Measurement of longitudinal relaxation times for spin-decoupled protons.
NASA Technical Reports Server (NTRS)
Gerace, M. J.; Kuhlmann, K. F.
1972-01-01
Description of an experimental method for the determination of the longitudinal relaxation time for spin-decoupled protons by a modified version of the saturation recovery technique reported by Van Geet and Hume (1965). The described method should facilitate relaxation studies of chemically shifted protons (or fluorines) and can be applied to more complicated spin systems with the aid of triple resonance and noise-decoupling techniques.
A method for longitudinal relaxation time measurement in inhomogeneous fields
NASA Astrophysics Data System (ADS)
Chen, Hao; Cai, Shuhui; Chen, Zhong
2017-08-01
The spin-lattice relaxation time (T1) plays a crucial role in the study of spin dynamics, signal optimization and data quantification. However, the measurement of chemical shift-specific T1 constants is hampered by the magnetic field inhomogeneity due to poorly shimmed external magnetic fields or intrinsic magnetic susceptibility heterogeneity in samples. In this study, we present a new protocol to determine chemical shift-specific T1 constants in inhomogeneous fields. Based on intermolecular double-quantum coherences, the new method can resolve overlapped peaks in inhomogeneous fields. The measurement results are in consistent with the measurements in homogeneous fields using the conventional method. Since spatial encoding technique is involved, the experimental time for the new method is very close to that for the conventional method. With the aid of T1 knowledge, some concealed information can be exploited by T1 weighting experiments.
Raman, Mekala R.; Shu, Yunhong; Lesnick, Timothy G.; Jack, Clifford R.
2016-01-01
Purpose Relaxation time constants are useful as markers of tissue properties. Imaging ex vivo tissue is done for research purposes; however, T1 relaxation time constants are altered by tissue fixation in a time‐dependent manner. This study investigates regional changes in T1 relaxation time constants in ex vivo brain tissue over 6 months of fixation. Methods Five ex vivo human brain hemispheres in 10% formalin were scanned over 6 months. Mean T1 relaxation time constants were measured in regions of interest (ROIs) representing gray matter (GM) and white matter (WM) regions and analyzed as a function of fixation time. Results Cortical GM ROIs had longer T1 relaxation time constants than WM ROIs; the thalamus had T1 relaxation time constants similar to those of WM ROIs. T1 relaxation time constants showed rapid shortening within the first 6 weeks after fixation followed by a slower rate of decline. Conclusion Both GM and WM T1 relaxation time constants of fixed brain tissue show rapid decline within the first 6 weeks after autopsy and slow by 6 months. This information is useful for optimizing MR imaging acquisition parameters according to fixation time for ex vivo brain imaging studies. Magn Reson Med 77:774–778, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. PMID:26888162
Magnetization Transfer Induced Biexponential Longitudinal Relaxation
Prantner, Andrew M.; Bretthorst, G. Larry; Neil, Jeffrey J.; Garbow, Joel R.; Ackerman, Joseph J.H.
2009-01-01
Longitudinal relaxation of brain water 1H magnetization in mammalian brain in vivo is typically analyzed on a per voxel basis using a monoexponential model, thereby assigning a single relaxation time constant to all 1H magnetization within a given voxel. This approach was tested by obtaining inversion recovery data from grey matter of rats at 64 exponentially-spaced recovery times. Using Bayesian probability for model selection, brain water data were best represented by a biexponential function characterized by fast and slow relaxation components. At 4.7 T, the amplitude fraction of the rapidly relaxing component is 3.4 ± 0.7 % with a rate constant of 44 ± 12 s-1 (mean ± SD; 174 voxels from 4 rats). The rate constant of the slow relaxing component is 0.66 ± 0.04 s-1. At 11.7 T, the corresponding values are 6.9 ± 0.9 %, 19 ± 5 s-1, and 0.48 ± 0.02 s-1 (151 voxels from 4 rats). Several putative mechanisms for biexponential relaxation behavior were evaluated, and magnetization transfer between bulk water protons and non-aqueous protons was determined to be the source of biexponential longitudinal relaxation. MR methods requiring accurate quantification of longitudinal relaxation may need to take this effect explicitly into account. PMID:18759367
Vugmeyster, Liliya; Ostrovsky, Dmitry; Lipton, Andrew S
2013-05-23
In order to examine the origin of the abrupt change in the temperature dependence of (2)H NMR longitudinal relaxation times observed previously for methyl groups of L69 in the hydrophobic core of villin headpiece protein at around 90 K (Vugmeyster et al. J. Am. Chem. Soc. 2010, 132, 4038-4039), we extended the measurements to several other methyl groups in the hydrophobic core. We show that, for all methyl groups, relaxation times experience a dramatic jump several orders of magnitude around this temperature. Theoretical modeling supports the conclusion that the origin of the apparent transition in the relaxation times is due to the existence of the distribution of conformers distinguished by their activation energy for methyl three-site hops. It is also crucial to take into account the differential contribution of individual conformers into overall signal intensity. When a particular conformer approaches the regime at which its three-site hop rate constant is on the order of the quadrupolar coupling interaction constant, the intensity of the signal due to this conformer experiences a sharp drop, thus changing the balance of the contributions of different conformers into the overall signal. As a result, the observed apparent transition in the relaxation rates can be explained without the assumption of an underlying transition in the rate constants. This work in combination with earlier results also shows that the model based on the distribution of conformers explains the relaxation behavior in the entire temperature range between 300 and 70 K.
Vugmeyster, Liliya; Ostrovsky, Dmitry; Lipton, Andrew S.
2013-05-23
In order to examine the origin of the abrupt change in the temperature dependence of NMR longitudinal relaxation times observed earlier for methyl groups of L69 in the hydrophobic core of villin headpiece protein at around 90 K (Vugmeyster et al. J. Am. Chem. Soc. 2010, 132, 4038), we extended the measurements to several other methyl groups in the hydrophobic core. We show that for all methyl groups, relaxation times experience a dramatic jump several orders of magnitude around this temperature. Theoretical modeling supports the conclusion that the origin of the apparent transition in the relaxation times is due to the existence of the distribution of conformers distinguished by their activation energy for methyl three-site hops. It is also crucial to take into account the differential contribution of individual conformers into overall signal intensity. When a particular conformer approaches the regime at which its three-site hops rate constant is on the order of the quadrupolar coupling interaction constant, the intensity of the signal due to this conformer experiences a sharp drop, thus changing the balance of the contributions of different conformers into the overall signal. As a result, the observed apparent transition in the relaxation rates can be explained without the assumption of an underlying transition in the rate constants. This work in combination with earlier results also shows that the model based on the distribution of conformers explains the relaxation behavior in the entire temperature range between 300-70 K.
Ethofer, Thomas; Mader, Irina; Seeger, Uwe; Helms, Gunther; Erb, Michael; Grodd, Wolfgang; Ludolph, Albert; Klose, Uwe
2003-12-01
In vivo longitudinal relaxation times of N-acetyl compounds (NA), choline-containing substances (Cho), creatine (Cr), myo-inositol (mI), and tissue water were measured at 1.5 and 3 T using a point-resolved spectroscopy (PRESS) sequence with short echo time (TE). T(1) values were determined in six different brain regions: the occipital gray matter (GM), occipital white matter (WM), motor cortex, frontoparietal WM, thalamus, and cerebellum. The T(1) relaxation times of water protons were 26-38% longer at 3 T than at 1.5 T. Significantly longer metabolite T(1) values at 3 T (11-36%) were found for NA, Cho, and Cr in the motor cortex, frontoparietal WM, and thalamus. The amounts of GM, WM, and cerebrospinal fluid (CSF) within the voxel were determined by segmentation of a 3D image data set. No influence of tissue composition on metabolite T(1) values was found, while the longitudinal relaxation times of water protons were strongly correlated with the relative GM content. Copyright 2003 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Walbrecker, J.; Behroozmand, A.
2011-12-01
Efficient groundwater management requires reliable means of characterizing shallow groundwater aquifers. One key parameter in this respect is hydraulic conductivity. Surface nuclear magnetic resonance (NMR) is a geophysical exploration technique that can potentially provide this type of information in a noninvasive, cost-effective way. The technique is based on measuring the precession of nuclear spins of protons in groundwater molecules. It involves large loop antennas deployed on Earth's surface to generate electromagnetic pulses tuned to specifically excite and detect groundwater proton spins. Naturally, the excited state of spins is transitory - once excited, spins relax back to their equilibrium state. This relaxation process is strongly influenced by the spin environment, which, in the case of groundwater, is defined by the aquifer. By employing empirical relations, changes in relaxation behavior can be used to identify changes in aquifer hydraulic conductivity, making the NMR relaxation signal a very important piece of information. Particularly, efforts are made to record the longitudinal relaxation parameter T1, because it is known from laboratory studies that it often reliably correlates with hydraulic conductivity, even in the presence of magnetic species. In surface NMR, T1 data are collected by recording the NMR signal amplitude following two sequential excitation pulses as a function of the delay time τ between the two pulses. In conventional acquisition, the two pulses have a mutual phase shift of π. Based on theoretical arguments it was recently shown that T1 times acquired according to this conventional surface-NMR scheme are systematically biased. It was proposed that the bias can be minimized by cycling the phase of the two pulses between π and zero in subsequent double-pulse experiments, and subtracting the resulting signal amplitudes (phase-cycled pseudosaturation recovery scheme, pcPSR). We present the first surface-NMR T1 data set recorded
Whole brain MP2RAGE-based mapping of the longitudinal relaxation time at 9.4T.
Hagberg, G E; Bause, J; Ethofer, T; Ehses, P; Dresler, T; Herbert, C; Pohmann, R; Shajan, G; Fallgatter, A; Pavlova, M A; Scheffler, K
2017-01-01
Mapping of the longitudinal relaxation time (T1) with high accuracy and precision is central for neuroscientific and clinical research, since it opens up the possibility to obtain accurate brain tissue segmentation and gain myelin-related information. An ideal, quantitative method should enable whole brain coverage within a limited scan time yet allow for detailed sampling with sub-millimeter voxel sizes. The use of ultra-high magnetic fields is well suited for this purpose, however the inhomogeneous transmit field potentially hampers its use. In the present work, we conducted whole brain T1 mapping based on the MP2RAGE sequence at 9.4T and explored potential pitfalls for automated tissue classification compared with 3T. Data accuracy and T2-dependent variation of the adiabatic inversion efficiency were investigated by single slice T1 mapping with inversion recovery EPI measurements, quantitative T2 mapping using multi-echo techniques and simulations of the Bloch equations. We found that the prominent spatial variation of the transmit field at 9.4T (yielding flip angles between 20% and 180% of nominal values) profoundly affected the result of image segmentation and T1 mapping. These effects could be mitigated by correcting for both flip angle and inversion efficiency deviations. Based on the corrected T1 maps, new, 'flattened', MP2RAGE contrast images were generated, that were no longer affected by variations of the transmit field. Unlike the uncorrected MP2RAGE contrast images acquired at 9.4T, these flattened images yielded image segmentations comparable to 3T, making bias-field correction prior to image segmentation and tissue classification unnecessary. In terms of the T1 estimates at high field, the proposed correction methods resulted in an improved precision, with test-retest variability below 1% and a coefficient-of-variation across 25 subjects below 3%.
NASA Astrophysics Data System (ADS)
Hansen, D. Flemming
2017-06-01
Many chemical and biological processes rely on the movement of monovalent cations and an understanding of such processes can therefore only be achieved by characterising the dynamics of the involved ions. It has recently been shown that 15N-ammonium can be used as a proxy for potassium to probe potassium binding in bio-molecules such as DNA quadruplexes and enzymes. Moreover, equations have been derived to describe the time-evolution of 15N-based spin density operator elements of 15NH4+ spin systems. Herein NMR pulse sequences are derived to select specific spin density matrix elements of the 15NH4+ spin system and to measure their longitudinal relaxation in order to characterise the rotational correlation time of the 15NH4+ ion as well as report on chemical exchange events of the 15NH4+ ion. Applications to 15NH4+ in acidic aqueous solutions are used to cross-validate the developed pulse sequence while measurements of spin-relaxation rates of 15NH4+ bound to a 41 kDa domain of the bacterial Hsp70 homologue DnaK are presented to show the general applicability of the derived pulse sequence. The rotational correlation time obtained for 15N-ammonium bound to DnaK is similar to the correlation time that describes the rotation about the threefold axis of a methyl group. The methodology presented here provides, together with the previous theoretical framework, an important step towards characterising the motional properties of cations in macromolecular systems.
Hansen, D Flemming
2017-06-01
Many chemical and biological processes rely on the movement of monovalent cations and an understanding of such processes can therefore only be achieved by characterising the dynamics of the involved ions. It has recently been shown that (15)N-ammonium can be used as a proxy for potassium to probe potassium binding in bio-molecules such as DNA quadruplexes and enzymes. Moreover, equations have been derived to describe the time-evolution of (15)N-based spin density operator elements of (15)NH4(+) spin systems. Herein NMR pulse sequences are derived to select specific spin density matrix elements of the (15)NH4(+) spin system and to measure their longitudinal relaxation in order to characterise the rotational correlation time of the (15)NH4(+) ion as well as report on chemical exchange events of the (15)NH4(+) ion. Applications to (15)NH4(+) in acidic aqueous solutions are used to cross-validate the developed pulse sequence while measurements of spin-relaxation rates of (15)NH4(+) bound to a 41kDa domain of the bacterial Hsp70 homologue DnaK are presented to show the general applicability of the derived pulse sequence. The rotational correlation time obtained for (15)N-ammonium bound to DnaK is similar to the correlation time that describes the rotation about the threefold axis of a methyl group. The methodology presented here provides, together with the previous theoretical framework, an important step towards characterising the motional properties of cations in macromolecular systems. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.
Thomas, David L; Lythgoe, Mark F; Gadian, David G; Ordidge, Roger J
2006-04-01
A novel method for measuring the longitudinal relaxation time of arterial blood (T1a) is presented. Knowledge of T1a is essential for accurately quantifying cerebral perfusion using arterial spin labeling (ASL) techniques. The method is based on the flow-sensitive alternating inversion recovery (FAIR) pulsed ASL (PASL) approach. We modified the standard FAIR acquisition scheme by incorporating a global saturation pulse at the beginning of the recovery period. With this approach the FAIR tissue signal difference has a simple monoexponential dependence on the recovery time, with T1a as the time constant. Therefore, FAIR measurements performed over a range of recovery times can be fitted to a monoexponential recovery curve and T1a can be calculated directly. This eliminates many of the difficulties associated with the measurement of T1a. Experiments performed in vivo in the mouse at 2.35T produced a mean value of 1.51 s for T1a, consistent with previously published values. (c) 2006 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Li, Yingying; Wang, Zhiguo; Jin, Shilong; Yuan, Jie; Zhao, Hongchang; Luo, Hui
2017-02-01
A fast and accurate determination of longitudinal relaxation time is put forward for hyperpolarized 129Xe. The theoretical framework for the method is developed. Measurement of the longitudinal relaxation time is by the determination of a close-loop response of 129Xe magnetization to the external magnetic fields and is implemented with a highly sensitive Rb magnetometer. The indirect measurement dramatically reduces the time consuming than the conventional inversion-recovery method and is more suitable for the samples with long longitudinal relaxation time.
NASA Astrophysics Data System (ADS)
Casieri, Cinzia; Terenzi, Camilla; De Luca, Francesco
2009-02-01
Longitudinal and transverse relaxation time correlation (T1-T2) is employed as a nuclear magnetic resonance noninvasive characterization tool for archeological ceramics. This paper is aimed at investigating whether the most relevant firing-induced changes in ceramics, including those involving pore space properties and paramagnetic mineral structures, could be used as markers of the firing process and therefore of ceramics themselves. Ancient ceramics are made up of naturally available clays, often rich in iron impurities, which undergo relevant modifications of pore distribution upon firing. The firing process also assists chemical and physical rearrangement of iron-bearing species, yielding mineral structures with different magnetic properties. That being so, T1-T2 maps are expected to show the interdependence between ceramic structure and firing technology. T1 and T2 distributions are basically proportional to pore-size distribution, but T2, which is also sensitive to magnetic susceptibility effects, may give information on the porous matrix composition as well. Such a methodology has first been employed on laboratory-prepared ceramic samples, with different paramagnetic compositions and controlled firing temperatures, in order to tackle the problem of model-ceramic selection. Then, the T1-T2 correlation approach has been used on medieval ceramic findings in order to get information about their thermal and compositional history. The information obtained by means of two-dimensional correlation maps proves coherent with archeological dating, thus illustrating the capabilities of this method.
NASA Astrophysics Data System (ADS)
Hsu, Jung-Jiin
2015-08-01
In MRI, the flip angle (FA) of slice-selective excitation is not uniform across the slice-thickness dimension. This work investigates the effect of the non-uniform FA profile on the accuracy of a commonly-used method for the measurement, in which the T1 value, i.e., the longitudinal relaxation time, is determined from the steady-state signals of an equally-spaced RF pulse train. By using the numerical solutions of the Bloch equation, it is shown that, because of the non-uniform FA profile, the outcome of the T1 measurement depends significantly on T1 of the specimen and on the FA and the inter-pulse spacing τ of the pulse train. A new method to restore the accuracy of the T1 measurement is described. Different from the existing approaches, the new method also removes the FA profile effect for the measurement of the FA, which is normally a part of the T1 measurement. In addition, the new method does not involve theoretical modeling, approximation, or modification to the underlying principle of the T1 measurement. An imaging experiment is performed, which shows that the new method can remove the FA-, the τ-, and the T1-dependence and produce T1 measurements in excellent agreement with the ones obtained from a gold standard method (the inversion-recovery method).
Culvenor, Adam G; Wirth, Wolfgang; Maschek, Susanne; Boeth, Heide; Diederichs, Gerd; Duda, Georg; Eckstein, Felix
2017-07-01
Patellofemoral cartilage changes have been evaluated in knee trauma and osteoarthritis; however, little is known about changes in patellar and trochlear cartilage thickness, T2 relaxation-time and subchondral bone plate area (tAB) during growth. Our prospective study aimed to explore longitudinal change in patellofemoral cartilage thickness, T2 and tAB in adolescent athletes, and to compare these data with those of mature (i.e., adult) athletes. 20 adolescent (age 16±1years) and 20 mature (46±5years) volleyball players were studied over 2-years (10 men and 10 women each group). 1.5T MRI 3D-VIBE and multi-echo spin-echo sequences were acquired at baseline and 2-year follow-up. Using manual segmentation and 3D reconstruction, longitudinal changes in patellar and trochlear cartilage thickness, patellar cartilage T2 (mono-exponential decay curve with five echoes [9.7-67.9ms]), and patellar and trochlear tAB were determined. The annual increase in both patellar and trochlear cartilage thickness was 0.8% (95% confidence interval [CI] 0.6, 1.0) and 0.6% (0.3, 0.9), for adolescent males and females respectively; the longitudinal gain in patellar and trochlear tAB was 1.3% (1.1, 1.5) and 0.5% (0.2, 0.8), and 1.6% (1.1, 2.2) and 0.8% (0.3, 0.7) for adolescent males and females, respectively (no significant between-sex differences). Mature athletes showed smaller gains in tAB, and loss of <1% of cartilage thickness annually. While no significant sex-differences existed in adolescent patellar T2 changes, mature males gained significantly greater T2 than mature females (p=0.002-0.013). Patellar and trochlear cartilage thickness and tAB were observed to increase in young athletes in late adolescence, without significant differences between sexes. Mature athletes displayed patellar cartilage loss (and T2 increases in mature males), potentially reflecting degenerative changes. Copyright © 2017 Elsevier B.V. All rights reserved.
Piper, Rory J; Mikhael, Shadia; Wardlaw, Joanna M; Laidlaw, David H; Whittle, Ian R; Bastin, Mark E
2016-05-01
Differentiation of cerebral tumor pathology currently relies on interpretation of conventional structural MRI and in some cases histology. However, more advanced MRI methods may provide further insight into the organization of cerebral tumors and have the potential to aid diagnosis. The objective of this study was to use multimodal quantitative MRI to measure the imaging signatures of meningioma and low-grade glioma (LGG). Nine adults with meningioma and 11 with LGG were identified, and underwent standard structural, quantitative longitudinal relaxation time (T1) mapping, magnetization transfer and diffusion tensor MRI. Maps of mean (〈D〉), axial (λAX) and radial (λRAD) diffusivity, fractional anisotropy (FA), magnetization transfer ratio (MTR) and T1 were generated on a voxel-by-voxel basis. Using structural and echo-planar T2-weighted MRI, manual region-of-interest segmentation of brain tumor, edema, ipsilateral and contralateral normal-appearing white matter (NAWM) was performed. Differences in imaging signatures between the different tissue types, both absolute mean values and ratios relative to contralateral NAWM, were assessed using t-tests with statistical significance set at p<0.05. For both absolute mean values and ratios relative to contralateral NAWM, there were significant differences in 〈D〉, λAX, λRAD, FA, MTR and T1 between meningioma and LGG tumor tissue, respectively. Only T1 and FA differed significantly between edematous tissue associated with the two tumor types. These results suggest that multimodal MRI biomarkers are significantly different, particularly in tumor tissue, between meningioma and LGG. By using quantitative multimodal MRI it may be possible to identify tumor pathology non-invasively. Copyright © 2015 Elsevier Inc. All rights reserved.
Relaxation times estimation in MRI
NASA Astrophysics Data System (ADS)
Baselice, Fabio; Caivano, Rocchina; Cammarota, Aldo; Ferraioli, Giampaolo; Pascazio, Vito
2014-03-01
Magnetic Resonance Imaging is a very powerful techniques for soft tissue diagnosis. At the present, the clinical evaluation is mainly conducted exploiting the amplitude of the recorded MR image which, in some specific cases, is modified by using contrast enhancements. Nevertheless, spin-lattice (T1) and spin-spin (T2) relaxation times can play an important role in many pathology diagnosis, such as cancer, Alzheimer or Parkinson diseases. Different algorithms for relaxation time estimation have been proposed in literature. In particular, the two most adopted approaches are based on Least Squares (LS) and on Maximum Likelihood (ML) techniques. As the amplitude noise is not zero mean, the first one produces a biased estimator, while the ML is unbiased but at the cost of high computational effort. Recently the attention has been focused on the estimation in the complex, instead of the amplitude, domain. The advantage of working with real and imaginary decomposition of the available data is mainly the possibility of achieving higher quality estimations. Moreover, the zero mean complex noise makes the Least Square estimation unbiased, achieving low computational times. First results of complex domain relaxation times estimation on real datasets are presented. In particular, a patient with an occipital lesion has been imaged on a 3.0T scanner. Globally, the evaluation of relaxation times allow us to establish a more precise topography of biologically active foci, also with respect to contrast enhanced images.
Landheer, Karl; Sahgal, Arjun; Myrehaug, Sten; Chen, Albert P; Cunningham, Charles H; Graham, Simon J
2016-10-01
The aim of this study was to develop a time-efficient inversion technique to measure the T1 relaxation time of the methyl group of lactate (Lac) in the presence of contaminating lipids and to measure T1 at 3 T in a cohort of primary high-grade gliomas. Three numerically optimized inversion times (TIs) were chosen to minimize the expected error in T1 estimates for a given input total scan duration (set to be 30 min). A two-cycle spectral editing scheme was used to suppress contaminating lipids. The T1 values were then estimated from least-squares fitting of signal measurements versus TI. Lac T1 was estimated as 2000 ± 280 ms. After correcting for T1 (and T2 from literature values), the mean absolute Lac concentration was estimated as 4.3 ± 2.6 mm. The technique developed agrees with the results obtained by standard inversion recovery and can be used to provide rapid T1 estimates of other spectral components as required. Lac T1 exhibits similar variations to other major metabolites observable by MRS in high-grade gliomas. The T1 estimate provided here will be useful for future MRS studies wishing to report relaxation-corrected estimates of Lac concentration as an objective tumor biomarker. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Time of relaxation in dusty plasma model
NASA Astrophysics Data System (ADS)
Timofeev, A. V.
2015-11-01
Dust particles in plasma may have different values of average kinetic energy for vertical and horizontal motion. The partial equilibrium of the subsystems and the relaxation processes leading to this asymmetry are under consideration. A method for the relaxation time estimation in nonideal dusty plasma is suggested. The characteristic relaxation times of vertical and horizontal motion of dust particles in gas discharge are estimated by analytical approach and by analysis of simulation results. These relaxation times for vertical and horizontal subsystems appear to be different. A single hierarchy of relaxation times is proposed.
NASA Astrophysics Data System (ADS)
Cai, Honghao; Zheng, Bingwen; Ke, Hanping; Chen, Zhong
2015-11-01
A modified correlation spectroscopy revamped by asymmetric z-gradients echo detection (CRAZED) sequence was applied to investigate the behavior of intermolecular double-quantum longitudinal relaxation processes in the tilted rotating frame. Theoretical formalism based on dipolar field theory was presented in detail. Spectroscopic measurements and quantitative analysis demonstrated that the signal intensities and intermolecular double-quantum off-resonance longitudinal relaxation time in the rotating frame (T1ρ, DQC eff) are inversely correlated with the tilt angle (θ), while positively correlated with the effective frequency of spin-locking field (ωe). Magnetic resonance imaging experiments of an agarose phantom also prove the validity of the theoretical analysis and demonstrated the feasibility of imaging based on T1ρ, DQC eff . The rotating-frame double-quantum relaxation measurements are useful for probing slow-motion molecules and this study provides the guidance for optimization of the spin-lock experiments.
Relaxation time in disordered molecular systems
Rocha, Rodrigo P.; Freire, José A.
2015-05-28
Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.
Evaluation of brain edema using magnetic resonance proton relaxation times
Fu, Y.; Tanaka, K.; Nishimura, S. )
1990-01-01
Experimental and clinical studies on the evaluation of water content in cases of brain edema were performed in vivo, using MR proton relaxation times (longitudinal relaxation time, T1; transverse relaxation time, T2). Brain edema was produced in the white matter of cats by the direct infusion method. The correlations between proton relaxation times obtained from MR images and the water content of white matter were studied both in autoserum-infused cats and in saline-infused cats. The correlations between T1 as well as T2 and the water content in human vasogenic brain edema were also examined and compared with the data obtained from the serum group. T1 and T2 showed good correlations with the water content of white matter not only in the experimental animals but also in the clinical cases. The quality of the edema fluid did not influence relaxation time and T1 seemed to represent almost solely the water content of the tissue. T2, however, was affected by the nature of existence of water and was more sensitive than T1 in detecting extravasated edema fluid. It seems feasible therefore to evaluate the water content of brain edema on the basis of T1 values.
Proton longitudinal relaxation investigation of histidyl residues in human normal adult hemoglobin.
Russu, I M; Ho, C
1982-01-01
The longitudinal relaxation of the C2 protons of surface histidyl residues as well as other aromatic protons of human normal adult deoxyhemoglobin investigated at 360 MHz is discussed in terms of the theory proposed by Kalk and Berendsen for the proton longitudinal relaxation in proteins (Kalk, A., and H.J.C. Berendsen. 1976. J. Magn. Reson. 24:343-366). The role of the four paramagnetic iron atoms of deoxyhemoglobin as fast-relaxing sinks for the overall proton longitudinal relaxation is evaluated according to the model proposed by Bloembergen for the relaxation of nuclei in crystals containing paramagnetic centers (Bloembergen, N. 1949. Physica. 15:386-426). The results suggest that the effectiveness of the paramagnetic iron atoms of deoxyhemoglobin for the overall proton longitudinal relaxation is reduced as a result of slower spin diffusion and wide distribution of methyl groups within the hemoglobin molecule. Thus, deoxyhemoglobin provides a good model for investigating the influence of cross relaxation on proton longitudinal relaxation in proteins at the slow motion limit and in the presence of paramagnetic centers. For the C2 protons of surface histidyl residues, we show that the cross relaxation resulting from the interresidue dipolar interaction makes an important contribution to their longitudinal relaxation. PMID:6288133
Dieringer, Matthias A.; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I.; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf
2014-01-01
Introduction Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. Methods T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Results Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Conclusion Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of
Dieringer, Matthias A; Deimling, Michael; Santoro, Davide; Wuerfel, Jens; Madai, Vince I; Sobesky, Jan; von Knobelsdorff-Brenkenhoff, Florian; Schulz-Menger, Jeanette; Niendorf, Thoralf
2014-01-01
Visual but subjective reading of longitudinal relaxation time (T1) weighted magnetic resonance images is commonly used for the detection of brain pathologies. For this non-quantitative measure, diagnostic quality depends on hardware configuration, imaging parameters, radio frequency transmission field (B1+) uniformity, as well as observer experience. Parametric quantification of the tissue T1 relaxation parameter offsets the propensity for these effects, but is typically time consuming. For this reason, this study examines the feasibility of rapid 2D T1 quantification using a variable flip angles (VFA) approach at magnetic field strengths of 1.5 Tesla, 3 Tesla, and 7 Tesla. These efforts include validation in phantom experiments and application for brain T1 mapping. T1 quantification included simulations of the Bloch equations to correct for slice profile imperfections, and a correction for B1+. Fast gradient echo acquisitions were conducted using three adjusted flip angles for the proposed T1 quantification approach that was benchmarked against slice profile uncorrected 2D VFA and an inversion-recovery spin-echo based reference method. Brain T1 mapping was performed in six healthy subjects, one multiple sclerosis patient, and one stroke patient. Phantom experiments showed a mean T1 estimation error of (-63±1.5)% for slice profile uncorrected 2D VFA and (0.2±1.4)% for the proposed approach compared to the reference method. Scan time for single slice T1 mapping including B1+ mapping could be reduced to 5 seconds using an in-plane resolution of (2×2) mm2, which equals a scan time reduction of more than 99% compared to the reference method. Our results demonstrate that rapid 2D T1 quantification using a variable flip angle approach is feasible at 1.5T/3T/7T. It represents a valuable alternative for rapid T1 mapping due to the gain in speed versus conventional approaches. This progress may serve to enhance the capabilities of parametric MR based lesion detection and
Longitudinal Spin Relaxation of Optically Pumped Rubidium Atoms in Solid Parahydrogen.
Upadhyay, Sunil; Kanagin, Andrew N; Hartzell, Chase; Christy, Tim; Arnott, W Patrick; Momose, Takamasa; Patterson, David; Weinstein, Jonathan D
2016-10-21
We have grown crystals of solid parahydrogen using a single closed-cycle cryostat. We have doped the crystals with rubidium atoms at densities on the order of 10^{17} cm^{-3} and used optical pumping to polarize the spin state of the implanted atoms. The optical spectrum of the rubidium atoms shows larger broadening than previous work in which the rubidium was implanted in solid argon or neon. However, the optical pumping behavior is significantly improved, with both a larger optical pumping signal and a longer longitudinal relaxation time. The spin relaxation time shows a strong dependence on orthohydrogen impurity levels in the crystal, as well as the applied magnetic field. Current performance is comparable to state-of-the-art solid state systems at comparable spin densities, with potential for improvement at higher parahydrogen purities.
Longitudinal Spin Relaxation of Optically Pumped Rubidium Atoms in Solid Parahydrogen
NASA Astrophysics Data System (ADS)
Upadhyay, Sunil; Kanagin, Andrew N.; Hartzell, Chase; Christy, Tim; Arnott, W. Patrick; Momose, Takamasa; Patterson, David; Weinstein, Jonathan D.
2016-10-01
We have grown crystals of solid parahydrogen using a single closed-cycle cryostat. We have doped the crystals with rubidium atoms at densities on the order of 1017 cm-3 and used optical pumping to polarize the spin state of the implanted atoms. The optical spectrum of the rubidium atoms shows larger broadening than previous work in which the rubidium was implanted in solid argon or neon. However, the optical pumping behavior is significantly improved, with both a larger optical pumping signal and a longer longitudinal relaxation time. The spin relaxation time shows a strong dependence on orthohydrogen impurity levels in the crystal, as well as the applied magnetic field. Current performance is comparable to state-of-the-art solid state systems at comparable spin densities, with potential for improvement at higher parahydrogen purities.
Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V
2016-06-14
Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.
NASA Astrophysics Data System (ADS)
Shmyreva, Anna A.; Safdari, Majid; Furó, István; Dvinskikh, Sergey V.
2016-06-01
Orders of magnitude decrease of 207Pb and 199Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.
Relaxation time estimation in surface NMR
Grunewald, Elliot D.; Walsh, David O.
2017-03-21
NMR relaxation time estimation methods and corresponding apparatus generate two or more alternating current transmit pulses with arbitrary amplitudes, time delays, and relative phases; apply a surface NMR acquisition scheme in which initial preparatory pulses, the properties of which may be fixed across a set of multiple acquisition sequence, are transmitted at the start of each acquisition sequence and are followed by one or more depth sensitive pulses, the pulse moments of which are varied across the set of multiple acquisition sequences; and apply processing techniques in which recorded NMR response data are used to estimate NMR properties and the relaxation times T.sub.1 and T.sub.2* as a function of position as well as one-dimensional and two-dimension distributions of T.sub.1 versus T.sub.2* as a function of subsurface position.
Design of self-refocused pulses under short relaxation times.
Issa, Bashar
2009-06-01
The effect of using self-refocused RF pulses of comparable duration to relaxation times is studied in detail using numerical simulation. Transverse magnetization decay caused by short T2 and longitudinal component distortion due to short T1 are consistent with other studies. In order to design new pulses to combat short T1 and T2 the relaxation terms are directly inserted into the Bloch equations. These equations are inverted by searching the RF solution space using simulated annealing global optimization technique. A new T2-decay efficient excitation pulse is created (SDETR: single delayed excursion T2 resistive) which is also energy efficient. Inversion pulses which improve the inverted magnetization profile and achieve better suppression of the remaining transverse magnetization are also created even when both T1 and T2 are short. This is achieved, however, on the expense of a more complex B1 shape of larger energy content.
Measuring the relaxation time of the xenon atoms and the rubidium atoms
NASA Astrophysics Data System (ADS)
Jiang, Peng; Wang, Zhi-Guo; Li, Ying-Ying; Jiang, Qi-Yuan; Luo, Hui
2016-11-01
In a nuclear-magnetic-resonance gyroscope (NMRG), the polarization of nuclear spins and the detection of motional information are usually achieved by utilizing the atomic spins of alkali atoms. The parameters of the atomic spins are mainly evaluated by the relaxation time. Relaxation time is very important and can influence signal-to-noise ratio, dynamic range, start time, and other gyroscope parameters. Therefore, its accurate measurement is critical in the study of NMRG performance. In this study, we evaluate a variety of methods to measure the transverse and longitudinal relaxation times. First we examine the free-induction-decay method, which is the industry standard for measuring spin relaxation time. Second we investigate the improved free-induction-decay, fitting-ratio, and magnetic-resonance-broadening- fitting methods for measuring the transverse relaxation time, and the flipped polarization method for measuring the longitudinal relaxation time. By changing the experimental conditions, we obtain the longitudinal relaxation time using the flipped polarization method under a variety of conditions. Finally, by comparing these measurement methods, we propose the best measurement methods under different conditions.
Probing relaxation times in graphene quantum dots
Volk, Christian; Neumann, Christoph; Kazarski, Sebastian; Fringes, Stefan; Engels, Stephan; Haupt, Federica; Müller, André; Stampfer, Christoph
2013-01-01
Graphene quantum dots are attractive candidates for solid-state quantum bits. In fact, the predicted weak spin-orbit and hyperfine interaction promise spin qubits with long coherence times. Graphene quantum dots have been extensively investigated with respect to their excitation spectrum, spin-filling sequence and electron-hole crossover. However, their relaxation dynamics remain largely unexplored. This is mainly due to challenges in device fabrication, in particular concerning the control of carrier confinement and the tunability of the tunnelling barriers, both crucial to experimentally investigate decoherence times. Here we report pulsed-gate transient current spectroscopy and relaxation time measurements of excited states in graphene quantum dots. This is achieved by an advanced device design that allows to individually tune the tunnelling barriers down to the low megahertz regime, while monitoring their asymmetry. Measuring transient currents through electronic excited states, we estimate a lower bound for charge relaxation times on the order of 60–100 ns. PMID:23612294
Chang, Zhiwei; Halle, Bertil
2013-10-14
In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water (1)H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft
NASA Astrophysics Data System (ADS)
Chang, Zhiwei; Halle, Bertil
2013-10-01
In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft
NASA Astrophysics Data System (ADS)
Nilsson, Tomas; Halle, Bertil
2012-08-01
The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water 1H and 2H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water 2H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like 2H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally important
Nilsson, Tomas; Halle, Bertil
2012-08-07
The frequency dependence of the longitudinal relaxation rate, known as the magnetic relaxation dispersion (MRD), can provide a frequency-resolved characterization of molecular motions in complex biological and colloidal systems on time scales ranging from 1 ns to 100 μs. The conformational dynamics of immobilized proteins and other biopolymers can thus be probed in vitro or in vivo by exploiting internal water molecules or labile hydrogens that exchange with a dominant bulk water pool. Numerous water (1)H and (2)H MRD studies of such systems have been reported, but the widely different theoretical models currently used to analyze the MRD data have resulted in divergent views of the underlying molecular motions. We have argued that the essential mechanism responsible for the main dispersion is the exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings when internal water molecules or labile hydrogens escape from orientationally confining macromolecular sites. In the EMOR model, the exchange process is thus not just a means of mixing spin populations but it is also the direct cause of spin relaxation. Although the EMOR theory has been used in several studies to analyze water (2)H MRD data from immobilized biopolymers, the fully developed theory has not been described. Here, we present a comprehensive account of a generalized version of the EMOR theory for spin I = 1 nuclides like (2)H. As compared to a previously described version of the EMOR theory, the present version incorporates three generalizations that are all essential in applications to experimental data: (i) a biaxial (residual) electric field gradient tensor, (ii) direct and indirect effects of internal motions, and (iii) multiple sites with different exchange rates. In addition, we describe and assess different approximations to the exact EMOR theory that are useful in various regimes. In particular, we consider the experimentally
Estimation of Hot Electron Relaxation Time in GaN Using Hot Electron Transistors
NASA Astrophysics Data System (ADS)
Dasgupta, Sansaptak; Lu, Jing; Nidhi; Raman, Ajay; Hurni, Christophe; Gupta, Geetak; Speck, James S.; Mishra, Umesh K.
