow field interactions on the aerodynamic characteristics of a 0.010-scale space shuttle orbiter model in the Langley Research Center 31 inch CFHT (OA85)

    NASA Technical Reports Server (NTRS)

    Daileda, J. J.; Marroquin, J.

    1974-01-01

    An experimental investigation was conducted to obtain detailed effects on supersonic vehicle hypersonic aerodynamic and stability and control characteristics of reaction control system jet flow field interactions with the local vehicle flow field. A 0.010-scale model was used. Six-component force data and wing, elevon, and body flap surface pressure data were obtained through an angle-of-attack range of -10 to +35 degrees with 0 deg angle of sideslip. The test was conducted with yaw, pitch and roll jet simulation at a free-stream Mach number of 10.3 and reaction control system plume simulation of flight dynamic pressures of 5, 10 and 20 PSF.

  17. The aerodynamic characteristics of a supersonic aircraft configuration with a 40 degree sweptback wing through a Mach number range from 0 to 2.4 obtained from various sources

    NASA Technical Reports Server (NTRS)

    Spearman, M Leroy; Robinson, Ross B

    1952-01-01

    A summary and analysis have been made of the results of various investigations to determine the aerodynamic characteristics of a supersonic aircraft configuration. The configuration has a wing with 40 degree sweepback at the quarter-chord line, aspect ratio 4, taper ratio 0.5, and 10-percent-thick circular-arc sections normal to the quarter-chord line. Experimental data were available for a Mach number range from 0.16 to 2.32. Results obtained from wing-flow, rocket-model, transonic-bump, and tunnel tests are presented and, where possible, are supplemented by empirical and theoretical calculations.

  18. Aerodynamic Characteristics of Missile Configurations with Wings of Low Aspect Ratio for Various Combinations of Forebodies, Afterbodies, and Nose Shapes for Combined Angles of Attack and Sideslip at a Mach Number of 2.01

    NASA Technical Reports Server (NTRS)

    Robinson, Ross B

    1957-01-01

    An investigation has been made in the Langley 4-by-4-foot supersonic pressure tunnel to determine the aerodynamic characteristics of a series of missile configurations having low-aspect-ratio wings at a Mach number of 2.01. The effects of wing plan form and size, length-diameter ratio, forebody and afterbody length, boattailed and flared afterbodies, and component force and moment data are presented for combined angles of attack and sideslip to about 28 degrees. No analysis of the data was made in this report.

  19. Wind-tunnel investigation of aerodynamic performance, steady amd vibratory loads, surface temperatures, and acoustic characteristics of a large-scale twin-engine upper-surface blown jet-flap configuration

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Static and wind-on tests were conducted to determine the aerodynamic characteristics of and the effects of jet impingement on the wing of a large scale upper surface blown configuration powered with an actual turbine engine. The wing and flaps were instrumented with experimental dual-sensing transducer units consisting of a fluctuating pressure gage, a vibratory accelerometer, and a surface mounted alumel thermocouple. Noise directivity and spectral content measurements were obtained for various flap configurations and various engine thrust settings to provide baseline noise data for other upper surface blown configurations.

  20. Longitudinal effects of menopausal hormone treatments on platelet characteristics and cell-derived microvesicles.

    PubMed

    Miller, Virginia M; Lahr, Brian D; Bailey, Kent R; Heit, John A; Harman, S Mitchell; Jayachandran, Muthuvel

    2016-01-01

    Activated platelets serve as a catalyst for thrombin generation and a source of vasoactive and mitogenic factors affecting vascular remodeling. Oral menopausal hormone treatments (MHT) may carry greater thrombotic risk than transdermal products. This study compared effects of oral and transdermal MHT on platelet characteristics, platelet proteins, and platelet-derived microvesicles (MV) in recently menopausal women. Platelets and MV were prepared from blood of a subset of women (n = 117) enrolled in the Kronos Early Estrogen Prevention Study prior to and after 48 months of treatment with either oral conjugated equine estrogen (0.45 mg/day), transdermal 17β-estradiol (50 µg/day), each with intermittent progesterone (200 mg/day for 12 days a month), or placebo pills and patch. Platelet count and expression of platelet P-selectin and fibrinogen receptors were similar across groups. An aggregate measure of 4-year change in vasoactive and mitogenic factors in platelet lysate, by principle component analysis, indicated significantly lower values in both MHT groups compared to placebo. Increases in numbers of tissue factor positive and platelet-derived MV were significantly greater in the transdermal compared to placebo group. MHT was associated with significantly reduced platelet content of vasoactive and mitogenic factors representing a potential mechanism by which MHT may affect vascular remodeling. Various hormonal compositions and doses of MHT could differentially regulate nuclear transcription in bone marrow megakaryocytes and non-genomic pathways in circulating platelets thus determining numbers and characteristics of circulating MV. Thrombotic risk associated with oral MHT most likely involves liver-derived inflammatory/coagulation proteins rather than circulating platelets per se.