NASA Technical Reports Server (NTRS)
Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.
2016-01-01
Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.
ERIC Educational Resources Information Center
Pratt, Daniel J.; Wine, Jennifer S.; Heuer, Ruth E.; Whitmore, Roy W.; Kelly, Janice E.; Doherty, John M.; Simpson, Joe B.; Marti, Norma
This report describes the methods and procedures used for the field test of the Beginning Postsecondary Students Longitudinal Study First Followup 1996-98 (BPS:96/98). Students in this survey were first interviewed during 1995 as part of the National Postsecondary Student Aid Study 1996 field test. The BPS:96/98 full-scale student sample includes…
ERIC Educational Resources Information Center
Ingels, Steven J.; Pratt, Daniel J.; Jewell, Donna M.; Mattox, Tiffany; Dalton, Ben; Rosen, Jeffrey; Lauff, Erich; Hill, Jason
2012-01-01
This report describes the methodologies and results of the third follow-up Education Longitudinal Study of 2002 (ELS:2002/12) field test which was conducted in the summer of 2011. The field test report is divided into six chapters: (1) Introduction; (2) Field Test Survey Design and Preparation; (3) Data Collection Procedures and Results; (4) Field…
The US EPA has completed field data collections from a series of longitudinal particulate matter (PM) exposure panel field studies. These studies were conducted in Baltimore, Maryland (1998), Fresno, California (1999), and Research Triangle Park (RTP), North Carolina (2000-2001) ...
76 FR 65187 - Notice of Proposed Information Collection Requests
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-20
... careers. This study includes a new student assessment in algebraic skills, reasoning, and problem solving... School Longitudinal Study of 2009 (HSLS:09) High School Transcript Collection and College Update Field... Longitudinal Study of 2009 (HSLS:09) is a nationally representative, longitudinal study of more than 20,000...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H; Sarkar, V; Paxton, A
Purpose: To explore the feasibility of supraclavicular field treatment by investigating the variation of junction position between tangential and supraclavicular fields during left breast radiation using DIBH technique. Methods: Six patients with left breast cancer treated using DIBH technique were included in this study. AlignRT system was used to track patient’s breast surface. During daily treatment, when the patient’s DIBH reached preset AlignRT tolerance of ±3mm for all principle directions (vertical, longitudinal, and lateral), the remaining longitudinal offset was recorded. The average with standard-deviation and the range of daily longitudinal offset for the entire treatment course were calculated for allmore » six patients (93 fractions totally). The ranges of average ± 1σ and 2σ were calculated, and they represent longitudinal field edge error with the confidence level of 68% and 95%. Based on these longitudinal errors, dose at junction between breast tangential and supraclavicular fields with variable gap/overlap sizes was calculated as a percentage of prescription (on a representative patient treatment plan). Results: The average of longitudinal offset for all patients is 0.16±1.32mm, and the range of longitudinal offset is −2.6 to 2.6mm. The range of longitudinal field edge error at 68% confidence level is −1.48 to 1.16mm, and at 95% confidence level is −2.80 to 2.48mm. With a 5mm and 1mm gap, the junction dose could be as low as 37.5% and 84.9% of prescription dose; with a 5mm and 1mm overlap, the junction dose could be as high as 169.3% and 117.6%. Conclusion: We observed longitudinal field edge error at 95% confidence level is about ±2.5mm, and the junction dose could reach 70% hot/cold between different DIBH. However, over the entire course of treatment, the average junction variation for all patients is within 0.2mm. The results from our study shows it is potentially feasible to treat supraclavicular field with breast tangents.« less
Approaches to Data Analysis in Longitudinal Field Investigations of Educational Programs.
ERIC Educational Resources Information Center
Jovick, Thomas D.
The federally funded longitudinal field study called Management Implications of Team Teaching (MITT) required a search for an appropriate strategy for analyzing through-time relationships among selected variables. The MITT project used questionnaires and interviews to collect data concerning the work, governance, attitudes, and orientation of…
Spectropolarimetry of magnetic stars. IV. The crossover effect.
NASA Astrophysics Data System (ADS)
Mathys, G.
1995-01-01
This paper is devoted to the study of the crossover effect in magnetic Ap stars. It is shown that this effect can be measured by the second order moment about their centre of the profiles of spectral lines recorded in the Stokes parameter V. The interpretation of these measurements in terms of magnetic field is developed. It is shown that one can derive from them a quantity called the mean asymmetry of the longitudinal magnetic field, which is the first moment of the component of the magnetic field along the line of sight, about the plane defined by the line of sight and the stellar rotation axis. The consistency of the determination of this quantity with that of the mean longitudinal magnetic field from measurements of wavelength shifts of lines between right and left circular polarization is demonstrated. This technique of analysis is applied to observations of a sample of 29 stars, among which 10 have a detectable crossover effect. For 8 of them, the available observational data allow the study of the variations of the asymmetry of the longitudinal field with rotation phase. In most cases, this variation is sinusoidal and essentially symmetric about 0, and it occurs in quadrature with the variation of the mean longitudinal field. A more complex behaviour is definitely observed in HD 147010 and HD 175362, where the variation of the asymmetry of the longitudinal field is better represented by the superposition of two sinusoids, one with the rotation frequency of the star, and the other with twice that frequency.
Artes, Paul H; Chauhan, Balwantray C; Keltner, John L; Cello, Kim E; Johnson, Chris A; Anderson, Douglas R; Gordon, Mae O; Kass, Michael A
2010-12-01
To assess agreement between longitudinal and cross-sectional analyses for determining visual field progression in data from the Ocular Hypertension Treatment Study. Visual field data from 3088 eyes of 1570 participants (median follow-up, 7 years) were analyzed. Longitudinal analyses were performed using change probability with total and pattern deviation, and cross-sectional analyses were performed using the glaucoma hemifield test, corrected pattern standard deviation, and mean deviation. The rates of mean deviation and general height change were compared to estimate the degree of diffuse loss in emerging glaucoma. Agreement on progression in longitudinal and cross-sectional analyses ranged from 50% to 61% and remained nearly constant across a wide range of criteria. In contrast, agreement on absence of progression ranged from 97.0% to 99.7%, being highest for the stricter criteria. Analyses of pattern deviation were more conservative than analyses of total deviation, with a 3 to 5 times lesser incidence of progression. Most participants developing field loss had both diffuse and focal changes. Despite considerable overall agreement, 40% to 50% of eyes identified as having progressed with either longitudinal or cross-sectional analyses were identified with only one of the analyses. Because diffuse change is part of early glaucomatous damage, pattern deviation analyses may underestimate progression in patients with ocular hypertension.
Twistor encoding of Lienard--Wiechert fields in Minkowski space-time
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, J.R.
1985-03-01
The twistor encoding of the anti-self-dual Lienard--Wiechert field on Minkowski space-time yields a considerably richer structure than that of the Coulomb field encoding due to the presence of a nonzero radiation field. The combination of advanced and retarded transverse fields together with the longitudinal field and the individual aspects of these fields provides this structure. Higher-order longitudinal moments can be incorporated so that general longitudinal fields can be given a twistor description.
NASA Astrophysics Data System (ADS)
Liu, Hu; Liu, Hua; Yang, Jialing
2017-09-01
In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.
Franz, M; Schepank, H; Wirth, T; Schellberg, D
1992-11-01
Usually little is known about probands who participated in an epidemiological longitudinal field survey but refused participation in follow-up investigations. For reasons of data protection and on account of the fact that investigative instruments used in longterm field surveys or panel studies are more focused on well defined issues (opinions, attitudes, assessment of behaviors) and less on personality variables, differentiated statements on probands who explicitly refused cooperation can hardly be made. In our epidemiological longitudinal field study on prevalence and course of psychogenic disorders we have a different situation. Within the limits of our study we had the unique opportunity to gain far-reaching information on probands who refused to participate in preceding investigations in regard to sociodemographic, psychometric and clinical variables. The clientele of refusers we present in our paper mainly comprises elderly, married, rather obsessive-compulsive structured, lower-class females. According to our data interactive aspects are equally responsible for reduced cooperativeness. The significance of our findings for the planning and carrying out of epidemiological longitudinal field surveys is discussed.
[Design of longitudinal auto-tracking of the detector on X-ray in digital radiography].
Yu, Xiaomin; Jiang, Tianhao; Liu, Zhihong; Zhao, Xu
2018-04-01
One algorithm is designed to implement longitudinal auto-tracking of the the detector on X-ray in the digital radiography system (DR) with manual collimator. In this study, when the longitudinal length of field of view (LFOV) on the detector is coincided with the longitudinal effective imaging size of the detector, the collimator half open angle ( Ψ ), the maximum centric distance ( e max ) between the center of X-ray field of view and the projection center of the focal spot, and the detector moving distance for auto-traking can be calculated automatically. When LFOV is smaller than the longitudinal effective imaging size of the detector by reducing Ψ , the e max can still be used to calculate the detector moving distance. Using this auto-tracking algorithm in DR with manual collimator, the tested results show that the X-ray projection is totally covered by the effective imaging area of the detector, although the center of the field of view is not aligned with the center of the effective imaging area of the detector. As a simple and low-cost design, the algorithm can be used for longitudinal auto-tracking of the detector on X-ray in the manual collimator DR.
Spin dynamics of random Ising chain in coexisting transverse and longitudinal magnetic fields
NASA Astrophysics Data System (ADS)
Liu, Zhong-Qiang; Jiang, Su-Rong; Kong, Xiang-Mu; Xu, Yu-Liang
2017-05-01
The dynamics of the random Ising spin chain in coexisting transverse and longitudinal magnetic fields is studied by the recursion method. Both the spin autocorrelation function and its spectral density are investigated by numerical calculations. It is found that system's dynamical behaviors depend on the deviation σJ of the random exchange coupling between nearest-neighbor spins and the ratio rlt of the longitudinal and the transverse fields: (i) For rlt = 0, the system undergoes two crossovers from N independent spins precessing about the transverse magnetic field to a collective-mode behavior, and then to a central-peak behavior as σJ increases. (ii) For rlt ≠ 0, the system may exhibit a coexistence behavior of a collective-mode one and a central-peak one. When σJ is small (or large enough), system undergoes a crossover from a coexistence behavior (or a disordered behavior) to a central-peak behavior as rlt increases. (iii) Increasing σJ depresses effects of both the transverse and the longitudinal magnetic fields. (iv) Quantum random Ising chain in coexisting magnetic fields may exhibit under-damping and critical-damping characteristics simultaneously. These results indicate that changing the external magnetic fields may control and manipulate the dynamics of the random Ising chain.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de; Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT; Brookes, Mike
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In thismore » paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole sources. • Inverse solutions are based on longitudinal and transverse line integral measurements. • Transverse line integral measurements are used as a sparsity constraint. • Numerical procedure to approximate the line integrals is described in detail. • Patterns of the studied electric fields are correctly estimated.« less
A Longitudinal Study of the Determinants and Outcomes of Career Change
ERIC Educational Resources Information Center
Carless, Sally A.; Arnup, Jessica L.
2011-01-01
The present longitudinal field study investigated the antecedents and consequences of an actual career change. The framework for this study was Rhodes and Doering's (1983) model of career change. We examined the effect of individual and organisational characteristics on career change behaviour. The individual characteristics were: traits (Openness…
Chauhan, Balwantray C; Keltner, John L; Cello, Kim E; Johnson, Chris A; Anderson, Douglas R; Gordon, Mae O; Kass, Michael A
2014-01-01
Purpose Visual field progression can be determined by evaluating the visual field by serial examinations (longitudinal analysis), or by a change in classification derived from comparison to age-matched normal data in single examinations (cross-sectional analysis). We determined the agreement between these two approaches in data from the Ocular Hypertension Treatment Study (OHTS). Methods Visual field data from 3088 eyes of 1570 OHTS participants (median follow-up 7 yrs, 15 tests with static automated perimetry) were analysed. Longitudinal analyses were performed with change probability with total and pattern deviation, and cross-sectional analysis with Glaucoma Hemifield Test, Corrected Pattern Standard Deviation, and Mean Deviation. The rates of Mean Deviation and General Height change were compared to estimate the degree of diffuse loss in emerging glaucoma. Results The agreement on progression in longitudinal and cross-sectional analyses ranged from 50% to 61% and remained nearly constant across a wide range of criteria. In contrast, the agreement on absence of progression ranged from 97% to 99.7%, being highest for the stricter criteria. Analyses of pattern deviation were more conservative than total deviation, with a 3 to 5 times lesser incidence of progression. Most participants developing field loss had both diffuse and focal change. Conclusions Despite considerable overall agreement, between 40 to 50% of eyes identified as having progressed with either longitudinal or cross-sectional analyses were identified with only one of the analyses. Because diffuse change is part of early glaucomatous damage, pattern deviation analyses may underestimate progression in patients with ocular hypertension. PMID:21149774
Lewis Terman: Genetic Study of Genius--Elementary School Students
ERIC Educational Resources Information Center
Jolly, Jennifer L.
2008-01-01
Although the field of gifted education generally recognizes the foundational work of Lewis Terman, rarely does one stop to examine the details of his longitudinal study and their connection to present-day gifted education. This article reexamines the beginnings of Terman's longitudinal study with a focus on elementary-school-aged children.…
NASA Astrophysics Data System (ADS)
Sazykin, S.; Wolf, R.; Spiro, R.; Fejer, B.
Ionospheric prompt penetration electric fields of magnetospheric origin, together with the atmospheric disturbance dynamo, represent the most important parameters controlling the storm-time dynamics of the low and mid-latitude ionosphere. These prompt penetration fields result from the disruption of region-2 field-aligned shielding currents during geomagnetically disturbed conditions. Penetration electric fields con- trol, to a large extent, the generation and development of equatorial spread-F plasma instabilities as well as other dynamic space weather phenomena in the ionosphere equatorward of the auroral zone. While modeling studies typically agree with average patterns of prompt penetration fields, experimental results suggest that longitudinal variations of the ionospheric con- ductivities play a non-negligible role in controlling spread-F phenomena, an effect that has not previously been modeled. We present first results of modeling prompt pene- tration electric fields using a version of the Rice Convection Model (RCM) that allows for longitudinal variations in the ionospheric conductance tensor. The RCM is a first- principles numerical ionosphere-magnetosphere coupling model that solves for the electric fields, field-aligned currents, and particle distributions in the ionosphere and inner/middle magnetosphere. We compare these new theoretical results with electric field observations.
Data Integration Approaches to Longitudinal Growth Modeling
ERIC Educational Resources Information Center
Marcoulides, Katerina M.; Grimm, Kevin J.
2017-01-01
Synthesizing results from multiple studies is a daunting task during which researchers must tackle a variety of challenges. The task is even more demanding when studying developmental processes longitudinally and when different instruments are used to measure constructs. Data integration methodology is an emerging field that enables researchers to…
NASA Astrophysics Data System (ADS)
Hiltula, T.; Mursula, K.
2004-12-01
Several studies during many decennia have studied possible longitudinal and hemispherical asymmetries in various forms of solar activity. E.g., there are well known periods when one of the solar hemispheres has dominated the other in sunspot numbers, flare occurrence or some other form of solar activity. However, the solar asymmetries have not been found to be very conclusive, or to form any clear systematical patterns (e.g., relation to solar cycle). On the contrary, recent studies of similar longitudinal and hemispherical asymmetries in the heliospheric magnetic field have shown a very clear and systematic behaviour. E.g., it was found recently that the dominance of the two HMF sectors experiences an oscillation with a period of about 3.2 years. This new flip-flop periodicity in the heliospheric magnetic field is most likely related to a similar periodicity recently found in sunspots. Also, it has recently been found that the HMF sector coming from the northern solar hemisphere systematically dominates at 1AU during solar minimum times. This leads to a persistent southward shift or coning of the heliospheric current sheet at these times that can be picturesquely described by the concept of a Bashful Ballerina. This result also implies that the Sun has a large-scale quadrupole magnetic moment. Here we review these recent developments concerning the longitudinal and hemispherical asymmetries in the heliospheric magnetic field and study their inter-connection.
Giant transversal particle diffusion in a longitudinal magnetic ratchet.
Tierno, Pietro; Reimann, Peter; Johansen, Tom H; Sagués, Francesc
2010-12-03
We study the transversal motion of paramagnetic particles on a uniaxial garnet film, exhibiting a longitudinal ratchet effect in the presence of an oscillating magnetic field. Without the field, the thermal diffusion coefficient obtained by video microscopy is D(0) ≈ 3 × 10(-4) μm2/s. With the field, the transversal diffusion exhibits a giant enhancement by almost four decades and a pronounced maximum as a function of the driving frequency. We explain the experimental findings with a theoretical interpretation in terms of random disorder effects within the magnetic film.
WisDOT asphaltic mixture new specifications implementation : field compaction and density.
DOT National Transportation Integrated Search
2016-06-01
The main research objectives of this study were to evaluate HMA Longitudinal Joint type, method and compaction data to produce specification recommendations that will ensure the highest density longitudinal joint, as well as evaluate and produce a sp...
Gifted Girls and Nonmathematical Aspirations: A Longitudinal Case Study of Two Gifted Korean Girls
ERIC Educational Resources Information Center
Lee, Kyeong Hwa; Sriraman, Bharath
2012-01-01
In this longitudinal study of two gifted Korean girls, experiences with early admittance into a gifted program are charted alongside their family and societal experiences that ultimately influenced their career choices in nonmathematical fields. The 8-year-long qualitative study involved extensive interviews with the two gifted girls and their…
ERIC Educational Resources Information Center
Dante, Angelo; Fabris, Stefano; Palese, Alvisa
2013-01-01
Empirical studies and conceptual frameworks presented in the extant literature offer a static imagining of academic failure. Time-to-event analysis, which captures the dynamism of individual factors, as when they determine the failure to properly tailor timely strategies, impose longitudinal studies which are still lacking within the field. The…
Theory and simulations of radiation friction induced enhancement of laser-driven longitudinal fields
NASA Astrophysics Data System (ADS)
Gelfer, E. G.; Fedotov, A. M.; Weber, S.
2018-06-01
We consider the generation of a quasistatic longitudinal electric field by intense laser pulses propagating in a transparent plasma with radiation friction (RF) taken into account. For both circular and linear polarization of the driving pulse we develop a 1D analytical model of the process, which is valid in a wide range of laser and plasma parameters. We define the parameter region where RF results in an essential enhancement of the longitudinal field. The amplitude and the period of the generated longitudinal wave are estimated and optimized. Our theoretical predictions are confirmed by 1D and 2D PIC simulations. We also demonstrate numerically that RF should substantially enhance the longitudinal field generated in a plasma by a 10 PW laser such as ELI Beamlines.
Newspapers and Adult Understanding of Public Affairs: Two Longitudinal Community Studies.
ERIC Educational Resources Information Center
Tichenor, P. J.; And Others
Two longitudinal field studies of the process of information dissemination through newspapers were conducted on two different public affairs topics (regional planning and routing of a high voltage power line) in four communities to examine the role of newspapers in increasing levels of conflict and in creating greater levels of awareness and…
ERIC Educational Resources Information Center
Richmond, Jayne; Sherman, Karen J.
1991-01-01
Examined graduate students' and new professionals' choices and satisfaction with careers, preparation programs, and mentor relationships. Findings from four phases of longitudinal study begun in 1983 with graduate students in student development field suggest that entering students need to be adequately informed about changing career options in…
Computational Investigation of Helical Traveling Wave Tube Transverse RF Field Forces
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Dayton, James A.
1998-01-01
In a previous study using a fully three-dimensional (3D) helical slow-wave circuit cold- test model it was found, contrary to classical helical circuit analyses, that transverse FF electric fields have significant amplitudes compared with the longitudinal component. The RF fields obtained using this helical cold-test model have been scaled to correspond to those of an actual TWT. At the output of the tube, RF field forces reach 61%, 26% and 132% for radial, azimuthal and longitudinal components, respectively, compared to radial space charge forces indicating the importance of considering them in the design of electron beam focusing.
μ SR study of NaCaNi2F7 in zero field and applied longitudinal magnetic field
NASA Astrophysics Data System (ADS)
Cai, Yipeng; Wilson, Murray; Hallas, Alannah; Liu, Lian; Frandsen, Benjamin; Dunsiger, Sarah; Krizan, Jason; Cava, Robert; Uemura, Yasutomo; Luke, Graeme
Rich physics of abundant magnetic ground states has been realized in the A2B2X7 geometrically frustrated magnetic pyrochlores. Recently, a new spin-1 Ni2+ pyrochlore, NaCaNi2F7, was synthesized and shown to have spin freezing at 3.6 K with a frustration index of f 36 and antiferromagnetic exchange interactions [1] . This structure has chemical disorder on the A site caused by randomly distributed Ca and Na ions, which causes bond disorder around the magnetic Ni sites. We present Zero Field (ZF) and Longitudinal Field (LF) muon spin rotation (μSR) measurements on this single crystal pyrochlore. Our data shows that the Ni2+ spins start freezing around 4 K giving a static local field of 140 G. The data show no oscillations down to 75 mK which indicates no long range magnetic order. They are well described by the dynamic Gaussian Kubo-Toyabe function with a non-zero hopping rate that is not easily decoupled with an applied longitudinal field, which implies persistent spin dynamics down to 75 mK.
Magnetoelectric effects in the spin-1/2 XXZ model with Dzyaloshinskii-Moriya interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thakur, Pradeep; Durganandini, P., E-mail: pdn@physics.unipune.ac.in
2015-06-24
We study the 1D spin-1/2 XXZ chain in the presence of the Dzyaloshinskii-Moriya (D-M) interaction and with longitudinal and transverse magnetic fields. We assume the spin-current mechanism of Katsura-Nagaosa-Balatsky at play and interpret the D-M interaction as a coupling between the local electric polarization and an external electric field. We study the interplay of electric and magnetic order in the ground state using the numerical density matrix renormalization group(DMRG) method. Specifically, we investigate the dependences of the magnetization and electric polarization on the external electric and magnetic fields. We find that for transverse magnetic fields, there are two different regimesmore » of polarization while for longitudinal magnetic fields, there are three different regimes of polarization. The different regimes can be tuned by the external magnetic fields.« less
Detecting glaucomatous change in visual fields: Analysis with an optimization framework.
Yousefi, Siamak; Goldbaum, Michael H; Varnousfaderani, Ehsan S; Belghith, Akram; Jung, Tzyy-Ping; Medeiros, Felipe A; Zangwill, Linda M; Weinreb, Robert N; Liebmann, Jeffrey M; Girkin, Christopher A; Bowd, Christopher
2015-12-01
Detecting glaucomatous progression is an important aspect of glaucoma management. The assessment of longitudinal series of visual fields, measured using Standard Automated Perimetry (SAP), is considered the reference standard for this effort. We seek efficient techniques for determining progression from longitudinal visual fields by formulating the problem as an optimization framework, learned from a population of glaucoma data. The longitudinal data from each patient's eye were used in a convex optimization framework to find a vector that is representative of the progression direction of the sample population, as a whole. Post-hoc analysis of longitudinal visual fields across the derived vector led to optimal progression (change) detection. The proposed method was compared to recently described progression detection methods and to linear regression of instrument-defined global indices, and showed slightly higher sensitivities at the highest specificities than other methods (a clinically desirable result). The proposed approach is simpler, faster, and more efficient for detecting glaucomatous changes, compared to our previously proposed machine learning-based methods, although it provides somewhat less information. This approach has potential application in glaucoma clinics for patient monitoring and in research centers for classification of study participants. Copyright © 2015 Elsevier Inc. All rights reserved.
Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.
Alber, Ina; Sigle, Wilfried; Müller, Sven; Neumann, Reinhard; Picht, Oliver; Rauber, Markus; van Aken, Peter A; Toimil-Molares, Maria Eugenia
2011-12-27
We study the transversal and longitudinal localized surface plasmon resonances in single nanowires and nanowire dimers excited by the fast traveling electron beam in a transmission electron microscope equipped with high-resolution electron energy-loss spectroscopy. Bright and dark longitudinal modes up to the fifth order are resolved on individual metallic nanowires. On nanowire dimers, mode splitting into bonding and antibonding is measured up to the third order for several dimers with various aspect ratio and controlled gap size. We observe that the electric field maxima of the bonding modes are shifted toward the gap, while the electric field maxima of the antibonding modes are shifted toward the dimer ends. Finally, we observe that the transversal mode is not detected in the region of the dimer gap and decays away from the rod more rapidly than the longitudinal modes.
ERIC Educational Resources Information Center
Argon, Türkan
2015-01-01
This study aims to fill the gap in the field of observation-based longitudinal studies about metaphors in educational literature and investigates students' perceptions about the concept of university before and after university by identifying and comparing the change and the direction of change observed in perceptions. The phenomenological study…
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
NASA Astrophysics Data System (ADS)
Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville
2017-01-01
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.
Linear magnetoconductivity in an intrinsic topological Weyl semimetal
NASA Astrophysics Data System (ADS)
Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing
2016-05-01
Searching for the signature of the violation of chiral charge conservation in solids has inspired a growing passion for the magneto-transport in topological semimetals. One of the open questions is how the conductivity depends on magnetic fields in a semimetal phase when the Fermi energy crosses the Weyl nodes. Here, we study both the longitudinal and transverse magnetoconductivity of a topological Weyl semimetal near the Weyl nodes with the help of a two-node model that includes all the topological semimetal properties. In the semimetal phase, the Fermi energy crosses only the 0th Landau bands in magnetic fields. For a finite potential range of impurities, it is found that both the longitudinal and transverse magnetoconductivity are positive and linear at the Weyl nodes, leading to an anisotropic and negative magnetoresistivity. The longitudinal magnetoconductivity depends on the potential range of impurities. The longitudinal conductivity remains finite at zero field, even though the density of states vanishes at the Weyl nodes. This work establishes a relation between the linear magnetoconductivity and the intrinsic topological Weyl semimetal phase.
A free-electron laser in a uniform magnetic field
NASA Technical Reports Server (NTRS)
Ride, S. K.; Colson, W. B.
1979-01-01
The study shows that a free-electron laser can operate in a uniform, longitudinal magnetic field. The fully relativistic Lorentz force equations are examined and solved order by order in a radiation field strength to obtain analytic expressions for the electron trajectory and energy as functions of initial electron position within a wavelength of light. Analytic expressions for the longitudinal and transverse bunching and for laser gain are found. The bunching of this laser process is compared to the bunching processes involved in (1) a Stanford free-electron laser and (2) a cyclotron maser. The results received can be useful in exploring light amplification in astrophysical magnetic fields, the magnetosphere, and in laboratory devices.
NASA Astrophysics Data System (ADS)
Liu, C.; Ong, H. C.
2018-01-01
We have employed a polarization-resolved Fourier-space surface plasmon resonance microscope to determine the electric field component ratio of surface plasmon polaritons (SPPs) propagating on a flat gold film. By using a metallic nanoparticle as a probe to capture the radiation damping of the SPP scattered waves, we find the angular far-field distribution is related to the transverse and longitudinal fields of SPPs. The experiment is supported by analytical and numerical calculations. Our results present a simple but useful approach to probe the behaviors of SPPs such as the transverse spin density as well as the energy density.
Longitudinal gradient coil optimization in the presence of transient eddy currents.
Trakic, A; Liu, F; Lopez, H Sanchez; Wang, H; Crozier, S
2007-06-01
The switching of magnetic field gradient coils in magnetic resonance imaging (MRI) inevitably induces transient eddy currents in conducting system components, such as the cryostat vessel. These secondary currents degrade the spatial and temporal performance of the gradient coils, and compensation methods are commonly employed to correct for these distortions. This theoretical study shows that by incorporating the eddy currents into the coil optimization process, it is possible to modify a gradient coil design so that the fields created by the coil and the eddy currents combine together to generate a spatially homogeneous gradient that follows the input pulse. Shielded and unshielded longitudinal gradient coils are used to exemplify this novel approach. To assist in the evaluation of transient eddy currents induced within a realistic cryostat vessel, a low-frequency finite-difference time-domain (FDTD) method using the total-field scattered-field (TFSF) scheme was performed. The simulations demonstrate the effectiveness of the proposed method for optimizing longitudinal gradient fields while taking into account the spatial and temporal behavior of the eddy currents.
The implication of non-cyclic intrafractional longitudinal motion in SBRT by TomoTherapy
NASA Astrophysics Data System (ADS)
Yang, Wensha; Van Ausdal, Ray; Read, Paul; Larner, James; Benedict, Stan; Sheng, Ke
2009-05-01
To determine the dosimetric impact of non-cyclic longitudinal intrafractional motion, TomoTherapy plans with different field sizes were interrupted during a phantom delivery, and a displacement between -5 mm and 5 mm was induced prior to the delivery of the completion procedure. The planar dose was measured by film and a cylindrical phantom, and under-dosed or over-dosed volume was observed for either positive or negative displacement. For a 2.5 cm field, there was a 4% deviation for every mm of motion and for a 1 cm field, the deviation was 8% per mm. The dimension of the under/over-dosed area was independent of the motion but dependent on the field size. The results have significant implication in small-field high-dose treatments (i.e. stereotactic body radiation therapy (SBRT)) that deliver doses in only a few fractions. Our studies demonstrate that a small longitudinal motion may cause a dose error that is difficult to compensate; however, dividing a SBRT fraction into smaller passes is helpful to reduce such adverse effects.
Anharmonic longitudinal motion of bases and dynamics of nonlinear excitation in DNA.
Di Garbo, Angelo
2016-01-01
The dynamics of the transcription bubble in DNA is studied by using a nonlinear model in which torsional and longitudinal conformations of the biomolecule are coupled. In the absence of forcing and dissipation the torsional dynamics is described by a perturbed kink of the Sine-Gordon DNA model, while the longitudinal conformational energy propagate as phonons. It was found that for random initial conditions of the longitudinal conformational field the presence of the kink promotes the creation of phonons propagating along the chain axis. Moreover, the presence of forcing, describing the active role of RNA polymerase, determines in agreement to the experimental data a modulation of the velocity of the transcription bubble. Lastly, it was shown that the presence of dissipation impacts the dynamic of the phonon by reducing the amplitude of the corresponding conformational field. On the contrary, dissipation and forcing modulate the velocity of the transcription bubble alone.
NASA Astrophysics Data System (ADS)
Rezania, H.
2018-07-01
We have addressed the specific heat and magnetization of one dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain at finite magnetic field. We have investigated the thermodynamic properties by means of excitation spectrum in terms of a hard core Bosonic representation. The effect of in-plane anisotropy thermodynamic properties has also been studied via the Bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the specific heat and longitudinal magnetization in the gapped field induced spin-polarized phase for various magnetic fields and anisotropy parameters. Furthermore we have studied the magnetic field dependence of specific heat and magnetization for various anisotropy parameters. Our results show temperature dependence of specific heat includes a peak so that its temperature position goes to higher temperature with increase of magnetic field. We have found the magnetic field dependence of specific heat shows a monotonic decreasing behavior for various magnetic fields due to increase of energy gap in the excitation spectrum. Also we have studied the temperature dependence of magnetization for different magnetic fields and various anisotropy parameters.
Violence Viewing and Adolescent Aggression: A Longitudinal Study.
ERIC Educational Resources Information Center
Viemero, Vappu
A longitudinal field study conducted in Turku, Finland, traced the development of aggression as a function of the viewing of violence by children from the ages of 7 and 9 to the ages of 15 and 17 to explore the connection between violence viewing and viewers' aggression, and to shed light on the question of causality. The 220 subjects, both male…
NASA Astrophysics Data System (ADS)
Akhmedagaev, R.; Listratov, Y.
2017-11-01
The direct numerical simulation (DNS) of MHD-heat transfer problems in turbulent flow of liquid metal (LM) in a horizontal pipe with a joint effect of the longitudinal magnetic field (MF) and thermo-gravitational convection (TGC). The authors calculated the effect of TGC in a strong longitudinal MF for a homogeneous heating. Investigated the averaged fields of velocity and temperature, heat transfer characteristics, the distribution of wall temperature along the perimeter of the cross section of the pipe. The effect of TGC on the velocity field is affected stronger than in the temperature field.
Longitudinal and transverse dynamics of ions from residual gas in an electron accelerator
NASA Astrophysics Data System (ADS)
Gamelin, A.; Bruni, C.; Radevych, D.
2018-05-01
The ion cloud produced from residual gas in an electron accelerator can degrade machine performances and produce instabilities. The ion dynamics in an accelerator is governed by the beam-ion interaction, magnetic fields and eventual mitigation strategies. Due to the fact that the beam has a nonuniform transverse size along its orbit, the ions move longitudinally and accumulate naturally at some points in the accelerator. In order to design effective mitigation strategies it is necessary to understand the ion dynamics not only in the transverse plane but also in the longitudinal direction. After introducing the physics behind the beam-ion interaction, we show how to get accumulation points for a realistic electron storage ring lattice. Simulations of the ion cloud dynamics, including the effect of magnetic fields on the ions, clearing electrodes and clearing gaps are shown. Longitudinal ion trapping due to the magnetic mirror effect in the dipole fringe fields is also detailed. Finally, the effectiveness of clearing electrode using longitudinal clearing fields is discussed and compared to clearing electrodes producing transverse field only.
Michael N. Gooseff; Justin K. Anderson; Steven M. Wondzell; Justin LaNier; Roy Haggerty
2005-01-01
Studies of hyporheic exchange flows have identified physical features of channels that control exchange flow at the channel unit scale, namely slope breaks in the longitudinal profile of streams that generate subsurface head distributions. We recently completed a field study that suggested channel unit spacing in stream longitudinal profiles can be used to predict the...
NASA Astrophysics Data System (ADS)
Wood, R.; Monson, J.; Coughlin, T.
1999-03-01
The presence of a soft magnetic layer adjacent to a magnetic recording medium reduces the demagnetization of both perpendicular and longitudinal recording media. However, for perpendicular media, there is no reduction in the worst case, DC, demagnetizing field and no lessening of the decay. For longitudinal media, the highest demagnetizing fields occur at high densities. The soft layer or keeper can reduce these fields significantly and slow the initial decay. The soft underlayer also induces a small anisotropy field that assists the thermal stability of a perpendicular medium. A similar layer with a longitudinal medium, however, causes a small reduction in thermal stability, but only at low levels of demagnetizing field. For longitudinal recording media the overall effect of the keeper on thermal stability is quite complicated: the initial decay may be delayed significantly (a factor of ten in time) but the final decay to zero may still proceed more rapidly.
Arrangement of Cellulose Microfibrils in Walls of Elongating Parenchyma Cells
Setterfield, G.; Bayley, S. T.
1958-01-01
The arrangement of cellulose microfibrils in walls of elongating parenchyma cells of Avena coleoptiles, onion roots, and celery petioles was studied in polarizing and electron microscopes by examining whole cell walls and sections. Walls of these cells consist firstly of regions containing the primary pit fields and composed of microfibrils oriented predominantly transversely. The transverse microfibrils show a progressive disorientation from the inside to the outside of the wall which is consistent with the multinet model of wall growth. Between the pit-field regions and running the length of the cells are ribs composed of longitudinally oriented microfibrils. Two types of rib have been found at all stages of cell elongation. In some regions, the wall appears to consist entirely of longitudinal microfibrils so that the rib forms an integral part of the wall. At the edges of such ribs the microfibrils can be seen to change direction from longitudinal in the rib to transverse in the pit-field region. Often, however, the rib appears to consist of an extra separate layer of longitudinal microfibrils outside a continuous wall of transverse microfibrils. These ribs are quite distinct from secondary wall, which consists of longitudinal microfibrils deposited within the primary wall after elongation has ceased. It is evident that the arrangement of cellulose microfibrils in a primary wall can be complex and is probably an expression of specific cellular differentiation. PMID:13563544
DOT National Transportation Integrated Search
2012-12-01
This report presents the findings of a field study in Maine, constructed during summer 2012 using : two different joint technologies and an infrared heater. MaineDOT has previously used an infrared : heater and notch-wedge apparatus to improve longit...
Longitudinal conductivity in strong magnetic field in perturbative QCD: Complete leading order
NASA Astrophysics Data System (ADS)
Hattori, Koichi; Li, Shiyong; Satow, Daisuke; Yee, Ho-Ung
2017-04-01
We compute the longitudinal electrical conductivity in the presence of a strong background magnetic field in complete leading order of perturbative QCD, based on the assumed hierarchy of scales αse B ≪(mq2,T2)≪e B . We formulate an effective kinetic theory of lowest Landau level quarks with the leading order QCD collision term arising from 1-to-2 processes that become possible due to 1 +1 dimensional Landau level kinematics. In the small mq/T ≪1 regime, the longitudinal conductivity behaves as σz z˜e2(e B )T /(αsmq2log (T /mq)) , where the quark mass dependence can be understood from the chiral anomaly with the axial charge relaxation provided by a finite quark mass mq. We also present parametric estimates for the longitudinal and transverse "color conductivities" in the presence of the strong magnetic field, by computing dominant damping rates for quarks and gluons that are responsible for color charge transportation. We observe that the longitudinal color conductivity is enhanced by the strong magnetic field, which implies that the sphaleron transition rate in perturbative QCD is suppressed by the strong magnetic field due to the enhanced Lenz's law in color field dynamics.
ERIC Educational Resources Information Center
Bartolome, Sarah J.
2017-01-01
The purpose of this longitudinal study was to examine preservice and first-year music educators' perspectives on fieldwork activities embedded within a music teacher preparation program. One cohort of students was tracked for 2.5 years as they participated in an elementary teaching practicum, fulfilled the student teaching internship, and…
Evolution of pressures and correlations in the glasma produced in high energy nuclear collisions
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Liu, J. H.; Oliva, L.; Peng, G. X.; Greco, V.
2018-04-01
We consider the SU(2) glasma with Gaussian fluctuations and study its evolution by means of classical Yang-Mills equations solved numerically on a lattice. Neglecting in this first study the longitudinal expansion, we follow the evolution of the pressures of the system and compute the effect of the fluctuations in the early stage up to t ≈2 fm /c , that is the time range in which the glasma is relevant for high energy collisions. We measure the ratio of the longitudinal over the transverse pressure, PL/PT, and we find that unless the fluctuations carry a substantial amount of the energy density at the initial time, they do not change significantly the evolution of PL/PT in the early stage and that the system remains quite anisotropic. We also measure the longitudinal fields correlators both in the transverse plane and along the longitudinal direction: while at initial time fields appear to be anticorrelated in the transverse plane, this anticorrelation disappears in the very early stage, and the correlation length in the transverse plane increases. On the other hand, we find a dependence of the gauge invariant correlator on the longitudinal coordinate, which we interpret as a partial loss of correlation induced by the dynamics that we dub the gauge invariant string breaking. We finally study the effect of fluctuations on the longitudinal correlations: we find that string breaking is accelerated by the fluctuations and waiting for a sufficiently long time fluctuations lead to the complete breaking of the color strings.
ERIC Educational Resources Information Center
Swan, Gerry
2009-01-01
In 2003, a portfolio system was implemented to manage the data associated with the field experiences in a teacher education program at a research institution in the southeast region of the United States. In this longitudinal study, the implementation trends from usage data extracted from the system are used to discuss the implications for the use…
Field of Study in College and Lifetime Earnings in the United States
ERIC Educational Resources Information Center
Kim, ChangHwan; Tamborini, Christopher R.; Sakamoto, Arthur
2015-01-01
Our understanding about the relationship between education and lifetime earnings often neglects differences by field of study. Utilizing data that match respondents in the Survey of Income and Program Participation to their longitudinal earnings records based on administrative tax information, we investigate the trajectories of annual earnings…
Critical Current Properties in Longitudinal Magnetic Field of YBCO Superconductor with APC
NASA Astrophysics Data System (ADS)
Kido, R.; Kiuchi, M.; Otabe, E. S.; Matsushita, T.; Jha, A. K.; Matsumoto, K.
The critical current density (Jc) properties of the Artificial Pinning Center (APC) introduced YBa2Cu3O7 (YBCO) films in the longitudinal magnetic field were measured. Y2O3 or Y2BaCuO5 (Y211) was introduced as APCs to YBCO, and YBCO films with APC were fabricated on SrTiO3 single crystal substrate. The sizes of Y2O3 and Y211 were 5-10 nm and 10-20 nm, respectively. As a result, Jc enhancement in the longitudinal magnetic field was observed in Y2O3 introduced YBCO films. However, it was not observed in Y211 introduced YBCO films. Therefore, it was considered that Jc properties in the longitudinal magnetic field were affected by introducing of small size APC, and it was necessary that APC does not disturb the current pathway in the superconductor.
NASA Astrophysics Data System (ADS)
Gorskii, P. V.
2011-03-01
It is demonstrated that the dependence of Fermi's energy on the magnetic field causes a set of the Shubnikov - de Haas (SDH) oscillation frequencies to change, and their relative contribution to the total longitudinal conductivity of layered crystals depends on whether the scattering of current carriers is isotropic or anisotropic. Owing to the topological transition in a strong magnetic field, Fermi's surface (FS) is transformed from open into closed one and is compressed in the magnetic field direction. Therefore, in an ultraquantum limit, disregarding the Dingle factor, the longitudinal electrical conductivity of the layered crystal tends to zero as a reciprocal square of the magnetic field for the isotropic scattering and as a reciprocal cube of the magnetic field for the anisotropic scattering. All calculations are performed in the approximation of relaxation time considered to be constant versus the quantum numbers for the isotropic scattering and proportional to the longitudinal velocity of current carriers for the anisotropic scattering.
The Importance of Longitudinal Studies
NASA Astrophysics Data System (ADS)
Knezek, Patricia
2014-01-01
It has been eight years since the AAS Council unanimously endorsed the document, known as "Equity Now: The Pasadena Recommendations for Gender Equality in Astronomy," in January 2005. This document was the main product of the conference entitled “Women in Astronomy II: Ten Years After” (WIA II), held in June 2003 in Pasadena, CA. One of the key recommendations represented in that document was the need for a longitudinal study of astronomers. It was recognized that in order to understand our own field, how it is evolving, and the impact on individuals, we need to track people over time. I will discuss the fundamental questions that led to the recommendation, and set the stage for the current (ongoing) longitudinal study.
The vector structure of active magnetic fields
NASA Technical Reports Server (NTRS)
Parker, E. N.
1985-01-01
Observations are needed to show the form of the strains introduced into the fields above the surface of the Sun. The longitudinal component alone does not provide the basic information, so that it has been necessary in the past to use the filamentary structure observed in H sub alpha to supplement the longitudinal information. Vector measurements provide the additional essential information to determine the strains, with the filamentary structure available as a check for consistency. It is to be expected, then, that vector measurements will permit a direct mapping of the strains imposed on the magnetic fields of active regions. It will be interesting to study the relation of those strains to the emergence of magnetic flux, flares, eruptive prominences, etc. In particular we may hope to study the relaxation of the strains via the dynamical nonequilibrium.
Infinite coherence time of edge spins in finite-length chains
NASA Astrophysics Data System (ADS)
Maceira, Ivo A.; Mila, Frédéric
2018-02-01
Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics of the edge spins. Focusing on the X Y spin-1 /2 chain with a transverse or longitudinal magnetic field, two models relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable case of a transverse field because all states have level crossings at the same value of the field, while the coherence time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.
Stability of the quantum Sherrington-Kirkpatrick spin glass model
NASA Astrophysics Data System (ADS)
Young, A. P.
2017-09-01
I study in detail the quantum Sherrington-Kirkpatrick (SK) model, i.e., the infinite-range Ising spin glass in a transverse field, by solving numerically the effective one-dimensional model that the quantum SK model can be mapped to in the thermodynamic limit. I find that the replica symmetric solution is unstable down to zero temperature, in contrast to some previous claims, and so there is not only a line of transitions in the (longitudinal) field-temperature plane (the de Almeida-Thouless, AT, line) where replica symmetry is broken, but also a quantum de Almeida-Thouless (QuAT) line in the transverse field-longitudinal field plane at T =0 . If the QuAT line also occurs in models with short-range interactions its presence might affect the performance of quantum annealers when solving spin glass-type problems with a bias (i.e., magnetic field).
Feasibility study of a procedure to detect and warn of low level wind shear
NASA Technical Reports Server (NTRS)
Turkel, B. S.; Kessel, P. A.; Frost, W.
1981-01-01
A Doppler radar system which provides an aircraft with advanced warning of longitudinal wind shear is described. This system uses a Doppler radar beamed along the glide slope linked with an on line microprocessor containing a two dimensional, three degree of freedom model of the motion of an aircraft including pilot/autopilot control. The Doppler measured longitudinal glide slope winds are entered into the aircraft motion model, and a simulated controlled aircraft trajectory is calculated. Several flight path deterioration parameters are calculated from the computed aircraft trajectory information. The aircraft trajectory program, pilot control models, and the flight path deterioration parameters are discussed. The performance of the computer model and a test pilot in a flight simulator through longitudinal and vertical wind fields characteristic of a thunderstorm wind field are compared.
Using Hand Grip Force as a Correlate of Longitudinal Acceleration Comfort for Rapid Transit Trains
Guo, Beiyuan; Gan, Weide; Fang, Weining
2015-01-01
Longitudinal acceleration comfort is one of the essential metrics used to evaluate the ride comfort of train. The aim of this study was to investigate the effectiveness of using hand grip force as a correlate of longitudinal acceleration comfort of rapid transit trains. In the paper, a motion simulation system was set up and a two-stage experiment was designed to investigate the role of the grip force on the longitudinal comfort of rapid transit trains. The results of the experiment show that the incremental grip force was linearly correlated with the longitudinal acceleration value, while the incremental grip force had no correlation with the direction of the longitudinal acceleration vector. The results also show that the effects of incremental grip force and acceleration duration on the longitudinal comfort of rapid transit trains were significant. Based on multiple regression analysis, a step function model was established to predict the longitudinal comfort of rapid transit trains using the incremental grip force and the acceleration duration. The feasibility and practicably of the model was verified by a field test. Furthermore, a comparative analysis shows that the motion simulation system and the grip force based model were valid to support the laboratory studies on the longitudinal comfort of rapid transit trains. PMID:26147730
Images of Imaging: Notes on Doing Longitudinal Field Work.
ERIC Educational Resources Information Center
Barley, Stephen R.
1990-01-01
Discusses the processes involved in a field study of technological change in radiology and how researchers can design a qualitative study and then collect data in a systematic and explicit manner. Illustrates the social and human problems of gaining entry into a research site, constructing a research role, and managing relationships. (63…
Smith, Derek R
2010-12-01
Although bibliometric analysis affords significant insight into the progression and distribution of information within a particular research field, detailed longitudinal studies of this type are rare within the field of nursing. This study aimed to investigate, from a bibliometric perspective, the progression and trends of core international nursing journals over the longest possible time period. A detailed bibliometric analysis was undertaken among 7 core international nursing periodicals using custom historical data sourced from the Thomson Reuters Journal Citation Reports®. In the 32 years between 1977 and 2008, the number of citations received by these 7 journals increased over 700%. A sustained and statistically significant (p<0.001) 3-fold increase was also observed in the average impact factor score during this period. Statistical analysis revealed that all periodicals experienced significant (p<0.001) improvements in their impact factors over time, with gains ranging from approximately 2- to 78-fold. Overall, this study provides one of the most comprehensive, longitudinal bibliometric analyses ever conducted in the field of nursing. Impressive and continual impact factor gains suggest that published nursing research is being increasingly seen, heard and cited in the international academic community. Copyright © 2010 Elsevier Ltd. All rights reserved.
In-plane omnidirectional magnetic field sensor based on Giant Magneto Impedance (GMI)
NASA Astrophysics Data System (ADS)
Díaz-Rubio, Ana; García-Miquel, Héctor; García-Chocano, Víctor Manuel
2017-12-01
In this work the design and characterization of an omnidirectional in-plane magnetic field sensor are presented. The sensor is based on the Giant Magneto Impedance (GMI) effect in glass-coated amorphous microwires of composition (Fe6Co94)72.5Si12.5B15. For the first time, a circular loop made with a microwire is used for giving omnidirectional response. In order to estimate the GMI response of the circular loop we have used a theoretical model of GMI, determining the GMI response as the sum of longitudinal sections with different angles of incidence. As a consequence of the circular loop, the GMI ratio of the sensor is reduced to 15% instead of 100% for the axial GMI response of a microwire. The sensor response has been experimentally verified and the GMI response of the circular loop has been studied as function of the magnetic field, driven current, and frequency. First, we have measured the GMI response of a longitudinal microwire for different angles of incidence, covering the full range between the tangential and perpendicular directions to the microwire axis. Then, using these results, we have experimentally verified the decomposition of a microwire with circular shape as longitudinal segments with different angles of incidence. Finally, we have designed a signal conditioning circuit for the omnidirectional magnetic field sensor. The response of the sensor has been studied as a function of the amplitude of the incident magnetic field.
Costall, B; Naylor, R J; Tan, C C
1984-06-15
The actions of the substituted benzamide derivatives metoclopramide, clebopride, YM-09151-2, tiapride, (+)- and (-)-sulpiride and (+)- and (-)-sultopride, and the dopamine antagonists haloperidol and domperidone, were studied on the responses to field stimulation (0.125-10 Hz) of smooth muscle strips taken from cardia, fundus, body and antral regions of the longitudinal and circular muscle of guinea-pig stomach. Field stimulation of the longitudinal strips caused contraction responses which were antagonised by atropine (but not by prazosin, yohimbine, propranolol or methysergide) to indicate a muscarinic cholinergic involvement. Antagonism of the contractions revealed or enhanced relaxation responses mediated via unidentified mechanisms (resistant to cholinergic and adrenergic antagonists). Metoclopramide enhanced the field stimulation-induced contractions of the stomach smooth muscle preparations via atropine sensitive mechanisms but failed to attenuate the field stimulation-induced relaxation responses. Clebopride's action closely followed that of metoclopramide but YM-09151-2 only enhanced the contraction responses of the longitudinal muscle preparations. Other dopamine antagonists, (+)- and (-)-sulpiride, (+)- and (-)-sultopride, tiapride, haloperidol and domperidone failed to facilitate contraction to field stimulation of any stomach tissue. Thus, the actions of metoclopramide, clebopride and YM-09151-2 to facilitate contraction to field stimulation of stomach smooth muscle are mediated via a muscarinic cholinergic mechanism and are not the consequence of an antagonism at any recognisable dopamine receptor.
Samoudi, Amine M; Van Audenhaege, Karen; Vermeeren, Günter; Poole, Michael; Tanghe, Emmeric; Martens, Luc; Van Holen, Roel; Joseph, Wout
2015-12-01
We investigated the temporal variation of the induced magnetic field due to the transverse and the longitudinal gradient coils in tungsten collimators arranged in hexagonal and pentagonal geometries with and without gaps between the collimators. We modeled x-, y-, and z-gradient coils and different arrangements of single-photon emission computed tomography (SPECT) collimators using FEKO, a three-dimensional electromagnetic simulation tool. A time analysis approach was used to generate the pulsed magnetic field gradient. The approach was validated with measurements using a 7T MRI scanner. Simulations showed an induced magnetic field representing 4.66% and 0.87% of the applied gradient field (gradient strength = 500 mT/m) for longitudinal and transverse gradient coils, respectively. These values can be reduced by 75% by adding gaps between the collimators for the pentagonal arrangement, bringing the maximum induced magnetic field to less than 2% of the applied gradient for all of the gradient coils. Characterization of the maximum induced magnetic field shows that by adding gaps between the collimators for an integrated SPECT/MRI system, eddy currents can be corrected by the MRI system to avoid artifact. The numerical model was validated and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils. © 2014 Wiley Periodicals, Inc.
Predicting progression of glaucoma from rates of frequency doubling technology perimetry change.
Meira-Freitas, Daniel; Tatham, Andrew J; Lisboa, Renato; Kuang, Tung-Mei; Zangwill, Linda M; Weinreb, Robert N; Girkin, Christopher A; Liebmann, Jeffrey M; Medeiros, Felipe A
2014-02-01
To evaluate the ability of longitudinal frequency doubling technology (FDT) to predict the development of glaucomatous visual field loss on standard automated perimetry (SAP) in glaucoma suspects. Prospective, observational cohort study. The study included 587 eyes of 367 patients with suspected glaucoma at baseline selected from the Diagnostic Innovations in Glaucoma Study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES). These eyes had an average of 6.7 ± 1.9 FDT tests during a mean follow-up time of 73.1 ± 28.0 months. Glaucoma suspects had intraocular pressure (IOP) >21 mmHg or an optic disc appearance suspicious of glaucoma. All patients had normal or nonrepeatable abnormal SAP at baseline. Humphrey Matrix FDT (Carl Zeiss Meditec, Inc, Dublin, CA) testing was performed within 6 months of SAP testing. The study end point was the development of 3 consecutive abnormal SAP test results. Joint longitudinal survival models were used to evaluate the ability of rates of FDT pattern standard deviation (PSD) change to predict the development of visual field loss on SAP, adjusting for confounding variables (baseline age, mean IOP, corneal thickness, and follow-up measurements of SAP PSD). The R(2) index was used to evaluate and compare the predictive abilities of the model containing longitudinal FDT PSD data with the model containing only baseline data. Sixty-three of 587 eyes (11%) developed SAP visual field loss during follow-up. The mean rate of FDT PSD change in eyes that developed SAP visual field loss was 0.07 dB/year versus 0.02 dB/year in those that did not (P < 0.001). Baseline FDT PSD and slopes of FDT PSD change were significantly predictive of progression, with hazard ratios of 1.11 per 0.1 dB higher (95% confidence interval [CI], 1.04-1.18; P = 0.002) and 4.40 per 0.1 dB/year faster (95% CI, 1.08-17.96; P = 0.04), respectively. The longitudinal model performed significantly better than the baseline model with an R(2) of 82% (95% CI, 74-89) versus 11% (95% CI, 2-24), respectively. Rates of FDT PSD change were highly predictive of the development of SAP visual field loss in glaucoma suspects. This finding suggests that longitudinal FDT evaluation may be useful for risk stratification of patients with suspected glaucoma. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Phoning Logistics in a Longitudinal Follow-Up of Batterers and Their Partners
ERIC Educational Resources Information Center
Gondolf, Edward W.; Deemer, Crystal
2004-01-01
More needs to be known about the phoning logistics of interviewing subjects for longitudinal follow-up studies in the domestic violence field. Using phoning logs from a 4-year follow-up of batterer intervention, the authors calculated the number, results, and costs of phone calls from a sub sample of 100 men and 138 women. The number of calls is…
Analysis of the vector magnetic fields of complex sunspots
NASA Technical Reports Server (NTRS)
Patty, S. R.
1981-01-01
An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.
Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; et al.
We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statisticsmore » $$^{39}$$Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 $$\\pm$$ 0.04) cm$^2$/s for a selection of 140keV electron recoil events in 200V/cm drift field and 2.8kV/cm extraction field. To study the systematics of our measurement we examine datasets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 $$\\pm$$ 0.09) cm$^2$ /s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.« less
Modeling Longitudinal Data Containing Non-Normal Within Subject Errors
NASA Technical Reports Server (NTRS)
Feiveson, Alan; Glenn, Nancy L.
2013-01-01
The mission of the National Aeronautics and Space Administration’s (NASA) human research program is to advance safe human spaceflight. This involves conducting experiments, collecting data, and analyzing data. The data are longitudinal and result from a relatively few number of subjects; typically 10 – 20. A longitudinal study refers to an investigation where participant outcomes and possibly treatments are collected at multiple follow-up times. Standard statistical designs such as mean regression with random effects and mixed–effects regression are inadequate for such data because the population is typically not approximately normally distributed. Hence, more advanced data analysis methods are necessary. This research focuses on four such methods for longitudinal data analysis: the recently proposed linear quantile mixed models (lqmm) by Geraci and Bottai (2013), quantile regression, multilevel mixed–effects linear regression, and robust regression. This research also provides computational algorithms for longitudinal data that scientists can directly use for human spaceflight and other longitudinal data applications, then presents statistical evidence that verifies which method is best for specific situations. This advances the study of longitudinal data in a broad range of applications including applications in the sciences, technology, engineering and mathematics fields.