2013-03-01
In this paper, we report for the first time an estimation of hot electron relaxation time in GaN using electrical measurements. Hot electron transistors (HETs) with GaN as the base layer and different base-emitter barrier-height configurations and base thicknesses were fabricated. Common-base measurements were performed to extract the differential transfer ratio, and an exponential decay of the transfer ratio with increasing base thickness was observed. A hot electron mean free path was extracted from the corresponding exponential fitting and a relaxation time was computed, which, for low energy injection, matched well with theoretically predicted relaxation times based on longitudinal optical (LO) phonon scattering.
Murase, Kenya
2013-11-01
We previously derived a simple equation for solving time-dependent Bloch equations by a matrix operation. The purpose of this study was to present a theoretical and numerical consideration of the longitudinal (R1ρ=1/T1ρ) and transverse relaxation rates in the rotating frame (R2ρ=1/T2ρ), based on this method. First, we derived an equation describing the time evolution of the magnetization vector (M(t)) by expanding the matrix exponential into the eigenvalues and the corresponding eigenvectors using diagonalization. Second, we obtained the longitudinal magnetization vector in the rotating frame (M1ρ(t)) by taking the inner product of M(t) and the eigenvector with the smallest eigenvalue in modulus, and then we obtained the transverse magnetization vector in the rotating frame (M2ρ(t)) by subtracting M1ρ(t) from M(t). For comparison, we also computed the spin-locked magnetization vector. We derived the exact solutions for R1ρ and R2ρ from the eigenvalues, and compared them with those obtained numerically from M1ρ(t) and M2ρ(t), respectively. There was excellent agreement between them. From the exact solutions for R1ρ and R2ρ, R2ρ was found to be given by R2ρ=(2R2+R1)/2-R1ρ/2, where R1 and R2 denote the conventional longitudinal and transverse relaxation rates, respectively. We also derived M1ρ(t) and M2ρ(t) for bulk water protons, in which the effect of chemical exchange was taken into account using a 2-pool chemical exchange model, and we compared the R1ρ and R2ρ values obtained from the eigenvalues and those obtained numerically from M1ρ(t) and M2ρ(t). There was also excellent agreement between them. In conclusion, this study will be useful for better understanding of the longitudinal and transverse relaxations in the rotating frame and for analyzing the contrast mechanisms in T1ρ- and T2ρ-weighted MRI.
First Passage Times, Lifetimes, and Relaxation Times of Unfolded Proteins
NASA Astrophysics Data System (ADS)
Dai, Wei; Sengupta, Anirvan M.; Levy, Ronald M.
2015-07-01
The dynamics of proteins in the unfolded state can be quantified in computer simulations by calculating a spectrum of relaxation times which describes the time scales over which the population fluctuations decay to equilibrium. If the unfolded state space is discretized, we can evaluate the relaxation time of each state. We derive a simple relation that shows the mean first passage time to any state is equal to the relaxation time of that state divided by the equilibrium population. This explains why mean first passage times from state to state within the unfolded ensemble can be very long but the energy landscape can still be smooth (minimally frustrated). In fact, when the folding kinetics is two-state, all of the unfolded state relaxation times within the unfolded free energy basin are faster than the folding time. This result supports the well-established funnel energy landscape picture and resolves an apparent contradiction between this model and the recently proposed kinetic hub model of protein folding. We validate these concepts by analyzing a Markov state model of the kinetics in the unfolded state and folding of the miniprotein NTL9 (where NTL9 is the N -terminal domain of the ribosomal protein L9), constructed from a 2.9 ms simulation provided by D. E. Shaw Research.
First Passage Times, Lifetimes, and Relaxation Times of Unfolded Proteins
Dai, Wei; Sengupta, Anirvan M.; Levy, Ronald M.
2015-01-01
The dynamics of proteins in the unfolded state can be quantified in computer simulations by calculating a spectrum of relaxation times which describes the time scales over which the population fluctuations decay to equilibrium. If the unfolded state space is discretized we can evaluate the relaxation time of each state. We derive a simple relation that shows the mean first passage time to any state is equal to the relaxation time of that state divided by the equilibrium population. This explains why mean first passage times from state to state within the unfolded ensemble can be very long but the energy landscape can still be smooth (minimally frustrated). In fact, when the folding kinetics is two-state, all of the unfolded state relaxation times within the unfolded free energy basin are faster than the folding time. This result supports the well-established funnel energy landscape picture and resolves an apparent contradiction between this model and the recently proposed kinetic hub model of protein folding. We validate these concepts by analyzing a Markov State Model of the kinetics in the unfolded state and folding of the mini-protein NTL9 constructed from a 2.9 millisecond simulation provided by D. E. Shaw Research. PMID:26252709
Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Cho, Minjung; Sethi, Richa; Ananta Narayanan, Jeyarama Subramanian; Lee, Seung Soo; Benoit, Denise N.; Taheri, Nasim; Decuzzi, Paolo; Colvin, Vicki L.
2014-10-01
Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values moderately reduce as the size of the Gd2O3 nanoplates increases, and are always larger for the PAA-OA coating. Cytotoxicity studies on human dermal fibroblast cells documented no significant toxicity, with 100% cell viability preserved up to 250 μM for the PAA-OA coated Gd2O3 nanoplates. Given the 10 times increase in longitudinal relaxivity over the commercially available Gd-based molecular agents and the favorable toxicity profile, the 2 nm PAA-OA coated Gd2O3 nanoplates could represent a new class of highly effective T1 MRI contrast agents.Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values
Multiple relaxation times in single-molecule magnets
NASA Astrophysics Data System (ADS)
Ho, Le Tuan Anh; Chibotaru, Liviu F.
2016-09-01
Multiple relaxation times detected in the ac magnetic susceptibility of several single-molecule magnets have been always assigned to extrinsic factors, such as nonequivalent magnetic centers or effects of intermolecular interactions in the crystal. By solving quantum relaxation equations, we prove that the observed multiple relaxation times can be of intramolecular origin and can show up even in single-ion metal complexes. For the latter a remarkably good description of the coexistent two relaxation times is demonstrated on several experimental examples. This proves the relevance of the intramolecular mechanism of multiple relaxation times in such systems, which is even easier justified in polynuclear magnetic complexes.
Magnetic field dependence of plasma relaxation times
NASA Technical Reports Server (NTRS)
Montgomery, D.; Joyce, G.; Turner, L.
1974-01-01
A previously derived Fokker-Planck collision integral for an electron plasma in a dc magnetic field is examined in the limit in which the Debye length is greater than the thermal gyroradius, which is in turn greater than the mean distance of closest approach. It is demonstrated that the collision integral can be satisfactorily approximated by the classical Landau value (which ignores the presence of a dc magnetic field) if the following replacement is made: In the Coulomb logarithm, the Debye length is replaced by the gyroradius. This induces a fundamental logarithmic dependence on magnetic field in the relaxation times. Numerical comparison of the asymptotic approximations with the previously derived exact results is made, and good agreement is found. The simplification this introduces into the description of collision processes in magnetized plasma is considerable.
Effects of relaxed static longitudinal stability on a single-stage-to-orbit vehicle design
NASA Technical Reports Server (NTRS)
Freeman, D. C., Jr.; Wilhite, A. W.
1979-01-01
The effects of relaxing longitudinal stability requirements on single stage to orbit space vehicles is studied. A comparison of the mass and performance characteristics of two vehicles, one designed for positive levels of longitudinal stability and the other designed with relaxed stability requirements in a computer aided design process is presented. Both vehicles, required to meet the same mission characteristics are described. Wind tunnel tests, conducted over a Mach number range from 0.3 to 4.63 to verify estimated aerodynamic characteristics, are discussed.
Ultrafast NMR T1 relaxation measurements: probing molecular properties in real time.
Smith, Pieter E S; Donovan, Kevin J; Szekely, Or; Baias, Maria; Frydman, Lucio
2013-09-16
The longitudinal relaxation properties of NMR active nuclei carry useful information about the site-specific chemical environments and about the mobility of molecular fragments. Molecular mobility is in turn a key parameter reporting both on stable properties, such as size, as well as on dynamic ones, such as transient interactions and irreversible aggregation. In order to fully investigate the latter, a fast sampling of the relaxation parameters of transiently formed molecular species may be needed. Nevertheless, the acquisition of longitudinal relaxation data is typically slow, being limited by the requirement that the time for which the nucleus relaxes be varied incrementally until a complete build-up curve is generated. Recently, a number of single-shot-inversion-recovery methods have been developed capable of alleviating this need; still, these may be challenged by either spectral resolution restrictions or when coping with very fast relaxing nuclei. Here, we present a new experiment to measure the T1s of multiple nuclear spins that experience fast longitudinal relaxation, while retaining full high-resolution chemical shift information. Good agreement is observed between T1s measured with conventional means and T1s measured using the new technique. The method is applied to the real-time investigation of the reaction between D-xylose and sodium borate, which is in turn elucidated with the aid of ancillary ultrafast and conventional 2D TOCSY measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immersed boundary lattice Boltzmann model based on multiple relaxation times.
Lu, Jianhua; Han, Haifeng; Shi, Baochang; Guo, Zhaoli
2012-01-01
As an alterative version of the lattice Boltzmann models, the multiple relaxation time (MRT) lattice Boltzmann model introduces much less numerical boundary slip than the single relaxation time (SRT) lattice Boltzmann model if some special relationship between the relaxation time parameters is chosen. On the other hand, most current versions of the immersed boundary lattice Boltzmann method, which was first introduced by Feng and improved by many other authors, suffer from numerical boundary slip as has been investigated by Le and Zhang. To reduce such a numerical boundary slip, an immerse boundary lattice Boltzmann model based on multiple relaxation times is proposed in this paper. A special formula is given between two relaxation time parameters in the model. A rigorous analysis and the numerical experiments carried out show that the numerical boundary slip reduces dramatically by using the present model compared to the single-relaxation-time-based model.
Longitudinal spin relaxation of donor-bound electrons in direct band-gap semiconductors
NASA Astrophysics Data System (ADS)
Linpeng, Xiayu; Karin, Todd; Durnev, M. V.; Barbour, Russell; Glazov, M. M.; Sherman, E. Ya.; Watkins, S. P.; Seto, Satoru; Fu, Kai-Mei C.
2016-09-01
We measure the donor-bound electron longitudinal spin-relaxation time (T1) as a function of magnetic field (B ) in three high-purity direct band-gap semiconductors: GaAs, InP, and CdTe, observing a maximum T1 of 1.4, 0.4, and 1.2 ms, respectively. In GaAs and InP at low magnetic field, up to ˜2 T, the spin-relaxation mechanism is strongly density and temperature dependent and is attributed to the random precession of the electron spin in hyperfine fields caused by the lattice nuclear spins. In all three semiconductors at high magnetic field, we observe a power-law dependence T1∝B-ν with 3 ≲ν ≲4 . Our theory predicts that the direct spin-phonon interaction is important in all three materials in this regime in contrast to quantum dot structures. In addition, the "admixture" mechanism caused by Dresselhaus spin-orbit coupling combined with single-phonon processes has a comparable contribution in GaAs. We find excellent agreement between high-field theory and experiment for GaAs and CdTe with no free parameters, however a significant discrepancy exists for InP.
Effects of Stress and Relaxation on Time Perception
2003-01-01
mortality. Relaxation therapies are now commonly used to reduce negative stress consequences and were included in treatments of more than two thirds...help fine-tune relaxation therapies and allow the use of time perception as an assessment tool or outcome measure of stress management and relaxation... therapies . Self-reports of time (such as the frequency and duration of health condition symptoms) are a mainstay of diagnostic evaluation and quality of
Proton relaxation times in cancer diagnosis
Santhana Mariappan, S.V.; Subramanian, S.; Chandrakumar, N.; Rajalakshmi, K.R.; Sukumaran, S.S.
1988-10-01
Proton nuclear magnetic resonance relaxation parameters (T1, T2) were measured for over 100 malignant and normal tissue samples of various organs of the human body. The purpose of this study was to estimate the reliability of the NMR technique in discriminating normal from malignant tissues. Breast and cervix samples were analyzed by using the malignancy index concept and we were able to distinguish malignant and normal tissue in 17 out of 18 breast samples and 5 out of 7 cervix samples. Since the relaxation data of a normal control population of the other organs were not available, the data for these are reported without any further analysis. The distinction between carcinomas and sarcomas was also made by using the estimated relaxation parameters. Malignancy indices of breast tissue samples for linear least-squares and nonlinear two-parameter and three-parameter least-squares procedures were calculated and used to evaluate the relative efficiencies in discriminating malignant from normal tissues.
NASA Astrophysics Data System (ADS)
Malliavin, T. E.; Desvaux, H.; Aumelas, A.; Chavanieu, A.; Delsuc, M. A.
1999-09-01
We describe a quantitative processing method which gives access to the longitudinal and transverse cross-relaxation rates from off-resonance ROESY intensities. This method takes advantage of the dependence of the off-resonance ROESY experiments at any mixing time and any spin-lock angle θ on two relaxation matrices, the longitudinal and the transverse ones. This allows one to take into account multistep magnetization transfers even if the measurements are performed only at one or two mixing times. The ratio of the longitudinal to transverse cross-relaxation rates can then be used as a local indicator of the internal dynamics, without assuming a structure or a model of motion. After validation of this processing method by numerical simulations, it is applied to the analysis of the dynamics of the peptide ranalexin dissolved in pure water and in water/TFE.
Malliavin, T E; Desvaux, H; Aumelas, A; Chavanieu, A; Delsuc, M A
1999-09-01
We describe a quantitative processing method which gives access to the longitudinal and transverse cross-relaxation rates from off-resonance ROESY intensities. This method takes advantage of the dependence of the off-resonance ROESY experiments at any mixing time and any spin-lock angle θ on two relaxation matrices, the longitudinal and the transverse ones. This allows one to take into account multistep magnetization transfers even if the measurements are performed only at one or two mixing times. The ratio of the longitudinal to transverse cross-relaxation rates can then be used as a local indicator of the internal dynamics, without assuming a structure or a model of motion. After validation of this processing method by numerical simulations, it is applied to the analysis of the dynamics of the peptide ranalexin dissolved in pure water and in water/TFE. Copyright 1999 Academic Press.
Formation of anisotropic polymer colloids by disparate relaxation times.
Kegel, Willem K; Breed, Dana; Elsesser, Mark; Pine, David J
2006-08-15
We show that coupling between a fast and a slow relaxation time causes the spontaneous formation of protrusions in colloids made of cross-linked polymers. The volume of the protrusions can be controlled by adjusting the ratio between the relaxation times. This, in principle, results in particles with levels of anisotropy that can be made "to order".
NASA Astrophysics Data System (ADS)
Zheng, W.; Gao, H.; Liu, J.-G.; Zhang, Y.; Ye, Q.; Swank, C.
2011-11-01
We develop an approach, by calculating the autocorrelation function of spins, to derive the magnetic field gradient-induced transverse (T2) relaxation of spins undergoing restricted diffusion. This approach is an extension to the method adopted by McGregor. McGregor's approach solves the problem only in the fast diffusion limit; however, our approach yields a single analytical solution suitable in all diffusion regimes, including the intermediate regime. This establishes a direct connection between the well-known slow diffusion result of Torrey and the fast diffusion result. We also perform free induction decay measurements on spin-exchange optically polarized 3He gas with different diffusion constants. The measured transverse relaxation profiles are compared with the theory and satisfactory agreement has been found throughout all diffusion regimes. In addition to the transverse relaxation, this approach is also applicable to solving the longitudinal relaxation (T1) regardless of the diffusion limits. It turns out that the longitudinal relaxation in the slow diffusion limit differs by a factor of 2 from that in the fast diffusion limit.
Resistivity scaling and electron relaxation times in metallic nanowires
Moors, Kristof; Sorée, Bart; Magnus, Wim; Tőkei, Zsolt
2014-08-14
We study the resistivity scaling in nanometer-sized metallic wires due to surface roughness and grain-boundaries, currently the main cause of electron scattering in nanoscaled interconnects. The resistivity has been obtained with the Boltzmann transport equation, adopting the relaxation time approximation of the distribution function and the effective mass approximation for the conducting electrons. The relaxation times are calculated exactly, using Fermi's golden rule, resulting in a correct relaxation time for every sub-band state contributing to the transport. In general, the relaxation time strongly depends on the sub-band state, something that remained unclear with the methods of previous work. The resistivity scaling is obtained for different roughness and grain-boundary properties, showing large differences in scaling behavior and relaxation times. Our model clearly indicates that the resistivity is dominated by grain-boundary scattering, easily surpassing the surface roughness contribution by a factor of 10.
Correlation of transverse relaxation time with structure of biological tissue.
Furman, Gregory B; Meerovich, Victor M; Sokolovsky, Vladimir L
2016-09-01
Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.
Correlation of transverse relaxation time with structure of biological tissue
NASA Astrophysics Data System (ADS)
Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2016-09-01
Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.
Relaxation time of high-density amorphous ice.
Handle, Philip H; Seidl, Markus; Loerting, Thomas
2012-06-01
Amorphous water plays a fundamental role in astrophysics, cryoelectron microscopy, hydration of matter, and our understanding of anomalous liquid water properties. Yet, the characteristics of the relaxation processes taking place in high-density amorphous ice (HDA) are unknown. We here reveal that the relaxation processes in HDA at 110-135 K at 0.1-0.2 GPa are of collective and global nature, resembling the alpha relaxation in glassy material. Measured relaxation times suggest liquid-like relaxation characteristics in the vicinity of the crystallization temperature at 145 K. By carefully relaxing pressurized HDA for several hours at 135 K, we produce a state that is closer to the ideal glass state than all HDA states discussed so far in literature.
A quantum relaxation-time approximation for finite fermion systems
Reinhard, P.-G.; Suraud, E.
2015-03-15
We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.
Chemical Relaxation Times in a Hadron Gas at Finite Temperature
Goity, Jose
1993-07-01
The relaxation time of particle numbers in hot hadronic matter with vanishing baryon number are estimated using the ideal gas approximation and taking into account resonance decays and annihilation processes as the only sources of particle number fluctuations.Near the QCD critical temperature the longest relaxation times turn out to be of the order of 10 fm and grow roughly exponentially to become of the order of 10^3 fm at temperatures around 100 MeV.As a consequence of such long relaxation times, a clear departure from chemical equilibrium must be observed in the momentum distribution of secondary particles produced in high energy nuclear collisions.
Proton-nuclear magnetic resonance relaxation times in brain edema
Kamman, R.L.; Go, K.G.; Berendsen, H.J. )
1990-01-01
Proton relaxation times of protein solutions, bovine brain, and edematous feline brain tissue were studied as a function of water concentration, protein concentration, and temperature. In accordance with the fast proton exchange model for relaxation, a linear relation could be established between R1 and the inverse of the weight fraction of tissue water. This relation also applied to R2 of gray matter and of protein solutions. No straightforward relation with water content was found for R2 of white matter. Temperature-dependent studies indicated that in this case, the slow exchange model for relaxation had to be applied. The effect of macromolecules in physiological relevant concentrations on the total relaxation behavior of edematous tissue was weak. Total water content changes predominantly affected the relaxation rates. The linear relation may have high clinical potential for assessment of the status of cerebral edema on the basis of T1 and T2 readings from MR images.
Multiple-Relaxation-Time Lattice Boltzmann Models in 3D
NASA Technical Reports Server (NTRS)
dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.
T2 relaxation time abnormalities in bipolar disorder and schizophrenia.
Ongür, Dost; Prescot, Andrew P; Jensen, J Eric; Rouse, Elizabeth D; Cohen, Bruce M; Renshaw, Perry F; Olson, David P
2010-01-01
There are substantial abnormalities in the number, density, and size of cortical neurons and glial cells in bipolar disorder and schizophrenia. Because molecule-microenvironment interactions modulate metabolite signals characteristics, these cellular abnormalities may impact transverse (T2) relaxation times. We measured T2 relaxation times for three intracellular metabolites (N-acetylaspartate+N-acetylaspartylglutamate, creatine+phosphocreatine, and choline-containing compounds) in the anterior cingulate cortex and parieto-occipital cortex from 20 healthy subjects, 15 patients with bipolar disorder, and 15 patients with schizophrenia at 4 T. Spectra used in T2 quantification were collected from 8-cc voxels with varying echo times (30 to 500 ms, in 10-ms steps). Both bipolar disorder and schizophrenia groups had numerically shorter T2 relaxation times than the healthy subjects group in both regions; these differences reached statistical significance for creatine+phosphocreatine and choline-containing compounds in bipolar disorder and for choline-containing compounds in schizophrenia. Metabolite T2 relaxation time shortening is consistent with reduced cell volumes and altered macromolecule structures, and with prolonged water T2 relaxation times reported in bipolar disorder and schizophrenia. These findings suggest that metabolite concentrations reported in magnetic resonance spectroscopy studies of psychiatric conditions may be confounded by T2 relaxation and highlight the importance of measuring and correcting for this variable.
NASA Astrophysics Data System (ADS)
Grombacher, D.; Behroozmand, A. A.; Auken, E.
2016-12-01
Surface nuclear magnetic resonance provides the ability to non-invasively quantify and map subsurface water content. To ensure reliable water content estimates are produced the transmit portion of the experiment (called excitation) must be modeled accurately. This requires that relaxation during pulse (RDP) effects be accounted for as they may lead to biased water content estimates if neglected. The standard approach to account for these effects involves estimating the initial amplitude of the signal by extrapolating the measured decay to the midpoint of the pulse, while neglecting these effects in the excitation modeling. The reasoning behind such an approach is that initial amplitudes estimated by extrapolation to the midpoint of the pulse (in combination with excitation modeling that neglects RDP) can reliably reproduce the correct water content. This technique works well in the regime where the time constants describing the decay of the observed signal (called relaxation times) are greater than the pulse duration. However, recent hardware advancements now allow the routine measurement of much faster relaxation times where this approach may lead to poor water content estimates. Furthermore, a growing desire to use alternative transmit schemes demands a flexible protocol to account for RDP effects in the presence of fast relaxation times for arbitrary transmit schemes. To accomplish this goal a data driven approach involving direct modeling of RDP processes is presented. Relaxation times estimated from the observed decay are directly incorporated into the excitation modeling (while the initial amplitude is estimated at the end of the pulse) in order to produce more robust water content estimates. Synthetic and laboratory data is presented to demonstrate that such an approach is expected to broaden the range of relaxation times where water contents can be reliably estimated and better extends functionality to alternative transmit schemes.
Cassaignau, Anaïs M. E.; Cabrita, Lisa D.
2016-01-01
The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome–nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of 15N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of 1H magnetization without adversely affecting storage on Nz during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ~1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies. PMID:26253948
Time scales and relaxation dynamics in quantum-dot lasers
Erneux, Thomas; Viktorov, Evgeny A.; Mandel, Paul
2007-08-15
We analyze a three-variable rate equation model that takes into account carrier capture and Pauli blocking in quantum dot semiconductor lasers. The exponential decay of the relaxation oscillations is analyzed from the linearized equations in terms of three key parameters that control the time scales of the laser. Depending on their relative values, we determine two distinct two-variable reductions of the rate equations in the limit of large capture rates. The first case leads to the rate equations for quantum well lasers, exhibiting relaxation oscillations dynamics. The second case corresponds to dots nearly saturated by the carriers and is characterized by the absence of relaxation oscillations.
Femtosecond time-resolved electronic relaxation dynamics in tetrathiafulvalene
Staedter, D.; Polizzi, L.; Thiré, N.; Mairesse, Y.; Mayer, P.; Blanchet, V.
2015-05-21
In the present paper, the ultrafast electronic relaxation of tetrathiafulvalene (TTF) initiated around 4 eV is studied by femtosecond time-resolved velocity-map imaging. The goal is to investigate the broad double structure observed in the absorption spectrum at this energy. By monitoring the transients of the parent cation and its fragments and by varying the pump and the probe wavelengths, two internal conversions and intramolecular vibrational relaxation are detected both on the order of a few hundred of femtoseconds. Photoelectron images permit the assignment of a dark electronic state involved in the relaxation. In addition, the formation of the dimer of TTF has been observed.
Analysis of the Palierne model by relaxation time spectrum
NASA Astrophysics Data System (ADS)
Kwon, Mi Kyung; Cho, Kwang Soo
2016-02-01
Viscoelasticity of immiscible polymer blends is affected by relaxation of the interface. Several attempts have been made for linear viscoelasticity of immiscible polymer blends. The Palierne model (1990) and the Gramespacher-Meissner model (1992) are representative. The Gramespacher-Meissner model consists of two parts: ingredients and interface. Moreover, it provides us the formula of the peak of interface in weighted relaxation time spectrum, which enables us to analyze the characteristics relating to interface more obviously. However, the Gramespacher-Meissner model is a kind of empirical model. Contrary to the Gramespacher-Meissner model, the Palierne model was derived in a rigorous manner. In this study, we investigated the Palierne model through the picture of the Gramespacher-Meissner model. We calculated moduli of immiscible blend using two models and obtained the weighted relaxation time spectra of them. The fixed-point iteration of Cho and Park (2013) was used in order to determine the weighted relaxation spectra.
Ice sheet growth with laterally varying bedrock relaxation time
NASA Astrophysics Data System (ADS)
van der Wal, Wouter; Vizcaino Rubio, Pablo; De Boer, Bas; van de Wal, Roderik
2017-04-01
Isostatic response of the bedrock, or glacial isostatic adjustment (GIA) in included in most ice sheet models. This is important because the surface elevation determines the mass balance and thereby implicitly also the strength of the mass balance feedback where higher surface elevation yields lower temperatures implying less melt and vice versa. Usually a single relaxation time or a set of relaxation times is used to model the response everywhere on Earth or at least for an entire ice sheet. In reality the viscosity in the Earth's mantle, and hence the relaxation time experienced by the ice, varies with location. Seismic studies indicate that several regions that were covered by ice during the last glacial cycle are underlain by mantle in which viscosity varies with orders of magnitude, such as Antarctica and North America. The question is whether such a variation of viscosity influences ice evolution. Several GIA models exist that can deal with 3D viscosity, but their large computation times make it nearly impossible to couple them to ice sheet models. Here we use the ANICE ice-sheet model (de Boer et al. 2013) with a simple bedrock-relaxation model in which a different relaxation time is used for separate regions. A temperature anomaly is applied to grow a schematic ice sheet on a flat earth, with other forcing mechanisms neglected. It is shown that in locations with a fast relaxation time of 300 years the equilibrium ice sheet is significantly thinner and narrower but also ice thickness in neighbouring regions (with the more standard relaxation time of 3000 years) is affected.
Mindfulness meditation and relaxation training increases time sensitivity.
Droit-Volet, S; Fanget, M; Dambrun, M
2015-01-01
Two experiments examined the effect of mindfulness meditation and relaxation on time perception using a temporal bisection task. In Experiment 1, the participants performed a temporal task before and after exercises of mindfulness meditation or relaxation. In Experiment 2, the procedure was similar than that used in Experiment 1, except that the participants were trained to mediate or relax every day over a period of several weeks. The results showed that mindfulness meditation exercises increased sensitivity to time and lengthened perceived time. However, this temporal improvement with meditation exercises was primarily observed in the experienced meditators. Our results also showed the experienced meditators were less anxious than the novice participants, and that the sensitivity to time increased when the level of anxiety decreased. Our results were explained by the practice of mindfulness technique that had developed individuals' abilities in devoting more attention resources to temporal information processing.
NASA Astrophysics Data System (ADS)
Petrov, Oleg V.; Stapf, Siegfried
2017-06-01
This work addresses the problem of a compact and easily comparable representation of multi-exponential relaxation data. It is often convenient to describe such data in a few parameters, all being of physical significance and easy to interpret, and in such a way that enables a model-free comparison between different groups of samples. Logarithmic moments (LMs) of the relaxation time constitute a set of parameters which are related to the characteristic relaxation time on the log-scale, the width and the asymmetry of an underlying distribution of exponentials. On the other hand, the calculation of LMs does not require knowing the actual distribution function and is reduced to a numerical integration of original data. The performance of this method has been tested on both synthetic and experimental NMR relaxation data which differ in a signal-to-noise ratio, the sampling range and the sampling rate. The calculation of two lower-order LMs, the log-mean time and the log-variance, has proved robust against deficiencies of the experiment such as scattered data point and incomplete sampling. One may consider using them as such to monitor formation of a heterogeneous structure, e.g., in phase separation, vitrification, polymerization, hydration, aging, contrast agent propagation processes. It may also assist in interpreting frequency and temperature dependences of relaxation, revealing a crossover from slow to fast exchange between populations. The third LM was found to be a less reliable quantity due to its susceptibility to the noise and must be used with caution.
Experimental study on relaxation time in direction changing movement
NASA Astrophysics Data System (ADS)
Liu, Chi; Song, Weiguo; Fu, Libi; Lian, Liping; Lo, Siuming
2017-02-01
Controlled experiments were conducted to clarify the movement characteristics of pedestrians in direction changing processes. We track pedestrians' trajectories and map them into real space coordinates by the direct linear transformation method. In the acceleration process, the relaxation time and free moving speed in our experiments respectively equal 0.659 s and 1.540 m/s, which are consistent with those for Chinese participants in other experiments. Meanwhile, the values of relaxation time in the direction changing process are calculated by a derived equation from the concept of the social force model. It is observed that the relaxation time is not an invariable parameter, and tends to increase with an increase in the angular difference. Furthermore, results show that pedestrians are insensitive to a tiny angular difference between instantaneous velocity and desired velocity. These experimental results presented in this work can be applied in model development and validation.
Relaxation Times in Simple Shear and the Role of Walls
NASA Astrophysics Data System (ADS)
Brendel, Lothar; Török, János; Ries, Alexander; Wolf, Dietrich E.
2017-06-01
We study the relaxation time of granular media in simple shear by means of DEM simulations (the methods being Molecular Dynamics as well as Contact Dynamics) in two and three dimensions with rough and with smooth frictional walls. While the system with rough walls behaves according to its steady state constitutive laws, the systems with smooth walls show a much stronger increase of the relaxation time with driving strength than to be expected. Employing a dynamic non-local rheology model[1] allows for a stronger increase but not sufficiently so.
Chang, Zhiwei; Halle, Bertil
2015-12-21
A system of three dipole-coupled spins exhibits a surprisingly intricate relaxation behavior. Following Hubbard’s pioneering 1958 study, many authors have investigated different aspects of this problem. Nevertheless, on revisiting this classic relaxation problem, we obtain several new results, some of which are at variance with conventional wisdom. Most notably from a fundamental point of view, we find that the odd-valued spectral density function influences longitudinal relaxation. We also show that the effective longitudinal relaxation rate for a non-isochronous three-spin system can exhibit an unusual inverted dispersion step. To clarify these and other issues, we present a comprehensive theoretical treatment of longitudinal relaxation in a three-spin system of arbitrary geometry and with arbitrary rotational dynamics. By using the Liouville-space formulation of Bloch-Wangsness-Redfield theory and a basis of irreducible spherical tensor operators, we show that the number of relaxation components in the different cases can be deduced from symmetry arguments. For the isochronous case, we present the relaxation matrix in analytical form, whereas, for the non-isochronous case, we employ a computationally efficient approach based on the stochastic Liouville equation.
The short-time intramolecular dynamics of solutes in liquids. II. Vibrational population relaxation
NASA Astrophysics Data System (ADS)
Goodyear, Grant; Stratt, Richard M.
1997-08-01
Events such as the vibrational relaxation of a solute are often well described by writing an effective equation of motion—a generalized Langevin equation—which expresses the surrounding medium's influence on the intramolecular dynamics in terms of a friction and a fluctuating force acting on the solute. These quantities, though, can be obtained from the instantaneous normal modes (INMs) of the system when the relaxation takes place in a fluid, suggesting that we should be able to analyze in some detail the solvent motions driving the relaxation, at least for short times. In this paper we show that this promise can indeed be realized for the specific case of a vibrating diatomic molecule dissolved in an atomic solvent. Despite the relatively long times typical of vibrational population relaxation, it turns out that understanding the behavior of the vibrational friction at the short times appropriate to INMs (a few hundred femtoseconds) often suffices to predict T1 times. We use this observation to probe the dependence of these relaxation rates on thermodynamic conditions and to look at the molecular mechanisms underlying the process. We find that raising the temperature at any given density or raising the density at any given temperature will invariably increase the rate of energy relaxation. However, since these two trends may be in conflict in a typical constant-pressure laboratory experiment, we also find that it is possible to make sense of the "anomalous" inverted temperature dependence recently seen experimentally. We find, as well, that the INM theory—which has no explicit collisions built into it—predicts exactly the same density dependence as the venerable independent-binary-collision (IBC) theory (an intriguing result in view of recent claims that experimental observations of this kind of dependence provide support for the IBC theory). The actual mechanisms behind vibrational population relaxation are revealed by looking in detail at the
Forster, Duncan; Davies, Karen; Williams, Steve
2013-04-01
Alzheimer's disease (AD) is the most common form of dementia in the elderly. Due to ongoing advances in our understanding of the underlying pathology of AD, many potential new targets for therapeutics are becoming available. Transgenic mouse models of AD have helped in furthering our understanding of AD and also provide a vehicle for preclinical testing of new, putative disease-modifying therapeutics, which may have potential for translation to use in clinical trials. To identify possible translational biomarkers, we have studied the longitudinal cerebral metabolic pattern of the TASTPM transgenic AD mouse, a double transgenic mouse overexpressing human mutant amyloid precursor protein (hAPP695swe) and presenilin-1 (M146V) by (1) H magnetic resonance spectroscopy, along with concurrent brain T1 /T2 mapping and behavioral testing. We found significant differences in creatine, glutamate, N-acetylaspartate, choline-containing compounds, and myo-inositol between TASTPM and wild-type mice. In the case of N-acetylaspartate and myo-inositol, there were similarities to differences detected in human AD. T1 /T2 values were shorter overall in TASTPM mice, indicating possible differences in water content between TASTPM and wild-type mice. In older TASTPM mice, exploratory behavior became more random, indicating a possible memory deficiency. The decrease in behavioral performance correlated in the transgenic group with higher expression of myo-inositol.
NASA Astrophysics Data System (ADS)
Rios, Edmilson Helton; Figueiredo, Irineu; Moss, Adam Keith; Pritchard, Timothy Neil; Glassborow, Brent Anthony; Guedes Domingues, Ana Beatriz; Bagueira de Vasconcellos Azeredo, Rodrigo
2016-07-01
The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cut-off. Select portions of the longitudinal (T1) and transverse (T2) relaxation-time distributions are systematically evaluated by applying various cut-offs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.
Phenomenological Theory of the Translational Relaxation Times in Gases
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.
1999-01-01
The exact solution to the classical equations governing the translational dispersion and absorption of sound in a gas obscures its relaxational character because of its mathematical complexity. The approach taken here is to solve the secular equation by the method of Pade approximants, which even to the relatively low order R(sub 11) yields a remarkably close approximation to the exact solution over a wide range of frequency/pressure (f/P) ratios. As a result, translational relaxation can be formulated in terms of a conventional relaxation process with well-defined relaxation times, relaxation strength, collision numbers, additivity relations, etc. To extend the theory to high values of f/P ratio, a model is proposed to account for the noncontinuum behavior of the transport coefficients (viscosity and thermal conductivity) as the molecular mean free path approaches the acoustical enclosure dimensions. The theoretical dispersion and absorption show good agreement with measurements in argon over the classical and transition regions of f/P, but a discrepancy appears at higher values of f/P, where collective propagating modes, assumed in the theory, give way to single-particle modes, prevailing in the experiments.
Relaxation Characteristics of 828 DGEBA Epoxy Over Long Time Periods
NASA Astrophysics Data System (ADS)
Hoo, Jasmine; Reprogle, Riley C.; Wisler, Brian; Arechederra, Gabriel K.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.
The mechanical relaxation response in uniaxial compression of a diglycidyl ether of bisphenol-A epoxy was studied over long time periods. The epoxy, 828DEA, was Epon 828 cured with diethanolamine (DEA). A sample was compressed at constant strain rate and held at various strain levels for days to allow the sample to relax. The sample was then compressed further and held once more. The relaxation curves were fit with a stretched exponential function. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Modeling the Relaxation Time of DNA Confined in a Nanochannel
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Tree, Douglas R.; Dorfman, Kevin D.
2014-03-01
Using a mapping between a dumbbell model and fine-grained Monte Carlo simulations, we have computed the relaxation time of λ-DNA in a high ionic strength buffer confined in a nanochannel (Tree et al., Biomicrofluidics 2013, 7, 054118). The relaxation time thus obtained agrees quantitatively with experimental data (Reisner et al., PRL 2005, 94, 196101) using only a single O(1) fitting parameter to account for the uncertainty in model parameters. In addition to validating our mapping, this agreement supports our previous estimates of the friction coefficient of DNA confined in a nanochannel (Tree et al., PRL 2012, 108, 228105), which have been difficult to validate due to the lack of direct experimental data. Furthermore, our calculation shows that as the channel size passes below ~100 nm (or roughly the Kuhn length of DNA) there is a dramatic drop in the relaxation time. Inasmuch as the chain friction rises with decreasing channel size, the reduction in the relaxation time can be solely attributed to the sharp decline in the fluctuations of the chain extension. Practically, the low variance in the observed DNA extension in such small channels has important implications for genome mapping. This work was supported by the NIH (R01-HG005216 and R01-HG006851) and the NSFC (21204061) and was carried out in part using computing resources at the University of Minnesota Supercomputing Institute.
Relaxed Time Slot Negotiation for Grid Resource Allocation
NASA Astrophysics Data System (ADS)
Son, Seokho; Sim, Kwang Mong
Since participants in a computational grid may be independent bodies, some mechanisms are necessary for resolving the differences in their preferences for price and desirable time slots for utilizing/leasing computing resources. Whereas there are mechanisms for supporting price negotiation for grid resource allocation, there is little or no negotiation support for allocating mutually acceptable time slots for grid participants. The contribution of this work is designing a negotiation mechanism for facilitating time slot negotiations between grid participants. In particular, this work adopts a relaxed time slot negotiation protocol designed to enhance the success rate and resource utilization level by allowing some flexibility for making slight adjustments following a tentative agreement for a mutually acceptable time slot. The ideas of the relaxed time slot negotiation are implemented in an agent-based grid testbed, and empirical results of the relaxed time slot negotiation mechanism carried out, (i) a consumer and a provider agent have a mutually satisfying agreement on time slot and price, (ii) consumer agents achieved higher success rates in negotiation, and (iii) provider agents achieved higher utility and resource utilization of overall grid.
NASA Technical Reports Server (NTRS)
Nguyen, L. T.; Ogburn, M. E.; Gilbert, W. P.; Kibler, K. S.; Brown, P. W.; Deal, P. L.
1979-01-01
A real-time piloted simulation was conducted to evaluate the high-angle-of-attack characteristics of a fighter configuration based on wind-tunnel testing of the F-16, with particular emphasis on the effects of various levels of relaxed longitudinal static stability. The aerodynamic data used in the simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative low-speed combat maneuvering. Results of the investigation show that the airplane with the basic control system was resistant to the classical yaw departure; however, it was susceptible to pitch departures induced by inertia coupling during rapid, large-amplitude rolls at low airspeed. The airplane also exhibited a deep-stall trim which could be flown into and from which it was difficult to recover. Control-system modifications were developed which greatly decreased the airplane susceptibility to the inertia-coupling departure and which provided a reliable means for recovering from the deep stall.
Inversion of generalized relaxation time distributions with optimized damping parameter
NASA Astrophysics Data System (ADS)
Florsch, Nicolas; Revil, André; Camerlynck, Christian
2014-10-01
Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.
Hyperpolarized nanodiamond with long spin-relaxation times
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E.J.; Reilly, David J.
2015-01-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance. PMID:26450570
Hyperpolarized nanodiamond with long spin-relaxation times
NASA Astrophysics Data System (ADS)
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E. J.; Reilly, David J.
2015-10-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance.
Wilson, Gregory J.; Woods, Mark; Springer, Charles S.; Bastawrous, Sarah; Bhargava, Puneet; Maki, Jeffrey H.
2014-01-01
Purpose Accurate characterization of contrast reagent (CR) longitudinal relaxivity in whole blood is required to predict arterial signal intensity in contrast-enhanced MR angiography (CE-MRA). This study measured the longitudinal relaxation rate constants (R1) over a range of non-protein-binding and protein-binding CR concentrations in ex vivo whole blood and plasma at 1.5 and 3.0T under physiologic arterial conditions. Methods Relaxivities of gadoteridol, gadobutrol, gadobenate, and gadofosveset were measured for [CR] from 0 to 18 mM [mmol(CR)/L(blood)]: the latter being the upper limit of what may be expected in CE-MRA. Results In plasma, the 1H2O R1 [CR]-dependence was non-linear for gadobenate and gadofosveset secondary to CR interactions with the serum macromolecule albumin, and was well described by an analytical expression for effective 1:1 binding stoichiometry. In whole blood, the 1H2O R1 [CR]-dependence was markedly non-linear for all CRs, and was well-predicted by an expression for equilibrium exchange of water molecules between plasma and intracellular spaces using a priori parameter values only. Conclusion In whole blood, 1H2O R1 exhibits a non-linear relationship with [CR] over 0 to 18 mM CR. The non-linearity is well described by exchange of water between erythrocyte and plasma compartments, and is particularly evident for high relaxivity CRs. PMID:24357240
Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect
Castagna, N.; Weis, A.
2011-11-15
We present a theoretical and experimental study of the resonant circularly-polarized-light-induced Hanle effect in the ground state of Cs vapor atoms in a paraffin-coated cell. The effect manifests itself as a narrow resonance (centered at B=0) in the dependence of the optical transmission coefficient of the vapor on the magnitude of an external magnetic field B(vector sign). We develop a theoretical model that yields an algebraic expression for the shape of these resonances for arbitrary field orientations and arbitrary angular momenta of the states coupled by the exciting light, provided that the light power is kept sufficiently small. An experimental procedure for assessing the range of validity of the model is given. Experiments were carried out on the laser-driven Cs D{sub 1} transition both in longitudinal and transverse field geometries, and the observed line shapes of the corresponding bright and dark resonances give an excellent confirmation of the model predictions. The method is applied for determining the intrinsic longitudinal and transverse relaxation rates of the vector magnetization in the vapor and their dependence on light power.
Measurement of longitudinal and transverse spin relaxation rates using the ground-state Hanle effect
NASA Astrophysics Data System (ADS)
Castagna, N.; Weis, A.
2011-11-01
We present a theoretical and experimental study of the resonant circularly-polarized-light-induced Hanle effect in the ground state of Cs vapor atoms in a paraffin-coated cell. The effect manifests itself as a narrow resonance (centered at B=0) in the dependence of the optical transmission coefficient of the vapor on the magnitude of an external magnetic field B⃗. We develop a theoretical model that yields an algebraic expression for the shape of these resonances for arbitrary field orientations and arbitrary angular momenta of the states coupled by the exciting light, provided that the light power is kept sufficiently small. An experimental procedure for assessing the range of validity of the model is given. Experiments were carried out on the laser-driven Cs D1 transition both in longitudinal and transverse field geometries, and the observed line shapes of the corresponding bright and dark resonances give an excellent confirmation of the model predictions. The method is applied for determining the intrinsic longitudinal and transverse relaxation rates of the vector magnetization in the vapor and their dependence on light power.
Kampf, Thomas; Reiter, Theresa; Bauer, Wolfgang Rudolf
2017-08-09
Quantitative nuclear magnetic resonance imaging (MRI) shifts more and more into the focus of clinical research. Especially determination of relaxation times without/and with contrast agents becomes the foundation of tissue characterization, e.g. in cardiac MRI for myocardial fibrosis. Techniques which assess longitudinal relaxation times rely on repetitive application of readout modules, which are interrupted by free relaxation periods, e.g. the Modified Look-Locker Inversion Recovery = MOLLI sequence. These discontinuous sequences reveal an apparent relaxation time, and, by techniques extrapolated from continuous readout sequences, a putative real T1 is determined. What is missing is a rigorous analysis of the dependence of the apparent relaxation time on its real partner, readout sequence parameters and biological parameters as heart rate. This is provided in this paper for the discontinuous balanced steady state free precession (bSSFP) and spoiled gradient echo readouts. It turns out that the apparent longitudinal relaxation rate is the time average of the relaxation rates during the readout module, and free relaxation period. Knowing the heart rate our results vice versa allow to determine the real T1 from its measured apparent partner. Copyright © 2017. Published by Elsevier GmbH.
Temperature of the Magnetic Nanoparticle Microenvironment: Estimation from Relaxation Times
Perreard, IM; Reeves, DB; Zhang, X; Kuehlert, E; Forauer, ER; Weaver, JB
2014-01-01
Accurate temperature measurements are essential to safe and effective thermal therapies for cancer and other diseases. However, conventional thermometry is challenging so using the heating agents themselves as probes allows for ideal local measurements. Here, we present a new noninvasive method for measuring the temperature of the microenvironment surrounding magnetic nanoparticles from the Brownian relaxation time of nanoparticles. Experimentally, the relaxation time can be determined from the nanoparticle magnetization induced by an alternating magnetic field at various applied frequencies. A previously described method for nanoparticle temperature estimation used a low frequency Langevin function description of magnetic dipoles and varied the excitation field amplitude to estimate the energy state distribution and the corresponding temperature. We show that the new method is more accurate than the previous method at higher applied field frequencies that push the system farther from equilibrium. PMID:24556943
Relaxation Time and Conductivity at a Rural Station: Raicbur
NASA Astrophysics Data System (ADS)
Manohar, G. K.; Kandalgaonkar, S. S.; Sholapurkar, S. M.
1991-08-01
An examination of decay and growth rates of electric field near the ground during total solar eclipse of 16 February 1980 was made to study the electrical relaxation time and conductivity at Raichur. The Values obtained i.e., 1320 seconds and 67.1163 x 10-16 mhos m-1 of the two parameters were in fair agreement with the reported ones at the rural locations.
NASA Astrophysics Data System (ADS)
Uneyama, Takashi; Akimoto, Takuma; Miyaguchi, Tomoshige
2012-09-01
In entangled polymer systems, there are several characteristic time scales, such as the entanglement time and the disengagement time. In molecular simulations, the longest relaxation time (the disengagement time) can be determined by the mean square displacement (MSD) of a segment or by the shear relaxation modulus. Here, we propose the relative fluctuation analysis method, which is originally developed for characterizing large fluctuations, to determine the longest relaxation time from the center of mass trajectories of polymer chains (the time-averaged MSDs). Applying the method to simulation data of entangled polymers (by the slip-spring model and the simple reptation model), we provide a clear evidence that the longest relaxation time is estimated as the crossover time in the relative fluctuations.
Damping effects in doped graphene: The relaxation-time approximation
NASA Astrophysics Data System (ADS)
Kupčić, I.
2014-11-01
The dynamical conductivity of interacting multiband electronic systems derived by Kupčić et al. [J. Phys.: Condens. Matter 90, 145602 (2013), 10.1088/0953-8984/25/14/145602] is shown to be consistent with the general form of the Ward identity. Using the semiphenomenological form of this conductivity formula, we have demonstrated that the relaxation-time approximation can be used to describe the damping effects in weakly interacting multiband systems only if local charge conservation in the system and gauge invariance of the response theory are properly treated. Such a gauge-invariant response theory is illustrated on the common tight-binding model for conduction electrons in doped graphene. The model predicts two distinctly resolved maxima in the energy-loss-function spectra. The first one corresponds to the intraband plasmons (usually called the Dirac plasmons). On the other hand, the second maximum (π plasmon structure) is simply a consequence of the Van Hove singularity in the single-electron density of states. The dc resistivity and the real part of the dynamical conductivity are found to be well described by the relaxation-time approximation, but only in the parametric space in which the damping is dominated by the direct scattering processes. The ballistic transport and the damping of Dirac plasmons are thus the problems that require abandoning the relaxation-time approximation.
TASEP on a Ring in Sub-relaxation Time Scale
NASA Astrophysics Data System (ADS)
Baik, Jinho; Liu, Zhipeng
2016-12-01
Interacting particle systems in the KPZ universality class on a ring of size L with O( L) number of particles are expected to change from KPZ dynamics to equilibrium dynamics at the so-called relaxation time scale t=O(L^{3/2}). In particular the system size is expected to have little effect to the particle fluctuations in the sub-relaxation time scale 1≪ t≪ L^{3/2}. We prove that this is indeed the case for the totally asymmetric simple exclusion process (TASEP) with two types of initial conditions. For flat initial condition, we show that the particle fluctuations are given by the Airy_1 process as in the infinite TASEP with flat initial condition. On the other hand, the TASEP on a ring with step initial condition is equivalent to the periodic TASEP with a certain shock initial condition. We compute the fluctuations explicitly both away from and near the shocks for the infinite TASEP with same initial condition, and then show that the periodic TASEP has same fluctuations in the sub-relaxation time scale.
NASA Astrophysics Data System (ADS)
Kemper, Sebastian; Patel, Mitul K.; Errey, James C.; Davis, Benjamin G.; Jones, Jonathan A.; Claridge, Timothy D. W.
2010-03-01
In the application of saturation transfer difference (STD) experiments to the study of protein-ligand interactions, the relaxation of the ligand is one of the major influences on the experimentally observed STD factors, making interpretation of these difficult when attempting to define a group epitope map (GEM). In this paper, we describe a simplification of the relaxation matrix that may be applied under specified experimental conditions, which results in a simplified equation reflecting the directly transferred magnetisation rate from the protein onto the ligand, defined as the summation over the whole protein of the protein-ligand cross-relaxation multiplied by with the fractional saturation of the protein protons. In this, the relaxation of the ligand is accounted for implicitly by inclusion of the experimentally determined longitudinal relaxation rates. The conditions under which this "group epitope mapping considering relaxation of the ligand" (GEM-CRL) can be applied were tested on a theoretical model system, which demonstrated only minor deviations from that predicted by the full relaxation matrix calculations (CORCEMA-ST) [7]. Furthermore, CORCEMA-ST calculations of two protein-saccharide complexes (Jacalin and TreR) with known crystal structures were performed and compared with experimental GEM-CRL data. It could be shown that the GEM-CRL methodology is superior to the classical group epitope mapping approach currently used for defining ligand-protein proximities. GEM-CRL is also useful for the interpretation of CORCEMA-ST results, because the transferred magnetisation rate provides an additional parameter for the comparison between measured and calculated values. The independence of this parameter from the above mentioned factors can thereby enhance the value of CORCEMA-ST calculations.
Relaxation times and rheology in dense athermal suspensions
NASA Astrophysics Data System (ADS)
Olsson, Peter
2015-06-01
We study the jamming transition in a model of elastic particles under shear at zero temperature. The key quantity is the relaxation time τ which is obtained by stopping the shearing and letting energy and pressure decay to zero. At many different densities and initial shear rates we do several such relaxations to determine the average τ . We establish that τ diverges with the same exponent as the viscosity and determine another exponent from the relation between τ and the coordination number. Though most of the simulations are done for the model with dissipation due to the motion of particles relative to an affinely shearing substrate, we also examine a model, where the dissipation is instead due to velocity differences of disks in contact, and confirm that the above-mentioned exponent is the same for these two models. We also consider finite size effects on both τ and the coordination number.
NASA Astrophysics Data System (ADS)
Zheng, Wangzhi; Cleveland, Zackary I.; Möller, Harald E.; Driehuys, Bastiaan
2011-02-01
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of 3He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum 3He relaxation rate of 3.83 × 10-3 s-1 (T1 = 4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T1 would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T1 of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius.
Zheng, Wangzhi; Cleveland, Zackary I; Möller, Harald E; Driehuys, Bastiaan
2011-02-01
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of (3)He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum (3)He relaxation rate of 3.83×10(-3) s(-1) (T(1)=4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T(1) would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T(1) of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient-induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. Copyright © 2010 Elsevier Inc. All rights reserved.
Zheng, Wangzhi; Cleveland, Zackary I.; Möller, Harald E.; Driehuys, Bastiaan
2010-01-01
When hyperpolarized noble gases are brought into the bore of a superconducting magnet for magnetic resonance imaging (MRI) or spectroscopy studies, the gases must pass through substantial field gradients, which can cause rapid longitudinal relaxation. In this communication, we present a means of calculating this spatially dependent relaxation rate in the fringe field of typical magnets. We then compare these predictions to experimental measurements of 3He relaxation at various positions near a medium-bore 2-T small animal MRI system. The calculated and measured relaxation rates on the central axis of the magnet agree well and show a maximum 3He relaxation rate of 3.83 × 10−3 s−1 (T1 = 4.4 min) at a distance of 47 cm from the magnet isocenter. We also show that if this magnet were self-shielded, its minimum T1 would drop to 1.2 min. In contrast, a typical self-shielded 1.5-T clinical MRI scanner will induce a minimum on-axis T1 of 12 min. Additionally, we show that the cylindrically symmetric fields of these magnets enable gradient-induced relaxation to be calculated using only knowledge of the on-axis longitudinal field, which can either be measured directly or calculated from a simple field model. Thus, while most MRI magnets employ complex and proprietary current configurations, we show that their fringe fields and the resulting gradient induced relaxation are well approximated by simple solenoid models. Finally, our modeling also demonstrates that relaxation rates can increase by nearly an order of magnitude at radial distances equivalent to the solenoid radius. PMID:21134771
Krylov-subspace acceleration of time periodic waveform relaxation
Lumsdaine, A.
1994-12-31
In this paper the author uses Krylov-subspace techniques to accelerate the convergence of waveform relaxation applied to solving systems of first order time periodic ordinary differential equations. He considers the problem in the frequency domain and presents frequency dependent waveform GMRES (FDWGMRES), a member of a new class of frequency dependent Krylov-subspace techniques. FDWGMRES exhibits many desirable properties, including finite termination independent of the number of timesteps and, for certain problems, a convergence rate which is bounded from above by the convergence rate of GMRES applied to the static matrix problem corresponding to the linear time-invariant ODE.
Diffusion MRI/NMR magnetization equations with relaxation times
NASA Astrophysics Data System (ADS)
de, Dilip; Daniel, Simon
2012-10-01
Bloch-Torrey diffusion magnetization equation ignores relaxation effects of magnetization. Relaxation times are important in any diffusion magnetization studies of perfusion in tissues(Brain and heart specially). Bloch-Torrey equation cannot therefore describe diffusion magnetization in a real-life situation where relaxation effects play a key role, characteristics of tissues under examination. This paper describes derivations of two equations for each of the y and z component diffusion NMR/MRI magnetization (separately) in a rotating frame of reference, where rf B1 field is applied along x direction and bias magnetic field(Bo) is along z direction. The two equations are expected to further advance the science & technology of Diffusion MRI(DMRI) and diffusion functional MRI(DFMRI). These two techniques are becoming increasingly important in the study and treatment of neurological disorders, especially for the management of patients with acute stroke. It is rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fibre structure and provide models of brain connectivity.
Spiller, M; Brown, R D; Koenig, S H; Wolf, G L
1988-11-01
The factors that determine the field-dependent increase in 1/T1 of tissue water protons were investigated for MnCl2 and Mn2+ (PDTA) (1,3-propylenediamine-N,N',N'',N'''-tetraacetic acid) introduced intravenously into rabbits. Mn2+ was used in preference to other paramagnetic ions in part because of the distinct NMRD profiles (magnetic field dependence of 1/T1) of free Mn2+ ions, their small chelate complexes, and their macromolecular conjugates, and in part because the relatively low toxicity of Mn2+ is favorable for animal studies. Tissue content of Mn2+ was determined in all samples by inductively coupled plasma analyses the state of Mn2+ in excised tissues was determined from the form of the 1/T1 NMRD profile of water protons; and distribution of contrast agent within tissue and access of water on a T1 time scale were determined by double-exponential analyses of proton relaxation behavior in intact doped tissue, as well as by the change of single-exponential relaxation rates and proton signal intensity upon gentle disruption of the tissue. MnCl2 is found in all tissues, except fat and skeletal muscle, but liver is most avid at low dose, and Mn2+ accumulates in spleen after high doses. Chelation targets Mn2+ to liver and kidney, saturating the liver chemically at relatively low dose. We suggest that pronounced increase in tissue relaxivity results from irrotationally bound Mn2+, ostensibly associated with the polar head groups of cell membranes. Compartmentalization of contrast agent and restricted diffusion of tissue water influences the maximum relaxation rates attainable, so that there is an optimal dose of these contrast agents which is rather low.
van Heeswijk, Ruud B.; Laus, Sabrina; Morgenthaler, Florence D.; Gruetter, Rolf
2007-01-01
The relaxivity of commercially available gadolinium-based contrast agents was studied for X-nuclei resonances with long intrinsic relaxation times ranging between 6 and several hundred seconds. Omniscan in pure 13C formic acid had a relaxivity of 2.9 mM-1 s-1, whereas its relaxivity on glutamate C1 and C5 in aqueous solution was ∼0.5 mM-1 s-1. Both relaxivities allow the preparation of solutions with a predetermined short T1 suggest that in vitro substantial sensitivity gains in their measurement can be achieved. 6Li has a long intrinsic relaxation time, on the order of several minutes, which was strongly affected by the contrast agents. Relaxivity ranged from ∼0.1 mM-1 s-1 for Omniscan to 0.3 for Magnevist, whereas the relaxivity of Gd-DOTP was at 11 mM-1 s-1 two orders of magnitude higher. Overall these experiments suggest that the presence of 0.1-10 μM contrast agents should be detectable, provided sufficient sensitivity is available, such as that afforded by hyperpolarization, recently introduced to in vivo imaging. PMID:17448617
Surface NMR measurement of proton relaxation times in medium to coarse-grained sand aquifer.
Shushakov, O A
1996-01-01
A surface NMR investigation of groundwater in the geomagnetic field is under study. To detect the surface NMR a wire loop with a diameter of about 100 m, being an antenna for both an exciting field source and the NMR signal receiver, is laid out on the ground. A sinusoidal current pulse with a rectangular envelope is passed through the loop to excite the NMR signal. The carrier frequency of the oscillating current in this pulse is equal to the Larmor frequency of protons in the Earth's magnetic field. The current amplitude is changed up to 200 amps and the pulse duration is fixed and is equal to 40 ms. The exciting pulse is followed by an induction emf signal caused by the Larmor nuclear precession in geomagnetic field. The relaxation times T1, T2, and T2* were measured by the surface NMR for both groundwater in medium to coarse-grained sand at borehole and for bulk water under the ice surface of frozen lake. To determine T1, a longitudinal interference in experiments with repeated pulses was measured. A sequence with equal period between equal excitation pulses was used. The relaxation times T1, T2, measured for bulk water under the ice of the Ob reservoir were 1.0 s and 0.7 s, respectively. To estimate an influence of dissolved oxygen T1 of the same water at the same temperature was measured by lab NMR with and without pumping of oxygen. The relaxation time T1 measured for water in the medium to coarse-grained sand is 0.65 s. The relaxation time T2 estimated by spin echo sequence is found to be equal to 0.15 s. The relaxation time T2* is found to be about 80 ms. This result contradicts published earlier phenomenological correlation between relaxation time T2* and grain size of water-bearing rock. This could be as a result of unsound approach based on grain size or influence of paramagnetic impurities.
Clustered continuous-time random walks: diffusion and relaxation consequences
Weron, Karina; Stanislavsky, Aleksander; Jurlewicz, Agnieszka; Meerschaert, Mark M.; Scheffler, Hans-Peter
2012-01-01
We present a class of continuous-time random walks (CTRWs), in which random jumps are separated by random waiting times. The novel feature of these CTRWs is that the jumps are clustered. This introduces a coupled effect, with longer waiting times separating larger jump clusters. We show that the CTRW scaling limits are time-changed processes. Their densities solve two different fractional diffusion equations, depending on whether the waiting time is coupled to the preceding jump, or the following one. These fractional diffusion equations can be used to model all types of experimentally observed two power-law relaxation patterns. The parameters of the scaling limit process determine the power-law exponents and loss peak frequencies. PMID:22792038
Patel, Nirali; Jiang, Yanfen; Mittal, Ravinder K.; Kim, Tae Ho; Ledgerwood, Melissa
2015-01-01
Esophageal axial shortening is caused by longitudinal muscle (LM) contraction, but circular muscle (CM) may also contribute to axial shortening because of its spiral morphology. The goal of our study was to show patterns of contraction of CM and LM layers during peristalsis and transient lower esophageal sphincter (LES) relaxation (TLESR). In rats, esophageal and LES morphology was assessed by histology and immunohistochemistry, and function with the use of piezo-electric crystals and manometry. Electrical stimulation of the vagus nerve was used to induce esophageal contractions. In 18 healthy subjects, manometry and high frequency intraluminal ultrasound imaging during swallow-induced esophageal contractions and TLESR were evaluated. CM and LM thicknesses were measured (40 swallows and 30 TLESRs) as markers of axial shortening, before and at peak contraction, as well as during TLESRs. Animal studies revealed muscular connections between the LM and CM layers of the LES but not in the esophagus. During vagal stimulated esophageal contraction there was relative movement between the LM and CM. Human studies show that LM-to-CM (LM/CM) thickness ratio at baseline was 1. At the peak of swallow-induced contraction LM/CM ratio decreased significantly (<1), whereas the reverse was the case during TLESR (>2). The pattern of contraction of CM and LM suggests sliding of the two muscles. Furthermore, the sliding patterns are in the opposite direction during peristalsis and TLESR. PMID:26045610
Patel, Nirali; Jiang, Yanfen; Mittal, Ravinder K; Kim, Tae Ho; Ledgerwood, Melissa; Bhargava, Valmik
2015-09-01
Esophageal axial shortening is caused by longitudinal muscle (LM) contraction, but circular muscle (CM) may also contribute to axial shortening because of its spiral morphology. The goal of our study was to show patterns of contraction of CM and LM layers during peristalsis and transient lower esophageal sphincter (LES) relaxation (TLESR). In rats, esophageal and LES morphology was assessed by histology and immunohistochemistry, and function with the use of piezo-electric crystals and manometry. Electrical stimulation of the vagus nerve was used to induce esophageal contractions. In 18 healthy subjects, manometry and high frequency intraluminal ultrasound imaging during swallow-induced esophageal contractions and TLESR were evaluated. CM and LM thicknesses were measured (40 swallows and 30 TLESRs) as markers of axial shortening, before and at peak contraction, as well as during TLESRs. Animal studies revealed muscular connections between the LM and CM layers of the LES but not in the esophagus. During vagal stimulated esophageal contraction there was relative movement between the LM and CM. Human studies show that LM-to-CM (LM/CM) thickness ratio at baseline was 1. At the peak of swallow-induced contraction LM/CM ratio decreased significantly (<1), whereas the reverse was the case during TLESR (>2). The pattern of contraction of CM and LM suggests sliding of the two muscles. Furthermore, the sliding patterns are in the opposite direction during peristalsis and TLESR.
Multiple-relaxation-time model for the correct thermohydrodynamic equations.
Zheng, Lin; Shi, Baochang; Guo, Zhaoli
2008-08-01
A coupling lattice Boltzmann equation (LBE) model with multiple relaxation times is proposed for thermal flows with viscous heat dissipation and compression work. In this model the fixed Prandtl number and the viscous dissipation problems in the energy equation, which exist in most of the LBE models, are successfully overcome. The model is validated by simulating the two-dimensional Couette flow, thermal Poiseuille flow, and the natural convection flow in a square cavity. It is found that the numerical results agree well with the analytical solutions and/or other numerical results.
Relaxation time based classification of magnetic resonance brain images
NASA Astrophysics Data System (ADS)
Baselice, Fabio; Ferraioli, Giampaolo; Pascazio, Vito
2015-03-01
Brain tissue classification in Magnetic Resonance Imaging is useful for a wide range of applications. Within this manuscript a novel approach for brain tissue joint segmentation and classification is presented. Starting from the relaxation time estimation, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to improve the correct classification rate. The effectiveness of the approach is evaluated on a simulated case study.
Effective rotational correlation times of proteins from NMR relaxation interference
NASA Astrophysics Data System (ADS)
Lee, Donghan; Hilty, Christian; Wider, Gerhard; Wüthrich, Kurt
2006-01-01
Knowledge of the effective rotational correlation times, τc, for the modulation of anisotropic spin-spin interactions in macromolecules subject to Brownian motion in solution is of key interest for the practice of NMR spectroscopy in structural biology. The value of τc enables an estimate of the NMR spin relaxation rates, and indicates possible aggregation of the macromolecular species. This paper reports a novel NMR pulse scheme, [ 15N, 1H]-TRACT, which is based on transverse relaxation-optimized spectroscopy and permits to determine τc for 15N- 1H bonds without interference from dipole-dipole coupling of the amide proton with remote protons. [ 15N, 1H]-TRACT is highly efficient since only a series of one-dimensional NMR spectra need to be recorded. Its use is suggested for a quick estimate of the rotational correlation time, to monitor sample quality and to determine optimal parameters for complex multidimensional NMR experiments. Practical applications are illustrated with the 110 kDa 7,8-dihydroneopterin aldolase from Staphylococcus aureus, the uniformly 15N-labeled Escherichia coli outer membrane protein X (OmpX) in 60 kDa mixed OmpX/DHPC micelles with approximately 90 molecules of unlabeled 1,2-dihexanoyl- sn-glycero-3-phosphocholine (DHPC), and the 16 kDa pheromone-binding protein from Bombyx mori, which cover a wide range of correlation times.
Relaxation therapy for insomnia: nighttime and day time effects.
Means, M K; Lichstein, K L; Epperson, M T; Johnson, C T
2000-07-01
We compared day time functioning in college students with and without insomnia and explored changes in day time functioning after progressive relaxation (PR) treatment for insomnia. Students with insomnia (SWI; n = 57) were compared to a control group of students not complaining of insomnia (SNI; n = 61) on self-reported sleep variables and five questionnaires: Insomnia Impact Scale (IIS), Dysfunctional Beliefs and Attitudes About Sleep Scale (DBAS), Epworth Sleepiness Scale (ESS), Fatigue Severity Scale (FSS), and Penn State Worry Questionnaire (PSWQ). SWI demonstrated significant impairment on all day time functioning and sleep measures compared to SNI. To investigate treatment effects on day time functioning, 28 SWI were randomly assigned to PR. Treated SWI were compared to untreated SWI and SNI at posttreatment. Treated participants improved sleep in comparison to untreated SWI, but failed to show significant improvements in day time functioning. Insomnia treatments focused on improving sleep may not improve day time functioning, or day time gains may emerge more slowly than sleep gains. This study documents the wide range of day time functioning complaints in young adults with insomnia and suggests that the goal of insomnia treatment should be to not only improve sleep but also to improve the subjective experience of day time functioning.
Resolving distribution of relaxation times in poly(propylene glycol) on the crossover region
NASA Astrophysics Data System (ADS)
Tuncer, Enis; Furlani, Maurizio; Mellander, Bengt-Erik
2004-03-01
In this article, a recently developed numerical technique [E. Tuncer and S. M. Gubański, IEEE Trans. Dielectr. Electr. Insul. 8, 310 (2001)] is applied to poly(propylene glycol) (PPG) complex dielectric data to extract more information about the molecular relaxation processes. The method is based on a constrained-least-squares (C-LSQ) data fitting procedure together with the Monte Carlo method. We preselect the number of relaxation times with no a priori physical assumption, and use the Debye single relaxation as "kernel," then the obtained weighting factors at each MC step from the C-LSQ method builds up a relaxation time spectrum. When the analysis is repeated for data at different temperatures a relaxation image is created. The obtained relaxation are analyzed using the Lorentz (Cauchy) distribution, which is a special form of the Lévy statistics. In the present report the β and α relaxations are resolved for the PPG. A comparison of the relaxations to those earlier reported in the literature indicate that the presented method provides additional information compared to methods based on empirical formulas. The distribution of relaxation times analysis is especially useful to probe the crossover region where the α and β relaxations merge and the results show that the relaxation after the crossover region at higher temperatures is Arrhenius-type as the β relaxation. Moreover, this relaxation is more likely to be the continuation of the β relaxation, but with a different activation energy.
(39) K and (23) Na relaxation times and MRI of rat head at 21.1 T.
Nagel, Armin M; Umathum, Reiner; Rösler, Manuela B; Ladd, Mark E; Litvak, Ilya; Gor'kov, Peter L; Brey, William W; Schepkin, Victor D
2016-06-01
At ultrahigh magnetic field strengths (B0 ≥ 7.0 T), potassium ((39) K) MRI might evolve into an interesting tool for biomedical research. However, (39) K MRI is still challenging because of the low NMR sensitivity and short relaxation times. In this work, we demonstrated the feasibility of (39) K MRI at 21.1 T, determined in vivo relaxation times of the rat head at 21.1 T, and compared (39) K and sodium ((23) Na) relaxation times of model solutions containing different agarose gel concentrations at 7.0 and 21.1 T. (39) K relaxation times were markedly shorter than those of (23) Na. Compared with the lower field strength, (39) K relaxation times were up to 1.9- (T1 ), 1.4- (T2S ) and 1.9-fold (T2L ) longer at 21.1 T. The increase in the (23) Na relaxation times was less pronounced (up to 1.2-fold). Mono-exponential fits of the (39) K longitudinal relaxation time at 21.1 T revealed T1 = 14.2 ± 0.1 ms for the healthy rat head. The (39) K transverse relaxation times were 1.8 ± 0.2 ms and 14.3 ± 0.3 ms for the short (T2S ) and long (T2L ) components, respectively. (23) Na relaxation times were markedly longer (T1 = 41.6 ± 0.4 ms; T2S = 4.9 ± 0.2 ms; T2L = 33.2 ± 0.2 ms). (39) K MRI of the healthy rat head could be performed with a nominal spatial resolution of 1 × 1 × 1 mm(3) within an acquisition time of 75 min. The increase in the relaxation times with magnetic field strength is beneficial for (23) Na and (39) K MRI at ultrahigh magnetic field strength. Our results demonstrate that (39) K MRI at 21.1 T enables acceptable image quality for preclinical research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Generalized dynamic scaling for quantum critical relaxation in imaginary time.
Zhang, Shuyi; Yin, Shuai; Zhong, Fan
2014-10-01
We study the imaginary-time relaxation critical dynamics of a quantum system with a vanishing initial correlation length and an arbitrary initial order parameter M0. We find that in quantum critical dynamics, the behavior of M0 under scale transformations deviates from a simple power law, which was proposed for very small M0 previously. A universal characteristic function is then suggested to describe the rescaled initial magnetization, similar to classical critical dynamics. This characteristic function is shown to be able to describe the quantum critical dynamics in both short- and long-time stages of the evolution. The one-dimensional transverse-field Ising model is employed to numerically determine the specific form of the characteristic function. We demonstrate that it is applicable as long as the system is in the vicinity of the quantum critical point. The universality of the characteristic function is confirmed by numerical simulations of models belonging to the same universality class.
Upper D region chemical kinetic modeling of LORE relaxation times
NASA Astrophysics Data System (ADS)
Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.
2016-04-01
The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.
NASA Astrophysics Data System (ADS)
Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto
2016-09-01
Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications.
Implicit versus explicit momentum relaxation time solution for semiconductor nanowires
Marin, E. G. Ruiz, F. G. Godoy, A. Tienda-Luna, I. M.; Gámiz, F.
2015-07-14
We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicit approach inaccuracies on the total mobility of Si and III-V NWs are studied.
Spin current relaxation time in thermally evaporated pentacene films
NASA Astrophysics Data System (ADS)
Tani, Yasuo; Kondo, Takuya; Teki, Yoshio; Shikoh, Eiji
2017-01-01
The spin current relaxation time (τ) in thermally evaporated pentacene films was evaluated with the spin-pump-induced spin transport properties and the charge current transport properties in pentacene films. Under an assumption of a diffusive transport of the spin current in pentacene films, the zero-field mobility and the diffusion constant of holes in pentacene films were experimentally obtained to be ˜8.0 × 10-7 m2/V s and ˜2.0 × 10-8 m2/s, respectively. Using those values and the previously obtained spin diffusion length in pentacene films of 42 ± 10 nm, the τ in pentacene films was estimated to be 150 ± 120 ns at room temperature. This estimated τ in pentacene films is long enough for the practical use as a spintronic material.
Chiral relaxation time at the crossover of quantum chromodynamics
NASA Astrophysics Data System (ADS)
Ruggieri, M.; Peng, G. X.; Chernodub, M.
2016-09-01
We study microscopic processes responsible for chirality flips in the thermal bath of quantum chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely, T ≃(150 ,200 ) MeV . The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and σ meson; hence we refer to these processes simply as one-pion (one-σ ) exchanges. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time τ . We find τ ≃0.1 ÷1 fm /c around the chiral crossover.
Dependence of Brownian and Néel relaxation times on magnetic field strength
Deissler, Robert J. Wu, Yong; Martens, Michael A.
2014-01-15
Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the
Dependence of Brownian and Néel relaxation times on magnetic field strength.
Deissler, Robert J; Wu, Yong; Martens, Michael A
2014-01-01
In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. The Fokker-Planck equation with Brownian relaxation and the Fokker-Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present--if the particles are embedded in a solid for instance--the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the applied magnetic field. A simple
In vivo T(2) relaxation time measurement with echo-time averaging.
Prescot, Andrew P; Shi, Xianfeng; Choi, Changho; Renshaw, Perry F
2014-08-01
The accuracy of metabolite concentrations measured using in vivo proton ((1) H) MRS is enhanced following correction for spin-spin (T2 ) relaxation effects. In addition, metabolite proton T2 relaxation times provide unique information regarding cellular environment and molecular mobility. Echo-time (TE) averaging (1) H MRS involves the collection and averaging of multiple TE steps, which greatly simplifies resulting spectra due to the attenuation of spin-coupled and macromolecule resonances. Given the simplified spectral appearance and inherent metabolite T2 relaxation information, the aim of the present proof-of-concept study was to develop a novel data processing scheme to estimate metabolite T2 relaxation times from TE-averaged (1) H MRS data. Spectral simulations are used to validate the proposed TE-averaging methods for estimating methyl proton T2 relaxation times for N-acetyl aspartate, total creatine, and choline-containing compounds. The utility of the technique and its reproducibility are demonstrated using data obtained in vivo from the posterior-occipital cortex of 10 healthy control subjects. Compared with standard methods, distinct advantages of this approach include built-in macromolecule resonance attenuation, in vivo T2 estimates closer to reported values when maximum TE ≈ T2 , and the potential for T2 calculation of metabolite resonances otherwise inseparable in standard (1) H MRS spectra recorded in vivo. Copyright © 2014 John Wiley & Sons, Ltd.
Time dependent parallel viscosity and relaxation rate of poloidal rotation in the banana regime
Hsu, C.T.; Shaing, K.C.; Gormley, R. )
1994-01-01
Time dependent ion parallel viscous force in the banana regime with arbitrary inverse aspect ratio [epsilon] is calculated using the eigenfunction approach. The flux surface averaged viscosity is then used to study the relaxation process of the poloidal rotation which leads to oscillatory relaxation behavior. The relaxation rate [nu][sub [ital p
An Overview on Short and Long Time Relaxations in Glass-forming Supercooled Liquids
NASA Astrophysics Data System (ADS)
Karmakar, Smarajit
2016-10-01
Density fluctuations in supercooled liquids near the glass transition relax in multiple steps. The short time relaxation is known as β-relaxation and the final long time relaxation is called α-relaxation. It is believed that the long time α-relaxation is a cooperative phenomena associated with a growing length scales, whereas the short-time β-relaxation is often attributed to spatially local processes involving the rattling motion of a particle in the transient cage formed by its neighbors. Using molecular dynamics simulations of few model glass-forming liquids, we show that the β-relaxation is also cooperative in nature and the length scale extracted from the detailed finite-size scaling analysis of β-relaxation is found to be the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time α-relaxation regime. These results provide a clear connection between short-time dynamics and long-time structural relaxation in glass-forming liquids.