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity
Clayton, C. E.; Adli, E.; Allen, J.; ...
2016-08-16
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.).more » Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m –1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.« less
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity
Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.
2016-01-01
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569
Keyvanloo, A; Burke, B; Warkentin, B; Tadic, T; Rathee, S; Kirkby, C; Santos, D M; Fallone, B G
2012-10-01
The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. To accurately quantify the magnitude of changes in skin dose, the authors use Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems. Finite element method (FEM) is used to generate complete 3D magnetic field maps for 0.56 T longitudinal and transverse linac-MR magnet assemblies, as well as for representative 0.5 and 1.0 T Helmholtz MRI systems. EGSnrc simulations implementing these 3D magnetic fields are performed. The geometry for the BEAMnrc simulations incorporates the Varian 600C 6 MV linac, magnet poles, the yoke, and the magnetic shields of the linac-MRIs. Resulting phase-space files are used to calculate the central axis percent depth-doses in a water phantom and 2D skin dose distributions for 70 μm entrance and exit layers using DOSXYZnrc. For comparison, skin doses are also calculated in the absence of magnetic field, and using a 1D magnetic field with an unrealistically large fringe field. The effects of photon field size, air gap (longitudinal configuration), and angle of obliquity (transverse configuration) are also investigated. Realistic modeling of the 3D magnetic fields shows that fringe fields decay rapidly and have a very small magnitude at the linac head. As a result, longitudinal linac-MR systems mostly confine contaminant electrons that are generated in the air gap and have an insignificant effect on electrons produced further upstream. The increase in the skin dose for the longitudinal configuration compared to the zero B-field case varies from ∼1% to ∼14% for air gaps of 5-31 cm, respectively. (All dose changes are reported as a % of D(max).) The increase is also field-size dependent, ranging from ∼3% at 20 × 20 cm(2) to ∼11% at 5 × 5 cm(2). The small changes in skin dose are in contrast to significant increases that are calculated for the unrealistic 1D magnetic field. For the transverse configuration, the entrance skin dose is equal or smaller than that of the zero B-field case for perpendicular beams. For a 10 × 10 cm(2) oblique beam the transverse magnetic field decreases the entry skin dose for oblique angles less than ±20° and increases it by no more than 10% for larger angles up to ±45°. The exit skin dose is increased by 42% for a 10 × 10 cm(2) perpendicular beam, but appreciably drops and approaches the zero B-field case for large oblique angles of incidence. For longitudinal linac-MR systems only a small increase in the entrance skin dose is predicted, due to the rapid decay of the realistic magnetic fringe fields. For transverse linac-MR systems, changes to the entrance skin dose are small for most scenarios. For the same geometry, on the exit side a fairly large increase is observed for perpendicular beams, but significantly drops for large oblique angles of incidence. The observed effects on skin dose are not expected to limit the application of linac-MR systems in either the longitudinal or transverse configuration.
Field-aligned currents' scale analysis performed with the Swarm constellation
NASA Astrophysics Data System (ADS)
Lühr, Hermann; Park, Jaeheung; Gjerloev, Jesper W.; Rauberg, Jan; Michaelis, Ingo; Merayo, Jose M. G.; Brauer, Peter
2015-01-01
We present a statistical study of the temporal- and spatial-scale characteristics of different field-aligned current (FAC) types derived with the Swarm satellite formation. We divide FACs into two classes: small-scale, up to some 10 km, which are carried predominantly by kinetic Alfvén waves, and large-scale FACs with sizes of more than 150 km. For determining temporal variability we consider measurements at the same point, the orbital crossovers near the poles, but at different times. From correlation analysis we obtain a persistent period of small-scale FACs of order 10 s, while large-scale FACs can be regarded stationary for more than 60 s. For the first time we investigate the longitudinal scales. Large-scale FACs are different on dayside and nightside. On the nightside the longitudinal extension is on average 4 times the latitudinal width, while on the dayside, particularly in the cusp region, latitudinal and longitudinal scales are comparable.
An Examination of Research Collaboration in Psychometrics Utilizing Social Network Analysis Methods
ERIC Educational Resources Information Center
DiCrecchio, Nicole C.
2016-01-01
Co-authorship networks have been studied in many fields as a way to understand collaboration patterns. However, a comprehensive exploration of the psychometrics field has not been conducted. Also, few studies on co-author networks have included longitudinal analyses as well as data on the characteristics of authors in the network. Including both…
HIGH CURRENT RADIO FREQUENCY ION SOURCE
Abdelaziz, M.E.
1963-04-01
This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)
Image translation for single-shot focal tomography
Llull, Patrick; Yuan, Xin; Carin, Lawrence; ...
2015-01-01
Focus and depth of field are conventionally addressed by adjusting longitudinal lens position. More recently, combinations of deliberate blur and computational processing have been used to extend depth of field. Here we show that dynamic control of transverse and longitudinal lens position can be used to decode focus and extend depth of field without degrading static resolution. Our results suggest that optical image stabilization systems may be used for autofocus, extended depth of field, and 3D imaging.
Magnetic field of longitudinal gradient bend
NASA Astrophysics Data System (ADS)
Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas
2018-06-01
The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.
Finite-amplitude strain waves in laser-excited plates.
Mirzade, F Kh
2008-07-09
The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.
NASA Astrophysics Data System (ADS)
Borisevich, V. D.; Potanin, E. P.
2017-07-01
The possibility of using a rotating magnetic field (RMF) in a plasma centrifuge (PC), with axial circulation to multiply the radial separation effect in an axial direction, is considered. For the first time, a traveling magnetic field (TMF) is proposed to drive an axial circulation flow in a PC. The longitudinal separation effect is calculated for a notional model, using specified operational parameters and the properties of a plasma, comprising an isotopic mixture of 20Ne-22Ne and generated by a high frequency discharge. The optimal intensity of a circulation flow, in which the longitudinal separation effect reaches its maximum value, is studied. The optimal parameters of the RMF and TMF for effective separation, as well as the centrifuge performance, are calculated.
NASA Astrophysics Data System (ADS)
Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping
2017-11-01
This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.
Euphrasie, S; Vairac, P; Cretin, B; Lengaigne, G
2008-03-01
We propose a new setup to measure an electrical field in one direction. This setup is made of a piezoelectric sintered lead zinconate titanate film and an optical interferometric probe. We used this setup to investigate how the shape of the extremity of a coaxial cable influences the longitudinal electrical near-field generated by it. For this application, we designed our setup to have a spatial resolution of 100 microm in the direction of the electrical field. Simulations and experiments are presented.
Kalyani, Partho S; Fawzi, Amani A; Gangaputra, Sapna; van Natta, Mark L; Hubbard, Larry D; Danis, Ronald P; Thorne, Jennifer E; Holland, Gary N
2012-03-01
To evaluate relationships between retinal vessel caliber and tests of visual function among people with AIDS. Longitudinal, observational cohort study. We evaluated data for participants without ocular opportunistic infections at initial examination (baseline) in the Longitudinal Studies of the Ocular Complications of AIDS (1998-2008). Visual function was evaluated with best-corrected visual acuity, Goldmann perimetry, automated perimetry (Humphrey Field Analyzer), and contrast sensitivity (CS) testing. Semi-automated grading of fundus photographs (1 eye/participant) determined central retinal artery equivalent (CRAE), central retinal vein equivalent (CRVE), and arteriole-to-venule ratio (AVR) at baseline. Multiple linear regression models, using forward selection, sought independent relationships between indices and visual function variables. Included were 1250 participants. Smaller AVR was associated with reduced visual field by Goldmann perimetry (P = .003) and worse mean deviation (P = .02) on automated perimetry and possibly with worse pattern standard deviation (PSD) on automated perimetry (P = .06). There was a weak association between smaller AVR and worse CS (P = .07). Relationships were independent of antiretroviral therapy and level of immunodeficiency (CD4+ T lymphocyte count, human immunodeficiency virus [HIV] RNA blood level). On longitudinal analysis, retinal vascular indices at baseline did not predict changes in visual function. Variation in retinal vascular indices is associated with abnormal visual function in people with AIDS, manifested by visual field loss and possibly by reduced CS. Relationships are consistent with the hypothesis that HIV-related retinal vasculopathy is a contributing factor to vision dysfunction among HIV-infected individuals. Longitudinal studies are needed to determine whether changes in indices predict change in visual function. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, D. P.; Lei, Y.; Shen, Z. B.
2017-12-01
The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell's relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.
Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet
NASA Astrophysics Data System (ADS)
Yamazaki, Yosuke; Stolle, Claudia; Matzka, Jürgen; Siddiqui, Tarique A.; Lühr, Hermann; Alken, Patrick
2017-12-01
The atmospheric lunar tide is one known source of ionospheric variability. The subject received renewed attention as recent studies found a link between stratospheric sudden warmings and amplified lunar tidal perturbations in the equatorial ionosphere. There is increasing evidence from ground observations that the lunar tidal influence on the ionosphere depends on longitude. We use magnetic field measurements from the CHAMP satellite during July 2000 to September 2010 and from the two Swarm satellites during November 2013 to February 2017 to determine, for the first time, the complete seasonal-longitudinal climatology of the semidiurnal lunar tidal variation in the equatorial electrojet intensity. Significant longitudinal variability is found in the amplitude of the lunar tidal variation, while the longitudinal variability in the phase is small. The amplitude peaks in the Peruvian sector (˜285°E) during the Northern Hemisphere winter and equinoxes, and in the Brazilian sector (˜325°E) during the Northern Hemisphere summer. There are also local amplitude maxima at ˜55°E and ˜120°E. The longitudinal variation is partly due to the modulation of ionospheric conductivities by the inhomogeneous geomagnetic field. Another possible cause of the longitudinal variability is neutral wind forcing by nonmigrating lunar tides. A tidal spectrum analysis of the semidiurnal lunar tidal variation in the equatorial electrojet reveals the dominance of the westward propagating mode with zonal wave number 2 (SW2), with secondary contributions by westward propagating modes with zonal wave numbers 3 (SW3) and 4 (SW4). Eastward propagating waves are largely absent from the tidal spectrum. Further study will be required for the relative importance of ionospheric conductivities and nonmigrating lunar tides.
The effect of a longitudinal density gradient on electron plasma wake field acceleration
NASA Astrophysics Data System (ADS)
Tsiklauri, David
2016-12-01
Three-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow-out regime are presented. Earlier results are extended by (i) studying the effect of a longitudinal density gradient, (ii) avoiding the use of a co-moving simulation box, (iii) inclusion of ion motion, and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of 10-fold increasing density over 10 cm long lithium vapour plasma results in spatially more compact and three times larger, compared with the uniform density case, electric fields (-6.4×1010 V m-1), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from an initial 20.4 GeV), with energy transfer efficiencies from the leading to trailing bunch of 75%. In the uniform density case, a -2.5×1010 V m-1 wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with energy transfer efficiencies of 65%. It is also established that injecting the electron bunches into a negative density gradient of 10-fold decreasing density over 10 cm long plasma results in spatially more spread and two and a half smaller electric fields (-1.0×1010 V m-1), leading to a weaker acceleration of the trailing bunch up to 21.4 GeV, with energy transfer efficiencies of 45%. Taking ion motions into consideration shows that in the plasma wake ion number density can increase over a few times the background value. It is also shown that transverse electromagnetic fields in a plasma wake are of the same order as the longitudinal (electrostatic) ones.
Chauhan, Balwantray C; Nicolela, Marcelo T; Artes, Paul H
2009-11-01
To determine whether glaucoma patients with progressive optic disc change have subsequent visual field progression earlier and at a faster rate compared with those without disc change. Prospective, longitudinal, cohort study. Eighty-one patients with open-angle glaucoma. Patients underwent confocal scanning laser tomography and standard automated perimetry every 6 months. The complete follow-up was divided into initial and subsequent periods. Two initial periods-first 3 years (Protocol A) and first half of the total follow-up (Protocol B)-were used, with the respective remainder being the subsequent follow-up. Disc change during the initial follow-up was determined with liberal, moderate, or conservative criteria of the Topographic Change Analysis. Subsequent field progression was determined with significant pattern deviation change in >or=3 locations (criterion used in the Early Manifest Glaucoma Trial). As a control analysis, field change during the initial follow-up was determined with significant pattern deviation change in >or=1, >or=2, or >or=3 locations. Survival time to subsequent field progression, rates of mean deviation (MD) change, and positive and negative likelihood ratios. The median (interquartile range) total follow-up was 11.0 (8.0-12.0) years with 22 (18-24) examinations. More patients had disc changes during the initial follow-up compared with field changes. The mean time to field progression was consistently shorter (protocol A, 0.8-1.7 years; protocol B, 0.3-0.7 years) in patients with prior disc change. In the control analysis, patients with prior field change had statistically earlier subsequent field progression (protocol A, 2.9-3.0 years; protocol B, 0.7-0.9). Similarly, patients with either prior disc or field change always had worse mean rates of subsequent MD change, although the distributions overlapped widely. Patients with subsequent field progression were up to 3 times more likely to have prior disc change compared with those without, and up to 5 times more likely to have prior field change compared with those without. Longitudinally measured optic disc change is predictive of subsequent visual field progression and may be an efficacious end point for functional outcomes in clinical studies and trials in glaucoma.
Zerger, Suzanne; Pridham, Katherine Francombe; Plenert, Erin; Newberry, Caitlin; Whisler, Adam; Fernando, Indira; Ahmed, Naveed
2015-11-01
Research assistants (RAs) play a variety of roles that are critical in making research happen and in determining its quality and effectiveness. Yet their locus of power in the production of knowledge stands in sharp contrast to their relative powerlessness in the hierarchical research organization. This article explores the experiences of RAs engaged in a randomized controlled longitudinal field trial of a Housing First intervention for individuals experiencing homelessness and mental illness in Toronto. They encountered several unexpected effects of navigating the power ascribed to them by both study participants and community service providers. This study underscores the importance of acknowledging that RAs are the face of the research study in the field, and of better understanding implications associated with that fact, especially when marginalized populations and their providers are involved.
Heisenberg spin-1/2 XXZ chain in the presence of electric and magnetic fields
NASA Astrophysics Data System (ADS)
Thakur, Pradeep; Durganandini, P.
2018-02-01
We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin-1/2 XXZ chain with large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization group method and compute various ground state quantities like the magnetization, staggered magnetization, electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic (AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric polarization in a direction parallel to the AF order.
NASA Astrophysics Data System (ADS)
Veysi, Mehdi; Guclu, Caner; Capolino, Filippo
2015-09-01
We investigate azimuthally E-polarized vortex beams with enhanced longitudinal magnetic field. Ideally, such beams possess strong longitudinal magnetic field on the beam axis where there is no electric field. First we formulate the electric field vector and the longitudinal magnetic field of an azimuthally E-polarized beam as an interference of right- and left-hand circularly polarized Laguerre Gaussian (LG) beams carrying the orbital angular momentum (OAM) states of -1 and +1, respectively. Then we propose a metasurface design that is capable of converting a linearly polarized Gaussian beam into an azimuthally E-polarized vortex beam with longitudinal magnetic field. The metasurface is composed of a rectangular array of double-layer double split-ring slot elements, though other geometries could be adopted as well. The element is specifically designed to have nearly a 180° transmission phase difference between the two polarization components along two orthogonal axes, similar to the optical axes of a half-wave plate. By locally rotating the optical axes of each metasurface element, the transmission phase profile of the circularly polarized waves over the metasurface can be tailored. Upon focusing of the generated vortex beam through a lens with a numerical aperture of 0.7, a 41-fold enhancement of the magnetic to electric field ratio is achieved on the beam axis with respect to that of a plane wave. Generation of beams with large magnetic field to electric field contrast can find applications in future spectroscopy systems based on magnetic dipole transitions, which are usually much weaker than electric dipole transitions.
Polarizations of gravitational waves in Horndeski theory
NASA Astrophysics Data System (ADS)
Hou, Shaoqi; Gong, Yungui; Liu, Yunqi
2018-05-01
We analyze the polarization content of gravitational waves in Horndeski theory. Besides the familiar plus and cross polarizations in Einstein's General Relativity, there is one more polarization state which is the mixture of the transverse breathing and longitudinal polarizations. The additional mode is excited by the massive scalar field. In the massless limit, the longitudinal polarization disappears, while the breathing one persists. The upper bound on the graviton mass severely constrains the amplitude of the longitudinal polarization, which makes its detection highly unlikely by the ground-based or space-borne interferometers in the near future. However, pulsar timing arrays might be able to detect the polarization excited by the massive scalar field. Since additional polarization states appear in alternative theories of gravity, the measurement of the polarizations of gravitational waves can be used to probe the nature of gravity. In addition to the plus and cross states, the detection of the breathing polarization means that gravitation is mediated by massless spin 2 and spin 0 fields, and the detection of both the breathing and longitudinal states means that gravitation is propagated by the massless spin 2 and massive spin 0 fields.
NASA Astrophysics Data System (ADS)
Ujevic, Sebastian; Mendoza, Michel
2010-07-01
We propose numerical simulations of longitudinal magnetoconductance through a finite antidot lattice located inside an open quantum dot with a magnetic field applied perpendicular to the plane. The system is connected to reservoirs using quantum point contacts. We discuss the relationship between the longitudinal magnetoconductance and the generation of transversal couplings between the induced open quantum dots in the system. The system presents longitudinal magnetoconductance maps with crossovers (between transversal bands) and closings (longitudinal decoupling) of fundamental quantum states related to the open quantum dots induced by the antidot lattice. A relationship is observed between the distribution of antidots and the formed conductance bands, allowing a systematic follow up of the bands as a function of the applied magnetic field and quantum point-contact width. We observed a high conductance intensity [between n and (n+1) quantum of conductance, n=1,2,… ] in the regions of crossover and closing of states. This suggests transversal couplings between the induced open quantum dots of the system that can be modulated by varying both the antidots potential and the quantum point-contact width. A new continuous channel (not expected) is induced by the variation in the contact width and generate Fano resonances in the conductance. These resonances can be manipulated by the applied magnetic field.
NASA Astrophysics Data System (ADS)
Hughes, Roxanne
2014-03-01
This study examined the longitudinal effects of participation in an all-girls STEM summer camp on young women's interest in STEM fields and motivation to pursue these fields. The SciGirls camp has been in existence since 2006, with its goal of providing a safe space for young women to explore STEM careers and strengthen their interest in these careers. Over 166 middle school age girls have participated in the program since it began in 2006. Of those participants, 60 responded to at least one of the follow up surveys that are sent every three years - 2009 and 2012. The surveys attempt to determine participants' level of interest in STEM. The survey was qualitative in nature and asked open ended questions. Results indicated that the camp had a positive effect on participants' perceptions of scientists and their work. This study adds to the literature that looks at the longitudinal impacts of informal STEM educational programs that expose young women to female scientist role models and mentors. This study supports the research that claims that exposing young women at an early age to science role models can positively alter their perception of science careers which can eventually increase the number of women who pursue these careers. This increase is important at a time when men still outnumber women in many science and engineering fields. This study was funded in part by the National Science Foundation Division of Materials Research through DMR 0654118.
Spatiotemporal mode-locking in multimode fiber lasers
NASA Astrophysics Data System (ADS)
Wright, Logan G.; Christodoulides, Demetrios N.; Wise, Frank W.
2017-10-01
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made toward controlling the interactions of longitudinal modes in lasers with a single transverse mode. For example, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of longitudinal and transverse modes in a laser has received little attention. We show that modal and chromatic dispersions in fiber lasers can be counteracted by strong spatial and spectral filtering. This allows locking of multiple transverse and longitudinal modes to create ultrashort pulses with a variety of spatiotemporal profiles. Multimode fiber lasers thus open new directions in studies of nonlinear wave propagation and capabilities for applications.
Eby, Lillian T.; Burk, Hannah; Maher, Charleen P.
2010-01-01
In the substance abuse treatment field, the annual turnover rate is cited as being anywhere between 19 and 50 percent (Johnson & Roman, 2002; Gallon, Gabriel, & Knudsen, 2003; Knudsen et al., 2003; McLellan et al., 2003). However, no research to date has evaluated these claims by tracking turnover longitudinally using organizational turnover data from substance abuse treatment centers. This research presents the results of a longitudinal study designed to systematically examine actual turnover among counselors and clinical supervisors. Twenty-seven geographically dispersed treatment organizations, serving a wide range of clients in the public and private sector, provided data for the study over a two year time span (2008–2009). The annual turnover rate was 33.2% for counselors and 23.4% for clinical supervisors. For both groups the majority of turnover was voluntary (employee-initiated). Specific reasons for turnover were largely consistent across the two groups, with the most common reason being a new job or new opportunity. The findings are discussed in terms of the unique employment context of substance abuse treatment. Practical recommendations are also discussed to help stem the tide of turnover in the field of substance abuse treatment. PMID:20675097
ERIC Educational Resources Information Center
Hui, W.; Hu, P. J.-H.; Clark, T. H. K.; Tam, K. Y.; Milton, J.
2008-01-01
A field experiment compares the effectiveness and satisfaction associated with technology-assisted learning with that of face-to-face learning. The empirical evidence suggests that technology-assisted learning effectiveness depends on the target knowledge category. Building on Kolb's experiential learning model, we show that technology-assisted…
Interaction of an electron with coherent dipole radiation: Role of convergence and anti-dephasing
NASA Astrophysics Data System (ADS)
Robinson, A. P. L.; Arefiev, A. V.
2018-05-01
The impact of longitudinal electric fields that are present in intense focusing and defocusing electromagnetic pulses on electron acceleration is investigated. These fields are typically much weaker than the transverse fields, but it is shown that they can have a profound effect on electron energy gain. It is shown that the longitudinal electric field of a defocusing pulse is directed backward along the trajectory of an accelerated electron, which leads to a continuous net energy gain. At the same time, the effect of the transverse oscillating electric field in a defocusing pulse is to reduce the electron energy over multiple oscillations. In contrast to a well-known interaction with a plane wave, the electron is able to retain a substantial amount of energy following its interaction with a defocusing pulse. The roles of the transverse and longitudinal electric fields are reversed in a focusing pulse, which leads to a reduction in the energy retention. The present analysis underscores the importance of relatively weak oscillating electric fields in focusing and defocusing pulses.
Delta-configurations - Flare activity and magnetic-field structure
NASA Technical Reports Server (NTRS)
Patty, S. R.; Hagyard, M. J.
1986-01-01
Complex sunspots in four active regions of April and May 1980, all exhibiting regions of magnetic classification delta, were studied using data from the NASA Marshall Space Flight Center vector magnetograph. The vector magnetic field structure in the vicinity of each delta was determined, and the location of the deltas in each active region was correlated with the locations and types of flare activity for the regions. Two types of delta-configuration were found to exist, active and inactive, as defined by the relationships between magnetic field structure and activity. The active delta exhibited high flare activity, strong horizontal gradients of the longitudinal (line-of-sight) magnetic field component, a strong transverse (perpendicular to line-of-sight) component, and a highly nonpotential orientation of the photospheric magnetic field, all indications of a highly sheared magnetic field. The inactive delta, on the other hand, exhibited little or no flare production, weaker horizontal gradients of the longitudinal component, weaker transverse components, and a nearly potential, nonsheared orientation of the magnetic field. It is concluded that the presence of such sheared fields is the primary signature by which the active delta may be distinguished, and that it is this shear which produces the flare activity of the active delta.
A study of girder deflections during bridge deck construction : final report.
DOT National Transportation Integrated Search
1971-01-01
Problems involved in obtaining the desired thickness of bridge decks were investigated. The study, which was limited to decks which were longitudinally screeded during construction, included (1) field measurements of the girder deflections during con...
NASA Astrophysics Data System (ADS)
Zhen, Yaxin; Zhou, Lin
2017-03-01
Based on nonlocal strain gradient theory, wave propagation in fluid-conveying viscoelastic single-walled carbon nanotubes (SWCNTs) is studied in this paper. With consideration of thermal effect and surface effect, wave equation is derived for fluid-conveying viscoelastic SWCNTs under longitudinal magnetic field utilizing Euler-Bernoulli beam theory. The closed-form expressions are derived for the frequency and phase velocity of the wave motion. The influences of fluid flow velocity, structural damping coefficient, temperature change, magnetic flux and surface effect are discussed in detail. SWCNTs’ viscoelasticity reduces the wave frequency of the system and the influence gets remarkable with the increase of wave number. The fluid in SWCNTs decreases the frequency of wave propagation to a certain extent. The frequency (phase velocity) gets larger due to the existence of surface effect, especially when the diameters of SWCNTs and the wave number decrease. The wave frequency increases with the increase of the longitudinal magnetic field, while decreases with the increase of the temperature change. The results may be helpful for better understanding the potential applications of SWCNTs in nanotechnology.
Data-driven regions of interest for longitudinal change in frontotemporal lobar degeneration.
Pankov, Aleksandr; Binney, Richard J; Staffaroni, Adam M; Kornak, John; Attygalle, Suneth; Schuff, Norbert; Weiner, Michael W; Kramer, Joel H; Dickerson, Bradford C; Miller, Bruce L; Rosen, Howard J
2016-01-01
Current research is investigating the potential utility of longitudinal measurement of brain structure as a marker of drug effect in clinical trials for neurodegenerative disease. Recent studies in Alzheimer's disease (AD) have shown that measurement of change in empirically derived regions of interest (ROIs) allows more reliable measurement of change over time compared with regions chosen a-priori based on known effects of AD on brain anatomy. Frontotemporal lobar degeneration (FTLD) is a devastating neurodegenerative disorder for which there are no approved treatments. The goal of this study was to identify an empirical ROI that maximizes the effect size for the annual rate of brain atrophy in FTLD compared with healthy age matched controls, and to estimate the effect size and associated power estimates for a theoretical study that would use change within this ROI as an outcome measure. Eighty six patients with FTLD were studied, including 43 who were imaged twice at 1.5 T and 43 at 3 T, along with 105 controls (37 imaged at 1.5 T and 67 at 3 T). Empirically-derived maps of change were generated separately for each field strength and included the bilateral insula, dorsolateral, medial and orbital frontal, basal ganglia and lateral and inferior temporal regions. The extent of regions included in the 3 T map was larger than that in the 1.5 T map. At both field strengths, the effect sizes for imaging were larger than for any clinical measures. At 3 T, the effect size for longitudinal change measured within the empirically derived ROI was larger than the effect sizes derived from frontal lobe, temporal lobe or whole brain ROIs. The effect size derived from the data-driven 1.5 T map was smaller than at 3 T, and was not larger than the effect size derived from a-priori ROIs. It was estimated that measurement of longitudinal change using 1.5 T MR systems requires approximately a 3-fold increase in sample size to obtain effect sizes equivalent to those seen at 3 T. While the results should be confirmed in additional datasets, these results indicate that empirically derived ROIs can reduce the number of subjects needed for a longitudinal study of drug effects in FTLD compared with a-priori ROIs. Field strength may have a significant impact on the utility of imaging for measuring longitudinal change.
NASA Astrophysics Data System (ADS)
Moreno, B.; Aune, S.; Ball, J.; Charles, G.; Giganon, A.; Konczykowski, P.; Lahonde-Hamdoun, C.; Moutarde, H.; Procureur, S.; Sabatié, F.
2011-10-01
We present first discharge rate measurements for Micromegas detectors in the presence of a high longitudinal magnetic field in the GeV kinematical region. Measurements were performed by using two Micromegas detectors and a photon beam impinging a CH 2 target in the Hall B of the Jefferson Laboratory. One detector was equipped with an additional GEM foil, and a reduction of the discharge probability by two orders of magnitude compared to the stand-alone Micromegas was observed. The detectors were placed in the FROST solenoid providing a longitudinal magnetic field up to 5 T. It allowed for precise measurements of the discharge probability dependence with a diffusion-reducing magnetic field. Between 0 and 5 T, the discharge probability increased by a factor of 10 for polar angles between 19° and 34°. A GEANT4-based simulation developed for sparking rate calculation was calibrated against these data in order to predict the sparking rate in a high longitudinal magnetic field environment. This simulation is then used to investigate the possible use of Micromegas in the Forward Vertex Tracker (FVT) of the future CLAS12 spectrometer. In the case of the FVT a sparking rate of 1 Hz per detector was obtained at the anticipated CLAS12 luminosity.
Corrugation Instability of a Coronal Arcade
NASA Astrophysics Data System (ADS)
Klimushkin, D. Y.; Nakariakov, V. M.; Mager, P. N.; Cheremnykh, O. K.
2017-12-01
We analyse the behaviour of linear magnetohydrodynamic perturbations of a coronal arcade modelled by a half-cylinder with an azimuthal magnetic field and non-uniform radial profiles of the plasma pressure, temperature, and the field. Attention is paid to the perturbations with short longitudinal (in the direction along the arcade) wavelengths. The radial structure of the perturbations, either oscillatory or evanescent, is prescribed by the radial profiles of the equilibrium quantities. Conditions for the corrugation instability of the arcade are determined. It is established that the instability growth rate increases with decreases in the longitudinal wavelength and the radial wave number. In the unstable mode, the radial perturbations of the magnetic field are stronger than the longitudinal perturbations, creating an almost circularly corrugated rippling of the arcade in the longitudinal direction. For coronal conditions, the growth time of the instability is shorter than one minute, decreasing with an increase in the temperature. Implications of the developed theory for the dynamics of coronal active regions are discussed.
NASA Astrophysics Data System (ADS)
Wang, Hongmei; Zhang, Yafei; Xu, Huaizhe
2007-01-01
The effect of transverse wave vector and magnetic fields on resonant tunneling times in double-barrier structures, which is significant but has been frequently omitted in previous theoretical methods, has been reported in this paper. The analytical expressions of the longitudinal energies of quasibound levels (LEQBL) and the lifetimes of quasibound levels (LQBL) in symmetrical double-barrier (SDB) structures have been derived as a function of transverse wave vector and longitudinal magnetic fields perpendicular to interfaces. Based on our derived analytical expressions, the LEQBL and LQBL dependence upon transverse wave vector and longitudinal magnetic fields has been explored numerically for a SDB structure. Model calculations show that the LEQBL decrease monotonically and the LQBL shorten with increasing transverse wave vector, and each original LEQBL splits to a series of sub-LEQBL which shift nearly linearly toward the well bottom and the lifetimes of quasibound level series (LQBLS) shorten with increasing Landau-level indices and magnetic fields.
SU-F-T-478: Effect of Deconvolution in Analysis of Mega Voltage Photon Beam Profiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muthukumaran, M; Manigandan, D; Murali, V
2016-06-15
Purpose: To study and compare the penumbra of 6 MV and 15 MV photon beam profiles after deconvoluting different volume ionization chambers. Methods: 0.125cc Semi-Flex chamber, Markus Chamber and PTW Farmer chamber were used to measure the in-plane and cross-plane profiles at 5 cm depth for 6 MV and 15 MV photons. The profiles were measured for various field sizes starting from 2×2 cm till 30×30 cm. PTW TBA scan software was used for the measurements and the “deconvolution” functionality in the software was used to remove the volume averaging effect due to finite volume of the chamber along lateralmore » and longitudinal directions for all the ionization chambers. The predicted true profile was compared and the change in penumbra before and after deconvolution was studied. Results: After deconvoluting the penumbra decreased by 1 mm for field sizes ranging from 2 × 2 cm till 20 x20 cm. This is observed for along both lateral and longitudinal directions. However for field sizes from 20 × 20 till 30 ×30 cm the difference in penumbra was around 1.2 till 1.8 mm. This was observed for both 6 MV and 15 MV photon beams. The penumbra was always lesser in the deconvoluted profiles for all the ionization chambers involved in the study. The variation in difference in penumbral values were in the order of 0.1 till 0.3 mm between the deconvoluted profile along lateral and longitudinal directions for all the chambers under study. Deconvolution of the profiles along longitudinal direction for Farmer chamber was not good and is not comparable with other deconvoluted profiles. Conclusion: The results of the deconvoluted profiles for 0.125cc and Markus chamber was comparable and the deconvolution functionality can be used to overcome the volume averaging effect.« less
NASA Astrophysics Data System (ADS)
Carroll, T. A.; Strassmeier, K. G.
2014-03-01
Context. In recent years, we have seen a rapidly growing number of stellar magnetic field detections for various types of stars. Many of these magnetic fields are estimated from spectropolarimetric observations (Stokes V) by using the so-called center-of-gravity (COG) method. Unfortunately, the accuracy of this method rapidly deteriorates with increasing noise and thus calls for a more robust procedure that combines signal detection and field estimation. Aims: We introduce an estimation method that provides not only the effective or mean longitudinal magnetic field from an observed Stokes V profile but also uses the net absolute polarization of the profile to obtain an estimate of the apparent (i.e., velocity resolved) absolute longitudinal magnetic field. Methods: By combining the COG method with an orthogonal-matching-pursuit (OMP) approach, we were able to decompose observed Stokes profiles with an overcomplete dictionary of wavelet-basis functions to reliably reconstruct the observed Stokes profiles in the presence of noise. The elementary wave functions of the sparse reconstruction process were utilized to estimate the effective longitudinal magnetic field and the apparent absolute longitudinal magnetic field. A multiresolution analysis complements the OMP algorithm to provide a robust detection and estimation method. Results: An extensive Monte-Carlo simulation confirms the reliability and accuracy of the magnetic OMP approach where a mean error of under 2% is found. Its full potential is obtained for heavily noise-corrupted Stokes profiles with signal-to-noise variance ratios down to unity. In this case a conventional COG method yields a mean error for the effective longitudinal magnetic field of up to 50%, whereas the OMP method gives a maximum error of 18%. It is, moreover, shown that even in the case of very small residual noise on a level between 10-3 and 10-5, a regime reached by current multiline reconstruction techniques, the conventional COG method incorrectly interprets a large portion of the residual noise as a magnetic field, with values of up to 100 G. The magnetic OMP method, on the other hand, remains largely unaffected by the noise, regardless of the noise level the maximum error is no greater than 0.7 G.
Middle- and low-latitude ionosphere response to 2015 St. Patrick's Day geomagnetic storm
NASA Astrophysics Data System (ADS)
Nava, B.; Rodríguez-Zuluaga, J.; Alazo-Cuartas, K.; Kashcheyev, A.; Migoya-Orué, Y.; Radicella, S. M.; Amory-Mazaudier, C.; Fleury, R.
2016-04-01
This paper presents a study of the St Patrick's Day storm of 2015, with its ionospheric response at middle and low latitudes. The effects of the storm in each longitudinal sector (Asian, African, American, and Pacific) are characterized using global and regional electron content. At the beginning of the storm, one or two ionospheric positive storm effects are observed depending on the longitudinal zones. After the main phase of the storm, a strong decrease in ionization is observed at all longitudes, lasting several days. The American region exhibits the most remarkable increase in vertical total electron content (vTEC), while in the Asian sector, the largest decrease in vTEC is observed. At low latitudes, using spectral analysis, we were able to separate the effects of the prompt penetration of the magnetospheric convection electric field (PPEF) and of the disturbance dynamo electric field (DDEF) on the basis of ground magnetic data. Concerning the PPEF, Earth's magnetic field oscillations occur simultaneously in the Asian, African, and American sectors, during southward magnetization of the Bz component of the interplanetary magnetic field. Concerning the DDEF, diurnal magnetic oscillations in the horizontal component H of the Earth's magnetic field exhibit a behavior that is opposed to the regular one. These diurnal oscillations are recognized to last several days in all longitudinal sectors. The observational data obtained by all sensors used in the present paper can be interpreted on the basis of existing theoretical models.
Electromagnetic fields and Green's functions in elliptical vacuum chambers
NASA Astrophysics Data System (ADS)
Persichelli, S.; Biancacci, N.; Migliorati, M.; Palumbo, L.; Vaccaro, V. G.
2017-10-01
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.
Electromagnetic fields and Green’s functions in elliptical vacuum chambers
Persichelli, S.; Biancacci, N.; Migliorati, M.; ...
2017-10-23
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and themore » indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.« less
Electromagnetic fields and Green’s functions in elliptical vacuum chambers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persichelli, S.; Biancacci, N.; Migliorati, M.
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and themore » indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.« less
NASA Astrophysics Data System (ADS)
Gui Zeng, Ding; Lee, Kyoung-il; Chung, Kyung-Won; Bae, Seongtae
2012-05-01
Effects of magnetic stray field retrieved from both longitudinal and perpendicular magnetic recording media (denoted by "media stray field") on electromigration (EM) characteristics of current-perpendicular-to-plane (CPP) giant magnetoresistance spin-valve (GMR SV) read sensors have been numerically studied to explore the electrical and magnetic stability of the read sensor under real operation. The mean-time-to-failure (MTTF) of the CPP GMR SV read sensors was found to have a strong dependence on the physical parameters of the recording media and recorded information status, such as the pulse width of media stray field, the bit length, and the head moving velocity. According to the numerical calculation results, it was confirmed that in the longitudinal media, the shorter the stray field pulse width (i.e., the sharper the media transition) allows for the longer MTTF of the CPP GMR SV read sensors; while in the perpendicular media, the sharper the media transition gives rise to a shorter MTTF. Interestingly, it was also revealed that the MTTF could be improved by reducing the bit length as well as increasing the head velocity in both longitudinal and perpendicular media. Furthermore, the bit distribution patterns, especially the number of consecutive `0' bits strongly affected the MTTF of GMR SV read sensors. The strong dependences of MTTF on the media stray field during CPP GMR SV sensor operation are thought to be mainly attributed to the thermal cycling (temperature rise and fall) caused by the resistance change due to GMR effects.
Crossing fields in thin films of isotropic superconductors
Vlasko-Vlasov, V. K.; Colauto, Fabiano; Buzdin, Alexander A.; ...
2016-11-04
We study interactions of perpendicular and longitudinal magnetic fields in niobium films of different thickness in a wide range of temperatures below the superconducting transition temperature ( T C) . In 100 nm Nb film at all temperatures the longitudinal field H || practically does not influence the dynamics of the normal flux. However, in 200nm Nb film, a considerable anisotropy in the vortex motion is found with advanced propagation of the normal flux along H || at T>TC/2 and the preferential jump-wise growth of the thermo-magnetic flux dendrites across H || at T < T C. Appearance of themore » in-plane vortices and their cutting-reconnection with tilted vortices induced by the normal field H || is the reason of the observed anisotropy in the thicker film. Absence of the in-plane vortices and much smaller tilt of vortices generated by H || explain the isotropic normal flux dynamics in the thinner film. Lastly, our results open a new way of manipulating both slow vortex motion and fast thermo-magnetic avalanches.« less
NASA Astrophysics Data System (ADS)
Shoucri, Magdi; Charbonneau-Lefort, Mathieu; Afeyan, Bedros
2008-11-01
We study the interaction of a high intensity laser with an overdense plasma. When the intensity of the laser is sufficiently high to make the electrons relativistic, unusual interactions between the EM wave and the surface of the plasma take place. We use an Eulerian Vlasov code for the numerical solution of the one-dimensional two-species relativistic Vlasov-Maxwell equations [1]. The results show that the incident laser steepens the density profile significantly. There is a large build-up of electron density at the plasma edge, and as a consequence a large charge separation that is induced under the action of the intense laser field. This results in an intense quasistatic longitudinal electric field generated at the surface of the plasma which accelerates ions in the forward direction. We will show the details of the formation of the longitudinal edge electric field and of electron and ion phase-space structures. [1] M. Charbonneau-Lefort, M. Shoucri, B. Afeyan , Proc. of the EPS Conference, Greece (2008).
Longitudinal terahertz wave generation from an air plasma filament induced by a femtosecond laser
NASA Astrophysics Data System (ADS)
Minami, Yasuo; Kurihara, Takayuki; Yamaguchi, Keita; Nakajima, Makoto; Suemoto, Tohru
2013-04-01
We have generated and detected a longitudinally polarized (Z-polarized) terahertz (THz) wave by focusing a conically propagating THz beam generated from a plasma filament induced by a femtosecond laser pulse. In the experiment, we observed a radially polarized field in a collimated region and Z-polarized field at focus in the time domain. The maximum value of the Z-polarized THz electric field reached 1.0 kV/cm. It was also quantitatively discussed about the Z-polarized field and the radial field at the focal point. We expect this technique to find application in THz time domain spectroscopy.
NASA Technical Reports Server (NTRS)
Everhart, Joel L.; Bobbitt, Percy J.
1994-01-01
The results of detailed parametric experiments are presented for the near-wall flow field of a longitudinally slotted transonic wind tunnel. Existing data are reevaluated and new data obtained in the Langley 6- by 19-inch Transonic Wind Tunnel are presented and analyzed. In the experiments, researchers systematically investigate many pertinent wall-geometry variables such as the wall openness and the number of slots along with the free stream Mach number and model angle of attack. Flow field surveys on the plane passing through the centerline of the slot were conducted and are presented. The effects of viscosity on the slot flow are considered in the analysis. The present experiments, combined with those of previous investigations, give a more complete physical characterization of the flow near and through the slotted wall of a transonic wind tunnel.
Spin-orbit torque in a bulk perpendicular magnetic anisotropy Pd/FePd/MgO system
Lee, Hwang-Rae; Lee, Kyujoon; Cho, Jaehun; Choi, Young-Ha; You, Chun-Yeol; Jung, Myung-Hwa; Bonell, Frédéric; Shiota, Yoichi; Miwa, Shinji; Suzuki, Yoshishige
2014-01-01
Spin-orbit torques, including the Rashba and spin Hall effects, have been widely observed and investigated in various systems. Since interesting spin-orbit torque (SOT) arises at the interface between heavy nonmagnetic metals and ferromagnetic metals, most studies have focused on the ultra-thin ferromagnetic layer with interface perpendicular magnetic anisotropy. Here, we measured the effective longitudinal and transverse fields of bulk perpendicular magnetic anisotropy Pd/FePd (1.54 to 2.43 nm)/MgO systems using harmonic methods with careful correction procedures. We found that in our range of thicknesses, the effective longitudinal and transverse fields are five to ten times larger than those reported in interface perpendicular magnetic anisotropy systems. The observed magnitude and thickness dependence of the effective fields suggest that the SOT do not have a purely interfacial origin in our samples. PMID:25293693
Zheng, Wangzhi; Cleveland, Zackary I.; Möller, Harald E.; Driehuys, Bastiaan
2010-01-01
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of 3He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum 3He relaxation rate of 3.83 × 10−3 s−1 (T1 = 4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T1 would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T1 of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. PMID:21134771
Zheng, Wangzhi; Cleveland, Zackary I; Möller, Harald E; Driehuys, Bastiaan
2011-02-01
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of (3)He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum (3)He relaxation rate of 3.83×10(-3) s(-1) (T(1)=4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T(1) would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T(1) of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. Copyright © 2010 Elsevier Inc. All rights reserved.
Boechat, B; Florencio, J; Saguia, A; de Alcantara Bonfim, O F
2014-03-01
We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multicritical points in the system. We identify phases with both ferromagnetic and antiferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like spins followed by another cluster of opposite like spins. The quantum phases in the model are found to be separated by either first- or second-order transition lines.
Manifestations of Surface States in the Longitudinal Magnetoresistance of an Array of Bi Nanowires
NASA Astrophysics Data System (ADS)
Latyshev, Yu. I.; Frolov, A. V.; Volkov, V. A.; Wade, T.; Prudkoglyad, V. A.; Orlov, A. P.; Pudalov, V. M.; Konczykowski, M.
2018-04-01
The longitudinal magnetoresistance of the array of parallel-oriented bismuth nanowires each 100 nm in diameter grown by electrochemical deposition in nanopores of an Al2O3 membrane has been studied in magnetic fields up to 14 T and at temperatures down to 0.3 K. The resistance increases with the field and reaches a broad maximum in fields about 10 T. An anomalous increase in the resistance in weak fields is qualitatively consistent with the suppression of the antilocalization correction to the resistance, and the maximum is qualitatively associated with the classical size effect. Near the maximum at temperatures below 0.8 K, manifestations of reproducible magneto-oscillations of the resistance, which are periodic in field, have been detected. The period of these oscillations is close to a value corresponding to the passage of the flux quantum hc/ e through the section of a nanowire. The Fourier analysis also confirms that the oscillations are periodic. This result is similar to the manifestation the Aharonov-Bohm effect caused by conducting surface states of Dirac fermions occupying L-valleys of bismuth.
An impedance analysis of double-stream interaction in semiconductors
NASA Technical Reports Server (NTRS)
Chen, P. W.; Durney, C. H.
1972-01-01
The electromagnetic waves propagating through a drifting semiconductor plasma are studied from a macroscopic point of view in terms of double-stream interaction. The possible existing waves (helicon waves, longitudinal waves, ordinary waves, and pseudolongitudinal waves) which depend upon the orientation of the dc external magnetic field are derived. A powerful impedance concept is introduced to investigate the wave behavior of longitudinal (space charge) waves or pseudolongitudinal waves in a semiconductor plasma. The impedances due to one- and two-carrier stream interactions were calculated theoretically.
Salanova, Marisa; Lorente, Laura; Martínez, Isabel M
2012-11-01
The objective of this study is to analyze the different role that efficacy beliefs play in the prediction of learning, innovative and risky performances. We hypothesize that high levels of efficacy beliefs in learning and innovative performances have positive consequences (i.e., better academic and innovative performance, respectively), whereas in risky performances they have negative consequences (i.e., less safety performance). To achieve this objective, three studies were conducted, 1) a two-wave longitudinal field study among 527 undergraduate students (learning setting), 2) a three-wave longitudinal lab study among 165 participants performing innovative group tasks (innovative setting), and 3) a field study among 228 construction workers (risky setting). As expected, high levels of efficacy beliefs have positive or negative consequences on performance depending on the specific settings. Unexpectedly, however, we found no time x self-efficacy interaction effect over time in learning and innovative settings. Theoretical and practical implications within the social cognitive theory of A. Bandura framework are discussed.
Undergraduate Women's Persistence in the Sciences
ERIC Educational Resources Information Center
George-Jackson, Casey E.
2014-01-01
This study uses longitudinal data of undergraduate students from five public land-grant universities to better understand undergraduate students' persistence in and switching of majors, with particular attention given to women's participation in science, technology, engineering, and mathematics (STEM) fields. Specifically, the study examines…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyawaki, Shun; Nozawa, Satoshi; Iwai, Kazumasa
2016-02-10
We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only themore » radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.« less
NASA Astrophysics Data System (ADS)
Cifra, M.; Havelka, D.; Deriu, M. A.
2011-12-01
Microtubules are electrically polar structures fulfilling prerequisites for generation of oscillatory electric field in the kHz to GHz region. Energy supply for excitation of elasto-electrical vibrations in microtubules may be provided from GTP-hydrolysis; motor protein-microtubule interactions; and energy efflux from mitochondria. It recently was determined from anisotropic elastic network modeling of entire microtubules that the frequencies of microtubule longitudinal axial eigenmodes lie in the region of tens of GHz for the physiologically common microtubule lengths. We calculated electric field generated by axial longitudinal vibration modes of microtubule, which model is based on subnanometer precision of charge distribution. Due to elastoelectric nature of the vibrations, the vibration wavelength is million-fold shorter than that of the electromagnetic field in free space and the electric field around the microtubule manifests rich spatial structure with multiple minima. The dielectrophoretic force exerted by electric field on the surrounding molecules will influence the kinetics of reactions via change in the probability of the transport of charge and mass particles. The electric field generated by vibrations of electrically polar cellular structures is expected to play a role in biological self-organization.
Fiber Optic Magnetic Field Sensors Using Metallic Glass Coatings.
NASA Astrophysics Data System (ADS)
Wang, Yu.
1990-01-01
In this thesis we have investigated the use of a magnetostrictive material with a single-mode optical fiber for detecting weak magnetic fields. The amorphous alloy Metglas^circler 2605SC (Fe_{81}B_ {13.5}Si_{3.5} C_2) was chosen as the magnetostrictive material because of the combination of its large magnetostriction and small magnetic anisotropy field among all available metals. For efficient coupling between the magnetostrictive material and the optical fiber, the magnetostrictive material was directly deposited onto the single-mode optical fiber. The coated fibers were used as the sensing element in the fiber optic magnetic field sensor (FOMS). Very high quality thick metallic glass films of the Metglas 2605 SC have been deposited using triode-magneton sputtering. This is the first time such material has been successfully deposited onto an optical fiber or onto any other substrate. The films were also deposited onto glass slides to allow the study of the magnetic properties of the film. The thicknesses of these films were 5-15 mum. The magnetic property of primary interest for our sensor application is the induced longitudinal magnetostrictive strain. However, the other magnetic properties such as magnetic anisotropy, surface and bulk coercivities, magnetic homogeneity and magnetization all affect the magnetostrictive response of the material. We have used ferromagnetic resonance (FMR) at microwave frequencies to study the magnetic anisotropy and homogeneity; vibrating sample magnetometry (VSM) to study the bulk magnetic hysteresis responses and coercivity; and the longitudinal magneto-optic kerr effect (LMOKE) to study the surface magnetic hysteresis responses and coercivity. The isothermalmagnetic annealing effect on these properties has also been studied in detail. The fiber optic magnetic field sensor constructed using the metallic-glass-coated fiber was tested. An electronic feedback control loop using a PZT cylinder was constructed for stabilizing the sensor operation. Magnetic field detection at different dither frequencies was studied in detail. The estimated minimum detectable magnetic field was about 3 times 10^{-7 } Oe. A simplified elastic model was used for the theoretical calculation of the phase shift induced in a metallic-glass -coated optical fiber with a longitudinal applied magnetic field. The phase shift as a function of coating thickness was calculated, and the experimental results at certain thicknesses were compared with the calculation. The frequency response of the FOMS was also studied in some detail. Three different configurations were used for the study of the frequency response. The results indicate that the resonances observed in the FOMS are most likely related to the mechanical resonance of the optical fiber.
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)
2003-01-01
A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.
Study of mean- and turbulent-velocity fields in a large-scale turbine-vane passage
NASA Technical Reports Server (NTRS)
Bailey, D. A.
1979-01-01
Laser-Doppler velocimetry, and to a lesser extent hot-wire anemometry, were employed to measure three components of the mean velocity and the six turbulent stresses at four planes within the turbine inlet-guide-vane passage. One variation in the turbulent inlet boundary layer thickness and one variation in the blade aspect ratio (span/axial chord) were studied. A longitudinal vortex (passage vortex) was clearly identified in the exit plane of the passage for the three test cases. The maximum turbulence intensities within the longitudinal vortex were found to be on the order of 2 to 4 percent, with large regions appearing nonturbulent. Because a turbulent wall boundary layer was the source of vorticity that produced the passage vortex, these low turbulence levels were not anticipated. For the three test cases studied, the lateral velocity field extended significantly beyond the region of the longitudinal velocity defect. Changing the inlet boundary layer thickness produced a difference in the location, the strength, and the extent of the passage vortex. Changing the aspect ratio of the blade passage had a measurable but less significant effect. The experiment was performed in a 210 mm pitch, 272 mm axial chord model in low speed wind tunnel at an inlet Mach number of 0.07.
Ultrahigh speed en face OCT capsule for endoscopic imaging
Liang, Kaicheng; Traverso, Giovanni; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Wang, Zhao; Potsaid, Benjamin; Giacomelli, Michael; Jayaraman, Vijaysekhar; Barman, Ross; Cable, Alex; Mashimo, Hiroshi; Langer, Robert; Fujimoto, James G.
2015-01-01
Depth resolved and en face OCT visualization in vivo may have important clinical applications in endoscopy. We demonstrate a high speed, two-dimensional (2D) distal scanning capsule with a micromotor for fast rotary scanning and a pneumatic actuator for precision longitudinal scanning. Longitudinal position measurement and image registration were performed by optical tracking of the pneumatic scanner. The 2D scanning device enables high resolution imaging over a small field of view and is suitable for OCT as well as other scanning microscopies. Large field of view imaging for screening or surveillance applications can also be achieved by proximally pulling back or advancing the capsule while scanning the distal high-speed micromotor. Circumferential en face OCT was demonstrated in living swine at 250 Hz frame rate and 1 MHz A-scan rate using a MEMS tunable VCSEL light source at 1300 nm. Cross-sectional and en face OCT views of the upper and lower gastrointestinal tract were generated with precision distal pneumatic longitudinal actuation as well as proximal manual longitudinal actuation. These devices could enable clinical studies either as an adjunct to endoscopy, attached to an endoscope, or as a swallowed tethered capsule for non-endoscopic imaging without sedation. The combination of ultrahigh speed imaging and distal scanning capsule technology could enable both screening and surveillance applications. PMID:25909001
Ultrahigh speed en face OCT capsule for endoscopic imaging.
Liang, Kaicheng; Traverso, Giovanni; Lee, Hsiang-Chieh; Ahsen, Osman Oguz; Wang, Zhao; Potsaid, Benjamin; Giacomelli, Michael; Jayaraman, Vijaysekhar; Barman, Ross; Cable, Alex; Mashimo, Hiroshi; Langer, Robert; Fujimoto, James G
2015-04-01
Depth resolved and en face OCT visualization in vivo may have important clinical applications in endoscopy. We demonstrate a high speed, two-dimensional (2D) distal scanning capsule with a micromotor for fast rotary scanning and a pneumatic actuator for precision longitudinal scanning. Longitudinal position measurement and image registration were performed by optical tracking of the pneumatic scanner. The 2D scanning device enables high resolution imaging over a small field of view and is suitable for OCT as well as other scanning microscopies. Large field of view imaging for screening or surveillance applications can also be achieved by proximally pulling back or advancing the capsule while scanning the distal high-speed micromotor. Circumferential en face OCT was demonstrated in living swine at 250 Hz frame rate and 1 MHz A-scan rate using a MEMS tunable VCSEL light source at 1300 nm. Cross-sectional and en face OCT views of the upper and lower gastrointestinal tract were generated with precision distal pneumatic longitudinal actuation as well as proximal manual longitudinal actuation. These devices could enable clinical studies either as an adjunct to endoscopy, attached to an endoscope, or as a swallowed tethered capsule for non-endoscopic imaging without sedation. The combination of ultrahigh speed imaging and distal scanning capsule technology could enable both screening and surveillance applications.
Lethal effect of electric fields on isolated ventricular myocytes.
de Oliveira, Pedro Xavier; Bassani, Rosana Almada; Bassani, José Wilson Magalhães
2008-11-01
Defibrillator-type shocks may cause electric and contractile dysfunction. In this study, we determined the relationship between probability of lethal injury and electric field intensity (E in isolated rat ventricular myocytes, with emphasis on field orientation and stimulus waveform. This relationship was sigmoidal with irreversible injury for E > 50 V/cm . During both threshold and lethal stimulation, cells were twofold more sensitive to the field when it was applied longitudinally (versus transversally) to the cell major axis. For a given E, the estimated maximum variation of transmembrane potential (Delta V(max)) was greater for longitudinal stimuli, which might account for the greater sensitivity to the field. Cell death, however, occurred at lower maximum Delta V(max) values for transversal shocks. This might be explained by a less steep spatial decay of transmembrane potential predicted for transversal stimulation, which would possibly result in occurrence of electroporation in a larger membrane area. For the same stimulus duration, cells were less sensitive to field-induced injury when shocks were biphasic (versus monophasic). Ours results indicate that, although significant myocyte death may occur in the E range expected during clinical defibrillation, biphasic shocks are less likely to produce irreversible cell injury.
The Role of Living-Learning Programs in Women's Plans to Attend Graduate School in STEM Fields
ERIC Educational Resources Information Center
Szelenyi, Katalin; Inkelas, Karen Kurotsuchi
2011-01-01
This paper examines the role of living-learning (L/L) programs in undergraduate women's plans to attend graduate school in STEM fields. Using data from the 2004-2007 National Study of Living Learning Programs (NSLLP), the only existing multi-institutional, longitudinal dataset examining L/L program outcomes, the findings show that women's…
Gómez Santos, Santiago Felipe; Estévez Santiago, Rocío; Palacios Gil-Antuñano, Nieves; Leis Trabazo, Maria Rosaura; Tojo Sierra, Rafael; Cuadrado Vives, Carmen; Beltrán de Miguel, Beatriz; Ávila Torres, José Manuel; Varela Moreiras, Gregorio; Casas Esteve, Rafael
2015-12-01
childhood obesity is one of the main public health concerns. The multifactorial and multilevel causes require complex interventions such the community based interventions (CBI). Thao-Child Health Programme is a CBI implemented in Spain since 2007. show the Thao methodology and the latest cross-sectional and longitudinal results. longitudinal cohort study (4 years of follow- up) and cross sectional study. the longitudinal study found an increase of 1% in the overweight prevalence after a follow-up of 4 years of Thao-Programme implementation in 10 municipalities with 6 697 children involved. The cross-sectional study carried out with 20 636 children from 22 municipalities found a childhood overweight prevalence of 26.6%. currently a brake in the increase of childhood overweight prevalence is considered a success due to the high prevalence worldwide. More studies well methodologically performed are needed to know the efficacy of the CBI's in this field. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Physical modeling with orthotropic material based on harmonic fields.
Liao, Sheng-Hui; Zou, Bei-Ji; Geng, Jian-Ping; Wang, Jin-Xiao; Ding, Xi
2012-11-01
Although it is well known that human bone tissues have obvious orthotropic material properties, most works in the physical modeling field adopted oversimplified isotropic or approximated transversely isotropic elasticity due to the simplicity. This paper presents a convenient methodology based on harmonic fields, to construct volumetric finite element mesh integrated with complete orthotropic material. The basic idea is taking advantage of the fact that the longitudinal axis direction indicated by the shape configuration of most bone tissues is compatible with the trajectory of the maximum material stiffness. First, surface harmonic fields of the longitudinal axis direction for individual bone models were generated, whose scalar distribution pattern tends to conform very well to the object shape. The scalar iso-contours were extracted and sampled adaptively to construct volumetric meshes of high quality. Following, the surface harmonic fields were expanded over the whole volumetric domain to create longitudinal and radial volumetric harmonic fields, from which the gradient vector fields were calculated and employed as the orthotropic principal axes vector fields. Contrastive finite element analyses demonstrated that elastic orthotropy has significant effect on simulating stresses and strains, including the value as well as distribution pattern, which underlines the relevance of our orthotropic modeling scheme. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Persistence of undergraduate women in STEM fields
NASA Astrophysics Data System (ADS)
Pedone, Maggie Helene
The underrepresentation of women in science, technology, engineering, and mathematics (STEM) is a complex problem that continues to persist at the postsecondary level, particularly in computer science and engineering fields. This dissertation explored the pre-college and college level factors that influenced undergraduate women's persistence in STEM. This study also examined and compared the characteristics of undergraduate women who entered STEM fields and non-STEM fields in 2003-2004. The nationally representative Beginning Postsecondary Students Longitudinal Study (BPS:04/09) data set was used for analysis. BPS:04/09 study respondents were surveyed three times (NPSAS:04, BPS:04/06, BPS:04/09) over a six-year period, which enabled me to explore factors related to long-term persistence. Astin's Input-Environment-Output (I-E-O) model was used as the framework to examine student inputs and college environmental factors that predict female student persistence (output) in STEM. Chi-square tests revealed significant differences between undergraduate women who entered STEM and non-STEM fields in 2003-2004. Differences in student demographics, prior academic achievement, high school course-taking patterns, and student involvement in college such as participation in study groups and school clubs were found. Notably, inferential statistics showed that a significantly higher proportion of female minority students entered STEM fields than non-STEM fields. These findings challenge the myth that underrepresented female minorities are less inclined to enter STEM fields. Logistic regression analyses revealed thirteen significant predictors of persistence for undergraduate women in STEM. Findings showed that undergraduate women who were younger, more academically prepared, and academically and socially involved in college (e.g., lived on campus, interacted with faculty, participated in study groups, fine arts activities, and school sports) were more likely to persist in STEM fields. This longitudinal study showed that both pre-college and college level factors influenced undergraduate women's persistence in STEM. The research findings offer important implications for policy and practice initiatives in higher education that focus on the recruitment and retention of women in postsecondary STEM fields.
NASA Technical Reports Server (NTRS)
Lerche, I.
1981-01-01
An analysis is conducted regarding the properties of cylindrically symmetric self-similar blast waves propagating away from a line source into a medium whose density and magnetic field (with components in both the phi and z directions) both vary as r to the -(omega) power (with omega less than 1) ahead of the blast wave. The main results of the analysis can be divided into two classes, related to a zero azimuthal field and a zero longitudinal field. In the case of the zero longitudinal field it is found that there are no physically acceptable solutions with continuous postshock variations of flow speed and gas density.
NASA Astrophysics Data System (ADS)
Tomaschitz, R.
2005-02-01
The interaction of superluminal radiation with matter in atomic bound-bound and bound-free transitions is investigated. We study transitions in the relativistic hydrogen atom effected by superluminal quanta. The superluminal radiation field is coupled by minimal substitution to the Dirac equation in a Coulomb potential. We quantize the interaction to obtain the transition matrix for induced and spontaneous superluminal radiation in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, the cross-sections for ground state ionization by transversal and longitudinal tachyons are derived. We examine the relativistic regime, high electronic ejection energies, as well as the first order correction to the non-relativistic cross-sections. In the ultra-relativistic limit, both the longitudinal and transversal cross-sections are peaked at small but noticeably different scattering angles. In the non-relativistic limit, the longitudinal cross-section has two maxima, and its minimum is located at the transversal maximum. Ionization cross-sections can thus be used to discriminate longitudinal radiation from transversal tachyons and photons.
Magnetotransport properties of 8-Pmmn borophene: effects of Hall field and strain.
Islam, S K Firoz
2018-07-11
The polymorph of 8-Pmmn borophene is an anisotropic Dirac material with tilted Dirac cones at two valleys. The tilting of the Dirac cones at two valleys are in opposite directions, which manifests itself via the valley dependent Landau levels in presence of an in-plane electric field (Hall field). The valley dependent Landau levels cause valley polarized magnetotransport properties in presence of the Hall field, which is in contrast to the monolayer graphene with isotropic non-tilted Dirac cones. The longitudinal conductivity and Hall conductivity are evaluated by using linear response theory in low temperature regime. An analytical approximate form of the longitudinal conductivity is also obtained. It is observed that the tilting of the Dirac cones amplifies the frequency of the longitudinal conductivity oscillation (Shubnikov-de Haas). On the other hand, the Hall conductivity exhibits graphene-like plateaus except the appearance of valley dependent steps which are purely attributed to the Hall field induced lifting of the valley degeneracy in the Landau levels. Finally we look into the different cases when the Hall field is applied to the strained borophene and find that valley dependency is fully dominated by strain rather than Hall field. Another noticeable point is that if the real magnetic field is replaced by the strain induced pseudo magnetic field then the electric field looses its ability to cause valley polarized transport.
Chiral current generation in QED by longitudinal photons
NASA Astrophysics Data System (ADS)
Acosta Avalo, J. L.; Pérez Rojas, H.
2016-08-01
We report the generation of a pseudovector electric current having imbalanced chirality in an electron-positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler-Bell-Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.
Armstrong, Anderson C.; Ricketts, Erin P.; Cox, Christopher; Adler, Paul; Arynchyn, Alexander; Liu, Kiang; Stengel, Ellen; RDCS; Sidney, Stephen; Lewis, Cora E.; Schreiner, Pamela J.; Shikany, James M.; Keck, Kimberly; Merlo, Jamie; Gidding, Samuel S.; Lima, João A. C.
2014-01-01
Introduction Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultra-sound, particularly in novel techniques such as Speckle Tracking (STE). We evaluate the echocardiography assessment performance in the CARDIA study Y25 examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and Reading Center (RC) accuracy. Methods The CARDIA Y25 examination had 3,475 echocardiograms performed in 4 US Field Centers and analyzed in a Reading Center, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (2- and 4-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intra-class correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. Results For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and 4-chamber and 58% in 2-chamber. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with Echo RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. Conclusion Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies. PMID:25382818
Armstrong, Anderson C; Ricketts, Erin P; Cox, Christopher; Adler, Paul; Arynchyn, Alexander; Liu, Kiang; Stengel, Ellen; Sidney, Stephen; Lewis, Cora E; Schreiner, Pamela J; Shikany, James M; Keck, Kimberly; Merlo, Jamie; Gidding, Samuel S; Lima, João A C
2015-08-01
Few large studies describe quality control procedures and reproducibility findings in cardiovascular ultrasound, particularly in novel techniques such as speckle tracking echocardiography (STE). We evaluate the echocardiography assessment performance in the Coronary Artery Risk Development in Young Adults (CARDIA) study Year 25 (Y25) examination (2010-2011) and report findings from a quality control and reproducibility program conducted to assess Field Center image acquisition and reading center (RC) accuracy. The CARDIA Y25 examination had 3475 echocardiograms performed in 4 US Field Centers and analyzed in a RC, assessing standard echocardiography (LA dimension, aortic root, LV mass, LV end-diastolic volume [LVEDV], ejection fraction [LVEF]), and STE (two- and four-chamber longitudinal, circumferential, and radial strains). Reproducibility was assessed using intraclass correlation coefficients (ICC), coefficients of variation (CV), and Bland-Altman plots. For standard echocardiography reproducibility, LV mass and LVEDV consistently had CV above 10% and aortic root below 6%. Intra-sonographer aortic root and LV mass had the most robust values of ICC in standard echocardiography. For STE, the number of properly tracking segments was above 80% in short-axis and four-chamber and 58% in two-chamber views. Longitudinal strain parameters were the most robust and radial strain showed the highest variation. Comparing Field Centers with echocardiography RC STE readings, mean differences ranged from 0.4% to 4.1% and ICC from 0.37 to 0.66, with robust results for longitudinal strains. Echocardiography image acquisition and reading processes in the CARDIA study were highly reproducible, including robust results for STE analysis. Consistent quality control may increase the reliability of echocardiography measurements in large cohort studies. © 2014, Wiley Periodicals, Inc.
SU-C-BRB-01: Development of Dynamic Gimbaled X-Ray Head Swing Irradiation Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, T; Miyabe, Y; Yokota, K
Purpose: The Vero4DRT has a unique gimbaled x-ray head with rotating around orthogonal two axes. The purpose of this study was to develop a new irradiation technique using the dynamic gimbaled x-ray head swing function. Methods: The Vero4DRT has maximum field size of 150Χ150 mm2. The expanded irradiation field (expanded-field) for the longitudinal direction which is vertical to the MLC sliding direction, was created by the MLC motion and the gimbaled x-ray head rotation. The gimbaled x-ray head was rotated ± 35 mm, and the expanded-field size was set as 150Χ220 mm2. To irradiate uniform dose distribution, the diamond-shaped radiationmore » field was created and continuously moved for the longitudinal direction. It was achieved by combination of opening and closing of the MLC and gimbal swing rotation. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 100 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expanded-field irradiation technique was applied to virtual wedge irradiation. Wedged beam was acquired with the delta–shaped radiation field. 150Χ 220 mm2 fields with 15, 30, 45, and 60 degree wedge were examined. The wedge angles were measured with irradiated film and compared with assumed wedge angles. Results: The field size, penumbra, flatness and symmetry of the expanded-field were 150.0 mm, 8.1–8.4 mm, 2.8% and −0.8% for the lateral direction and 220.1 mm, 6.3–6.4 mm, 3.2% and −0.4% for the longitudinal direction at 100 mm depth. The measured wedge angles were 15.1, 30.2, 45.2 and 60.2 degrees. The differences between assumed and measured angles were within 0.2 degrees. Conclusion: A new technique of the gimbal swing irradiation was developed. To extend applied targets, especially for whole breast irradiation, the expanded-field and virtual wedge irradiations would be effective.« less
Momentum dependence in pair production by an external field
NASA Astrophysics Data System (ADS)
Asakawa, M.
1992-08-01
The transverse and the longitudinal momentum dependences of the pair production under an adiabatically exerted uniform abelian external field are calculated with their importance in models for the production of quark-gluon plasma in ultrarelativistic heavy ion collisions in mind. The importance of the initial condition is revealed. We show that superposition of acceleration by the external field and barrier penetration is reflected in the longitudinal momentum dependence. The peculiar nature of the boost invariant system which is expected to be approximately realized in ultrarelativistic nuclear collisions is pointed out.
Holographic anisotropic background with confinement-deconfinement phase transition
NASA Astrophysics Data System (ADS)
Aref'eva, Irina; Rannu, Kristina
2018-05-01
We present new anisotropic black brane solutions in 5D Einstein-dilaton-two-Maxwell system. The anisotropic background is specified by an arbitrary dynamical exponent ν, a nontrivial warp factor, a non-zero dilaton field, a non-zero time component of the first Maxwell field and a non-zero longitudinal magnetic component of the second Maxwell field. The blackening function supports the Van der Waals-like phase transition between small and large black holes for a suitable first Maxwell field charge. The isotropic case corresponding to ν = 1 and zero magnetic field reproduces previously known solutions. We investigate the anisotropy influence on the thermodynamic properties of our background, in particular, on the small/large black holes phase transition diagram. We discuss applications of the model to the bottom-up holographic QCD. The RG flow interpolates between the UV section with two suppressed transversal coordinates and the IR section with the suppressed time and longitudinal coordinates due to anisotropic character of our solution. We study the temporal Wilson loops, extended in longitudinal and transversal directions, by calculating the minimal surfaces of the corresponding probing open string world-sheet in anisotropic backgrounds with various temperatures and chemical potentials. We find that dynamical wall locations depend on the orientation of the quark pairs, that gives a crossover transition line between confinement/deconfinement phases in the dual gauge theory. Instability of the background leads to the appearance of the critical points ( μ ϑ,b , T ϑ,b ) depending on the orientation ϑ of quark-antiquark pairs in respect to the heavy ions collision line.
NASA Technical Reports Server (NTRS)
Manning, Robert M.
2005-01-01
Solutions are derived for the generalized mutual coherence function (MCF), i.e., the second order moment, of a random wave field propagating through a random medium within the context of the extended parabolic equation. Here, "generalized" connotes the consideration of both the transverse as well as the longitudinal second order moments (with respect to the direction of propagation). Such solutions will afford a comparison between the results of the parabolic equation within the pararaxial approximation and those of the wide-angle extended theory. To this end, a statistical operator method is developed which gives a general equation for an arbitrary spatial statistical moment of the wave field. The generality of the operator method allows one to obtain an expression for the second order field moment in the direction longitudinal to the direction of propagation. Analytical solutions to these equations are derived for the Kolmogorov and Tatarskii spectra of atmospheric permittivity fluctuations within the Markov approximation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Firouzjaei, Ali Shekari; Shokri, Babak
In the present paper, we study the wakes known as the donut wake which is generated by Laguerre-Gauss (LG) laser pulses. Effects of the special spatial profile of a LG pulse on the radial and longitudinal wakefields are presented via an analytical model in a weakly non-linear regime in two dimensions. Different aspects of the donut-shaped wakefields have been analyzed and compared with Gaussian-driven wakes. There is also some discussion about the accelerating-focusing phase of the donut wake. Variations of longitudinal and radial wakes with laser amplitude, pulse length, and pulse spot size have been presented and discussed. Finally, wemore » present the optimum pulse duration for such wakes.« less
Spatial correlation of atmospheric wind at scales relevant for large scale wind turbines
NASA Astrophysics Data System (ADS)
Bardal, L. M.; Sætran, L. R.
2016-09-01
Wind measurements a short distance upstream of a wind turbine can provide input for a feedforward wind turbine controller. Since the turbulent wind field will be different at the point/plane of measurement and the rotor plane the degree of correlation between wind speed at two points in space both in the longitudinal and lateral direction should be evaluated. This study uses a 2D array of mast mounted anemometers to evaluate cross-correlation of longitudinal wind speed. The degree of correlation is found to increase with height and decrease with atmospheric stability. The correlation is furthermore considerably larger for longitudinal separation than for lateral separation. The integral length scale of turbulence is also considered.
Solar Filament Longitudinal Oscillations along a Magnetic Field Tube with Two Dips
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou Yu-Hao; Zhang Li-Yue; Ouyang, Y.
Large-amplitude longitudinal oscillations of solar filaments have been observed and explored for more than ten years. Previous studies are mainly based on the one-dimensional rigid flux tube model with a single magnetic dip. However, it has been noted that there might be two magnetic dips, and hence two threads, along one magnetic field line. Following previous work, we intend to investigate the kinematics of the filament longitudinal oscillations when two threads are magnetically connected, which is done by solving one-dimensional radiative hydrodynamic equations with the numerical code MPI-AMRVAC. Two different types of perturbations are considered, and the difference from previousmore » works resulting from the interaction of the two filament threads is investigated. We find that even with the inclusion of the thread–thread interaction, the oscillation period is modified weakly, by at most 20% compared to the traditional pendulum model with one thread. However, the damping timescale is significantly affected by the thread–thread interaction. Hence, we should take it into account when applying the consistent seismology to the filaments where two threads are magnetically connected.« less
Lateral vehicle accelerations due to longitudinally tined portland cement concrete pavement.
DOT National Transportation Integrated Search
2009-12-01
The objective of this study was to determine, via field measurements, the vibration characteristics of vehicle squirming (a.k.a. groove wander) a phenomenon whereby vehicles experience lateral vibrations due to interaction between tire tread groo...
Yüksel, Yusuf; Akıncı, Ümit
2016-12-07
Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.
Analytical models for coupling reliability in identical two-magnet systems during slow reversals
NASA Astrophysics Data System (ADS)
Kani, Nickvash; Naeemi, Azad
2017-12-01
This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x ̂ and y ̂ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.
Primary aberrations in focused radially polarized vortex beams
NASA Astrophysics Data System (ADS)
Biss, David P.; Brown, T. G.
2004-02-01
We study the effect of primary aberrations on the 3-D polarization of the electric field in a focused lowest order radially polarized beam. A full vector diffraction treatment of the focused beams is used. Attention is given to the effects of primary spherical, astigmatic, and comatic aberrations on the local polarization, Strehl ratio, and aberration induced degradation of the longitudinal field at focus
Guo, Jiesi; Parker, Philip D; Marsh, Herbert W; Morin, Alexandre J S
2015-08-01
Drawing on the expectancy-value model, the present study explored individual and gender differences in university entry and selection of educational pathway (e.g., science, technology, engineering, and mathematics [STEM] course selection). In particular, we examined the multiplicative effects of expectancy and task values on educational outcomes during the transition into early adulthood. Participants were from a nationally representative longitudinal sample of 15-year-old Australian youths (N = 10,370). The results suggest that (a) both math self-concept and intrinsic value interact in predicting advanced math course selection, matriculation results, entrance into university, and STEM fields of study; (b) prior reading achievement has negative effects on advanced math course selection and STEM fields through math motivational beliefs; and (c) gender differences in educational outcomes are mediated by gender differences in motivational beliefs and prior academic achievement, while the processes underlying choice of educational pathway were similar for males and females. (c) 2015 APA, all rights reserved).
Zhang, Mingming; Ladas, Thomas P.; Qiu, Chen; Shivacharan, Rajat S.; Gonzalez-Reyes, Luis E.
2014-01-01
The propagation of activity in neural tissue is generally associated with synaptic transmission, but epileptiform activity in the hippocampus can propagate with or without synaptic transmission at a speed of ∼0.1 m/s. This suggests an underlying common nonsynaptic mechanism for propagation. To study this mechanism, we developed a novel unfolded hippocampus preparation, from CD1 mice of either sex, which preserves the transverse and longitudinal connections and recorded activity with a penetrating microelectrode array. Experiments using synaptic transmission and gap junction blockers indicated that longitudinal propagation is independent of chemical or electrical synaptic transmission. Propagation speeds of 0.1 m/s are not compatible with ionic diffusion or pure axonal conduction. The only other means of communication between neurons is through electric fields. Computer simulations revealed that activity can indeed propagate from cell to cell solely through field effects. These results point to an unexpected propagation mechanism for neural activity in the hippocampus involving endogenous field effect transmission. PMID:24453330
Long-term morphological developments of river channels separated by a longitudinal training wall
NASA Astrophysics Data System (ADS)
Le, T. B.; Crosato, A.; Uijttewaal, W. S. J.
2018-03-01
Rivers have been trained for centuries by channel narrowing and straightening. This caused important damages to their ecosystems, particularly around the bank areas. We analyze here the possibility to train rivers in a new way by subdividing their channel in main and ecological channel with a longitudinal training wall. The effectiveness of longitudinal training walls in achieving this goal and their long-term effects on the river morphology have not been thoroughly investigated yet. In particular, studies that assess the stability of the two parallel channels separated by the training wall are still lacking. This work studies the long-term morphological developments of river channels subdivided by a longitudinal training wall in the presence of steady alternate bars. This type of bars, common in alluvial rivers, alters the flow field and the sediment transport direction and might affect the stability of the bifurcating system. The work comprises both laboratory experiments and numerical simulations (Delft3D). The results show that a system of parallel channels divided by a longitudinal training wall has the tendency to become unstable. An important factor is found to be the location of the upstream termination of the longitudinal wall with respect to a neighboring steady bar. The relative widths of the two parallel channels separated by the wall and variable discharge do not substantially change the final evolution of the system.
Measurement of longitudinal electron diffusion in liquid argon
Li, Yichen; Tsang, Thomas; Thorn, Craig; ...
2016-02-07
In this paper, we report the measurement of longitudinal electron diffusion coefficients in liquid argon for electric fields between 100 and 2000 V/cm with a gold photocathode as a bright electron source. The measurement principle, apparatus, and data analysis are described. In the region between 100 and 350 V/cm, our results show a discrepancy with the previous measurement. In the region between 350 and 2000 V/cm, our results represent the world's best measurement. Over the entire measured electric field range, our results are systematically higher than the calculation of Atrazhev-Timoshkin. The quantum efficiency of the gold photocathode, the drift velocitymore » and longitudinal diffusion coefficients in gas argon are also presented.« less
Can Neighbor Attributes Predict School Absences?
ERIC Educational Resources Information Center
Gottfried, Michael A.
2014-01-01
Recent evidence suggests that the neighborhood context, particularly for urban youth, can influence a range of outcomes. This study makes contributions to the field by examining how the neighborhood context directly relates to missing school. To do so, this study employs a large-scale, longitudinal data set of multilevel observations for entire…
Accumulating Knowledge: When Are Reading Intervention Results Meaningful?
ERIC Educational Resources Information Center
Fletcher, Jack M.; Wagner, Richard K.
2014-01-01
The three target articles provide examples of intervention studies that are excellent models for the field. They rely on rigorous and elegant designs, the interventions are motivated by attention to underlying theoretical mechanisms, and longitudinal designs are used to examine the duration of effects of interventions that occur. When studies are…
A series of longitudinal particulate matter (PM) and related co-pollutant human exposure panel field studies have recently been completed. Studies were conducted in Baltimore, Maryland (1997,1998) Fresno, California (1999) and Research Triangle Park, North Carolina (2002-2001)...
Calculation of longitudinal and transverse wake-field effects in dielectric structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gai, W.
1989-01-01
The electro-magnetic radiation of a charged particle passing through a dielectric structure has many applications to accelerator physics. Recently a new acceleration scheme, called the dielectric wake field accelerator, has been proposed. It also can be used as a pick up system for a storage ring because of its slow wave characteristics. In order to study these effects in detail, in this paper we will calculate the wake field effects produced in a dielectric structure by a charged particle. 8 refs., 2 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanerfeld, H; Herrmannsfeldt, W.B.; James, M.B.
1985-03-01
The injector for the Stanford Linear Collider is being studied using the fully electromagnetic particle-in-cell program MASK. The program takes account of cylindrically symmetrical rf fields from the external source, as well as fields produced by the beam and dc magnetic fields. It calculates the radial and longitudinal motion of electrons and plots their positions in various planes in phase space. Bunching parameters can be optimized and insights into the bunching process and emittance growth have been gained. The results of the simulations are compared to the experimental results.
2-D energy analyzer for low energy electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karkare, Siddharth, E-mail: ssk226@cornell.edu; Cultrera, Luca; Hwang, Yoon-Woo
2015-03-15
A 2-D electron energy analyzer is designed and constructed to measure the transverse and longitudinal energy distribution of low energy (<1 eV) electrons. The analyzer operates on the principle of adiabatic invariance and motion of low energy electrons in a strong longitudinal magnetic field. The operation of the analyzer is studied in detail and a design to optimize the energy resolution, signal to noise ratio, and physical size is presented. An energy resolution better than 6 meV has been demonstrated. Such an analyzer is a powerful tool to study the process of photoemission which limits the beam quality in modernmore » accelerators.« less
Applications of Research to Camping.
ERIC Educational Resources Information Center
Henderson, Karla A.
1987-01-01
Considers contributions of basic/theoretical, applied/practical, and marketing research to the field of camping. Outlines research concerns: application of qualitative methods, practical application of marketing research, effective research dissemination, and focus on longitudinal studies using larger samples. Affirms role of research to document…
Hayward, R. David; Krause, Neal
2014-01-01
The use of longitudinal designs in the field of religion and health makes it important to understand how attrition bias may affect findings in this area. This study examines attrition in a 4-wave, 8-year study of older adults. Attrition resulted in a sample biased towards more educated and more religiously-involved individuals. Conditional linear growth curve models found that trajectories of change for some variables differed among attrition categories. Ineligibles had worsening depression, declining control, and declining attendance. Mortality was associated with worsening religious coping styles. Refusers experienced worsening depression. Nevertheless, there was no evidence of bias in the key religion and health results. PMID:25257794
Hayward, R David; Krause, Neal
2016-02-01
The use of longitudinal designs in the field of religion and health makes it important to understand how attrition bias may affect findings in this area. This study examines attrition in a 4-wave, 8-year study of older adults. Attrition resulted in a sample biased toward more educated and more religiously involved individuals. Conditional linear growth curve models found that trajectories of change for some variables differed among attrition categories. Ineligibles had worsening depression, declining control, and declining attendance. Mortality was associated with worsening religious coping styles. Refusers experienced worsening depression. Nevertheless, there was no evidence of bias in the key religion and health results.
Venkatraman, Vijay K; Gonzalez, Christopher E.; Landman, Bennett; Goh, Joshua; Reiter, David A.; An, Yang; Resnick, Susan M.
2017-01-01
Diffusion tensor imaging (DTI) measures are commonly used as imaging markers to investigate individual differences in relation to behavioral and health-related characteristics. However, the ability to detect reliable associations in cross-sectional or longitudinal studies is limited by the reliability of the diffusion measures. Several studies have examined reliability of diffusion measures within (i.e. intra-site) and across (i.e. inter-site) scanners with mixed results. Our study compares the test-retest reliability of diffusion measures within and across scanners and field strengths in cognitively normal older adults with a follow-up interval less than 2.25 years. Intra-class correlation (ICC) and coefficient of variation (CoV) of fractional anisotropy (FA) and mean diffusivity (MD) were evaluated in sixteen white matter and twenty-six gray matter bilateral regions. The ICC for intra-site reliability (0.32 to 0.96 for FA and 0.18 to 0.95 for MD in white matter regions; 0.27 to 0.89 for MD and 0.03 to 0.79 for FA in gray matter regions) and inter-site reliability (0.28 to 0.95 for FA in white matter regions, 0.02 to 0.86 for MD in gray matter regions) with longer follow-up intervals were similar to earlier studies using shorter follow-up intervals. The reliability of across field strengths comparisons was lower than intra- and inter-site reliability. Within and across scanner comparisons showed that diffusion measures were more stable in larger white matter regions (> 1500 mm3). For gray matter regions, the MD measure showed stability in specific regions and was not dependent on region size. Linear correction factor estimated from cross-sectional or longitudinal data improved the reliability across field strengths. Our findings indicate that investigations relating diffusion measures to external variables must consider variable reliability across the distinct regions of interest and that correction factors can be used to improve consistency of measurement across field strengths. An important result of this work is that inter-scanner and field strength effects can be partially mitigated with linear correction factors specific to regions of interest. These data-driven linear correction techniques can be applied in cross-sectional or longitudinal studies. PMID:26146196
Ponderomotive ion acceleration in dense magnetized laser-irradiated thick target plasmas
NASA Astrophysics Data System (ADS)
Sinha, Ujjwal; Kaw, Predhiman
2012-03-01
When a circularly polarized laser pulse falls on an overdense plasma, it displaces the electrons via ponderomotive force creating a double layer. The double layer constitutes of an ion and electron sheath with in which the electrostatic field present is responsible for ion acceleration. In this paper, we have analyzed the effect a static longitudinal magnetic field has over the ion acceleration mechanism. The longitudinal magnetic field changes the plasma dielectric constant due to cyclotron effects which in turn enhances or reduces the ponderomotive force exerted by the laser depending on whether the laser is left or right circularly polarized. Also, the analysis of the ion space charge region present behind the ion sheath of the laser piston that undergoes coulomb explosion has been explored for the first time. We have studied the interaction of an incoming ion beam with the laser piston and the ion space charge. It has been found that the exploding ion space charge has the ability to act as an energy amplifier for incoming ion beams.
Effect of the screened Coulomb disorder on magneto-transport in Weyl semimetals
NASA Astrophysics Data System (ADS)
Ji, Xuan-Ting; Lu, Hai-Zhou; Zhu, Zhen-Gang; Su, Gang
2018-05-01
The observation of negative longitudinal magnetoresistivity (NLMR) in Weyl semimetals has gained strong support in recent experiments. It is believed that charged impurities play an important role in the measurement of NLMR. We thus employ a screened Coulomb disorder to model charged impurities and derive a general screening length depending on the magnetic field, chemical potential and temperature. We study the magneto-transport in a two-node Weyl semimetal in which the intra-valley scattering and the inter-valley scattering can be explored simultaneously. We also calculate the effect of the misalignment of the external electric field and the magnetic field on the longitudinal and transverse magnetoconductivities, recovering the experimental observations. We show that the former (latter) is suppressed (enhanced) sensitively with the density of the impurity. This feature makes it hard to observe the NLMR in experiments in the heavy doping case. These results may be exploited to explain the sample-dependent observation of NLMR and deepen our understanding of magneto-transport in Weyl semimetals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlasko-Vlasov, V. K.; Colauto, Fabiano; Buzdin, Alexander A.
We study interactions of perpendicular and longitudinal magnetic fields in niobium films of different thickness in a wide range of temperatures below the superconducting transition temperature ( T C) . In 100 nm Nb film at all temperatures the longitudinal field H || practically does not influence the dynamics of the normal flux. However, in 200nm Nb film, a considerable anisotropy in the vortex motion is found with advanced propagation of the normal flux along H || at T>TC/2 and the preferential jump-wise growth of the thermo-magnetic flux dendrites across H || at T < T C. Appearance of themore » in-plane vortices and their cutting-reconnection with tilted vortices induced by the normal field H || is the reason of the observed anisotropy in the thicker film. Absence of the in-plane vortices and much smaller tilt of vortices generated by H || explain the isotropic normal flux dynamics in the thinner film. Lastly, our results open a new way of manipulating both slow vortex motion and fast thermo-magnetic avalanches.« less
Magneto-optical visualization of three spatial components of inhomogeneous stray fields
NASA Astrophysics Data System (ADS)
Ivanov, V. E.
2012-08-01
The article deals with the physical principles of magneto-optical visualization (MO) of three spatial components of inhomogeneous stray fields with the help of FeCo metal indicator films in the longitudinal Kerr effect geometry. The inhomogeneous field is created by permanent magnets. Both p- and s-polarization light is used for obtaining MO images with their subsequent summing, subtracting and digitizing. As a result, the MO images and corresponding intensity coordinate dependences reflecting the distributions of the horizontal and vertical magnetization components in pure form have been obtained. Modeling of both the magnetization distribution in the indicator film and the corresponding MO images shows that corresponding to polar sensitivity the intensity is proportional to the normal field component, which permits normal field component mapping. Corresponding to longitudinal sensitivity, the intensity of the MO images reflects the angular distribution of the planar field component. MO images have singular points in which the planar component is zero and their movement under an externally homogeneous planar field permits obtaining of additional information on the two planar components of the field under study. The intensity distribution character in the vicinity of sources and sinks (singular points) remains the same under different orientations of the light incidence plane. The change of incident plane orientation by π/2 alters the distribution pattern in the vicinity of the saddle points.
On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance
NASA Astrophysics Data System (ADS)
dos Reis, R. D.; Ajeesh, M. O.; Kumar, N.; Arnold, F.; Shekhar, C.; Naumann, M.; Schmidt, M.; Nicklas, M.; Hassinger, E.
2016-08-01
Recently, the existence of massless chiral (Weyl) fermions has been postulated in a class of semi-metals with a non-trivial energy dispersion. These materials are now commonly dubbed Weyl semi-metals (WSM). One predicted property of Weyl fermions is the chiral or Adler-Bell-Jackiw anomaly, a chirality imbalance in the presence of parallel magnetic and electric fields. In WSM, it is expected to induce a negative longitudinal magnetoresistance (MR). Here, we present experimental evidence that the observation of the chiral anomaly can be hindered by an effect called ‘current jetting’. This effect also leads to a strong apparent negative longitudinal MR, but it is characterized by a highly non-uniform current distribution inside the sample. It appears in materials possessing a large field-induced anisotropy of the resistivity tensor, such as almost compensated high-mobility semimetals due to the orbital effect. In case of a non-homogeneous current injection, the potential distribution is strongly distorted in the sample. As a consequence, an experimentally measured potential difference is not proportional to the intrinsic resistance. Our results on the MR of the Weyl semimetal candidate materials NbP, NbAs, TaAs, and TaP exhibit distinct signatures of an inhomogeneous current distribution, such as a field-induced ‘zero resistance’ and a strong dependence of the ‘measured resistance’ on the position, shape, and type of the voltage and current contacts on the sample. A misalignment between the current and the magnetic-field directions can even induce a ‘negative resistance’. Finite-element simulations of the potential distribution inside the sample, using typical resistance anisotropies, are in good agreement with the experimental findings. Our study demonstrates that great care must be taken before interpreting measurements of a negative longitudinal MR as evidence for the chiral anomaly in putative Weyl semimetals.
Eby, Lillian T; Burk, Hannah; Maher, Charleen P
2010-10-01
In the substance abuse treatment field, the annual turnover rate is cited as being anywhere between 19% and 50% (J.A. Johnson & P.M. Roman, 2002; S.L. Gallon, R.M. Gabriel, J.R.W. Knudsen, 2003; H.K. Knudsen, J.A. Johnson, & P.M. Roman, 2003; A.T. McLellan, D. Carise, & H.D. Kleber, 2003). However, no research to date has evaluated these claims by tracking turnover longitudinally using organizational turnover data from substance abuse treatment centers. This research presents the results of a longitudinal study designed to systematically examine actual turnover among counselors and clinical supervisors. Twenty-seven geographically dispersed treatment organizations, serving a wide range of clients in the public and private sector, provided data for the study over a 2-year time span (2008-2009). The annual turnover rate was 33.2% for counselors and 23.4% for clinical supervisors. For both groups, the majority of turnover was voluntary (employee-initiated). Specific reasons for turnover were largely consistent across the two groups, with the most common reason being a new job or new opportunity. The findings are discussed in terms of the unique employment context of substance abuse treatment. Practical recommendations are also discussed to help stem the tide of turnover in the field of substance abuse treatment. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Six-month Longitudinal Comparison of a Portable Tablet Perimeter With the Humphrey Field Analyzer.
Prea, Selwyn Marc; Kong, Yu Xiang George; Mehta, Aditi; He, Mingguang; Crowston, Jonathan G; Gupta, Vinay; Martin, Keith R; Vingrys, Algis J
2018-06-01
To establish the medium-term repeatability of the iPad perimetry app Melbourne Rapid Fields (MRF) compared to Humphrey Field Analyzer (HFA) 24-2 SITA-standard and SITA-fast programs. Multicenter longitudinal observational clinical study. Sixty patients (stable glaucoma/ocular hypertension/glaucoma suspects) were recruited into a 6-month longitudinal clinical study with visits planned at baseline and at 2, 4, and 6 months. At each visit patients undertook visual field assessment using the MRF perimetry application and either HFA SITA-fast (n = 21) or SITA-standard (n = 39). The primary outcome measure was the association and repeatability of mean deviation (MD) for the MRF and HFA tests. Secondary measures were the point-wise threshold and repeatability for each test, as well as test time. MRF was similar to SITA-fast in speed and significantly faster than SITA-standard (MRF 4.6 ± 0.1 minutes vs SITA-fast 4.3 ± 0.2 minutes vs SITA-standard 6.2 ± 0.1 minutes, P < .001). Intraclass correlation coefficients (ICC) between MRF and SITA-fast for MD at the 4 visits ranged from 0.71 to 0.88. ICC values between MRF and SITA-standard for MD ranged from 0.81 to 0.90. Repeatability of MRF MD outcomes was excellent, with ICC for baseline and the 6-month visit being 0.98 (95% confidence interval: 0.96-0.99). In comparison, ICC at 6-month retest for SITA-fast was 0.95 and SITA-standard 0.93. Fewer points changed with the MRF, although for those that did, the MRF gave greater point-wise variability than did the SITA tests. MRF correlated strongly with HFA across 4 visits over a 6-month period, and has good test-retest reliability. MRF is suitable for monitoring visual fields in settings where conventional perimetry is not readily accessible. Copyright © 2018 Elsevier Inc. All rights reserved.
Structure and Dynamics of Current Sheets in 3D Magnetic Fields with the X-line
NASA Astrophysics Data System (ADS)
Frank, Anna G.; Bogdanov, S. Yu.; Bugrov, S. G.; Markov, V. S.; Dreiden, G. V.; Ostrovskaya, G. V.
2004-11-01
Experimental results are presented on the structure of current sheets formed in 3D magnetic fields with singular lines of the X-type. Two basic diagnostics were used with the device CS - 3D: two-exposure holographic interferometry and magnetic measurements. Formation of extended current sheets and plasma compression were observed in the presence of the longitudinal magnetic field component aligned with the X-line. Plasma density decreased and the sheet thickness increased with an increase of the longitudinal component. We succeeded to reveal formation of the sheets taking unusual shape, namely tilted and asymmetric sheets, in plasmas with the heavy ions. These current sheets were obviously different from the planar sheets formed in 2D magnetic fields, i.e. without longitudinal component. Analysis of typical plasma parameters made it evident that plasma dynamics and current sheet evolution should be treated on the base of the two-fluid approach. Specifically it is necessary to take into account the Hall currents in the plane perpendicular to the X-line, and the dynamic effects resulting from interaction of the Hall currents and the 3D magnetic field. Supported by RFBR, grant 03-02-17282, and ISTC, project 2098.
Radiation and matter: Electrodynamics postulates and Lorenz gauge
NASA Astrophysics Data System (ADS)
Bobrov, V. B.; Trigger, S. A.; van Heijst, G. J.; Schram, P. P.
2016-11-01
In general terms, we have considered matter as the system of charged particles and quantized electromagnetic field. For consistent description of the thermodynamic properties of matter, especially in an extreme state, the problem of quantization of the longitudinal and scalar potentials should be solved. In this connection, we pay attention that the traditional postulates of electrodynamics, which claim that only electric and magnetic fields are observable, is resolved by denial of the statement about validity of the Maxwell equations for microscopic fields. The Maxwell equations, as the generalization of experimental data, are valid only for averaged values. We show that microscopic electrodynamics may be based on postulation of the d'Alembert equations for four-vector of the electromagnetic field potential. The Lorenz gauge is valid for the averages potentials (and provides the implementation of the Maxwell equations for averages). The suggested concept overcomes difficulties under the electromagnetic field quantization procedure being in accordance with the results of quantum electrodynamics. As a result, longitudinal and scalar photons become real rather than virtual and may be observed in principle. The longitudinal and scalar photons provide not only the Coulomb interaction of charged particles, but also allow the electrical Aharonov-Bohm effect.
Longitudinal wave function control in single quantum dots with an applied magnetic field
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A.; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-01
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots. PMID:25624018
Longitudinal wave function control in single quantum dots with an applied magnetic field.
Cao, Shuo; Tang, Jing; Gao, Yunan; Sun, Yue; Qiu, Kangsheng; Zhao, Yanhui; He, Min; Shi, Jin-An; Gu, Lin; Williams, David A; Sheng, Weidong; Jin, Kuijuan; Xu, Xiulai
2015-01-27
Controlling single-particle wave functions in single semiconductor quantum dots is in demand to implement solid-state quantum information processing and spintronics. Normally, particle wave functions can be tuned transversely by an perpendicular magnetic field. We report a longitudinal wave function control in single quantum dots with a magnetic field. For a pure InAs quantum dot with a shape of pyramid or truncated pyramid, the hole wave function always occupies the base because of the less confinement at base, which induces a permanent dipole oriented from base to apex. With applying magnetic field along the base-apex direction, the hole wave function shrinks in the base plane. Because of the linear changing of the confinement for hole wave function from base to apex, the center of effective mass moves up during shrinking process. Due to the uniform confine potential for electrons, the center of effective mass of electrons does not move much, which results in a permanent dipole moment change and an inverted electron-hole alignment along the magnetic field direction. Manipulating the wave function longitudinally not only provides an alternative way to control the charge distribution with magnetic field but also a new method to tune electron-hole interaction in single quantum dots.
Twisted-Light-Ion Interaction: The Role of Longitudinal Fields
NASA Astrophysics Data System (ADS)
Quinteiro, G. F.; Schmidt-Kaler, Ferdinand; Schmiegelow, Christian T.
2017-12-01
The propagation of light beams is well described using the paraxial approximation, where field components along the propagation direction are usually neglected. For strongly inhomogeneous or shaped light fields, however, this approximation may fail, leading to intriguing variations of the light-matter interaction. This is the case of twisted light having opposite orbital and spin angular momenta. We compare experimental data for the excitation of a quadrupole transition in a single trapped 40Ca+ ion from Schmiegelow et al. [Nat. Commun. 7, 12998 (2016), 10.1038/ncomms12998] with a complete model where longitudinal components of the electric field are taken into account. Our model matches the experimental data and excludes by 11 standard deviations the approximation of a complete transverse field. This demonstrates the relevance of all field components for the interaction of twisted light with matter.
Total marrow irradiation using Helical TomoTherapy
NASA Astrophysics Data System (ADS)
Garcia-Fernandez, Lourdes Maria
Clinical dose response data of human tumours are limited or restricted to a radiation dose range determined by the level of toxicity to the normal tissues. This is the case for the most common disseminated plasma cell neoplasm, multiple myeloma, where the maximum dose deliverable to the entire bony skeleton using a standard total body irradiation (TBI) technique is limited to about 12 Gy. This study is part of scientific background of a phase I/II dose escalation clinical trial for multiple myeloma using image-guided intensity modulated radiotherapy (IG-IMRT) to deliver high dose to the entire volume of bone marrow with Helical TomoTherapy (HT). This relatively new technology can deliver highly conformal dose distributions to complex target shapes while reducing the dose to critical normal tissues. In this study tools for comparing and predicting the effectiveness of different approaches to total marrow irradiation (TMI) using HT were provided. The expected dose response for plasma cell neoplasms was computed and a radiobiological evaluation of different treatment cohorts in a dose escalating study was performed. Normal tissue complication probability (NTCP) and tumour control probability (TCP) models were applied to an actual TMI treatment plan for a patient and the implications of using different longitudinal field widths were assessed. The optimum dose was ˜39 Gy for which a predicted tumour control of 95% (+/-3%) was obtained, with a predicted 3% (0, 8%) occurrence of radiation pneumonitis. Tissue sparing was seen by using smaller field widths only in the organs of the head. This suggests it would be beneficial to use the small fields in the head only since using small fields for the whole treatment would lead to long treatment times. In TMI it may be necessary to junction two longitudinally adjacent treatment volumes to form a contiguous planning target volume PTV. For instance, this is the case when a different SUP-INF spatial resolution is required or when the PTV length exceeds the bed travel distance. In this work, the dosimetric challenges associated with junctioning longitudinally adjacent PTVs with HT were analyzed and the feasibility of PTV junctioning was demonstrated. The benefits of spatially dividing or splitting the treatment into a few sub-treatments along the longitudinal direction were also investigated.
Secondary Science Teachers' Beliefs and Persistence: A Longitudinal Mixed-Methods Study
ERIC Educational Resources Information Center
Wong, Sissy S.; Luft, Julie A.
2015-01-01
While many studies focus on why teachers leave the classroom, there remains a need to study why teachers persist in teaching. One area to study is the beliefs of teachers, which may impact persistence in the field. This 5-year mixed-methods study explored whether 35 beginning secondary science teachers' beliefs were related to their persistence in…
Negative Ion Drift Velocity and Longitudinal Diffusion in Mixtures of Carbon Disulfide and Methane
NASA Technical Reports Server (NTRS)
Dion, Michael P.; Son, S.; Hunter, S. D.; deNolfo, G. A.
2011-01-01
Negative ion drift velocity and longitudinal diffusion has been measured for gas mixtures of carbon disulfide (CS2) and methane (CH4)' Measurements were made as a function of total pressure, CS2 partial pressure and electric field. Constant mobility and thermal-limit longitudinal diffusion is observed for all gas mixtures tested. Gas gain for some of the mixtures is also included.
Finding Their Way on: Career Decision-Making Processes of Urban Science Teachers
ERIC Educational Resources Information Center
Rinke, Carol R.
2009-01-01
This article reports on a research study investigating the career decision-making processes of urban science teachers as one element central to understanding the high rates of attrition in the field. Using a longitudinal, prospective, context- and subject-specific approach, this study followed the career decisions of case study teachers over a…
NASA Astrophysics Data System (ADS)
Eichler, C.; Petta, J. R.
2018-06-01
We realize a superconducting circuit analog of the generic cavity-optomechanical Hamiltonian by longitudinally coupling two superconducting resonators, which are an order of magnitude different in frequency. We achieve longitudinal coupling by embedding a superconducting quantum interference device into a high frequency resonator, making its resonance frequency depend on the zero point current fluctuations of a nearby low frequency L C resonator. By applying sideband drive fields we enhance the intrinsic coupling strength of about 15 kHz up to 280 kHz by controlling the amplitude of the drive field. Our results pave the way towards the exploration of optomechanical effects in a fully superconducting platform and could enable quantum optics experiments with photons in the yet unexplored radio frequency band.
ERIC Educational Resources Information Center
Wei, Xin; Yu, Jennifer W.; Shattuck, Paul; McCracken, Mary; Blackorby, Jose
2013-01-01
Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of…
A STUDY OF INFORMAL GROUP ACTIVITY WITHIN A COMMUNITY'S EDUCATIONAL ARENA.
ERIC Educational Resources Information Center
BARNES, WILLIAM D.
THIS LONGITUDINAL FIELD STUDY EXAMINED THE INFORMAL RELATIONSHIPS BY WHICH SCHOOL ORIENTED LEADERS INFLUENCED THE DEVELOPMENT OF POLICY IN THE EDUCATIONAL ARENA OF AN OREGON COMMUNITY. CONSIDERED WERE 15 BUSINESSMEN AND PROFESSIONALS WHO WERE NAMED AS LEADERS BY MANY OTHERS IN THE COMMUNITY AND WERE ALSO RECOGNIZED AS BEING INFLUENTIAL IN LOCAL…
Pedagogical Differences during a Science and Language Intervention for English Language Learners
ERIC Educational Resources Information Center
Garza, Tiberio; Huerta, Margarita; Lara-Alecio, Rafael; Irby, Beverly J.; Tong, Fuhui
2018-01-01
The purpose of this study was to compare and describe 8 fifth-grade classrooms by their teachers pedagogy during a quasiexperimental, longitudinal, and field-based project focused on increasing English language learners' (ELLs') achievement in science and language. The larger study found statistically significant and positive intervention effects…
The Role of School Culture in Improving Student Achievement in POS
ERIC Educational Resources Information Center
Sundell, Kirsten; Castellano, Marisa; Overman, Laura T.; Aliaga, Oscar A.
2012-01-01
Over the past five years, the National Research Center for Career and Technical Education (NRCCTE) has sponsored five research studies of Programs of Study (POS)--including three ongoing longitudinal projects--with the goal of informing the field about how and under what conditions POS impact student engagement, achievement, and transition to…
ERIC Educational Resources Information Center
Wei, Xin; Christiano, Elizabeth R.; Yu, Jennifer W.; Blackorby, Jose; Shattuck, Paul; Newman, Lynn A.
2014-01-01
Little research has examined the popular belief that individuals with an autism spectrum disorder (ASD) are more likely than the general population to gravitate toward science, technology, engineering, and mathematics (STEM) fields. This study analyzed data from the National Longitudinal Transition Study-2, a nationally representative sample of…
Student Math Achievement and Out-of-Field Teaching
ERIC Educational Resources Information Center
Hill, Jason G.; Dalton, Ben
2013-01-01
This study investigates the distribution of math teachers with a major or certification in math using data from the National Center for Education Statistics' High School Longitudinal Study of 2009 (HSLS:09). The authors discuss the limitations of existing data sources for measuring teacher qualifications, such as the Schools and Staffing Survey…
College Choice for Black Males in the Community College: Factors Influencing Institutional Selection
ERIC Educational Resources Information Center
Wood, J. Luke; Harrison, John D.
2014-01-01
In this study we examined the college choice process for Black males attending community colleges. Using data from the Educational Longitudinal Study, findings indicated that Black males who attend community colleges select their institutions based upon having a degree in their chosen field, the coursework/curriculum, job placement record,…
Prediction of functional loss in glaucoma from progressive optic disc damage.
Medeiros, Felipe A; Alencar, Luciana M; Zangwill, Linda M; Bowd, Christopher; Sample, Pamela A; Weinreb, Robert N
2009-10-01
To evaluate the ability of progressive optic disc damage detected by assessment of longitudinal stereophotographs to predict future development of functional loss in those with suspected glaucoma. The study included 639 eyes of 407 patients with suspected glaucoma followed up for an average of 8.0 years with annual standard automated perimetry visual field and optic disc stereophotographs. All patients had normal and reliable standard automated perimetry results at baseline. Conversion to glaucoma was defined as development of 3 consecutive abnormal visual fields during follow-up. Presence of progressive optic disc damage was evaluated by grading longitudinally acquired simultaneous stereophotographs. Other predictive factors included age, intraocular pressure, central corneal thickness, pattern standard deviation, and baseline stereophotograph grading. Hazard ratios for predicting visual field loss were obtained by extended Cox models, with optic disc progression as a time-dependent covariate. Predictive accuracy was evaluated using a modified R(2) index. Progressive optic disc damage had a hazard ratio of 25.8 (95% confidence interval, 16.0-41.7) and was the most important risk factor for development of visual field loss with an R(2) of 79%. The R(2)s for other predictive factors ranged from 6% to 26%. Presence of progressive optic disc damage on stereophotographs was a highly predictive factor for future development of functional loss in glaucoma. These findings suggest the importance of careful monitoring of the optic disc appearance and a potential role for longitudinal assessment of the optic disc as an end point in clinical trials and as a reference for evaluation of diagnostic tests in glaucoma.
NASA Astrophysics Data System (ADS)
Grau Galofre, Anna; Jellinek, A. Mark; Osinski, Gordon R.; Zanetti, Michael; Kukko, Antero
2018-04-01
Subglacial meltwater channels (N-channels) are attributed to erosion by meltwater in subglacial conduits. They exert a major control on meltwater accumulation at the base of ice sheets, serving as drainage pathways and modifying ice flow rates. The study of exposed relict subglacial channels offers a unique opportunity to characterize the geomorphologic fingerprint of subglacial erosion as well as study the structure and characteristics of ice sheet drainage systems. In this study we present detailed field and remote sensing observations of exposed subglacial meltwater channels in excellent preservation state on Devon Island (Canadian Arctic Archipelago). We characterize channel cross section, longitudinal profiles, and network morphologies and establish the spatial extent and distinctive characteristics of subglacial drainage systems. We use field-based GPS measurements of subglacial channel longitudinal profiles, along with stereo imagery-derived digital surface models (DSMs), and novel kinematic portable lidar data to establish a detailed characterization of subglacial channels in our field study area, including their distinction from rivers and other meltwater drainage systems. Subglacial channels typically cluster in groups of ˜ 10 channels and are oriented perpendicular to active or former ice margins. Although their overall direction generally follows topographic gradients, channels can be oblique to topographic gradients and have undulating longitudinal profiles. We also observe that the width of first-order tributaries is 1 to 2 orders of magnitude larger than in Devon Island river systems and approximately constant. Furthermore, our findings are consistent with theoretical expectations drawn from analyses of flow driven by gradients in effective water pressure related to variations in ice thickness. Our field and remote sensing observations represent the first high-resolution study of the subglacial geomorphology of the high Arctic, and provide quantitative and qualitative descriptions of subglacial channels that revisit well-established field identification guidelines. Distinguishing subglacial channels in topographic data is critical for understanding the emergence, geometry, and extent of channelized meltwater systems and their role in ice sheet drainage. The final aim of this study is to facilitate the identification of subglacial channel networks throughout the globe by using remote sensing techniques, which will improve the detection of these systems and help to build understanding of the underlying mechanics of subglacial channelized drainage.
Optical Orientation of Mn2+ Ions in GaAs in Weak Longitudinal Magnetic Fields
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Sapega, V. F.; Yakovlev, D. R.; Bayer, M.
2011-04-01
We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.
Optical orientation of Mn2+ ions in GaAs in weak longitudinal magnetic fields.
Akimov, I A; Dzhioev, R I; Korenev, V L; Kusrayev, Yu G; Sapega, V F; Yakovlev, D R; Bayer, M
2011-04-08
We report on optical orientation of Mn2+ ions in bulk GaAs subject to weak longitudinal magnetic fields (B≤100 mT). A manganese spin polarization of 25% is directly evaluated by using spin-flip Raman scattering. The dynamical Mn2+ polarization occurs due to the s-d exchange interaction with optically oriented conduction band electrons. Time-resolved photoluminescence reveals a nontrivial electron spin dynamics, where the oriented Mn2+ ions tend to stabilize the electron spins.
NASA Astrophysics Data System (ADS)
Salman, Z.; Prokscha, T.; Keller, P.; Morenzoni, E.; Saadaoui, H.; Sedlak, K.; Shiroka, T.; Sidorov, S.; Suter, A.; Vrankovic, V.; Weber, H.-P.
We usedGeant4 to accurately model the low energy muons (LEM) beam line, including scattering due to the 10-nm thin carbon foil in the trigger detector. Simulations of the beam line transmission give excellent agreement with experimental results for beam energies higher than ∼ 12keV.We use these simulations to design and model the operation of a spin rotator for the LEM spectrometer, which will enable longitudinal field measurements in the near future.
Twenty Years Later: High School Students Who Showed Promise in Mathematics.
ERIC Educational Resources Information Center
Turner, Nura D.