Jung, Kwan-Jin
2009-09-01
A mathematical model to regress the nonlinear blood oxygen level-dependent (BOLD) fMRI signal has been developed by incorporating the refractory effect into the linear BOLD model of the biphasic gamma variate function. The refractory effect was modeled as a relaxation of two separate BOLD capacities corresponding to the biphasic components of the BOLD signal in analogy with longitudinal relaxation of magnetization in NMR. When tested with the published fMRI data of finger tapping, the nonlinear BOLD model with the refractory effect reproduced the nonlinear BOLD effects such as reduced poststimulus undershoot and saddle pattern in a prolonged stimulation as well as the reduced BOLD signal for repetitive stimulation.
7Li relaxation time measurements at very low magnetic field by 1H dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Zeghib, Nadir; Grucker, Daniel
2001-09-01
Dynamic nuclear polarization (DNP) of water protons was used to measure the relaxation time of lithium at very low magnetic field as a demonstration of the use of DNP for nuclei less abundant than water protons. Lithium (Li+) was chosen because it is an efficient treatment for manic-depressive illness, with an unknown action mechanism. After having recalled the theoretical basis of a three-spin system comprising two nuclei - the water proton of the solvent, the dissolved Li+ ion and the free electron of a free radical - we have developed a transient solution in order to optimize potential biological applications of Li DNP. The three-spin model has allowed computation of all the parameters of the system - the longitudinal relaxation rate per unit of free radical concentration, the dipolar and scalar part of the coupling between the nuclei and the electron, and the maximum signal enhancement achievable for both proton and lithium spins. All these measurements have been obtained solely through the detection of the proton resonance.
An axisymmetric multiple-relaxation-time lattice Boltzmann scheme
NASA Astrophysics Data System (ADS)
Xie, Wenjun
2015-01-01
A multiple-relaxation-time (MRT) lattice Boltzmann (LB) scheme developed for axisymmetric flows recovers the complete continuity and Navier-Stokes equations. This scheme follows the strategy of the standard D2Q9 model by using a single particle distribution function and a simple "collision-streaming" updating rule. The extra terms related to axisymmetry in the macroscopic equations are recovered by adding source terms into the LB equation, which are simple and involve no gradients. The compressible effect retained in the Navier-Stokes equations is recovered by introducing a term related to the reversed transformation matrix for MRT collision operator, so as to produce a correct bulk viscosity, making it suitable for compressible flows with high frequency and low Mach number. The validity of the scheme is demonstrated by testing the Hagen-Poiseuille flow and 3D Womersley flow, as well as the standing acoustic waves in a closed cylindrical chamber. The numerical experiments show desirable stability at low viscosities, enabling to simulate a standing ultrasound field in centimeters space.
Short relaxation times but long transient times in both simple and complex reaction networks
Henry, Adrien; Martin, Olivier C.
2016-01-01
When relaxation towards an equilibrium or steady state is exponential at large times, one usually considers that the associated relaxation time τ, i.e. the inverse of the decay rate, is the longest characteristic time in the system. However, that need not be true, other times such as the lifetime of an infinitesimal perturbation can be much longer. In the present work, we demonstrate that this paradoxical property can arise even in quite simple systems such as a linear chain of reactions obeying mass action (MA) kinetics. By mathematical analysis of simple reaction networks, we pin-point the reason why the standard relaxation time does not provide relevant information on the potentially long transient times of typical infinitesimal perturbations. Overall, we consider four characteristic times and study their behaviour in both simple linear chains and in more complex reaction networks taken from the publicly available database ‘Biomodels’. In all these systems, whether involving MA rates, Michaelis–Menten reversible kinetics, or phenomenological laws for reaction rates, we find that the characteristic times corresponding to lifetimes of tracers and of concentration perturbations can be significantly longer than τ. PMID:27411726
The time dependence of rock healing as a universal relaxation process, a tutorial
NASA Astrophysics Data System (ADS)
Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie
2016-10-01
The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behavior for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.
The time dependence of rock healing as a universal relaxation process, a tutorial
NASA Astrophysics Data System (ADS)
Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie
2017-01-01
The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behaviour for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.
NASA Astrophysics Data System (ADS)
Soroushian, Behrouz; Yang, Xinmai
2013-03-01
Most biological chromophores and molecules relax primarily through non-radiative processes; therefore, mapping of relaxation time related to non-rediative process can be a potential indicator of tissue status. In order to map relative nonradiative relaxation time, modulated tone-burst light is used to generate photoacoustic signals. Then nonradiative relaxation time is indicated by the amplitude decay rate as modulation frequency increases. The results show that although blood is an optically weak absorber at 808 nm, by using this method a significant enhancement of contrast-tonoise ratio of a blood target compared to pulsed photoacoustic imaging at this wavelength is achieved.
Time Course of Corticospinal Excitability and Intracortical Inhibition Just before Muscle Relaxation
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before RRT, and MEPs were significantly greater in amplitude in the 60–80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80-100 ms before RRT, and MEPs were significantly greater in amplitude in the 60-80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process.
Multiple-relaxation-time lattice Boltzmann kinetic model for combustion
NASA Astrophysics Data System (ADS)
Xu, Aiguo; Lin, Chuandong; Zhang, Guangcai; Li, Yingjun
2015-04-01
To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.
Multiple-relaxation-time lattice Boltzmann kinetic model for combustion.
Xu, Aiguo; Lin, Chuandong; Zhang, Guangcai; Li, Yingjun
2015-04-01
To probe both the hydrodynamic nonequilibrium (HNE) and thermodynamic nonequilibrium (TNE) in the combustion process, a two-dimensional multiple-relaxation-time (MRT) version of lattice Boltzmann kinetic model (LBKM) for combustion phenomena is presented. The chemical energy released in the progress of combustion is dynamically coupled into the system by adding a chemical term to the LB kinetic equation. Aside from describing the evolutions of the conserved quantities, the density, momentum, and energy, which are what the Navier-Stokes model describes, the MRT-LBKM presents also a coarse-grained description on the evolutions of some nonconserved quantities. The current model works for both subsonic and supersonic flows with or without chemical reaction. In this model, both the specific-heat ratio and the Prandtl number are flexible, the TNE effects are naturally presented in each simulation step. The model is verified and validated via well-known benchmark tests. As an initial application, various nonequilibrium behaviors, including the complex interplays between various HNEs, between various TNEs, and between the HNE and TNE, around the detonation wave in the unsteady and steady one-dimensional detonation processes are preliminarily probed. It is found that the system viscosity (or heat conductivity) decreases the local TNE, but increases the global TNE around the detonation wave, that even locally, the system viscosity (or heat conductivity) results in two kinds of competing trends, to increase and to decrease the TNE effects. The physical reason is that the viscosity (or heat conductivity) takes part in both the thermodynamic and hydrodynamic responses.
NASA Astrophysics Data System (ADS)
Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu
2013-04-01
Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.
Time Resolved Imaging of Longitudinal Modulations in Intense Beams
NASA Astrophysics Data System (ADS)
Tian, Kai
2007-11-01
The longitudinal evolution of high intensity beams is not well understood despite its importance to the success of such applications as free electron lasers and light sources, heavy ion inertial fusion, and high energy colliders. For example any amplification of current modulations in an FEL photoinjector can lead to unwanted coherent synchrotron radiation further downstream in compression chicanes or bends. A significant factor usually neglected is the coupling to the transverse dynamics which can strongly affect the longitudinal evolution. Previous experiments at the University of Maryland have revealed much about the longitudinal physics of space-charge dominated beams by monitoring the evolution of longitudinal perturbations. For the first time, experimental results are presented here which reveal the effect of longitudinal perturbations on the transverse beam distribution, with the aid of several new diagnostics that capture detailed time-resolved density images. A longitudinal modulation of the particle density is deliberately generated at the source, and its evolution is tracked downstream using a number of diagnostics such as current monitors, high-resolution energy analyzers, as well as the transverse imaging devices. The latter consist of a high-resolution 16-bit gated camera coupled with very fast emitters such as prompt optical transition radiation (OTR) from an alumina screen, or fast Phosphor screens with 3-ns time resolution. Simulations using the particle-in-cell code WARP are applied to cross-check the experimental results. These experiments and especially the comparisons to simulation represent significant progress towards understanding the longitudinal physics of intense beams.
Relaxation-time measurement via a time-dependent helicity balance model
Wrobel, J. S.; Hansen, C. J.; Jarboe, T. R.; Smith, R. J.; Hossack, A. C.; Nelson, B. A.; Marklin, G. J.; Ennis, D. A.; Akcay, C.; Victor, B. S.
2013-01-15
A time-dependent helicity balance model applied to a spheromak helicity-injection experiment enables the measurement of the relaxation time during the sustainment phase of the spheromak. The experiment, the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI), studies spheromak formation and sustainment through inductive helicity injection. The model captures the dominant plasma behavior seen during helicity injection in HIT-SI by using an empirical helicity-decay rate, a time-dependent helicity-injection rate, and a composite Taylor state to model both the helicity content of the system and to calculate the resulting spheromak current. During single-injector operations, both the amplitude and the phase of the periodic rise and fall of the toroidal current are predicted by this model, with an exchange of helicity between the injector states and the spheromak state proposed as the causal mechanism. This phenomenon allows for the comparison of the delay between the current rises in the experiment and the numerical model, enabling a measurement of the relaxation time. The measured relaxation time of 4.8 {mu}s {+-} 2.8 {mu}s is shorter than the toroidal Alfven timescale. These results validate Hall MHD calculations of the Geospace Environmental Modeling challenge.
Joint Analysis of Survival Time and Longitudinal Categorical Outcomes
Choi, Jaeun; Cai, Jianwen; Zeng, Donglin; Olshan, Andrew F.
2013-01-01
In biomedical or public health research, it is common for both survival time and longitudinal categorical outcomes to be collected for a subject, along with the subject’s characteristics or risk factors. Investigators are often interested in finding important variables for predicting both survival time and longitudinal outcomes which could be correlated within the same subject. Existing approaches for such joint analyses deal with continuous longitudinal outcomes. New statistical methods need to be developed for categorical longitudinal outcomes. We propose to simultaneously model the survival time with a stratified Cox proportional hazards model and the longitudinal categorical outcomes with a generalized linear mixed model. Random effects are introduced to account for the dependence between survival time and longitudinal outcomes due to unobserved factors. The Expectation-Maximization (EM) algorithm is used to derive the point estimates for the model parameters, and the observed information matrix is adopted to estimate their asymptotic variances. Asymptotic properties for our proposed maximum likelihood estimators are established using the theory of empirical processes. The method is demonstrated to perform well in finite samples via simulation studies. We illustrate our approach with data from the Carolina Head and Neck Cancer Study (CHANCE) and compare the results based on our simultaneous analysis and the separately conducted analyses using the generalized linear mixed model and the Cox proportional hazards model. Our proposed method identifies more predictors than by separate analyses. PMID:26052353
NASA Astrophysics Data System (ADS)
Richardson, P. M.; Voice, A. M.; Ward, I. M.
2013-12-01
Longitudinal relaxation (T1) measurements of 19F, 7Li, and 1H in propylene carbonate/LiBF4 liquid electrolytes are reported. Comparison of T1 values with those for the transverse relaxation time (T2) confirm that the measurements are in the high temperature (low correlation time) limit of the T1 minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T1 from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.
Richardson, P M; Voice, A M; Ward, I M
2013-12-07
Longitudinal relaxation (T1) measurements of (19)F, (7)Li, and (1)H in propylene carbonate/LiBF4 liquid electrolytes are reported. Comparison of T1 values with those for the transverse relaxation time (T2) confirm that the measurements are in the high temperature (low correlation time) limit of the T1 minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T1 from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.
Spin-relaxation time in materials with broken inversion symmetry and large spin-orbit coupling.
Szolnoki, Lénárd; Kiss, Annamária; Dóra, Balázs; Simon, Ferenc
2017-08-30
We study the spin-relaxation time in materials where a large spin-orbit coupling (SOC) is present which breaks the spatial inversion symmetry. Such a spin-orbit coupling is realized in zincblende structures and heterostructures with a transversal electric field and the spin relaxation is usually described by the so-called D'yakonov-Perel' (DP) mechanism. We combine a Monte Carlo method and diagrammatic calculation based approaches in our study; the former tracks the time evolution of electron spins in a quasiparticle dynamics simulation in the presence of the built-in spin-orbit magnetic fields and the latter builds on the spin-diffusion propagator by Burkov and Balents. Remarkably, we find a parameter free quantitative agreement between the two approaches and it also returns the conventional result of the DP mechanism in the appropriate limit. We discuss the full phase space of spin relaxation as a function of SOC strength, its distribution, and the magnitude of the momentum relaxation rate. This allows us to identify two novel spin-relaxation regimes; where spin relaxation is strongly non-exponential and the spin relaxation equals the momentum relaxation. A compelling analogy between the spin-relaxation theory and the NMR motional narrowing is highlighted.
Vandewalle, S.
1994-12-31
Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.
TU-EF-BRA-02: Longitudinal Proton Spin Relaxation and T1-Imaging
Lemen, L.
2015-06-15
NMR, and Proton Density MRI of the 1D Patient - Anthony Wolbarst Net Voxel Magnetization, m(x,t). T1-MRI; The MRI Device - Lisa Lemen ‘Classical’ NMR; FID Imaging in 1D via k-Space - Nathan Yanasak Spin-Echo; S-E/Spin Warp in a 2D Slice - Ronald Price Magnetic resonance imaging not only reveals the structural, anatomic details of the body, as does CT, but also it can provide information on the physiological status and pathologies of its tissues, like nuclear medicine. It can display high-quality slice and 3D images of organs and vessels viewed from any perspective, with resolution better than 1 mm. MRI is perhaps most extraordinary and notable for the plethora of ways in which it can create unique forms of image contrast, reflective of fundamentally different biophysical phenomena. As with ultrasound, there is no risk from ionizing radiation to the patient or staff, since no X-rays or radioactive nuclei are involved. Instead, MRI harnesses magnetic fields and radio waves to probe the stable nuclei of the ordinary hydrogen atoms (isolated protons) occurring in water and lipid molecules within and around cells. MRI consists, in essence, of creating spatial maps of the electromagnetic environments around these hydrogen nuclei. Spatial variations in the proton milieus can be related to clinical differences in the biochemical and physiological properties and conditions of the associated tissues. Imaging of proton density (PD), and of the tissue proton spin relaxation times known as T1 and T2, all can reveal important clinical information, but they do so with approaches so dissimilar from one another that each is chosen for only certain clinical situations. T1 and T2 in a voxel are determined by different aspects of the rotations and other motions of the water and lipid molecules involved, as constrained by the local biophysical surroundings within and between its cells – and they, in turn, depend on the type of tissue and its state of health. Three other common
Kloiber, Karin; Spitzer, Romana; Tollinger, Martin; Konrat, Robert; Kreutz, Christoph
2011-05-01
The refolding kinetics of bistable RNA sequences were studied in unperturbed equilibrium via (13)C exchange NMR spectroscopy. For this purpose a straightforward labeling technique was elaborated using a 2'-(13)C-methoxy uridine modification, which was prepared by a two-step synthesis and introduced into RNA using standard protocols. Using (13)C longitudinal exchange NMR spectroscopy the refolding kinetics of a 20 nt bistable RNA were characterized at temperatures between 298 and 310K, yielding the enthalpy and entropy differences between the conformers at equilibrium and the activation energy of the refolding process. The kinetics of a more stable 32 nt bistable RNA could be analyzed by the same approach at elevated temperatures, i.e. at 314 and 316 K. Finally, the dynamics of a multi-stable RNA able to fold into two hairpin- and a pseudo-knotted conformation was studied by (13)C relaxation dispersion NMR spectroscopy.
Pagès, Guilhem; Kuchel, Philip W
2015-06-01
To introduce a direct method for estimating relaxation and kinetic parameter values from rapid dissolution dynamic nuclear polarization (RD-DNP) NMR time courses. The analysis relied on a kinetic model that is often used to analyze data in these studies-a unidirectional (bio)chemical reaction with rate constant k1 , coupled to longitudinal relaxation of the magnetization of substrate and product that is characterized by the time constant T1 . The latter value was estimated from the width of the product curve (peak) at the height α relative to the maximum height. We showed α ∼ 0.8 under most conditions, so we measured the interval between the falling and rising parts of the curve at the relative height 0.8. We called this the "fall-minus-rise time at height α," or FmRα , and found that FmR0.8 ∼ T1 . The ratio β = (product signal/substrate signal) when the product is maximal was shown to be equal to k1 T1 . Therefore, k1 = β/FmR0.8 . FmRα analysis was demonstrated with (13) C NMR RD-DNP data recorded from hemolysates and from previously published data. FmRα analysis enables immediate estimates of kinetic and relaxation parameters from (13) C NMR RD-DNP data. The values can be used as initial estimates in more extensive computer-based data-regression analysis. © 2014 Wiley Periodicals, Inc.
O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan
2009-11-15
Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R{sub 1}). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R{sub 1} while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced DELTAR{sub 1}. Results: DELTAR{sub 1} showed significant increases of 0.021 to 0.058 s{sup -1} in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the DELTAR{sub 1} curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.
NASA Astrophysics Data System (ADS)
Vandusschoten, D.; Dejager, P. A.; Vanas, H.
Heterogeneous (bio)systems are often characterized by several water-containing compartments that differ in relaxation time values and diffusion constants. Because of the relatively small differences among these diffusion constants, nonoptimal measuring conditions easily lead to the conclusion that a single diffusion constant suffices to describe the water mobility in a heterogeneous (bio)system. This paper demonstrates that the combination of a T2 measurement and diffusion measurements at various echo times (TE), based on the PFG MSE sequence, enables the accurate determination of diffusion constants which are less than a factor of 2 apart. This new method gives errors of the diffusion constant below 10% when two fractions are present, while the standard approach of a biexponential fit to the diffusion data in identical circumstances gives larger (>25%) errors. On application of this approach to water in apple parenchyma tissue, the diffusion constant of water in the vacuole of the cells ( D = 1.7 × 10 -9 m 2/s) can be distinguished from that of the cytoplasm ( D = 1.0 × 10 -9 m 2/s). Also, for mung bean seedlings, the cell size determined by PFG MSE measurements increased from 65 to 100 μm when the echo time increased from 150 to 900 ms, demonstrating that the interpretation of PFG SE data used to investigate cell sizes is strongly dependent on the T2 values of the fractions within the sample. Because relaxation times are used to discriminate the diffusion constants, we propose to name this approach diffusion analysis by relaxation- time- separated (DARTS) PFG NMR.
Xu, Bin; Li, Haiyue; Zhang, Yanhang
2013-01-01
This study aims to provide understanding of the macroscopic viscoelastic behavior of collagen matrices through studying the relaxation time distribution spectrum obtained from stress relaxation tests. Hydrated collagen gel and dehydrated collagen thin film was exploited as two different hydration levels of collagen matrices. Genipin solution was used to induce crosslinking in collagen matrices. Biaxial stress relaxation tests were performed to characterize the viscoelastic behavior of collagen matrices. The rate of stress relaxation of both hydrated and dehydrated collagen matrices shows a linear initial stress level dependency. Increased crosslinking reduces viscosity in collagen gel, but the effect is negligible for thin film. Relaxation time distribution spectrum was obtained from the stress relaxation data by inverse Laplace transform. For most of the collagen matrices, three peaks at the short (0.3s ~1 s), medium (3s ~90 s), and long relaxation time (> 200 s) were observed in the continuous spectrum, which likely corresponds to relaxation mechanisms involve fiber, inter-fibril, and fibril sliding. Splitting of the middle peak was observed at higher initial stress levels suggesting increased structural heterogeneity at the fibril level with mechanical loading. The intensity of the long-term peaks increases with higher initial stress levels indicating the engagement of collagen fibrils at higher levels of tissue strain.
Active open boundary forcing using dual relaxation time-scales in downscaled ocean models
NASA Astrophysics Data System (ADS)
Herzfeld, M.; Gillibrand, P. A.
2015-05-01
Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.
Tuncer, Enis; Bowler, Nicola; Youngs, I. J.; Lymer, K. P.
2006-01-01
The distribution of relaxation times approach, a less frequently employed dielectric data analysis technique, is utilized to better understand the relaxation characteristics of composites consisting of metal-coated, hollow glass spheres dispersed in a paraffin wax matrix. The dielectric properties of the composite samples are measured by means of impedance spectroscopy in the frequency range 0.1 mHz to 10 MHz. The application of a mixture law is not appropriate for the analysis of the frequency-dependent properties of the considered system on this broad frequency range. However, utilization of the distribution of relaxation times procedure to study the dielectric behaviour shows clear trends in the mixtures' relaxation spectra. Relaxation processes of the paraffin wax and those specific to the composites are found from the extracted distribution of relaxation times spectra. The influence of the filler concentration, q, on the dielectric properties is examined; a relaxation with a narrow distribution at intermediate frequencies becomes broad with the addition of the filler. This relaxation, in the form of the low-frequency-dispersions (also known as constant phase angle) phenomenon, dominates the dielectric properties of the composites with high bead concentration, q>0.15. The variation in dielectric properties of individual samples whose bead concentrations q are nominally the same is discussed in terms of possible microstructural variations.
Tuncer, Enis
2006-01-01
The distribution of relaxation times approach, a less frequently employed dielectric data analysis technique, is utilized to better understand the relaxation characteristics of composites consisting of metal-coated, hollow glass spheres dispersed in a paraffin wax matrix. The dielectric properties of the composite samples are measured by means of impedance spectroscopy in the frequency range 0.1mHz to 10 MHz. The application of a mixture law is not appropriate for the analysis of the frequency-dependent properties of the considered system on this broad frequency range. However, utilization of the distribution of relaxation times procedure to study the dielectric behaviour shows clear trends in the mixtures' relaxation spectra. Relaxation processes of the paraffin wax and those specific to the composites are found from the extracted distribution of relaxation times spectra. The influence of the filler concentration, q, on the dielectric properties is examined; a relaxation with a narrow distribution at intermediate frequencies becomes broad with the addition of the filler. This relaxation, in the form of the low-frequency-dispersions (also known as constant phase angle) phenomenon, dominates the dielectric properties of the composites with high bead concentration, q > 0:15. The variation in dielectric properties of individual samples whose bead concentrations q are nominally the same is discussed in terms of possible microstructural variations.
Luo Ningqi; Xiao Jun; Hu Wenyong; Chen Dihu; Tian Xiumei; Yang Chuan; Li Li
2013-04-28
Ultra-small gadolinium oxide (Gd{sub 2}O{sub 3}) can be used as T{sub 1}-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r{sub 1}) and has attracted intensive attention in these years. In this paper, ultra-small Gd{sub 2}O{sub 3} nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd{sub 2}O{sub 3} by laser ablation in DEG. The r{sub 1} value and T{sub 1}-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r{sub 1} value of 9.76 s{sup -1} mM{sup -1} to be good MRI contrast agents. We propose an explanation for the high r{sub 1} value of ultra-small Gd{sub 2}O{sub 3} by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd{sup 3+} on Gd{sub 2}O{sub 3} surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd{sub 2}O{sub 3} of high r{sub 1} value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd{sub 2}O{sub 3} MRI contrast agents.
Exploratory analysis of longitudinal trials with staggered intervention times.
Sousa, Inês; Chetwynd, Amanda G; Diggle, Peter J
2005-07-01
Longitudinal trials involving surgical interventions commonly have subject-specific intervention times, due to constraints on the availability of surgeons and operating theatres. Moreover, the intervention often effects a discontinuous change in the mean response. We propose a nonparametric estimator for the mean response profile of longitudinal data with staggered intervention times and a discontinuity at the times of intervention, as an exploratory tool to assist the formulation of a suitable parametric model. We use an adaptation of the standard generalized additive model algorithm for estimation, with smoothing constants chosen by a cross-validation criterion. We illustrate the method using longitudinal data from a trial to assess the effect of lung resection surgery in the treatment of emphysema patients.
Spin relaxation time dependence on optical pumping in GaAs:Mn
NASA Astrophysics Data System (ADS)
Burobina, Veronika; Binek, Christian
2015-03-01
We analyze the dependence of electron spin relaxation time on optical pumping in a partially-compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 1017cm-3. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Spin relaxation time dependence on optical pumping intensity in GaAs:Mn
NASA Astrophysics Data System (ADS)
Burobina, V.; Binek, Ch.
2014-04-01
We analyze the dependence of electron spin relaxation time on optical pumping intensity in a partially compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 1017 cm-3. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Time scales of relaxation dynamics during transient conditions in two-phase flow
NASA Astrophysics Data System (ADS)
Schlüter, Steffen; Berg, Steffen; Li, Tianyi; Vogel, Hans-Jörg; Wildenschild, Dorthe
2017-06-01
The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, and relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1-4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.
NASA Astrophysics Data System (ADS)
Clay, M. P.; Yeung, P. K.; Warhaft, Z.
2015-11-01
Turbulence subjected to axisymmetric strain is a fundamental problem which is common in engineering equipment with variable cross-section, but is not yet fully understood. We have performed direct numerical simulations on a deforming domain with grids up to 10243 and a time-dependent strain history designed to mimic spatial gradients in wind-tunnel experiments. Isotropic turbulence with a specified energy spectrum is allowed to decay and then passed through a numerical conduit of 4:1 contraction ratio. The Reynolds stress tensor, velocity gradient variances, and longitudinal and transverse one-dimensional (1D) spectra are studied during both the contraction and subsequent relaxation. Contraction leads to amplification of energy in the compressed directions and departures from local isotropy. When the strain is removed local isotropy returns quickly while the energy decays with a power law exponent smaller than for decaying isotropic turbulence. The evolution of 1D spectra including changes in shape is consistent with experiments, but a large solution domain is important. Supported by NSF Grant CBET-1510749 (Fluid Dynamics Program).
Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport
Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael
2016-04-20
Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their naturalmore » dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. Lastly, we also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport.« less
Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport
Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael
2016-01-01
Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their natural dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. We also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport. PMID:27094206
Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport
Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael
2016-04-20
Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their natural dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. Lastly, we also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport.
Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction
NASA Astrophysics Data System (ADS)
Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Tang, Jinke; Sui, Yu; Song, Bo
2016-07-01
In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm-1. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.
Variable thermal properties and thermal relaxation time in hyperbolic heat conduction
NASA Technical Reports Server (NTRS)
Glass, David E.; Mcrae, D. Scott
1989-01-01
Numerical solutions were obtained for a finite slab with an applied surface heat flux at one boundary using both the hyperbolic (MacCormack's method) and parabolic (Crank-Nicolson method) heat conduction equations. The effects on the temperature distributions of varying density, specific heat, and thermal relaxation time were calculated. Each of these properties had an effect on the thermal front velocity (in the hyperbolic solution) as well as the temperatures in the medium. In the hyperbolic solutions, as the density or specific heat decreased with temperature, both the temperatures within the medium and the thermal front velocity increased. The value taken for the thermal relaxation time was found to determine the 'hyperbolicity' of the heat conduction model. The use of a time dependent relaxation time allowed for solutions where the thermal energy propagated as a high temperature wave initially, but approached a diffusion process more rapidly than was possible with a constant large relaxation time.
Relaxation time and critical slowing down of a spin-torque oscillator
NASA Astrophysics Data System (ADS)
Taniguchi, Tomohiro; Ito, Takahiro; Tsunegi, Sumito; Kubota, Hitoshi; Utsumi, Yasuhiro
2017-07-01
The relaxation phenomena of spin-torque oscillators consisting of nanostructured ferromagnets are interesting research targets in magnetism. A theoretical study on the relaxation time of a spin-torque oscillator from one self-oscillation state to another is investigated. By solving the Landau-Lifshitz-Gilbert equation both analytically and numerically, it is shown that the oscillator relaxes to the self-oscillation state exponentially within a few nanoseconds, except when magnetization is close to a critical point. The relaxation rate, which is an inverse of relaxation time, is proportional to the current. On the other hand, a critical slowing down appears near the critical point, where relaxation is inversely proportional to time, and the relaxation time becomes on the order of hundreds of nanoseconds. These conclusions are primarily obtained for a spin-torque oscillator consisting of a perpendicularly magnetized free layer and an in-plane magnetized pinned layer, and are further developed for application to arbitrary types of spin-torque oscillators.
Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer
2007-09-28
The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules.
NASA Astrophysics Data System (ADS)
Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer
2007-09-01
The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency β and γ processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the β absorption is swallowed by the α in the glass-liquid transition, the γ absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the α absorption vanishes appearing the αγ relaxation. Two characteristics of α absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the αγ process. Williams' ansatz seems to hold for these topologically complex macromolecules.
NASA Astrophysics Data System (ADS)
Kikuchi, Yuta; Tsumura, Kyosuke; Kunihiro, Teiji
2016-05-01
We give a quantitative analysis of the dynamical properties of fermionic cold atomic gases in normal phase, such as the shear viscosity, heat conductivity, and viscous relaxation times, using the novel microscopic expressions derived by the renormalization group (RG) method, where the Boltzmann equation is faithfully solved to extract the hydrodynamics without recourse to any ansatz. In particular, we examine the quantum statistical effects, temperature dependence, and scattering-length dependence of the transport coefficients and the viscous relaxation times. The numerical calculation shows that the relation τπ = η / P, which is derived in the relaxation-time approximation (RTA) and is used in most of the literature, turns out to be satisfied quite well, while the similar relation for the viscous relaxation time τJ of the heat conductivity is satisfied only approximately with a considerable error.
Relaxation in distal and proximal arm muscles: a reaction time study.
Buccolieri, A; Avanzino, L; Trompetto, C; Abbruzzese, G
2003-02-01
To investigate whether the same mechanisms underlie muscle relaxation in proximal and distal arm muscles of normal subjects. Fourteen healthy subjects were studied using a simple visual reaction time paradigm. Relaxation reaction time (R-RT) and contraction reaction time (C-RT) were compared across different tasks involving distal (first dorsal interosseus, FDI, flexor carpi radialis, FCR) and proximal (biceps brachii, BB, triceps brachii, TR) arm muscles. Changes of FCR H-reflex before and during voluntary relaxation were investigated in two subjects. No significant difference was observed between R-RT and C-RT in the distal muscles. The R-RT was significantly shorter than C-RT in both the BB and TR muscles. The relaxation latency (R-RT) was significantly correlated to the subjects' age in all the muscles except the FDI. No inhibition of the FCR H-reflex could be observed in the 20 ms preceding muscle relaxation. Our findings suggest that neural mechanisms contribute differently to the relaxation of muscles with a different functional role. Voluntary relaxation in distal arm muscles is mainly related to the reduction of motor cortical output, while in proximal muscles a spinal disfacilitation is also present and possibly sustained by the modulation of presynaptic inhibition.
Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale
NASA Astrophysics Data System (ADS)
Wagenaar, J. J. T.; den Haan, A. M. J.; de Voogd, J. M.; Bossoni, L.; de Jong, T. A.; de Wit, M.; Bastiaans, K. M.; Thoen, D. J.; Endo, A.; Klapwijk, T. M.; Zaanen, J.; Oosterkamp, T. H.
2016-07-01
Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators, and other strongly correlated electron systems such as high-Tc superconductors.
Springer, Fabian; Steidle, Günter; Martirosian, Petros; Claussen, Claus D; Schick, Fritz
2010-09-01
The introduction of ultrashort-echo-time-(UTE)-sequences to clinical whole-body MR scanners has opened up the field of MR characterization of materials or tissues with extremely fast signal decay. If the transverse relaxation time is in the range of the RF-pulse duration, approximation of the RF-pulse by an instantaneous rotation applied at the middle of the RF-pulse and immediately followed by free relaxation will lead to a distinctly underestimated echo signal. Thus, the regular Ernst equation is not adequate to correctly describe steady state signal under those conditions. The paper presents an analytically derived modified Ernst equation, which correctly describes in-pulse relaxation of transverse magnetization under typical conditions: The equation is valid for rectangular excitation pulses, usually applied in 3D UTE sequences. Longitudinal relaxation time of the specimen must be clearly longer than RF-pulse duration, which is fulfilled for tendons and bony structures as well as many solid materials. Under these conditions, the proposed modified Ernst equation enables adequate and relatively simple calculation of the magnetization of materials or tissues. Analytically derived data are compared to numerical results obtained by using an established Runge-Kutta-algorithm based on the Bloch equations. Validity of the new approach was also tested by systematical measurements of a solid polymeric material on a 3T whole-body MR scanner. Thus, the presented modified Ernst equation provides a suitable basis for T1 measurements, even in tissues with T2 values as short as the RF-pulse duration: independent of RF-pulse duration, the 'variable flip angle method' led to consistent results of longitudinal relaxation time T1, if the T2 relaxation time of the material of interest is known as well.
NASA Astrophysics Data System (ADS)
Rander, D. N.; Joshi, Y. S.; Kanse, K. S.; Kumbharkhane, A. C.
2016-01-01
The measurements of complex dielectric permittivity of xylitol-water mixtures have been carried out in the frequency range of 10 MHz-30 GHz using a time domain reflectometry technique. Measurements have been done at six temperatures from 0 to 25 °C and at different weight fractions of xylitol (0 < W X ≤ 0.7) in water. There are different models to explain the dielectric relaxation behaviour of binary mixtures, such as Debye, Cole-Cole or Cole-Davidson model. We have observed that the dielectric relaxation behaviour of binary mixtures of xylitol-water can be well described by Cole-Davidson model having an asymmetric distribution of relaxation times. The dielectric parameters such as static dielectric constant and relaxation time for the mixtures have been evaluated. The molecular interaction between xylitol and water molecules is discussed using the Kirkwood correlation factor ( g eff ) and thermodynamic parameter.
NASA Astrophysics Data System (ADS)
Kingsley, Peter B.; Monahan, W. Gordon
2000-04-01
In the presence of an off-resonance radiofrequency field, recovery of longitudinal magnetization to a steady state is not purely monoexponential. Under reasonable conditions with zero initial magnetization, recovery is nearly exponential and an effective relaxation rate constant R1eff = 1/T1eff can be obtained. Exact and approximate formulas for R1eff and steady-state magnetization are derived from the Bloch equations for spins undergoing cross-relaxation and chemical exchange between two sites in the presence of an off-resonance radiofrequency field. The relaxation formulas require that the magnetization of one spin is constant, but not necessarily zero, while the other spin relaxes. Extension to three sites with one radiofrequency field is explained. The special cases of off-resonance effects alone and with cross-relaxation or chemical exchange, cross-relaxation alone, and chemical exchange alone are compared. The inaccuracy in saturation transfer measurements of exchange rate constants by published formulas is discussed for the creatine kinase reaction.
Measurement of the Water Relaxation Time of ɛ-Polylysine Aqueous Solutions
NASA Astrophysics Data System (ADS)
Shirakashi, Ryo; Amano, Yuki; Yamada, Jun
2017-05-01
ɛ-Polylysine is an effective food preservative. In this paper, the β-relaxation time of ɛ-polylysine aqueous solutions, which represents the rotational speed of a single water molecule, was measured by broadband dielectric spectroscopy at various temperatures and concentrations. The broadband dielectric spectrum of each sample containing water ranging from 35 wt% to 75 wt% at temperatures ranging from 0°C to 25°C was measured using a co-axial semirigid cable probe. The measured dielectric spectra of the samples were composed of several Debye relaxation peaks, including a shortest single molecular rotational relaxation time of water, the β-relaxation time, longer than that of pure water. This result represents that ɛ-polylysine suppresses the molecular kinetics of water. It is also found that the β-relaxation time of an ɛ-polylysine solution that contained more than 35 wt% water showed a typical Arrhenius plot in the temperature range from 0°C to 25°C. The activation energy of each sample depends on the water content ratio of the sample. As indicated by its long β-relaxation time, ɛ-polylysine is expected to possess high abilities of suppressing freezing and ice coarsening.
Bouhrara, Mustapha; Spencer, Richard G
2017-02-15
A number of central nervous system (CNS) diseases exhibit changes in myelin content and magnetic resonance longitudinal, T1, and transverse, T2, relaxation times, which therefore represent important biomarkers of CNS pathology. Among the methods applied for measurement of myelin water fraction (MWF) and relaxation times, the multicomponent driven equilibrium single pulse observation of T1 and T2 (mcDESPOT) approach is of particular interest. mcDESPOT permits whole brain mapping of multicomponent T1 and T2, with data acquisition accomplished within a clinically realistic acquisition time. Unfortunately, previous studies have indicated the limited performance of mcDESPOT in the setting of the modest signal-to-noise range of high-resolution mapping, required for the depiction of small structures and to reduce partial volume effects. Recently, we showed that a new Bayesian Monte Carlo (BMC) analysis substantially improved determination of MWF from mcDESPOT imaging data. However, our previous study was limited in that it did not discuss determination of relaxation times. Here, we extend the BMC analysis to the simultaneous determination of whole-brain MWF and relaxation times using the two-component mcDESPOT signal model. Simulation analyses and in-vivo human brain studies indicate the overall greater performance of this approach compared to the stochastic region contraction (SRC) algorithm, conventionally used to derive parameter estimates from mcDESPOT data. SRC estimates of the transverse relaxation time of the long T2 fraction, T2,l, and the longitudinal relaxation time of the short T1 fraction, T1,s, clustered towards the lower and upper parameter search space limits, respectively, indicating failure of the fitting procedure. We demonstrate that this effect is absent in the BMC analysis. Our results also showed improved parameter estimation for BMC as compared to SRC for high-resolution mapping. Overall we find that the combination of BMC analysis and mcDESPOT, BMC
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale
Maslennikov, Oleg V.; Nekorkin, Vladimir I.
2016-07-15
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
NASA Astrophysics Data System (ADS)
Ntarlagiannis, D.; Ustra, A.; Slater, L. D.; Zhang, C.; Mendonça, C. A.
2015-12-01
In this work we present an alternative formulation of the Debye Decomposition (DD) of complex conductivity spectra, with a new set of parameters that are directly related to the continuous Debye relaxation model. The procedure determines the relaxation time distribution (RTD) and two frequency-independent parameters that modulate the induced polarization spectra. The distribution of relaxation times quantifies the contribution of each distinct relaxation process, which can in turn be associated with specific polarization processes and characterized in terms of electrochemical and interfacial parameters as derived from mechanistic models. Synthetic tests show that the procedure can successfully fit spectral induced polarization (SIP) data and accurately recover the RTD. The procedure was applied to different data sets, focusing on environmental applications. We focus on data of sand-clay mixtures artificially contaminated with toluene, and crude oil-contaminated sands experiencing biodegradation. The results identify characteristic relaxation times that can be associated with distinct polarization processes resulting from either the contaminant itself or transformations associated with biodegradation. The inversion results provide information regarding the relative strength and dominant relaxation time of these polarization processes.