1981-01-01
Data from longitudinal studies of high school students who took the Annual High School Mathematics Examination sponsored by the Mathematical Association of America (MAA) indicate that 56 percent of the top achievers pursued careers in mathematics or mathematically related fields. (MP)
NASA Astrophysics Data System (ADS)
Balovnev, A. V.; Vizgalov, I. V.; Salahutdinov, G. H.
2016-01-01
In this paper we studied the non-self mode of the auto-oscillation secondary- emission discharge (ASED) in a longitudinal magnetic field with autonomous electron gun to ignite the primary beam-plasma discharge (PPD).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borland, M.; Lindberg, R.
2017-06-01
The proposed upgrade of the Advanced Photon Source (APS) to a multibend-achromat lattice requires shorter and much stronger quadrupole magnets than are present in the existing ring. This results in longitudinal gradient profiles that differ significantly from a hard-edge model. Additionally, the lattice assumes the use of five-segment longitudinal gradient dipoles. Under these circumstances, the effects of fringe fields and detailed field distributions are of interest. We evaluated the effect of soft-edge fringe fields on the linear optics and chromaticity, finding that compensation for these effects is readily accomplished. In addition, we evaluated the reliability of standard methods of simulatingmore » hardedge nonlinear fringe effects in quadrupoles.« less
NASA Astrophysics Data System (ADS)
Ziauddin; Qamar, Sajid
2014-05-01
Control of the longitudinal shifts, i.e., spatial and angular Goos-Hänchen (GH) shifts, is revisited to study the effect of width of incident Gaussian beam on the shifts and distortion in the reflected beam. The beam is incident on a cavity consisted of atomic medium where each four-level atom follows N-type atom-field configuration. The atom-field interaction leads to Raman gain process which has been used earlier to observe a significant enhancement of the negative group index, i.e., in the range -103 to -104 for 23Na condensate [G.S. Agarwal, S. Dasgupta, Phys. Rev. A 70 (2004) 023802]. The negative and positive longitudinal shifts could be observed in the reflected light corresponding to the anomalous and normal dispersions of the intracavity medium, respectively. It is observed that the shifts are relatively large for small range of beam width and these became small for large width of the incident beam. It is also noticed that the magnitudes of spatial and angular GH shifts behave differently when the beam width increases. Further, distortion in the reflected beam decreases with an increase in beam width.
Histologic anatomy of the lesser metatarsophalangeal joint plantar plate.
Gregg, J; Marks, P; Silberstein, M; Schneider, T; Kerr, J
2007-03-01
The plantar plate is the fibrocartilaginous structure that supports the ball of the foot, withstanding considerable compressive and tensile forces. This study describes the morphology of the plantar plate in order to understand its function and the pathologic disorders associated with it. Eight lesser metatarsophalangeal joint plantar plates from three soft-embalmed cadavers (74-92 years, two males, one female), and eight lesser metatarsophalangeal joint plantar plates from a fresh cadaver (19-year-old male) were obtained for histology assessment. Paraffin sections (10 microm) in the longitudinal and transverse planes were analyzed with bright-field and polarized light microscopy. The central plantar plate collagen bundles run in the longitudinal plane with varying degrees of undulation. The plantar plate borders run transversely and merge with collateral ligaments and the deep transverse intermetatarsal ligament. Bright-field microscopic evaluation shows the plantar aspect of the plantar plate becomes ligament-like the further distally it tapers, containing fewer chondrocytes, and a greater abundance of fibroblasts. The enthesis reveals longitudinal and interwoven collagen bundles entering the proximal phalanx with multiple interdigitations. Longer interdigitations centrally compared to the dorsal and plantar aspects suggest that the central fibers experience the greatest loads.
NASA Astrophysics Data System (ADS)
Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej
2009-05-01
Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.
Gendered Fields: Sports and Advanced Course Taking in High School
Pearson, Jennifer; Crissey, Sarah R.; Riegle-Crumb, Catherine
2010-01-01
This study explores the association between sports participation and course taking in high school, specifically comparing subjects with varied gendered legacies—science and foreign language. Analyses of a nationally representative longitudinal sample (N=5,447) of U.S. adolescents from the National Longitudinal Study of Adolescent Health and the linked Adolescent Health and Academic Achievement transcript study show that male and female athletes are more likely than non-athletes to take both advanced foreign language and Physics, largely because of their higher academic orientation. However, the association between sports participation and course taking was strongest for girls’ Physics coursework, suggesting that sports may provide girls with a unique opportunity to develop the skills and confidence to persevere in the masculine domain of science. PMID:20221304
Regression analysis of longitudinal data with correlated censoring and observation times.
Li, Yang; He, Xin; Wang, Haiying; Sun, Jianguo
2016-07-01
Longitudinal data occur in many fields such as the medical follow-up studies that involve repeated measurements. For their analysis, most existing approaches assume that the observation or follow-up times are independent of the response process either completely or given some covariates. In practice, it is apparent that this may not be true. In this paper, we present a joint analysis approach that allows the possible mutual correlations that can be characterized by time-dependent random effects. Estimating equations are developed for the parameter estimation and the resulted estimators are shown to be consistent and asymptotically normal. The finite sample performance of the proposed estimators is assessed through a simulation study and an illustrative example from a skin cancer study is provided.
Longitudinal confinement and matching of an intense electron beam
NASA Astrophysics Data System (ADS)
Beaudoin, B.; Haber, I.; Kishek, R. A.; Bernal, S.; Koeth, T.; Sutter, D.; O'Shea, P. G.; Reiser, M.
2011-01-01
An induction cell has successfully been demonstrated to longitudinally confine a space-charge dominated bunch for over a thousand turns (>11.52 km) in the University of Maryland Electron Ring [Haber et al., Nucl. Instrum. Methods Phys. Res. A 606, 64 (2009) and R. A. Kishek et al., Int. J. Mod. Phys. A 22, 3838 (2007)]. With the use of synchronized periodic focusing fields, the beam is confined for multiple turns overcoming the longitudinal space-charge forces. Experimental results show that an optimum longitudinal match is obtained when the focusing frequency for containment of the 0.52 mA beam is applied at every fifth turn. Containment of the beam bunch is achievable at lower focusing frequencies, at the cost of a reduction in the transported charge from the lack of sufficient focusing. Containment is also obtainable, if the confinement fields overfocus the bunch, exciting multiple waves at the bunch ends, which propagate into the central region of the beam, distorting the overall constant current beam shape.
NASA Astrophysics Data System (ADS)
Belykh, V. V.; Kavokin, K. V.; Yakovlev, D. R.; Bayer, M.
2017-12-01
The evolution of the electron spin dynamics as consequence of carrier delocalization in n -type GaAs is investigated by the recently developed extended pump-probe Kerr/Faraday rotation spectroscopy. We find that isolated electrons localized on donors demonstrate a prominent difference between the longitudinal and transverse spin relaxation rates in a magnetic field, which is almost absent in the metallic phase. The inhomogeneous transverse dephasing time T2* of the spin ensemble strongly increases upon electron delocalization as a result of motional narrowing that can be induced by increasing either the donor concentration or the temperature. An unexpected relation between T2* and the longitudinal spin relaxation time T1 is found, namely, that their product is about constant, as explained by the magnetic field effect on the spin diffusion. We observe a two-stage longitudinal spin relaxation, which suggests the establishment of spin temperature in the system of exchange-coupled donor-bound electrons.
ERIC Educational Resources Information Center
Ward, William C.
The Open Field Test was used to assess variables that might not be manifested in a more standard testing situation. In this test, the child was shown 10 standard play objects in the room, and was told to do anything he wished with the toys. The tester initiated no interaction with the child and responded minimally to any overture made by the…
NASA Astrophysics Data System (ADS)
Sadeghi-Goughari, Moslem; Jeon, Soo; Kwon, Hyock-Ju
2017-09-01
In drug delivery systems, carbon nanotubes (CNTs) can be used to deliver anticancer drugs into target site to kill metastatic cancer cells under the magnetic field guidance. Deep understanding of dynamic behavior of CNTs in drug delivery systems may enable more efficient use of the drugs while reducing systemic side effects. In this paper, we study the effect of magnetic-fluid flow on the structural instability of a CNT conveying nanoflow under a longitudinal magnetic field. The Navier-Stokes equation of magnetic-fluid flow is coupled with Euler-Bernoulli beam theory for modeling fluid structure interaction (FSI). Size effects of the magnetic fluid and the CNT are addressed through small-scale parameters including the Knudsen number (Kn) and the nonlocal parameter. Results show the positive role of magnetic properties of fluid flow on the structural stability of CNT. Specifically, magnetic force applied to the fluid flow has an effect of decreasing the structural stiffness of system while increasing the critical flow velocity. Furthermore, we discover that the nanoscale effects of CNT and fluid flow tend to amplify the influence of magnetic field on the vibrational behavior of the system.
Molecular hydrodynamics: Vortex formation and sound wave propagation
Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; ...
2018-01-14
In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to ormore » larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.« less
Molecular hydrodynamics: Vortex formation and sound wave propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Kyeong Hwan; Kim, Changho; Talkner, Peter
In the present study, quantitative feasibility tests of the hydrodynamic description of a two-dimensional fluid at the molecular level are performed, both with respect to length and time scales. Using high-resolution fluid velocity data obtained from extensive molecular dynamics simulations, we computed the transverse and longitudinal components of the velocity field by the Helmholtz decomposition and compared them with those obtained from the linearized Navier-Stokes (LNS) equations with time-dependent transport coefficients. By investigating the vortex dynamics and the sound wave propagation in terms of these field components, we confirm the validity of the LNS description for times comparable to ormore » larger than several mean collision times. The LNS description still reproduces the transverse velocity field accurately at smaller times, but it fails to predict characteristic patterns of molecular origin visible in the longitudinal velocity field. Based on these observations, we validate the main assumptions of the mode-coupling approach. The assumption that the velocity autocorrelation function can be expressed in terms of the fluid velocity field and the tagged particle distribution is found to be remarkably accurate even for times comparable to or smaller than the mean collision time. This suggests that the hydrodynamic-mode description remains valid down to the molecular scale.« less
Student Leadership Development: A Functional Framework
ERIC Educational Resources Information Center
Hine, Gregory Stephen Colin
2014-01-01
This article presents a longitudinal, qualitative case study of a student leadership program in a Catholic secondary school in Perth, Western Australia. Data were collected over a period of three years through multiple methods, including one-on-one interviewing, focus group interviewing, document searches, field notes, and researcher reflective…
Parlett, Lauren E.; Bowman, Joseph D.; van Wijngaarden, Edwin
2015-01-01
Objective Epidemiologic evidence for the association between electromagnetic fields and amyotrophic lateral sclerosis, the most common form of motor neuron disease (MND), has been inconclusive. We evaluated the association between electromagnetic fields and MND among workers in occupations potentially exposed to magnetic fields. Methods MND mortality (ICD-9 335.2) was examined in the National Longitudinal Mortality Study using multivariable proportional hazards models. Occupational exposure to magnetic fields was determined on the basis of a population-based job-exposure matrix. Age at entry, education, race, sex, and income were considered for inclusion as covariates. Results After adjusting for age, sex, and education, there were no increased risks of MND mortality in relation to potential magnetic field exposure, with hazard ratios around the null in all magnetic field exposure quartiles. Conclusions Our study does not provide evidence for an association between magnetic field exposure and MND mortality. PMID:22076040
Penco, G; Danailov, M; Demidovich, A; Allaria, E; De Ninno, G; Di Mitri, S; Fawley, W M; Ferrari, E; Giannessi, L; Trovó, M
2014-01-31
Control of the electron-beam longitudinal-phase-space distribution is of crucial importance in a number of accelerator applications, such as linac-driven free-electron lasers, colliders and energy recovery linacs. Some longitudinal-phase-space features produced by nonlinear electron beam self- fields, such as a quadratic energy chirp introduced by geometric longitudinal wakefields in radio-frequency (rf) accelerator structures, cannot be compensated by ordinary tuning of the linac rf phases nor corrected by a single high harmonic accelerating cavity. In this Letter we report an experimental demonstration of the removal of the quadratic energy chirp by properly shaping the electron beam current at the photoinjector. Specifically, a longitudinal ramp in the current distribution at the cathode linearizes the longitudinal wakefields in the downstream linac, resulting in a flat electron current and energy distribution. We present longitudinal-phase-space measurements in this novel configuration compared to those typically obtained without longitudinal current shaping at the FERMI linac.
River banks and channel axis curvature: Effects on the longitudinal dispersion in alluvial rivers
NASA Astrophysics Data System (ADS)
Lanzoni, Stefano; Ferdousi, Amena; Tambroni, Nicoletta
2018-03-01
The fate and transport of soluble contaminants released in natural streams are strongly dependent on the spatial variations of the flow field and of the bed topography. These variations are essentially related to the presence of the channel banks and to the planform configuration of the channel. Large velocity gradients arise near to the channel banks, where the flow depth decreases to zero. Moreover, single thread alluvial rivers are seldom straight, and usually exhibit meandering planforms and a bed topography that deviates from the plane configuration. Channel axis curvature and movable bed deformations drive secondary helical currents which enhance both cross sectional velocity gradients and transverse mixing, thus crucially influencing longitudinal dispersion. The present contribution sets up a rational framework which, assuming mild sloping banks and taking advantage of the weakly meandering character often exhibited by natural streams, leads to an analytical estimate of the contribution to longitudinal dispersion associated with spatial non-uniformities of the flow field. The resulting relationship stems from a physics-based modeling of the flow in natural rivers, and expresses the bend averaged longitudinal dispersion coefficient as a function of the relevant hydraulic and morphologic parameters. The treatment of the problem is river specific, since it relies on an explicit spatial description, although linearized, of the flow field that establishes in the investigated river. Comparison with field data available from tracer tests supports the robustness of the proposed framework, given also the complexity of the processes that affect dispersion dynamics in real streams.
Millimeter radiation from a 3D model of the solar atmosphere. II. Chromospheric magnetic field
NASA Astrophysics Data System (ADS)
Loukitcheva, M.; White, S. M.; Solanki, S. K.; Fleishman, G. D.; Carlsson, M.
2017-05-01
Aims: We use state-of-the-art, three-dimensional non-local thermodynamic equilibrium (non-LTE) radiative magnetohydrodynamic simulations of the quiet solar atmosphere to carry out detailed tests of chromospheric magnetic field diagnostics from free-free radiation at millimeter and submillimeter wavelengths (mm/submm). Methods: The vertical component of the magnetic field was deduced from the mm/submm brightness spectra and the degree of circular polarization synthesized at millimeter frequencies. We used the frequency bands observed by the Atacama Large Millimeter/Submillimeter Array (ALMA) as a convenient reference. The magnetic field maps obtained describe the longitudinal magnetic field at the effective formation heights of the relevant wavelengths in the solar chromosphere. Results: The comparison of the deduced and model chromospheric magnetic fields at the spatial resolution of both the model and current observations demonstrates a good correlation, but has a tendency to underestimate the model field. The systematic discrepancy of about 10% is probably due to averaging of the restored field over the heights contributing to the radiation, weighted by the strength of the contribution. On the whole, the method of probing the longitudinal component of the magnetic field with free-free emission at mm/submm wavelengths is found to be applicable to measurements of the weak quiet-Sun magnetic fields. However, successful exploitation of this technique requires very accurate measurements of the polarization properties (primary beam and receiver polarization response) of the antennas, which will be the principal factor that determines the level to which chromospheric magnetic fields can be measured. Conclusions: Consequently, high-resolution and high-precision observations of circularly polarized radiation at millimeter wavelengths can be a powerful tool for producing chromospheric longitudinal magnetograms.
Eichler, C; Petta, J R
2018-06-01
We realize a superconducting circuit analog of the generic cavity-optomechanical Hamiltonian by longitudinally coupling two superconducting resonators, which are an order of magnitude different in frequency. We achieve longitudinal coupling by embedding a superconducting quantum interference device into a high frequency resonator, making its resonance frequency depend on the zero point current fluctuations of a nearby low frequency LC resonator. By applying sideband drive fields we enhance the intrinsic coupling strength of about 15 kHz up to 280 kHz by controlling the amplitude of the drive field. Our results pave the way towards the exploration of optomechanical effects in a fully superconducting platform and could enable quantum optics experiments with photons in the yet unexplored radio frequency band.
Does Home Internet Use Influence the Academic Performance of Low-Income Children?
ERIC Educational Resources Information Center
Jackson, Linda A.; von Eye, Alexander; Biocca, Frank A.; Barbatsis, Gretchen; Zhao, Yong; Fitzgerald, Hiram E.
2006-01-01
HomeNetToo is a longitudinal field study designed to examine the antecedents and consequences of home Internet use in low-income families http://www.HomeNetToo.org). The study was done between December 2000 and June 2002. Among the consequences considered was children's academic performance. Participants were 140 children, mostly African…
ERIC Educational Resources Information Center
Bornstein, Marc H.; Putnick, Diane L.; Suwalsky, Joan T. D.
2016-01-01
The developmental science literature is riven with respect to (a) parental similar versus different treatment of siblings and (b) sibling similarities and differences. Most methodologies in the field are flawed or confounded. To address these issues, this study employed a within-family longitudinal design to examine developmental processes of…
Negotiating the Paradox of Creative Autonomy in the Making of Artists
ERIC Educational Resources Information Center
Thomas, Kerry; Chan, Janet
2013-01-01
This article reports the findings of a longitudinal study of the making of artists within an Australian university art school. It investigates the ways in which creativity is conceptualized and expressed by art students. The study makes use of Pierre Bourdieu's concepts of habitus, field, and capital to theorize the development and maintenance of…
ERIC Educational Resources Information Center
Dadgar, Mina; Trimble, Madeline Joy
2015-01-01
This study provides one of the first estimates of the returns to different types of community college credentials--short-term certificates, long-term certificates, and associate degrees--across different fields of study. We exploit a rich data set that includes matched, longitudinal college transcripts and Unemployment Insurance records for…
Walshe, Catherine
2011-12-01
Complex, incrementally changing, context dependent and variable palliative care services are difficult to evaluate. Case study research strategies may have potential to contribute to evaluating such complex interventions, and to develop this field of evaluation research. This paper explores definitions of case study (as a unit of study, a process, and a product) and examines the features of case study research strategies which are thought to confer benefits for the evaluation of complex interventions in palliative care settings. Ten features of case study that are thought to be beneficial in evaluating complex interventions in palliative care are discussed, drawing from exemplars of research in this field. Important features are related to a longitudinal approach, triangulation, purposive instance selection, comprehensive approach, multiple data sources, flexibility, concurrent data collection and analysis, search for proving-disproving evidence, pattern matching techniques and an engaging narrative. The limitations of case study approaches are discussed including the potential for subjectivity and their complex, time consuming and potentially expensive nature. Case study research strategies have great potential in evaluating complex interventions in palliative care settings. Three key features need to be exploited to develop this field: case selection, longitudinal designs, and the use of rival hypotheses. In particular, case study should be used in situations where there is interplay and interdependency between the intervention and its context, such that it is difficult to define or find relevant comparisons.
Azoulay, Bracha; Orkibi, Hod
2018-01-01
Although the literature indicates that students in mental health professions start to form their professional identity and competence in graduate school, there are few studies on the in-training experience of creative arts therapies students. This mixed methods study examined how five first-year students in a psychodrama master's degree program in Israel experienced their field training, with the aim of identifying the factors likely to promote or hinder the development of their professional identity and sense of professional ability. Longitudinal data were collected weekly throughout the 20-week field training experience. The students reported qualitatively on helpful and hindering factors and were assessed quantitatively on questionnaires measuring professional identity, perceived demands-abilities fit, client involvement, and therapy session evaluations. A thematic analysis of the students' reports indicated that a clear and defined setting and structure, observing the instructor as a role model, actively leading parts of the session, and observing fellow students were all helpful factors. The hindering factors included role confusion, issues related to coping with client resistance and disciplinary problems, as well as school end-of-year activities that disrupted the continuity of therapy. The quantitative results indicated that students' professional identity did not significantly change over the year, whereas a U-shaped curve trajectory characterized the changes in demands-abilities fit and other measures. Students began their field training with an overstated sense of ability that soon declined and later increased. These findings provide indications of which helping and hindering factors should be maximized and minimized, to enhance students' field training.
Azoulay, Bracha; Orkibi, Hod
2018-01-01
Although the literature indicates that students in mental health professions start to form their professional identity and competence in graduate school, there are few studies on the in-training experience of creative arts therapies students. This mixed methods study examined how five first-year students in a psychodrama master’s degree program in Israel experienced their field training, with the aim of identifying the factors likely to promote or hinder the development of their professional identity and sense of professional ability. Longitudinal data were collected weekly throughout the 20-week field training experience. The students reported qualitatively on helpful and hindering factors and were assessed quantitatively on questionnaires measuring professional identity, perceived demands-abilities fit, client involvement, and therapy session evaluations. A thematic analysis of the students’ reports indicated that a clear and defined setting and structure, observing the instructor as a role model, actively leading parts of the session, and observing fellow students were all helpful factors. The hindering factors included role confusion, issues related to coping with client resistance and disciplinary problems, as well as school end-of-year activities that disrupted the continuity of therapy. The quantitative results indicated that students’ professional identity did not significantly change over the year, whereas a U-shaped curve trajectory characterized the changes in demands-abilities fit and other measures. Students began their field training with an overstated sense of ability that soon declined and later increased. These findings provide indications of which helping and hindering factors should be maximized and minimized, to enhance students’ field training. PMID:29515504
Conducting Three-Level Longitudinal Analyses
ERIC Educational Resources Information Center
Peugh, James L.; Heck, Ronald H.
2017-01-01
Researchers in the field of early adolescence interested in quantifying the environmental influences on a response variable of interest over time would use cluster sampling (i.e., obtaining repeated measures from students nested within classrooms and/or schools) to obtain the needed sample size. The resulting longitudinal data would be nested at…
Characteristics of Schools Successful in STEM: Evidence from Two States' Longitudinal Data
ERIC Educational Resources Information Center
Hansen, Michael
2014-01-01
Present federal education policies promote learning in science, technology, engineering, and mathematics (STEM) and the participation of minority students in these fields. Using longitudinal data on students in Florida and North Carolina, value-added estimates in mathematics and science are generated to categorize schools into performance levels…
Longitudinal changes in the visual field and optic disc in glaucoma.
Artes, Paul H; Chauhan, Balwantray C
2005-05-01
The nature and mode of functional and structural progression in open-angle glaucoma is a subject of considerable debate in the literature. While there is a traditionally held viewpoint that optic disc and/or nerve fibre layer changes precede visual field changes, there is surprisingly little published evidence from well-controlled prospective studies in this area, specifically with modern perimetric and imaging techniques. In this paper, we report on clinical data from both glaucoma patients and normal controls collected prospectively over several years, to address the relationship between visual field and optic disc changes in glaucoma using standard automated perimetry (SAP), high-pass resolution perimetry (HRP) and confocal scanning laser tomography (CSLT). We use several methods of analysis of longitudinal data and describe a new technique called "evidence of change" analysis which facilitates comparison between different tests. We demonstrate that current clinical indicators of visual function (SAP and HRP) and measures of optic disc structure (CSLT) provide largely independent measures of progression. We discuss the reasons for these findings as well as several methodological issues that pose challenges to elucidating the true structure-function relationship in glaucoma.
Growth of a Species, an Association, a Science: 80 Years of Growth and Development Research
Sherwood, Richard J.; Duren, Dana L.
2014-01-01
Physical anthropological research was codified in the United States with the creation of the American Association of Physical Anthropology (AAPA) in 1929. That same year, a study began in yellow springs, Ohio, with a goal of identifying “what makes people different.” The approach used to answer that question was to study the growth and development of Homo sapiens. The resulting study, the Fels Longitudinal Study, is currently the longest continuous study of human growth and development in the world. Although the AAPA and the Fels Longitudinal Study have existed as separate entities for more than 80 years now, it is not surprising, given the relationship between anatomical and developmental research, there has been considerable overlap between the two. As the field of physical anthropology has blossomed to include subdisciplines such as forensics, genetics, primatology, as well as sophisticated statistical methodologies, the importance of growth and development research has escalated. Although current Fels Longitudinal Study research is largely directed at biomedical questions, virtually all findings are relevant to physical anthropology, providing insights into basic biological processes and life history parameters. Some key milestones from the early years of the AAPA and the Fels Longitudinal Study are highlighted here that address growth and development research in physical anthropology. These are still held as fundamental concepts that underscore the importance of this line of inquiry, not only across the subdisciplines of physical anthropology, but also among anthropological, biological, and biomedical inquiries. PMID:23283658
Growth of a species, an association, a science: 80 years of growth and development research.
Sherwood, Richard J; Duren, Dana L
2013-01-01
Physical anthropological research was codified in the United States with the creation of the American Association of Physical Anthropology (AAPA) in 1929. That same year, a study began in yellow springs, Ohio, with a goal of identifying "what makes people different." The approach used to answer that question was to study the growth and development of Homo sapiens. The resulting study, the Fels Longitudinal Study, is currently the longest continuous study of human growth and development in the world. Although the AAPA and the Fels Longitudinal Study have existed as separate entities for more than 80 years now, it is not surprising, given the relationship between anatomical and developmental research, there has been considerable overlap between the two. As the field of physical anthropology has blossomed to include subdisciplines such as forensics, genetics, primatology, as well as sophisticated statistical methodologies, the importance of growth and development research has escalated. Although current Fels Longitudinal Study research is largely directed at biomedical questions, virtually all findings are relevant to physical anthropology, providing insights into basic biological processes and life history parameters. Some key milestones from the early years of the AAPA and the Fels Longitudinal Study are highlighted here that address growth and development research in physical anthropology. These are still held as fundamental concepts that underscore the importance of this line of inquiry, not only across the subdisciplines of physical anthropology, but also among anthropological, biological, and biomedical inquiries. Copyright © 2012 Wiley Periodicals, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... DEPARTMENT OF EDUCATION Notice of Proposed Information Collection Requests; Institute of Education Sciences; 2012/14 Beginning Postsecondary Students Longitudinal Study: (BPS:12/14) Field Test SUMMARY: The... comment period will not be accepted. Written requests for information or comments submitted by postal mail...
ERIC Educational Resources Information Center
Nix, Samantha; Perez-Felkner, Lara; Thomas, Kirby
2015-01-01
Students' perceptions of their mathematics ability vary by gender and seem to influence science, technology, engineering, and mathematics (STEM) degree choice. Related, students' perceptions during academic difficulty are increasingly studied in educational psychology, suggesting a link between such perceptions and task persistence. Despite…
Developing Scholarly Identity: Variation in Agentive Responses to Supervisor Feedback
ERIC Educational Resources Information Center
Inouye, Kelsey S.; McAlpine, Lynn
2017-01-01
The central task for doctoral students, through the process of writing, feedback and revision, is to create a thesis that establishes their scholarly identity by situating themselves and their contribution within a field. This longitudinal study of two first-year doctoral students investigated the relationship between response to supervisor…
Predicting Individual Differences in School Anxiety in Early Adolescence.
ERIC Educational Resources Information Center
Henderson, Valanne L.; Dweck, Carol S.
Addressing two issues of Dweck and Leggett's (1988) social cognitive theory of personality, this short-term longitudinal field study investigated the relationship between implicit theories about the self and school anxiety among adolescents making the transition to junior high school. It was hypothesized that students who believed that their…
Psychological Science, Talent Development, and Educational Advocacy: Lost in Translation?
ERIC Educational Resources Information Center
Robinson, Ann
2012-01-01
The talent development approach to the conceptualization of giftedness has historical precedent in the field. Examples of large-scale and longitudinal research studies from previous decades guided by the talent development approach are provided as illustrations. The implications of focusing on domain-specific talents in academics, the arts and…
Near-Field Infrared Pump-Probe Imaging of Surface Phonon Coupling in Boron Nitride Nanotubes.
Gilburd, Leonid; Xu, Xiaoji G; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C
2016-01-21
Surface phonon modes are lattice vibrational modes of a solid surface. Two common surface modes, called longitudinal and transverse optical modes, exhibit lattice vibration along or perpendicular to the direction of the wave. We report a two-color, infrared pump-infrared probe technique based on scattering type near-field optical microscopy (s-SNOM) to spatially resolve coupling between surface phonon modes. Spatially varying couplings between the longitudinal optical and surface phonon polariton modes of boron nitride nanotubes are observed, and a simple model is proposed.
A framework to explore the knowledge structure of multidisciplinary research fields.
Uddin, Shahadat; Khan, Arif; Baur, Louise A
2015-01-01
Understanding emerging areas of a multidisciplinary research field is crucial for researchers, policymakers and other stakeholders. For them a knowledge structure based on longitudinal bibliographic data can be an effective instrument. But with the vast amount of available online information it is often hard to understand the knowledge structure for data. In this paper, we present a novel approach for retrieving online bibliographic data and propose a framework for exploring knowledge structure. We also present several longitudinal analyses to interpret and visualize the last 20 years of published obesity research data.
Santos, D M; St Aubin, J; Fallone, B G; Steciw, S
2012-02-01
In our current linac-magnetic resonance (MR) design, a 6 MV in-line linac is placed along the central axis of the MR's magnet where the MR's fringe magnetic fields are parallel to the overall electron trajectories in the linac waveguide. Our previous study of this configuration comprising a linac-MR SAD of 100 cm and a 0.5 T superconducting (open, split) MR imager. It showed the presence of longitudinal magnetic fields of 0.011 T at the electron gun, which caused a reduction in target current to 84% of nominal. In this study, passive and active magnetic shielding was investigated to recover the linac output losses caused by magnetic deflections of electron trajectories in the linac within a parallel linac-MR configuration. Magnetic materials and complex shield structures were used in a 3D finite element method (FEM) magnetic field model, which emulated the fringe magnetic fields of the MR imagers. The effects of passive magnetic shielding was studied by surrounding the electron gun and its casing with a series of capped steel cylinders of various inner lengths (26.5-306.5 mm) and thicknesses (0.75-15 mm) in the presence of the fringe magnetic fields from a commercial MR imager. In addition, the effects of a shield of fixed length (146.5 mm) with varying thicknesses were studied against a series of larger homogeneous magnetic fields (0-0.2 T). The effects of active magnetic shielding were studied by adding current loops around the electron gun and its casing. The loop currents, separation, and location were optimized to minimize the 0.011 T longitudinal magnetic fields in the electron gun. The magnetic field solutions from the FEM model were added to a validated linac simulation, consisting of a 3D electron gun (using OPERA-3d/scala) and 3D waveguide (using comsol Multiphysics and PARMELA) simulations. PARMELA's target current and output phase-space were analyzed to study the linac's output performance within the magnetic shields. The FEM model above agreed within 1.5% with the manufacturer supplied fringe magnetic field isoline data. When passive magnetic shields are used, the target current is recoverable to greater than 99% of nominal for shield thicknesses greater than 0.75 mm. The optimized active shield which resulted in 100% target current recovery consists of two thin current rings 110 mm in diameter with 625 and 430 A-turns in each ring. With the length of the passive shield kept constant, the thickness of the shield had to be increased to achieve the same target current within the increased longitudinal magnetic fields. A ≥99% original target current is recovered with passive shield thicknesses >0.75 mm. An active shield consisting of two current rings of diameter of 110 mm with 625 and 430 A-turns fully recovers the loss that would have been caused by the magnetic fields. The minimal passive or active shielding requirements to essentially fully recover the current output of the linac in our parallel-configured linac-MR system have been determined and are easily achieved for practical implementation of the system.
NASA Astrophysics Data System (ADS)
Jougnot, D.; Jimenez-Martinez, J.; Legendre, R.; Le Borgne, T.; Meheust, Y.; Linde, N.
2017-12-01
The use of time-lapse electrical resistivity tomography has been largely developed in environmental studies to remotely monitor water saturation and contaminant plumes migration. However, subsurface heterogeneities, and corresponding preferential transport paths, yield a potentially large anisotropy in the electrical properties of the subsurface. In order to study this effect, we have used a newly developed geoelectrical milli-fluidic experimental set-up with a flow cell that contains a 2D porous medium consisting of a single layer of cylindrical solid grains. We performed saline tracer tests under full and partial water saturations in that cell by jointly injecting air and aqueous solutions with different salinities. The flow cell is equipped with four electrodes to measure the bulk electrical resistivity at the cell's scale. The spatial distribution of the water/air phases and the saline solute concentration field in the water phase are captured simultaneously with a high-resolution camera by combining a fluorescent tracer with the saline solute. These data are used to compute the longitudinal and transverse effective electrical resistivity numerically from the measured spatial distributions of the fluid phases and the salinity field. This approach is validated as the computed longitudinal effective resistivities are in good agreement with the laboratory measurements. The anisotropy in electrical resistivity is then inferred from the computed longitudinal and transverse effective resistivities. We find that the spatial distribution of saline tracer, and potentially air phase, drive temporal changes in the effective resistivity through preferential paths or barriers for electrical current at the pore scale. The resulting heterogeneities in the solute concentrations lead to strong anisotropy of the effective bulk electrical resistivity, especially for partially saturated conditions. Therefore, considering the electrical resistivity as a tensor could improve our understanding of transport properties from field-scale time-lapse ERT.
Technical Note: Enhancing the surface dose using a weak longitudinal magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlone, Marco, E-mail: marco.carlone@rmp.uhn.on.ca; Keller, Harald; Rezaee, Mohammad
2016-06-15
Purpose: The surface dose in radiotherapy is subject to the physical properties of the radiation beam and collimator. The purpose of this work is to investigate the manipulation of surface dose using magnetic fields produced with a resistive magnet. Better understanding of the feasibility and mechanisms of altered surface dose could have important clinical applications where the surface dose must be increased for therapeutic goals, or reduced to enhance the therapeutic benefit. Methods: A resistive magnet capable of generating a peak magnetic field up to 0.24 T was integrated with a cobalt treatment unit. The magnetic fringe field of themore » magnet was small due to the self-shielding built within the magnet. The magnetic field at the beam collimation jaws of the cobalt irradiator was less than 10 G. The surface dose and depth dose were measured for varying magnetic field strengths. Results: The resistive magnet was able to alter the dose in the buildup region of the {sup 60}Co depth dose significantly, and the magnitude of dose enhancement was directly related to the strength of the longitudinal magnetic field. Peak magnetic fields as low as 0.08 T were able to affect the surface dose. At a peak field of 0.24 T, the authors measured a surface dose enhancement of 2.8-fold. Conclusions: Surface dose enhancement using resistive magnets is feasible. Further experimental study is needed to understand the origin of the scattered electrons that contribute to the increase in surface dose.« less
NASA Astrophysics Data System (ADS)
Mursula, K.; Hiltula, T.
2004-10-01
Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since the 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.2∘ tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a “flip-flop” type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.
Kitamura, Kyoko; Sakai, Kyosuke; Noda, Susumu
2011-07-18
Radially polarized focused beams have attracted a great deal of attention because of their unique properties characterized by the longitudinal field. Although this longitudinal field is strongly confined to the beam axis, the energy flow, i.e., the Poynting vector, has null intensity on the axis. Hence, the interaction of the focused beam and matter has thus far been unclear. We analyzed the interactions between the focused beam and a subwavelength metal block placed at the center of the focus using three-dimensional finite-difference time-domain (FDTD) calculation. We found that most of the Poynting energy propagates through to the far-field, and that a strong enhancement of the electric field appeared on the metal surface. This enhancement is attributed to the constructive interference of the symmetric electric field and the coupling to the surface plasmon mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubrig, S.; Ilyin, I.; Schoeller, M.
2011-01-01
In spite of recent detections of magnetic fields in a number of {beta} Cephei and slowly pulsating B (SPB) stars, their impact on stellar rotation, pulsations, and element diffusion has not yet been sufficiently studied. The reason for this is the lack of knowledge of rotation periods, the magnetic field strength distribution and temporal variability, and the field geometry. New longitudinal field measurements of four {beta} Cephei and candidate {beta} Cephei stars, and two SPB stars were acquired with FORS 2 at the Very Large Telescope. These measurements allowed us to carry out a search for rotation periods and tomore » constrain the magnetic field geometry for four stars in our sample.« less
New Approaches to Final Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neuffer, David
2014-11-10
A high-energy muon collider scenario require a “final cooling” system that reduces transverse emittances by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of the alternative approach. A more explicit understanding of solenoidal cooling beam dynamics is introduced.
NASA Astrophysics Data System (ADS)
Wilson, T.; Kasper, E.; Oehme, M.; Schulze, J.; Korolev, K.
2014-11-01
We report on the direct excitation of 246 GHz longitudinal acoustic phonons in silicon doping superlattices by the resonant absorption of nanosecond-pulsed far-infrared laser radiation of the same frequency. A longitudinally polarized evanescent laser light field is coupled to the superlattice through a germanium prism providing total internal reflection at the superlattice interface. The ballistic phonon signal is detected by a superconducting aluminum bolometer. The sample is immersed in low-temperature liquid helium.
Final cooling for a high-energy high-luminosity lepton collider
NASA Astrophysics Data System (ADS)
Neuffer, D.; Sayed, H.; Acosta, J.; Hart, T.; Summers, D.
2017-07-01
A high-energy muon collider requires a "final cooling" system that reduces transverse emittance by a factor of ~ 10, while allowing the longitudinal emittance to increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches, which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of an alternative approach. Wedge-based emittance exchange could provide much of the required transverse cooling with longitudinal heating. Li-lens and quadrupole focusing systems could also provide much of the required final cooling.
Magnetic Control of Convection in Electrically Nonconducting Fluids
NASA Technical Reports Server (NTRS)
Huang, Jie; Gray, Donald D.; Edwards, Boyd F.
1999-01-01
Inhomogeneous magnetic fields exert a body force on electrically nonconducting, magnetically permeable fluids. This force can be used to compensate for gravity and to control convection. The effects of uniform and nonuniform magnetic fields on a laterally unbounded fluid layer heated from below or above are studied using a linear stability analysis of the Navier-Stokes equations supplemented by Maxwell's equations and the appropriate magnetic body force. For a uniform oblique field, the analysis shows that longitudinal rolls with axes parallel to the horizontal component of the field are the rolls most unstable to convection. The corresponding critical Rayleigh number and critical wavelength for the onset of such rolls are less than the well-known Rayleigh-Benard values in the absence of magnetic fields. Vertical fields maximize these deviations, which vanish for horizontal fields. Horizontal fields increase the critical Rayleigh number and the critical wavelength for all rolls except longitudinal rolls. For a nonuniform field, our analysis shows that the magnetic effect on convection is represented by a dimensionless vector parameter which measures the relative strength of the induced magnetic buoyancy force due to the applied field gradient. The vertical component of this parameter competes with the gravitational buoyancy effect, and a critical relationship between this component and the Rayleigh number is identified for the onset of convection. Therefore, Rayleigh-Benard convection in such fluids can be enhanced or suppressed by the field. It also shows that magnetothermal convection is possible in both paramagnetic and diamagnetic fluids. Our theoretical predictions for paramagnetic fluids agree with experiments. Magnetically driven convection in diamagnetic fluids should be observable even in pure water using current technology.
Spin-orbit coupling and the static polarizability of single-wall carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diniz, Ginetom S., E-mail: ginetom@gmail.com; Ulloa, Sergio E.
2014-07-14
We calculate the static longitudinal polarizability of single-wall carbon tubes in the long wavelength limit taking into account spin-orbit effects. We use a four-orbital orthogonal tight-binding formalism to describe the electronic states and the random phase approximation to calculate the dielectric function. We study the role of both the Rashba as well as the intrinsic spin-orbit interactions on the longitudinal dielectric response, i.e., when the probing electric field is parallel to the nanotube axis. The spin-orbit interaction modifies the nanotube electronic band dispersions, which may especially result in a small gap opening in otherwise metallic tubes. The bandgap size andmore » state features, the result of competition between Rashba and intrinsic spin-orbit interactions, result in drastic changes in the longitudinal static polarizability of the system. We discuss results for different nanotube types and the dependence on nanotube radius and spin-orbit couplings.« less
Longitudinal shear wave imaging for elasticity mapping using optical coherence elastography
NASA Astrophysics Data System (ADS)
Zhu, Jiang; Miao, Yusi; Qi, Li; Qu, Yueqiao; He, Youmin; Yang, Qiang; Chen, Zhongping
2017-05-01
Shear wave measurements for the determination of tissue elastic properties have been used in clinical diagnosis and soft tissue assessment. A shear wave propagates as a transverse wave where vibration is perpendicular to the wave propagation direction. Previous transverse shear wave measurements could detect the shear modulus in the lateral region of the force; however, they could not provide the elastic information in the axial region of the force. In this study, we report the imaging and quantification of longitudinal shear wave propagation using optical coherence tomography to measure the elastic properties along the force direction. The experimental validation and finite element simulations show that the longitudinal shear wave propagates along the vibration direction as a plane wave in the near field of a planar source. The wave velocity measurement can quantify the shear moduli in a homogeneous phantom and a side-by-side phantom. Combining the transverse shear wave and longitudinal shear wave measurements, this system has great potential to detect the directionally dependent elastic properties in tissues without a change in the force direction.
ERIC Educational Resources Information Center
Ramchandani, Paul G.; Domoney, Jill; Sethna, Vaheshta; Psychogiou, Lamprini; Vlachos, Haido; Murray, Lynne
2013-01-01
Background: Factors related to parents and parenting capacities are important predictors of the development of behavioural problems in children. Recently, there has been an increasing research focus in this field on the earliest years of life, however, relatively few studies have addressed the role of fathers, despite this appearing to be…
ERIC Educational Resources Information Center
Kipnis, F.; Whitebook, M.; Almaraz, M.; Sakai, L.; Austin, L. J. E.
2012-01-01
The Learning Together longitudinal study focuses on four counties' efforts to expand bachelor's degree opportunities in early care and education (ECE) for adults currently working in the field. The "student cohort" model--in which small groups of ECE students with similar interests and characteristics pursue a bachelor's degree together,…
ERIC Educational Resources Information Center
Thomaes, Sander; Bushman, Brad J.; de Castro, Bram Orobio; Reijntjes, Albert
2012-01-01
When people reflect on their important values, they may become more attuned to the needs of others. Two longitudinal field experiments examined whether a subtle value-affirmation manipulation can initiate relatively enduring increases in young adolescents' prosocial feelings (Study 1; M [subscript age] = 12.9) and prosocial behaviors (Study 2; M…
ERIC Educational Resources Information Center
Dadgar, Mina; Weiss, Madeline Joy
2012-01-01
This study provides one of the first estimates of the returns to different types of community college credentials--short-term certificates, long-term certificates, and associate degrees--across different fields of study. We exploit a rich dataset that includes matched, longitudinal college transcripts and Unemployment Insurance records for…
ERIC Educational Resources Information Center
Smyth, Roger; Strathdee, Rob
2010-01-01
This paper presents research on the returns to tertiary education for individuals who graduated between 1997 and 2008 with bachelor degrees from universities and polytechnics in New Zealand based on their experiences post study. It examines data on their post-study earnings drawn from two longitudinal datasets linking administrative data on…
Neutron resonance spin echo with longitudinal DC fields
NASA Astrophysics Data System (ADS)
Krautloher, Maximilian; Kindervater, Jonas; Keller, Thomas; Häußler, Wolfgang
2016-12-01
We report on the design, construction, and performance of a neutron resonance spin echo (NRSE) instrument employing radio frequency (RF) spin flippers combining RF fields with DC fields, the latter oriented parallel (longitudinal) to the neutron propagation direction (longitudinal NRSE (LNRSE)). The advantage of the longitudinal configuration is the inherent homogeneity of the effective magnetic path integrals. In the center of the RF coils, the sign of the spin precession phase is inverted by a π flip of the neutron spins, such that non-uniform spin precession at the boundaries of the RF flippers is canceled. The residual inhomogeneity can be reduced by Fresnel- or Pythagoras-coils as in the case of conventional spin echo instruments (neutron spin echo (NSE)). Due to the good intrinsic homogeneity of the B0 coils, the current densities required for the correction coils are at least a factor of three less than in conventional NSE. As the precision and the current density of the correction coils are the limiting factors for the resolution of both NSE and LNRSE, the latter has the intrinsic potential to surpass the energy resolution of present NSE instruments. Our prototype LNRSE spectrometer described here was implemented at the resonance spin echo for diverse applications (RESEDA) beamline at the MLZ in Garching, Germany. The DC fields are generated by B0 coils, based on resistive split-pair solenoids with an active shielding for low stray fields along the beam path. One pair of RF flippers at a distance of 2 m generates a field integral of ˜0.5 Tm. The LNRSE technique is a future alternative for high-resolution spectroscopy of quasi-elastic excitations. In addition, it also incorporates the MIEZE technique, which allows to achieve spin echo resolution for spin depolarizing samples and sample environments. Here we present the results of numerical optimization of the coil geometry and first data from the prototype instrument.
The Effects of Magnetic-field Geometry on Longitudinal Oscillaitons of Solar Prominences
NASA Technical Reports Server (NTRS)
Luna, M.; Diaz, A. J.; Karpen, J.
2013-01-01
We investigate the influence of the geometry of the solar filament magnetic structure on the large-amplitude longitudinal oscillations. A representative filament flux tube is modeled as composed of a cool thread centered in a dipped part with hot coronal regions on either side.We have found the normal modes of the system and establish that the observed longitudinal oscillations are well described with the fundamental mode. For small and intermediate curvature radii and moderate to large density contrast between the prominence and the corona, the main restoring force is the solar gravity. In this full wave description of the oscillation a simple expression for the oscillation frequencies is derived in which the pressure-driven term introduces a small correction. We have also found that the normal modes are almost independent of the geometry of the hot regions of the tube. We conclude that observed large-amplitude longitudinal oscillations are driven by the projected gravity along the flux tubes and are strongly influenced by the curvature of the dips of the magnetic field in which the threads reside.
Sharpening of field emitter tips using high-energy ions
Musket, Ronald G.
1999-11-30
A process for sharpening arrays of field emitter tips of field emission cathodes, such as found in field-emission, flat-panel video displays. The process uses sputtering by high-energy (more than 30 keV) ions incident along or near the longitudinal axis of the field emitter to sharpen the emitter with a taper from the tip or top of the emitter down to the shank of the emitter. The process is particularly applicable to sharpening tips of emitters having cylindrical or similar (e.g., pyramidal) symmetry. The process will sharpen tips down to radii of less than 12 nm with an included angle of about 20 degrees. Because the ions are incident along or near the longitudinal axis of each emitter, the tips of gated arrays can be sharpened by high-energy ion beams rastered over the arrays using standard ion implantation equipment. While the process is particularly applicable for sharpening of arrays of field emitters in field-emission flat-panel displays, it can be effectively utilized in the fabrication of other vacuum microelectronic devices that rely on field emission of electrons.
Aerenhouts, Dirk
2015-01-01
A recommended field method to assess body composition in adolescent sprint athletes is currently lacking. Existing methods developed for non-athletic adolescents were not longitudinally validated and do not take maturation status into account. This longitudinal study compared two field methods, i.e., a Bio Impedance Analysis (BIA) and a skinfold based equation, with underwater densitometry to track body fat percentage relative to years from age at peak height velocity in adolescent sprint athletes. In this study, adolescent sprint athletes (34 girls, 35 boys) were measured every 6 months during 3 years (age at start = 14.8 ± 1.5yrs in girls and 14.7 ± 1.9yrs in boys). Body fat percentage was estimated in 3 different ways: 1) using BIA with the TANITA TBF 410; 2) using a skinfold based equation; 3) using underwater densitometry which was considered as the reference method. Height for age since birth was used to estimate age at peak height velocity. Cross-sectional analyses were performed using repeated measures ANOVA and Pearson correlations between measurement methods at each occasion. Data were analyzed longitudinally using a multilevel cross-classified model with the PROC Mixed procedure. In boys, compared to underwater densitometry, the skinfold based formula revealed comparable values for body fatness during the study period whereas BIA showed a different pattern leading to an overestimation of body fatness starting from 4 years after age at peak height velocity. In girls, both the skinfold based formula and BIA overestimated body fatness across the whole range of years from peak height velocity. The skinfold based method appears to give an acceptable estimation of body composition during growth as compared to underwater densitometry in male adolescent sprinters. In girls, caution is warranted when interpreting estimations of body fatness by both BIA and a skinfold based formula since both methods tend to give an overestimation. PMID:26317426
Rates of change of the earth's magnetic field measured by recent analyses
NASA Technical Reports Server (NTRS)
Harrison, C. G. A.; Huang, Qilin
1990-01-01
Typical rates of change of the earth's magnetic field are presented as a function of the earth's spherical harmonics. Harmonics up to the eight degree are analyzed. With the increase in the degree of the harmonics an increase in the relative rate of change can be observed. For higher degrees, the rate of change can be predicted. This enables a differentiation between harmonics originating in the core and harmonics caused by crustal magnetization. The westward drift of the magnetic field depends on the longitudinal gradient of the field. In order to determine the longitudinal motions, harmonics up to degree 20 can be utilized. The average rate of secular acceleration increases with the degree of harmonics from 0.001 deg/sq yr for a dipole term to an average of 0.05 deg/sq yr for degree eight harmonics.
Early-time dynamics of gluon fields in high energy nuclear collisions
NASA Astrophysics Data System (ADS)
Chen, Guangyao; Fries, Rainer J.; Kapusta, Joseph I.; Li, Yang
2015-12-01
Nuclei colliding at very high energy create a strong, quasiclassical gluon field during the initial phase of their interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions for the initial chromoelectric and chromomagnetic fields and for their energy-momentum tensor. In particular, we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse pressure of this system. For example, we find that the ratio of longitudinal to transverse pressure very early in the system behaves as pL/pT=-[1 -3/2 a (Qτ ) 2] /[1 -1/a (Qτ ) 2] +O (Qτ ) 4 , where τ is the longitudinal proper time, Q is related to the saturation scales Qs of the two nuclei, and a =ln(Q2/m̂2) with m ̂ a scale to be defined later. Our results are generally applicable if τ ≲1 /Q . As already discussed in a previous paper, the transverse energy flow Si of the gluon field exhibits hydrodynamiclike contributions that follow transverse gradients of the energy density ∇iɛ . In addition, a rapidity-odd energy flow also emerges from the non-Abelian analog of Gauss' law and generates nonvanishing angular momentum of the field. We discuss the space-time picture that emerges from our analysis and its implications for observables in heavy-ion collisions.
Control of the plasmonic near-field in metallic nanohelices.
Caridad, José M; Winters, Sinéad; McCloskey, David; Duesberg, Georg S; Donegan, John F; Krstić, Vojislav
2018-08-10
The optical response of metallic nanohelices is mainly governed by a longitudinal localised surface plasmon resonance (LSPR) which arises due to the helical anisotropy of the system. Up to now, experimental studies have predominantly addressed the far-field response, despite the fact that the LSPR being of broad interest for converting incoming light into strongly enhanced (chiral) optical near-fields. Here, we demonstrate the control and spatial reproducibility of the plasmon-induced electromagnetic near-field around metallic nanohelices via surface-enhanced Raman scattering. We discuss how the near-field intensity of these nanostructures can be custom-tailored through both the nanoscaled helical structure and the electronic properties of the constituting metals. Our experiments, which employ graphene as an accurate probing material, are in quantitative agreement with corresponding numerical simulations. The findings demonstrate metallic nanohelices as reference nanostructured surfaces able to provide and fine-tune optical fields for fundamental studies as well as sensing or (chiro-optical) imaging applications.
The focusing effect of P-wave in the Moon's and Earth's low-velocity core. Analytical solution
NASA Astrophysics Data System (ADS)
Fatyanov, A. G.; Burmin, V. Yu
2018-04-01
The important aspect in the study of the structure of the interiors of planets is the question of the presence and state of core inside them. While for the Earth this task was solved long ago, the question of whether the core of the Moon is in a liquid or solid state up to the present is debatable up to present. If the core of the Moon is liquid, then the velocity of longitudinal waves in it should be lower than in the surrounding mantle. If the core is solid, then most likely, the velocity of longitudinal waves in it is higher than in the mantle. Numerical calculations of the wave field allow us to identify the criteria for drawing conclusions about the state of the lunar core. In this paper we consider the problem of constructing an analytical solution for wave fields in a layered sphere of arbitrary radius. A stable analytic solution is obtained for the wave fields of longitudinal waves in a three-layer sphere. Calculations of the total wave fields and rays for simplified models of the Earth and the Moon with real parameters are presented. The analytical solution and the ray pattern showed that the low-velocity cores of the Earth and the Moon possess the properties of a collecting lens. This leads to the emergence of a wave field focusing area. As a result, focused waves of considerable amplitude appear on the surface of the Earth and the Moon. In the Earth case, they appear before the first PKP-wave arrival. These are so-called "precursors", which continue in the subsequent arrivals of waves. At the same time, for the simplified model of the Earth, the maximum amplitude growth is observed in the 147-degree region. For the Moon model, the maximum amplitude growth is around 180°.
Quality Management in U.S. High Schools: Evidence from the Field.
ERIC Educational Resources Information Center
Detert, James R.; Bauerly Kopel, Michelle E.; Mauriel, John J.; Jenni, Roger W.
2000-01-01
Reports on a longitudinal study examining implementation of a Quality Management reform based on Deming's seven principles. Interview and survey data from a national sample of purposefully chosen high schools show limited results as to teachers' effective use and institutionalization of TQM principles. The principal's role is critical. (Contains…
ERIC Educational Resources Information Center
Georgiadis, Manolis M.; Biddle, Stuart J. H.; Stavrou, Nektarios A.
2006-01-01
Background: Gradual elevation of body weight leads numerous individuals to dieting and weight loss behaviours. Nevertheless, the prevalence of obesity continues to rise in industrialised countries. The examination of the motivational determinants of dietary modification ("dieting") in order to identify clusters of individuals in the…
Parent-Research as a Process of Inquiry: An Ethnographic Perspective
ERIC Educational Resources Information Center
Kabuto, Bobbie
2008-01-01
This article illustrates how an ethnographic perspective can provide a descriptive methodological approach to parent-research as a process of inquiry within the field of education. By juxtaposing data and illuminating reflexive accounts from a longitudinal parent-research study, I suggest that such a perspective provides critical insights into the…
Pattern Language Development in the Preparation of Inclusive Educators
ERIC Educational Resources Information Center
Bain, Alan; Lancaster, Julie; Zundans, Lucia
2008-01-01
Pattern language is the lexicon used to express the schema of a field of professional practice (Smethurst, 1997). This lexicon is frequently presumed to exist in communities of practice in educational settings, although the findings derived from the longitudinal study of schools (Elmore, 1996; Goodlad, 1984; Lortie, 1975; McLaughlin & Talbert,…
Yes They Can: Supporting Bachelor Degree Attainment for Early Childhood Practitioners
ERIC Educational Resources Information Center
Sakai, Laura; Kipnis, Fran; Whitebook, Marcy; Schaack, Diana
2014-01-01
As part of a longitudinal study, the authors interviewed 73 nontraditional students regarding their perceptions of the challenges experienced and supports received as they returned to school to earn bachelor's degrees. All participants were working in the early care and education field. Interviewees perceived the cohort structure of their B.A.…
Power Analysis for Models of Change in Cluster Randomized Designs
ERIC Educational Resources Information Center
Li, Wei; Konstantopoulos, Spyros
2017-01-01
Field experiments in education frequently assign entire groups such as schools to treatment or control conditions. These experiments incorporate sometimes a longitudinal component where for example students are followed over time to assess differences in the average rate of linear change, or rate of acceleration. In this study, we provide methods…
ERIC Educational Resources Information Center
Miller, Jon D.; Solberg, V. Scott
2012-01-01
This article argues for the need to differentiate between "professional" and "support" careers in fields of science, technology, engineering, mathematics, and medicine (STEMM). Using data from the Longitudinal Study of American Youth (LSAY), the article identifies important differences in the nature of the work and responsibility that…
Pathways to Careers in Medicine and Health
ERIC Educational Resources Information Center
Fuchs, Bruce A.; Miller, Jon D.
2012-01-01
Physicians and other health professionals are an important part of the national scientific and technical workforce, and it is important to understand the factors that attract (or fail to attract) young adults into these fields. Using data from the 20-year record of the Longitudinal Study of American Youth (LSAY) and working within a social…
ERIC Educational Resources Information Center
Rozell, E. J.; Gardner, W. L., III
1999-01-01
A model of the intrapersonal processes impacting computer-related performance was tested using data from 75 manufacturing employees in a computer training course. Gender, computer experience, and attributional style were predictive of computer attitudes, which were in turn related to computer efficacy, task-specific performance expectations, and…
Socialization and Development of the Work Ethic among Adolescents and Young Adults
ERIC Educational Resources Information Center
ter Bogt, Tom; Raaijmakers, Quinten; van Wel, Frits
2005-01-01
Work ethic is part of a broader field of attitudes, identified as cultural conservatism. The results of this longitudinal study--three repeated measurements with 620 adolescents and one of their parents as participants--show that parents' social economic status and educational level are associated with their cultural conservatism, and with the…
The Implications of Bank-Issued Check Surveys for Evaluators: A Case Study
ERIC Educational Resources Information Center
Blair, Jason; Taylor, Ted K.; Johnson-Shelton, Deborah
2007-01-01
This article describes an innovative data collection procedure. A subsample (n = 164) of a longitudinal research project was assessed using a bank-issued check survey procedure (a removable bank check on which response fields were printed). Using the new procedure, parents returned their surveys simply by depositing or cashing their incentive…
Intervening Variables in the TV Violence-Aggression Relation: Evidence from Two Countries.
ERIC Educational Resources Information Center
Huesmann, L. Rowell; And Others
1984-01-01
A longitudinal, cross-cultural field study was made to determine boundary conditions under which the television violence/aggression relation obtains, to determine intervening variables, and to illuminate the process through which television violence relates to aggression. Children from first through fifth grades in the United States, Australia,…
NASA Astrophysics Data System (ADS)
Thomaz, M. T.; Corrêa Silva, E. V.
2016-03-01
We derive the exact Helmholtz free energy (HFE) of the standard and staggered one-dimensional Blume-Emery-Griffiths (BEG) model in the presence of an external longitudinal magnetic field. We discuss in detail the thermodynamic behavior of the ferromagnetic version of the model, which exhibits magnetic field-dependent plateaux in the z-component of its magnetization at low temperatures. We also study the behavior of its specific heat and entropy, both per site, at finite temperature. The degeneracy of the ground state, at T=0, along the lines that separate distinct phases in the phase diagram of the ferromagnetic BEG model is calculated, extending the study of the phase diagram of the spin-1 antiferromagnetic (AF) Ising model in S.M. de Souza and M.T. Thomaz, J. Magn. and Magn. Mater. 354 (2014) 205 [5]. We explore the implications of the equality of phase diagrams, at T=0, of the ferromagnetic BEG model with K/|J| = - 2 and of the spin-1 AF Ising model for D/|J| > 1/2.
Electromagnetic plasma wave propagation along a magnetic field. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Olson, C. L.
1970-01-01
The linearized response of a Vlasov plasma to the steady-state excitation of transverse plasma waves along an external magnetic field is examined. Assuming a delta-function excitation mechanism, and performing a detailed Vlasov-Maxwell equation analysis using Fourier-Laplace transforms, the plasma response is found to consist of three terms: a branch-cut term, a free-streaming term, and a dielectric-pole term. Also considered is the phenomenon of plasma wave echoes. The case of longitudinal electrostatic waves is extended to the case of transverse plasma waves that propagate along an external magnetic field. It is shown that a transverse echo results in lowest order only when one excitation is transverse and the other is longitudinal.
Longitudinally polarized shear wave optical coherence elastography (Conference Presentation)
NASA Astrophysics Data System (ADS)
Miao, Yusi; Zhu, Jiang; Qi, Li; Qu, Yueqiao; He, Youmin; Gao, Yiwei; Chen, Zhongping
2017-02-01
Shear wave measurement enables quantitative assessment of tissue viscoelasticity. In previous studies, a transverse shear wave was measured using optical coherence elastography (OCE), which gives poor resolution along the force direction because the shear wave propagates perpendicular to the applied force. In this study, for the first time to our knowledge, we introduce an OCE method to detect a longitudinally polarized shear wave that propagates along the force direction. The direction of vibration induced by a piezo transducer (PZT) is parallel to the direction of wave propagation, which is perpendicular to the OCT beam. A Doppler variance method is used to visualize the transverse displacement. Both homogeneous phantoms and a side-by-side two-layer phantom were measured. The elastic moduli from mechanical tests closely matched to the values measured by the OCE system. Furthermore, we developed 3D computational models using finite element analysis to confirm the shear wave propagation in the longitudinal direction. The simulation shows that a longitudinally polarized shear wave is present as a plane wave in the near field of planar source due to diffraction effects. This imaging technique provides a novel method for the assessment of elastic properties along the force direction, which can be especially useful to image a layered tissue.
The magnetic variability of the β cep star ξ1 CMa
NASA Astrophysics Data System (ADS)
Järvinen, S. P.; Hubrig, S.; Schöller, M.; Ilyin, I.
2018-07-01
ξ1 CMa is a known magnetic star showing rotationally modulated magnetic variability with a period of 2.17937 d. However, recent work based on high-resolution spectropolarimetry suggests that the rotation period is longer than 30 years. We compare our new spectropolarimetric measurements with FORS 2 at the VLT acquired on three consecutive nights in 2017 to previous FORS 1/2 measurements of the longitudinal magnetic field strength. The new longitudinal magnetic field values are in the range from 115 to 240 G and do not support the presence of a long period.
Methods and apparatus for cooling wind turbine generators
Salamah, Samir A [Niskayuna, NY; Gadre, Aniruddha Dattatraya [Rexford, NY; Garg, Jivtesh [Schenectady, NY; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Alplaus, NY; Carl, Jr., Ralph James
2008-10-28
A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.
A Framework to Explore the Knowledge Structure of Multidisciplinary Research Fields
Uddin, Shahadat; Khan, Arif; Baur, Louise A.
2015-01-01
Understanding emerging areas of a multidisciplinary research field is crucial for researchers, policymakers and other stakeholders. For them a knowledge structure based on longitudinal bibliographic data can be an effective instrument. But with the vast amount of available online information it is often hard to understand the knowledge structure for data. In this paper, we present a novel approach for retrieving online bibliographic data and propose a framework for exploring knowledge structure. We also present several longitudinal analyses to interpret and visualize the last 20 years of published obesity research data. PMID:25915521
Field dependence of the magnetic correlations of the frustrated magnet SrDy 2 O 4
Gauthier, N.; Fennell, A.; Prévost, B.; ...
2017-05-30
Tmore » he frustrated magnet SrDy 2 O 4 exhibits a field-induced phase with a magnetization plateau at 1 / 3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below ≈ 0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. he long-range ordered structure in field contrasts with the short-range order found at zero field, and is most likely reached through enhanced quantum fluctuations with increasing fields.« less
Field dependence of the magnetic correlations of the frustrated magnet SrDy2O4
NASA Astrophysics Data System (ADS)
Gauthier, N.; Fennell, A.; Prévost, B.; Désilets-Benoit, A.; Dabkowska, H. A.; Zaharko, O.; Frontzek, M.; Sibille, R.; Bianchi, A. D.; Kenzelmann, M.
2017-05-01
The frustrated magnet SrDy2O4 exhibits a field-induced phase with a magnetization plateau at 1 /3 of the saturation value for magnetic fields applied along the b axis. We report here a neutron scattering study of the nature and symmetry of the magnetic order in this field-induced phase. Below T ≈0.5 K, there are strong hysteretic effects, and the order is short- or long-ranged for zero-field and field cooling, respectively. We find that the long-range ordered magnetic structure within the zigzag chains is identical to that expected for the one-dimensional axial next-nearest neighbor Ising (ANNNI) model in longitudinal fields. The long-range ordered structure in field contrasts with the short-range order found at zero field, and is probably reached through enhanced quantum fluctuations with increasing fields.
The case for causal influences of action videogame play upon vision and attention.
Kristjánsson, Árni
2013-05-01
Over the past decade, exciting findings have surfaced suggesting that routine action videogame play improves attentional and perceptual skills. Apparently, performance during multiple-object tracking, useful-field-of-view tests, and task switching improves, contrast sensitivity and spatial-resolution thresholds decrease, and the attentional blink and backward masking are lessened by short-term training on action videogames. These are remarkable findings showing promise for the training of attention and the treatment of disorders of attentional function. While the findings are interesting, evidence of causal influences of videogame play is not as strong as is often claimed. In many studies, observers with game play experience and those without are tested. Such studies do not address causality, since preexisting differences are not controlled for. Other studies investigate the training of videogame play, with some evidence of training benefits. Methodological shortcomings and potential confounds limit their impact, however, and they have not always been replicated. No longitudinal studies on videogame training exist, but these may be required to provide conclusive answers about any benefits of videogame training and any interaction with preexisting differences. Suggestions for methodological improvement are made here, including recommendations for longitudinal studies. Such studies may become crucial for the field of attentional training to reach its full potential.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mkrtichyan, G. S., E-mail: hay-13@mail.ru
2015-07-15
The trajectories of electrons with large longitudinal momenta in the phase plane in the course of their surfatron acceleration by an electromagnetic wave propagating in space plasma across the external magnetic field are analyzed. Electrons with large longitudinal momenta are trapped immediately if the initial wave phase Ψ(0) on the particle trajectory is positive. For negative values of Ψ(0), no electrons trapping by the wave is observed over the available computational times. According to numerical calculations, the trajectories of trapped particles in the phase plane have a singular point of the stable focus type and the behavior of the trajectorymore » corresponds to the motion in a complex nonstationary effective potential well. For some initial phases, electrons are confined in the region of the accelerating electric field for relatively short time, the energy gain being about 50–130% and more.« less
Apparent dispersion in transient groundwater flow
Goode, Daniel J.; Konikow, Leonard F.
1990-01-01
This paper investigates the effects of large-scale temporal velocity fluctuations, particularly changes in the direction of flow, on solute spreading in a two-dimensional aquifer. Relations for apparent longitudinal and transverse dispersivity are developed through an analytical solution for dispersion in a fluctuating, quasi-steady uniform flow field, in which storativity is zero. For transient flow, spatial moments are evaluated from numerical solutions. Ignored or unknown transients in the direction of flow primarily act to increase the apparent transverse dispersivity because the longitudinal dispersivity is acting in a direction that is not the assumed flow direction. This increase is a function of the angle between the transient flow vector and the assumed steady state flow direction and the ratio of transverse to longitudinal dispersivity. The maximum effect on transverse dispersivity occurs if storativity is assumed to be zero, such that the flow field responds instantly to boundary condition changes.
Compact, Lightweight Electromagnetic Pump for Liquid Metal
NASA Technical Reports Server (NTRS)
Godfroy, Thomas; Palzin, Kurt
2010-01-01
A proposed direct-current electromagnetic pump for circulating a molten alkali metal alloy would be smaller and lighter and would demand less input power, relative to currently available pumps of this type. (Molten alkali metals are used as heat-transfer fluids in high-temperature stages of some nuclear reactors.) The principle of operation of this or any such pump involves exploitation of the electrical conductivity of the molten metal: An electric current is made to pass through the liquid metal along an axis perpendicular to the longitudinal axis of the flow channel, and a magnetic field perpendicular to both the longitudinal axis and the electric current is superimposed on the flowchannel region containing the electric current. The interaction between the electric current and the magnetic field produces the pumping force along the longitudinal axis. The advantages of the proposed pump over other such pumps would accrue from design features that address overlapping thermal and magnetic issues.
A Longitudinal Analysis of an Out-of-School Science Experience
ERIC Educational Resources Information Center
Knapp, Doug
2007-01-01
A phenomenological approach was used to investigate the longitudinal recollections of participants of an out-of-school science program. The experience was a field trip to the Shenandoah National Park (USA) conducted in the fall of 2004. The science topic was geologic history and features related to the Shenandoah Valley. Two major themes relating…
Deep data science to prevent and treat growth faltering in Maya children.
Varela-Silva, M I; Bogin, B; Sobral, J A G; Dickinson, F; Monserrat-Revillo, S
2016-06-01
The Maya people are descended from the indigenous inhabitants of southern Mexico, Guatemala and adjacent regions of Central America. In Guatemala, 50% of infants and children are stunted (very low height-for-age), and some rural Maya regions have >70% children stunted. A large, longitudinal, intergenerational database was created to (1) provide deep data to prevent and treat somatic growth faltering and impaired neurocognitive development, (2) detect key dependencies and predictive relations between highly complex, time-varying, and interacting biological and cultural variables and (3) identify targeted multifactorial intervention strategies for field testing and validation. Contributions to this database included data from the Universidad del Valle de Guatemala Longitudinal Study of Child and Adolescent Development, child growth and intergenerational studies among the Maya in Mexico and studies about Maya migrants in the United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shultz, M.; Wade, G. A.; Grunhut, J.
2012-05-01
Recent spectropolarimetric studies of seven slowly pulsating B (SPB) and {beta} Cep stars have suggested that photospheric magnetic fields are more common in B-type pulsators than in the general population of B stars, suggesting a significant connection between magnetic and pulsational phenomena. We present an analysis of new and previously published spectropolarimetric observations of these stars. New Stokes V observations obtained with the high-resolution ESPaDOnS and Narval instruments confirm the presence of a magnetic field in one of the stars ({epsilon} Lup), but find no evidence of magnetism in five others. A re-analysis of the published longitudinal field measurements obtainedmore » with the low-resolution FORS1/2 spectropolarimeters finds that the measurements of all stars show more scatter from zero than can be attributed to Gaussian noise, suggesting the presence of a signal and/or systematic underestimation of error bars. Re-reduction and re-measurement of the FORS1/2 spectra from the ESO archive demonstrates that small changes in reduction procedure lead to substantial changes in the inferred longitudinal field, and substantially reduces the number of field detections at the 3{sigma} level. Furthermore, we find that the published periods are not unique solutions to the time series of either the original or the revised FORS1/2 data. We conclude that the reported field detections, proposed periods, and field geometry models for {alpha} Pyx, 15 CMa, 33 Eri, and V1449 Aql are artifacts of the data analysis and reduction procedures, and that magnetic fields at the reported strength are no more common in SPB/{beta} Cep stars than in the general population of B stars.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Bei; Liu, Ying D.; Hu, Huidong
We study the solar energetic particle (SEP) event associated with the 2012 July 23 extreme solar storm, for which Solar Terrestrial Relations Observatory (STEREO) and the spacecraft at L1 provide multi-point remote sensing and in situ observations. The extreme solar storm, with a superfast shock and extremely enhanced ejecta magnetic fields observed near 1 au at STEREO A , was caused by the combination of successive coronal mass ejections (CMEs). Meanwhile, energetic particles were observed by STEREO and near-Earth spacecraft such as the Advanced Composition Explorer and SOlar and Heliospheric Observatory , suggesting a wide longitudinal spread of the particlesmore » at 1 au. Combining the SEP observations with in situ plasma and magnetic field measurements, we investigate the longitudinal distribution of the SEP event in connection with the associated shock and CMEs. Our results underscore the complex magnetic configuration of the inner heliosphere formed by solar eruptions. Examination of particle intensities, proton anisotropy distributions, element abundance ratios, magnetic connectivity, and spectra also gives important clues for particle acceleration, transport, and distribution.« less
Ghanmi, Nessrine; González-Solís, David; Gargouri, Lamia
2018-03-01
Based on light and scanning electron microscopical studies, two new gonad-infecting species of Philometra Costa, 1845, P. draco n. sp. and P. radiata n. sp. (Nematoda: Philometridae), are described from the marine perciform fishes Trachinus draco (Linnaeus) and T. radiatus (Linnaeus) (both Trachinidae), respectively, in the Gulf of Hammamet, off the northeastern coast of Tunisia. Philometra draco n. sp. and P. radiata n. sp. can be separated from other gonad-infecting species of this genus by the structures associated to the gubernaculum (e.g. dorsal protuberance, smooth field separating the dorsolateral longitudinal parts), as well as by the length of the body, spicules and gubernaculum. Philometra radiata n. sp. can be distinguished from P. draco n. sp. in having the dorsal side of the gubernaculum distal end provided with a median longitudinal smooth field demarcated by two dorsolateral lamellate parts. These two new species are the first philometrid species described from fishes of the family Trachinidae.
NASA Astrophysics Data System (ADS)
Heisterkamp, F.; Zhukov, E. A.; Greilich, A.; Yakovlev, D. R.; Korenev, V. L.; Pawlis, A.; Bayer, M.
2015-06-01
The spin dynamics of strongly localized donor-bound electrons in fluorine-doped ZnSe epilayers is studied using pump-probe Kerr rotation techniques. A method exploiting the spin inertia is developed and used to measure the longitudinal spin relaxation time T1 in a wide range of magnetic fields, temperatures, and pump densities. The T1 time of the donor-bound electron spin of about 1.6 μ s remains nearly constant for external magnetic fields varied from zero up to 2.5 T (Faraday geometry) and in a temperature range 1.8-45 K. These findings impose severe restrictions on possible spin relaxation mechanisms. In our opinion they allow us to rule out scattering between free and donor-bound electrons, jumping of electrons between different donor centers, scattering between phonons and donor-bound electrons, and with less certainty charge fluctuations in the environment of the donors caused by the 1.5 ps pulsed laser excitation.
Hollow-Core Photonic Band Gap Fibers for Particle Acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Robert J.; Spencer, James E.; /SLAC
Photonic band gap (PBG) dielectric fibers with hollow cores are being studied both theoretically and experimentally for use as laser driven accelerator structures. The hollow core functions as both a longitudinal waveguide for the transverse-magnetic (TM) accelerating fields and a channel for the charged particles. The dielectric surrounding the core is permeated by a periodic array of smaller holes to confine the mode, forming a photonic crystal fiber in which modes exist in frequency pass-bands, separated by band gaps. The hollow core acts as a defect which breaks the crystal symmetry, and so-called defect, or trapped modes having frequencies inmore » the band gap will only propagate near the defect. We describe the design of 2-D hollow-core PBG fibers to support TM defect modes with high longitudinal fields and high characteristic impedance. Using as-built dimensions of industrially-made fibers, we perform a simulation analysis of the first prototype PBG fibers specifically designed to support speed-of-light TM modes.« less
Schwinger mechanism with energy dissipation in ``glasma''
NASA Astrophysics Data System (ADS)
Iwazaki, Aiichi
2011-12-01
Initial states of “glasma” in high-energy heavy-ion collisions are longitudinal classical color electric and magnetic fields. Assuming finite color electric conductivity, we show that the color electric field decays by quark pair production with the lifetime of the order of Qs-1, i.e., the inverse of the saturation momentum. Quarks and antiquarks created in the pair production are immediately thermalized as long as their temperature β-1 is lower than Qs. Namely, the relaxation time of the quarks to be thermalized is much shorter than Qs-1 when β-1≪Qs. We also show that the quarks acquire longitudinal momentum of the order of Qs by the acceleration of the electric field. To discuss the quark pair production, we use chiral anomaly, which has been shown to be a very powerful tool in the presence of strong magnetic field.
Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire
NASA Astrophysics Data System (ADS)
Jean, Cyril; Belliard, Laurent; Cornelius, Thomas W.; Thomas, Olivier; Pennec, Yan; Cassinelli, Marco; Toimil-Molares, Maria Eugenia; Perrin, Bernard
2016-10-01
The monochromatic and geometrically anisotropic acoustic field generated by 400 nm and 120 nm diameter copper nanowires simply dropped on a 10 $\\mu$m silicon membrane is investigated in transmission using three-dimensional time-resolved femtosecond pump-probe experiments. Two pump-probe time-resolved experiments are carried out at the same time on both side of the silicon substrate. In reflection, the first radial breathing mode of the nanowire is excited and detected. In transmission, the longitudinal and shear waves are observed. The longitudinal signal is followed by a monochromatic component associated with the relaxation of the nanowire's first radial breathing mode. Finite Difference Time Domain (FDTD) simulations are performed and accurately reproduce the diffracted field. A shape anisotropy resulting from the large aspect ratio of the nanowire is detected in the acoustic field. The orientation of the underlying nanowires is thus acoustically deduced.
Sound pressure distribution within natural and artificial human ear canals: forward stimulation.
Ravicz, Michael E; Tao Cheng, Jeffrey; Rosowski, John J
2014-12-01
This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5-2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11-16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC.
Women, Family, and Child Care in India: A World in Transition.
ERIC Educational Resources Information Center
Seymour, Susan C.
This book describes a 30-year longitudinal study of the impact of urbanization and modernization on changing family organization, child rearing practices, and gender roles in India and their contribution to women's life satisfaction. The book is organized around a series of personal encounters recorded in field notes, focusing on the mothers,…
ERIC Educational Resources Information Center
Shane, Jacob; Heckhausen, Jutta
2016-01-01
Individuals' motivational self-regulatory system is challenged as they cross the transition from school to work. Using data from a longitudinal study of participants approaching and crossing university graduation (n = 140), we examine the ways in which individuals' motivational strategies reflect and direct their career-related opportunity field.…
Fusing Philosophy and Fieldwork in a Study of Being a Person in the World: An Interim Commentary
ERIC Educational Resources Information Center
Hansen, David T.; Wozniak, Jason Thomas; Galindo Diego, Ana Cecilia
2015-01-01
In this article, we describe a longitudinal inquiry into what it means to be a person in our contemporary world. Our method constitutes a dynamic, non-objectifying fusion of empirical and philosophical anthropology. Field-based anthropology examines actualities: how people lead their lives and talk about them. Philosophical anthropology addresses…
ERIC Educational Resources Information Center
Barrett, Gerald V.; And Others
The relative contribution of motivation to ability measures in predicting performance criteria of sales personnel from successive fiscal periods was investigated. In this context, the merits of a multiplicative and additive combination of motivation and ability measures were examined. The relationship between satisfaction and motivation and…
ERIC Educational Resources Information Center
Liao, Hui; Chuang, Aichia
2007-01-01
This longitudinal field study integrates the theories of transformational leadership (TFL) and relationship marketing to examine how TFL influences employee service performance and customer relationship outcomes by transforming both (at the micro level) the service employees' attitudes and (at the macro level) the work unit's service climate.…
ERIC Educational Resources Information Center
Marshall, Steve; Moore, Danièle
2013-01-01
In this article, the researchers employ the framework of plurilingualism and plurilingual competence in a field that has traditionally been dominated by reified conceptualizations of multilingualism that view bi/multilingualism as balanced and complete competence in discrete codes. They present data from a qualitative, longitudinal study of the…
ERIC Educational Resources Information Center
Xu, Yonghong Jade
2013-01-01
Using data from a nationally representative, longitudinal survey of college graduates, this study examines student transition from college to their chosen career paths and identifies factors influencing college graduates' choosing an occupation related to ones' undergraduate major. Within the context of expanded econometric framework a wide range…
ERIC Educational Resources Information Center
Miller, Peggy J.; Fung, Heidi; Lin, Shumin; Chen, Eva Chian-Hui; Boldt, Benjamin R.
2012-01-01
This monograph builds upon our cumulative efforts to investigate personal storytelling as a medium of socialization in two disparate cultural worlds. Drawing upon interdisciplinary fields of study that take a discourse-centered approach to socialization, we combined ethnography, longitudinal home observations, and microlevel analysis of everyday…
Family and Community Influences on Educational Outcomes among Appalachian Youth
ERIC Educational Resources Information Center
Brown, Ryan; Copeland, William E.; Costello, E. Jane; Erkanli, Alaattin; Worthman, Carol M.
2009-01-01
Recent research has shown how quantifiable aspects of community context affect a wide range of behaviors and outcomes. Due partially to the historical development of this field, currently published work focuses on urban rather than rural areas. We draw upon data from a longitudinal study of families and health in Appalachia--the Great Smoky…
ERIC Educational Resources Information Center
Perry, Raymond P.; Hladkyj, Steven; Pekrun, Reinhard H.; Pelletier, Sarah T.
2001-01-01
Two measures, perceived academic control and action control (i.e., preoccupation with failure), were administered to college students. Achievement-related cognitions, emotions, motivation, and final grades were measured at the end of the course. Of note, high-control, high-failure-preoccupied students outperformed the other groups by one to two…
ERIC Educational Resources Information Center
Yeh, Cathery
2017-01-01
In this article, the author provides results from a 3-year, longitudinal study that examined two novice bilingual teachers' mathematics teaching practices and their professional opportunities to learn to teach. Primary data sources included videotaped mathematics lessons, teacher interviews, and field notes of their teacher preparation methods…
Anomalous amplitude of the quantum oscillations in the longitudinal magneto-thermoelectric power
NASA Astrophysics Data System (ADS)
Satoh, N.
2018-03-01
Longitudinal magneto-thermoelectric power Syy (y) of a pure bismuth single crystal was measured in magnetic fields up to 8T at several fixed temperatures between 1.4 and 15 K to investigate the magneto-phonon effect in the longitudinal magneto-thermoelectric power (MTP). The oscillation patterns of the longitudinal MTP was similar to that of the longitudinal Shubnikov-de Haas (SdH) effect, expectedly. However, the observed amplitude of oscillations showed a curious temperature dependence. That is, in the range of temperature T > 4.2 K, the amplitude has a maximum around 9K, which is well described by considering the inter-Landau level scattering of electrons. On the contrary, in the range of T < 4.2K, the observed amplitude is enhanced markedly although that of the longitudinal SdH oscillations becomes less pronounced by lowering temperature. This discrepancy may be attributed to the effect of the surface (wrapping) current and to the energy dependence of the electron relaxation time.
A geologic approach to field methods in fluvial geomorphology
Fitzpatrick, Faith A.; Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.
2014-01-01
A geologic approach to field methods in fluvial geomorphology is useful for understanding causes and consequences of past, present, and possible future perturbations in river behavior and floodplain dynamics. Field methods include characterizing river planform and morphology changes and floodplain sedimentary sequences over long periods of time along a longitudinal river continuum. Techniques include topographic and bathymetric surveying of fluvial landforms in valley bottoms and describing floodplain sedimentary sequences through coring, trenching, and examining pits and exposures. Historical sediment budgets that include floodplain sedimentary records can characterize past and present sources and sinks of sediment along a longitudinal river continuum. Describing paleochannels and floodplain vertical accretion deposits, estimating long-term sedimentation rates, and constructing historical sediment budgets can assist in management of aquatic resources, habitat, sedimentation, and flooding issues.
Augmented longitudinal acoustic trap for scalable microparticle enrichment.
Cui, M; Binkley, M M; Shekhani, H N; Berezin, M Y; Meacham, J M
2018-05-01
We introduce an acoustic microfluidic device architecture that locally augments the pressure field for separation and enrichment of targeted microparticles in a longitudinal acoustic trap. Pairs of pillar arrays comprise "pseudo walls" that are oriented perpendicular to the inflow direction. Though sample flow is unimpeded, pillar arrays support half-wave resonances that correspond to the array gap width. Positive acoustic contrast particles of supracritical diameter focus to nodal locations of the acoustic field and are held against drag from the bulk fluid motion. Thus, the longitudinal standing bulk acoustic wave (LSBAW) device achieves size-selective and material-specific separation and enrichment of microparticles from a continuous sample flow. A finite element analysis model is used to predict eigenfrequencies of LSBAW architectures with two pillar geometries, slanted and lamellar. Corresponding pressure fields are used to identify longitudinal resonances that are suitable for microparticle enrichment. Optimal operating conditions exhibit maxima in the ratio of acoustic energy density in the LSBAW trap to that in inlet and outlet regions of the microchannel. Model results guide fabrication and experimental evaluation of realized LSBAW assemblies regarding enrichment capability. We demonstrate separation and isolation of 20 μ m polystyrene and ∼10 μ m antibody-decorated glass beads within both pillar geometries. The results also establish several practical attributes of our approach. The LSBAW device is inherently scalable and enables continuous enrichment at a prescribed location. These features benefit separations applications while also allowing concurrent observation and analysis of trap contents.
The Possibilities of Longitudinal Research: Lessons from a Teacher and a Researcher
ERIC Educational Resources Information Center
Compton-Lilly, Catherine
2016-01-01
In this article, the author first presents an analysis based on field notes from when she was a first-grade teacher, with particular focus on one student, Christy. She then offers a longitudinal account of Christy from the author's current position as a university researcher. She argues that these two analyses reveal the power of longitudinal…
Instability of Longitudinal Wave in Magnetized Strongly Coupled Dusty Plasma
NASA Astrophysics Data System (ADS)
Xie, Bai-Song
2003-12-01
Instability of longitudinal wave in magnetized strongly coupled dusty plasmas is investigated. The dust charging relaxation is taken into account. It is found that there exists threshold of interdust distance for the instability of wave, which is determined significantly by the dust charging relaxation, the coupling parameter of high correlation of dust as well the strength of magnetic field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, J.; Ghimire, N. J.; Jiang, J. S.
Extremely large magnetoresistance (XMR) was recently discovered in YSb but its origin, along with that of many other XMR materials, is an active subject of debate. Here we demonstrate that YSb, with a cubic crystalline lattice and anisotropic bulk electron Fermi pockets, can be an excellent candidate for revealing the origin of XMR. We carried out angle dependent Shubnikov – de Haas quantum oscillation measurements to determine the volume and shape of the Fermi pockets. In addition, by investigating both Hall and longitudinal magnetoresistivities, we reveal that the origin of XMR in YSb lies in its carrier high mobility withmore » a diminishing Hall factor that is obtained from the ratio of the Hall and longitudinal magentoresistivities. The high mobility leads to a strong magnetic field dependence of the longitudinal magnetoconductivity while a diminishing Hall factor reveals the latent XMR hidden in the longitudinal magnetoconductivity whose inverse has a nearly quadratic magnetic-field dependence. The Hall factor highlights the deviation of the measured magnetoresistivity from its full potential value and provides a general formulation to reveal the origin of XMR behavior in high mobility materials and of nonsaturating MR behavior as a whole. Our approach can be readily applied to other XMR materials.« less
Abrupt contraction flow of magnetorheological fluids
NASA Astrophysics Data System (ADS)
Kuzhir, P.; López-López, M. T.; Bossis, G.
2009-05-01
Contraction and expansion flows of magnetorheological fluids occur in a variety of smart devices. It is important therefore to learn how these flows can be controlled by means of applied magnetic fields. This paper presents a first investigation into the axisymmetric flow of a magnetorheological fluid through an orifice (so-called abrupt contraction flow). The effect of an external magnetic field, longitudinal or transverse to the flow, is examined. In experiments, the pressure-flow rate curves were measured, and the excess pressure drop (associated with entrance and exit losses) was derived from experimental data through the Bagley correction procedure. The effect of the longitudinal magnetic field is manifested through a significant increase in the slope of the pressure-flow rate curves, while no discernible yield stress occurs. This behavior, observed at shear Mason numbers 10
First results of the magnetic field measurements on the G0 IV η Boo
NASA Astrophysics Data System (ADS)
Butkovskaya, V. V.; Plachinda, S. I.; Baklanova, D.; Pankov, N. F.
2018-01-01
Search for a magnetic field on η Boo has been performed over 50 nights in 1999 — 2014. Statistically significant magnetic field has been detected over 5 out of 50 nights. The total range of the longitudinal magnetic field variations is from -15.1±6.4 G to 23.1±9.6 G.
Random Fields and Collective Effects in Molecular Magnets
2018-01-29
longitudinal fields the final state consists of only partially reversed spins. Further, we measured the front speed as a function of applied magnetic...field. The theory of magnetic deflagration, together with a modification that takes into account the partial spin reversal, fits the transverse field...Conference Paper or Presentation Conference Name: APS March Meeting 2016 Conference Location: Baltimore, Paper Title: Time-resolved Measurements
Ferguson, Christopher J; San Miguel, Claudia; Garza, Adolfo; Jerabeck, Jessica M
2012-02-01
In 2011 the field of video game violence experienced serious reversals with repudiations of the current research by the US Supreme Court and the Australian Government as non-compelling and fundamentally flawed. Scholars too have been calling for higher quality research on this issue. The current study seeks to answer this call by providing longitudinal data on youth aggression and dating violence as potential consequences of violent video game exposure using well-validated clinical outcome measures and controlling for other relevant predictors of youth aggression. A sample of 165, mainly Hispanic youth, were tested at 3 intervals, an initial interview, and 1-year and 3-year intervals. Results indicated that exposure to video game violence was not related to any of the negative outcomes. Depression, antisocial personality traits, exposure to family violence and peer influences were the best predictors of aggression-related outcomes. The current study supports a growing body of evidence pointing away from video game violence use as a predictor of youth aggression. Public policy efforts, including funding, would best be served by redirecting them toward other prevention programs for youth violence. Copyright © 2011 Elsevier Ltd. All rights reserved.
Field of Study in College and Lifetime Earnings in the United States
Kim, ChangHwan; Tamborini, Christopher R.; Sakamoto, Arthur
2016-01-01
Our understanding about the relationship between education and lifetime earnings often neglects differences by field of study. Utilizing data that matches respondents in the Survey of Income and Program Participation to their longitudinal earnings records based on administrative tax information, we investigate the trajectories of annual earnings following the same individuals over 20 years and then estimate the long-term effects of field of study on earnings for U.S. men and women. Our results provide new evidence revealing large lifetime earnings gaps across field of study. We show important differences in individuals’ earnings trajectories across the different stages of the work-life by field of study. In addition, the gaps in 40-year (i.e., ages 20 to 59) median lifetime earnings among college graduates by field of study are larger, in many instances, than the median gap between high school graduates and college graduates overall. Significant variation is also found among graduate degree holders. Our results uncover important similarities and differences between men and women with regard to the long-term earnings differentials associated with field of study. In general, these findings underscore field of study as a critical dimension of horizontal stratification in educational attainment. Other implications of the empirical findings are also discussed. PMID:28042177
Benitez-Aguirre, Paul Z.; Craig, Maria E.; Jenkins, Alicia J.; Gallego, Patricia H.; Cusumano, Janine; Duffin, Anthony C.; Hing, Stephen; Donaghue, Kim C.
2012-01-01
Aim The aim was to study the longitudinal relationship between plantar fascia thickness (PFT) as a measure of tissue glycation and microvascular (MV) complications in young persons with type 1 diabetes (T1DM). Methods We conducted a prospective longitudinal cohort study of 152 (69 male) adolescents with T1DM who underwent repeated MV complications assessments and ultrasound measurements of PFT from baseline (1997–2002) until 2008. Retinopathy was assessed by 7-field stereoscopic fundal photography and nephropathy by albumin excretion rate (AER) from three timed overnight urine specimens. Longitudinal analysis was performed using generalized estimating equations (GEE). Results Median (interquartile range) age at baseline was 15.1 (13.4–16.8) years, and median follow-up was 8.3 (7.0–9.5) years, with 4 (3–6) visits per patient. Glycemic control improved from baseline to final visit [glycated hemoglobin (HbA1c) 8.5% to 8.0%, respectively; p = .004]. Prevalence of retinopathy increased from 20% to 51% (p < .001) and early elevation of AER (>7.5 µg/min) increased from 26% to 29% (p = .2). A greater increase in PFT (mm/year) was associated with retinopathy at the final assessment (ΔPFT 1st vs. 2nd–4th quartiles, χ2 = 9.87, p = .02). In multivariate GEE, greater PFT was longitudinally associated with retinopathy [odds ratio (OR) 4.6, 95% confidence interval (CI) 2.0–10.3] and early renal dysfunction (OR 3.2, CI 1.3–8.0) after adjusting for gender, blood pressure standard deviation scores, HbA1c, and total cholesterol. Conclusions In young people with T1DM, PFT was longitudinally associated with retinopathy and early renal dysfunction, highlighting the importance of early glycemic control and supporting the role of metabolic memory in MV complications. Measurement of PFT by ultrasound offers a noninvasive estimate of glycemic burden and tissue glycation. PMID:22538146
Benitez-Aguirre, Paul Z; Craig, Maria E; Jenkins, Alicia J; Gallego, Patricia H; Cusumano, Janine; Duffin, Anthony C; Hing, Stephen; Donaghue, Kim C
2012-03-01
The aim was to study the longitudinal relationship between plantar fascia thickness (PFT) as a measure of tissue glycation and microvascular (MV) complications in young persons with type 1 diabetes (T1DM). We conducted a prospective longitudinal cohort study of 152 (69 male) adolescents with T1DM who underwent repeated MV complications assessments and ultrasound measurements of PFT from baseline (1997-2002) until 2008. Retinopathy was assessed by 7-field stereoscopic fundal photography and nephropathy by albumin excretion rate (AER) from three timed overnight urine specimens. Longitudinal analysis was performed using generalized estimating equations (GEE). Median (interquartile range) age at baseline was 15.1 (13.4-16.8) years, and median follow-up was 8.3 (7.0-9.5) years, with 4 (3-6) visits per patient. Glycemic control improved from baseline to final visit [glycated hemoglobin (HbA1c) 8.5% to 8.0%, respectively; p = .004]. Prevalence of retinopathy increased from 20% to 51% (p < .001) and early elevation of AER (>7.5 μg/min) increased from 26% to 29% (p = .2). A greater increase in PFT (mm/year) was associated with retinopathy at the final assessment (ΔPFT 1st vs. 2nd-4th quartiles, χ(2) = 9.87, p = .02). In multivariate GEE, greater PFT was longitudinally associated with retinopathy [odds ratio (OR) 4.6, 95% confidence interval (CI) 2.0-10.3] and early renal dysfunction (OR 3.2, CI 1.3-8.0) after adjusting for gender, blood pressure standard deviation scores, HbA1c, and total cholesterol. In young people with T1DM, PFT was longitudinally associated with retinopathy and early renal dysfunction, highlighting the importance of early glycemic control and supporting the role of metabolic memory in MV complications. Measurement of PFT by ultrasound offers a noninvasive estimate of glycemic burden and tissue glycation. © 2012 Diabetes Technology Society.
Towards an integrated AlGaAs waveguide platform for phase and polarisation shaping
NASA Astrophysics Data System (ADS)
Maltese, G.; Halioua, Y.; Lemaître, A.; Gomez-Carbonell, C.; Karimi, E.; Banzer, P.; Ducci, S.
2018-05-01
We propose, design and fabricate an on-chip AlGaAs waveguide capable of generating a controlled phase delay of π/2 between the guided transverse electric and magnetic modes. These modes possess significantly strong longitudinal field components as a direct consequence of their strong lateral confinement in the waveguide. We demonstrate that the effect of the device on a linearly polarised input beam is the generation of a field, which is circularly polarised in its transverse components and carries a phase vortex in its longitudinal component. We believe that the discussed integrated platform enables the generation of light beams with tailored phase and polarisation distributions.
Electron-spin dynamics in Mn-doped GaAs using time-resolved magneto-optical techniques
NASA Astrophysics Data System (ADS)
Akimov, I. A.; Dzhioev, R. I.; Korenev, V. L.; Kusrayev, Yu. G.; Zhukov, E. A.; Yakovlev, D. R.; Bayer, M.
2009-08-01
We study the electron-spin dynamics in p -type GaAs doped with magnetic Mn acceptors by means of time-resolved pump-probe and photoluminescence techniques. Measurements in transverse magnetic fields show a long spin-relaxation time of 20 ns that can be uniquely related to electrons. Application of weak longitudinal magnetic fields above 100 mT extends the spin-relaxation times up to microseconds which is explained by suppression of the Bir-Aronov-Pikus spin relaxation for the electron on the Mn acceptor.
Magnetic-Field Control Of Tunnel-Coupling In Strongly Confined One-Dimensional Electron Systems
NASA Astrophysics Data System (ADS)
Fischer, S. F.; Apetrii, G.; Kunze, U.; Schuh, D.; Abstreiter, G.
2007-04-01
One-dimensional (1D) ballistic electron transport is studied through stacked 1D quantum conductors separated by a thin tunneling barrier. The 1D electron systems of large 1D subband spacings (more than 10 meV) allow single mode operation. Degeneracies of 1D subbands of equal lateral mode index are lifted by the formation of symmetric and antisymmetric states and are depicted by anti-crossings of transconductance maxima. We observe a mode-dependent turnover from level anti-crossings to crossings in longitudinal magnetic fields.
Soft x-ray resonant diffraction study of magnetic structure in magnetoelectric Y-type hexaferrite
NASA Astrophysics Data System (ADS)
Ueda, H.; Tanaka, Y.; Wakabayashi, Y.; Kimura, T.
2018-05-01
The effect of magnetic field on the magnetic structure associated with magnetoelectric properties in a Y-type hexaferrite, Ba1.3Sr0.7CoZnFe11AlO22, was investigated by utilizing the soft x-ray resonant diffraction technique. In this hexaferrite, the so-called alternating longitudinal conical phase is stabilized at room temperature and zero magnetic field. Below room temperature, however, this phase is transformed into the so-called transverse conical phase by applying an in-plane magnetic field (≈ 0.3 T). The transverse conical phase persists even after removing the magnetic field. The magnetoelectricity, which is magnetically-induced electric polarization, observed in the hexaferrite is discussed in terms of the temperature-dependent magnetic structure at zero field.
NASA Astrophysics Data System (ADS)
Kochukhov, O.; Silvester, J.; Bailey, J. D.; Landstreet, J. D.; Wade, G. A.
2017-09-01
Context. The young, rapidly rotating Bp star HR 5624 (HD 133880) shows an unusually strong non-sinusoidal variability of its longitudinal magnetic field. This behaviour was previously interpreted as the signature of an exceptionally strong, quadrupole-dominated surface magnetic field geometry. Aims: We studied the magnetic field structure and chemical abundance distributions of HR 5624 with the aim to verify the unusual quadrupolar nature of its magnetic field and to investigate correlations between the field topology and chemical spots. Methods: We analysed high-resolution, time series Stokes parameter spectra of HR 5624 with the help of a magnetic Doppler imaging inversion code based on detailed polarised radiative transfer modelling of the line profiles. Results: We refined the stellar parameters, revised the rotational period, and obtained new longitudinal magnetic field measurements. Our magnetic Doppler inversions reveal that the field structure of HR 5624 is considerably simpler and the field strength is much lower than proposed by previous studies. We find a maximum local field strength of 12 kG and a mean field strength of 4 kG, which is about a factor of three weaker than predicted by quadrupolar field models. Our model implies that overall large-scale field topology of HR 5624 is better described as a distorted, asymmetric dipole rather than an axisymmetric quadrupole. The chemical abundance maps of Mg, Si, Ti, Cr, Fe, and Nd obtained in our study are characterised by large-scale, high-contrast abundance patterns. These structures correlate weakly with the magnetic field geometry and, in particular, show no distinct element concentrations in the horizontal field regions predicted by theoretical atomic diffusion calculations. Conclusions: We conclude that the surface magnetic field topology of HR 5624 is not as unusual as previously proposed. Considering these results together with other recent magnetic mapping analyses of early-type stars suggests that predominantly quadrupolar magnetic field topologies, invoked to be present in a significant number of stars, probably do not exist in real stars. This finding agrees with an outcome of the MHD simulations of fossil field evolution in stably stratified stellar interiors. Based on observations collected at the European Southern Observatory, Chile (ESO programs 085.D-0296, 089.D-0383, 095.D-0194) and on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
The effect of longitudinal chromatic aberration on the lag of accommodation and depth of field.
Jaskulski, Mateusz; Marín-Franch, Iván; Bernal-Molina, Paula; López-Gil, Norberto
2016-11-01
Longitudinal chromatic aberration is present in all states of accommodation and may play a role in the accommodation response and the emmetropisation process. We study the change of the depth of field (DOFi) with the state of accommodation, taking into account the longitudinal chromatic aberration. Subjective DOFi was defined as the range of defocus beyond which the blur of the target (one line of optotypes of 0.1 logMAR shown on a black-and-white microdisplay, seen through different colour filters) was perceived as objectionable. The subject's eye was paralysed and different, previously-measured accommodative states (corresponding to the accommodative demands of 0D, 2D and 4D) were simulated with a deformable mirror. Different colour conditions (monochromatic red, green and blue and polychromatic (white) were tested. The DOFi was measured subjectively, using a motorised Badal system. Taking as reference the average accommodative response for the white stimulus, the blue response exhibits on average a lead of 0.45 ± 0.09D, the green a negligible lead of 0.07 ± 0.02D and red a lag of 0.49 ± 0.10D. The monochromatic DOFi, calculated by averaging DOFi over the red, green and blue colour conditions for each accommodative demand was 1.10 ± 0.10D for 0D, 1.20 ± 0.08D for 2D, and 1.26 ± 0.40D for 4D. The polychromatic white DOFi were greater than the average monochromatic DOFi by 19%, 9% and 14% for 0D, 2D, and 4D of accommodative demand, respectively. The longitudinal chromatic aberration causes a dioptric shift of the monochromatic accommodation response. The study did not reveal this shift to depend on the accommodative demand or to have an effect on the DOFi. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.
Predicting Risk of Motor Vehicle Collisions in Patients with Glaucoma: A Longitudinal Study.
Gracitelli, Carolina P B; Tatham, Andrew J; Boer, Erwin R; Abe, Ricardo Y; Diniz-Filho, Alberto; Rosen, Peter N; Medeiros, Felipe A
2015-01-01
To evaluate the ability of longitudinal Useful Field of View (UFOV) and simulated driving measurements to predict future occurrence of motor vehicle collision (MVC) in drivers with glaucoma. Prospective observational cohort study. 117 drivers with glaucoma followed for an average of 2.1 ± 0.5 years. All subjects had standard automated perimetry (SAP), UFOV, driving simulator, and cognitive assessment obtained at baseline and every 6 months during follow-up. The driving simulator evaluated reaction times to high and low contrast peripheral divided attention stimuli presented while negotiating a winding country road, with central driving task performance assessed as "curve coherence". Drivers with MVC during follow-up were identified from Department of Motor Vehicle records. Survival models were used to evaluate the ability of driving simulator and UFOV to predict MVC over time, adjusting for potential confounding factors. Mean age at baseline was 64.5 ± 12.6 years. 11 of 117 (9.4%) drivers had a MVC during follow-up. In the multivariable models, low contrast reaction time was significantly predictive of MVC, with a hazard ratio (HR) of 2.19 per 1 SD slower reaction time (95% CI, 1.30 to 3.69; P = 0.003). UFOV divided attention was also significantly predictive of MVC with a HR of 1.98 per 1 SD worse (95% CI, 1.10 to 3.57; P = 0.022). Global SAP visual field indices in the better or worse eye were not predictive of MVC. The longitudinal model including driving simulator performance was a better predictor of MVC compared to UFOV (R2 = 0.41 vs R2 = 0.18). Longitudinal divided attention metrics on the UFOV test and during simulated driving were significantly predictive of risk of MVC in glaucoma patients. These findings may help improve the understanding of factors associated with driving impairment related to glaucoma.
Annual and longitudinal variations of the Pacific North Equatorial Countercurrent
NASA Technical Reports Server (NTRS)
Lolk, Nina K.
1992-01-01
The climatological annual cycle of the Pacific North Equatorial Countercurrent (NECC) simulated by an ocean general circulation model (OGCM) was studied. The longitudinal variation of transports, degree of geostrophy, and the relationship between Ekman pumping and vertical displacement of the thermocline were emphasized. The longitudinal variation was explored using six sections along 150 deg E, 180 deg, 160 deg W, 140 deg W, 125 deg W, and 110 deg W. A primitive equation OGCM of the Pacific Ocean was run for three years and the fields used were from the third year. The fields consisted of zonal, meridional, and vertical current components and temperature and salinity averaged every three days. The model was forced with the Hellerman and Rosenstein climatological wind stress. The mean annual eastward transport (19.9 Sv) was largest at 160 deg W. The maximum-current boundaries along 160 deg W were 9.2 deg N (1.0 deg), 5.1 deg N (1.1 deg), and 187 m (90.6 m). The annual-cycle amplitude of the NECC was greatest between 160 deg W and 140 deg W. Although the NECC is geostrophic to the first order, deviations from geostrophy were found in the boreal spring and summer near the southern boundary and near the surface. Meridional local acceleration played a role between 3 deg N-5 deg N.
An integrated draft gear model with the consideration of wagon body structural characteristics
NASA Astrophysics Data System (ADS)
Chang, Gao; Liangliang, Yang; Weihua, Ma; Min, Zhang; Shihui, Luo
2018-03-01
With the increase of railway wagon axle load and the growth of marshalling quantity, the problem caused by impact and vibration of vehicles is increasingly serious, which leads to the damage of vehicle structures and the components. In order to improve the reliability of longitudinal connection model for vehicle impact tests, a new railway wagon longitudinal connection model was developed to simulate and analyse vehicle impact tests. The new model is based on characteristics of longitudinal force transmission for vehicles and parts. In this model, carbodies and bogies were simplified to a particle system that can vibrate in the longitudinal direction, which corresponded to a stiffness-damping vibration system. The model consists of three sub-models, that is, coupler and draft gear sub-model, centre plate sub-model and carbody structure sub-model. Compared with conventional draft gear models, the new model was proposed with geometrical and mechanical relations of friction draft gears considered and with behaviours of sticking, sliding and impact between centre plate and centre bowl added. Besides, virtual springs between discrete carbodies were built to describe the structural deformation of carbody. A computation program for longitudinal dynamics based on vehicle impact tests was accomplished to simulate. Comparisons and analyses regarding the train dynamics outputs and vehicle impact tests were conducted. Simulation results indicate that the new wagon longitudinal connection model can provide a practical application environment for wagons, and the outputs of vehicle impact tests agree with those of field tests. The new model can also be used to study on longitudinal vibrations of different vehicles, of carbody and bogie, and of carbody itself.
Yu, Xing-Xiu; Ma, Qian; Liu, Qian-Jin; Lü, Guo-An
2011-02-01
Field in-situ rainfall simulation tests with two rainfall intensities (40 mm x h(-1) and 70 mm x h(-1)), which were conducted at typical sloping cropland in Yimeng mountainous area, were designed to analyze the output characteristics of dissolved inorganic nitrogen, Inorganic-N (NO3(-)-N, NH4(+) -N) and dissolved phosphorus (DP) in runoff water, as well as to compare the eutrophication risk in this water by calculating three ratios of Inorganic-N/DP, NO3(-) -N/DP, and NH4(+)-N/DP, respectively, in cross ridge and longitudinal ridge tillage methods. Results showed that, under the same rainfall intensity, the DP level in runoff water was higher in cross ridge than longitudinal ridge, while the change of different Inorganic-N level between the two tillage methods were not consistent. Cross ridge could effectively reduce runoff and the output rate of Inorganic-N and DP when compared to the longitudinal ridge tillage, which would be more outstanding with the increases of rainfall intensities. The losses of Inorganic-N and DP in runoff water were 43% and 5% less, respectively, in cross ridge than longitudinal ridge at the 40 mm x h(-1) rainfall intensity, and were 68% and 55%, respectively, at 70 mm x h(-1). The higher Inorganic-N/DP and NO3(-) -N/DP ratios suggest that runoff water from either cross ridge or longitudinal ridge tillage have a certain eutrophication risk, which present an increasing trend during the precipitation-runoff process. Compared with longitudinal ridge, cross ridge can not only hinder the increasing trend of eutrophication risk, but also can significantly lower it, and thus effectively reduce the effect of sloping cropland runoff on the eutrophication processes of receiving waters.
Study of working principle and thermal balance process of a double longitudinal-mode He-Ne laser
NASA Astrophysics Data System (ADS)
Wang, Li-qiang
2009-07-01
A double longitudinal mode He-Ne laser with frequency stabilization is proposed. Compared with general methods, such as Lamb dip, Zeeman splitting and molecule saturation absorption method, this design has some advantages, such as no piezocrystal or magnetic field, a short frequency-stabilized time, lower cost, and higher frequency stability and reproducibility. The metal wire is uniformly wrapped on the discharge tube of the laser. When the metal wire is heated up, the resonant cavity changes with the temperature field around the discharge tube to make the frequency of the laser to be tuned. The polarizations of the two longitudinal modes from the laser must be orthogonal. The parallelly polarized light and the vertically polarized light compete with each other, i. e., the parallelly polarized light generates a larger output power, while, the vertically polarized light correspondingly generates a smaller one, but an equal value is found at the reference frequencies by automatically adjusting the length of the resonant cavity, due to change of the temperature in the discharge tube. Consequently the frequencies of the laser are stabilized. In my experiment, an intracavity He-Ne laser whose length of the resonant cavity is larger than 50mm and smaller than 300mm is selected for the double longitudinal-mode laser. Influence factors of frequency stability of this laser is only change of the length of the resonant cavity. The laser includes three stages: mode hopping, transition stage, and modes stability from startup to laser stability. When this laser is in modes stability, the waveform of heating metal wire is observed to a pulse whose duty is almost 50%, and thermal balances of the resonant cavity mainly rely on discharge tube.
A bulk superconducting MgB2 cylinder for holding transversely polarized targets
NASA Astrophysics Data System (ADS)
Statera, M.; Balossino, I.; Barion, L.; Ciullo, G.; Contalbrigo, M.; Lenisa, P.; Lowry, M. M.; Sandorfi, A. M.; Tagliente, G.
2018-02-01
An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. A feasibility study with a prototype bulk MgB2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electron scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.
Low- and mid-latitude ionospheric electric fields during the January 1984 GISMOS campaign
NASA Technical Reports Server (NTRS)
Fejer, B. G.; Kelley, M. C.; Senior, C.; De La Beaujardiere, O.; Lepping, R.
1990-01-01
The electrical coupling between the high-, middle-, and low-latitude ionospheres during January 17-19, 1984 is examined, using interplanetary and high-latitude magnetic field data together with F region plasma drift measurements from the EISCAT, Sondre Stromfjord, Millstone Hill, Saint-Santin, Arecibo, and Jicamarca incoherent scatter radars. The penetration both the zonal and meridional electric field components of high-latitude origin into the low-latitude and the equatorial ionospheres are studied. The observations in the postmidnight sector are used to compare the longitudinal variations of the zonal perturbation electric field with predictions made from global convection models. The results show that the meridional electric field perturbations are considerably more attenuated with decreasing latitude than the zonal fluctuations. It is concluded that variations in the meridional electric field at low latitudes are largely due to dynamo effects.
NASA Astrophysics Data System (ADS)
Yang, Deshan; Li, H. Harold; Goddu, S. Murty; Tan, Jun
2014-10-01
Onboard cone-beam CT (CBCT) has been widely used in image guided radiation therapy. However, the longitudinal coverage is only 15.5 cm in the pelvis scan mode. As a result, a single CBCT scan cannot cover the planning target volume in the longitudinal direction for over 80% of the patients. The common approach is to use double- or multiple-circular scans and then combine multiple CBCT volumes after reconstruction. However it raises concerns regarding doubled imaging dose at the imaging beam junctions due to beam divergence. In this work, we present a new method, DSCS (Dual Scan with Complementary Shifts), to address the CBCT coverage problem using a pair of complementary circular scans. In DSCS, two circular scans were performed at 39.5 cm apart longitudinally. In the superior scan, the detector panel was offset by 16 cm to the left, 15 cm to the inferior. In the inferior scan, the detector panel was shifted 16 cm to the right and 15 cm to the superior. The effective imaging volume is 39.5 cm longitudinally with a 45 cm lateral field-of-view (FOV). Half beam blocks were used to confine the imaging radiation inside the volume of interest. A new image reconstruction algorithm was developed, based on the Feldkamp-Davis-Kress cone-beam CT reconstruction algorithm, to support the DSCS scanning geometry. Digital phantom simulations were performed to demonstrate the feasibility of DSCS. Physical phantom studies were performed using an anthropomorphic phantom on a commercial onboard CBCT system. With basic scattering corrections, the reconstruction results were acceptable. Other issues, including the discrepancy in couch vertical at different couch longitudinal positions, and the inaccuracy in couch table longitudinal movement, were manually corrected during the reconstruction process. In conclusion, the phantom studies showed that, using DSCS, a 39.5 cm longitudinal coverage with a 45 cm FOV was accomplished. The efficiency of imaging dose usage was near 100%. This proposed method could be potentially useful for image guidance and subsequent treatment plan adaptation.