Time-dependent Jahn-Teller problem: phonon-induced relaxation through conical intersection.
Pae, Kaja; Hizhnyakov, Vladimir
2014-12-21
A theoretical study of time-dependent dynamical Jahn-Teller effect in an impurity center in a solid is presented. We are considering the relaxation of excited states in the E⊗e-problem through the conical intersection of the potential energy. A strict quantum-mechanical treatment of vibronic interactions with both the main Jahn-Teller active vibration and the nontotally symmetric phonons causing the energy loss is given. The applied method enables us to calculate the time-dependence of the distribution function of the basic configurational coordinate. We have performed a series of numerical calculations allowing us, among other relaxation features, to visualise the details of the relaxation through the conical intersection. In particular, we elucidate how the Slonczewski quantization of the states in the conical intersection affects the relaxation.
Time-dependent Jahn-Teller problem: Phonon-induced relaxation through conical intersection
Pae, Kaja Hizhnyakov, Vladimir
2014-12-21
A theoretical study of time-dependent dynamical Jahn-Teller effect in an impurity center in a solid is presented. We are considering the relaxation of excited states in the E⊗e-problem through the conical intersection of the potential energy. A strict quantum-mechanical treatment of vibronic interactions with both the main Jahn-Teller active vibration and the nontotally symmetric phonons causing the energy loss is given. The applied method enables us to calculate the time-dependence of the distribution function of the basic configurational coordinate. We have performed a series of numerical calculations allowing us, among other relaxation features, to visualise the details of the relaxation through the conical intersection. In particular, we elucidate how the Slonczewski quantization of the states in the conical intersection affects the relaxation.
Semiparametric estimation of time-dependent ROC curves for longitudinal marker data.
Zheng, Yingye; Heagerty, Patrick J
2004-10-01
One approach to evaluating the strength of association between a longitudinal marker process and a key clinical event time is through predictive regression methods such as a time-dependent covariate hazard model. For example, a Cox model with time-varying covariates specifies the instantaneous risk of the event as a function of the time-varying marker and additional covariates. In this manuscript we explore a second complementary approach which characterizes the distribution of the marker as a function of both the measurement time and the ultimate event time. Our goal is to extend the standard diagnostic accuracy concepts of sensitivity and specificity so as to recognize explicitly both the timing of the marker measurement and the timing of disease. The accuracy of a longitudinal marker can be fully characterized using time-dependent receiver operating characteristic (ROC) curves. We detail a semiparametric estimation method for time-dependent ROC curves that adopts a regression quantile approach for longitudinal data introduced by Heagerty and Pepe (1999, Applied Statistics, 48, 533-551). We extend the work of Heagerty and Pepe (1999, Applied Statistics, 48, 533-551) by developing asymptotic distribution theory for the ROC estimators where the distributional shape for the marker is allowed to depend on covariates. To illustrate our method, we analyze pulmonary function measurements among cystic fibrosis subjects and estimate ROC curves that assess how well the pulmonary function measurement can distinguish subjects that progress to death from subjects that remain alive. Comparing the results from our semiparametric analysis to a fully parametric method discussed by Etzioni et al. (1999, Medical Decision Making, 19, 242-251) suggests that the ability to relax distributional assumptions may be important in practice.
Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation
NASA Astrophysics Data System (ADS)
Hashiba, K.; Fukui, K.
2016-07-01
To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.
A theoretical study of the stress relaxation in HMX on the picosecond time scale
NASA Astrophysics Data System (ADS)
Long, Yao; Chen, Jun
2015-12-01
The stress relaxation model of β-HMX on the picosecond time scale is studied by a theoretical approach. The relaxation of normal stress is contributed by lattice vibration, and the relaxation of shear stress is contributed by molecular rotation. Based on this model, the energy dissipation rule of the elastic wave and the profile of the shock wave are investigated. We find at low frequency the dissipation rate of the elastic wave is proportional to the power function of frequency, and under high speed shock loading the width of the stress relaxation zone is less than 0.3 μm there is a pressure peak with a height of 14 GPa near the wave front.
Long valley relaxation time of free carriers in monolayer WSe2
NASA Astrophysics Data System (ADS)
Yan, Tengfei; Yang, Siyuan; Li, Dian; Cui, Xiaodong
2017-06-01
Monolayer transition metal dichalcogenides (TMDs) feature a valley degree of freedom, giant spin-orbit coupling, and spin-valley locking. These exotic natures have stimulated efforts of exploring potential applications in conceptual spintronics, valleytronics, and quantum computing. Among all the exotic directions, a long relaxation time of spin and/or valley polarization is critical. The present valley dynamics studies concentrate on the band edge excitons which predominate the optical response due to an enhanced Coulomb interaction in two dimensions. The valley relaxation time of free carriers remains ambiguous. In this Rapid Communication, we use time-resolved Kerr rotation spectroscopy to probe the valley dynamics of excitons and free carriers in monolayer tungsten diselenide. The valley relaxation time of free carriers is found around 2 ns at 70 K, about three orders of magnitude longer than the excitons of about 2 ps, and 15 times larger than that of trions (130 ps). The extended valley relaxation time of free carriers evidences that an exchange interaction dominates the valley relaxation in optical excitations. The pump-probe spectroscopy also reveals an exciton binding energy of 0.60 eV in monolayer WSe2.
Kloiber, Karin; Spitzer, Romana; Tollinger, Martin; Konrat, Robert; Kreutz, Christoph
2011-01-01
The refolding kinetics of bistable RNA sequences were studied in unperturbed equilibrium via 13C exchange NMR spectroscopy. For this purpose a straightforward labeling technique was elaborated using a 2′-13C-methoxy uridine modification, which was prepared by a two-step synthesis and introduced into RNA using standard protocols. Using 13C longitudinal exchange NMR spectroscopy the refolding kinetics of a 20 nt bistable RNA were characterized at temperatures between 298 and 310 K, yielding the enthalpy and entropy differences between the conformers at equilibrium and the activation energy of the refolding process. The kinetics of a more stable 32 nt bistable RNA could be analyzed by the same approach at elevated temperatures, i.e. at 314 and 316 K. Finally, the dynamics of a multi-stable RNA able to fold into two hairpin- and a pseudo-knotted conformation was studied by 13C relaxation dispersion NMR spectroscopy. PMID:21252295
Leporq, Benjamin; Le Troter, Arnaud; Le Fur, Yann; Salort-Campana, Emmanuelle; Guye, Maxime; Beuf, Olivier; Attarian, Shahram; Bendahan, David
2017-08-01
To evaluate the combination of a fat-water separation method with an automated segmentation algorithm to quantify the intermuscular fatty-infiltrated fraction, the relaxation times, and the microscopic fatty infiltration in the normal-appearing muscle. MR acquisitions were performed at 1.5T in seven patients with facio-scapulo-humeral dystrophy and eight controls. Disease severity was assessed using commonly used scales for the upper and lower limbs. The fat-water separation method provided proton density fat fraction (PDFF) and relaxation times maps (T 2* and T 1). The segmentation algorithm distinguished adipose tissue and normal-appearing muscle from the T 2* map and combined active contours, a clustering analysis, and a morphological closing process to calculate the index of fatty infiltration (IFI) in the muscle compartment defined as the relative amount of pixels with the ratio between the number of pixels within IMAT and the total number of pixels (IMAT + normal appearing muscle). In patients, relaxation times were longer and a larger fatty infiltration has been quantified in the normal-appearing muscle. T 2* and PDFF distributions were broader. The relaxation times were correlated to the Vignos scale whereas the microscopic fatty infiltration was linked to the Medwin-Gardner-Walton scale. The IFI was linked to a composite clinical severity scale gathering the whole set of scales. The MRI indices quantified within the normal-appearing muscle could be considered as potential biomarkers of dystrophies and quantitatively illustrate tissue alterations such as inflammation and fatty infiltration.
Bowler, R M; Yeh, C-L; Adams, S W; Ward, E J; Ma, R E; Dharmadhikari, S; Snyder, S A; Zauber, S E; Wright, C W; Dydak, U
2017-06-03
This study examines the results of neuropsychological testing of 26 active welders and 17 similar controls and their relationship to welders' shortened MRI T1 relaxation time, indicative of increased brain manganese (Mn) accumulation. Welders were exposed to Mn for an average duration of 12.25 years to average levels of Mn in air of 0.11±0.05mg/m(3). Welders scored significantly worse than controls on Fruit Naming and the Parallel Lines test of graphomotor tremor. Welders had shorter MRI T1 relaxation times than controls in the globus pallidus, substantia nigra, caudate nucleus, and the anterior prefrontal lobe. 63% of the variation in MRI T1 relaxation times was accounted for by exposure group. In welders, lower relaxation times in the caudate nucleus and substantia nigra were associated with lower neuropsychological test performance on tests of verbal fluency (Fruit Naming), verbal learning, memory, and perseveration (WHO-UCLA AVLT). Results indicate that verbal function may be one of the first cognitive domains affected by brain Mn deposition in welders as reflected by MRI T1 relaxation times. Copyright © 2017 Elsevier B.V. All rights reserved.
Applications of DNP-NMR for the measurement of heteronuclear T1 relaxation times
NASA Astrophysics Data System (ADS)
Day, Iain J.; Mitchell, John C.; Snowden, Martin J.; Davis, Adrian L.
2007-08-01
Measurement of heteronuclear spin-lattice relaxation times is hampered by both low natural abundance and low detection sensitivity. Combined with typically long relaxation times, this results in extended acquisition times which often renders the experiment impractical. Recently a variant of dynamic nuclear polarisation has been demonstrated in which enhanced nuclear spin polarisation, generated in the cryo-solid state, is transferred to the liquid state for detection. Combining this approach with small flip angle pulse trains, similar to the FLASH- T1 imaging sequence, allows the rapid determination of spin-lattice relaxation times. In this paper we explore this method and its application to the measurement of T1 for both carbon-13 and nitrogen-15 at natural abundance. The effects of RF inhomogeneity and the influence of proton decoupling in the context of this experiment are also investigated.
Applications of DNP-NMR for the measurement of heteronuclear T1 relaxation times.
Day, Iain J; Mitchell, John C; Snowden, Martin J; Davis, Adrian L
2007-08-01
Measurement of heteronuclear spin-lattice relaxation times is hampered by both low natural abundance and low detection sensitivity. Combined with typically long relaxation times, this results in extended acquisition times which often renders the experiment impractical. Recently a variant of dynamic nuclear polarisation has been demonstrated in which enhanced nuclear spin polarisation, generated in the cryo-solid state, is transferred to the liquid state for detection. Combining this approach with small flip angle pulse trains, similar to the FLASH-T(1) imaging sequence, allows the rapid determination of spin-lattice relaxation times. In this paper we explore this method and its application to the measurement of T(1) for both carbon-13 and nitrogen-15 at natural abundance. The effects of RF inhomogeneity and the influence of proton decoupling in the context of this experiment are also investigated.
Relation between the two-body entropy and the relaxation time in supercooled water.
Gallo, P; Rovere, M
2015-01-01
The two-body excess entropy of supercooled water is calculated from the radial distribution functions obtained from computer simulation of the TIP4P model for different densities upon supercooling. This quantity is considered in connection with the relaxation time of the self intermediate scattering function. The relaxation time shows a mode coupling theory (MCT) behavior in the region of mild supercooling and a strong behavior in the deep supercooled region. We find here that the two-body entropy is connected to the relaxation time and shows a logarithmic behavior with an apparent asymptotic divergence at the mode coupling crossover temperature. There is also evidence of a change in behavior of the two-body entropy upon crossing from the fragile (hopping-free) state to the strong (hopping-dominated) state of supercooled water, and the relation that connects the two-body entropy and the relxation time in the MCT region no longer holds.
Modeling Time Varying Effects with Generalized and Unsynchronized Longitudinal Data
Şentürk, Damla; Dalrymple, Lorien S.; Mohammed, Sandra M.; Kaysen, George A.; Nguyen, Danh V.
2013-01-01
Summary We propose novel estimation approaches for generalized varying coefficient models that are tailored for unsynchronized, irregular and infrequent longitudinal designs/data. Unsynchronized longitudinal data refers to the time-dependent response and covariate measurements for each individual measured at distinct time points. The proposed methods are motivated by data from the Comprehensive Dialysis Study (CDS). We model the potential age-varying association between infection-related hospitalization status and the inflammatory marker, C-reactive protein (CRP), within the first two years from initiation of dialysis. Traditional longitudinal modeling cannot directly be applied to unsynchronized data and no method exists to estimate time- or age-varying effects for generalized outcomes (e.g., binary or count data) to date. In addition, through the analysis of the CDS data and simulation studies, we show that preprocessing steps, such as binning, needed to synchronize data to apply traditional modeling can lead to significant loss of information in this context. In contrast, the proposed approaches discard no observation; they exploit the fact that although there is little information in a single subject trajectory due to irregularity and infrequency, the moments of the underlying processes can be accurately and efficiently recovered by pooling information from all subjects using functional data analysis. Subject-specific mean response trajectory predictions are derived and finite sample properties of the estimators are studied. PMID:23335196
Menger, M; Eckstein, F; Porschke, D
2000-11-15
The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to approximately 200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A-->G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (tau approximately 200 ms). Addition of Mg(2+) ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg(2+) are very similar to those induced by Ca(2+). The relaxation data do not provide any evidence for formation of Mg(2+)-inner sphere complexes in hammerhead ribozymes, because a Mg(2+)-specific relaxation effect was not visible. However, a Mg(2+)-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2
Menger, Marcus; Eckstein, Fritz; Porschke, Dietmar
2000-01-01
The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to ~200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A→G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (τ ≈200 ms). Addition of Mg2+ ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg2+ are very similar to those induced by Ca2+. The relaxation data do not provide any evidence for formation of Mg2+-inner sphere complexes in hammerhead ribozymes, because a Mg2+-specific relaxation effect was not visible. However, a Mg2+-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2-AP is able to indicate inner sphere
Dielectric relaxation time of bulk water at 136-140 K, background loss and crystallization effects
NASA Astrophysics Data System (ADS)
Johari, G. P.
2005-04-01
Dielectric relaxation time, τ, of ultraviscous bulk water has been determined by analyzing its loss tangent, tanδ, data, which had been measured on heating the vapor-deposited amorphous solid water and hyperquenched glassy water in our earlier studies. [Johari, Hallbrucker, and Mayer, J. Chem. Phys. 95, 2955 (1991); 97, 5851 (1992)]. As for glasses and liquids generally, the measured tanδ of water is the sum of a frequency-independent background loss and a frequency-dependent relaxational loss. A two-frequency method is provided for determining the background loss and used for obtaining the relaxational part of tanδ. After considering the structural relaxation and crystal-nuclei growth effects, τ for water has been determined. At 136±1K, it is 2.5±0.6s when a single relaxation time is (untenably) assumed, and 42±14s when a distribution of relaxation times, a characteristic of viscous liquids, is assumed, with Davidson-Cole distribution parameter of 0.75. Structural relaxation time of ˜70s for water at 136K, which was originally estimated from the DSC endotherm [Johari, Hallbrucker, and Mayer, Nature (London) 330, 552 (1987)], has been revised to ˜33s. Temperature dependence of τ could not be determined because ultraviscous water crystallizes too rapidly to cubic ice containing stacking faults and intergranular water. The study demonstrates that water is a liquid over the 136-155K range, thus removing the basis for a recent contention on its state.
Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films
NASA Astrophysics Data System (ADS)
Mongkolsuttirat, Kittisun
Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured
NASA Astrophysics Data System (ADS)
Biswas, Swarup; Dutta, Bula; Bhattacharya, Subhratanu
2014-02-01
The electrical conductivity relaxation in moderately doped polypyrrole and its nanocomposites reinforced with different proportion of silver nanoparticles was investigated in both frequency and time domain. An analytical distribution function of relaxation times is constructed from the results obtained in the frequency domain formalism and is used to evaluate the Kohlrausch-Williams-Watts (KWW) type decay function in the time domain. The thermal evolution of different relaxation parameters was analyzed. The temperature-dependent dc electrical conductivity, estimated from the average conductivity relaxation time is observed to depend strongly on the nanoparticle loading and follows Mott three-dimensional variable range hopping (VRH) conduction mechanism. The extent of charge carrier localization calculated from the VRH mechanism is well correlated to the evidences obtained from the structural characterizations of different nanostructured samples.
Real-time observation of cascaded electronic relaxation processes in p-Fluorotoluene
NASA Astrophysics Data System (ADS)
Hao, Qiaoli; Deng, Xulan; Long, Jinyou; Wang, Yanmei; Abulimiti, Bumaliya; Zhang, Bing
2017-08-01
Ultrafast electronic relaxation processes following two photoexcitation of 400 nm in p-Fluorotoluene (pFT) have been investigated utilizing time-resolved photoelectron imaging coupled with time-resolved mass spectroscopy. Cascaded electronic relaxation processes started from the electronically excited S2 state are directly imaged in real time and well characterized by two distinct time constants of 85 ± 10 fs and 2.4 ± 0.3 ps. The rapid component corresponds to the lifetime of the initially excited S2 state, including the structure relaxation from the Franck-Condon region to the conical intersection of S2/S1 and the subsequent internal conversion to the highly excited S1 state. While, the slower relaxation constant is attributed to the further internal conversion to the high levels of S0 from the secondarily populated S1 locating in the channel three region. Moreover, dynamical differences with benzene and toluene of analogous structures, including, specifically, the slightly slower relaxation rate of S2 and the evidently faster decay of S1, are also presented and tentatively interpreted as the substituent effects. In addition, photoelectron kinetic energy and angular distributions reveal the feature of accidental resonances with low-lying Rydberg states (the 3p, 4s and 4p states) during the multi-photon ionization process, providing totally unexpected but very interesting information for pFT.
Kaminski, K.; Adrjanowicz, K.; Paluch, M.; Kaminska, E.
2011-06-15
Time-dependent isothermal dielectric measurements were carried out deeply in the glassy state on two very important saccharides: sucrose and trehalose. In both compounds two prominent secondary relaxation processes were identified. The faster one is an inherent feature of the whole family of carbohydrates. The slower one can also be detected in oligo- and polysaccharides. It was shown earlier that the {beta} process is the Johari-Goldstein (JG) relaxation coupled to motions of the glycosidic linkage, while the {gamma} relaxation originates from motions of the exocyclic hydroxymethyl unit. Recently, it was shown that the JG relaxation process can be used to determine structural relaxation times in the glassy state [R. Casalini and C. M. Roland, Phys. Rev. Lett. 102, 035701 (2009)]. In this paper we present the results of an analysis of the data obtained during aging using two independent approaches. The first was proposed by Casalini and Roland, and the second one is based on the variation of the dielectric strength of the secondary relaxation process during aging [J. K. Vij and G. Power, J. Non-Cryst. Solids 357, 783 (2011)]. Surprisingly, we found that the estimated structural relaxation times in the glassy state of both saccharides are almost the same, independent of the type of secondary mode. This finding calls into question the common view that secondary modes of intramolecular origin do not provide information about the dynamics of the glassy state.
Multiple-relaxation-time lattice-Boltzmann model for multiphase flow.
McCracken, Michael E; Abraham, John
2005-03-01
The lattice-Boltzmann method has shown promise in simulating multiphase flows. However, when using the Bhatnagar-Gross-Krook (BGK) collision operator and polynomial equilibria, numerical stability problems have been shown to occur as the relaxation time is decreased. Some authors have suggested the use of multiple-relaxation-time (MRT) models in lieu of the BGK collision operator, which employs a single relaxation time, to enhance numerical stability. In this paper, a MRT lattice-Boltzmann model for multiphase flow is developed and evaluated for accuracy in several test problems including oscillating liquid cylinders and capillary waves. It is shown that the MRT model is able to achieve numerically stable results at lower viscosities relative to the corresponding BGK model.
Photoacoustic Determination of Non-radiative Relaxation Time of Absorbing Centers in Maize Seeds
NASA Astrophysics Data System (ADS)
Domínguez-Pacheco, A.; Hernández-Aguilar, C.; Cruz-Orea, A.
2017-07-01
Using non-destructive photothermal techniques, it is possible to characterize non-homogenous materials to obtain its optical and thermal properties through photoacoustic spectroscopy (PAS). In photoacoustic (PA) phenomena, there are transient states of thermal excitation, when samples absorb the incident light; these states manifest an excitation process that generates the PA signal, being in direct relation with the non-radiative relaxation times with the sample absorbent centers. The objective of this study was to determine the non-radiative relaxation times associated with different absorbent centers of corn seeds ( Zea mays L.), by using PAS. A frequency scan was done at different wavelengths (350 nm, 470 nm and 650 nm) in order to obtain the non-radiative relaxation times with different types of maize seeds.
Time to trust: longitudinal integrated clerkships and entrustable professional activities.
Hirsh, David A; Holmboe, Eric S; ten Cate, Olle
2014-02-01
Medical education shaped by the learning sciences can better serve medical students, residents, faculty, health care institutions, and patients. With increasing innovation in undergraduate and graduate medical education and more focused attention on educational principles and how people learn, this era of educational transformation offers promise. Principles manifest in "educational continuity" are informing changes in educational structures and venues and are enriching new discourse in educational pedagogy, assessment, and scholarship. The articles by Myhre and colleagues and Woloschuk and colleagues in this issue, along with mounting evidence preceding these works, should reassure that principle-driven innovation in medical education is not only possible but can be achieved safely. In this commentary, the authors draw from these works and the wider literature on longitudinal integrated educational design. They suggest that the confluences of movements for longitudinal integrated clerkships and entrustable professional activities open new possibilities for other educational and practice advancements in quality and safety. With the advent of competency-based education, explicit milestones, and improved assessment regimens, overseers will increasingly evaluate students, trainees, and other learners on their ability rather than relying solely on time spent in an activity. The authors suggest that, for such oversight to have the most value, assessors and learners need adequate oversight time, and redesign of educational models will serve this operational imperative. As education leaders are reassessing old medical school and training models, rotational blocks, and other barriers to progress, the authors explore the dynamic interplay between longitudinal integrated learning models and entrustment.
Deconfinement phase transition in an expanding quark system in the relaxation time approximation
NASA Astrophysics Data System (ADS)
Yang, Zhenwei; Zhuang, Pengfei
2004-03-01
We investigated the effects of nonequilibrium and collision terms on the deconfinement phase transition of an expanding quark system in Friedberg-Lee model in relaxation time approximation. By calculating the effective quark potential, the critical temperature of the phase transition is dominated by the mean field, while the collisions among quarks and mesons change the time structure of the phase transition significantly.
van Gemert, M J; Lucassen, G W; Welch, A J
1996-08-01
The thermal response of a semi-infinite medium in air, irradiated by laser light in a cylindrical geometry, cannot accurately be approximately by single radial and axial time constants for heat conduction. This report presents an analytical analysis of hear conduction where the thermal response is expressed in terms of distributions over radial and axial time constants. The source term for heat production is written as the product of a Gaussian shaped radial term and an exponentially shaped axial term. The two terms are expanded in integrals over eigenfunctions of the radial and axial parts of the Laplace heat conduction operator. The result is a double integral over the coupled distributions of the two time constants to compute the temperature rise as a function of time and of axial and radial positions. The distribution of axial time constants is a homogeneous slowly decreasing function of spatial frequency (v) indicating that one single axial time constant cannot reasonably characterize axial heat conduction. The distribution of radial time constants is a function centred around a distinguished maximum in the spatial frequency (lambda) close to the single radial time constant value used previously. This suggests that one radial time constant to characterize radial heat conduction may be a useful concept. Special cases have been evaluated analytically, such as short and long irradiation times, axial or radial heat conduction (shallow or deep penetrating laser beams) and, especially, thermal relaxation (cooling) of the tissue. For shallow penetrating laser beams the asymptotic cooling rate is confirmed to be proportional to [(t)0.5-(t-tL)0.5] which approaches 1/t0.5 for t > tL, where t is the time and tL is the laser pulse duration. For deep penetrating beams this is proportional to 1/(t-tL). For intermediate penetration, i.e. penetration depths about equal to spot size diameters, this is proportional to 1/(t-tL)1.5. The double integral has been evaluated
Option pricing during post-crash relaxation times
NASA Astrophysics Data System (ADS)
Dibeh, Ghassan; Harmanani, Haidar M.
2007-07-01
This paper presents a model for option pricing in markets that experience financial crashes. The stochastic differential equation (SDE) of stock price dynamics is coupled to a post-crash market index. The resultant SDE is shown to have stock price and time dependent volatility. The partial differential equation (PDE) for call prices is derived using risk-neutral pricing. European call prices are then estimated using Monte Carlo and finite difference methods. Results of the model show that call option prices after the crash are systematically less than those predicted by the Black-Scholes model. This is a result of the effect of non-constant volatility of the model that causes a volatility skew.
NASA Astrophysics Data System (ADS)
Huang, K.-W.; Chen, H.-H.; Yang, H.-C.; Horng, H.-E.; Liao, S.-H.; Chieh, J.-J.; Yang, S. Y.
2012-06-01
This study uses a sensitive, high-Tc SQUID-detected nuclear magnetic resonance spectrometer in magnetically unshielded environments to discriminate liver tumors in rats, by characterizing the longitudinal relaxation rate, T1-1. The high-Tc SQUID-based spectrometer has a spectral line width of 0.9Hz in low magnetic fields. It was found that relaxation rate for tumor tissues is (3.6 ± 0.02) s-1 and the relaxation rate for normal tissues is (7.7 ± 0.02) s-1. The difference in the longitudinal relaxation rates suggests that water structures around the DNA of cancer cells are different from those of normal tissues. The optimized detection sensitivity for the established system is 0.21 g at the present stage. It is concluded that T1-1 can be used to distinguish cancerous tissues from normal tissues. The high-Tc, SQUID-detected NMR and MRI in magnetically unshielded environments may also be useful for discriminating other tumors.
Some applications of the Lagrange identity in thermoelasticity with one relaxation time
Chirita, S.
1988-01-01
Consideration is given to the uniqueness and continuous data dependence questions appropriate to the fundamental initial/boundary-value problems in thermoelasticity with one relaxation time. On the basis of the Lagrange identity, results are obtained for bounded domains as well as for exterior unbounded domains, without definiteness conditions on the thermoelastic coefficients other than the positiveness of the product between the thermal conductivity and the relaxation time. The applicability of the Lagrange identity in order to obtain some reciprocal theorems is outlined. 24 references.
Serio, Rosa; Zizzo, Maria Grazia; Mulè, Flavia
2003-02-01
The aim of this study was to investigate, in mouse duodenum, the role of nitric oxide (NO) in the relaxation of longitudinal muscle evoked by nerve activation and the coupled action mechanism. Electrical field stimulation (EFS; 0.5 ms, 10-s train duration, supramaximal voltage, at various frequencies) under nonadrenergic noncholinergic conditions evoked muscular relaxation occasionally followed, at the higher stimulus frequencies, by rebound contractions. Inhibition of the synthesis of NO by N(omega)-nitro-L-arginine methyl ester (L-NAME; 100 microM) virtually abolished the evoked relaxation. The relaxation was reduced also by apamin (0.1 microM) and by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 1 microM), a guanylyl cyclase inhibitor. The coadministration of apamin and ODQ produced additive effects on the responses to EFS. Sodium nitroprusside (0.1-100 microM) produced a concentration-dependent reduction of the phasic spontaneous activity and at the highest dose used suppressed phasic activity and induced muscular relaxation. These effects were tetrodotoxin and L-NAME resistant and were antagonized both by apamin and by ODQ. 8-Bromoguanosine 3',5'-cyclic monophosphate (0.1-100 microM) reduced in a concentration-dependent manner the spontaneous mechanical activity and at 100 microM suppressed the phasic activity and induced muscular relaxation, not antagonized by apamin. This study indicates that NO is the primary transmitter released by inhibitory nerves supplying the longitudinal muscle of mouse duodenum and that guanylate cyclase stimulation and opening of Ca(2+)-dependent K(+) channels are independent mechanisms working in parallel to mediate NO action.
Lee, Zhuo Qi; Hsu, Wen-Jing; Lin, Miao
2014-01-01
Biased random walk has been studied extensively over the past decade especially in the transport and communication networks communities. The mean first passage time (MFPT) of a biased random walk is an important performance indicator in those domains. While the fundamental matrix approach gives precise solution to MFPT, the computation is expensive and the solution lacks interpretability. Other approaches based on the Mean Field Theory relate MFPT to the node degree alone. However, nodes with the same degree may have very different local weight distribution, which may result in vastly different MFPT. We derive an approximate bound to the MFPT of biased random walk with short relaxation time on complex network where the biases are controlled by arbitrarily assigned node weights. We show that the MFPT of a node in this general case is closely related to not only its node degree, but also its local weight distribution. The MFPTs obtained from computer simulations also agree with the new theoretical analysis. Our result enables fast estimation of MFPT, which is useful especially to differentiate between nodes that have very different local node weight distribution even though they share the same node degrees. PMID:24699325
The effects of bone on proton NMR relaxation times of surrounding liquids
NASA Technical Reports Server (NTRS)
Davis, C. A.; Genant, H. K.; Dunham, J. S.
1986-01-01
Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.
Fragile-strong fluid crossover and universal relaxation times in a confined hard-disk fluid.
Yamchi, Mahdi Zaeifi; Ashwin, S S; Bowles, Richard K
2012-11-30
We show that a system of hard disks confined to a narrow channel exhibits a fragile-strong fluid crossover located at the maximum of the isobaric heat capacity and that the relaxation times for different channel widths fall onto a single master curve when rescaled by the relaxation times and temperatures of the crossover. Calculations of the configurational entropy and the inherent structure equation of state find that the crossover is related to properties of the jamming landscape for the model but that the Adam-Gibbs relation does not predict the relaxation behavior. We also show that a facilitated dynamics description of the system, where kinetically excited regions are identified with local packing arrangements of the disks, successfully describes the fragile-strong crossover.
A unified model of hysteresis and long-time relaxation in heterogeneous materials
NASA Astrophysics Data System (ADS)
Lebedev, A. V.; Ostrovsky, L. A.
2014-09-01
A physical model of stress-strain dynamics and long-time relaxation (slow time) in structured media is proposed. The model is based on the analysis of inter-grain contacts and the resulting surface force potential with a barrier. The result is a unified description of the classical acoustic nonlinearity, stress-strain hysteresis, and logarithmic relaxation law for sound velocity (and, hence, for the frequency of nonlinear resonance in samples of structured materials). Estimates of a characteristic volume of interacting contacts give close values for the variety of consolidated materials. For weak (linear) testing waves, the logarithmic relaxation occurs if a classical quadratic nonlinearity is added to the stress-strain relation.
T2 star relaxation times for assessment of articular cartilage at 3 T: a feasibility study.
Mamisch, Tallal Charles; Hughes, Timothy; Mosher, Timothy J; Mueller, Christoph; Trattnig, Siegfried; Boesch, Chris; Welsch, Goetz Hannes
2012-03-01
T2 mapping techniques use the relaxation constant as an indirect marker of cartilage structure, and the relaxation constant has also been shown to be a sensitive parameter for cartilage evaluation. As a possible additional robust biomarker, T2* relaxation time is a potential, clinically feasible parameter for the biochemical evaluation of articular cartilage. The knees of 15 healthy volunteers and 15 patients after microfracture therapy (MFX) were evaluated with a multi-echo spin-echo T2 mapping technique and a multi-echo gradient-echo T2* mapping sequence at 3.0 Tesla MRI. Inline maps, using a log-linear least squares fitting method, were assessed with respect to the zonal dependency of T2 and T2* relaxation for the deep and superficial regions of healthy articular cartilage and cartilage repair tissue. There was a statistically significant correlation between T2 and T2* values. Both parameters demonstrated similar spatial dependency, with longer values measured toward the articular surface for healthy articular cartilage. No spatial variation was observed for cartilage repair tissue after MFX. Within this feasibility study, both T2 and T2* relaxation parameters demonstrated a similar response in the assessment of articular cartilage and cartilage repair tissue. The potential advantages of T2*-mapping of cartilage include faster imaging times and the opportunity for 3D acquisitions, thereby providing greater spatial resolution and complete coverage of the articular surface.
Longitudinal T1 relaxation rate (R1) captures changes in short-term Mn exposure in welders.
Lewis, Mechelle M; Flynn, Michael R; Lee, Eun-Young; Van Buren, Scott; Van Buren, Eric; Du, Guangwei; Fry, Rebecca C; Herring, Amy H; Kong, Lan; Mailman, Richard B; Huang, Xuemei
2016-12-01
We demonstrated recently that the T1 relaxation rate (R1) captured short-term Mn exposure in welders with chronic, relatively low exposure levels in a cross-sectional study. In the current study, we used a longitudinal design to examine whether R1 values reflect the short-term dynamics of Mn exposure. Twenty-nine welders were evaluated at baseline and 12 months. Occupational questionnaires estimated short-term welding exposure using welding hours in the 90days prior to each study visit (HrsW90). In addition, blood Mn levels, the pallidal index (PI; globus pallidus T1-weighted intensity (T1WI)/frontal white matter T1WI), and R1 values in brain regions of interest (ROIs) were determined as Mn biomarkers at each visit. Associations between changes in estimated welding exposure and changes in purported Mn biomarkers were assessed by Spearman's correlations with adjustment for age and baseline R1, HrsW90, and blood Mn values. Changes in welding hours (HrsW90: the short-term welding exposure estimate), was associated significantly with changes in R1 values in the putamen (r=0.541, p=0.005), caudate (R=0.453, p=0.023), globus pallidus (R=0.430, p=0.032), amygdala (R=0.461, p=0.020), and hippocampus (R=0.447, p=0.025), but not with changes in blood Mn levels or the PI. Changes in R1 values correlated with changes in the short-term welding exposure estimate, but not with more traditional measures of Mn exposure (blood Mn levels or PI). These results suggest that R1 may serve as a useful marker to capture the short-term dynamics in Mn brain accumulation related to welding exposure. Copyright Â© 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Chandran, Parwathy; Sasidharan, Abhilash; Ashokan, Anusha; Menon, Deepthy; Nair, Shantikumar; Koyakutty, Manzoor
2011-10-01
We report the development of a novel magnetic nano-contrast agent (nano-CA) based on Gd3+ doped amorphous TiO2 of size ~25 nm, exhibiting enhanced longitudinal relaxivity (r1) and magnetic resonance (MR) contrasting together with excellent biocompatibility. Quantitative T1 mapping of phantom samples using a 1.5 T clinical MR imaging system revealed that the amorphous phase of doped titania has the highest r1 relaxivity which is ~2.5 fold higher than the commercially used CA Magnevist™. The crystalline (anatase) samples formed by air annealing at 250 °C and 500 °C showed significant reduction in r1 values and MR contrast, which is attributed to the loss of proton-exchange contribution from the adsorbed water and atomic re-arrangement of Gd3+ ions in the crystalline host lattice. Nanotoxicity studies including cell viability, plasma membrane integrity, reactive oxygen stress and expression of pro-inflammatory cytokines, performed on human primary endothelial cells (HUVEC), human blood derived peripheral blood mononuclear cells (PBMC) and nasopharyngeal epidermoid carcinoma (KB) cell line showed excellent biocompatibility up to relatively higher doses of 200 μg ml-1. The potential of this nano-CA to cause hemolysis, platelet aggregation and plasma coagulation were studied using human peripheral blood samples and found no adverse effects, illustrating the possibility of the safe intravenous administration of these agents for human applications. Furthermore, the ability of these agents to specifically detect cancer cells by targeting molecular receptors on the cell membrane was demonstrated on folate receptor (FR) positive oral carcinoma (KB) cells, where the folic acid conjugated nano-CA showed receptor specific accumulation on cell membrane while leaving the normal fibroblast cells (L929) unstained. This study reveals that the Gd3+ doped amorphous TiO2 nanoparticles having enhanced magnetic resonance contrast and high biocompatibility is a promising candidate for
Relaxation Time for an Optical Bistable System Subjected to Color Noises
NASA Astrophysics Data System (ADS)
Wang, Bing; Wu, Xiu-Qing; Cheng, Dong-Chao
2011-01-01
The relaxation time T of an optical bistable system with cross-correlated color noises and small time delay is investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. The expression of T is derived using the Stratonovich decoupling ansatz formalism. It is found that the relaxation time T increases with the increasing cross-correlation time τ0 between the two noises or the self-correlation time τ1 of the multiplicative noise, but decreases with the increasing self-correlation time τ2 of the additive noise. T decreases with the increasing correlation intensity λ or the multiplicative noise intensity Q, but increases with the increasing additive noise intensity D. There exists a peak in the curve of T versus delay time τ.
Hot-electron energy relaxation time in Ga-doped ZnO films
Šermukšnis, E. Liberis, J.; Ramonas, M.; Matulionis, A.; Toporkov, M.; Liu, H. Y.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2015-02-14
Hot-electron energy relaxation time is deduced for Ga-doped ZnO epitaxial layers from pulsed hot-electron noise measurements at room temperature. The relaxation time increases from ∼0.17 ps to ∼1.8 ps when the electron density increases from 1.4 × 10{sup 17 }cm{sup −3} to 1.3 × 10{sup 20 }cm{sup −3}. A local minimum is resolved near an electron density of 1.4 × 10{sup 19 }cm{sup −3}. The longest energy relaxation time (1.8 ps), observed at the highest electron density, is in good agreement with the published values obtained by optical time-resolved luminescence and absorption experiments. Monte Carlo simulations provide a qualitative interpretation of our observations if hot-phonon accumulation is taken into account. The local minimum of the electron energy relaxation time is explained by the ultrafast plasmon-assisted decay of hot phonons in the vicinity of the plasmon–LO-phonon resonance.
Large lateral photovoltaic effect with ultrafast relaxation time in SnSe/Si junction
Wang, Xianjie; Zhao, Xiaofeng; Hu, Chang; Zhang, Yang; Song, Bingqian; Zhang, Lingli; Liu, Weilong; Lv, Zhe; Zhang, Yu; Sui, Yu; Tang, Jinke; Song, Bo
2016-07-11
In this paper, we report a large lateral photovoltaic effect (LPE) with ultrafast relaxation time in SnSe/p-Si junctions. The LPE shows a linear dependence on the position of the laser spot, and the position sensitivity is as high as 250 mV mm{sup −1}. The optical response time and the relaxation time of the LPE are about 100 ns and 2 μs, respectively. The current-voltage curve on the surface of the SnSe film indicates the formation of an inversion layer at the SnSe/p-Si interface. Our results clearly suggest that most of the excited-electrons diffuse laterally in the inversion layer at the SnSe/p-Si interface, which results in a large LPE with ultrafast relaxation time. The high positional sensitivity and ultrafast relaxation time of the LPE make the SnSe/p-Si junction a promising candidate for a wide range of optoelectronic applications.
Carballido-Gamio, Julio; Link, Thomas M; Majumdar, Sharmila
2008-06-01
MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone-cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1rho maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T1rho comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1rho maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease.
Carballido-Gamio, Julio; Link, Thomas M.; Majumdar, Sharmila
2010-01-01
MR relaxation time measurements of knee cartilage have shown potential to characterize knee osteoarthritis (OA). In this work, techniques that allow localized intra- and inter-subject comparisons of cartilage relaxation times, as well as cartilage flattening for texture analysis parallel and perpendicular to the natural cartilage layers, are presented. The localized comparisons are based on the registration of bone structures and the assignment of relaxation time feature vectors to each point in the bone– cartilage interface. Cartilage flattening was accomplished with Bezier splines and warping, and texture analysis was performed with second-order texture measures using gray-level co-occurrence matrices (GLCM). In a cohort of five normal subjects the performance and reproducibility of the techniques were evaluated using T1ρ maps of femoral knee cartilage. The feasibility of creating a mean cartilage relaxation time map is also presented. Successful localized intra- and inter-subject T1ρ comparisons were obtained with reproducibility similar to that reported in the literature for regional T2. Improvement of the reproducibility of GLCM features was obtained by flattening the T1ρ maps. The results indicate that the presented techniques have potential in longitudinal and population studies of knee OA at different stages of the disease. PMID:18506807
NASA Astrophysics Data System (ADS)
Adrjanowicz, K.; Paluch, M.; Ngai, K. L.
2010-03-01
By using the dielectric relaxation method proposed recently by Casalini and Roland (2009 Phys. Rev. Lett. 102 035701), we were able to determine the structural α-relaxation times deep in the glassy state of the pharmaceutical, Telmisartan. Normally, deep in the glassy state τα is so long that it cannot be measured but τβ, which is usually much shorter, can be directly determined. The method basically takes advantage of the connection between the α-relaxation and the secondary β-relaxation of the Johari-Goldstein kind, including a relation between their relaxation times τα and τβ, respectively. Thus, τα of Telmisartan were determined by monitoring the change of the dielectric β-loss, ɛ'', with physical aging time at temperatures well below the vitrification temperature. The values of τα were compared with those expected by the coupling model (CM). Unequivocal comparison cannot be made in the case of Telmisartan because its β-loss peak is extremely broad, and the CM predicts only an order of magnitude agreement between the primitive relaxation frequency and the β-peak frequency. We also made an attempt to analyze all isothermal and aging susceptibility data after transformation into the electric modulus representation. The τα found in the glass state by using the method of Casalini and Roland in the modulus representation are similar to those obtained in the susceptibility representation. However, it is remarkable that the stretching parameter βKWW - M = 0.51 in the electric modulus representation gives more precise fits to the aging data than in the susceptibility representation with βKWW = 0.61. Our results suggest that the electric modulus representation may be useful as an alternative to analyze aging data, especially in the case of highly polar glassformers having a large ratio of low frequency and high frequency dielectric constants, such as the Telmisartan studied.
NASA Astrophysics Data System (ADS)
Khmelinskii, I.; Makarov, V.
2017-08-01
We report experimental temperature and concentration dependences of the natural spin relaxation time of superparamagnetic Fe3O4 and hemozoin nanocrystals. We recorded the 1H NMR spectrum of 0.5% benzene dissolved in CS2 in function of superparamagnetic particle concentration and temperature, interpreting the 7.261 ± 0.002 ppm benzene line broadening. Our model for the line broadening includes natural, hyperfine magnetic dipole-dipole, and contact hyperfine contributions. The latter arises due to exchange interaction between benzene molecules and suspended nanoparticles. Estimated frequency of fluctuation in the 1 cm3 sample volume is in the 107 Hz scale. Estimated natural electron spin-lattice relaxation frequencies of the superparamagnetic nanocrystals using frequency of fluctuations, and developed theoretical model applied to analysis of experimental data are in good agreement between each other. Thus the presently developed approach may be used to study fluctuations and natural spin-lattice relaxation frequencies in different media.
Reassessing the single relaxation time Lattice Boltzmann method for the simulation of Darcy’s flows
NASA Astrophysics Data System (ADS)
Prestininzi, Pietro; Montessori, Andrea; La Rocca, Michele; Succi, Sauro
2016-09-01
It is shown that the single relaxation time (SRT) version of the Lattice Boltzmann (LB) equation permits to compute the permeability of Darcy’s flows in porous media within a few percent accuracy. This stands in contrast with previous claims of inaccuracy, which we relate to the lack of recognition of the physical dependence of the permeability on the Knudsen number.
Measurement of the spin-lattice relaxation time in the NQR of light nuclei
Anferov, V.P.; Anferova, S.V.; Grechishkin, V.S.; Sinyavskii, N.Ya.
1988-01-01
This work proposed a method for increasing the signal/noise ratio in NQR by preliminary magnetization of the sample in a constant magnetic field B/sub 0/ and it subsequent adiabatic demagnetization. The proposed method for the measurement of spin-lattice relaxation times is verified experimentally with a number of compounds. The results agree well with published data.
Richardson, P. M. Voice, A. M. Ward, I. M.
2013-12-07
Longitudinal relaxation (T{sub 1}) measurements of {sup 19}F, {sup 7}Li, and {sup 1}H in propylene carbonate/LiBF{sub 4} liquid electrolytes are reported. Comparison of T{sub 1} values with those for the transverse relaxation time (T{sub 2}) confirm that the measurements are in the high temperature (low correlation time) limit of the T{sub 1} minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T{sub 1} from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.
Determining optimal ultrasound off time with micropulse longitudinal phacoemulsification.
Jensen, Jason D; Kirk, Kevin R; Gupta, Isha; Ronquillo, Cecinio; Farukhi, M Aabid; Stagg, Brian C; Pettey, Jeff H; Olson, Randall J
2015-02-01
To evaluate the optimum off time for the most efficient removal of lens fragments using micropulse ultrasound (US). John A. Moran Eye Center Laboratories, University of Utah, Salt Lake City, Utah, USA. Experimental study. Porcine lens nuclei were soaked in formalin for 2 hours and then cut into 2.0 mm cubes using the Signature US machine with a bent 0.9 mm phaco tip with a 30-degree bevel. The on time was 7 milliseconds (ms), and the off time was varied from 2 to 20 ms in 2 ms steps. Phacoemulsification efficiency (time for fragment removal) and chatter (number of times the fragment bounced from the tip) were measured. A nonsignificant linear increase in efficiency was observed with 2 to 6 ms of off time (R(2) = .87, P = .24). A significant linear decrease in efficiency was observed with 6 to 20 ms (R(2) = .74, P = .006). With micropulse longitudinal US, 6 to 7 ms of off time was as efficient as shorter off times; longer off times (8 to 20 ms) showed decreased efficiency. Chatter was minimal and statistically similar throughout. To maximize phacoemulsification US efficiency, an off-time setting of 6 ms is recommended. No author has a financial or proprietary interest in any material or method mentioned. Copyright © 2015 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Nelson, Krysta R.; Stevens, Shanlee M.; McLoon, Linda K.
2016-01-01
Purpose We tested the hypothesis that short-term treatment with brain derived neurotrophic factor (BDNF) would alter the contractile characteristics of rabbit extraocular muscle (EOM). Methods One week after injections of BDNF in adult rabbit superior rectus muscles, twitch properties were determined in treated and control muscles in vitro. Muscles were also examined for changes in mean cross-sectional areas, neuromuscular junction size, and percent of myofibers expressing specific myosin heavy chain isoforms, and sarcoendoplasmic reticulum calcium ATPases (SERCA) 1 and 2. Results Brain derived neurotrophic factor–treated muscles had prolonged relaxation times compared with control muscles. Time to 50% relaxation, time to 100% relaxation, and maximum rate of relaxation were increased by 24%, 27%, and 25%, respectively. No significant differences were seen in time to peak force, twitch force, or maximum rate of contraction. Brain derived neurotrophic factor treatment significantly increased mean cross-sectional areas of slow twitch and tonic myofibers, with increased areas ranging from 54% to 146%. Brain derived neurotrophic factor also resulted in an increased percentage of slow twitch myofibers in the orbital layers, ranging from 54% to 77%, and slow-tonic myofibers, ranging from 44% to 62%. No significant changes were seen SERCA1 or 2 expression or in neuromuscular junction size. Conclusions Short-term treatment with BDNF significantly prolonged the duration and rate of relaxation time and increased expression of both slow-twitch and slow-tonic myosin-expressing myofibers without changes in neuromuscular junctions or SERCA expression. The changes induced by BDNF treatment might have potential therapeutic value in dampening/reducing uncontrolled eye oscillations in nystagmus. PMID:27802489
Seo, Mirinae; Jahng, Geon-Ho; Sohn, Yu-Mee; Rhee, Sun Jung; Oh, Jang-Hoon; Won, Kyu-Yeoun
2017-01-01
Objective The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Materials and Methods Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Results Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). Conclusion The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer. PMID:28096732
Seo, Mirinae; Ryu, Jung Kyu; Jahng, Geon-Ho; Sohn, Yu-Mee; Rhee, Sun Jung; Oh, Jang-Hoon; Won, Kyu-Yeoun
2017-01-01
The purpose of this study was to estimate the T2* relaxation time in breast cancer, and to evaluate the association between the T2* value with clinical-imaging-pathological features of breast cancer. Between January 2011 and July 2013, 107 consecutive women with 107 breast cancers underwent multi-echo T2*-weighted imaging on a 3T clinical magnetic resonance imaging system. The Student's t test and one-way analysis of variance were used to compare the T2* values of cancer for different groups, based on the clinical-imaging-pathological features. In addition, multiple linear regression analysis was performed to find independent predictive factors associated with the T2* values. Of the 107 breast cancers, 92 were invasive and 15 were ductal carcinoma in situ (DCIS). The mean T2* value of invasive cancers was significantly longer than that of DCIS (p = 0.029). Signal intensity on T2-weighted imaging (T2WI) and histologic grade of invasive breast cancers showed significant correlation with T2* relaxation time in univariate and multivariate analysis. Breast cancer groups with higher signal intensity on T2WI showed longer T2* relaxation time (p = 0.005). Cancer groups with higher histologic grade showed longer T2* relaxation time (p = 0.017). The T2* value is significantly longer in invasive cancer than in DCIS. In invasive cancers, T2* relaxation time is significantly longer in higher histologic grades and high signal intensity on T2WI. Based on these preliminary data, quantitative T2* mapping has the potential to be useful in the characterization of breast cancer.
Optically-detected spin-echo method for relaxation times measurements in a Rb atomic vapor
NASA Astrophysics Data System (ADS)
Gharavipour, M.; Affolderbach, C.; Gruet, F.; Radojičić, I. S.; Krmpot, A. J.; Jelenković, B. M.; Mileti, G.
2017-06-01
We introduce and demonstrate an experimental method, optically-detected spin-echo (ODSE), to measure ground-state relaxation times of a rubidium (Rb) atomic vapor held in a glass cell with buffer-gas. The work is motivated by our studies on high-performance Rb atomic clocks, where both population and coherence relaxation times (T 1 and T 2, respectively) of the ‘clock transition’ (52S1/2 | {F}g = 1,{m}F=0> ≤ftrightarrow | {F}g=2,{m}F=0> ) are relevant. Our ODSE method is inspired by classical nuclear magnetic resonance spin-echo method, combined with optical detection. In contrast to other existing methods, like continuous-wave double-resonance (CW-DR) and Ramsey-DR, principles of the ODSE method allow suppression of decoherence arising from the inhomogeneity of the static magnetic field across the vapor cell, thus enabling measurements of intrinsic relaxation rates, as properties of the cell alone. Our experimental result for the coherence relaxation time, specific for the clock transition, measured with the ODSE method is in good agreement with the theoretical prediction, and the ODSE results are validated by comparison to those obtained with Franzen, CW-DR and Ramsey-DR methods. The method is of interest for a wide variety of quantum optics experiments with optical signal readout.
NASA Astrophysics Data System (ADS)
Tomadakis, Manolis M.; Robertson, Teri J.
2003-07-01
We present a random walk based investigation of the pore size probability distribution and its moments, the survival probability and mean survival time, and the principal relaxation time, for random and ordered arrays of cylindrical fibers of various orientation distributions. The dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size are found to increase with porosity, remain practically independent of the directionality of random fiber beds, and attain lower values for ordered arrays. Wide pore size distributions are obtained for random fiber structures and relatively narrow for ordered square arrays, all in very good agreement with theoretically predicted limiting values. Analytical results derived for the pore size probability and its lower moments for square arrays of fibers practically coincide with the corresponding simulation results. Earlier variational bounds on the mean survival time and principal relaxation time are obeyed by our numerical results in all cases, and are found to be quite sharp up to very high porosities. Dimensionless groups representing the deviation of such bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to the mean pore size [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all types of fiber structures, thus validated for the first time for anisotropic porous media.
Relaxation of terrace-width distributions: Physical information from Fokker Planck time
NASA Astrophysics Data System (ADS)
Hamouda, Ajmi BH.; Pimpinelli, Alberto; Einstein, T. L.
2008-12-01
Recently some of us have constructed a Fokker-Planck formalism to describe the equilibration of the terrace-width distribution of a vicinal surface from an arbitrary initial configuration. However, the meaning of the associated relaxation time, related to the strength of the random noise in the underlying Langevin equation, was rather unclear. Here we present a set of careful kinetic Monte Carlo simulations that demonstrate convincingly that the time constant shows activated behavior with a barrier that has a physically plausible dependence on the energies of the governing microscopic model. Remarkably, the rate-limiting step for relaxation in the far-from-equilibrium regime is the generation of kink-antikink pairs, involving the breaking of three lateral bonds on a cubic {0 0 1} surface, in contrast to the processes breaking two bonds that dominate equilibrium fluctuations. After an initial regime, the Fokker-Planck time at least semiquantitatively tracks the actual physical time.
DeVore, Adam D; McNulty, Steven; Alenezi, Fawaz; Ersboll, Mads; Vader, Justin M; Oh, Jae K; Lin, Grace; Redfield, Margaret M; Lewis, Gregory; Semigran, Marc J; Anstrom, Kevin J; Hernandez, Adrian F; Velazquez, Eric J
2017-07-01
While abnormal left ventricular (LV) global longitudinal strain (GLS) has been described in patients with heart failure with preserved ejection fraction (HFpEF), its prevalence and clinical significance are poorly understood. Patients enrolled in the RELAX trial of sildenafil in HFpEF (LV ejection fraction ≥50%) in whom two-dimensional, speckle-tracking LV GLS was possible (n = 187) were analysed. The distribution of LV GLS and its associations with clinical characteristics, LV structure and function, biomarkers, exercise capacity and quality of life were assessed. Baseline median LV GLS was -14.6% (25th and 75th percentile, -17.0% and -11.9%, respectively) and abnormal (≥ - 16%) in 122/187 (65%) patients. Patients in the tertile with the best LV GLS had lower N-terminal pro-brain natriuretic peptide (NT-proBNP) [median 505 pg/mL (161, 1065) vs. 875 pg/mL (488, 1802), P = 0.008) and lower collagen III N-terminal propeptide (PIIINP) levels [median 6.7 µg/L (5.1, 8.1) vs. 8.1 µg/L (6.5, 10.5), P = 0.001] compared with the tertile with the worst LV GLS. There was also a modest linear relationship with LV GLS and log-transformed NT-proBNP and PIIINP (r = 0.29, P < 0.001 and r = 0.19, P = 0.009, respectively). We observed no linear association of LV GLS with Minnesota Living with Heart Failure scores, 6-min walk distance, peak oxygen consumption, or expiratory minute ventilation/carbon dioxide excretion slope. Impaired LV GLS is common among HFpEF patients, indicating the presence of covert systolic dysfunction despite normal LV ejection fraction. Impaired LV GLS was associated with biomarkers of wall stress and collagen synthesis and diastolic dysfunction but not with quality of life or exercise capacity, suggesting other processes may be more responsible for these aspects of the HFpEF syndrome. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.
Lerner, Richard M.; Schwartz, Seth J; Phelps, Erin
2009-01-01
Studying human development involves describing, explaining, and optimizing intraindividual change and interindividual differences in such change and, as such, requires longitudinal research. The selection of the appropriate type of longitudinal design requires selecting the option that best addresses the theoretical questions asked about developmental process and the use of appropriate statistical procedures to best exploit data derived from theory-predicated longitudinal research. This paper focuses on several interrelated problematics involving the treatment of time and the timing of observations that developmental scientists face in creating theory-design fit and in charting in change-sensitive ways developmental processes across life. We discuss ways in which these problematics may be addressed to advance theory-predicated understanding of the role of time in processes of individual development. PMID:19554215
Relaxation times of the two-phonon processes with spin-flip and spin-conserving in quantum dots
Wang, Zi-Wu; Liu, Lei; Li, Shu-Shen
2014-04-07
We perform a theoretical investigation on the two-phonon processes of the spin-flip and spin-conserving relaxation in quantum dots in the frame of the Huang-Rhys' lattice relaxation model. We find that the relaxation time of the spin-flip is two orders of magnitude longer than that of the spin-conserving, which is in agreement with previous experimental measurements. Moreover, the opposite variational trends of the relaxation time as a function of the energy separation for two-phonon processes are obtained in different temperature regime. The relaxation times display the oscillatory behaviors at the demarcation point with increasing magnetic field, where the energy separation matches the optical phonon energy and results in the optical phonon resonance. These results are useful in understanding the intraband levels' relaxation in quantum dots and could be helpful in designing photoelectric and spin-memory devices.
NASA Astrophysics Data System (ADS)
Kaminski, K.; Adrjanowicz, K.; Kaminska, E.; Paluch, M.
2011-06-01
Time-dependent isothermal dielectric measurements were carried out deeply in the glassy state on two very important saccharides: sucrose and trehalose. In both compounds two prominent secondary relaxation processes were identified. The faster one is an inherent feature of the whole family of carbohydrates. The slower one can also be detected in oligo- and polysaccharides. It was shown earlier that the β process is the Johari-Goldstein (JG) relaxation coupled to motions of the glycosidic linkage, while the γ relaxation originates from motions of the exocyclic hydroxymethyl unit. Recently, it was shown that the JG relaxation process can be used to determine structural relaxation times in the glassy state [R. Casalini and C. M. Roland, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.035701 102, 035701 (2009)]. In this paper we present the results of an analysis of the data obtained during aging using two independent approaches. The first was proposed by Casalini and Roland, and the second one is based on the variation of the dielectric strength of the secondary relaxation process during aging [J. K. Vij and G. Power, J. Non-Cryst. SolidsJNCSBJ0022-309310.1016/j.jnoncrysol.2010.07.067 357, 783 (2011)]. Surprisingly, we found that the estimated structural relaxation times in the glassy state of both saccharides are almost the same, independent of the type of secondary mode. This finding calls into question the common view that secondary modes of intramolecular origin do not provide information about the dynamics of the glassy state.
Furman, Gregory B; Goren, Shaul D; Meerovich, Victor M; Sokolovsky, Vladimir L
2016-02-01
Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.
NASA Astrophysics Data System (ADS)
Furman, Gregory B.; Goren, Shaul D.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2016-02-01
Spin-spin and spin-lattice relaxations in liquid or gas entrapped in nanosized ellipsoidal cavities with different orientation ordering are theoretically investigated. The model is flexible in order to be applied to explain experimental results in cavities with various forms, from very prolate up to oblate ones, and different degree of ordering of nanocavities. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant, which depends on the form, size, and orientation of the cavity and number of nuclear spins in the cavity. It was shown that the transverse and longitudinal relaxation rates differently depend on the angle between the external magnetic field and cavity main axis. The calculation results for the local dipolar field, transverse and longitudinal relaxation times explain the angular dependencies observed in MRI experiments with biological objects: cartilage and tendon. Microstructure of these tissues can be characterized by the standard deviation of the Gaussian distribution of fibril orientations. The comparison of the theoretical and experimental results shows that the value of the standard deviation obtained at the matching of the calculation to experimental results can be used as a parameter characterizing the disorder in the biological sample.
Measurement of Ligand–Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy
2016-01-01
A ligand-observed 1H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand–target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime. PMID:27933946
Measurement of Ligand-Target Residence Times by (1)H Relaxation Dispersion NMR Spectroscopy.
Moschen, Thomas; Grutsch, Sarina; Juen, Michael A; Wunderlich, Christoph H; Kreutz, Christoph; Tollinger, Martin
2016-12-08
A ligand-observed (1)H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand-target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime.
Temperature dependence of 1H NMR relaxation time, T2, for intact and neoplastic plant tissues
NASA Astrophysics Data System (ADS)
Lewa, Czesław J.; Lewa, Maria
Temperature dependences of the spin-spin proton relaxation time, T2, have been shown for normal and tumorous tissues collected from kalus culture Nicotiana tabacum and from the plant Kalanchoe daigremontiana. For neoplastic plant tissues, time T2 was increased compared to that for intact plants, a finding similar to that for animal and human tissues. The temperature dependences obtained were compared to analogous relations observed with animal tissues.
Lee, Soomi; McHale, Susan M; Crouter, Ann C; Hammer, Leslie B; Almeida, David M
2017-08-01
Drawing upon the Work-Home Resources model (ten Brummelhuis & Bakker, 2012), this study examined the links between work-family conflict and employed mothers' profiles of time resources for work and parenting roles. Using a person-centered latent profile approach, we identified 3 profiles of time use and perceived time adequacy in a sample of mothers employed in the extended-care industry (N = 440): a Work-Oriented profile, characterized by spending relatively more time at work, perceiving lower time adequacy for work, spending less time with children, and perceiving lower time adequacy for children; a Parenting-Oriented profile, characterized by the opposite pattern; and a Role-Balanced profile, characterized by average levels across the 4 dimensions. Mothers in the Work-Oriented profile reported greater work-to-family conflict and family to-work conflict than those in the Role-Balanced and Parenting-Oriented profiles. Greater work-to-family conflict was linked to membership in the Work-Oriented profile, net of personal, family, and work characteristics. Longitudinal latent profile transition analysis showed that increases in work-to-family conflict across 12 months were linked to greater odds of moving toward the Work-Oriented profile (relative to staying in the same profile), whereas decreases in work-to-family conflict were linked to greater odds of moving toward the Parenting-Oriented profile. Results illuminate the heterogeneity in how employed mothers perceive and allocate time in work and parenting roles and suggest that decreasing work-to-family conflict may preserve time resources for parenting. Intervention efforts should address ways of increasing employees' family time resources and decreasing work-family conflict. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Determination of relaxation modulus of time-dependent materials using neural networks
NASA Astrophysics Data System (ADS)
Aulova, Alexandra; Govekar, Edvard; Emri, Igor
2017-08-01
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
Determination of relaxation modulus of time-dependent materials using neural networks
NASA Astrophysics Data System (ADS)
Aulova, Alexandra; Govekar, Edvard; Emri, Igor
2016-10-01
Health monitoring systems for plastic based structures require the capability of real time tracking of changes in response to the time-dependent behavior of polymer based structures. The paper proposes artificial neural networks as a tool of solving inverse problem appearing within time-dependent material characterization, since the conventional methods are computationally demanding and cannot operate in the real time mode. Abilities of a Multilayer Perceptron (MLP) and a Radial Basis Function Neural Network (RBFN) to solve ill-posed inverse problems on an example of determination of a time-dependent relaxation modulus curve segment from constant strain rate tensile test data are investigated. The required modeling data composed of strain rate, tensile and related relaxation modulus were generated using existing closed-form solution. Several neural networks topologies were tested with respect to the structure of input data, and their performance was compared to an exponential fitting technique. Selected optimal topologies of MLP and RBFN were tested for generalization and robustness on noisy data; performance of all the modeling methods with respect to the number of data points in the input vector was analyzed as well. It was shown that MLP and RBFN are capable of solving inverse problems related to the determination of a time dependent relaxation modulus curve segment. Particular topologies demonstrate good generalization and robustness capabilities, where the topology of RBFN with data provided in parallel proved to be superior compared to other methods.
Fedorov, Dmitry V; Gradhand, Martin; Ostanin, Sergey; Maznichenko, Igor V; Ernst, Arthur; Fabian, Jaroslav; Mertig, Ingrid
2013-04-12
The effect of electron-impurity scattering on momentum and spin relaxation times in graphene is studied by means of relativistic ab initio calculations. Assuming carbon and silicon adatoms as natural impurities in graphene, we are able to simulate fast spin relaxation observed experimentally. We investigate the dependence of the relaxation times on the impurity position and demonstrate that C or Si adatoms act as real-space spin hot spots inducing spin-flip rates about 5 orders of magnitude larger than those of in-plane impurities. This fact confirms the hypothesis that the adatom-induced spin-orbit coupling leads to fast spin relaxation in graphene.
NASA Astrophysics Data System (ADS)
Liu, Z.; Serota, R. A.
2017-05-01
We study a stochastic process defined by the interaction strength for the return to the mean and a stochastic term proportional to the magnitude of the variable. Its steady-state distribution is the Inverse Gamma distribution, whose power-law tail exponent is determined by the ratio of the interaction strength to stochasticity. Its time-dependence is characterized by a set of discrete times describing relaxation of respective cumulants to their steady-state values. We show that as the progressively lower cumulants diverge with the increase of stochasticity, so do their relaxation times. We analytically evaluate the correlation function and show that it is determined by the longest of these times, namely the inverse interaction strength, which is also the relaxation time of the mean. We also investigate relaxation of the entire distribution to the steady state and the distribution of relaxation times, which we argue to be Inverse Gaussian.
Assink, Roger Alan; Mowery, Daniel Michael; Celina, Mathias Christopher
2004-09-01
Solid-state {sup 1}H NMR relaxometry studies were conducted on a hydroxy-terminated polybutadiene (HTPB) based polyurethane elastomer thermo-oxidatively aged at 80 C. The {sup 1}H T{sub 1}, T{sub 2}, and T{sub 1{rho}} relaxation times of samples thermally aged for various periods of time were determined as a function of NMR measurement temperature. The response of each measurement was calculated from a best-fit linear function of the relaxation time vs. aging time. It was found that the T{sub 2,H} and T{sub 1{rho},H} relaxation times exhibited the largest response to thermal degradation, whereas T{sub 1,H} showed minimal change. All of the NMR relaxation measurements on solid samples showed significantly less sensitivity to thermal aging than the T{sub 2,H} relaxation times of solvent-swollen samples.
Measurement of interfacial area from NMR time dependent diffusion and relaxation measurements.
Fleury, M
2017-09-07
The interfacial area between two immiscible phases in porous media is an important parameter for describing and predicting 2 phase flow. Although present in several models, experimental investigations are sparse due to the lack of appropriate measurement techniques. We propose two NMR techniques for the measurement of oil-water interfacial area: (i) a time dependent NMR diffusion technique applicable in static conditions, similar to those used for the measurement of the solid specific surface of a porous media, and (ii) a fast relaxation technique applicable in dynamic conditions while flowing, based on an interfacial relaxation mechanism induced by the inclusion of paramagnetic salts in the water phase. For dodecane relaxing on doped water, we found an oil interfacial relaxivity of 1.8μm/s, large enough to permit the measurement of specific interfacial surface as small as 1000cm(2)/cm(3). We demonstrate both NMR techniques in drainage followed by imbibition, in a model porous media with a narrow pore size distribution. While flowing, we observe that the interfacial area is larger in imbibition than in drainage, implying a different organization of the oil phase. In a carbonate sample with a wide pore size distribution, we evidence the gradual invasion of the smallest pores as the oil-water pressure difference is increased. Copyright © 2017. Published by Elsevier Inc.
Driscoll, J.R. ); Gabow, H.N.; Shrairman, R. ); Tarjan, R.E. )
1988-11-01
The relaxed heap is a priority queue data structure that achieves the same amortized time bounds as the Fibonacci heap - a sequence of m decrease key and n delete min operations takes time O(m + n log n). A variant of relaxed heaps achieves similar bounds in the worst case - O(1) time for decrease key and O(log n) for delete min. Relaxed heaps give a processor-efficient parallel implementation of Dijkstra's shortest path algorithm, and hence other algorithms in network optimization. A relaxed heap is a type of binomial queue that allows heap order to be violated.
Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique
NASA Astrophysics Data System (ADS)
Udayakumar, K.; Sujatha, N.
2015-03-01
Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.
Spriet, Mathieu; Wisner, Erik R; Anthenill, Lucy A; Buonocore, Michael H
2011-01-01
Seven isolated equine front limbs were used to establish the normal T1 relaxation time of equine superficial digital flexor tendon (SDFT), deep digital flexor tendon (DDFT), and suspensory ligament (SL) using magic angle magnetic resonance (MR) imaging. MR imaging of the metacarpi was performed with the limbs positioned at 55° (the magic angle) relative to the main magnetic field. Transverse spin-echo proton density and inversion recovery images were acquired. T1 relaxation time was calculated based on ratios of signal intensity determined from the different pulse sequences. T1 relaxation times for SDFT, DDFT, and SL were 288 (± 17), 244 (± 14), and 349 (± 16) ms, respectively. The difference in T1 values between SDFT, DDFT, and SL was statistically significant. T1 values of equine tendons can be determined with magic angle imaging on a clinical MR system using < 10 min total scan time. The knowledge of the normal range of T1 values may be useful to identify horses with chronic tendinopathy, where based on the human literature, an increased T1 value may be expected. © 2010 Veterinary Radiology & Ultrasound.
Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.
Buehler, Martin G; Kindle, Michael L; Carter, Brady P
2015-06-01
Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form.
Winter, Jeff D; Estrada, Marvin; Cheng, Hai-Ling Margaret
2011-09-01
Longitudinal (T(1)) and effective transverse (T(2)*) magnetic resonance (MR) relaxation times provide noninvasive measures of tissue oxygenation. The objective for this study was to quantify independent effects of inhaled O(2) and CO(2) on normal tissue T(1) and T(2)* in rabbit liver, kidney, and paraspinal muscle. Three gas challenges (100% O(2), 10% CO(2) [balance air], and carbogen [90% O(2) + 10% CO(2)]) were delivered to the rabbits in random order to isolate the effects of inspired O(2) and CO(2). During each challenge, quantitative T(1) and T(2)* maps were collected on a 1.5 Tesla MR imaging. Mean changes in T(1) (ΔT(1)) and T(2)* (ΔT(2)*) were calculated from regions of interest in each organ. Greatest ΔT(1) and ΔT(2)* changes were observed in liver for 10% CO(2) and in kidney for 100% O(2). ΔT(1) and ΔT(2)* generally followed predicted patterns when transitioning from air breathing: lower T(1)/higher T(2)* with inspired O(2), higher T(1)/lower T(2)* with inspired CO(2), and variable T(1)/T(2)* changes in the presence of both (ie, carbogen). New observations also emerged: 1) between-gas-challenge transitions revealed the greatest significance in ΔT(2)* for the liver and kidney resulting from the isolation of independent O(2) and CO(2) effects; 2) ΔT(2)* provided the best sensitivity and detected both tissue oxygenation and blood volume modulation; and 3) ΔT(1) sensitivity was restricted mainly to tissue oxygenation in the absence of counteracting vasodilatation. Robust use of MR relaxation times as noninvasive biomarkers requires an understanding of their relative sensitivity to organ-specific physiological responses. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
The generalized Phillips-Twomey method for NMR relaxation time inversion.
Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming
2016-10-01
The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.
Kasturi, S R; Chang, D C; Hazlewood, C F
1980-01-01
The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively. PMID:6266530
The generalized Phillips-Twomey method for NMR relaxation time inversion
NASA Astrophysics Data System (ADS)
Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming
2016-10-01
The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.
NASA Astrophysics Data System (ADS)
Pradipto; Purqon, Acep
2017-07-01
Lattice Boltzmann Method (LBM) is the novel method for simulating fluid dynamics. Nowadays, the application of LBM ranges from the incompressible flow, flow in the porous medium, until microflows. The common collision model of LBM is the BGK with a constant single relaxation time τ. However, BGK suffers from numerical instabilities. These instabilities could be eliminated by implementing LBM with multiple relaxation time. Both of those scheme have implemented for incompressible 2 dimensions lid-driven cavity. The stability analysis has done by finding the maximum Reynolds number and velocity for converged simulations. The accuracy analysis is done by comparing the velocity profile with the benchmark results from Ghia, et al and calculating the net velocity flux. The tests concluded that LBM with MRT are more stable than BGK, and have a similar accuracy. The maximum Reynolds number that converges for BGK is 3200 and 7500 for MRT respectively.
NASA Astrophysics Data System (ADS)
Shin, Kaikou; Kuroda, Mitsuru; Natsuyama, Kouichi
Advanced Planning and Scheduling (APS) has been widely recognized as a promising method for solving real production planning and scheduling problems. Based on the proposal of a real-time job shop scheduling mechanism under an APS environment, which adopts the Lagrangean relaxation method as the optimization logic, the present paper describes a feasibility study of this mechanism by evaluating its calculation speed and re-scheduling quality. Numerical experiments have been carried out for various models having different scales, as well as different densities and strengths of random events, such as the arrival of new jobs or changes to the due dates for existing jobs. The results of experiments show that the proposed scheduling mechanism has the potential to satisfy the real-time scheduling requirements, not only in terms of calculation speed and solution quality, but also with respect to predictability of the calculation load. Finally, an improvement to the Lagrangean relaxation method is proposed to improve re-scheduling quality.
Wojnarowska, Z; Ngai, K L; Paluch, M
2014-05-07
Using broadband dielectric spectroscopy we investigate the changes in the conductivity relaxation times τσ observed during the physical aging of the protic ionic conductor carvedilol dihydrogen phosphate (CP). Due to the large decoupling of ion diffusion from host molecule reorientation, the ion conductivity relaxation time τσ(Tage,tage) can be directly measured at temperatures Tage below Tg for exceedingly long aging times tage till τσ(Tage,tage) has reached the equilibrium value τσ(eq)(Tage). The dependence of τσ(Tage,tage) on tage is well described by the stretched exponential function, τσ(Tage, tage) = Aexp[-((tage)/(τage(Tage)))(β)] + τσ(eq)(Tage), where β is a constant and τage(Tage) can be taken as the structural α-relaxation time of the equilibrium liquid at T = Tage. The value of τσ(eq)(Tage) obtained after 63 days long annealing of CP, deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHσ) dependence of τσ(T) determined from data taken above Tg and extrapolated down to Tage. Concurrently, τage(Tage) also deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHα) dependence. The results help to answer the longstanding question of whether the VFTH dependence of τσ(T) as well as the structural α-relaxation time τα(T) holds or not in the equilibrium liquid state far below Tg.
NASA Astrophysics Data System (ADS)
Wojnarowska, Z.; Ngai, K. L.; Paluch, M.
2014-05-01
Using broadband dielectric spectroscopy we investigate the changes in the conductivity relaxation times τσ observed during the physical aging of the protic ionic conductor carvedilol dihydrogen phosphate (CP). Due to the large decoupling of ion diffusion from host molecule reorientation, the ion conductivity relaxation time τσ(Tage,tage) can be directly measured at temperatures Tage below Tg for exceedingly long aging times tage till τσ(Tage,tage) has reached the equilibrium value τ _σ ^{eq} ( {T_{age} } ). The dependence of τσ(Tage,tage) on tage is well described by the stretched exponential function, τ _σ ( {T_{age},t_{age} } ) = Aexp[ { - ( {{t_{age} }/{τ _{age ( {T_{age} } )}}} )^β } ] + τ _σ ^{eq} ( {T_{age} } ), where β is a constant and τage(Tage) can be taken as the structural α-relaxation time of the equilibrium liquid at T = Tage. The value of τ _σ ^{eq} ( {T_{age} } ) obtained after 63 days long annealing of CP, deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHσ) dependence of τσ(T) determined from data taken above Tg and extrapolated down to Tage. Concurrently, τage(Tage) also deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHα) dependence. The results help to answer the longstanding question of whether the VFTH dependence of τσ(T) as well as the structural α-relaxation time τα(T) holds or not in the equilibrium liquid state far below Tg.
Mader, Felix; Krause, Ludwig; Tokay, Tursonjan; Hakenberg, Oliver W; Köhling, Rüdiger; Kirschstein, Timo
2016-05-01
Purinergic signaling plays a major role in the enteric nervous system, where it governs gut motility through a number of P2X and P2Y receptors. The aim of this study was to investigate the P2Y receptor-mediated motility in rat longitudinal ileum preparations. Ileum smooth muscle strips were prepared from rats, and fixed in an organ bath. Isometric contraction and relaxation responses of the muscle strips were measured with force transducers. Drugs were applied by adding of stock solutions to the organ bath to yield the individual final concentrations. Application of the non-hydrolyzable P2 receptor agonists α,β-Me-ATP or 2-Me-S-ADP (10, 100 μmol/L) dose-dependently elicited a transient relaxation response followed by a sustained contraction. The relaxation response was largely blocked by SK channel blockers apamin (500 nmol/L) and UCL1684 (10 μmol/L), PLC inhibitor U73122 (100 μmol/L), IP3 receptor blocker 2-APB (100 μmol/L) or sarcoendoplasmic Ca(2+) ATPase inhibitor thapsigargin (1 μmol/L), but not affected by atropine, NO synthase blocker L-NAME or tetrodotoxin. Furthermore, α,β-Me-ATP-induced relaxation was suppressed by P2Y1 receptor antagonist MRS2179 (50 μmol/L) or P2Y13 receptor antagonist MRS2211 (100 μmol/L), and was abolished by co-application of the two antagonists, whereas 2-Me-S-ADP-induced relaxation was abolished by P2Y6 receptor antagonist MRS2578 (50 μmol/L). In addition, P2Y1 receptor antagonist MRS2500 (1 μmol/L) not only abolished α,β-Me-ATP-induced relaxation, but also suppressed 2-Me-S-ADP-induced relaxation. P2Y receptor agonist-induced transient relaxation of rat ileum smooth muscle strips is mediated predominantly by P2Y1 receptor, but also by P2Y6 and P2Y13 receptors, and involves PLC, IP3, Ca(2+) release and SK channel activation, but is independent of acetylcholine and NO release.