A search for strong, ordered magnetic fields in Herbig Ae/Be stars
NASA Astrophysics Data System (ADS)
Wade, G. A.; Bagnulo, S.; Drouin, D.; Landstreet, J. D.; Monin, D.
2007-04-01
The origin of magnetic fields in intermediate- and high-mass stars is fundamentally a mystery. Clues towards solving this basic astrophysical problem can likely be found at the pre-main-sequence (PMS) evolutionary stage. With this work, we perform the largest and most sensitive search for magnetic fields in PMS Herbig Ae/Be (HAeBe) stars. We seek to determine whether strong, ordered magnetic fields, similar to those of main-sequence Ap/Bp stars, can be detected in these objects, and if so, to determine the intensities, geometrical characteristics, and statistical incidence of such fields. 68 observations of 50 HAeBe stars have been obtained in circularly polarized light using the FORS1 spectropolarimeter at the ESO VLT. An analysis of both Balmer and metallic lines reveals the possible presence of weak longitudinal magnetic fields in photospheric lines of two HAeBe stars, HD 101412 and BF Ori. Results for two additional stars, CPD-53 295 and HD 36112, are suggestive of the presence of magnetic fields, but no firm conclusions can be drawn based on the available data. The intensity of the longitudinal fields detected in HD 101412 and BF Ori suggest that they correspond to globally ordered magnetic fields with surface intensities of order 1 kG. On the other hand, no magnetic field is detected in 4 other HAeBe stars in our sample in which magnetic fields had previously been confirmed. Monte Carlo simulations of the longitudinal field measurements of the undetected stars allow us to place an upper limit of about 300 G on the general presence of aligned magnetic dipole magnetic fields, and of about 500 G on perpendicular dipole fields. Taking into account the results of our survey and other published results, we find that the observed bulk incidence of magnetic HAeBe stars in our sample is 8-12 per cent, in good agreement with that of magnetic main-sequence stars of similar masses. We also find that the rms longitudinal field intensity of magnetically detected HAeBe stars is about 200 G, similar to that of Ap stars and consistent with magnetic flux conservation during stellar evolution. These results are all in agreement with the hypothesis that the magnetic fields of main-sequence Ap/Bp stars are fossils, which already exist within the stars at the PMS stage. Finally, we explore the ability of our new magnetic data to constrain magnetospheric accretion in Herbig Ae/Be stars, showing that our magnetic data are not consistent with the general occurrence in HAeBe stars of magnetospheric accretion as described by the theories of Königl and Shu et al.. Based on observations from the ESO telescopes at the La Silla Paranal Observatory under programme ID 072.C-0447, DDT-272.C-5063, 074.C-0442. E-mail: wade-g@rmc.ca
Retail food environments research in Canada: A scoping review.
Minaker, Leia M; Shuh, Alanna; Olstad, Dana L; Engler-Stringer, Rachel; Black, Jennifer L; Mah, Catherine L
2016-06-09
The field of retail food environments research is relatively new in Canada. The objective of this scoping review is to provide an overview of retail food environments research conducted before July 2015 in Canada. Specifically, this review describes research foci and key findings, identifies knowledge gaps and suggests future directions for research. A search of published literature concerning Canadian investigations of retail food environment settings (food stores, restaurants) was conducted in July 2015 using PubMed, Web of Science, Scopus, PsychInfo and ERIC. Studies published in English that reported qualitative or quantitative data on any aspect of the retail food environment were included, as were conceptual papers and commentaries. Eighty-eight studies were included in this review and suggest that the field of retail food environments research is rapidly expanding in Canada. While only 1 paper was published before 2005, 66 papers were published between 2010 and 2015. Canadian food environments research typically assessed either the socio-economic patterning of food environments (n = 28) or associations between retail food environments and diet, anthropometric or health outcomes (n = 33). Other papers profiled methodological research, qualitative studies, intervention research and critical commentaries (n = 27). Key gaps in the current literature include measurement inconsistency among studies and a lack of longitudinal and intervention studies. Retail food environments are a growing topic of research, policy and program development in Canada. Consistent methods (where appropriate), longitudinal and intervention research, and close partnerships between researchers and key stakeholders would greatly advance the field of retail food environments research in Canada.
Jamali, Jamshid; Salehi-Marzijarani, Mohammad; Ayatollahi, Seyyed Mohammad Taghi
2014-12-01
Awareness of the latest scientific research and publishing articles in top journals is one of the major concerns of health researchers. In this study, we first introduced top journals of obstetrics and gynecology field based on their Impact Factor (IF), Eigenfactor Score (ES) and SCImago Journal Rank (SJR) indicator indexed in Scopus databases and then the scientometric features of longitudinal changes of SJR in this field were presented. In our analytical and bibiliometric study, we included all the journals of obstetrics and gynecology field which were indexed by Scopus from 1999 to 2013. The scientometric features in Scopus were derived from SCImago Institute and IF and ES were obtained from Journal Citation Report through the Institute for Scientific Information. Generalized Estimating Equation was used to assess the scientometric features affecting SJR. From 256 journals reviewed, 54.2% and 41.8% were indexed in the Pubmed and the Web of Sciences, respectively. Human Reproduction Update based on the IF (5.924±2.542) and SJR (2.682±1.185), and American Journal of obstetrics and gynecology based on the ES (0.05685±0.00633) obtained the first rank among the other journals. Time, Index in Pubmed, H_index, Citable per Document, Cites per Document, and IF affected changes of SJR in the period of study. Our study showed a significant association between SJR and scientometric features in obstetrics and gynecology journals. According to this relationship, SJR may be an appropriate index for assessing journal quality.
Jamali, Jamshid; Salehi-Marzijarani, Mohammad; Ayatollahi, Seyyed Mohammad Taghi
2014-01-01
Introduction: Awareness of the latest scientific research and publishing articles in top journals is one of the major concerns of health researchers. In this study, we first introduced top journals of obstetrics and gynecology field based on their Impact Factor (IF), Eigenfactor Score (ES) and SCImago Journal Rank (SJR) indicator indexed in Scopus databases and then the scientometric features of longitudinal changes of SJR in this field were presented. Method and material: In our analytical and bibiliometric study, we included all the journals of obstetrics and gynecology field which were indexed by Scopus from 1999 to 2013. The scientometric features in Scopus were derived from SCImago Institute and IF and ES were obtained from Journal Citation Report through the Institute for Scientific Information. Generalized Estimating Equation was used to assess the scientometric features affecting SJR. Result: From 256 journals reviewed, 54.2% and 41.8% were indexed in the Pubmed and the Web of Sciences, respectively. Human Reproduction Update based on the IF (5.924±2.542) and SJR (2.682±1.185), and American Journal of obstetrics and gynecology based on the ES (0.05685±0.00633) obtained the first rank among the other journals. Time, Index in Pubmed, H_index, Citable per Document, Cites per Document, and IF affected changes of SJR in the period of study. Discussion: Our study showed a significant association between SJR and scientometric features in obstetrics and gynecology journals. According to this relationship, SJR may be an appropriate index for assessing journal quality. PMID:25684846
Prospects for the Comparative Study of International Migration using quasi-longitudinal micro-data
Liu, Mao-Mei; Creighton, Mathew J.; Riosmena, Fernando; Baizán Mun͂oz, Pau
2017-01-01
BACKGROUND Longitudinal micro-level data about international migration behavior are notoriously difficult to collect, but data collection efforts have become more frequent in recent years. Comparative research of the patterns and processes of international migration, however, remains quite rare, especially that which compares across regions. OBJECTIVE We highlight the promises and difficulties of comparative international migration research, by offering a detailed comparison of two prominent data collection efforts. METHODS We systematically review existing sources of longitudinal and quasi-longitudinal individual-level and household-level data of international migration. We then compare two widely-used data sources: the Mexican Migration Project (MMP) and the Migration between Africa and Europe project (MAFE). RESULTS Data collection efforts are increasingly diverse, yet public accessibility of data remains limited. Also, comparability of data collected across settings can be complicated. In our MMP-MAFE analysis, we show some ways in which comparability can be achieved. CONCLUSIONS A primary roadblock to international comparative research is that, with some exceptions, the public accessibility of data remains low. Even when data is public and surveys are modeled after one another, comparability is not easy due to necessary trade-offs in adapting surveys to local settings and to developments in the field. CONTRIBUTION We demonstrate that, despite great strides in collecting quasi-longitudinal data of international migration, data accessibility still hinders the study of migration. With regards to comparability, our article provides important lessons for future data collection and analysis efforts that could improve comparability and thus advance understanding of the complex dynamics of international migration. PMID:29276429
NASA Astrophysics Data System (ADS)
Hozumi, Y.; Saito, A.; Murakami, G.; Yamazaki, A.; Yoshikawa, I.
2016-12-01
The seasonal, longitudinal and latitudinal variations of He+ distribution in the topside ionosphere in 2013 are elucidated with data of He+ resonant scattering obtained by Extreme Ultra Violet Imager (EUVI) onboard the International Space Station (ISS). EUVI provides a data set of the column density of He+ above the ISS orbit altitude. The data set provides a unique opportunity to study He+ distribution in the topside ionosphere from a different perspective of past studies using in-situ measurement data. During the solstice seasons, an enhancement of He+ column density in the winter hemisphere is observed. The magnitude of this hemispheric asymmetry shows a longitudinal variability. Around the June solstice, the hemispheric asymmetry was greater in the longitude sector where the geomagnetic declination angle is negative and smaller in the longitude sector where the geomagnetic declination angle is positive. Around the December solstice, on the other hand, this longitudinal variation of the asymmetry magnitude had opposite tendency. The hemispheric asymmetry of the effective neutral wind well explains this behavior of He+. The field-aligned component of neutral wind in the F-region is varied in longitude under the presence of finite geomagnetic declination angle and large zonal wind. In the equinox seasons, two longitudinal maxima were observed at around 140ºE and 30ºE. The longitudinal variation of the effective neutral wind is a candidate of these two maxima of He+ concentration. These results suggest that the transport of ions in the topside ionosphere is strongly affected by the F-region neutral wind.
Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev
2015-02-25
A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.
Gendered transitions to adulthood by college field of study in the United States.
Han, Siqi; Tumin, Dmitry; Qian, Zhenchao
2016-01-01
Field of study may influence the timing of transitions to the labor market, marriage, and parenthood among college graduates. Research to date has yet to study how field of study is associated with the interweaving of these transitions in the USA. The current study examines gendered influences of college field of study on transitions to a series of adult roles, including full-time work, marriage, and parenthood. We use Cox proportional hazards models and multinomial logistic regression to examine gendered associations between field of study and the three transitions among college graduates of the NLSY97 (National Longitudinal Survey of Youth) cohort. Men majoring in STEM achieve early transitions to full-time work, marriage, and parenthood; women majoring in STEM show no significant advantage in finding full-time work and delayed marriage and childbearing; women in business have earlier transitions to full-time work and marriage than women in other fields, demonstrating an advantage similar to that of men in STEM. The contrast between men and women in STEM shows that transition to adulthood remains gendered; the contrast between women in STEM and women in business illustrates that a prestigious career may not necessarily delay family formation.
New halo formation mechanism at the KEK compact energy recovery linac
NASA Astrophysics Data System (ADS)
Tanaka, Olga; Nakamura, Norio; Shimada, Miho; Miyajima, Tsukasa; Ueda, Akira; Obina, Takashi; Takai, Ryota
2018-02-01
The beam halo mitigation is a very important challenge for reliable and safe operation of a high-energy machine. A systematic beam halo study was conducted at the KEK compact energy recovery linac (cERL) since non-negligible beam loss was observed in the recirculation loop during a common operation. We found that the beam loss can be avoided by making use of the collimation system. Beam halo measurements have demonstrated the presence of vertical beam halos at multiple locations in the beam line (except the region near the electron gun). Based on these observations, we made a conjecture that the transverse beam halo is attributed to the longitudinal bunch tail arising at the photocathode. The transfer of particles from the longitudinal space to a transverse halo may have been observed and studied in other machines, considering nonlinear effects as their causes. However, our study demonstrates a new unique halo formation mechanism, in which a transverse beam halo can be generated by a longitudinal bunch tail due to transverse rf kicks from the accelerating (monopole) fields of the radio-frequency cavities. This halo formation occurs when nonrelativistic particles enter the cavities with a transverse offset, even if neither nonlinear optics nor nonlinear beam effects are present. A careful realignment of the injector system will mitigate the present halo. Another possible cure is to reduce the bunch tails by changing the photocathode material from the present GaAs to a multi-alkali that is known to have a shorter longitudinal tail.
Tight focusing of radially polarized circular Airy vortex beams
NASA Astrophysics Data System (ADS)
Chen, Musheng; Huang, Sujuan; Shao, Wei
2017-11-01
Tight focusing properties of radially polarized circular Airy vortex beams (CAVB) are studied numerically. The light field expressions for the focused fields are derived based on vectorial Debye theory. We also study the relationship between focal profiles, such as light intensity distribution, radius of focal spot and focal length, and the parameters of CAVB. Numerical results demonstrate that we can generate a radially polarized CAVB with super-long focal length, super-strong longitudinal intensity or subwavelength focused spot at the focal plane by properly choosing the parameters of incident light and high numerical aperture (NA) lens. These results have potential applications for optical trapping, optical storage and particle acceleration.
McNair, James N; Newbold, J Denis
2012-05-07
Most ecological studies of particle transport in streams that focus on fine particulate organic matter or benthic invertebrates use the Exponential Settling Model (ESM) to characterize the longitudinal pattern of particle settling on the bed. The ESM predicts that if particles are released into a stream, the proportion that have not yet settled will decline exponentially with transport time or distance and will be independent of the release elevation above the bed. To date, no credible basis in fluid mechanics has been established for this model, nor has it been rigorously tested against more-mechanistic alternative models. One alternative is the Local Exchange Model (LEM), which is a stochastic advection-diffusion model that includes both longitudinal and vertical spatial dimensions and is based on classical fluid mechanics. The LEM predicts that particle settling will be non-exponential in the near field but will become exponential in the far field, providing a new theoretical justification for far-field exponential settling that is based on plausible fluid mechanics. We review properties of the ESM and LEM and compare these with available empirical evidence. Most evidence supports the prediction of both models that settling will be exponential in the far field but contradicts the ESM's prediction that a single exponential distribution will hold for all transport times and distances. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mattei, Tobias A; Bond, Brandon J; Hafner, John W; Morris, Martin J; Travis, Jennifer; Hannah, Greg; Webster, Jim; Lin, Julian J
2011-11-01
All-terrain vehicle (ATV) usage has grown tremendously over the years, reaching 9.5 million vehicles in use in 2007. Accompanying this growth has been a concomitant increase in rider morbidity (including traumatic brain and spine injuries) and death, especially in children. The purpose of this study was to define and measure, through field testing, those physical attributes intrinsic to riders, such as height, weight, and wingspan, which may have implications for ATV riders' safety. Three field tests (J-hook, brake, and bump) were developed and performed to allow direct measurement of the lateral, longitudinal, and vertical dynamics in 5 riders of varying heights, weights, and wingspans. Two ATVs, a utility and a sport model, were tested for further comparisons. Data were acquired using a comprehensive data acquisition system attached to the ATVs. Assignment of individual rider/ATV test safety ratings and a rider/ATV Total Safety Rating were made from the results of these field tests. The J-hook test results demonstrated that larger rider wingspans positively influence ATV rider safety and mitigate against lateral instability. From the brake test it was determined that a 10-in (25.4-cm) longitudinal displacement, such as that experienced during a sharp deceleration, for a rider of any height or weight, breached the level of defined safety. As rider weight increased, displacement decreased. The bump test provided evidence that increased rider weight also mitigates against vertical displacement. Individuals with light weights and small wingspans, such as those in the pediatric population, are under considerable risk of injury when operating an ATV due to lateral, longitudinal, and vertical operational instability.
ERIC Educational Resources Information Center
Bozick, Robert; Dalton, Ben
2013-01-01
This report examines the role of career and technical education (CTE) for assessing students in learning mathematics and preventing students from dropping out of high school. CTE is a wide field of educational practice that includes occupational training and career preparation offered in formats ranging from individual courses to comprehensive…
Developmental Changes in Cognitive Persistence and Academic Achievement between Grade 4 and Grade 8
ERIC Educational Resources Information Center
Jozsa, Krisztian; Morgan, George A.
2014-01-01
This study describes changes in cognitive persistence, a key measure of mastery motivation, between the ages of 10 (grade 4) and 14 (grade 8). Prior research in the field of mastery motivation has focused mainly on early childhood. No longitudinal research findings have been published about age changes in mastery motivation during the school…
ERIC Educational Resources Information Center
Grandy, Jerilee
A longitudinal study was designed in 1986 to investigate why some high-ability minority students follow through with their plans to enroll in college and major in mathematics, science, or engineering (MSE) fields, while others do not. Data came from three sources: (1) 1985 Scholastic Aptitude Test (SAT) files of a sample of minority students…
ERIC Educational Resources Information Center
Ticknor, Anne Swenson
2010-01-01
This longitudinal qualitative study examined how four preservice elementary teachers used language to construct professional identities, learn within relationships, and take risks in the classroom during their final three semesters in teacher education coursework and field experiences. My female participants were former students of mine in the…
Work Redesign and the Job Characteristics Model: A Longitudinal Field Study.
1982-01-01
prior to and following work redesign. Their general job satisfaction , internal work motivation, job performance , conduct, and absenteeism, as well as...increase employee job satisfaction and internal work motivation and improve conduct and job performance , (2) the diagnostic phase is the most essential part...Strength on the Job Performance -Job Satisfaction Relationship . ....... . 117 Summary ....... .................. 119 4. RESEARCH METHODS
Environmental Studies: Mathematical, Computational and Statistical Analyses
1993-03-03
mathematical analysis addresses the seasonally and longitudinally averaged circulation which is under the influence of a steady forcing located asymmetrically...employed, as has been suggested for some situations. A general discussion of how interfacial phenomena influence both the original contamination process...describing the large-scale advective and dispersive behaviour of contaminants transported by groundwater and the uncertainty associated with field-scale
Turbulent statistics in flow field due to interaction of two plane parallel jets
NASA Astrophysics Data System (ADS)
Bisoi, Mukul; Das, Manab Kumar; Roy, Subhransu; Patel, Devendra Kumar
2017-12-01
Turbulent characteristics of flow fields due to the interaction of two plane parallel jets separated by the jet width distance are studied. Numerical simulation is carried out by large eddy simulation with a dynamic Smagorinsky model for the sub-grid scale stresses. The energy spectra are observed to follow the -5/3 power law for the inertial sub-range. A proper orthogonal decomposition study indicates that the energy carrying large coherent structures is present close to the nozzle exit. It is shown that these coherent structures interact with each other and finally disintegrate into smaller vortices further downstream. The turbulent fluctuations in the longitudinal and lateral directions are shown to follow a similarity. The mean flow at the same time also maintains a close similarity. Prandtl's mixing length, the Taylor microscale, and the Kolmogorov length scales are shown along the lateral direction for different downstream locations. The autocorrelation in the longitudinal and transverse directions is seen to follow a similarity profile. By plotting the probability density function, the skewness and the flatness (kurtosis) are analyzed. The Reynolds stress anisotropy tensor is calculated, and the anisotropy invariant map known as Lumley's triangle is presented and analyzed.
Bamberger, Katharine T
2016-03-01
The use of intensive longitudinal methods (ILM)-rapid in situ assessment at micro timescales-can be overlaid on RCTs and other study designs in applied family research. Particularly, when done as part of a multiple timescale design-in bursts over macro timescales-ILM can advance the study of the mechanisms and effects of family interventions and processes of family change. ILM confers measurement benefits in accurately assessing momentary and variable experiences and captures fine-grained dynamic pictures of time-ordered processes. Thus, ILM allows opportunities to investigate new research questions about intervention effects on within-subject (i.e., within-person, within-family) variability (i.e., dynamic constructs) and about the time-ordered change process that interventions induce in families and family members beginning with the first intervention session. This paper discusses the need and rationale for applying ILM to family intervention evaluation, new research questions that can be addressed with ILM, example research using ILM in the related fields of basic family research and the evaluation of individual-based interventions. Finally, the paper touches on practical challenges and considerations associated with ILM and points readers to resources for the application of ILM.
Results from the Longitudinal Study of Astronomy Graduate Students
NASA Astrophysics Data System (ADS)
Ivie, Rachel
2014-01-01
The Longitudinal Study of Astronomy Graduate Students (LSAGS), an ongoing, joint project of the American Astronomical Society (AAS) and the American Institute of Physics (AIP), first collected survey data from astronomy and astrophysics graduate students in 2007-08. The LSAGS follows the same people, all of whom were in graduate school in 2006-07, over time as they start their careers. Most of the respondents are currently working as postdocs. There have been two rounds of the survey so far, and we have recently received funding for a third round from the National Science Foundation (AST-1347723). Results from the first round showed the importance of mentoring for graduate students. Data collection for the second round has been completed, and AIP has just begun analysis of these data. At this talk, I will present the results of the second survey. Ultimately, the LSAGS will *provide detailed data on trends in employment over 10+ years for a single cohort, *collect data on people who leave the field of astronomy during or after graduate school, *determine whether there are sex differences in attrition from astronomy and reasons for this, and *examine factors that precede decisions to persist in, or leave, the field of astronomy.
Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field.
Carmelo, J M P; Sacramento, P D; Machado, J D P; Campbell, D K
2015-10-14
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the 'pseudofermion dynamical theory' (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents ζ(τ)(k) controlling the singularities for both the longitudinal (τ = l) and transverse (τ = t) dynamical structure factors for the whole momentum range k ∈ ]0,π[, in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Singularities of the dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field
NASA Astrophysics Data System (ADS)
Carmelo, J. M. P.; Sacramento, P. D.; Machado, J. D. P.; Campbell, D. K.
2015-10-01
We study the longitudinal and transverse spin dynamical structure factors of the spin-1/2 XXX chain at finite magnetic field h, focusing in particular on the singularities at excitation energies in the vicinity of the lower thresholds. While the static properties of the model can be studied within a Fermi-liquid like description in terms of pseudoparticles, our derivation of the dynamical properties relies on the introduction of a form of the ‘pseudofermion dynamical theory’ (PDT) of the 1D Hubbard model suitably modified for the spin-only XXX chain and other models with two pseudoparticle Fermi points. Specifically, we derive the exact momentum and spin-density dependences of the exponents {{\\zeta}τ}(k) controlling the singularities for both the longitudinal ≤ft(τ =l\\right) and transverse ≤ft(τ =t\\right) dynamical structure factors for the whole momentum range k\\in ]0,π[ , in the thermodynamic limit. This requires the numerical solution of the integral equations that define the phase shifts in these exponents expressions. We discuss the relation to neutron scattering and suggest new experiments on spin-chain compounds using a carefully oriented crystal to test our predictions.
Bamberger, Katharine T.
2015-01-01
The use of intensive longitudinal methods (ILM)—rapid in situ assessment at micro timescales—can be overlaid on RCTs and other study designs in applied family research. Especially when done as part of a multiple timescale design—in bursts over macro timescales, ILM can advance the study of the mechanisms and effects of family interventions and processes of family change. ILM confers measurement benefits in accurately assessing momentary and variable experiences and captures fine-grained dynamic pictures of time-ordered processes. Thus, ILM allows opportunities to investigate new research questions about intervention effects on within-subject (i.e., within-person, within-family) variability (i.e., dynamic constructs) and about the time-ordered change process that interventions induce in families and family members beginning with the first intervention session. This paper discusses the need and rationale for applying ILM to intervention evaluation, new research questions that can be addressed with ILM, example research using ILM in the related fields of basic family research and the evaluation of individual-based (rather than family-based) interventions. Finally, the paper touches on practical challenges and considerations associated with ILM and points readers to resources for the application of ILM. PMID:26541560
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, B.; Haber, I.; Kishek, R. A.
An induction cell has successfully been demonstrated to longitudinally confine a space-charge dominated bunch for over a thousand turns (>11.52 km) in the University of Maryland Electron Ring [Haber et al., Nucl. Instrum. Methods Phys. Res. A 606, 64 (2009) and R. A. Kishek et al., Int. J. Mod. Phys. A 22, 3838 (2007)]. With the use of synchronized periodic focusing fields, the beam is confined for multiple turns overcoming the longitudinal space-charge forces. Experimental results show that an optimum longitudinal match is obtained when the focusing frequency for containment of the 0.52 mA beam is applied at every fifthmore » turn. Containment of the beam bunch is achievable at lower focusing frequencies, at the cost of a reduction in the transported charge from the lack of sufficient focusing. Containment is also obtainable, if the confinement fields overfocus the bunch, exciting multiple waves at the bunch ends, which propagate into the central region of the beam, distorting the overall constant current beam shape.« less
Chui, S T; Wang, Weihua; Zhou, L; Lin, Z F
2009-07-22
We study the propagation of plane electromagnetic waves through different systems consisting of arrays of split rings of different orientations. Many extraordinary EM phenomena were discovered in such systems, contributed by the off-diagonal magnetoelectric susceptibilities. We find a mode such that the electric field becomes elliptically polarized with a component in the longitudinal direction (i.e. parallel to the wavevector). Even though the group velocity [Formula: see text] and the wavevector k are parallel, in the presence of damping, the Poynting vector does not just get 'broadened', but can possess a component perpendicular to the wavevector. The speed of light can be real even when the product ϵμ is negative. Other novel properties are explored.
Williams, Michele L.; LeJeune, Jeffrey T.
2015-01-01
Food-borne pathogen persistence in soil fundamentally affects the production of safe vegetables and small fruits. Interventions that reduce pathogen survival in soil would have positive impacts on food safety by minimizing preharvest contamination entering the food chain. Laboratory-controlled studies determined the effects of soil pH, moisture content, and soil organic matter (SOM) on the survivability of this pathogen through the creation of single-parameter gradients. Longitudinal field-based studies were conducted in Ohio to quantify the extent to which field soils suppressed Escherichia coli O157:H7 survival. In all experiments, heat-sensitive microorganisms were responsible for the suppression of E. coli O157 in soil regardless of the chemical composition of the soil. In laboratory-based studies, soil pH and moisture content were primary drivers of E. coli O157 survival, with increases in pH after 48 h (P = 0.02) and decreases in moisture content after 48 h (P = 0.007) significantly increasing the log reduction of E. coli O157 numbers. In field-based experiments, E. coli O157 counts from both heated and unheated samples were sensitive to both season (P = 0.004 for heated samples and P = 0.001 for unheated samples) and region (P = 0.002 for heated samples and P = 0.001 for unheated samples). SOM was observed to be a more significant driver of pathogen suppression than the other two factors after 48 h at both planting and harvest (P = 0.002 at planting and P = 0.058 at harvest). This research reinforces the need for both laboratory-controlled experiments and longitudinal field-based experiments to unravel the complex relationships controlling the survival of introduced organisms in soil. PMID:25934621
Clinical Phenotypes and Prognostic Full-Field Electroretinographic Findings in Stargardt Disease
ZAHID, SARWAR; JAYASUNDERA, THIRAN; RHOADES, WILLIAM; BRANHAM, KARI; KHAN, NAHEED; NIZIOL, LESLIE M.; MUSCH, DAVID C.; HECKENLIVELY, JOHN R.
2013-01-01
PURPOSE To investigate the relationships between clinical and full-field electroretinographic (ERG) findings and progressive loss of visual function in Stargardt disease. DESIGN Retrospective cohort study. METHODS We performed a retrospective review of data from 198 patients with Stargardt disease. Measures of visual function over time, including visual acuity, quantified Goldmann visual fields, and full-field ERG data were recorded. Data were analyzed using SAS statistical software. Subgroup analyses were performed on 148 patients with ERG phenotypic data, 46 patients with longitudinal visual field data, and 92 patients with identified ABCA4 mutations (46 with 1 mutation, and 47 with 2 or more mutations). RESULTS Of 46 patients with longitudinal visual field data, 8 patients with faster central scotoma progression rates had significantly worse scotopic B-wave amplitudes at their initial assessment than 20 patients with stable scotomata (P = .014) and were more likely to have atrophy beyond the arcades (P = .047). Overall, 47.3% of patients exhibited abnormal ERG results, with rod–cone dysfunction in 14.2% of patients, cone–rod dysfunction in 17.6% of patients, and isolated cone dysfunction in 15.5% of patients. Abnormal values in certain ERG parameters were associated significantly with (maximum-stimulation A- and B-wave amplitudes) or tended toward (photopic and scotopic B-wave amplitudes) a higher mean rate of central scotoma progression compared with those patients with normal ERG values. Scotoma size and ERG parameters differed significantly between those with a single mutation versus those with multiple mutations. CONCLUSIONS Full-field ERG examination provides clinically relevant information regarding the severity of Stargardt disease, likelihood of central scotoma expansion, and visual acuity deterioration. Patients also may exhibit an isolated cone dystrophy on ERG examination. PMID:23219216
Magnetic topological analysis of coronal bright points
NASA Astrophysics Data System (ADS)
Galsgaard, K.; Madjarska, M. S.; Moreno-Insertis, F.; Huang, Z.; Wiegelmann, T.
2017-10-01
Context. We report on the first of a series of studies on coronal bright points which investigate the physical mechanism that generates these phenomena. Aims: The aim of this paper is to understand the magnetic-field structure that hosts the bright points. Methods: We use longitudinal magnetograms taken by the Solar Optical Telescope with the Narrowband Filter Imager. For a single case, magnetograms from the Helioseismic and Magnetic Imager were added to the analysis. The longitudinal magnetic field component is used to derive the potential magnetic fields of the large regions around the bright points. A magneto-static field extrapolation method is tested to verify the accuracy of the potential field modelling. The three dimensional magnetic fields are investigated for the presence of magnetic null points and their influence on the local magnetic domain. Results: In nine out of ten cases the bright point resides in areas where the coronal magnetic field contains an opposite polarity intrusion defining a magnetic null point above it. We find that X-ray bright points reside, in these nine cases, in a limited part of the projected fan-dome area, either fully inside the dome or expanding over a limited area below which typically a dominant flux concentration resides. The tenth bright point is located in a bipolar loop system without an overlying null point. Conclusions: All bright points in coronal holes and two out of three bright points in quiet Sun regions are seen to reside in regions containing a magnetic null point. An as yet unidentified process(es) generates the brigh points in specific regions of the fan-dome structure. The movies are available at http://www.aanda.org
Varga-Szemes, Akos; Kiss, Pal; Rab, Andras; Suranyi, Pal; Lenkey, Zsofia; Simor, Tamas; Bryant, Robert G.; Elgavish, Gabriel A.
2016-01-01
Purpose MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA). Materials and Methods The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4. Results The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s-1mM-1 and 18.1, 16.7, and 13.5 s-1mM-1, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s-1mM-1, respectively. Conclusions The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end. PMID:26872055
Posterino, G S; Lamb, G D; Stephenson, D G
2000-01-01
Transverse electrical field stimulation (50 V cm−1, 2 ms duration) of mechanically skinned skeletal muscle fibres of the rat elicited twitch and tetanic force responses (36 ± 4 and 83 ± 4 % of maximum Ca2+-activated force, respectively; n = 23) closely resembling those in intact fibres. The responses were steeply dependent on the field strength and were eliminated by inclusion of 10 μm tetrodotoxin (TTX) in the (sealed) transverse tubular (T-) system of the skinned fibres and by chronic depolarisation of the T-system. Spontaneous twitch-like activity occurred sporadically in many fibres, producing near maximal force in some instances (mean time to peak: 190 ± 40 ms; n = 4). Such responses propagated as a wave of contraction longitudinally along the fibre at a velocity of 13 ± 3 mm s−1 (n = 7). These spontaneous contractions were also inhibited by inclusion of TTX in the T-system and by chronic depolarisation. We examined whether the T-tubular network was interconnected longitudinally using fibre segments that were skinned for only ∼2/3 of their length, leaving the remainder of each segment intact with its T-system open to the bathing solution. After such fibres were exposed to TTX (60 μm), the adjacent skinned region (with its T-system not open to the solution) became unresponsive to subsequent electrical stimulation in ∼50 % of cases (7/15), indicating that TTX was able to diffuse longitudinally inside the fibre via the tubular network over hundreds of sarcomeres. These experiments show that excitation–contraction coupling in mammalian muscle fibres involves action potential propagation both transversally and longitudinally within the tubular system. Longitudinal propagation of action potentials inside skeletal muscle fibres is likely to be an important safety mechanism for reducing conduction failure during fatigue and explains why, in developing skeletal muscle, the T-system first develops as an internal longitudinal network. PMID:10944176
A dark-line two-dimensional magneto-optical trap of 85Rb atoms with high optical depth.
Zhang, Shanchao; Chen, J F; Liu, Chang; Zhou, Shuyu; Loy, M M T; Wong, G K L; Du, Shengwang
2012-07-01
We describe the apparatus of a dark-line two-dimensional (2D) magneto-optical trap (MOT) of (85)Rb cold atoms with high optical depth (OD). Different from the conventional configuration, two (of three) pairs of trapping laser beams in our 2D MOT setup do not follow the symmetry axes of the quadrupole magnetic field: they are aligned with 45° angles to the longitudinal axis. Two orthogonal repumping laser beams have a dark-line volume in the longitudinal axis at their cross over. With a total trapping laser power of 40 mW and repumping laser power of 18 mW, we obtain an atomic OD up to 160 in an electromagnetically induced transparency (EIT) scheme, which corresponds to an atomic-density-length product NL = 2.05 × 10(15) m(-2). In a closed two-state system, the OD can become as large as more than 600. Our 2D MOT configuration allows full optical access of the atoms in its longitudinal direction without interfering with the trapping and repumping laser beams spatially. Moreover, the zero magnetic field along the longitudinal axis allows the cold atoms maintain a long ground-state coherence time without switching off the MOT magnetic field, which makes it possible to operate the MOT at a high repetition rate and a high duty cycle. Our 2D MOT is ideal for atomic-ensemble-based quantum optics applications, such as EIT, entangled photon pair generation, optical quantum memory, and quantum information processing.
NASA Astrophysics Data System (ADS)
Fadigan, Kathleen A.; Hammrich, Penny L.
2004-10-01
The purpose of this longitudinal case study is to describe the educational trajectories of a sample of 152 young women from urban, low-income, single-parent families who participated in the Women in Natural Sciences (WINS) program during high school. Utilizing data drawn from program records, surveys, and interviews, this study also attempts to determine how the program affected the participants' educational and career choices to provide insight into the role informal science education programs play in increasing the participation of women and minorities in science, math, engineering, and technology (SMET)-related fields. Findings revealed 109 participants (93.16%) enrolled in a college program following high school completion. Careers in medical or health-related fields followed by careers in SMET emerged as the highest ranking career paths with 24 students (23.76%) and 21 students (20.79%), respectively, employed in or pursuing careers in these areas. The majority of participants perceived having staff to talk to, the job skills learned, and having the museum as a safe place to go as having influenced their educational and career decisions. These findings reflect the need for continued support of informal science education programs for urban girls and at-risk youth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saprykin, E G; Sorokin, V A; Shalagin, A M
Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applicationsmore » and other topics in quantum electronics)« less
Aized, Dawood; Schwall, Robert E.
1999-06-22
A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.
Aized, Dawood; Schwall, Robert E.
1996-06-11
A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.
Bulanov, S. S.; Brantov, A.; Bychenkov, V. Yu.; Chvykov, V.; Kalinchenko, G.; Matsuoka, T.; Rousseau, P.; Reed, S.; Yanovsky, V.; Litzenberg, D. W.; Krushelnick, K.; Maksimchuk, A.
2008-01-01
We consider the effect of laser beam shaping on proton acceleration in the interaction of a tightly focused pulse with ultrathin double-layer solid targets in the regime of directed Coulomb explosion. In this regime, the heavy ions of the front layer are forced by the laser to expand predominantly in the direction of the pulse propagation, forming a moving longitudinal charge separation electric field, thus increasing the effectiveness of acceleration of second-layer protons. The utilization of beam shaping, namely, the use of flat-top beams, leads to more efficient proton acceleration due to the increase of the longitudinal field. PMID:18850951
Christofilos, N.C.; Polk, I.J.
1959-02-17
Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.
The Subglacial Drainage Patterns of Devon Island, Canada
NASA Astrophysics Data System (ADS)
Grau Galofre, A.; Jellinek, M.; Osinski, G. R.
2016-12-01
Meltwater drainage patterns incised underneath ice masses can appear strikingly similar to fluvially dissected landscapes. We introduce a landscape evolution model to describe the longitudinal profiles of subglacial meltwater channels (tunnel valleys).We propose a way to identify them from topography data and imagery on the basis of the vertical scale of undulations compared to the total elevation gain. We test the model with field data from tunnel valleys exposed in Devon Island, NU, Canada. We use field measurements of longitudinal profiles, photogrammetry and 3D LIDAR to establish a quantitative comparison of tunnel valleys and fluvial channels. Tunnel valleys are oriented parallel to former ice flow lines and are characterized by undulating longitudinal profiles. We use these features to identify quantitatively tunnel valleys in central Devon Island (figure 1). We ground truth our observations with imagery of tunnel valleys appearing at the edges of the actively retreating ice cap. Longitudinal profiles show undulations with amplitudes up to 14m over a total elevation gain of 20m and with wavelengths comparable to the channel width. These "overdeepenings" are not observed in any fluvial channels in the area and are consistent with expectations of flow driven by variations in ice thickness. Our identification scheme rigorously distinguishes fluvial and subglacial dissected landscapes.
Origin of the extremely large magnetoresistance in the semimetal YSb
Xu, J.; Ghimire, N. J.; Jiang, J. S.; ...
2017-08-29
Extremely large magnetoresistance (XMR) was recently discovered in YSb but its origin, along with that of many other XMR materials, is an active subject of debate. Here we demonstrate that YSb, with a cubic crystalline lattice and anisotropic bulk electron Fermi pockets, can be an excellent candidate for revealing the origin of XMR. We carried out angle dependent Shubnikov – de Haas quantum oscillation measurements to determine the volume and shape of the Fermi pockets. In addition, by investigating both Hall and longitudinal magnetoresistivities, we reveal that the origin of XMR in YSb lies in its carrier high mobility withmore » a diminishing Hall factor that is obtained from the ratio of the Hall and longitudinal magentoresistivities. The high mobility leads to a strong magnetic field dependence of the longitudinal magnetoconductivity while a diminishing Hall factor reveals the latent XMR hidden in the longitudinal magnetoconductivity whose inverse has a nearly quadratic magnetic-field dependence. The Hall factor highlights the deviation of the measured magnetoresistivity from its full potential value and provides a general formulation to reveal the origin of XMR behavior in high mobility materials and of nonsaturating MR behavior as a whole. Our approach can be readily applied to other XMR materials.« less
Huang, Susie Y; Witzel, Thomas; Wald, Lawrence L
2008-11-01
Control of the longitudinal magnetization in fast gradient-echo (GRE) sequences is an important factor in enabling the high efficiency of balanced steady-state free precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The accelerated radiation damping for increased spin equilibrium (ARISE) method uses an external feedback circuit to strengthen the radiation damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T(1) relaxation. The method is characterized in GRE phantom imaging at 3T as a function of feedback gain, phase, and duration, and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10 ms) during a refocused interval of a crushed GRE sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T(2) relaxation had time to occur. An appropriate application might be to improve navigated sequences. Unlike conventional flip-back schemes, the ARISE "flip-back" is generated by the spins themselves, thereby offering a potentially useful building block for enhancing GRE sequences.
Chiral anomaly and longitudinal magnetotransport in type-II Weyl semimetals
NASA Astrophysics Data System (ADS)
Sharma, Girish; Goswami, Pallab; Tewari, Sumanta
2017-07-01
In the presence of parallel electric and magnetic fields, the violation of a separate number conservation laws for the three-dimensional left- and right-handed Weyl fermions is known as the chiral anomaly. The recent discovery of Weyl and Dirac semimetals has paved the way for experimentally testing the effects of chiral anomaly via magnetotransport measurements, since chiral anomaly can lead to negative longitudinal magnetoresistance (LMR) while the transverse magnetoresistance remains positive. More recently, a type-II Weyl semimetal (WSM) phase has been proposed, where the nodal points possess a finite density of states due to the touching between electron and hole pockets. It has been suggested that the main difference between the two types of WSMs (type I and type II) is that in the latter, chiral-anomaly-induced negative LMR (positive longitudinal magnetoconductance) is strongly anisotropic, vanishing when the applied magnetic field is perpendicular to the direction of tilt of Weyl fermion cones in a type-II WSM. We analyze chiral anomaly in a type-II WSM in a quasiclassical Boltzmann framework, and find that the chiral-anomaly-induced positive longitudinal magnetoconductivity is present along any arbitrary direction. Thus, our results are pertinent for uncovering transport signatures of type-II WSMs in different candidate materials.
A bulk superconducting MgB 2 cylinder for holding transversely polarized targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Statera, M.; Balossino, I.; Barion, L.
An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less
A bulk superconducting MgB 2 cylinder for holding transversely polarized targets
Statera, M.; Balossino, I.; Barion, L.; ...
2017-11-06
An innovative solution is being pursued for the challenging magnetic problem of producing an internal transverse field around a polarized target, while shielding out an external longitudinal field from a detector. A hollow bulk superconductor can trap a transverse field that is present when cooled through its transition temperature, and also shield its interior from any subsequent field changes. Here, a feasibility study with a prototype bulk MgB 2 superconducting cylinder is described. Promising measurements taken of the interior field retention and exterior field exclusion, together with the corresponding long-term stability performance, are reported. In the context of an electronmore » scattering experiment, such a solution minimizes beam deflection and the energy loss of reaction products, while also eliminating the heat load to the target cryostat from current leads that would be used with conventional electromagnets.« less
Mahdy, M R C; Danesh, Md; Zhang, Tianhang; Ding, Weiqiang; Rivy, Hamim Mahmud; Chowdhury, Ariful Bari; Mehmood, M Q
2018-02-16
The stimulating connection between the reversal of near-field plasmonic binding force and the role of symmetry-breaking has not been investigated comprehensively in the literature. In this work, the symmetry of spherical plasmonic heterodimer-setup is broken forcefully by shining the light from a specific side of the set-up instead of impinging it from the top. We demonstrate that for the forced symmetry-broken spherical heterodimer-configurations: reversal of lateral and longitudinal near-field binding force follow completely distinct mechanisms. Interestingly, the reversal of longitudinal binding force can be easily controlled either by changing the direction of light propagation or by varying their relative orientation. This simple process of controlling binding force may open a novel generic way of optical manipulation even with the heterodimers of other shapes. Though it is commonly believed that the reversal of near-field plasmonic binding force should naturally occur for the presence of bonding and anti-bonding modes or at least for the Fano resonance (and plasmonic forces mostly arise from the surface force), our study based on Lorentz-force dynamics suggests notably opposite proposals for the aforementioned cases. Observations in this article can be very useful for improved sensors, particle clustering and aggregation.
Sound pressure distribution within natural and artificial human ear canals: Forward stimulation
Ravicz, Michael E.; Tao Cheng, Jeffrey; Rosowski, John J.
2014-01-01
This work is part of a study of the interaction of sound pressure in the ear canal (EC) with tympanic membrane (TM) surface displacement. Sound pressures were measured with 0.5–2 mm spacing at three locations within the shortened natural EC or an artificial EC in human temporal bones: near the TM surface, within the tympanic ring plane, and in a plane transverse to the long axis of the EC. Sound pressure was also measured at 2-mm intervals along the long EC axis. The sound field is described well by the size and direction of planar sound pressure gradients, the location and orientation of standing-wave nodal lines, and the location of longitudinal standing waves along the EC axis. Standing-wave nodal lines perpendicular to the long EC axis are present on the TM surface >11–16 kHz in the natural or artificial EC. The range of sound pressures was larger in the tympanic ring plane than at the TM surface or in the transverse EC plane. Longitudinal standing-wave patterns were stretched. The tympanic-ring sound field is a useful approximation of the TM sound field, and the artificial EC approximates the natural EC. PMID:25480061
Visual field progression in glaucoma: total versus pattern deviation analyses.
Artes, Paul H; Nicolela, Marcelo T; LeBlanc, Raymond P; Chauhan, Balwantray C
2005-12-01
To compare visual field progression with total and pattern deviation analyses in a prospective longitudinal study of patients with glaucoma and healthy control subjects. A group of 101 patients with glaucoma (168 eyes) with early to moderately advanced visual field loss at baseline (average mean deviation [MD], -3.9 dB) and no clinical evidence of media opacity were selected from a prospective longitudinal study on visual field progression in glaucoma. Patients were examined with static automated perimetry at 6-month intervals for a median follow-up of 9 years. At each test location, change was established with event and trend analyses of total and pattern deviation. The event analyses compared each follow-up test to a baseline obtained from averaging the first two tests, and visual field progression was defined as deterioration beyond the 5th percentile of test-retest variability at three test locations, observed on three consecutive tests. The trend analyses were based on point-wise linear regression, and visual field progression was defined as statistically significant deterioration (P < 5%) worse than -1 dB/year at three locations, confirmed by independently omitting the last and the penultimate observation. The incidence and the time-to-progression were compared between total and pattern deviation analyses. To estimate the specificity of the progression analyses, identical criteria were applied to visual fields obtained in 102 healthy control subjects, and the rate of visual field improvement was established in the patients with glaucoma and the healthy control subjects. With both event and trend methods, pattern deviation analyses classified approximately 15% fewer eyes as having progressed than did the total deviation analyses. In eyes classified as progressing by both the total and pattern deviation methods, total deviation analyses tended to detect progression earlier than the pattern deviation analyses. A comparison of the changes observed in MD and the visual fields' general height (estimated by the 85th percentile of the total deviation values) confirmed that change in the glaucomatous eyes almost always comprised a diffuse component. Pattern deviation analyses of progression may therefore underestimate the true amount of glaucomatous visual field progression. Pattern deviation analyses of visual field progression may underestimate visual field progression in glaucoma, particularly when there is no clinical evidence of increasing media opacity. Clinicians should have access to both total and pattern deviation analyses to make informed decisions on visual field progression in glaucoma.
Tree, Jeremy; Kay, Janice
2015-09-01
In the field of dementia research, there are reports of neurodegenerative cases with a focal loss of language, termed primary progressive aphasia (PPA). Currently, this condition has been further sub-classified, with the most recent sub-type dubbed logopenic variant (PPA-LV). As yet, there remains somewhat limited evaluation of the characteristics of this condition, with no studies providing longitudinal assessment accompanied by post-mortem examination. Moreover, a key characteristic of the PPA-LV case is a deterioration of phonological short-term memory, but again little work has scrutinized the nature of this impairment over time. The current study seeks to redress these oversights and presents detailed longitudinal examination of language and memory function in a case of PPA-LV, with special focus on tests linked to components of phonological short-term memory function. Our findings are then considered with reference to a contemporary model of the neuropsychology of phonological short-term memory. Additionally, post-mortem examinations indicated Alzheimer's disease type pathology, providing further evidence that the PPA-LV presentation may reflect an atypical presentation of this condition. © 2014 The British Psychological Society.
Mesoscopic bar magnet based on ε-Fe2O3 hard ferrite.
Ohkoshi, Shin-Ichi; Namai, Asuka; Yamaoka, Takehiro; Yoshikiyo, Marie; Imoto, Kenta; Nasu, Tomomichi; Anan, Shizuka; Umeta, Yoshikazu; Nakagawa, Kosuke; Tokoro, Hiroko
2016-06-07
Ferrite magnets have a long history. They are used in motors, magnetic fluids, drug delivery systems, etc. Herein we report a mesoscopic ferrite bar magnet based on rod-shaped ε-Fe2O3 with a large coercive field (>25 kOe). The ε-Fe2O3-based bar magnet is a single crystal with a single magnetic domain along the longitudinal direction. A wide frequency range spectroscopic study shows that the crystallographic a-axis of ε-Fe2O3, which corresponds to the longitudinal direction of the bar magnet, plays an important role in linear and non-linear magneto-optical transitions, phonon modes, and the magnon (Kittel mode). Due to its multiferroic property, a magnetic-responsive non-linear optical sheet is manufactured as an application using an ε-Fe2O3-based bar magnet, resin, and polyethylene terephthalate. Furthermore, from the viewpoint of the large coercive field property, we demonstrate that a mesoscopic ε-Fe2O3 bar magnet can be used as a magnetic force microscopy probe.
NASA Astrophysics Data System (ADS)
Debnath, Rajesh; Mandal, S. K.; Dey, P.; Nath, A.
2018-04-01
We have investigated strain mediated magnetoelectric coupling and ac electrical properties of 0.5La0.7Sr0.3MnO3-0.5 Polyvinylidene Fluoride nanocomposites at room temperature. The sample has been prepared through low temperature pyrophoric chemical process. The detailed study of X-ray diffraction pattern shows simultaneous co-existence of two phases of nanometric grains. Field emission scanning electron micrograph shows the absence of any phase segregation and good chemical homogeneity in composites. The magnetoelectric voltage is measured in both longitudinal and transverse direction at a frequency of 73 Hz. The magnetoelectric coefficient in transverse direction is found to ˜0.17 mV/cmOe and in longitudinal direction it is found to ˜0.08 mV/cmOe. With the application of dc magnetic field the real and imaginary part of impedance are increased where the dielectric constant has been decreased. Nyquist plots have been fitted using two parallel combinations of resistances - constant phase element circuits considering dominant role of grains and grain boundaries resistance in the conduction process of the sample.
Mesoscopic bar magnet based on ɛ-Fe2O3 hard ferrite
NASA Astrophysics Data System (ADS)
Ohkoshi, Shin-Ichi; Namai, Asuka; Yamaoka, Takehiro; Yoshikiyo, Marie; Imoto, Kenta; Nasu, Tomomichi; Anan, Shizuka; Umeta, Yoshikazu; Nakagawa, Kosuke; Tokoro, Hiroko
2016-06-01
Ferrite magnets have a long history. They are used in motors, magnetic fluids, drug delivery systems, etc. Herein we report a mesoscopic ferrite bar magnet based on rod-shaped ɛ-Fe2O3 with a large coercive field (>25 kOe). The ɛ-Fe2O3-based bar magnet is a single crystal with a single magnetic domain along the longitudinal direction. A wide frequency range spectroscopic study shows that the crystallographic a-axis of ɛ-Fe2O3, which corresponds to the longitudinal direction of the bar magnet, plays an important role in linear and non-linear magneto-optical transitions, phonon modes, and the magnon (Kittel mode). Due to its multiferroic property, a magnetic-responsive non-linear optical sheet is manufactured as an application using an ɛ-Fe2O3-based bar magnet, resin, and polyethylene terephthalate. Furthermore, from the viewpoint of the large coercive field property, we demonstrate that a mesoscopic ɛ-Fe2O3 bar magnet can be used as a magnetic force microscopy probe.
Method for alignment of microwires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beardslee, Joseph A.; Lewis, Nathan S.; Sadtler, Bryce
2017-01-24
A method of aligning microwires includes modifying the microwires so they are more responsive to a magnetic field. The method also includes using a magnetic field so as to magnetically align the microwires. The method can further include capturing the microwires in a solid support structure that retains the longitudinal alignment of the microwires when the magnetic field is not applied to the microwires.
Quasi-Static Magnetic Field Shielding Using Longitudinal Mu-Near-Zero Metamaterials.
Lipworth, Guy; Ensworth, Joshua; Seetharam, Kushal; Lee, Jae Seung; Schmalenberg, Paul; Nomura, Tsuyoshi; Reynolds, Matthew S; Smith, David R; Urzhumov, Yaroslav
2015-08-03
The control of quasi-static magnetic fields is of considerable interest in applications including the reduction of electromagnetic interference (EMI), wireless power transfer (WPT), and magnetic resonance imaging (MRI). The shielding of static or quasi-static magnetic fields is typically accomplished through the use of inherently magnetic materials with large magnetic permeability, such as ferrites, used sometimes in combination with metallic sheets and/or active field cancellation. Ferrite materials, however, can be expensive, heavy and brittle. Inspired by recent demonstrations of epsilon-, mu- and index-near-zero metamaterials, here we show how a longitudinal mu-near-zero (LMNZ) layer can serve as a strong frequency-selective reflector of magnetic fields when operating in the near-field region of dipole-like sources. Experimental measurements with a fabricated LMNZ sheet constructed from an artificial magnetic conductor - formed from non-magnetic, conducting, metamaterial elements - confirm that the artificial structure provides significantly improved shielding as compared with a commercially available ferrite of the same size. Furthermore, we design a structure to shield simultaneously at the fundamental and first harmonic frequencies. Such frequency-selective behavior can be potentially useful for shielding electromagnetic sources that may also generate higher order harmonics, while leaving the transmission of other frequencies unaffected.
NASA Astrophysics Data System (ADS)
Wong, Q. Y.; Gan, W. L.; Luo, F. L.; Lim, G. J.; Ang, C. C. I.; Tan, F. N.; Law, W. C.; Lew, W. S.
2018-03-01
A combination of the harmonic measurement and in situ Kerr imaging was used to experimentally determine the spin-orbit (SO) effective fields in a MgO/CoFeB/Ta structure. Here, we evaluate the SO effective fields through an analytical energy approach by transforming the anomalous Hall effect and planar Hall effect (PHE) voltage into a field dependency while imaging the magnetisation behaviour by differential Kerr microscopy. The analytical fitting to the measurement data indicates the significant coexistence of both a transverse field, {{H}T} , and longitudinal field, {{H}L} , in the longitudinal (H L = -12 Oe, H T = 8 Oe per 106 A cm-2) and transverse (H L = -12 Oe, H T = -17 Oe per 106 A cm-2) measurement schemes, respectively, due to the PHE. Additionally, dendritic-like domains, indicating the influence of the interfacial Dzyaloshinskii-Moriya interaction (DMI) at the CoFeB/Ta interface, were observed by in situ Kerr imaging. Micromagnetic simulations confirm the dendritic domain formation and edge tilting of the magnetisation, as being due to the DMI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamauchi, M.; Lundin, R.; Woch, J.
1993-04-01
latitudinals develop a model to account for the effect of the interplanetary magnetic field (IMF) B[sub y] component on the dayside field-aligned currents (FACs). As part of the model the FACs are divided into a [open quotes]cusp part[close quotes] and a [open quotes]noncusp part[close quotes]. The authors then propose that the cusp part FACs shift in the longitudinal direction while the noncusplike part FACs shift in both longitudinal and latitudinal directions in response to the y component of the IMF. If combined, it is observed that the noncusp part FAC is found poleward of the cusp part FAC system whenmore » the y component of the IMF is large. These two FAC systems flow in the same direction. They reinforce one another, creating a strong FAC, termed the DPY-FAC. The model also predicts that the polewardmost part of the DPY-FAC flows on closed field lines, even in regions conventionally occupied by the polar cap. Results of the model are successfully compared with particle and magnetic field data from Viking missions.« less
NASA Astrophysics Data System (ADS)
Davidson, Ronald C.; McMullin, Wayne A.