Borsa, F.; Barnes, R.G.; Beaudry, B.J.; Torgeson, D.R.
1982-08-01
The deuteron spin-relaxation times T/sub 1/, T/sub 1/rho, T/sub 2/, and T(/sub 2/ have been measured as a function of temperature in lanthanum trideuteride, LaD/sub 3/. Information is obtained both about deuteron diffusion and about the localized hopping motion of the deuterons occupying the octahedral interstitial sites in the fcc metal lattice.
Implicit-correction-based immersed boundary-lattice Boltzmann method with two relaxation times
NASA Astrophysics Data System (ADS)
Seta, Takeshi; Rojas, Roberto; Hayashi, Kosuke; Tomiyama, Akio
2014-02-01
In the present paper, we verify the effectiveness of the two-relaxation-time (TRT) collision operator in reducing boundary slip computed by the immersed boundary-lattice Boltzmann method (IB-LBM). In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. The Chapman-Enskog expansion indicates that one relaxation time for the symmetric component is related to the kinematic viscosity. Rigorous analysis of the symmetric shear flows reveals that the relaxation time for the antisymmetric part controls the velocity gradient, the boundary velocity, and the boundary slip velocity computed by the IB-LBM. Simulation of the symmetric shear flows, the symmetric Poiseuille flows, and the cylindrical Couette flows indicates that the profiles of the numerical velocity calculated by the TRT collision operator under the IB-LBM framework exactly agree with those of the multirelaxation time (MRT). The TRT is as effective in removing the boundary slip as the MRT. We demonstrate analytically and numerically that the error of the boundary velocity is caused by the smoothing technique using the δ function used in the interpolation method. In the simulation of the flow past a circular cylinder, the IB-LBM based on the implicit correction method with the TRT succeeds in preventing the flow penetration through the solid surface as well as unphysical velocity distortion. The drag coefficient, the wake length, and the separation points calculated by the present IB-LBM agree well with previous studies at Re = 10, 20, and 40.
Implicit-correction-based immersed boundary-lattice Boltzmann method with two relaxation times.
Seta, Takeshi; Rojas, Roberto; Hayashi, Kosuke; Tomiyama, Akio
2014-02-01
In the present paper, we verify the effectiveness of the two-relaxation-time (TRT) collision operator in reducing boundary slip computed by the immersed boundary-lattice Boltzmann method (IB-LBM). In the linear collision operator of the TRT, we decompose the distribution function into symmetric and antisymmetric components and define the relaxation parameters for each part. The Chapman-Enskog expansion indicates that one relaxation time for the symmetric component is related to the kinematic viscosity. Rigorous analysis of the symmetric shear flows reveals that the relaxation time for the antisymmetric part controls the velocity gradient, the boundary velocity, and the boundary slip velocity computed by the IB-LBM. Simulation of the symmetric shear flows, the symmetric Poiseuille flows, and the cylindrical Couette flows indicates that the profiles of the numerical velocity calculated by the TRT collision operator under the IB-LBM framework exactly agree with those of the multirelaxation time (MRT). The TRT is as effective in removing the boundary slip as the MRT. We demonstrate analytically and numerically that the error of the boundary velocity is caused by the smoothing technique using the δ function used in the interpolation method. In the simulation of the flow past a circular cylinder, the IB-LBM based on the implicit correction method with the TRT succeeds in preventing the flow penetration through the solid surface as well as unphysical velocity distortion. The drag coefficient, the wake length, and the separation points calculated by the present IB-LBM agree well with previous studies at Re = 10, 20, and 40.
Yan, Zhifeng; Yang, Xiaofan; Li, Siliang; ...
2017-09-05
The lattice Boltzmann method (LBM) based on single-relaxation-time (SRT) or multiple-relaxation-time (MRT) collision operators is widely used in simulating flow and transport phenomena. The LBM based on two-relaxation-time (TRT) collision operators possesses strengths from the SRT and MRT LBMs, such as its simple implementation and good numerical stability, although tedious mathematical derivations and presentations of the TRT LBM hinder its application to a broad range of flow and transport phenomena. This paper describes the TRT LBM clearly and provides a pseudocode for easy implementation. Various transport phenomena were simulated using the TRT LBM to illustrate its applications in subsurface environments.more » These phenomena include advection-diffusion in uniform flow, Taylor dispersion in a pipe, solute transport in a packed column, reactive transport in uniform flow, and bacterial chemotaxis in porous media. Finally, the TRT LBM demonstrated good numerical performance in terms of accuracy and stability in predicting these transport phenomena. Therefore, the TRT LBM is a powerful tool to simulate various geophysical and biogeochemical processes in subsurface environments.« less
NASA Astrophysics Data System (ADS)
Richert, Ranko
2017-02-01
On the basis of adiabatic calorimetry data and results obtained from dielectric relaxation studies in the presence of a high static electric field, the effects of temperature and electric field induced changes of the excess entropy are compared for the same sample: supercooled cresolphthalein dimethylether. A field induced reduction of the excess entropy by 45 mJ K-1 mol-1 at constant temperature increases the structural relaxation time by 0.75%, while the same entropy change originating from lowering the temperature at constant field increases the time constant by 3.5%. Therefore, there is no simple link connecting excess entropy and relaxation time that is independent of the control parameter that is used to modify the entropy. A consequence is that the Adam-Gibbs approach does not provide a quantitative prediction for how the dynamics of liquids depend on the electric field, and, more generally, on excess entropy. This work compares the dynamics for temperature versus field induced changes of isobaric excess entropy, thereby eliminating previous uncertainties arising from isochoric versus isobaric conditions and from unknown relations between thermodynamic, excess, and configurational entropies.
Extensional Relaxation Times and Pinch-off Dynamics of Dilute Polymer Solutions
NASA Astrophysics Data System (ADS)
Dinic, Jelena; Zhang, Yiran; Jimenez, Leidy; Sharma, Vivek
2015-11-01
We show that visualization and analysis of capillary-driven thinning and pinch-off dynamics of the columnar neck in an asymmetric liquid bridge created by dripping-onto-substrate can be used for characterizing the extensional rheology of complex fluids. Using a particular example of dilute, aqueous PEO solutions, we show the measurement of both the extensional relaxation time and extensional viscosity of weakly elastic, polymeric complex fluids with low shear viscosity η< 20 mPa .s and relatively short relaxation time, λ <1 ms. Characterization of elastic effects and extensional relaxation times in these dilute solutions is beyond the range measurable in the standard geometries used in commercially available shear and extensional rheometers (including CaBER, capillary breakup extensional rheometer). As the radius of the neck that connects a sessile drop to a nozzle is detected optically, and the extensional response for viscoelastic fluids is characterized by analyzing their elastocapillary self-thinning, we refer to this technique as optically-detected elastocapillary self-thinning dripping-onto-substrate (ODES-DOS) extensional rheometry.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
NASA Astrophysics Data System (ADS)
Li, Derek D.; Greenfield, Michael L.
2014-01-01
The dynamics properties of a new "next generation" model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ˜42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules.
Li, Derek D; Greenfield, Michael L
2014-01-21
The dynamics properties of a new "next generation" model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
Li, Derek D.; Greenfield, Michael L.
2014-01-21
The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Long-time stress relaxation of a filled elastomer in vacuum environments
NASA Technical Reports Server (NTRS)
Ward, T. C.
1981-01-01
Samples of a filled elastomeric ablative material were stored at 45 C and 10 to the -6th torr for 7 months. Their tensile stress-relaxation modulus at constant strain was measured throughout the 7 months. Results of the testing are discussed primarily by comparisons of the data to atmospheric-pressure moduli (determined in this work for shorter periods of time) and with moduli predicted from short-time testing. Confirmation of the strengthening effects of vacuum on this composite was obtained. The use of time-temperature superposition techniques as an approximate accelerated testing procedure for this material under these conditions was also verified.
Relaxation dynamics and thermophysical properties of vegetable oils using time-domain reflectometry.
Sonkamble, Anil A; Sonsale, Rahul P; Kanshette, Mahesh S; Kabara, Komal B; Wananje, Kunal H; Kumbharkhane, Ashok C; Sarode, Arvind V
2017-04-01
Dielectric relaxation studies of vegetable oils are important for insights into their hydrogen bonding and intermolecular dynamics. The dielectric relaxation and thermo physical properties of triglycerides present in some vegetable oils have been measured over the frequency range of 10 MHz to 7 GHz in the temperature region 25 to 10 °C using a time-domain reflectometry approach. The frequency and temperature dependence of dielectric constants and dielectric loss factors were determined for coconut, peanut, soya bean, sunflower, palm, and olive oils. The dielectric permittivity spectra for each of the studied vegetable oils are explained using the Debye model with their complex dielectric permittivity analyzed using the Havriliak-Negami equation. The dielectric parameters static permittivity (ε 0), high-frequency limiting static permittivity (ε ∞), average relaxation time (τ 0), and thermodynamic parameters such as free energy (∆F τ), enthalpy (∆H τ), and entropy of activation (∆S τ) were also measured. Calculation and analysis of these thermodynamic parameters agrees with the determined dielectric parameters, giving insights into the temperature dependence of the molecular dynamics of these systems.
Phonon induced spin relaxation times of single donors and donor clusters in silicon
NASA Astrophysics Data System (ADS)
Hsueh, Yuling; Buch, Holger; Hollenberg, Lloyd; Simmons, Michelle; Klimeck, Gerhard; Rahman, Rajib
2014-03-01
The phonon induced relaxation times (T1) of electron spins bound to single phosphorous (P) donors and P donor clusters in silicon is computed using the atomistic tight-binding method. The electron-phonon Hamiltonian is directly computed from the strain dependent tight-binding Hamiltonian, and the relaxation time is computed from Fermi's Golden Rule using the donor states and the electron-phonon Hamiltonian. The self-consistent Hartree method is used to compute the multi-electron wavefunctions in donor clusters. The method takes into account the full band structure of silicon including the spin-orbit interaction, and captures both valley repopulation and single valley g-factor shifts in a unified framework. The single donor relaxation rate varies proportionally to B5, and is of the order of seconds at B =2T, both in good agreement with experimental single donor data (A. Morello et. al., Nature 467, 687 (2010)). T1 calculations in donor clusters show variations for different electron numbers and donor numbers and locations. The computed T1 in a 4P:5e donor cluster match well with a scanning tunneling microscope patterned P donor cluster (H. Buch et. al., Nature Communications 4, 2017 (2013)).
Temperature dependence of relaxation times and temperature mapping in ultra-low-field MRI.
Vesanen, Panu T; Zevenhoven, Koos C J; Nieminen, Jaakko O; Dabek, Juhani; Parkkonen, Lauri T; Ilmoniemi, Risto J
2013-10-01
Ultra-low-field MRI is an emerging technology that allows MRI and NMR measurements in microtesla-range fields. In this work, the possibilities of relaxation-based temperature measurements with ultra-low-field MRI were investigated by measuring T1 and T2 relaxation times of agarose gel at 50 μT-52 mT and at temperatures 5-45°C. Measurements with a 3T scanner were made for comparison. The Bloembergen-Purcell-Pound relaxation theory was combined with a two-state model to explain the field-strength and temperature dependence of the data. The results show that the temperature dependencies of agarose gel T1 and T2 in the microtesla range differ drastically from those at 3T; the effect of temperature on T1 is reversed at approximately 5 mT. The obtained results were used to reconstruct temperature maps from ultra-low-field scans. These time-dependent temperature maps measured from an agarose gel phantom at 50 μT reproduced the temperature gradient with good contrast. Copyright © 2013 Elsevier Inc. All rights reserved.
Biogeographic Kinetics: Estimation of Relaxation Times for Avifaunas of Southwest Pacific Islands
Diamond, Jared M.
1972-01-01
When species diversity S on an island is displaced from the equilibrium value by injection or removal of species, S relaxes to equilibrium by an imbalance between immigration and extinction rates. Estimates of exponential relaxation times, tr, for avifaunas of New Guinea satellite islands are calculated from analysis of four “experiments of nature”: recolonization of exploded volcanoes, contraction in island area due to rising sea level, severing of land bridges, and disappearance of landbridge relict species. tr is in the range 3,000-18,000 years for avifaunas of islands of 50-3000 square miles (130-7800 km2), and increases with island area. Immigration coefficients decrease and extinction coefficients increase with increasing S. The results may be relevant to the design of rainforest preserves. PMID:16592024
NASA Technical Reports Server (NTRS)
De Mey, S.; Thomas, J. D.; Greenberg, N. L.; Vandervoort, P. M.; Verdonck, P. R.
2001-01-01
The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau.
Comparative study of acoustic relaxation time of cholesteric liquid crystal and mixtures
NASA Astrophysics Data System (ADS)
Bhave, Manisha G.; Gharde, Rita; Radha, S.
2016-09-01
The present study focuses on the relaxation processes in Cholesteric Liquid Crystal and mixtures. We have dispersed two different monomers in CLC to form Polymer dispersed liquid crystals (PDCLCs). PDLC films have a remarkable electro-optical behavior since they can be switched from highly light scattering state (OFF) to transparent state (ON) simply by application of an electric field. We have also doped ferroelectric nano - powder (NP) in CLC. The phase transitions occurred at temperatures lower than those exhibited by the mesogenic component before doping. The viscosity, ultrasonic velocity and density show variation with change in the material as well as temperature. The acoustic relaxation time and ultrasonic attenuation decrease with increase in temperature for CLC and CLC+NP. The parameters of PDCLC2 in comparison with PDCLC1 are more linear in isotropic and anisotropic regions. For PDCLC2 the values reach maximum value at the Cholesteric-isotropic transition.
Alexandrov, Nikola A; Marinova, Krastanka G; Gurkov, Theodor D; Danov, Krassimir D; Kralchevsky, Peter A; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Arnaudov, Luben N; Pelan, Eddie G; Lips, Alex
2012-06-15
The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such
Multiple short time power laws in the orientational relaxation of nematic liquid crystals.
Jose, Prasanth P; Bagchi, Biman
2006-11-14
Relaxation in the nematic liquid crystalline phase is known to be sensitive to its proximity to both isotropic and smectic phases. Recent transient optical Kerr effect (OKE) studies have revealed, rather surprisingly, two temporal power laws at short to intermediate times and also an apparent absence of the expected exponential decay at longer times. In order to understand this unusual dynamics, we have carried out extensive molecular dynamics simulations of transient OKE and related orientational time correlation functions in a system of prolate ellipsoids (with aspect ratio equal to 3). The simulations find two distinct power laws, with a crossover region, in the decay of the orientational time correlation function at short to intermediate times (in the range of a few picoseconds to a few nanoseconds). In addition, the simulation results fail to recover any long time exponential decay component. The system size dependence of the exponents suggests that the first power law may originate from the local orientational density fluctuations (like in a glassy liquid). The origin of the second power law is less clear and may be related to the long range fluctuations (such as smecticlike density fluctuations)--these fluctuations are expected to involve small free energy barriers. In support of the latter, the evidence of pronounced coupling between orientational and spatial densities at intermediate wave numbers is presented. This coupling is usually small in normal isotropic liquids, but it is large in the present case. In addition to slow collective orientational relaxation, the single particle orientational relaxation is also found to exhibit slow dynamics in the nematic phase in the long time.
Kindvall, Simon Sven Ivan; Diaz, Sandra; Svensson, Jonas; Wollmer, Per; Olsson, Lars E
2017-01-01
Oxygen enhanced pulmonary MRI is a promising modality for functional lung studies and has been applied to a wide range of pulmonary conditions. The purpose of this study was to characterize the oxygen enhancement effect in the lungs of healthy, never-smokers, in light of a previously established relationship between oxygen enhancement and diffusing capacity of carbon monoxide in the lung (DL,CO) in patients with lung disease. In 30 healthy never-smoking volunteers, an inversion recovery with gradient echo read-out (Snapshot-FLASH) was used to quantify the difference in longitudinal relaxation rate, while breathing air and 100% oxygen, ΔR1, at 1.5 Tesla. Measurements were performed under multiple tidal inspiration breath-holds. In single parameter linear models, ΔR1 exhibit a significant correlation with age (p = 0.003) and BMI (p = 0.0004), but not DL,CO (p = 0.33). Stepwise linear regression of ΔR1 yields an optimized model including an age-BMI interaction term. In this healthy, never-smoking cohort, age and BMI are both predictors of the change in MRI longitudinal relaxation rate when breathing oxygen. However, DL,CO does not show a significant correlation with the oxygen enhancement. This is possibly because oxygen transfer in the lung is not diffusion limited at rest in healthy individuals. This work stresses the importance of using a physiological model to understand results from oxygen enhanced MRI.
Relaxation times in single event electrospraying controlled by nozzle front surface modification.
Stachewicz, Urszula; Dijksman, J Frits; Burdinski, Dirk; Yurteri, Caner U; Marijnissen, Jan C M
2009-02-17
Single event electrospraying (SEE) is a method for on-demand deposition of femtoliter to picoliter volumes of fluids. To determine the influence of the size of the meniscus on the characteristics of the single event electrospraying process, glass capillaries were used with and without an antiwetting coating comprising a self-assembled 1H,1H,2H,2H-perfluorodecyltrichlorosilane-based monolayer to control the meniscus size. A large difference was found in driving single event electrospraying from a small meniscus compared to what is needed to generate a single event electrospraying from a large meniscus. Furthermore, after studying the different time constants related to the electrical and the hydrodynamic phenomena, we are able to explain the timing limitations of the deposition process from both a small and a large meniscus. The hydrodynamic relaxation time is significantly reduced in the case of the modified capillary, and the timing of SEE, which determines the deposition time, is limited by the resistor-capacitor RC time of the electrical circuit needed to drive the SEE. We have built a model that describes the almost one-dimensional motion of the liquid in the capillary during pulsing. The model has been used to estimate the hydrodynamic relaxation times related to the meniscus-to-cone and cone-to-meniscus transitions during SEE. By confining the meniscus to the inner diameter of the nozzle, we are able to deposit a volume smaller than 5 pL per SEE.
Time-resolved torsional relaxation of spider draglines by an optical technique.
Emile, O; Le Floch, A; Vollrath, F
2007-04-20
The sensitivity of the torsional pendulum demonstrates the self-shape-memory effect in different types of spider draglines. Here we report the time-resolved noncovalent bonds recovery in the protein structure. The torsional dynamics of such multilevel structure governed by reversible interactions are described in the frame of a nested model. Measurement of three different relaxation times confirms the existence of three energy storage levels in such two protein spidroin systems. Torsion opens the way to further investigations towards unraveling the tiny torque effects in biological molecules.
Time-Resolved Torsional Relaxation of Spider Draglines by an Optical Technique
NASA Astrophysics Data System (ADS)
Emile, O.; Floch, A. Le; Vollrath, F.
2007-04-01
The sensitivity of the torsional pendulum demonstrates the self-shape-memory effect in different types of spider draglines. Here we report the time-resolved noncovalent bonds recovery in the protein structure. The torsional dynamics of such multilevel structure governed by reversible interactions are described in the frame of a nested model. Measurement of three different relaxation times confirms the existence of three energy storage levels in such two protein spidroin systems. Torsion opens the way to further investigations towards unraveling the tiny torque effects in biological molecules.
Unified Theory of Activated Relaxation in Cold Liquids over 14 Decades in Time
NASA Astrophysics Data System (ADS)
Schweizer, Kenneth; Mirigian, Stephen
2014-03-01
We formulate a predictive theory at the level of forces of activated relaxation in thermal liquids that covers in a unified manner the apparent Arrhenius, crossover and deeply supercooled regimes (J.Phys.Chem.Lett.4,3648(2013)). The alpha relaxation event involves coupled cage-scale hopping and a long range cooperative elastic distortion of the surrounding liquid, which results in two inter-related, but distinct, barriers. The strongly temperature and density dependent collective barrier is associated with a growing length scale, the shear modulus and density fluctuations. Thermal liquids are mapped to an effective hard sphere fluid based on matching long wavelength density fluctuation amplitudes. The theory is devoid of fit parameters, has no divergences at finite temperature nor below jamming, and captures the key features of the alpha relaxation time in molecular liquids from picoseconds to hundreds of seconds. The approach is extended to polymer liquids based on the Kuhn length as the key variable. The influence of chain length and backbone stiffness on the glass transition temperature and fragility have been studied where degree of polymerization enters via corrections to asymptotic conformational statistics.
NASA Astrophysics Data System (ADS)
Kushima, A.; Eapen, J.; Li, Ju; Yip, S.; Zhu, T.
2011-08-01
Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.
Hatakeyama, Tatsuko; Hatakeyama, Hyoe
Calorimetric and nuclear magnetic relaxation studies on non-freezing water restrained by polysaccharide are introduced together with the historical background of this research field. Non-freezing water restrained by the hydrophilic group of polysaccharide shows no first order thermodynamic phase transition. The amount of non-freezing water calculated from the melting enthalpy of water restrained by various kinds of polysaccharides was collected. Molecular motion of polysaccharides is markedly enhanced by the introduction of non-freezing water and glass transition shifts to the ca. 200 K low temperature side. At the same time, molecular chains rearrange to a more stabilized state, which can be observed as the decrease in heat capacities. (1)H nuclear magnetic relaxation studies at a temperature lower than glass transition indicate that a part of the water molecules is closely bound to the backbone proton and is not sufficiently isolated. Calorimetric and nuclear magnetic relaxation studies suggest that non-freezing water inevitably cooperates with matrix polysaccharide molecules.
Intracellular sodium and lithium NMR relaxation times in the perfused frog heart.
Burstein, D; Fossel, E T
1987-03-01
We have used a combination of a shift reagent and mathematical filtering or presaturation of the extracellular sodium resonance for the quantitative investigation of the intracellular sodium and lithium relaxation times in the perfused frog heart. While the T1 of the intracellular sodium was found to consist of a single-exponential time constant (approximately 23 ms), the T2 was better fit as a double-exponential decay with time constants of approximately 2 and 17 ms. However, the relative amplitudes of the two time constants in the T2 decay were found to be inconsistent with those which would be expected from a homogeneous pool of nuclei undergoing quadrupolar interactions. The relaxation times were not changed by a fivefold increase in the intracellular sodium level (due to perfusion with a ouabain-containing buffer). The T1 and T2 of the intracellular lithium (after perfusion with lithium-containing buffer) were both well fit by single exponentials (700- and 31-ms time constants, respectively).
NASA Astrophysics Data System (ADS)
Bradley, T. D.; Ilinova, E.; McFerran, J. J.; Jouin, J.; Debord, B.; Alharbi, M.; Thomas, P.; Gérôme, F.; Benabid, F.
2016-09-01
We report on the measurement of ground-state atomic polarization relaxation time of Rb vapor confined in five different hypocycloidal core-shape Kagome hollow-core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in an optical waveguide and deduce the contribution of the atom’s dwell time at the core wall surface. In contrast with conventional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by atom-wall collisional from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.
Costabel, Stephan; Yaramanci, Ugur
2013-01-01
[1] For characterizing water flow in the vadose zone, the water retention curve (WRC) of the soil must be known. Because conventional WRC measurements demand much time and effort in the laboratory, alternative methods with shortened measurement duration are desired. The WRC can be estimated, for instance, from the cumulative pore size distribution (PSD) of the investigated material. Geophysical applications of nuclear magnetic resonance (NMR) relaxometry have successfully been applied to recover PSDs of sandstones and limestones. It is therefore expected that the multiexponential analysis of the NMR signal from water-saturated loose sediments leads to a reliable estimation of the WRC. We propose an approach to estimate the WRC using the cumulative NMR relaxation time distribution and approximate it with the well-known van-Genuchten (VG) model. Thereby, the VG parameter n, which controls the curvature of the WRC, is of particular interest, because it is the essential parameter to predict the relative hydraulic conductivity. The NMR curves are calibrated with only two conventional WRC measurements, first, to determine the residual water content and, second, to define a fixed point that relates the relaxation time to a corresponding capillary pressure. We test our approach with natural and artificial soil samples and compare the NMR-based results to WRC measurements using a pressure plate apparatus and to WRC predictions from the software ROSETTA. We found that for sandy soils n can reliably be estimated with NMR, whereas for samples with clay and silt contents higher than 10% the estimation fails. This is the case when the hydraulic properties of the soil are mainly controlled by the pore constrictions. For such samples, the sensitivity of the NMR method for the pore bodies hampers a plausible WRC estimation. Citation: Costabel, S., and U. Yaramanci (2013), Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions, Water
Costabel, Stephan; Yaramanci, Ugur
2013-04-01
[1] For characterizing water flow in the vadose zone, the water retention curve (WRC) of the soil must be known. Because conventional WRC measurements demand much time and effort in the laboratory, alternative methods with shortened measurement duration are desired. The WRC can be estimated, for instance, from the cumulative pore size distribution (PSD) of the investigated material. Geophysical applications of nuclear magnetic resonance (NMR) relaxometry have successfully been applied to recover PSDs of sandstones and limestones. It is therefore expected that the multiexponential analysis of the NMR signal from water-saturated loose sediments leads to a reliable estimation of the WRC. We propose an approach to estimate the WRC using the cumulative NMR relaxation time distribution and approximate it with the well-known van-Genuchten (VG) model. Thereby, the VG parameter n, which controls the curvature of the WRC, is of particular interest, because it is the essential parameter to predict the relative hydraulic conductivity. The NMR curves are calibrated with only two conventional WRC measurements, first, to determine the residual water content and, second, to define a fixed point that relates the relaxation time to a corresponding capillary pressure. We test our approach with natural and artificial soil samples and compare the NMR-based results to WRC measurements using a pressure plate apparatus and to WRC predictions from the software ROSETTA. We found that for sandy soils n can reliably be estimated with NMR, whereas for samples with clay and silt contents higher than 10% the estimation fails. This is the case when the hydraulic properties of the soil are mainly controlled by the pore constrictions. For such samples, the sensitivity of the NMR method for the pore bodies hampers a plausible WRC estimation. Citation: Costabel, S., and U. Yaramanci (2013), Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions, Water
NASA Astrophysics Data System (ADS)
Parson, William W.; Warshel, Arieh
2004-01-01
The dispersed-polaron (spin-boson) model is reviewed briefly and then used to develop a density-matrix model for studies of electron transfer in condensed phases. The frequencies and Franck-Condon factors for solvent vibrational modes that are coupled to electron transfer are obtained from molecular dynamics (MD) simulations by the dispersed-polaron treatment. Microscopic rate constants for vibrational relaxations, dephasing and coherence transfer between the solvent modes are obtained by fitting the time dependence of the solvent coordinates in the density-matrix treatment to the corresponding time dependence obtained from molecular-dynamics simulations with a classical linear-response approximation. This is done by adjusting a single parameter, the time constant for thermal equilibration of the two lowest levels of a solvent mode ( T10). The model thus focuses on the coupling between solvent modes, rather than on the more widely studied coupling of solute modes by the thermal bath. The resulting density-matrix model is used to examine vibronic coupling in the initial electron-transfer step in photosynthetic bacterial reaction centers. Values of T10 in the range of 1-2 ps are consistent with molecular-dynamics simulations of the time-dependent energy gap between the reactant and product states (P* and P +B -), and also with the damping of coherent vibrational motions that are seen experimentally after excitation of reaction centers with a short pulse of light. In both the density-matrix model and the MD simulations, the autocorrelation function of the energy gap also has a decay component with a time constant of about 50 fs, which we ascribe to the group dephasing of oscillatory motions at many different frequencies. This component is insensitive to vibrational relaxations and is largely irrelevant to the electron-transfer dynamics. Using values of T10 in the range of 1-2 ps, a model with five vibrational modes reproduces the main features of electron transfer
Panczyk, Tomasz; Konczak, Lukasz; Zapotoczny, Szczepan; Szabelski, Pawel; Nowakowska, Maria
2015-01-01
In this work we have analyzed the influence of various factors on the transverse relaxation times T2 of water protons in suspension of magnetic nanoparticles. For that purpose we developed a full molecular dynamics force field which includes the effects of dispersion interactions between magnetic nanoparticles and water molecules, electrostatic interactions between charged nanoparticles and magnetic dipole-dipole and dipole-external field interactions. We also accounted for the magnetization reversal within the nanoparticles body frames due to finite magnetic anisotropy barriers. The force field together with the Langevin dynamics imposed on water molecules and the nanoparticles allowed us to monitor the dephasing of water protons in real time. Thus, we were able to determine the T2 relaxation times including the effects of the adsorption of water on the nanoparticles' surfaces, thermal fluctuations of the orientation of nanoparticles' magnetizations as well as the effects of the core-shell architecture of nanoparticles and their agglomeration into clusters. We found that there exists an optimal cluster size for which T2 is minimized and that the retardation of water molecules motion, due to adsorption on the nanoparticles surfaces, has some effect in the measured T2 times. The typical strengths of the external magnetic fields in MRI are enough to keep the magnetizations fixed along the field direction, however, in the case of low magnetic fields, we observed significant enhancement of T2 due to thermal fluctuations of the orientations of magnetizations. Copyright © 2014 Elsevier Inc. All rights reserved.
Dynamics of glass-forming liquids. XVIII. Does entropy control structural relaxation times?
NASA Astrophysics Data System (ADS)
Samanta, Subarna; Richert, Ranko
2015-01-01
We study the dielectric dynamics of viscous glycerol in the presence of a large bias field. Apart from dielectric saturation and polarization anisotropy, we observe that the steady state structural relaxation time is longer by 2.7% in the presence of a 225 kV/cm dc-field relative to the linear response counterpart, equivalent to a field induced glass transition (Tg) shift of +84 mK. This result compares favorably with the 3.0% time constant increase predicted on the basis of a recent report [G. P. Johari, J. Chem. Phys. 138, 154503 (2013)], where the field induced reduction of the configurational entropy translates into slower dynamics by virtue of the Adam-Gibbs relation. Other models of field dependent glass transition temperatures are also discussed. Similar to observations related to the electro-optical Kerr effect, the rise time of the field induced effect is much longer than its collapse when the field is removed again. The orientational relaxation time of the plastic crystal cyclo-octanol is more sensitive to a bias field, showing a 13.5% increase at a field of 150 kV/cm, equivalent to an increase of Tg by 0.58 K.
Energy and temperature dependence of relaxation time and Wiedemann-Franz law on PbTe
NASA Astrophysics Data System (ADS)
Ahmad, Salameh; Mahanti, S. D.
2010-04-01
Recent revival of interest in high-temperature (T) thermoelectrics has made it necessary to understand in detail the T dependence of different transport coefficients, and different processes contributing to this temperature dependence. Since PbTe is a well-studied prototypical high-temperature thermoelectric, we have carried out theoretical studies to analyze how different physical sources contribute to electronic transport coefficients in this system over a wide T and concentration (n) range; 300K
Time-resolved X-ray measurements of energy relaxation in ultrafast laser excited semiconductors
NASA Astrophysics Data System (ADS)
Lee, Soo Heyong
In semiconductors, the properties and dynamics of photoexcited carriers and subsequent energy relaxation through lattice vibrations are quite complex and occur on a variety of time scales. Typically the transient dynamics involving transitions of electrons from lower energy states to higher ones upon photoexcitation take place almost instantaneously. The electrons eventually recombine with holes while losing most of their kinetic energy to the lattice through various routes at different time scales. The lattice relaxation processes, especially at high photoexcitation levels, have been subjected to numerous experimental and theoretical investigations during past decades. Time-resolved X-ray diffraction (TRXD) method provides a novel tool for studying these dynamics because X-rays have short wavelength, long material penetration depth and relatively strong interaction with core electrons. In my work, femtosecond laser pulses excite electrons in opaque materials, and subsequent carrier relaxation process and coherent/incoherent lattice dynamics are investigated using TRXD. My thesis covers quantitative detail of the generation and propagation of ultrafast laser induces acoustic strain waves in bulk semiconductor materials as well as at the heterostructure interface. In particular propagation of strain waves, which are comprised of broadband low wave vector phonons, is studied in an AlGaAs/GaAs multilayer structure. The spatial and temporal profiles of the acoustic waves at varying photoexcitation density are characterized. We are able to distinguish thermal from carrier-induced strain and measure the free-carrier absorption cross-section. The approximation that impulsively generated acoustic waves are uniaxial is found to break down. The research also demonstrates a novel approach to explore laser induced acoustic phonon dynamics at high wavevector, near the Brillouin zone-boundary, the details of which are inaccessible to optical pump-probe methods. Throughout this
Time dependent properties of bovine meniscal attachments: stress relaxation and creep.
Maes, Jason A; Haut Donahue, T L
2006-01-01
It has been suggested that the success of a meniscal replacement is dependent on several factors, one of which is the secure fixation and firm attachment of the replacement to the tibial plateau [Chen, M.I., Branch, T.P., et al., 1996. Is it important to secure the horns during lateral meniscal transplantation? A cadaveric study. Arthroscopy 12(2), 174-181; Alhalki, M.M., et al., 1999. How three methods for fixing a medial meniscal autograft affect tibial contact mechanics. American Journal of Sports Medicine 27(3), 320-328; Haut Donahue, T.L., et al., 2003. How the stiffness of meniscal attachments and meniscal material properties affect tibio-femoral contact pressure computed using a validated finite element model of the human knee joint. Journal of Biomechanics 36(1), 19-34]. The complex loading environment in the knee lends itself to different loading environments for each meniscal attachment. We hypothesize that the creep and stress relaxation characteristics of the horn attachments will be different for the anterior versus posterior, and medial versus lateral attachments. To test this hypothesis, the stress relaxation and creep characteristics of the meniscal horn attachments were determined. The stress relaxation properties of load/stress at the end of the test, and the load/stress relaxation rate demonstrated no significant statistical differences between the attachments. Unlike the stress relaxation properties, the creep properties demonstrated some significant differences amongst the attachments. The normalized displacement at the end of the test, normalized creep rate and strain creep rate for the lateral anterior attachment were significantly different than those of the medial posterior attachment (p<0.05). The two anterior attachments had significantly different strains at the end of the test, as well as significantly different creep strain rates (p<0.05). The two attachments of the medial meniscus revealed no significant differences between any of the
T(2) relaxation time of hyaline cartilage in presence of different gadolinium-based contrast agents.
Wiener, Edzard; Settles, Marcus; Diederichs, Gerd
2010-01-01
The transverse relaxation time, T(2), of native cartilage is used to quantify cartilage degradation. T(2) is frequently measured after contrast administration, assuming that the impact of gadolinium-based contrast agents on cartilage T(2) is negligible. To verify this assumption the depth-dependent variation of T(2) in the presence of gadopentetate dimeglumine, gadobenate dimeglumine and gadoteridol was investigated. Furthermore, the r(2)/r(1) relaxivity ratios were quantified in different cartilage layers to demonstrate differences between T(2) and T(1) relaxation effects. Transverse high-spatial-resolution T(1)- and T(2)-maps were simultaneously acquired on a 1.5 T MR scanner before and after contrast administration in nine bovine patellae using a turbo-mixed sequence. The r(2)/r(1) ratios were calculated for each contrast agent in cartilage. Profiles of T(1), T(2) and r(2)/r(1) across cartilage thickness were generated in the absence and presence of contrast agent. The mean values in different cartilage layers were compared for global variance using the Kruskal-Wallis test and pairwise using the Mann-Whitney U-test. T(2) of unenhanced cartilage was 98 +/- 5 ms at 1 mm and 65 +/- 4 ms at 3 mm depth. Eleven hours after contrast administration significant differences (p < 0.001) were measurable for all three contrast agents. T(2) values were 58 +/- 2 and 62 +/- 3 ms for gadopentetate dimeglumine, 46 +/- 2 and 57 +/- 2 ms for gadobenate dimeglumine, and 38 +/- 2 and 42 +/- 2 ms for gadoteridol at 1 and 3 mm depths, respectively. The r(2)/r(1) relaxivity ratios across cartilage thickness were close to 1.0 (range 0.9-1.3). At 1.5 T, T(2) decreased significantly in the presence of contrast agents, more pronounced in superficial than in deep cartilage. The change in T(2) relaxation rate was similar to the change in T(1). Cartilage T(2) measurements after contrast administration will lead to systematic errors in the quantification of cartilage degradation. 2010 John
Long Spin Relaxation Times in Wafer Scale Epitaxial Graphene on SiC(0001)
NASA Astrophysics Data System (ADS)
Maassen, Thomas; van den Berg, J. Jasper; Ijbema, Natasja; Fromm, Felix; Seyller, Thomas; Yakimova, Rositza; van Wees, Bart J.
2012-03-01
We developed an easy, upscalable process to prepare lateral spin-valve devices on epitaxially grown monolayer graphene on SiC(0001) and perform nonlocal spin transport measurements. We observe the longest spin relaxation times tau_S in monolayer graphene, while the spin diffusion coefficient D_S is strongly reduced compared to typical results on exfoliated graphene. The increase of tau_S is probably related to the changed substrate, while the cause for the small value of D_S remains an open question.
The electron-phonon relaxation time in thin superconducting titanium nitride films
Kardakova, A.; Finkel, M.; Kovalyuk, V.; An, P.; Morozov, D.; Dunscombe, C.; Mauskopf, P.; Tarkhov, M.; Klapwijk, T. M.; Goltsman, G.
2013-12-16
We report on the direct measurement of the electron-phonon relaxation time, τ{sub eph}, in disordered TiN films. Measured values of τ{sub eph} are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T{sup −3} temperature dependence. The electronic density of states at the Fermi level N{sub 0} is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors.
An iterative linear method for calculation of spin-lattice relaxation times
NASA Astrophysics Data System (ADS)
Crouch, Ronald; Hurlbert, Stuart; Ragouzeos, Aris
A simple algorithm for the calculation of spin-lattice relaxation times which can be run in a programmable calculator is presented. As was suggested by H. Hanssum et al., an experimentally determined inhomogeneity parameter ( I) can be used with this procedure to compensate for imperfections in the RF field. The effects of variation of pulse width and repetition rate on both I and T1 are investigated with simulated and experimental data sets. The superiority of this approach over three-parameter nonlinear fitting methods is demonstrated by comparisons between data sets generated with different pulse flip angles and sample volumes.