1982-07-01
The relativistic motion of an electron is calculated in the combined fields of a transverse helical wiggler field (axial wavelength is λ0=2πk0) and the constant-amplitude, circularly polarized primary electromagnetic wave (δBT,ω,k) propagating in the z direction. For particle velocity near the beat-wave phase velocity ω(k+k0) of the primary wave, it is shown that the presence of a second, moderate-amplitude longitudinal wave (δÊL,ω,k) or transverse electromagnetic wave (δB2,ω2,k2) can lead to stochastic particle instability in which particles trapped near the separatrix of the primary wave undergo a systematic departure from the potential well. The condition for onset of instability is calculated, and the importance of these results for free-electron-laser (FEL) application is discussed. For development of long-pulse or steady-state free-electron lasers, the maintenance of beam integrity for an extended period of time will be of considerable practical importance. The fact that the presence of secondary, moderate-amplitude longitudinal or transverse electromagnetic waves can destroy coherent motion for certain classes of beam particles moving with velocity near ω(k+k0) may lead to a degradation of beam quality and concomitant modification of FEL emission properties.
Faraday effect on the Rb D{sub 1} line in a cell with a thickness of half the wavelength of light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sargsyan, A., E-mail: sarmeno@mail.ru, E-mail: sargsyanarmen85@gmail.com; Pashayan-Leroy, Y.; Leroy, C.
2016-09-15
The rotation of the radiation polarization plane in a longitudinal magnetic field (Faraday effect) on the D{sub 1} line in atomic Rb vapor has been studied with the use of a nanocell with the thickness L varying in the range of 100–900 nm. It has been shown that an important parameter is the ratio L/λ, where λ = 795 nm is the wavelength of laser radiation resonant with the D{sub 1} line. The best parameters of the signal of rotation of the radiation polarization plane have been obtained at the thickness L = λ/2 = 397.5 nm. The fabricated nanocellmore » had a large region with such a thickness. The spectral width of the signal reached at the thickness L = 397.5 nm is approximately 30 MHz, which is much smaller than the spectral width (≈ 500 MHz) reached with ordinary cells with a thickness in the range of 1–100 mm. The parameters of the Faraday rotation signal have been studied as functions of the temperature of the nanocell, the laser power, and the magnetic field strength. The signal has been reliably detected at the laser power P{sub L} ≥ 1 μW, magnetic field strength B ≥ 0.5 G, and the temperature of the nanocell T ≥ 100°C. It has been shown that the maximum rotation angle of the polarization plane in the longitudinal magnetic field is reached on the F{sub g} = 3 → F{sub e} = 2 transition of the {sup 85}Rb atom. The spectral profile of the Faraday rotation signal has a specific shape with a sharp peak, which promotes its applications. In particular, Rb atomic transitions in high magnetic fields about 1000 G are split into a large number of components, which are completely spectrally resolved and allow the study of the behavior of an individual transition.« less
ERIC Educational Resources Information Center
Starobin, Soko S.; Schenk, Tom, Jr.; Laanan, Frankie Santos; Rethwisch, David G.; Moeller, Darin
2013-01-01
Project Lead The Way (PLTW), which aims to create a seamless pathway from secondary education to college and career success in STEM fields, was first implemented in the state of Iowa in 2005. As a part of a statewide, longitudinal research in PLTW, this study explores the effectiveness of PLTW in college persistence by analyzing multiple data…
ERIC Educational Resources Information Center
Akers, Kathryn Shirley
2011-01-01
The purpose of this study is to demonstrate a practical application of social network analysis in the field of education using a large-scale data source. Using the Early Childhood Longitudinal Base Year data, a network is identified by examining the connections that occur between supports, both inside and outside formal special education resources…
Leadership at the Top: Some Insights from a Longitudinal Case Study of a UK Business School
ERIC Educational Resources Information Center
Williams, Allan P. O.
2009-01-01
A UK business school was researched to record its history and to account for its development. The data collection and interpretation were influenced by the flexible and iterative nature of the methodology. Theories and concepts used to make sense of the findings include: open systems, force fields, and power. The focus is on strategic leadership,…
Learning Styles in the e-Learning Environment: The Approaches and Research on Longitudinal Changes
ERIC Educational Resources Information Center
Doulik, Pavel; Skoda, Jiri; Simonova, Ivana
2017-01-01
The paper focuses on the field of learning styles in e-learning. The study is structured in two main parts: (1) a brief overview of traditional approaches to learning styles is presented and their role in the process of instruction is set; this part results in the reflection of current state, when learning styles are considered within e-learning;…
Optical Isolators With Transverse Magnets
NASA Technical Reports Server (NTRS)
Fan, Yuan X.; Byer, Robert L.
1991-01-01
New design for isolator includes zigzag, forward-and-backward-pass beam path and use of transverse rather than longitudinal magnetic field. Design choices produce isolator with as large an aperture as desired using low-Verdet-constant glass rather than more expensive crystals. Uses commercially available permanent magnets in Faraday rotator. More compact and less expensive. Designed to transmit rectangular beam. Square cross section of beam extended to rectangular shape by increasing one dimension of glass without having to increase magnetic field. Potentially useful in laser systems involving slab lasers and amplifiers. Has applications to study of very-high-power lasers for fusion research.
On radiation forces acting on a transparent nanoparticle in the field of a focused laser beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanas'ev, A A; Rubinov, A N; Gaida, L S
2015-10-31
Radiation forces acting on a transparent spherical nanoparticle in the field of a focused Gaussian laser beam are studied theoretically in the Rayleigh scattering regime. Expressions are derived for the scattering force and Cartesian components of the gradient force. The resultant force acting on a nanoparticle located in the centre of a laser beam is found. The parameters of the focused beam and optical properties of the nanoparticle for which the longitudinal component of the gradient force exceeds the scattering force are determined. Characteristics of the transverse gradient force are discussed. (nanophotonics)
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-05-03
We present an experimental study of a high-gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.
The study of surface acoustic wave charge transfer device
NASA Technical Reports Server (NTRS)
Papanicolaou, N.; Lin, H. C.
1978-01-01
A surface acoustic wave-charge transfer device, consisting of an n-type silicon substrate, a thermally grown silicon dioxide layer, and a sputtered film of piezoelectric zinc oxide is proposed as a means of circumventing problems associated with charge-coupled device (CCD) applications in memory, signal processing, and imaging. The proposed device creates traveling longitudinal electric fields in the silicon and replaces the multiphase clocks in CCD's. The traveling electric fields create potential wells which carry along charges stored there. These charges may be injected into the wells by light or by using a p-n junction as in conventional CCD's.
NASA Technical Reports Server (NTRS)
Stallings, R. L., Jr.
1984-01-01
Longitudinal aerodynamic characteristics of a Sparrow 3 wing control missile model were measured through a range of separation distances relative to a flat plate surface that represented the parent-body configuration. Measurements were obtained with and without two dimensional circular arc protuberances attached to the flat plate surface. The tests were conducted at a Mach number of 2.86 and a Reynolds number per meter of 6.56 million. The behavior of these longitudinal characteristics with varying separation distance in the flow field created by the flat plate and protuberance was generally as would be expected on the basis of flow field boundaries determined from the second order approximation of Friedrich. In general, varying roll angle from 0 deg to 45 deg caused no significant effect on the store separation characteristics.
NASA Astrophysics Data System (ADS)
Park, Jaeheung; Lühr, Hermann; Kervalishvili, Guram; Rauberg, Jan; Michaelis, Ingo; Stolle, Claudia; Kwak, Young-Sil
2015-08-01
Previous studies suggested that electric and/or magnetic field fluctuations observed in the nighttime topside ionosphere at midlatitudes generally originate from quiet time nocturnal medium-scale traveling ionospheric disturbances (MSTIDs). However, decisive evidences for the connection between the two have been missing. In this study we make use of the multispacecraft observations of midlatitude magnetic fluctuations (MMFs) in the nighttime topside ionosphere by the Swarm constellation. The analysis results show that the area hosting MMFs is elongated in the NW-SE (NE-SW) direction in the Northern (Southern) Hemisphere. The elongation direction and the magnetic field polarization support that the area hosting MMFs is nearly field aligned. All these properties of MMFs suggest that they have close relationship with MSTIDs. Expectation values of root-mean-square field-aligned currents associated with MMFs are up to about 4 nA/m2. MMF coherency significantly drops for longitudinal distances of ≥1∘.
Exposure to Radiofrequency Electromagnetic Fields and Sleep Quality: A Prospective Cohort Study
Mohler, Evelyn; Frei, Patrizia; Fröhlich, Jürg; Braun-Fahrländer, Charlotte; Röösli, Martin
2012-01-01
Background There is persistent public concern about sleep disturbances due to radiofrequency electromagnetic field (RF-EMF) exposure. The aim of this prospective cohort study was to investigate whether sleep quality is affected by mobile phone use or by other RF-EMF sources in the everyday environment. Methods We conducted a prospective cohort study with 955 study participants aged between 30 and 60 years. Sleep quality and daytime sleepiness was assessed by means of standardized questionnaires in May 2008 (baseline) and May 2009 (follow-up). We also asked about mobile and cordless phone use and asked study participants for consent to obtain their mobile phone connection data from the mobile phone operators. Exposure to environmental RF-EMF was computed for each study participant using a previously developed and validated prediction model. In a nested sample of 119 study participants, RF-EMF exposure was measured in the bedroom and data on sleep behavior was collected by means of actigraphy during two weeks. Data were analyzed using multivariable regression models adjusted for relevant confounders. Results In the longitudinal analyses neither operator-recorded nor self-reported mobile phone use was associated with sleep disturbances or daytime sleepiness. Also, exposure to environmental RF-EMF did not affect self-reported sleep quality. The results from the longitudinal analyses were confirmed in the nested sleep study with objectively recorded exposure and measured sleep behavior data. Conclusions We did not find evidence for adverse effects on sleep quality from RF-EMF exposure in our everyday environment. PMID:22624036
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Prerana, E-mail: preranaiitd@rediffmail.com; Chhajlani, R. K.
2014-03-15
The effect of spin induced magnetization and electrical resistivity incorporating the viscosity of the medium is examined on the Jeans instability of quantum magnetoplasma. Formulation of the system is done by using the quantum magnetohydrodynamic model. The analysis of the problem is carried out by normal mode analysis theory. The general dispersion relation is derived from set of perturbed equations to analyse the growth rate and condition of self-gravitational Jeans instability. To discuss the influence of resistivity, magnetization, and viscosity parameters on Jeans instability, the general dispersion relation is reduced for both transverse and longitudinal mode of propagations. In themore » case of transverse propagation, the gravitating mode is found to be affected by the viscosity, magnetization, resistivity, and magnetic field strength whereas Jeans criterion of instability is modified by the magnetization and quantum parameter. In the longitudinal mode of propagation, the gravitating mode is found to be modified due to the viscosity and quantum correction in which the Jeans condition of instability is influenced only by quantum parameter. The other non-gravitating Alfven mode in this direction is affected by finite electrical resistivity, spin induced magnetization, and viscosity. The numerical study for the growth rate of Jeans instability is carried out for both in the transverse and longitudinal direction of propagation to the magnetic field. The effect of various parameters on the growth rate of Jeans instability in quantum plasma is analysed.« less
Microfabricated sensors for the measurement of electromagnetic fields in biological tissues
NASA Astrophysics Data System (ADS)
Monberg, James; Henning, Albert K.
1995-09-01
Public awareness of the risks of exposure to electromagnetic radiation has grown over the past ten yeras. The effects of power lines on human and animal health have drawn particular attention. Some longitudinal studies of cancer rates near power lines show a significant correlation, while others show a null result. The studies have suffered from inadequate sensors for the measurement of electromagnetic radiation in vivo. In this work, we describe the design, construction, and testing of electrically passive, microfabricated single-pole antennas and coils. These sensors will be used in vivo to study the effects of electromagnetic radiation on animals. Our testing to date has been limited to in vitro studies of the magnetic field probes. Magnetic field pickup coils were fabricated with up to 100 turns, over a length of up to 1000 micrometers . Measurements were carried out with the sensors in air, and in water of various saline concentrations. Magnetic fields were applied using a Helmholtz coil. Both dc and ac fields were applied. The results indicate that small-area measurements of electromagnetic fields in vitro can be made successfully, provided adequate shielding and amplification are used.
NASA Astrophysics Data System (ADS)
Luna, M.; Su, Y.; Schmieder, B.; Chandra, R.; Kucera, T. A.
2017-12-01
We follow the eruption of two related intermediate filaments observed in Hα (from GONG) and EUV (from Solar Dynamics Observatory SDO/Atmospheric Imaging assembly AIA) and the resulting large-amplitude longitudinal oscillations of the plasma in the filament channels. The events occurred in and around the decayed active region AR12486 on 2016 January 26. Our detailed study of the oscillation reveals that the periods of the oscillations are about one hour. In Hα, the period decreases with time and exhibits strong damping. The analysis of 171 Å images shows that the oscillation has two phases: an initial long-period phase and a subsequent oscillation with a shorter period. In this wavelength, the damping appears weaker than in Hα. The velocity is the largest ever detected in a prominence oscillation, approximately 100 {km} {{{s}}}-1. Using SDO/HMI magnetograms, we reconstruct the magnetic field of the filaments, modeled as flux ropes by using a flux-rope insertion method. Applying seismological techniques, we determine that the radii of curvature of the field lines in which cool plasma is condensed are in the range 75-120 Mm, in agreement with the reconstructed field. In addition, we infer a field strength of ≥7 to 30 Gauss, depending on the electron density assumed, that is also in agreement with the values from the reconstruction (8-20 Gauss). The poloidal flux is zero and the axis flux is on the order of 1020 to 1021 Mx, confirming the high shear existing even in a non-active filament.
NASA Astrophysics Data System (ADS)
Alken, P.
2016-01-01
The CHAMP and Swarm satellites, which provide high-quality magnetic field measurements in low-altitude polar orbits, are ideally suited for investigating ionospheric current systems. In this study, we focus on the F region low-latitude gravity and diamagnetic currents which are prominent in the equatorial ionization anomaly (EIA) region in the North and South Hemisphere. During its 10 year mission, CHAMP has sampled nearly the entire altitude range of the EIA, offering the opportunity to study these currents from above, inside, and below their source region. The Swarm constellation offers the unique opportunity to study near-simultaneous measurements of the current systems at different longitudinal separations. In this study, we present new observations of these current systems, investigate their seasonal and local time dependence, investigate the use of in situ electron density measurements as a proxy for the magnetic perturbations, and compute the longitudinal self correlation of these currents. We find that these currents are strongest during spring and fall, produce nighttime magnetic fields at satellite altitude of up to 5-7 nT during solar maximum, 2-3 nT during solar minimum, and are highly correlated with in situ electron density measurements. We also find these currents are self-correlated above 70% up to 15° longitude in both hemispheres during the evening.
Tansey, Catherine M; Matté, Andrea L; Needham, Dale; Herridge, Margaret S
2007-12-01
To review the literature on retention strategies in follow-up studies and their relevance to critical care and to comment on the Toronto experience with the acute respiratory distress syndrome (ARDS) and severe acute respiratory syndrome (SARS) follow-up studies. Literature review and two cohort studies in a tertiary care hospital in Toronto, Canada. ARDS and SARS patients. Review articles from the social sciences and medicine are summarized and our own experience with two longitudinal studies is drawn upon to elucidate strategies that can be successfully used to attenuate participant drop-out from longitudinal studies. Three key areas for retention of subjects are identified from the literature: (a) respect for patients: respect for their ideas and their time commitment to the research project; (b) tracking: collect information on many patient contacts at the initiation of the study and outline tracking procedures for subjects lost to follow-up; and (c) study personnel: interpersonal skills must be reinforced, flexible working hours mandated, and support offered. Our 5-year ARDS and 1-year SARS study retention rates were 86% and 91%, respectively, using these methods. Strategies to reduce patient attrition are time consuming but necessary to preserve internal and external validity. When the follow-up system is working effectively, researchers can acquire the necessary data to advance knowledge in their field and patients are satisfied that they have an important role to play in the research project.
May, Douglas R; Reed, Kendra; Schwoerer, Catherine E; Potter, Paul
2004-04-01
A naturally occurring quasi-experimental longitudinal field study of 87 municipal employees using pretest and posttest measures investigated the effects of an office workstation ergonomics intervention program on employees' perceptions of their workstation characteristics, levels of persistent pain, eyestrain, and workstation satisfaction. The study examined whether reactions differed between younger and older employees. Results revealed that workstation improvements were associated with enhanced perceptions of the workstation's ergonomic qualities, less upper back pain, and greater workstation satisfaction. Among those experiencing an improvement, the perceptions of workstation ergonomic qualities increased more for younger than older employees, supporting the "impressionable years" framework in the psychological literature on aging. Implications for human resources managers are discussed.
Parametric survey of longitudinal prominence oscillation simulations
NASA Astrophysics Data System (ADS)
Zhang, Q. M.; Chen, P. F.; Xia, C.; Keppens, R.; Ji, H. S.
2013-06-01
Context. Longitudinal filament oscillations recently attracted increasing attention, while the restoring force and the damping mechanisms are still elusive. Aims: We intend to investigate the underlying physics for coherent longitudinal oscillations of the entire filament body, including their triggering mechanism, dominant restoring force, and damping mechanisms. Methods: With the MPI-AMRVAC code, we carried out radiative hydrodynamic numerical simulations of the longitudinal prominence oscillations. We modeled two types of perturbations of the prominence, impulsive heating at one leg of the loop and an impulsive momentum deposition, which cause the prominence to oscillate. We studied the resulting oscillations for a large parameter scan, including the chromospheric heating duration, initial velocity of the prominence, and field line geometry. Results: We found that both microflare-sized impulsive heating at one leg of the loop and a suddenly imposed velocity perturbation can propel the prominence to oscillate along the magnetic dip. Our extensive parameter survey resulted in a scaling law that shows that the period of the oscillation, which weakly depends on the length and height of the prominence and on the amplitude of the perturbations, scales with √R/g⊙, where R represents the curvature radius of the dip, and g⊙ is the gravitational acceleration of the Sun. This is consistent with the linear theory of a pendulum, which implies that the field-aligned component of gravity is the main restoring force for the prominence longitudinal oscillations, as confirmed by the force analysis. However, the gas pressure gradient becomes significant for short prominences. The oscillation damps with time in the presence of non-adiabatic processes. Radiative cooling is the dominant factor leading to damping. A scaling law for the damping timescale is derived, i.e., τ~ l1.63 D0.66w-1.21v0-0.30, showing strong dependence on the prominence length l, the geometry of the magnetic dip (characterized by the depth D and the width w), and the velocity perturbation amplitude v0. The larger the amplitude, the faster the oscillation damps. We also found that mass drainage significantly reduces the damping timescale when the perturbation is too strong.
Measuring surface magnetic fields of red supergiant stars
NASA Astrophysics Data System (ADS)
Tessore, B.; Lèbre, A.; Morin, J.; Mathias, P.; Josselin, E.; Aurière, M.
2017-07-01
Context. Red supergiant (RSG) stars are very massive cool evolved stars. Recently, a weak magnetic field was measured at the surface of α Ori and this is so far the only M-type supergiant for which a direct detection of a surface magnetic field has been reported. Aims: By extending the search for surface magnetic field in a sample of late-type supergiants, we want to determine whether the surface magnetic field detected on α Ori is a common feature among the M-type supergiants. Methods: With the spectropolarimeter Narval at Télescope Bernard-Lyot we undertook a search for surface magnetic fields in a sample of cool supergiant stars, and we analysed circular polarisation spectra using the least-squares deconvolution technique. Results: We detect weak Zeeman signatures of stellar origin in the targets CE Tau, α1 Her and μ Cep. For the latter star, we also show that cross-talk from the strong linear polarisation signals detected on this star must be taken into account. For CE Tau and μ Cep, the longitudinal component of the detected surface fields is at the Gauss-level, such as in α Ori. We measured a longitudinal field almost an order of magnitude stronger for α1 Her. We also report variability of the longitudinal magnetic field of CE Tau and α1 Her, with changes in good agreement with the typical atmospheric dynamics time-scales. We also report a non-detection of magnetic field at the surface of the yellow supergiant star ρ Cas. Conclusions: The two RSG stars of our sample, CE Tau and μ Cep, display magnetic fields very similar to that of α Ori. The non-detection of a magnetic field on the post-RSG star ρ Cas suggests that the magnetic field disappears, or at least becomes undetectable with present methods, at later evolutionary stages. Our analysis of α1 Her supports the proposed reclassification of the star as an M-type asymptotic giant branch star. Based on observations obtained at the Télescope Bernard Lyot (TBL) at the Observatoire du Pic du Midi, operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France.
Konani, Ehsan; Panahandeh, Yousef; Pourjam, Ebrahim; Álvarez-Ortega, Sergio; Pedram, Majid
2018-04-23
Two rare species of the family Tylenchidae are described and illustrated based on morphological and morphometric characters. Scanning electron microscope (SEM) studies provided details of anterior end structures, helpful in generic identification of the studied populations. Discotylenchus biannulatus n. sp. is characterized by its dorso-ventrally flattened smooth cephalic region having two proximal annuli and a rectangular perioral disc, short longitudinal amphidial slits, lateral field with four incisures, stylet 9-10 μm long, with the conus shorter than half the total stylet length and with posteriorly directed knobs, well-developed median bulb, mono-prodelphic reproductive system with rounded empty spermatheca and short postvulval uterine sac (PUS), and filiform tail with pointed end. It is compared with other species of Discotylenchus having four lines in the lateral field. The Iranian population of Labrys chinensis is characterized by its long and slender (a = 45.2-57.2) body, smooth rounded cephalic region and an offset disc-like apical labial plate, short longitudinal lateral amphidial slits, lateral field with two incisures, moderately developed stylet with the conus less than half the total length and posteriorly directed knobs, median bulb fusiform with distinct but weak valve, gradually joining the isthmus, vulva at 57.2-59.1% with small flaps, elongate conoid tail, uniformly and slightly narrowing toward end with broadly rounded terminus and rare males. The minor morphological differences of the recovered population with the type population are discussed.
NASA Astrophysics Data System (ADS)
Arosio, Paolo; Corti, Maurizio; Mariani, Manuel; Orsini, Francesco; Bogani, Lapo; Caneschi, Andrea; Lago, Jorge; Lascialfari, Alessandro
2015-05-01
The spin dynamics of the molecular magnetic chain [Dy(hfac)3{NIT(C6H4OPh)}] were investigated by means of the Muon Spin Relaxation (μ+SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac)3{NIT(C6H4OPh)}] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ+SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, two stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λinterm(T), associated with the intermediate relaxing component. The experimental λinterm(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ0 exp(Δ/kBT), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.
On the Longitudinal Component of Paraxial Fields
ERIC Educational Resources Information Center
Carnicer, Artur; Juvells, Ignasi; Maluenda, David; Martinez-Herrero, Rosario; Mejias, Pedro M.
2012-01-01
The analysis of paraxial Gaussian beams features in most undergraduate courses in laser physics, advanced optics and photonics. These beams provide a simple model of the field generated in the resonant cavities of lasers, thus constituting a basic element for understanding laser theory. Usually, uniformly polarized beams are considered in the…
Time Series Econometrics for the 21st Century
ERIC Educational Resources Information Center
Hansen, Bruce E.
2017-01-01
The field of econometrics largely started with time series analysis because many early datasets were time-series macroeconomic data. As the field developed, more cross-sectional and longitudinal datasets were collected, which today dominate the majority of academic empirical research. In nonacademic (private sector, central bank, and governmental)…
Gendered transitions to adulthood by college field of study in the United States
Han, Siqi; Tumin, Dmitry; Qian, Zhenchao
2017-01-01
BACKGROUND Field of study may influence the timing of transitions to the labor market, marriage, and parenthood among college graduates. Research to date has yet to study how field of study is associated with the interweaving of these transitions in the USA. OBJECTIVE The current study examines gendered influences of college field of study on transitions to a series of adult roles, including full-time work, marriage, and parenthood. METHODS We use Cox proportional hazards models and multinomial logistic regression to examine gendered associations between field of study and the three transitions among college graduates of the NLSY97 (National Longitudinal Survey of Youth) cohort. RESULTS Men majoring in STEM achieve early transitions to full-time work, marriage, and parenthood; women majoring in STEM show no significant advantage in finding full-time work and delayed marriage and childbearing; women in business have earlier transitions to full-time work and marriage than women in other fields, demonstrating an advantage similar to that of men in STEM. CONCLUSIONS The contrast between men and women in STEM shows that transition to adulthood remains gendered; the contrast between women in STEM and women in business illustrates that a prestigious career may not necessarily delay family formation. PMID:29075146
Field homogeneity improvement of maglev NdFeB magnetic rails from joints.
Li, Y J; Dai, Q; Deng, C Y; Sun, R X; Zheng, J; Chen, Z; Sun, Y; Wang, H; Yuan, Z D; Fang, C; Deng, Z G
2016-01-01
An ideal magnetic rail should provide a homogeneous magnetic field along the longitudinal direction to guarantee the reliable friction-free operation of high temperature superconducting (HTS) maglev vehicles. But in reality, magnetic field inhomogeneity may occur due to lots of reasons; the joint gap is the most direct one. Joint gaps inevitably exist between adjacent segments and influence the longitudinal magnetic field homogeneity above the rail since any magnetic rails are consisting of many permanent magnet segments. To improve the running performance of maglev systems, two new rail joints are proposed based on the normal rail joint, which are named as mitered rail joint and overlapped rail joint. It is found that the overlapped rail joint has a better effect to provide a competitive homogeneous magnetic field. And the further structure optimization has been done to ensure maglev vehicle operation as stable as possible when passing through those joint gaps. The results show that the overlapped rail joint with optimal parameters can significantly reduce the magnetic field inhomogeneity comparing with the other two rail joints. In addition, an appropriate gap was suggested when balancing the thermal expansion of magnets and homogenous magnetic field, which is considered valuable references for the future design of the magnetic rails.
NONLINEAR FORCE-FREE FIELD MODELING OF A SOLAR ACTIVE REGION USING SDO/HMI AND SOLIS/VSM DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thalmann, J. K.; Wiegelmann, T.; Pietarila, A.
2012-08-15
We use SDO/HMI and SOLIS/VSM photospheric magnetic field measurements to model the force-free coronal field above a solar active region, assuming magnetic forces dominate. We take measurement uncertainties caused by, e.g., noise and the particular inversion technique, into account. After searching for the optimum modeling parameters for the particular data sets, we compare the resulting nonlinear force-free model fields. We show the degree of agreement of the coronal field reconstructions from the different data sources by comparing the relative free energy content, the vertical distribution of the magnetic pressure, and the vertically integrated current density. Though the longitudinal and transversemore » magnetic flux measured by the VSM and HMI is clearly different, we find considerable similarities in the modeled fields. This indicates the robustness of the algorithm we use to calculate the nonlinear force-free fields against differences and deficiencies of the photospheric vector maps used as an input. We also depict how much the absolute values of the total force-free, virial, and the free magnetic energy differ and how the orientation of the longitudinal and transverse components of the HMI- and VSM-based model volumes compare to each other.« less
Inverse Edelstein effect induced by magnon-phonon coupling
NASA Astrophysics Data System (ADS)
Xu, Mingran; Puebla, Jorge; Auvray, Florent; Rana, Bivas; Kondou, Kouta; Otani, Yoshichika
2018-05-01
We demonstrate a spin to charge current conversion via magnon-phonon coupling and an inverse Edelstein effect on the hybrid device Ni/Cu (Ag )/Bi 2O3 . The generation of spin current (Js≈108A/m2 ) due to magnon-phonon coupling reveals the viability of acoustic spin pumping as a mechanism for the development of spintronic devices. A full in-plane magnetic field angle dependence of the power absorption and a combination of longitudinal and transverse voltage detection reveals the symmetric and asymmetric components of the inverse Edelstein effect voltage induced by Rayleigh-type surface acoustic waves. While the symmetric components are well studied, asymmetric components still need to be explored. We assign the asymmetric contributions to the interference between longitudinal and shear waves and an anisotropic charge distribution in our hybrid device.
Linear bunchers and half-frequency bunching method
NASA Astrophysics Data System (ADS)
Tang, J. Y.; Jiang, J. Z.; Shi, A. M.; Yin, Z. K.; Wang, Y. F.
2000-12-01
A new buncher system consisting of two bunchers has been designed and constructed for HIRFL injector cyclotron, working at the SFC acceleration modes of H=1 and H=3, respectively. The bunchers use saw-tooth RF waveform, but with double-gap drift tube electrodes and single-gap grid electrodes, respectively. The special merit of the design is introduction of the half-frequency bunching mode, utilizing half of the cyclotron RF frequency. With this method, a perfect longitudinal match between the injector SFC and the main cyclotron SSC has been reached theoretically, compared to the original efficiency of 50% for most cases. Detailed studies have been made concerning space charge effects, longitudinal dispersions through the yoke hole and the spiral inflector, and non-linearity in both the RF waveform and the stray electric field of electrodes.
Fowler, Stephen C; Muma, Nancy A
2015-11-01
Behavioral testing of mouse models of Huntington's disease (HD) is a key component of preclinical assessment for potential pharmacological intervention. An open field with a force plate floor was used to quantify numerous spontaneous behaviors in a slowly progressing model of HD. CAG140 (+/+, +/-, -/-) male and female mice were compared in a longitudinal study from 6 to 65 weeks of age. Distance traveled, wall rears, wall rear duration, number of low mobility bouts, in-place movements, number of high velocity runs, and gait parameters (stride rate, stride length, and velocity) were extracted from the ground reaction forces recorded in 20-min actometer sessions. Beginning at 11 weeks, HD mice (both +/- and +/+) were consistently hypoactive throughout testing. Robust hypoactivity at 39 weeks of age was not accompanied by gait disturbances. By 52 and 65 weeks of age the duration of wall rears increased and in-place tremor-like movements emerged at 65 weeks of age in the +/+, but not in the +/- HD mice. Taken together, these results suggest that hypoactivity preceding frank motor dysfunction is a characteristic of CAG140 mice that may correspond to low motivation to move seen clinically in the premanifest/prediagnostic stage in human HD. The results also show that the force plate method provides a means for tracking the progression of behavioral dysfunction in HD mice beyond the stage when locomotion is lost while enabling quantification of tremor-like and similar in-place behaviors without a change in instrumentation. Use of force plate actometry also minimizes testing-induced enrichment effects when batteries of different tests are carried out longitudinally. Copyright © 2015 Elsevier B.V. All rights reserved.
Aized, D.; Schwall, R.E.
1999-06-22
A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil. 15 figs.
Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, S K
2006-02-09
We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated datamore » with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mercadier, C.G.L.; Milatz, H.U.C.
1991-03-01
The Natih field reservoir comprises several distinct fractured limestone intervals which contain some 500 {times} 10{sup 6} m{sup 3} STOIIP. The field is being developed by gas-oil gravity drainage. Fracture orientations, dimensions, and spacings are critical to predict the effectiveness of this process. Statistically representative fracture data from Cretaceous Natih outcrop analogs in North Oman, core data, and electrical borehole imagery provided a realistic input for Natih field reservoir modeling and simulation. In the outcrops the fractures trend both cross-axially and longitudinally with dimensions and spacings varying with lithology, bed thickness, and curvature. Dimensions of matrix blocks in clean thicklymore » bedded limestones are an order of magnitude greater than in more argillaceous thinly bedded limestones. Subsurface data from the Natih reservoirs indicate that open cross-axial subvertical northeast-southwest-trending fractures dominate and strongly influence the reservoir flow pattern, but longitudinal fractures could not be identified. This is in line with the orientation of the present day, principal horizontal in situ stress that preferentially keeps open the cross-axial fracture set. Fracture apertures from borehole imagery have a range of 0.1 to 0.3 mm which is consistent with that derived from reservoir pressure behavior. Combining outcrop and well data results in a Natih reservoir fracture model with open cross-axial fractures that have a lithology dependent spacing of 0.1 to 2 m over the entire structure. From these data fracture porosities are calculated for each gridblock in the model. Longitudinal fractures probably exist in the vicinity of faults and in the northern part of the field where rapid down-warping occurs.« less
Su, Yi; Blazey, Tyler M; Owen, Christopher J; Christensen, Jon J; Friedrichsen, Karl; Joseph-Mathurin, Nelly; Wang, Qing; Hornbeck, Russ C; Ances, Beau M; Snyder, Abraham Z; Cash, Lisa A; Koeppe, Robert A; Klunk, William E; Galasko, Douglas; Brickman, Adam M; McDade, Eric; Ringman, John M; Thompson, Paul M; Saykin, Andrew J; Ghetti, Bernardino; Sperling, Reisa A; Johnson, Keith A; Salloway, Stephen P; Schofield, Peter R; Masters, Colin L; Villemagne, Victor L; Fox, Nick C; Förster, Stefan; Chen, Kewei; Reiman, Eric M; Xiong, Chengjie; Marcus, Daniel S; Weiner, Michael W; Morris, John C; Bateman, Randall J; Benzinger, Tammie L S
2016-01-01
Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer's Network (DIAN), an autosomal dominant Alzheimer's disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer's disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted.
Su, Yi; Blazey, Tyler M.; Owen, Christopher J.; Christensen, Jon J.; Friedrichsen, Karl; Joseph-Mathurin, Nelly; Wang, Qing; Hornbeck, Russ C.; Ances, Beau M.; Snyder, Abraham Z.; Cash, Lisa A.; Koeppe, Robert A.; Klunk, William E.; Galasko, Douglas; Brickman, Adam M.; McDade, Eric; Ringman, John M.; Thompson, Paul M.; Saykin, Andrew J.; Ghetti, Bernardino; Sperling, Reisa A.; Johnson, Keith A.; Salloway, Stephen P.; Schofield, Peter R.; Masters, Colin L.; Villemagne, Victor L.; Fox, Nick C.; Förster, Stefan; Chen, Kewei; Reiman, Eric M.; Xiong, Chengjie; Marcus, Daniel S.; Weiner, Michael W.; Morris, John C.; Bateman, Randall J.; Benzinger, Tammie L. S.
2016-01-01
Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer’s Network (DIAN), an autosomal dominant Alzheimer’s disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer’s disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted. PMID:27010959
Thapa, Raju; Codjoe, Julius; Ishak, Sherif; McCarter, Kevin S
2015-01-01
A number of studies have been done in the field of driver distraction, specifically on the use of cell phone for either conversation or texting while driving. Researchers have focused on the driving performance of drivers when they were actually engaged in the task; that is, during the texting or phone conversation event. However, it is still unknown whether the impact of cell phone usages ceases immediately after the end of task. The primary objective of this article is to analyze the post-event effect of cell phone usage (texting and conversation) in order to verify whether the distracting effect lingers after the actual event has ceased. This study utilizes a driving simulator study of 36 participants to test whether a significant decrease in driver performance occurs during cell phone usage and after usage. Surrogate measures used to represent lateral and longitudinal control of the vehicle were standard deviation (SD) of lane position and mean velocity, respectively. RESULTS suggest that there was no significant decrease in driver performance (both lateral and longitudinal control) during and after the cell phone conversation. For the texting event, there were significant decreases in driver performance in both the longitudinal and lateral control of the vehicle during the actual texting task. The diminished longitudinal control ceased immediately after the texting event but the diminished lateral control lingered for an average of 3.38 s. The number of text messages exchanged did not affect the magnitude or duration of the diminished lateral control. The result indicates that the distraction and subsequent elevated crash risk of texting while driving linger even after the texting event has ceased. This finding has safety and policy implications in reducing distracted driving.
Relaxation rates of low-field gas-phase ^129Xe storage cells
NASA Astrophysics Data System (ADS)
Limes, Mark; Saam, Brian
2010-10-01
A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.
The Field Relevance of NHTSA's Oblique Research Moving Deformable Barrier Tests.
Prasad, Priya; Dalmotas, Dainius; German, Alan
2014-11-01
A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test. The field relevance is indicated by the frequency of occurrence of real world crashes that are simulated by the test conditions, the proportion of serious-to-fatal real world injuries explained by the test condition, and rates of serious injury to the head, chest and other body regions in the real world crashes resembling the test condition. The database examined for real world crashes is NASS. Results of the study indicate that 1.4% of all frontal 11-to-1 o'clock crashes are simulated by the test conditions that account for 2.4% to 4.5% of all frontal serious-to-fatal (MAIS3+F) injuries. Injury rates of the head and the chest are substantially lower in far-side than in near-side frontal impacts. Crash test ATD rotational responses of the head in the tests overpredict the real world risk of serious-to-fatal brain injuries.
Individual differences in the shape of the nasal visual field.
Swanson, William H; Dul, Mitchell W; Horner, Douglas G; Malinovsky, Victor E
2017-12-01
Between-subject differences in the shape of the nasal visual field were assessed for 103 volunteers 21-85years of age and free of visual disorder. Perimetry was conducted with a stimulus for which contrast sensitivity is minimally affected by peripheral defocus and decreased retinal illumination. One eye each was tested for 103 volunteers free of eye disease in a multi-center prospective longitudinal study. A peripheral deviation index was computed as the difference in log contrast sensitivity at outer (25-29° nasal) and inner (8° from fixation) locations. Values for this index ranged from 0.01 (outer sensitivity slightly greater than inner sensitivity) to -0.7 log unit (outer sensitivity much lower than inner sensitivity). Mean sensitivity for the inner locations was independent of the deviation index (R 2 <1%), while mean sensitivity for the outer locations was not (R 2 =38%, p<0.0005). Age was only modestly related to the index, with a decline by 0.017 log unit per decade (R 2 =10%). Test-retest data for 21 volunteers who completed 7-10 visits yielded standard deviations for the index from 0.04 to 0.17 log unit, with a mean of 0.09 log unit. Between-subject differences in peripheral deviation persisted over two years of longitudinal testing. Peripheral deviation indices were correlated with indices for three other perimetric stimuli used in a subset of 24 volunteers (R 2 from 20% to 49%). Between-subject variability in shape of the visual field raises concerns about current clinical visual field indices, and further studies are needed to develop improved indices. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Performance of high power S-band klystrons focused with permanent magnet
NASA Astrophysics Data System (ADS)
Fukuda, S.; Shidara, T.; Saito, Y.; Hanaki, H.; Nakao, K.; Homma, H.; Anami, S.; Tanaka, J.
1987-02-01
Performance of high power S-band klystrons focused with permanent magnet is presented. The axial magnetic field distribution and the transverse magnetic field play an important role in the tube performance. Effects of the reversal field in the collector and the cathode-anode region are discussed precisely. It is also shown that the tube efficiency is strongly affected with the residual transverse magnetic field. The allowable transverse field is less than 0.3 percent of the longitudinal field in the entire RF interaction region of the klystron.
NASA Technical Reports Server (NTRS)
Stern, D. P.
1978-01-01
An investigation is made of the adiabatic particle motion occurring in an almost drift-free magnetic field. The dependence of the mean drift velocity on the equatorial pitch angle and the variation of the local drift velocity along the trajectories is studied. The fields considered are two-dimensional and resemble the geomagnetic tail. Derivations are presented for instantaneous and average drift velocities, bounce times, longitudinal invariants, and approximations to the adiabatic Hamiltonian. As expected, the mean drift velocity is significantly smaller than the instantaneous drift velocities found at typical points on the trajectory. The slow drift indicates that particles advance in the dawn-dusk direction rather slowly in the plasma sheet of the magnetospheric tail.
NASA Technical Reports Server (NTRS)
Everhart, Joel Lee
1988-01-01
A theoretical examination of the slotted-wall flow field is conducted to determine the appropriate wall pressure drop (or boundary condition) equation. This analysis improves the understanding of the fluid physics of these types of flow fields and helps in evaluating the uncertainties and limitations existing in previous mathematical developments. It is shown that the resulting slotted-wall boundary condition contains contributions from the airfoil-induced streamline curvature and the non-linear, quadratic, slot crossflow in addition to an often neglected linear term which results from viscous shearing in the slot. Existing and newly acquired experimental data are examined in the light of this formulation and theoretical developments.
Electron spin resonance modes in a strong-leg ladder in the Tomonaga-Luttinger liquid phase
NASA Astrophysics Data System (ADS)
Ozerov, M.; Maksymenko, M.; Wosnitza, J.; Honecker, A.; Landee, C. P.; Turnbull, M. M.; Furuya, S. C.; Giamarchi, T.; Zvyagin, S. A.
2015-12-01
Magnetic excitations in the strong-leg quantum spin ladder compound (C7H10N) 2CuBr4 (known as DIMPY) in the field-induced Tomonaga-Luttinger spin-liquid phase are studied by means of high-field electron spin resonance (ESR) spectroscopy. The presence of a gapped ESR mode with unusual nonlinear frequency-field dependence is revealed experimentally. Using a combination of analytic and exact-diagonalization methods, we compute the dynamical structure factor and identify this mode with longitudinal excitations in the antisymmetric channel. We argue that these excitations constitute a fingerprint of the spin dynamics in a strong-leg spin-1/2 Heisenberg antiferromagnetic ladder and owe their ESR observability to the uniform Dzyaloshinskii-Moriya interaction.
EEJ and EIA variations during modeling substorms with different onset moments
NASA Astrophysics Data System (ADS)
Klimenko, V. V.; Klimenko, M. V.
2015-11-01
This paper presents the simulations of four modeling substorms with different moment of substorm onset at 00:00 UT, 06:00 UT, 12:00 UT, and 18:00 UT for spring equinoctial conditions in solar activity minimum. Such investigation provides opportunity to examine the longitudinal dependence of ionospheric response to geomagnetic substorms. Model runs were performed using modified Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP). We analyzed GSM TIP simulated global distributions of foF2, low latitude electric field and ionospheric currents at geomagnetic equator and their disturbances at different UT moments substorms. We considered in more detail the variations in equatorial ionization anomaly, equatorial electrojet and counter equatorial electrojet during substorms. It is shown that: (1) the effects in EIA, EEJ and CEJ strongly depend on the substorm onset moment; (2) disturbances in equatorial zonal current density during substorm has significant longitudinal dependence; (3) the observed controversy on the equatorial ionospheric electric field signature of substorms can depend on the substorm onset moments, i.e., on the longitudinal variability in parameters of the thermosphere-ionosphere system.
Hartley, Margaret L.; Pennefather, Jocelyn N.; Story, Margot E.
1983-01-01
1 This study describes the effects of ovarian steroid hormones upon the responses to adrenoceptor agonists of isolated myometrium, separated into its longitudinal and circular layers, and of costo-uterine muscle from guinea-pigs. The preparations were field-stimulated at 100 s intervals, and the adrenoceptor agonists phenylephrine and isoprenaline produced enhancement or inhibition of the evoked contractions. 2 Isoprenaline produced propranolol-sensitive inhibitory effects in longitudinal and circular myometrium and costo-uterine muscle preparations from animals from all experimental groups: i.e. from nonsteroid-treated animals (ovariectomized and intact); intact animals treated with either oestrogen or progesterone alone; ovariectomized animals treated with oestrogen; ovariectomized and intact animals treated with progesterone following oestrogen priming; and from animals 1-4 days post-partum. Longitudinal myometrial preparations from progesterone-treated oestrogen-primed and from post-partum animals were most sensitive to this agonist. 3 Phenylephrine produced phentolamine-sensitive excitatory effects in circular myometrial and costo-uterine muscle preparations from animals from all the experimental groups. In contrast, propranolol-sensitive inhibitory responses to phenylephrine occurred in longitudinal myometrial preparations taken from animals treated with progesterone following oestrogen priming, and from post-partum animals. Longitudinal myometrium from animals from the remaining experimental groups exhibited phentolamine-sensitive excitatory responses to phenylephrine. 4 The basis for the selective effect upon the longitudinal myometrium of exposure to progesterone following a period of oestrogen priming, is discussed. The results described are consistent with the possibility that in the longitudinal layer of guinea-pig uterus exposed to progesterone following oestrogen priming there is an increase in the proportion of β-adrenoceptors in this layer. This increase may reduce the likelihood of contractions arising via direct stimulation of α-adrenoceptors in this layer in response to sympathetic activation during pregnancy. PMID:6871558
A Longitudinal Study of Myers-Briggs Personality Types in Air Traffic Controllers
2004-12-01
investigated the relationship between MBTI types and initial success in the Air Traffic Control Academy Screen Program, subsequent field training...normal population on several dimensions. Weak relationships were found between the MBTI measures and success in training and eventual transition into...Perceiving category seemed to have any relationship with whether or not an individual passed or failed the Academy. However, this category showed an even
ERIC Educational Resources Information Center
Hughes, Claire; Ensor, Rosie; Marks, Alex
2011-01-01
Despite a wealth of studies in the field, longitudinal assessments of both the stability and predictive utility of individual differences in preschoolers' understanding of the mind remain scarce. To address these gaps, we applied latent variable analyses to (a) experimental data gathered from a socially diverse sample (N = 101, 60 boys and 41…
Magnetic Field Measurements of the Spotted Yellow Dwarf DE Boo During 2001-2004
NASA Astrophysics Data System (ADS)
Plachinda, S.; Baklanova, D.; Butkovskaya, V.; Pankov, N.
2017-06-01
Spectropolarimetric observations of DE Boo have been performed at Crimean astrophysical observatory during 18 nights in 2001-2004. We present the result of the longitudinal magnetic field measurements on this star. The magnetic field varies from +44 G to -36 G with mean Standard Error (SE) of 8.2 G. For full array of the magnetic field measurements the difference between experimental errors and Monte Carlo errors is not statistically significant.
Nursing students' well-being using the job-demand-control model: A longitudinal study.
Tuomi, Jouni; Aimala, Anna-Mari; Žvanut, Boštjan
2016-10-01
Students' well-being is very important both for students and institutions. However, this field lacks longitudinal research, which focuses on the change of nursing students' well-being during their study. In order to asses such changes the four study types according to Job-Demand-Control-Support-model were used: passive, high-strain, low-strain, and active. A longitudinal design was employed: participants were recruited in 2010/2011 (phase I) and at the end of their study in 2012 (phase II). The study was performed in one school of health care in a university of applied sciences in Finland. The final sample consisted of 135 nursing students (BSc) who started their study either in September 2008 or January 2009, and finished in December 2011 or May 2012. The participants responded to the same close-ended questionnaire in both phases. The majority of the participants experienced the study type as low-strain (phase I: 61.5%; phase II: 48.2%). The distribution according to their study type did not change substantially between both phases, although 42.2% of the participants changed their study type. The major changes of study types were from low-strain to others (21.4%), and from other study types to the active one (12.6%). The results indicate that the majority of students do not change their study type and consequentially their well-being during their study, which is in contrast with previous research. Special attention should be put to the identification of students who change their study type to high-strain or remain in it. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kemp, Candace L.; Ball, Mary M.; Morgan, Jennifer Craft; Doyle, Patrick J.; Burgess, Elisabeth O.; Dillard, Joy A.; Barmon, Christina E.; Fitzroy, Andrea F.; Helmly, Victoria E.; Avent, Elizabeth S.; Perkins, Molly M.
2018-01-01
In this article, we analyze the research experiences associated with a longitudinal qualitative study of residents’ care networks in assisted living. Using data from researcher meetings, field notes, and memos, we critically examine our design and decision making and accompanying methodological implications. We focus on one complete wave of data collection involving 28 residents and 114 care network members in four diverse settings followed for 2 years. We identify study features that make our research innovative, but that also represent significant challenges. They include the focus and topic; settings and participants; scope and design complexity; nature, modes, frequency, and duration of data collection; and analytic approach. Each feature has methodological implications, including benefits and challenges pertaining to recruitment, retention, data collection, quality, and management, research team work, researcher roles, ethics, and dissemination. Our analysis demonstrates the value of our approach and of reflecting on and sharing methodological processes for cumulative knowledge building. PMID:27651072
Kemp, Candace L; Ball, Mary M; Morgan, Jennifer Craft; Doyle, Patrick J; Burgess, Elisabeth O; Dillard, Joy A; Barmon, Christina E; Fitzroy, Andrea F; Helmly, Victoria E; Avent, Elizabeth S; Perkins, Molly M
2017-07-01
In this article, we analyze the research experiences associated with a longitudinal qualitative study of residents' care networks in assisted living. Using data from researcher meetings, field notes, and memos, we critically examine our design and decision making and accompanying methodological implications. We focus on one complete wave of data collection involving 28 residents and 114 care network members in four diverse settings followed for 2 years. We identify study features that make our research innovative, but that also represent significant challenges. They include the focus and topic; settings and participants; scope and design complexity; nature, modes, frequency, and duration of data collection; and analytic approach. Each feature has methodological implications, including benefits and challenges pertaining to recruitment, retention, data collection, quality, and management, research team work, researcher roles, ethics, and dissemination. Our analysis demonstrates the value of our approach and of reflecting on and sharing methodological processes for cumulative knowledge building.
ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES AND ULTRAVIOLET EMISSIONS ACCOMPANYING SOLAR FLARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnstone, B. M.; Petrie, G. J. D.; Sudol, J. J.
2012-11-20
We have used Transition Region and Coronal Explorer 1600 A images and Global Oscillation Network Group (GONG) magnetograms to compare ultraviolet (UV) emissions from the chromosphere to longitudinal magnetic field changes in the photosphere during four X-class solar flares. An abrupt, significant, and persistent change in the magnetic field occurred across more than 10 pixels in the GONG magnetograms for each flare. These magnetic changes lagged the GOES flare start times in all cases, showing that they were consequences and not causes of the flares. Ultraviolet emissions were spatially coincident with the field changes. The UV emissions tended to lagmore » the GOES start times for the flares and led the changes in the magnetic field in all pixels except one. The UV emissions led the photospheric field changes by 4 minutes on average with the longest lead being 9 minutes; however, the UV emissions continued for tens of minutes, and more than an hour in some cases, after the field changes were complete. The observations are consistent with the picture in which an Alfven wave from the field reconnection site in the corona propagates field changes outward in all directions near the onset of the impulsive phase, including downward through the chromosphere and into the photosphere, causing the photospheric field changes, whereas the chromosphere emits in the UV in the form of flare kernels, ribbons, and sequential chromospheric brightenings during all phases of the flare.« less
Microscopic description of exciton polaritons in direct two-band semiconductors
NASA Astrophysics Data System (ADS)
Nguyen, Van Trong; Mahler, Günter
1999-07-01
Based on a quantum electrodynamical formulation, a microscopic description of exciton polaritons in a two-band semiconductor is presented. We show that the interband exchange Coulomb interaction, responsible for the coupling of the exciton with the longitudinal part of the induced field, should be treated on equal footing together with the coupling to the transverse part of the induced field (the photon field). The constitutive relation is established to connect the current density with the total electric field of polaritons. The classical Maxwell equations are derived from the quantum representation of photons to get a closed system of equations. The temporal evolution for an initial excited exciton state is studied in detail and an anisotropic polariton vacuum Rabi splitting is shown to occur. A number of up-to-now unresolved discrepancies in the literature are clarified.
ERIC Educational Resources Information Center
Ribbins, Peter; Sherratt, Brian
2012-01-01
This article seeks to clarify the place of policy studies in education in the meta-field that it terms LAMPS. It is argued that this canon of work has undervalued the merits of a humanistic approach and in doing so has tended to minimize the part played by people. To illustrate what might be possible, it reports on aspects of a longitudinal study,…
Magnetic and pulsational variability of Przybylski's star (HD 101065)
NASA Astrophysics Data System (ADS)
Hubrig, S.; Järvinen, S. P.; Madej, J.; Bychkov, V. D.; Ilyin, I.; Schöller, M.; Bychkova, L. V.
2018-07-01
Since its discovery more than half a century ago Przybylski's star (HD 101065) continues to excite the astronomical community by the unusual nature of its spectrum, exhibiting exotic element abundances. This star was also the first magnetic chemically peculiar A-type star for which the presence of rapid oscillations was established. Our analysis of newly acquired and historic longitudinal magnetic field measurements indicates that Przybylski's star is also unusual with respect to its extremely slow rotation. Adopting a dipolar structure for the magnetic field and using a sine wave fit to all reported longitudinal magnetic field values over the last 43 yr, we find a probable rotation period Prot ≈ 188 yr, which however has to be considered tentative as it does not represent a unique solution and has to be verified by future observations. Additionally, based on our own spectropolarimetric material obtained with HARPSpol, we discuss the impact of the anomalous structure of its atmosphere, in particular of the non-uniform horizontal and vertical distributions of chemical elements on the magnetic field measurements and the pulsational variability. Anomalies related to the vertical abundance stratification of Pr and Nd are for the first time used to establish the presence of a radial magnetic field gradient.
Magnetic and pulsational variability of Przybylski's star (HD 101065)
NASA Astrophysics Data System (ADS)
Hubrig, S.; Järvinen, S. P.; Madej, J.; Bychkov, V. D.; Ilyin, I.; Schöller, M.; Bychkova, L. V.
2018-04-01
Since its discovery more than half a century ago Przybylski's star (HD 101065) continues to excite the astronomical community by the unusual nature of its spectrum, exhibiting exotic element abundances. This star was also the first magnetic chemically peculiar A-type star for which the presence of rapid oscillations was established. Our analysis of newly acquired and historic longitudinal magnetic field measurements indicates that Przybylski's star is also unusual with respect to its extremely slow rotation. Adopting a dipolar structure for the magnetic field and using a sine wave fit to all reported longitudinal magnetic field values over the last 43 yr, we find a probable rotation period Prot ≈ 188 yr, which however has to be considered tentative as it does not represent a unique solution and has to be verified by future observations. Additionally, based on our own spectropolarimetric material obtained with HARPSpol, we discuss the impact of the anomalous structure of its atmosphere, in particular of the non-uniform horizontal and vertical distributions of chemical elements on the magnetic field measurements and the pulsational variability. Anomalies related to the vertical abundance stratification of Pr and Nd are for the first time used to establish the presence of a radial magnetic field gradient.
Huebner, David M; Perry, Nicholas S
2015-10-01
Behavioral interventions to reduce sexual risk behavior depend on strong health behavior theory. By identifying the psychosocial variables that lead causally to sexual risk, theories provide interventionists with a guide for how to change behavior. However, empirical research is critical to determining whether a particular theory adequately explains sexual risk behavior. A large body of cross-sectional evidence, which has been reviewed elsewhere, supports the notion that certain theory-based constructs (e.g., self-efficacy) are correlates of sexual behavior. However, given the limitations of inferring causality from correlational research, it is essential that we review the evidence from more methodologically rigorous studies (i.e., longitudinal and experimental designs). This systematic review identified 44 longitudinal studies in which investigators attempted to predict sexual risk from psychosocial variables over time. We also found 134 experimental studies (i.e., randomized controlled trials of HIV interventions), but of these only 9 (6.7 %) report the results of mediation analyses that might provide evidence for the validity of health behavior theories in predicting sexual behavior. Results show little convergent support across both types of studies for most traditional, theoretical predictors of sexual behavior. This suggests that the field must expand the body of empirical work that utilizes the most rigorous study designs to test our theoretical assumptions. The inconsistent results of existing research would indicate that current theoretical models of sexual risk behavior are inadequate, and may require expansion or adaptation.
Widely distributed SEP events and pseudostreamers
NASA Astrophysics Data System (ADS)
Panasenco, O.; Panasenco, A.; Velli, M.
2017-12-01
Our analysis of the pseudostreamer magnetic topology reveals new interesting implications for understanding SEP acceleration in CMEs. The possible reasons for the wide distribution of some SEP events can be the presence of pseudostreamers in the vicinity of the SEP source region which creates conditions for the existence of strong longitudinal spread of energetic particles as well as an anomalous longitudinal solar wind magnetic field component. We reconstructed the 3D magnetic configurations of pseudostreamers with a potential field source surface (PFSS) model, which uses as a lower boundary condition the magnetic field derived from an evolving surface-flux transport model. In order to estimate the possible magnetic connections between the spacecraft and the SEP source region, we used the Parker spiral, ENLIL and PFSS models. We found that in cases of the wide SEP distributions a specific configuration of magnetic field appears to exist at low solar latitudes all the way around the sun, we named this phenomenon a pseudostreamers belt. It appears that the presence of the well developed pseudostreamer or, rather multiple pseudostreamers, organized into the pseudostreamer belt can be considered as a very favorable condition for wide SEP events.
NASA Astrophysics Data System (ADS)
Kralkina, E. A.; Rukhadze, A. A.; Nekliudova, P. A.; Pavlov, V. B.; Petrov, A. K.; Vavilin, K. V.
2018-03-01
Present paper is aimed to reveal experimentally and theoretically the influence of magnetic field strength, antenna shape, pressure, operating frequency and geometrical size of plasma sources on the ability of plasma to absorb the RF power characterized by the equivalent plasma resistance for the case of low pressure RF inductive discharge located in the external magnetic field. The distinguishing feature of the present paper is the consideration of the antennas that generate not only current but charge on the external surface of plasma sources. It is shown that in the limited plasma source two linked waves can be excited. In case of antennas generating only azimuthal current the waves can be attributed as helicon and TG waves. In the case of an antenna with the longitudinal current there is a surface charge on the side surface of the plasma source, which gives rise to a significant increase of the longitudinal and radial components of the RF electric field as compared with the case of the azimuthal antenna current.
Voltage current characteristics of type III superconductors
NASA Astrophysics Data System (ADS)
Dorofejev, G. L.; Imenitov, A. B.; Klimenko, E. Yu.
1980-06-01
An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogenious monofilament and multifilament Nb-Ti, Nb-Zr, Nb 3Sn wires were investigated in different ranges of magnetic field, temperature and current. The longitudinal electric field for homogenious wires may be described by E=J ρnexp- T c/T 0+ T/T 0+ B/B 0+ J/J 0, where To, Bo, Jo are the increasing parameters, which depend weakly on B and T, of the electric field. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (ie the surface corresponding to a certain conventional effective resistivity in T, B, J - space) and a description of any increasing parameter that depends on B and T.
Dovetail spoke internal permanent magnet machine
Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY
2011-08-23
An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.
Loetscher, Tobias; Chen, Celia; Wignall, Sophie; Bulling, Andreas; Hoppe, Sabrina; Churches, Owen; Thomas, Nicole A; Nicholls, Michael E R; Lee, Andrew
2015-04-24
A visual field defect (VFD) is a common consequence of stroke with a detrimental effect upon the survivors' functional ability and quality of life. The identification of effective treatments for VFD is a key priority relating to life post-stroke. Understanding the natural evolution of scanning compensation over time may have important ramifications for the development of efficacious therapies. The study aims to unravel the natural history of visual scanning behaviour in patients with VFD. The assessment of scanning patterns in the acute to chronic stages of stroke will reveal who does and does not learn to compensate for vision loss. Eye-tracking glasses are used to delineate eye movements in a cohort of 100 stroke patients immediately after stroke, and additionally at 6 and 12 months post-stroke. The longitudinal study will assess eye movements in static (sitting) and dynamic (walking) conditions. The primary outcome constitutes the change of lateral eye movements from the acute to chronic stages of stroke. Secondary outcomes include changes of lateral eye movements over time as a function of subgroup characteristics, such as side of VFD, stroke location, stroke severity and cognitive functioning. The longitudinal comparison of patients who do and do not learn compensatory scanning techniques may reveal important prognostic markers of natural recovery. Importantly, it may also help to determine the most effective treatment window for visual rehabilitation.
Dwyer, Michael G; Bergsland, Niels; Zivadinov, Robert
2014-04-15
SIENA and similar techniques have demonstrated the utility of performing "direct" measurements as opposed to post-hoc comparison of cross-sectional data for the measurement of whole brain (WB) atrophy over time. However, gray matter (GM) and white matter (WM) atrophy are now widely recognized as important components of neurological disease progression, and are being actively evaluated as secondary endpoints in clinical trials. Direct measures of GM/WM change with advantages similar to SIENA have been lacking. We created a robust and easily-implemented method for direct longitudinal analysis of GM/WM atrophy, SIENAX multi-time-point (SIENAX-MTP). We built on the basic halfway-registration and mask composition components of SIENA to improve the raw output of FMRIB's FAST tissue segmentation tool. In addition, we created LFAST, a modified version of FAST incorporating a 4th dimension in its hidden Markov random field model in order to directly represent time. The method was validated by scan-rescan, simulation, comparison with SIENA, and two clinical effect size comparisons. All validation approaches demonstrated improved longitudinal precision with the proposed SIENAX-MTP method compared to SIENAX. For GM, simulation showed better correlation with experimental volume changes (r=0.992 vs. 0.941), scan-rescan showed lower standard deviations (3.8% vs. 8.4%), correlation with SIENA was more robust (r=0.70 vs. 0.53), and effect sizes were improved by up to 68%. Statistical power estimates indicated a potential drop of 55% in the number of subjects required to detect the same treatment effect with SIENAX-MTP vs. SIENAX. The proposed direct GM/WM method significantly improves on the standard SIENAX technique by trading a small amount of bias for a large reduction in variance, and may provide more precise data and additional statistical power in longitudinal studies. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Foroutan, Shahin; Haghshenas, Amin; Hashemian, Mohammad; Eftekhari, S. Ali; Toghraie, Davood
2018-03-01
In this paper, three-dimensional buckling behavior of nanowires was investigated based on Eringen's Nonlocal Elasticity Theory. The electric current-carrying nanowires were affected by a longitudinal magnetic field based upon the Lorentz force. The nanowires (NWs) were modeled based on Timoshenko beam theory and the Gurtin-Murdoch's surface elasticity theory. Generalized Differential Quadrature (GDQ) method was used to solve the governing equations of the NWs. Two sets of boundary conditions namely simple-simple and clamped-clamped were applied and the obtained results were discussed. Results demonstrated the effect of electric current, magnetic field, small-scale parameter, slenderness ratio, and nanowires diameter on the critical compressive buckling load of nanowires. As a key result, increasing the small-scale parameter decreased the critical load. By the same token, increasing the electric current, magnetic field, and slenderness ratio resulted in a decrease in the critical load. As the slenderness ratio increased, the effect of nonlocal theory decreased. In contrast, by expanding the NWs diameter, the nonlocal effect increased. Moreover, in the present article, the critical values of the magnetic field of strength and slenderness ratio were revealed, and the roles of the magnetic field, slenderness ratio, and NWs diameter on higher buckling loads were discussed.
NLO QCD effective field theory analysis of W+W- production at the LHC including fermionic operators
NASA Astrophysics Data System (ADS)
Baglio, Julien; Dawson, Sally; Lewis, Ian M.
2017-10-01
We study the impact of anomalous gauge boson and fermion couplings on the production of W+W- pairs at the LHC. Helicity amplitudes are presented separately to demonstrate the sources of new physics contributions and the impact of QCD and electroweak corrections. The QCD corrections have important effects on the fits to anomalous couplings, in particular when one W boson is longitudinally polarized and the other is transversely polarized. In effective field theory language, we demonstrate that the dimension-6 approximation to constraining new physics effects in W+W- pair production fails at pT˜500 - 1000 GeV .
Lineshape-asymmetry elimination in weak atomic transitions driven by an intense standing wave field
NASA Astrophysics Data System (ADS)
Antypas, Dionysios; Fabricant, Anne; Budker, Dmitry
2018-05-01
Owing to the ac-Stark effect, the lineshape of a weak optical transition in an atomic beam can become significantly distorted, when driven by an intense standing wave field. We use an Yb atomic beam to study the lineshape of the 6s2 1S0 -> 5d6s 3D1 transition, which is excited with light circulating in a Fabry-Perot resonator. We demonstrate two methods to avoid the distortion of the transition profile. Of these, one relies on the operation of the resonator in multiple longitudinal modes, and the other in multiple transverse modes.
Constructiveness and destructiveness of temperature in asymmetric quantum pseudo dot qubit system
NASA Astrophysics Data System (ADS)
Chen, Ying-Jie; Song, Hai-Tao; Xiao, Jing-Lin
2018-06-01
By using the variational method of the Pekar type, we theoretically study the temperature effects on the asymmetric quantum pseudo dot qubit with a pseudoharmonic potential under an electromagnetic field. The numerical results are analyzed and discussed in detail and show that the relationships of the ground and first excited state energies, the electron oscillation period and the electron probability density in the superposition state of the ground state and the first-excited state with the temperature, the chemical potential, the pseudoharmonic potential, the electric field strength, the cyclotron frequency, the electron phonon coupling constant, the transverse and longitudinal effective confinement length, respectively.
Phonon dispersion relation of Mg-Cu-Gd bulk metallic glasses
NASA Astrophysics Data System (ADS)
Suthar, P. H.
2016-05-01
Collective dynamics and elastic constants of bulk metallic glasses Mg65Cu25Gd10 and Mg60Cu25Gd15 are computed using the Hubbard -Beeby approach and our well recognized model potential. The important ingredients in the present study are the pair potential and local field correction functions (LFCF). The local field correction functions due to Hartree (H), Farid et al (F) and Sarkar Sen et al (S) are employed to investigation the influence of the screening effects on the longitudinal and traversed of phonon modes of glassy system. The results for the elastic constants are found to be in good agreement with experimental data.
NASA Astrophysics Data System (ADS)
Champagne, Benoı̂t; Mennucci, Benedetta; Cossi, Maurizio; Cammi, Roberto; Tomasi, Jacopo
1998-11-01
The solvent effects upon the longitudinal polarizability ( αL) and second hyperpolarizability ( γL) of small all-trans polyacetylene (PA) chains ranging from C 2H 4 to C 10H 12 have been evaluated at the time-dependent Hartree-Fock (TDHF) level within the framework of the polarizable continuum model. The solvent effects, which correspond to the solvent-induced modifications of the solute properties, result in large increases of the linear and nonlinear responses even for solvents with low dielectric constants. When the dielectric constant is increased, the αL values tend to saturate at values 30%-40% larger than in vacuo, whereas for γL it ranges from 100% to 400% depending upon the nonlinear optical process and the length of the PA chain. These solvent-induced αL and γL enhancements can partially be accounted for by the corresponding decrease of the energy of the lowest optically-allowed electronic excitation. The geometrical parameters of the ground state of the PA chains are almost unaffected by the solvent. This shows that the solvent effects are mainly of electronic nature. In addition, the local field factors, which relate the macroscopic or Maxwell field to the field experienced by the solute, tend towards unity with increasing chain length for the longitudinal PA axis.
The cell biology of bone growth.
Price, J S; Oyajobi, B O; Russell, R G
1994-02-01
The field of bone cell biology is clearly of relevance to the problem of stunting in children, as in the final analysis the cells of the growing long bone are the ultimate 'regulators'. It is the alterations in the functions of these cells that manifests as a reduction in height. Normal longitudinal growth is achieved by the coordinated recruitment, proliferation, differentiation, maturation and eventual death of the cells of growth plate and bone. Cellular activity is closely regulated by endocrine factors acting directly or indirectly, with factors produced locally and stored within the bone and cartilage microenvironment having a critical role in intercellular communication. Disruption of any of these processes can lead to growth disturbances, since it only requires a defect in a single gene to have profound effects. Studies in recent years have shed light on the biochemical and molecular effects of cytokines and growth factors and have shown that these regulatory molecules may mediate the effects of certain hormones important in controlling growth. However, the complex interrelationship of these molecules is still not clear. Notwithstanding, understanding of the mechanisms involved in bone remodelling is increasing, as this area attracts much research because of the high incidence of metabolic bone disease in Western society. Although studies of adult bone remodelling are of relevance, there is a requirement for increased research directed specifically at the mechanisms of endochondral ossification and its regulation. Longitudinal bone growth is a challenge to the cell biologist, since it is an accelerated cycle of cellular division and differentiation, within which it is not easy to separate events temporally and spatially. In addition, different regulatory mechanisms are probably important at different stages of growth. Another difficulty impeding progress in this field is the lack of appropriate animal models for research. Much information has come from studies involving rodents, and species differences must always be taken into account. Larger mammals such as the growing piglet or the calf are probably more appropriate for the study of postnatal longitudinal growth in man. If the mechanisms of stunting are to be established at a cellular level, a number of approaches need to be considered. Studies need to be designed using more appropriate animal models, and conditions such as nutritional intake, immunological challenges, chronic intestinal diseases and mechanical loading need to be manipulated. Any effects on longitudinal growth may then be studied temporally and correlated with non-invasive measurements including assays of hormones, cytokines, growth factors and proteins known to regulate their activity.(ABSTRACT TRUNCATED AT 400 WORDS)
Observations and implications of large-amplitude longitudinal oscillations in a solar filament
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luna, M.; Knizhnik, K.; Muglach, K.
On 2010 August 20, an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work, we analyze this periodic motion in a large fraction of the filament to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we usedmore » the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of cohesiveness throughout the filament channel. Moreover, the estimated mass accretion rate implies that the footpoint heating responsible for the thread formation, according to the thermal nonequilibrium model, agrees with previous coronal heating estimates. We estimate the magnitude of the energy released in the nearby event by studying the dynamic response of the filament threads, and discuss the implications of our study for filament structure and heating.« less
γ Pegasi: testing Vega-like magnetic fields in B stars
NASA Astrophysics Data System (ADS)
Neiner, C.; Monin, D.; Leroy, B.; Mathis, S.; Bohlender, D.
2014-02-01
Context. The bright B pulsator γ Peg shows both p and g modes of β Cep and SPB types. It has also been claimed that it is a magnetic star, while others do not detect any magnetic field. Aims: We check for the presence of a magnetic field, with the aim to characterise it if it exists, or else provide a firm upper limit of its strength if it is not detected. If γ Peg is magnetic as claimed, it would make an ideal asteroseismic target for testing various theoretical scenarios. If it is very weakly magnetic, it would be the first observation of an extension of Vega-like fields to early B stars. Finally, if it is not magnetic and we can provide a very low upper limit on its non-detected field, it would make an important result for stellar evolution models. Methods: We acquired high resolution, high signal-to-noise spectropolarimetric Narval data at Telescope Bernard Lyot (TBL). We also gathered existing dimaPol spectropolarimetric data from the Dominion Astrophysical Observatory (DAO) and Musicos spectropolarimetric data from TBL. We analysed the Narval and Musicos observations using the least-squares deconvolution (LSD) technique to derive the longitudinal magnetic field and Zeeman signatures in lines. The longitudinal field strength was also extracted from the Hβ line observed with the DAO. With a Monte Carlo simulation we derived the maximum strength of the field possibly hosted by γ Peg. Results: We find that no magnetic signatures are visible in the very high quality spectropolarimetric data. The average longitudinal field measured in the Narval data is Bl = -0.1 ± 0.4 G. We derive a very strict upper limit of the dipolar field strength of Bpol ~ 40 G. Conclusions: We conclude that γ Peg is not magnetic: it hosts neither a strong stable fossil field as observed in a fraction of massive stars nor a very weak Vega-like field. There is therefore no evidence that Vega-like fields exist in B stars, contrary to the predictions by fossil field dichotomy scenarios. These scenarios should thus be revised. Our results also provide strong constraints for stellar evolution models. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France, and at the Dominion Astrophysical Observatory.Tables 1-3 are available in electronic form at http://www.aanda.org
A search for Vega-like fields in OB stars
NASA Astrophysics Data System (ADS)
Neiner, C.; Folsom, C. P.; Blazere, A.
2014-12-01
Very weak magnetic fields (with a longitudinal component below 1 Gauss) have recently been discovered in the A star Vega as well as in a few Am stars. According to fossil field scenarios, such weak fields should also exist in more massive stars. In the framework of the ANR project Imagine, we have started to investigate the existence of this new class of very weakly magnetic stars among O and B stars thanks to ultra-deep spectropolarimetric observations. The first results and future plans are presented.
Blood Pressure and Left Ventricular Remodeling Among American Style Football Players
Lin, Jeffrey; Wang, Francis; Weiner, Rory B.; DeLuca, James R.; Wasfy, Meagan M.; Berkstresser, Brant; Lewis, Gregory D.; Hutter, Adolph M.; Picard, Michael H.; Baggish, Aaron L.
2016-01-01
Objective To determine the relationships between American style football (ASF) participation, acquired left ventricular (LV) hypertrophy, and LV systolic function as assessed using contemporary echocardiographic parameters. Background Participation in ASF has been associated with the development of hypertension and LV hypertrophy. To what degree these processes impact LV function is unknown. Methods This is a prospective, longitudinal, cohort study evaluating NCAA Division I collegiate football athletes stratified by field position (linemen, n=30 vs. non-linemen, n=57) before and after a single competitive season with transthoracic echocardiography. LV systolic function was measured using complementary parameters of global longitudinal strain (GLS, 2D speckle-tracking) and ejection fraction (EF, 2D biplane). Results ASF participation was associated with field position-specific increases in systolic blood pressure (linemen Δ SBP = 10±8 mmHg vs. non-linemen Δ SBP = 3±7 mmHg, p<0.001) and an overall increase in incident LV hypertrophy (pre = 8% vs. post = 25%, p<0.05). Linemen who developed LV hypertrophy had concentric geometry (9/11, 82%) with decreased GLS (Δ = −1.1%, p<0.001) while non-linemen demonstrated eccentric LV hypertrophy (8/10, 80%) with increased GLS (Δ = +1.4%, p<0.001). In contrast, LV ejection fraction in the total cohort and when stratified by field position was not significantly affected by ASF participation. Among the total cohort, lineman field position, postseason weight, systolic blood pressure, average LV wall thickness, and relative wall thickness were all independent predictors of postseason GLS. Conclusions ASF participation at a lineman field position may lead to a form of sport-related myocardial remodeling that is pathologic rather than adaptive. Future study will be required to determine if targeted efforts to control blood pressure, minimize weight gain, and to include an element of aerobic conditioning in this subset of athletes may attenuate this process and translate into tangible downstream health benefits. PMID:27931524
Hot-electron real-space transfer and longitudinal transport in dual AlGaN/AlN/{AlGaN/GaN} channels
NASA Astrophysics Data System (ADS)
Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Ferreyra, R.; Özgür, Ü.; Morkoç, H.
2015-03-01
Real-space transfer of hot electrons is studied in dual-channel GaN-based heterostructure operated at or near plasmon-optical phonon resonance in order to attain a high electron drift velocity at high current densities. For this study, pulsed electric field is applied in the channel plane of a nominally undoped Al0.3Ga0.7N/AlN/{Al0.15Ga0.85N/GaN} structure with a composite channel of Al0.15Ga0.85N/GaN, where the electrons with a sheet density of 1.4 × 1013 cm-2, estimated from the Hall effect measurements, are confined. The equilibrium electrons are situated predominantly in the Al0.15Ga0.85N layer as confirmed by capacitance-voltage experiment and Schrödinger-Poisson modelling. The main peak of the electron density per unit volume decreases as more electrons occupy the GaN layer at high electric fields. The associated decrease in the plasma frequency induces the plasmon-assisted decay of non-equilibrium optical phonons (hot phonons) confirmed by the decrease in the measured hot-phonon lifetime from 0.95 ps at low electric fields down below 200 fs at fields of E \\gt 4 kV cm-1 as the plasmon-optical phonon resonance is approached. The onset of real-space transfer is resolved from microwave noise measurements: this source of noise dominates for E \\gt 8 kV cm-1. In this range of fields, the longitudinal current exceeds the values measured for a mono channel reference Al0.3Ga0.7N/AlN/GaN structure. The results are explained in terms of the ultrafast decay of hot phonons and reduced alloy scattering caused by the real-space transfer in the composite channel.
Gradient of the stellar magnetic field in measurements of hydrogen line cores
NASA Astrophysics Data System (ADS)
Kudryavtsev, Dimitry O.; Romanyuk, Iosif I.
2009-04-01
We report the observed systematic differences in longitudinal magnetic field values, obtained from measurements of metal lines and the core of the Hβ line for a number of Ap stars, having strong global magnetic fields. In overwhelming majority of cases the magnetic field values, obtained from measurements of hydrogen lines cores, is smaller then the ones obtained from metal lines. We discuss some possible explanations of this effect, the most probable of which is the existence of the gradient of the magnetic field in stellar atmospheres.
Electron acceleration by a focused laser pulse in a static magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shihua; Wu Fengmin; Zhao Xianghao
2007-12-15
The model given by K. P. Singh [Phys. Rev. E 69, 056410 (2004)] for vacuum laser acceleration in a static magnetic field is revisited by including the effects of diffraction and the longitudinal electric field of a focused laser beam. Compared with a similar model without a static magnetic field, a simulation shows that electrons can gain much more net energy in this model even using the fifth-order corrected equations for the field of a focused laser beam. The acceleration mechanism and the acceleration efficiency are also investigated.
Multi-shot PROPELLER for high-field preclinical MRI
Pandit, Prachi; Qi, Yi; Story, Jennifer; King, Kevin F.; Johnson, G. Allan
2012-01-01
With the development of numerous mouse models of cancer, there is a tremendous need for an appropriate imaging technique to study the disease evolution. High-field T2-weighted imaging using PROPELLER MRI meets this need. The 2-shot PROPELLER technique presented here, provides (a) high spatial resolution, (b) high contrast resolution, and (c) rapid and non-invasive imaging, which enables high-throughput, longitudinal studies in free-breathing mice. Unique data collection and reconstruction makes this method robust against motion artifacts. The 2-shot modification introduced here, retains more high-frequency information and provides higher SNR than conventional single-shot PROPELLER, making this sequence feasible at high-fields, where signal loss is rapid. Results are shown in a liver metastases model to demonstrate the utility of this technique in one of the more challenging regions of the mouse, which is the abdomen. PMID:20572138
Multishot PROPELLER for high-field preclinical MRI.
Pandit, Prachi; Qi, Yi; Story, Jennifer; King, Kevin F; Johnson, G Allan
2010-07-01
With the development of numerous mouse models of cancer, there is a tremendous need for an appropriate imaging technique to study the disease evolution. High-field T(2)-weighted imaging using PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction) MRI meets this need. The two-shot PROPELLER technique presented here provides (a) high spatial resolution, (b) high contrast resolution, and (c) rapid and noninvasive imaging, which enables high-throughput, longitudinal studies in free-breathing mice. Unique data collection and reconstruction makes this method robust against motion artifacts. The two-shot modification introduced here retains more high-frequency information and provides higher signal-to-noise ratio than conventional single-shot PROPELLER, making this sequence feasible at high fields, where signal loss is rapid. Results are shown in a liver metastases model to demonstrate the utility of this technique in one of the more challenging regions of the mouse, which is the abdomen. (c) 2010 Wiley-Liss, Inc.
Broadband/Wideband Magnetoelectric Response
Park, Chee-Sung; Priya, Shashank
2012-01-01
A broadband/wideband magnetoelectric (ME) composite offers new opportunities for sensing wide ranges of both DC and AC magnetic fields. The broadband/wideband behavior is characterized by flat ME response over a given AC frequency range and DC magnetic bias. The structure proposed in this study operates in the longitudinal-transversal (L-T) mode. In this paper, we provide information on (i) how to design broadband/wideband ME sensors and (ii) how to control the magnitude of ME response over a desired frequency and DC bias regime. A systematic study was conducted to identify the factors affecting the broadband/wideband behavior by developing experimental models andmore » validating them against the predictions made through finite element modeling. A working prototype of the sensor with flat bands for both DC and AC magnetic field conditions was successfully obtained. These results are quite promising for practical applications such as current probe, low-frequency magnetic field sensing, and ME energy harvester.« less
Strong electronic interaction and multiple quantum Hall ferromagnetic phases in trilayer graphene
NASA Astrophysics Data System (ADS)
Datta, Biswajit; Dey, Santanu; Samanta, Abhisek; Borah, Abhinandan; Agarwal, Hitesh; Watanabe, Kenji; Taniguchi, Takashi; Sensarma, Rajdeep; Deshmukh, Mandar
There is an increasing interest in the electronic properties of few layer graphene as it offers a platform to study electronic interactions because the dispersion of bands can be tuned with number and stacking of layers in combination with electric field. Here, we report evidence of strong electronic interactions and quantum Hall ferromagnetism (QHF) seen in a dual gated ABA trilayer graphene sample. Due to high mobility (500,000 cm2V-1s-1) in our device compared to previous studies, we find all symmetry broken states including ν = 0 filling factor at relatively low magnetic field (6T). Activation measurements show that Landau Level (LL) gaps are enhanced by interactions. Moreover, we observe hysteresis as a function of filling factor and spikes in the longitudinal resistance which, together, signal the formation of QHF states at low magnetic field.
A Catalog of Averaged Magnetic Curves
NASA Astrophysics Data System (ADS)
Bychkov, V. D.; Bychkova, L. V.; Madej, J.
2017-06-01
The second version of the catalog contains information about 275 stars of different types. Since the first catalog was created, the situation fundamentally changed primarily due to a significant increase of accuracy of magnetic field (MF) measurements. Up to now, global magnetic fields were discovered and measured in stars of many types and their behavior was partially studied. Magnetic behavior of Ap/Bp stars was studied most thoroughly. The catalog contains data on 182 such objects. The main goals for the construction of the catalog are: 1) to review and summarize our knowledge about magnetic behavior of stars of different types; 2) the whole data are uniformly presented and processed which will allow one to perform statistical analysis of the variability of (longitudinal) magnetic fields of stars; 3) the data are presented in the most convenient way for testing different theoretical models; 4) the catalog will be useful for development of observational programs.
Study of spin dynamics and damping on the magnetic nanowire arrays with various nanowire widths
NASA Astrophysics Data System (ADS)
Cho, Jaehun; Fujii, Yuya; Konioshi, Katsunori; Yoon, Jungbum; Kim, Nam-Hui; Jung, Jinyong; Miwa, Shinji; Jung, Myung-Hwa; Suzuki, Yoshishige; You, Chun-Yeol
2016-07-01
We investigate the spin dynamics including Gilbert damping in the ferromagnetic nanowire arrays. We have measured the ferromagnetic resonance of ferromagnetic nanowire arrays using vector-network analyzer ferromagnetic resonance (VNA-FMR) and analyzed the results with the micromagnetic simulations. We find excellent agreement between the experimental VNA-FMR spectra and micromagnetic simulations result for various applied magnetic fields. We find that the same tendency of the demagnetization factor for longitudinal and transverse conditions, Nz (Ny) increases (decreases) as increasing the nanowire width in the micromagnetic simulations while Nx is almost zero value in transverse case. We also find that the Gilbert damping constant increases from 0.018 to 0.051 as the increasing nanowire width for the transverse case, while it is almost constant as 0.021 for the longitudinal case.
Phoning logistics in a longitudinal follow-up of batterers and their partners.
Gondolf, Edward W; Deemer, Crystal
2004-07-01
More needs to be known about the phoning logistics of interviewing subjects for longitudinal follow-up studies in the domestic violence field. Using phoning logs from a 4-year follow-up of batterer intervention, the authors calculated the number, results, and costs of phone calls from a subsample of 100 men and 138 women. The number of calls is high (5.5 per man and 7.1 per woman), locators play a substantial role (for 25% of the men and women), and mailed questionnaires are a useful supplement (increasing response rate 5% for men and 11% for women). On average, about half of the subjects were interviewed at each interval. The main obstacle is not refusals but no response and not being able to locate a subject. Strategies to address "no response" are considered.
Experiments to trap dust particles by a wire simulating an electron beam
NASA Astrophysics Data System (ADS)
Saeki, Hiroshi; Momose, Takashi; Ishimaru, Hajime
1991-11-01
Motion of trapped dust particles has been previously analyzed using high-energy bremsstrahlung data obtained during dust trapping in the TRISTAN accumulation ring. Because it is difficult to observe the actual motions of dust particles trapped in an electron beam due to the strong synchrotron light background, we carried out experiments to trap sample dust particles with a Cu wire simulating an electron beam. A negative potential was slowly applied to the wire using a high voltage dc power supply. Motions of dust particles trapped by the wire were recorded with a video camera system. In an experiment using a Cu wire (1.5 mm in diameter) with no magnetic field, the charged dust particle made vertical oscillation about the wire. In another experiment using the same wire but with a vertical magnetic field (0.135 T) simulating a bending magnetic field, both vertical and horizontal oscillating motions perpendicular to the wire were observed. Furthermore, it was found that the dust particle moved in the longitudinal direction of the wire in the bending magnetic field. Therefore, it is expected that charged dust particles trapped by the electric field of the electron beam oscillate vertically where there is no magnetic field in the TRISTAN accumulation ring. It is also expected that trapped dust particles where there is a bending magnetic field oscillate horizontally and vertically as the particle drifts in a longitudinal direction along the ring.
Celio, Marco R; Babalian, Alexandre; Ha, Quan Hue; Eichenberger, Simone; Clément, Laurence; Marti, Christiane; Saper, Clifford B
2013-10-01
A solitary cluster of parvalbumin-positive neurons--the PV1 nucleus--has been observed in the lateral hypothalamus of rodents. In the present study, we mapped the efferent connections of the PV1 nucleus using nonspecific antero- and retrograde tracers in rats, and chemoselective, Cre-dependent viral constructs in parvalbumin-Cre mice. In both species, the PV1 nucleus was found to project mainly to the periaqueductal grey matter (PAG), predominantly ipsilaterally. Indirectly in rats and directly in mice, a discrete, longitudinally oriented cylindrical column of terminal fields (PV1-CTF) was identified ventrolateral to the aqueduct on the edge of the PAG. The PV1-CTF is particularly dense in the rostral portion, which is located in the supraoculomotor nucleus (Su3). It is spatially interrupted over a short stretch at the level of the trochlear nucleus and abuts caudally on a second parvalbumin-positive (PV2) nucleus. The rostral and the caudal portions of the PV1-CTF consist of axonal endings, which stem from neurons scattered throughout the PV1 nucleus. Topographically, the longitudinal orientation of the PV1-CTF accords with that of the likewise longitudinally oriented functional modules of the PAG, but overlaps none of them. Minor terminal fields were identified in a crescentic column of the lateral PAG, as well as in the Edinger-Westphal, the lateral habenular, and the laterodorsal tegmental nuclei. So far, no obvious functions have been attributed to this small, circumscribed column ventrolateral to the aqueduct, the prime target of the PV1 nucleus. © 2013 Wiley Periodicals, Inc.
Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields.
Magnet, C; Kuzhir, P; Bossis, G; Meunier, A; Nave, S; Zubarev, A; Lomenech, C; Bashtovoi, V
2014-03-01
When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces-the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α≥2), the Brownian motion seems not to affect the cloud behavior.
Behavior of nanoparticle clouds around a magnetized microsphere under magnetic and flow fields
NASA Astrophysics Data System (ADS)
Magnet, C.; Kuzhir, P.; Bossis, G.; Meunier, A.; Nave, S.; Zubarev, A.; Lomenech, C.; Bashtovoi, V.
2014-03-01
When a micron-sized magnetizable particle is introduced into a suspension of nanosized magnetic particles, the nanoparticles accumulate around the microparticle and form thick anisotropic clouds extended in the direction of the applied magnetic field. This phenomenon promotes colloidal stabilization of bimodal magnetic suspensions and allows efficient magnetic separation of nanoparticles used in bioanalysis and water purification. In the present work, the size and shape of nanoparticle clouds under the simultaneous action of an external uniform magnetic field and the flow have been studied in detail. In experiments, a dilute suspension of iron oxide nanoclusters (of a mean diameter of 60 nm) was pushed through a thin slit channel with the nickel microspheres (of a mean diameter of 50 μm) attached to the channel wall. The behavior of nanocluster clouds was observed in the steady state using an optical microscope. In the presence of strong enough flow, the size of the clouds monotonically decreases with increasing flow speed in both longitudinal and transverse magnetic fields. This is qualitatively explained by enhancement of hydrodynamic forces washing the nanoclusters away from the clouds. In the longitudinal field, the flow induces asymmetry of the front and the back clouds. To explain the flow and the field effects on the clouds, we have developed a simple model based on the balance of the stresses and particle fluxes on the cloud surface. This model, applied to the case of the magnetic field parallel to the flow, captures reasonably well the flow effect on the size and shape of the cloud and reveals that the only dimensionless parameter governing the cloud size is the ratio of hydrodynamic-to-magnetic forces—the Mason number. At strong magnetic interactions considered in the present work (dipolar coupling parameter α ≥2), the Brownian motion seems not to affect the cloud behavior.
Weak Magnetic Fields in Two Herbig Ae Systems: The SB2 AK Sco and the Presumed Binary HD 95881
NASA Astrophysics Data System (ADS)
Järvinen, S. P.; Carroll, T. A.; Hubrig, S.; Ilyin, I.; Schöller, M.; Castelli, F.; Hummel, C. A.; Petr-Gotzens, M. G.; Korhonen, H.; Weigelt, G.; Pogodin, M. A.; Drake, N. A.
2018-05-01
We report the detection of weak mean longitudinal magnetic fields in the Herbig Ae double-lined spectroscopic binary AK Sco and in the presumed spectroscopic Herbig Ae binary HD 95881 using observations with the High Accuracy Radial velocity Planet Searcher polarimeter (HARPSpol) attached to the European Southern Observatory’s (ESO’s) 3.6 m telescope. Employing a multi-line singular value decomposition method, we detect a mean longitudinal magnetic field < {B}{{z}}> =-83+/- 31 G in the secondary component of AK Sco on one occasion. For HD 95881, we measure < {B}{{z}}> =-93+/- 25 G and < {B}{{z}}> =105+/- 29 G at two different observing epochs. For all the detections the false alarm probability is smaller than 10‑5. For AK Sco system, we discover that accretion diagnostic Na I doublet lines and photospheric lines show intensity variations over the observing nights. The double-lined spectral appearance of HD 95881 is presented here for the first time.
NASA Astrophysics Data System (ADS)
Guo, Li M.; Shu, T.; Li, Zhi Q.; Ju, Jin C.
2017-12-01
The compactness and miniaturization of high-power-microwave (HPM) systems are drawing more and more attention. Based on this demand, HPM generators without a guiding magnetic field are being developed. This paper presents an X-band Cherenkov type HPM oscillator without the guiding magnetic field. By particle-in-cell codes, this oscillator achieves an efficiency of 40% in simulation. When the diode voltage and current are 620 kV and 9.0 kA, respectively, a TEM mode microwave is generated with a power of 2.2 GW and a frequency of 9.1 GHz. In this oscillator, electrons are modulated in both longitudinal and radial directions, and the radial modulation has a significant effect on the energy conversion efficiency. As analyzed in this paper, the different radial modulation effects depend on the phase matching differences of the microwave and electrons. The modified scheme of simulations achieves a structure with an efficient longitudinal beam-wave interaction and optimized radial modulation.
NASA Astrophysics Data System (ADS)
Devyatkov, V. N.; Koval, N. N.
2018-01-01
The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.
Preliminary Report on Free Flight Tests
NASA Technical Reports Server (NTRS)
Warner, E P; Norton, F H
1920-01-01
Results are presented for a series of tests made by the Advisory Committee's staff at Langley Field during the summer of 1919 with the objectives of determining the characteristics of airplanes in flight and the extent to which the actual characteristics differ from those predicted from tests on models in the wind tunnel, and of studying the balance of the machines and the forces which must be applied to the controls in order to maintain longitudinal equilibrium.
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kudinov, V. A.
2013-09-01
A mathematical model of elastic vibrations of an incompressible liquid has been developed based on the hypothesis on the finite velocity of propagation of field potentials in this liquid. A hyperbolic equation of vibrations of such a liquid with account of its relaxation properties has been obtained. An exact analytical solution of this equation has been found and investigated in detail.
NASA Astrophysics Data System (ADS)
Fu, Hai-Bing; Zeng, Long; Cheng, Wei; Wu, Xing-Gang; Zhong, Tao
2018-04-01
We make a detailed study on the J /ψ meson longitudinal leading-twist distribution amplitude ϕ2;J /ψ ∥ by using the QCD sum rules within the background field theory. By keeping all the nonperturbative condensates up to dimension 6, we obtain accurate QCD sum rules for the moments ⟨ξn;J /ψ ∥⟩. The first three ones are ⟨ξ2;J /ψ ∥⟩=0.083 (12 ), ⟨ξ4;J /ψ ∥⟩=0.015 (5 ), and ⟨ξ6;J /ψ ∥⟩=0.003 (2 ), respectively. Those values indicate a single peaked behavior for ϕ2;J /ψ ∥. As an application, we adopt the QCD light-cone sum rules to calculate the Bc meson semileptonic decay Bc+→J /ψ ℓ+νℓ. We obtain Γ (Bc+→J /ψ ℓ+νℓ)=(89.67-19.06+24.76)×10-15 GeV and ℜ(J /ψ ℓ+νℓ)=0.21 7-0.057+0.069, which agree with both the extrapolated next-to-leading order pQCD prediction and the new CDF measurement within errors.
Electrical and optical transport properties of single layer WSe2
NASA Astrophysics Data System (ADS)
Tahir, M.
2018-03-01
The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.
Optimization of robotic welding procedures for maintenance repair of hydraulic turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamarche, L.; Galopin, M.; Simoneau, R.
1996-12-31
A six axes super-compact robot is used for field repair of cavitation damages found on the discharge ring of hydraulic turbines. Optimization of overlay welding procedures to minimize surface distortion and reduce tearing forces on anchors in concrete, were studied through experimentation and FEM modelling. Planned experimentation has been used to develop optimum pulsed GMAW schedules of stainless steel overlays in 2G position. Best welding sequence was resolved through over lay welding of free plates. Each overlay consisted in one or two layers which were welded in the longitudinal and/or transverse direction of the rectangular plate. A bidirectional welding mode,more » a longitudinal layer followed by a transverse layer position and no cooling between the two layers, were found to be most effective in reducing distortion. The optimized 2G welding procedure was applied to a simulated field repair. Plate was anchored on a massive iron bracket with a set of instrumented bolts, to understand how normal tearing forces in anchors evolve. Preliminary results on FEM modelling of lateral force on anchors indicate good correlation with experiments, for an elementary design.« less
Universal scaling for the quantum Ising chain with a classical impurity
NASA Astrophysics Data System (ADS)
Apollaro, Tony J. G.; Francica, Gianluca; Giuliano, Domenico; Falcone, Giovanni; Palma, G. Massimo; Plastina, Francesco
2017-10-01
We study finite-size scaling for the magnetic observables of an impurity residing at the end point of an open quantum Ising chain with transverse magnetic field, realized by locally rescaling the field by a factor μ ≠1 . In the homogeneous chain limit at μ =1 , we find the expected finite-size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit μ =0 , we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. We provide both analytic approximate expressions for the magnetization and the susceptibility as well as numerical evidences for the scaling behavior. At intermediate values of μ , finite-size scaling is violated, and we provide a possible explanation of this result in terms of the appearance of a second, impurity-related length scale. Finally, by going along the standard quantum-to-classical mapping between statistical models, we derive the classical counterpart of the quantum Ising chain with an end-point impurity as a classical Ising model on a square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of μ .
Electronic Transport Properties of Bismuth Microwire Arrays
NASA Astrophysics Data System (ADS)
Solomon, S.; Huber, T. E.; Bouffard, M.; Graf, M. J.
2002-03-01
Bulk Bi, a semimetal, and Bi-Sb, have the highest thermoelectric figure of merit Z at 100 K. The thermoelectric properties of these materials are strongly anisotropic. The best thermoelectric performance is observed when the electrical current flows along the trigonal axis. However, Bi single crystals are easily cleaved along the trigonal planes. This lack of strength has largely prevented the use of these materials in practical thermoelectric coolers. Composite technology offers the opportunity to increase the toughness of Bi and Bi-Sb. Also, microengineering Bi into composites may lead to a significant improvement in their thermoelectric performance, because of the reduction of phonon conductivity from phonon scattering at the grain boundaries and interfaces. X-ray diffraction studies show that the microwires in the array are highly oriented along the crystal direction normal to the (003) lattice plane of the rombohedral crystal structure of Bi . Measurements of the resistance of arrays of 3 mm and 10 mm diameter wires have been carried out over a wide range of temperatures (1.8 K 300 K) and magnetic fields (0-8 T), and orientations of the sample with respect to the magnetic field (0-90o) which includes the magnetic and transverse orientation. The zero field resistivity was studied and it was found that, at low temperatures, the wire boundary scattering is the dominant process. The longitudinal magnetoresistance is negative, in contrast to the longitudinal magnetoresistance of bulk crystals oriented in direction perpendicular to the trigonal plane of the rhombohedral crystal lattice who exhibit negligible magnetoresistance. This results are interpreted in terms of a size effect. Research supported by NASA and NSF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arosio, Paolo, E-mail: paolo.arosio@guest.unimi.it; Orsini, Francesco; Corti, Maurizio
2015-05-07
The spin dynamics of the molecular magnetic chain [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] were investigated by means of the Muon Spin Relaxation (μ{sup +}SR) technique. This system consists of a magnetic lattice of alternating Dy(III) ions and radical spins, and exhibits single-chain-magnet behavior. The magnetic properties of [Dy(hfac){sub 3}(NIT(C{sub 6}H{sub 4}OPh))] have been studied by measuring the magnetization vs. temperature at different applied magnetic fields (H = 5, 3500, and 16500 Oe) and by performing μ{sup +}SR experiments vs. temperature in zero field and in a longitudinal applied magnetic field H = 3500 Oe. The muon asymmetry P(t) was fitted by the sum of three components, twomore » stretched-exponential decays with fast and intermediate relaxation times, and a third slow exponential decay. The temperature dependence of the spin dynamics has been determined by analyzing the muon longitudinal relaxation rate λ{sub interm}(T), associated with the intermediate relaxing component. The experimental λ{sub interm}(T) data were fitted with a corrected phenomenological Bloembergen-Purcell-Pound law by using a distribution of thermally activated correlation times, which average to τ = τ{sub 0} exp(Δ/k{sub B}T), corresponding to a distribution of energy barriers Δ. The correlation times can be associated with the spin freezing that occurs when the system condenses in the ground state.« less
A longitudinal study of auditory evoked field and language development in young children.
Yoshimura, Yuko; Kikuchi, Mitsuru; Ueno, Sanae; Shitamichi, Kiyomi; Remijn, Gerard B; Hiraishi, Hirotoshi; Hasegawa, Chiaki; Furutani, Naoki; Oi, Manabu; Munesue, Toshio; Tsubokawa, Tsunehisa; Higashida, Haruhiro; Minabe, Yoshio
2014-11-01
The relationship between language development in early childhood and the maturation of brain functions related to the human voice remains unclear. Because the development of the auditory system likely correlates with language development in young children, we investigated the relationship between the auditory evoked field (AEF) and language development using non-invasive child-customized magnetoencephalography (MEG) in a longitudinal design. Twenty typically developing children were recruited (aged 36-75 months old at the first measurement). These children were re-investigated 11-25 months after the first measurement. The AEF component P1m was examined to investigate the developmental changes in each participant's neural brain response to vocal stimuli. In addition, we examined the relationships between brain responses and language performance. P1m peak amplitude in response to vocal stimuli significantly increased in both hemispheres in the second measurement compared to the first measurement. However, no differences were observed in P1m latency. Notably, our results reveal that children with greater increases in P1m amplitude in the left hemisphere performed better on linguistic tests. Thus, our results indicate that P1m evoked by vocal stimuli is a neurophysiological marker for language development in young children. Additionally, MEG is a technique that can be used to investigate the maturation of the auditory cortex based on auditory evoked fields in young children. This study is the first to demonstrate a significant relationship between the development of the auditory processing system and the development of language abilities in young children. Copyright © 2014 Elsevier Inc. All rights reserved.
Combustion response to acoustic perturbation in liquid rocket engines
NASA Astrophysics Data System (ADS)
Ghafourian, Akbar
An experimental study of the effect of acoustic perturbations on combustion behavior of a model liquid propellant rocket engine has been carried out. A pair of compression drivers were used to excite transverse and longitudinal acoustic fields at strengths of up to 156.6 dB and 159.5 dB respectively in the combustion chamber of the experimental rocket engine. Propellant simulants were injected into the combustion chamber through a single element shear coaxial injector. Water and air were used in cold flow studies and ethanol and oxygen-enriched air were used as fuel and oxidizer in reacting hot flow studies. In cold flow studies an imposed transverse acoustic field had a more pronounced effect on the spray pattern than a longitudinal acoustic fields. A transverse acoustic field widened the spray by as much as 33 percent and the plane of impingement of the spray with chamber walls moved up closer to the injection plane. The behavior was strongly influenced by the gas phase velocity but was less sensitive to changes in the liquid phase velocity. In reacting hot flow studies the effects of changes in equivalence ratio, excitation amplitude, excitation frequency, liquid and gas phase velocity and chamber pressure on the response of the injector to imposed high frequency transverse acoustic excitation were measured. Reducing the equivalence ratio from 7.4 to 3.8 increased the chamber pressure response to the imposed excitation at 3000 Hz. Increasing the excitation amplitude from 147 dB to 155.6 dB at 3000 Hz increased the chamber pressure response to the excitation. In the frequency range of 1240 Hz to 3220 Hz, an excitation frequency of 3000 Hz resulted in the largest response of the chamber pressure indicating the importance of fluid dynamic coupling. Increasing the liquid phase velocity from 9.2 m/sec to 22.7 m/sec, did not change the amplitude of the chamber pressure response to excitation. This implied the importance of local equivalence ratio and not the overall equivalence ratio on chamber pressure response to excitation. Increasing the chamber pressure from 1.5 atm to 3.1 atm and gas phase velocity from 93.2 m/sec to 105.1 m/sec significantly increased the chamber pressure response to acoustic excitation. This emphasized the significance of the gas phase density and velocity. Measurements of the free radical C2 emission zone and Schlieren images indicated that transverse acoustic excitation moved the combustion zone closer to the injection plane and longitudinal acoustic excitation widened the combustion zone. The histogram of these images indicates that the area over which combustion takes place in the chamber increases under imposed acoustic excitation. This implied that more propellants combust prior to exiting from the exhaust nozzle under unsteady conditions.
NASA Technical Reports Server (NTRS)
Ryan, J. C.; Lawandy, N. M.
1986-01-01
The susceptibilities for a three-level system with arbitrary pump and signal field strengths are derived for arbitrary longitudinal and transverse relaxation rates. The results are of interest in connection with the calculation of the Raman gain in systems where resonance enhancement plays a dominant role.
Acquisition and Reduction Procedures for MOF Doppler-Magnetograms. [solar observation
NASA Technical Reports Server (NTRS)
Cacciani, Alessandro; Ricci, D.; Rosati, P.; Rhodes, Edward J., Jr.; Smith, E.; Tomczyk, Steven; Ulrich, Roger K.
1988-01-01
Defects in the first magneto-optical filter (MOF) magnetograms, particularly the problem of the apparent contamination between velocity and magnetic fields, are discussed. It is found that a correct acquisition and reduction procedure gives cleaner results. A vector magnetograph is suggested. The vector field at coronal levels is calculated, using one MOF longitudinal magnetogram.
A statistical study of magnetic field magnitude changes during substorms in the near earth tail
NASA Technical Reports Server (NTRS)
Lopez, R. E.; Lui, A. T. Y.; Mcentire, R. W.; Potemra, T. A.; Krimigis, S. M.
1990-01-01
Using AMPTE/CCE data taken in 1985 and 1986 when the CCE apogee (8.8 earth radii) was within 4.5 hours of midnight, 167 injection events in the near-earth magnetotail have been cataloged. These events are exactly or nearly dispersionless on a 72-sec time scale from 25 keV to 285 keV. The changes in the field magnitude are found to be consistent with the expected effects of the diversion/disruption of the cross-tail current during a substorm, and the latitudinal position of the current sheet is highly variable within the orbit of CCE. The local time variation of the magnetic-field changes implies that the substorm current wedge is composed of longitudinally broad Birkeland currents.
Tangential Field Changes in the Great Flare of 1990 May 24.
Cameron; Sammis
1999-11-01
We examine the great (solar) flare of 1990 May 24 that occurred in active region NOAA 6063. The Big Bear Solar Observatory videomagnetograph Stokes V and I images show a change in the longitudinal field before and after the flare. Since the flare occurred near the limb, the change reflects a rearrangement of the tangential components of the magnetic field. These observations lack the 180 degrees ambiguity that characterizes vector magnetograms.
NASA Astrophysics Data System (ADS)
Murugaiyan, Premkumar; Abhinav, Anand; Verma, Rahul; Panda, Ashis K.; Mitra, Amitava; Baysakh, Sandip; Roy, Rajat K.
2018-02-01
The effect of minor Al addition on structural, crystallization, soft magnetic behaviour and magnetic field induced anisotropy through DC Joule annealing in (Fe53.95Co29.05)83Si1.3B11.7-xNb3Cu1Alx, (X = 0, 1) alloys has been studied. The Al added as-quenched melt spun ribbons show good glass forming ability, better thermo-physical properties like a high Tx1 of 438 °C, Tcam of 435 °C and Tcnc of 906 °C, compared to Tx1 of 389 °C, Tcam of 409 °C and Tcnc of 900 °C for the alloy without Al addition. The longitudinal magnetic field annealed Al added alloy exhibits low Hc of 12.92 A/m and maximum Ms. of 1.78 T. The better soft magnetic properties of Al added alloy are achieved through a high nucleation density of BCC-FeCo(Al) nanocrystallites having low K1 and λ values. The as-quenched alloys possess high magneto-strain exceeding 30 ppm and approach near zero value on nanocrystallization. The longitudinal magnetic field assisted DC Joule annealing, having current density (J) in the range of J = 20-25 A/mm2 promotes good magnetic softening due to precipitation of 5-35 nm nanocrystallites as explained by extended-random anisotropy model. The Al added alloy shows better magnetic field induced anisotropy (Ku) on nanocrystallization and shows visible change in the shape of hysteresis loop.
Association between electromagnetic field exposure and abortion in pregnant women living in Tehran
Abad, Masoumeh; Malekafzali, Hossein; Simbar, Masoumeh; Seyed Mosaavi, Hassan; Merghati Khoei, Effat
2016-01-01
Background: Health-related quality of life is affected by electromagnetic field exposure in each person everyday life. However, this is extremely controversial issue. Objective: Investigation of the associations between electromagnetic field exposure and miscarriage among women of Tehran. Materials and Methods: In this longitudinal study, 462 pregnant women with gestational age <12 wks from seven main regions of Tehran city in Iran with similar social and cultural status were participated. Women were interviewed face-to face to collect data. Reproductive information was collected using medical file recorded in those hospitals the subjects had delivery. The measuring device measured electromagnetic waves, Narda safety test solutions with valid calibration date at the entrance door of their houses. Results: A significant likelihood of miscarriage in women who exposed to significant level of electromagnetic wave. However, this association was not confirmed by Wald test. Conclusion: This study may not provide strong or consistent evidence that electromagnetic field exposure is associated or cause miscarriage. This issue may be due to small sample size in this study. PMID:27326421
Study of ICRF wave propagation and plasma coupling efficiency in a linear magnetic mirror device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, S.Y.
1991-07-01
Ion Cyclotron Range of Frequency (ICRF) wave propagation in an inhomogeneous axial magnetic field in a cylindrical plasma-vacuum system has historically been inadequately modelled. Previous works either sacrifice the cylindrical geometry in favor of a simpler slab geometry, concentrate on the resonance region, use a single mode to represent the entire field structure, or examine only radial propagation. This thesis performs both analytical and computational studies to model the ICRF wave-plasma coupling and propagation problem. Experimental analysis is also conducted to compare experimental results with theoretical predictions. Both theoretical as well as experimental analysis are undertaken as part of themore » thesis. The theoretical studies simulate the propagation of ICRF waves in an axially inhomogeneous magnetic field and in cylindrical geometry. Two theoretical analysis are undertaken - an analytical study and a computational study. The analytical study treats the inhomogeneous magnetic field by transforming the (r,z) coordinate into another coordinate system ({rho},{xi}) that allows the solution of the fields with much simpler boundaries. The plasma fields are then Fourier transformed into two coupled convolution-integral equations which are then differenced and solved for both the perpendicular mode number {alpha} as well as the complete EM fields. The computational study involves a multiple eigenmode computational analysis of the fields that exist within the plasma-vacuum system. The inhomogeneous axial field is treated by dividing the geometry into a series of transverse axial slices and using a constant dielectric tensor in each individual slice. The slices are then connected by longitudinal boundary conditions.« less
Bidirectional Fusion of the Heart-forming Fields in the Developing Chick Embryo
Moreno-Rodriguez, R.A.; Krug, E.L.; Reyes, L.; Villavicencio, L.; Mjaatvedt, C.H.; Markwald, R.R.
2007-01-01
It is generally thought that the early pre-tubular chick heart is formed by fusion of the anterior or cephalic limits of the paired cardiogenic fields. However, this study shows that the heart fields initially fuse at their midpoint to form a transitory “butterfly”-shaped, cardiogenic structure. Fusion then progresses bi-directionally along the longitudinal axis in both cranial and caudal directions. Using in vivo labeling, we demonstrate that cells along the ventral fusion line are highly motile, crossing future primitive segments. We found that mesoderm cells migrated cephalically from the unfused tips of the anterior/cephalic wings into the head mesenchyme in the region that has been called the secondary heart field. Perturbing the anterior/cranial fusion results in formation of a biconal heart. A theoretical role of the ventral fusion line acting as a “heart organizer” and its role in cardia bifida is discussed. PMID:16252277
Directional solidification of Bi-Mn alloys using an applied magnetic field
NASA Technical Reports Server (NTRS)
Decarlo, J. L.; Pirich, R. G.
1987-01-01
Off-eutectic compositions of Bi-Mn were directionally solidified in applied transverse magnetic fields up to 3 kG, to determine the effects on thermal and solutal convection. Plane front directional solidification of eutectic and near-eutectic Bi-Mn results in a two-phase rodlike morphology consisting of ferromagnetic MnBi rods in a Bi solid solution matrix. Compositions of either side of the eutectic were studied in growth orientations vertically up and down. Temperature gradient was monitored during growth by means of an in-situ thermocouple. For Bi-rich compositions, the magnetic field appeared to increase mixing as determined from thermal, morphological, chemical, and magnetic analyses. For Mn-rich compositions, morphological and chemical analyses suggest some reduction in mixing due to application of the magnetic force. The capability for carrying out directional solidification of Bi-Mn in high longitudinal magnetic fields was established.
Extreme Field Sensitivity of Magnetic Tunneling in Fe-Doped Li3 N
NASA Astrophysics Data System (ADS)
Fix, M.; Atkinson, J. H.; Canfield, P. C.; del Barco, E.; Jesche, A.
2018-04-01
The magnetic properties of dilute Li2 (Li1 -xFex )N with x ˜0.001 are dominated by the spin of single, isolated Fe atoms. Below T =10 K the spin-relaxation times become temperature independent indicating a crossover from thermal excitations to the quantum tunneling regime. We report on a strong increase of the spin-flip probability in transverse magnetic fields that proves the resonant character of this tunneling process. Longitudinal fields, on the other hand, lift the ground-state degeneracy and destroy the tunneling condition. An increase of the relaxation time by 4 orders of magnitude in applied fields of only a few milliTesla reveals exceptionally sharp tunneling resonances. Li2 (Li1 -xFex )N represents a comparatively simple and clean model system that opens the possibility to study quantum tunneling of the magnetization at liquid helium temperatures.