Chabanova, Elizaveta; Bille, Dorthe S; Thisted, Ebbe; Holm, Jens-Christian; Thomsen, Henrik S
2012-05-01
The objective was to investigate T(2) relaxation values and to optimize hepatic fat quantification using proton MR spectroscopy ((1)H MRS) at 3T in overweight and obese children and adolescents. The study included 123 consecutive children and adolescents with a body mass index above the 97th percentile according to age and sex. (1)H MR spectroscopy was performed at 3.0 T using point resolved spectroscopy sequence with series TE. T(2) relaxation values and hepatic fat content corrected for the T(2) relaxation effects were calculated. T(2) values for water ranged from 22 ms to 42 ms (mean value 28 ms) and T(2) values for fat ranged from 36 ms to 99 ms (mean value 64 ms). Poor correlation was observed: (1) between T(2) relaxation times of fat and T(2) relaxation times of water (correlation coefficient r=0.038, P=0.79); (2) between T(2) relaxation times of fat and fat content (r=0.057, P=0.69); (3) between T(2) relaxation times of water and fat content (r=0.160, P=0.26). Correlation between fat peak content and the T(2) corrected fat content decreased with increasing echo time TE: r=0.97 for TE=45, r=0.93 for TE=75, r=0.89 for TE=105, P<0.0001. (1)H MRS at 3T is an effective technique for measuring hepatic fat content in overweight and obese children and adolescents. It is necessary to measure T(2) relaxation values and to correct the spectra for the T(2) relaxation effects in order to obtain an accurate estimate of the hepatic fat content. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Umanodan, Tsugumi; Tanaka, Sei'ichi; Naruse, Suguru; Ishikawa, Tadahiko; Onda, Ken; Koshihara, Shin-ya; Horiuchi, Sachio; Okimoto, Yoichi
2015-07-01
Time-resolved linear and nonlinear optical responses were investigated in an organic supramolecular ferroelectric material composed of protonated 2,3-di(2-pyridinyl)pyrazine (H-dppz) and deprotonated chloranilic acid (Hca). We irradiated nanosecond laser pulses (λ = 532 nm) on the crystal, pumped the intramolecular excitation of the Hca molecule, and observed a clear redshift of the molecular vibrational modes of C=O and C-O- just after the photoexcitation. Each softened mode gradually relaxed on different time scales, indicating that the electrons of the Hca molecules were redistributed after the photoexcitation. By the same excitation, a large suppression of the second-harmonic (SH) intensity was observed, driven by the macroscopic disordering of the transferred protons. The decay time of the SH intensity was longer than those of the vibrational modes, suggesting that the microscopic vibrations and macroscopic ferroelectricity have dynamics on different time scales.
Study of relaxation kinetics in argon afterglow by the breakdown time delay measurements
Markovic, V.Lj.; Gocic, S.R.; Stamenkovic, S.N.; Petrovic, Z.Lj.
2005-07-15
In this paper the afterglow kinetics in argon is studied by the breakdown time delay measurements as a function of relaxation time t{sub d}({tau}) ('memory curve'). Measurements were carried out at the pressure of 1.33 mbar in a gas tube with gold-plated copper cathode and approximate and exact numerical models are developed to follow metastable and charged particle decay. It was found that the early afterglow kinetics is governed by the charged particle decay up to hundreds of milliseconds, extending from ambipolar to the free diffusion limit. Quenching processes reduce the effective lifetime of metastable states several orders of magnitude below that relevant for the time scale of the observations if realistic abundances and processes are included in the model. Nitrogen atoms originating from impurities and recombining on the cathode surface can determine the breakdown time delay down to that defined by the level of cosmic rays and natural radioactivity.
Peak offset times as an indication of stress relaxation during tableting on a rotary tablet press.
Dwivedi, S K; Oates, R J; Mitchell, A G
1991-10-01
During powder compaction on a Manesty Betapress, peak pressures, Pmax, are reached before the punches are vertically aligned with the centres of the upper and lower compression roll support pins. The interval between the time taken to reach this alignment and the time to reach Pmax is defined as the peak offset time, t(off). The duration of t(off) depends on the ability of the compacted powder to relieve stress and is an indication of the predominant mechanisms of particle deformation during consolidation. Thus, at a given Pmax, short t(off) values are characteristic of materials that consolidate mainly by brittle fracture while longer values indicate an increase in plastic flow. On the Betapress, the decrease in stress during t(off) occurs under conditions approaching constant strain and t(off) therefore, is an indirect measure of stress relaxation. Stress relaxation, and hence t(off), decreases with increase in Pmax due to the reduction in the porosity of the compact and consequent restriction of plastic flow into the void spaces. In addition to Pmax, the effects of variables such as punch head geometry, press speed and formulation on t(off) are reported.
Relaxation and dissipation in time-dependent current-density functional theory
NASA Astrophysics Data System (ADS)
D'Agosta, Roberto
2005-03-01
In a typical relaxation problem a many-particle system evolves from an initial excited state under the action of its own hamiltonian plus a ``thermal bath", until equilibrium (or the ground-state at T=0) is reached. Due to the presence of the thermal bath the time evolution of the system is not unitary, and an initially pure state will evolve into a statistical mixture of states. Here we show that the time-dependent current density functional theory^1 allows a hamiltonian description of the relaxation process, whereby the quantum state of the system undergoes a unitary time evolution without becoming entangled with a thermal bath. The essential feature that causes the system to eventually settle into a stationary state of the ground-state Kohn-Sham hamiltonian is the presence of an effective electric field, which is determined by the instantaneous values of the current and the density. Our theory is consistent with recent numerical results by Wijewardane and Ullrich^ 2.1. G. Vignale, C. A. Ullrich, and S. Conti, PRL 79, 4878 (1997)2. H. O. Wijewardane and C. A. Ullrich, cond-mat/0411157
Correlation between T2∗ (T2 star) relaxation time and cervical intervertebral disc degeneration
Huang, Minghua; Guo, Yong; Ye, Qiong; Chen, Lei; Zhou, Kai; Wang, Qingjun; Shao, Lixin; Shi, Qinglei; Chen, Chun
2016-01-01
Abstract Purpose: To demonstrate the potential benefits of T2∗ relaxation time of intervertebral discs (IVDs) regarding the detection and grading of degenerative disc disease using 3.0-T magnetic resonance imaging (MRI) in a clinical setting. Materials and Methods: Cervical sagittal T2-weighted, T2∗ relaxation MRI was performed at 3.0-T in 61 subjects, covering discs C2–3 to C6–7. All discs were morphologically assessed based on the Pfirrmann grade, and regions of interests (ROIs) were drawn over the T2∗ mapping. Receiver operating characteristic (ROC) analysis was performed among grades to determine the cut-off values. Results: Cervical intervertebral discs (IVDs) of patients were commonly determined to be at Pfirrmann grades III to V. The nucleus pulposus (NP) values did not differ significantly between sexes at the same anatomic level (P > 0.05). In the NP, the T2∗ values tended to decrease with increasing grade (P < 0.000), and a significant difference was found in the T2 values between grades I to V (P < 0.05). T2∗ values based on disc degeneration level classification were as follows: grade I (>30 milliseconds), grade II (24.55–29.99 milliseconds), grade III (21.65–24.54 milliseconds), grade IV (18.35–21.64 milliseconds), and grade V (<18.34 milliseconds). Conclusion: Our standardized method of region-specific quantitative T2∗ relaxation time evaluation seems capable of characterizing different degrees of disc degeneration quantitatively. The T2∗ values obtained in these cervical IVDs may serve as baseline values for future T2∗ measurements in both healthy and degenerated cervical discs. PMID:27893652
NASA Astrophysics Data System (ADS)
Tomadakis, Manolis M.; Robertson, Teri J.
2005-03-01
Computer simulation results are presented for the mean survival time, principal relaxation time, mean pore size, and mean square pore size, for random porous structures consisting of parallel nonoverlapping or partially overlapping fibers. The numerical procedure is based on a discrete step-by-step random walk mechanism simulating the Brownian diffusion trajectories of molecules in the porous media. Numerical results on the viscous permeability of these structures are computed with a method based on electrical conduction principles and compared to a variational bound derived from the mean survival time. The results show that nonoverlapping fiber structures exhibit lower values of the dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size than randomly overlapping fiber structures of the same porosity, while partially overlapping fiber structures show behavior intermediate to those of the two extreme cases. The mean square pore size (second moment of the pore size distribution) is found to be a very good predictor of the mean survival time for non-, partially, and randomly overlapping fiber structures. Dimensionless groups representing the deviation of variational bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to structural properties [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all examined fiber structures, thus validated for the first time for porous media formed by partially overlapping particles. The permeability behavior of partially overlapping fiber structures resembles that of nonoverlapping fiber structures for flow parallel to the fibers, but not for transverse flow, where percolation phenomena prevail. The permeability results for beds of unidirectional partially
Tomadakis, Manolis M; Robertson, Teri J
2005-03-01
Computer simulation results are presented for the mean survival time, principal relaxation time, mean pore size, and mean square pore size, for random porous structures consisting of parallel nonoverlapping or partially overlapping fibers. The numerical procedure is based on a discrete step-by-step random walk mechanism simulating the Brownian diffusion trajectories of molecules in the porous media. Numerical results on the viscous permeability of these structures are computed with a method based on electrical conduction principles and compared to a variational bound derived from the mean survival time. The results show that nonoverlapping fiber structures exhibit lower values of the dimensionless mean survival time, principal relaxation time, mean pore size, and mean square pore size than randomly overlapping fiber structures of the same porosity, while partially overlapping fiber structures show behavior intermediate to those of the two extreme cases. The mean square pore size (second moment of the pore size distribution) is found to be a very good predictor of the mean survival time for non-, partially, and randomly overlapping fiber structures. Dimensionless groups representing the deviation of variational bounds from our simulation results vary in practically the same range as the corresponding values reported earlier for beds of spherical particles. A universal scaling expression of the literature relating the mean survival time to structural properties [S. Torquato and C. L. Y. Yeong, J. Chem. Phys. 106, 8814 (1997)] agrees very well with our results for all examined fiber structures, thus validated for the first time for porous media formed by partially overlapping particles. The permeability behavior of partially overlapping fiber structures resembles that of nonoverlapping fiber structures for flow parallel to the fibers, but not for transverse flow, where percolation phenomena prevail. The permeability results for beds of unidirectional partially
Bedroom media, sedentary time and screen-time in children: a longitudinal analysis.
Atkin, Andrew J; Corder, Kirsten; van Sluijs, Esther M F
2013-12-17
Having electronic media in the bedroom is cross-sectionally associated with greater screen-time in children, but few longitudinal studies exist. The aim of this study was to describe longitudinal patterns of ownership and examine cross-sectional and longitudinal associations of bedroom media with children's sedentary behaviour. Data are from the Sport, Physical activity and Eating behaviour: Environmental Determinants in Young people (SPEEDY) study, collected at 3 time-points: baseline (2007, T0; age 10.3 ± 0.3 years), 1-year (T1y) and 4-year (T4y) follow-up. For each assessment, 1512 (44.9% male), 715 (41.0% male), and 319 (48.3% male) participants provided valid accelerometer data. Outcome variables were accelerometer-assessed sedentary time and self-reported screen-time. The presence of a television or computer in the bedroom was self-reported by participants and a combined bedroom media score calculated as the sum of such items. Cross-sectional and longitudinal associations between bedroom media and each outcome were examined using multi-level linear regression. Bedroom TV ownership fell from 70.9% at T0 to 42.5% at T4y. Having a TV in the bedroom (beta; 95% CI*100, T0: -1.17; -1.88, -0.46. T1y: -1.68; -2.67, -0.70) and combined bedroom media (T0: -0.76; -1.26, -0.27. T1y: -0.79; -1.51, -0.07) were negatively associated with objectively measured weekly sedentary time at T0 and T1y. Having a computer in the bedroom (beta; 95% CI, T0: 0.15; 0.02, 0.29. T4y: 0.35; 0.10, 0.60) and combined bedroom media (T0: 0.09: 0.01, 0.18. T4y: 0.20; 0.05, 0.34) were positively associated with screen-time at T0 and T4y. Relative to participants without a computer throughout the study, children that had a computer in their bedroom at T0 but not at T4y (beta; 95% CI for change in screen-time: -8.02; -12.75, -3.29) reported smaller increases in screen-time. The bedroom media environment changes with age and exhibits a complex relationship with children's sedentary behaviour
Statistical Properties of Longitudinal Time-Activity Data for Use in Human Exposure Modeling
Understanding the longitudinal properties of the time spent in different locations and activities is important in characterizing human exposure to pollutants. The results of a four-season longitudinal time-activity diary study in eight working adults are presented, with the goal ...
Statistical Properties of Longitudinal Time-Activity Data for Use in Human Exposure Modeling
Understanding the longitudinal properties of the time spent in different locations and activities is important in characterizing human exposure to pollutants. The results of a four-season longitudinal time-activity diary study in eight working adults are presented, with the goal ...
NASA Astrophysics Data System (ADS)
Czajka, Alina; Jeon, Sangyong
2017-06-01
In this paper we provide a quantum field theoretical study on the shear and bulk relaxation times. First, we find Kubo formulas for the shear and the bulk relaxation times, respectively. They are found by examining response functions of the stress-energy tensor. We use general properties of correlation functions and the gravitational Ward identity to parametrize analytical structures of the Green functions describing both sound and diffusion mode. We find that the hydrodynamic limits of the real parts of the respective energy-momentum tensor correlation functions provide us with the method of computing both the shear and bulk viscosity relaxation times. Next, we calculate the shear viscosity relaxation time using the diagrammatic approach in the Keldysh basis for the massless λ ϕ4 theory. We derive a respective integral equation which enables us to compute η τπ and then we extract the shear relaxation time. The relaxation time is shown to be inversely related to the thermal width as it should be.
Baum, T.; Joseph, G.B.; Karampinos, D.C.; Jungmann, P.M.; Link, T.M.; Bauer, J.S.
2014-01-01
SUMMARY Objective The purpose of this work was to review the current literature on cartilage and meniscal T2 relaxation time. Methods Electronic searches in PubMed were performed to identify relevant studies about T2 relaxation time measurements as non-invasive biomarker for knee osteoarthritis (OA) and cartilage repair procedures. Results Initial osteoarthritic changes include proteoglycan loss, deterioration of the collagen network, and increased water content within the articular cartilage and menisci. T2 relaxation time measurements are affected by these pathophysiological processes. It was demonstrated that cartilage and meniscal T2 relaxation time values were significantly increased in subjects with compared to those without radiographic OA and focal knee lesions, respectively. Subjects with OA risk factors such as overweight/obesity showed significantly greater cartilage T2 values than normal controls. Elevated cartilage and meniscal T2 relaxation times were found in subjects with vs without knee pain. Increased cartilage T2 at baseline predicted morphologic degeneration in the cartilage, meniscus, and bone marrow over 3 years. Furthermore, cartilage repair tissue could be non-invasively assessed by using T2 mapping. Reproducibility errors for T2 measurements were reported to be smaller than the T2 differences in healthy and diseased cartilage indicating that T2 relaxation time may be a reliable discriminatory biomarker. Conclusions Cartilage and meniscal T2 mapping may be suitable as non-invasive biomarker to diagnose early stages of knee OA and to monitor therapy of OA. PMID:23896316
Relaxation time for monitoring the quantumness of an intense cavity field
NASA Astrophysics Data System (ADS)
Rossatto, D. Z.; Villas-Boas, C. J.
2016-09-01
Recently it was shown that the quantum behavior of an intense cavity field can be revealed by measuring the steady atomic correlations between two ideal atoms which interact with the same leaking cavity mode. Considering a weak atom-field coupling regime and large average number of photons in the cavity mode (n ¯), one expects that a semiclassical theory could explain the whole dynamics of the system. However, this system presents the generation of correlations between the atoms, which is a signature of the quantumness of the cavity field, even in the limit of n ¯≫1 [D. Z. Rossatto et al., Phys. Rev. Lett. 107, 153601 (2011)], 10.1103/PhysRevLett.107.153601. Here, we extend this result by investigating the relaxation time for such a system. We have shown that the relaxation time of the system varies proportionally to n ¯ for a coherent driving, but it is inversely proportional to n ¯ for an incoherent pumping. Thus, the time required to observe the manifestation of the quantum aspects of a cavity field on the atomic correlations diverges as n ¯ tends to macroscopic values due to a coherent driving, while it goes to zero for incoherent pumping. For a coherent driving, we can also see that this system presents metastability, i.e., first the atomic system reaches a quasistationary state which lasts for a long time interval, but eventually it reaches the real steady state. We have also discussed the effects of small atomic decay. In this case, the steady correlations between the atoms disappear for long times, but the intense cavity field is still able to generate atomic correlations at intermediate times. Then, considering a real scenario, we would be able to monitor the quantumness of a cavity field in a certain time interval.
In Vivo Measurements of T2 Relaxation Time of Mouse Lungs during Inspiration and Expiration
Hockings, Paul D.
2016-01-01
Purpose The interest in measurements of magnetic resonance imaging relaxation times, T1, T2, T2*, with intention to characterize healthy and diseased lungs has increased recently. Animal studies play an important role in this context providing models for understanding and linking the measured relaxation time changes to the underlying physiology or disease. The aim of this work was to study how the measured transversal relaxation time (T2) in healthy lungs is affected by normal respiration in mouse. Method T2 of lung was measured in anaesthetized freely breathing mice. Image acquisition was performed on a 4.7 T, Bruker BioSpec with a multi spin-echo sequence (Car-Purcell-Meiboom-Gill) in both end-expiration and end-inspiration. The echo trains consisted of ten echoes of inter echo time 3.5 ms or 4.0 ms. The proton density, T2 and noise floor were fitted to the measured signals of the lung parenchyma with a Levenberg-Marquardt least-squares three-parameter fit. Results T2 in the lungs was longer (p<0.01) at end-expiration (9.7±0.7 ms) than at end-inspiration (9.0±0.8 ms) measured with inter-echo time 3.5 ms. The corresponding relative proton density (lung/muscle tissue) was higher (p<0.001) during end-expiration, (0.61±0.06) than during end-inspiration (0.48±0.05). The ratio of relative proton density at end-inspiration to that at end-expiration was 0.78±0.09. Similar results were found for inter-echo time 4.0 ms and there was no significant difference between the T2 values or proton densities acquired with different interecho times. The T2 value increased linearly (p< 0.001) with proton density. Conclusion The measured T2 in-vivo is affected by diffusion across internal magnetic susceptibility gradients. In the lungs these gradients are modulated by respiration, as verified by calculations. In conclusion the measured T2 was found to be dependent on the size of the alveoli. PMID:27936061
Niu, Xiao-Dong; Hyodo, Shi-Aki; Munekata, Toshihisa; Suga, Kazuhiko
2007-09-01
It is well known that the Navier-Stokes equations cannot adequately describe gas flows in the transition and free-molecular regimes. In these regimes, the Boltzmann equation (BE) of kinetic theory is invoked to govern the flows. However, this equation cannot be solved easily, either by analytical techniques or by numerical methods. Hence, in order to efficiently maneuver around this equation for modeling microscale gas flows, a kinetic lattice Boltzmann method (LBM) has been introduced in recent years. This method is regarded as a numerical approach for solving the BE in discrete velocity space with Gauss-Hermite quadrature. In this paper, a systematic description of the kinetic LBM, including the lattice Boltzmann equation, the diffuse-scattering boundary condition for gas-surface interactions, and definition of the relaxation time, is provided. To capture the nonlinear effects due to the high-order moments and wall boundaries, an effective relaxation time and a modified regularization procedure of the nonequilibrium part of the distribution function are further presented based on previous work [Guo et al., J. Appl. Phys. 99, 074903 (2006); Shan et al., J. Fluid Mech. 550, 413 (2006)]. The capability of the kinetic LBM of simulating microscale gas flows is illustrated based on the numerical investigations of micro Couette and force-driven Poiseuille flows.
Mardini, I.A.; McCarter, R.J.; Fullerton, G.D.
1986-03-01
NMR studies of muscle have typically used muscles of mixed fiber composition and have not taken into account the metabolic state of the host. Samples of psoas (type IIB fibers) and soleus (type I fibers) muscles were obtained from 3 groups of rabbits: group C, fed regular chow; group DK fed a potassium deficient diet; and group HC fed a high cholesterol diet. The T/sub 1/ and T/sub 2/ relaxation times of psoas and soleus muscles were not significantly different for group C. Following dietary manipulation, (groups KD and HC), however, the relaxation times of the psoas and soleus muscles were significantly different. There was also a significant difference in water content of psoas muscles in groups KD and HC vs. group C but the observed differences in NMR results could be only partially accounted for by the shift in water content. The authors results suggest that (1) changes in ion or cholesterol concentration are capable of inducing changes in water bonding and structuring in muscle tissues; (2) diet must be added to the growing list of environmental factors that can cause NMR contrast changes; (3) selective use of muscles rich in one fiber type or another for NMR measurements could provide either control or diagnostic information, related to changes in body composition.
Ribeiro, Fayene Zeferino; Marconcini, Lucinéia Vizzotto; de Toledo, Ingrid Bertoni; de Vasconcellos Azeredo, Rodrigo Bagueira; Barbosa, Lucio Leonel; Colnago, Luiz Alberto
2010-09-01
Nuclear magnetic resonance studies of banana fragments during ripening show an increase on the water transverse relaxation time (T2) and a decrease in water self-diffusion coefficient (D). As T(2) and D are normally directly correlated, we studied these two properties in intact bananas during ripening, in an attempt to rule out the effect of injury on the apparent discrepancies in the behavior of T(2) and D. The results show that injury in bananas causes a decrease in T2 of the water in vacuoles (T(2vac)). They also show that T(2vac) increased and D decreased during ripening, ruling out the injury effect. To explain the apparent discrepancies, we propose a new hypothesis for the increase in T2 values, based on the reduction of Fe3+ ions to Fe2+ by galacturonic acid, produced by the hydrolysis of pectin and a decrease in internal oxygen concentration during ripening. As injury alters T2 values it is necessary to use intact bananas to study relaxation times during ripening. The novel interpretation for the increase in T(2vac) based on reduction of Fe+3 and O2 concentration is an alternative mechanism to that based on the hydrolysis of starch in amyloplasts. Copyright 2010 Society of Chemical Industry.
Measurement of T1 relaxation time of osteochondral specimens using VFA-SWIFT
Nissi, M. J.; Lehto, L. J.; Corum, C.A.; Idiyatullin, D.; Ellermann, J. M.; Gröhn, O. H. J.; Nieminen, M. T.
2015-01-01
Purpose To evaluate the feasibility of SWIFT with variable flip angle (VFA) for measurement of T1 relaxation time in Gd-agarose-phantoms and osteochondral specimens, including regions of very short T2*, and compare with T1 measured using standard methods. Methods T1s of agarose phantoms with variable concentration of Gd-DTPA2− and nine pairs of native and trypsin-treated bovine cartilage-bone specimens were measured. For specimens, VFA-SWIFT, inversion recovery (IR) fast spin echo (FSE) and saturation recovery FSE were used. For phantoms, additionally spectroscopic IR was used. Differences and agreement between the methods were assessed using non-parametric Wilcoxon and Kruskal-Wallis tests and intra-class correlation. Results The different T1 mapping methods agreed well in the phantoms. VFA-SWIFT allowed reliable measurement of T1 in the osteochondral specimens, including regions where FSE-based methods failed. The T1s measured by VFA-SWIFT were shifted towards shorter values in specimens. However, the measurements correlated significantly (highest correlation VFA-SWIFT vs. FSE was r=0.966). SNR efficiency was generally highest for SWIFT, especially in the subchondral bone. Conclusion Feasibility of measuring T1 relaxation time using VFA-SWIFT in osteochondral specimens and phantoms was demonstrated. A shift towards shorter T1s was observed for VFA-SWIFT in specimens, reflecting the higher sensitivity of SWIFT to short T2* spins. PMID:25111731
On the nonlinear variation of dc conductivity with dielectric relaxation time
NASA Astrophysics Data System (ADS)
Johari, G. P.; Andersson, Ove
2006-09-01
The long-known observations that dc conductivity σdc of an ultraviscous liquid varies nonlinearly with the dielectric relaxation time τ, and the slope of the logσdc against logτ plot deviates from -1 are currently seen as two of the violations of the Debye-Stokes-Einstein equation. Here we provide a formalism using a zeroth order Bjerrum description for ion association to show that in addition to its variation with temperature T and pressure P, impurity ion population varies with a liquid's equilibrium dielectric permittivity. Inclusion of this electrostatic effect modifies the Debye-Stokes-Einstein equation to log(σdcτ )=constant+logα, where α is the T and P-dependent degree of ionic dissociation of an electrolytic impurity. Variation of a liquid's shear modulus with T and P would add to the nonlinearity of σdc-τ relation, as would a nonequivalence of the shear and dielectric relaxation times, proton transfer along the hydrogen bonds, or occurrence of another chemical process. This is illustrated by using the data for ultraviscous acetaminophen-aspirin liquid.
Liang, H; Shi, B C; Guo, Z L; Chai, Z H
2014-05-01
In this paper, a phase-field-based multiple-relaxation-time lattice Boltzmann (LB) model is proposed for incompressible multiphase flow systems. In this model, one distribution function is used to solve the Chan-Hilliard equation and the other is adopted to solve the Navier-Stokes equations. Unlike previous phase-field-based LB models, a proper source term is incorporated in the interfacial evolution equation such that the Chan-Hilliard equation can be derived exactly and also a pressure distribution is designed to recover the correct hydrodynamic equations. Furthermore, the pressure and velocity fields can be calculated explicitly. A series of numerical tests, including Zalesak's disk rotation, a single vortex, a deformation field, and a static droplet, have been performed to test the accuracy and stability of the present model. The results show that, compared with the previous models, the present model is more stable and achieves an overall improvement in the accuracy of the capturing interface. In addition, compared to the single-relaxation-time LB model, the present model can effectively reduce the spurious velocity and fluctuation of the kinetic energy. Finally, as an application, the Rayleigh-Taylor instability at high Reynolds numbers is investigated.
Eugene, M.; Lechat, P.; Hadjiisky, P.; Teillac, A.; Grosgogeat, Y.; Cabrol, C.
1986-01-01
It should be possible to detect heart transplant rejection by nuclear magnetic resonance (NMR) imaging if it induces myocardial T1 and T2 proton relaxation time alterations or both. We studied 20 Lewis rats after a heterotopic heart transplantation. In vitro measurement of T1 and T2 was performed on a Minispec PC20 (Bruker) 3 to 9 days after transplantation. Histologic analysis allowed the quantification of rejection process based on cellular infiltration and myocardiolysis. Water content, a major determinant of relaxation time, was also studied. T1 and T2 were significantly prolonged in heterotopic vs orthotopic hearts (638 +/- 41 msec vs 606 +/- 22 msec for T1, p less than 0.01 and 58.2 +/- 8.4 msec vs 47.4 +/- 1.9 msec for T2, p less than 0.001). Water content was also increased in heterotopic hearts (76.4 +/- 2.3 vs 73.8 +/- 1.0, p less than 0.01). Most importantly, we found close correlations between T1 and especially T2 vs water content, cellular infiltration, and myocardiolysis. We conclude that rejection reaction should be noninvasively detected by NMR imaging, particularly with pulse sequences emphasizing T2.
Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics
Huang Xuguang; Rischke, Dirk H.; Kodama, Takeshi; Koide, Tomoi
2011-02-15
The microscopic formulas of the bulk viscosity {zeta} and the corresponding relaxation time {tau}{sub {Pi}} in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and {tau}{sub {Pi}} and {zeta} are related as {tau}{sub {Pi}={zeta}}/[{beta}{l_brace}(1/3-c{sub s}{sup 2})({epsilon}+P)-2({epsilon}-3P)/9{r_brace}], where {epsilon}, P, and c{sub s} are the energy density, pressure, and velocity of sound, respectively. The predicted {zeta} and {tau}{sub {Pi}} should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.
Temperature dependence of relaxation times in proton components of fatty acids.
Kuroda, Kagayaki; Iwabuchi, Taku; Obara, Makoto; Honda, Masatoshi; Saito, Kensuke; Imai, Yutaka
2011-01-01
We examined the temperature dependence of relaxation times in proton components of fatty acids in various samples in vitro at 11 tesla as a standard calibration data for quantitative temperature imaging of fat. The spin-lattice relaxation time, T(1), of both the methylene (CH(2)) chain and terminal methyl (CH(3)) was linearly related to temperature (r>0.98, P<0.001) in samples of animal fat. The temperature coefficients for the 2 primary proton components differed significantly; in 5 bovine fat samples, the coefficient at 30 °C was 1.79±0.07 (%/°C) for methylene and 2.98±0.38 (%/°C) for methyl. Numerical simulations based on such a difference demonstrated the possibility of considerable error from inconsistent ratios in fatty acid components when calibrating and estimating temperature. The error reached 3.3 °C per 15 °C in temperature elevation when we used a pure CH(2) signal for calibration and observed the signal with 18% of CH(3) to estimate temperature. These findings suggested that separating the fatty acid components would significantly improve accuracy in quantitative thermometry for fat. Use of the T(1) of CH(2) seems promising in terms of reliability and reproducibility in measuring temperature of fat.
Enhancing Web applications in radiology with Java: estimating MR imaging relaxation times.
Dagher, A P; Fitzpatrick, M; Flanders, A E; Eng, J
1998-01-01
Java is a relatively new programming language that has been used to develop a World Wide Web-based tool for estimating magnetic resonance (MR) imaging relaxation times, thereby demonstrating how Java may be used for Web-based radiology applications beyond improving the user interface of teaching files. A standard processing algorithm coded with Java is downloaded along with the hypertext markup language (HTML) document. The user (client) selects the desired pulse sequence and inputs data obtained from a region of interest on the MR images. The algorithm is used to modify selected MR imaging parameters in an equation that models the phenomenon being evaluated. MR imaging relaxation times are estimated, and confidence intervals and a P value expressing the accuracy of the final results are calculated. Design features such as simplicity, object-oriented programming, and security restrictions allow Java to expand the capabilities of HTML by offering a more versatile user interface that includes dynamic annotations and graphics. Java also allows the client to perform more sophisticated information processing and computation than is usually associated with Web applications. Java is likely to become a standard programming option, and the development of stand-alone Java applications may become more common as Java is integrated into future versions of computer operating systems.
Direct measurement of dipole-dipole/CSA cross-correlated relaxation by a constant-time experiment
Liu, Yizhou; Prestegard, James H.
2008-01-01
Relaxation rates in NMR are usually measured by intensity modulation as a function of a relaxation delay during which the relaxation mechanism of interest is effective. Other mechanisms are often suppressed during the relaxation delay by pulse sequences which eliminate their effects, or cancel their effects when two data sets with appropriate combinations of relaxation rate effects are added. Cross-correlated relaxation (CCR) involving dipole-dipole and CSA interactions differ from auto-correlated relaxation (ACR) in that the signs of contributions can be changed by inverting the state of one spin involved in the dipole-dipole interaction. This property has been exploited previously using CPMG sequences to refocus CCR while ACR evolves. Here we report a new pulse scheme that instead eliminates intensity modulation by ACR and thus allows direct measurement of CCR. The sequence uses a constant time relaxation period for which the contribution of ACR does not change. An inversion pulse is applied at various points in the sequence to effect a decay that depends on CCR only. A 2-D experiment is also described in which chemical shift evolution in the indirect dimension can share the same constant period. This improves sensitivity by avoiding the addition of a separate indirect dimension acquisition time. We illustrate the measurement of residue specific CCR rates on the non-myristoylated yeast ARF1 protein and compare the results to those obtained following the conventional method of measuring the decay rates of the slow and fast-relaxing 15N doublets. The performances of the two methods are also quantitatively evaluated by simulation. The analysis shows that the shared constant-time CCR (SCT-CCR) method significantly improves sensitivity. PMID:18406649
Role of relaxation and time-dependent formation of x-ray spectra
NASA Astrophysics Data System (ADS)
Privalov, Timofei; Gel'mukhanov, Faris; Ågren, Hans
2001-10-01
A fundamental problem of x-ray spectroscopy is the role of relaxation of the electronic subsystem in the field of the transient core hole. The main intention of the present study is to explore the dynamics due to core-hole relaxation in the whole time domain, and to find out how it is manifested in finite molecular systems in comparison with solids. A technique is developed based on a reduction of the Noziéres-De Dominicis equation to a set of linear algebraic equations. The developed time-dependent formalism is applied to a numerical investigation of a one-dimensional tight-binding model. The formation of the x-ray profiles is explored on the real time scale, and the role of interaction with the core hole, band filling, and the final-state rule are investigated for systems of different size. The formation of spectra of the infinite translational invariant system is studied by extensions of the finite systems. We found that the dynamics of finite systems, like molecules, differs qualitatively from solids: Contrary to the latter the time lapse of the Noziéres-De Dominicis domain for finite systems is squeezed between the inverse bandwidth and the revival time, which is proportional to the system size. For small molecules this means that there is no time for a ``Mahan-Noziéres-De Dominicis singularity'' to develop. Comparison with the strict solution of the Noziéres-De Dominicis equation shows that the adiabatic approximation describes x-ray absorption and emission considerably better than the fast approximation. This explains the suppression of the relaxation effects in x-ray emission of, e.g., gas phase and surface adsorbed molecules, but also that these effects are essential for the absorption case. There is still a quantitative distinction between the adiabatic approximation and the strict approach, which becomes more important for larger systems. Adopting the so-called finite state rule by von Barth and Grossman also for molecules, an almost complete
McGarry, Bryony L.; Rogers, Harriet J.; Knight, Michael J.; Jokivarsi, Kimmo T.; Gröhn, Olli H.J.; Kauppinen, Risto A.
2016-01-01
Many ischaemic stroke patients are ineligible for thrombolytic therapy due to unknown onset time. Quantitative MRI (qMRI) is a potential surrogate for stroke timing. Rats were subjected to permanent middle cerebral artery occlusion and qMRI parameters including hemispheric differences in apparent diffusion coefficient, T2-weighted signal intensities, T1 and T2 relaxation times (qT1, qT2) and f1, f2 and Voverlap were measured at hourly intervals at 4.7 or 9.4 T. Accuracy and sensitivity for identifying strokes scanned within and beyond 3 h of onset was determined. Accuracy for Voverlap, f2 and qT2 (>90%) was significantly higher than other parameters. At a specificity of 1, sensitivity was highest for Voverlap (0.90) and f2 (0.80), indicating promise of these qMRI indices in the clinical assessment of stroke onset time.
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter
NASA Astrophysics Data System (ADS)
Johnson, W. R.; Nilsen, J.
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Wang, Yi; Zhang, Yaoyu; Zhao, Xuna; Wu, Bing; Gao, Jia-Hong
2016-11-25
To develop a novel analytical method for quantification of chemical exchange saturation transfer (CEST) in the transient state. The proposed method aims to reduce the effects of non-chemical-exchange (non-CE) parameters on the CEST signal, emphasizing the effect of chemical exchange. The difference in the longitudinal relaxation rate in the rotating frame ( ΔR1ρ) was calculated based on perturbation of the Z-value by R1ρ, and a saturation-pulse-amplitude-compensated exchange-dependent relaxation rate (SPACER) was determined with a high-exchange-rate approximation. In both phantom and human subject experiments, MTRasym (representative of the traditional CEST index), ΔR1ρ, and SPACER were measured, evaluated, and compared by altering the non-CE parameters in a transient-state continuous-wave CEST sequence. In line with the theoretical expectation, our experimental data demonstrate that the effects of the non-CE parameters can be more effectively reduced using the proposed indices ( ΔR1ρ and SPACER) than using the traditional CEST index ( MTRasym). The proposed method allows for the chemical exchange weight to be better emphasized in the transient-state CEST signal, which is beneficial, in practice, for quantifying the CEST signal. Magn Reson Med, 2016. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Dynamical theory of spin noise and relaxation: Prospects for real-time NMR measurements.
Field, Timothy R
2014-11-01
Recent developments in theoretical aspects of spin noise and relaxation and their interrelationship reveal a modified spin density, distinct from the density matrix, as the necessary object to describe fluctuations in spin systems. These fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments and are observed as "spin noise" in the absence of any radio frequency excitation. With the prospect of ultrafast digitization, the role of spin noise in real-time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this article we outline prospects for harnessing the recent dynamical theory in terms of spin-noise measurement, with attention to real-time properties.
Spin-drag relaxation time in one-dimensional spin-polarized Fermi gases
NASA Astrophysics Data System (ADS)
Rainis, Diego; Polini, Marco; Tosi, M. P.; Vignale, G.
2008-01-01
Spin propagation in systems of one-dimensional interacting fermions at finite temperature is intrinsically diffusive. The spreading rate of a spin packet is controlled by a transport coefficient termed “spin drag” relaxation time τsd . In this paper we present both numerical and analytical calculations of τsd for a two-component spin-polarized cold Fermi gas trapped inside a tight atomic waveguide. At low temperatures we find an activation law for τsd , in agreement with earlier calculations of Coulomb drag between slightly asymmetric quantum wires, but with a different and much stronger temperature dependence of the prefactor. Our results provide a fundamental input for microscopic time-dependent spin-density functional theory calculations of spin transport in one-dimensional inhomogeneous systems of interacting fermions.
Understanding long-time vacancy aggregation in iron: A kinetic activation-relaxation technique study
NASA Astrophysics Data System (ADS)
Brommer, Peter; Béland, Laurent Karim; Joly, Jean-François; Mousseau, Normand
2014-10-01
Vacancy diffusion and clustering processes in body-centered-cubic (bcc) Fe are studied using the kinetic activation-relaxation technique (k-ART), an off-lattice kinetic Monte Carlo method with on-the-fly catalog building capabilities. For monovacancies and divacancies, k-ART recovers previously published results while clustering in a 50-vacancy simulation box agrees with experimental estimates. Applying k-ART to the study of clustering pathways for systems containing from one to six vacancies, we find a rich set of diffusion mechanisms. In particular, we show that the path followed to reach a hexavacancy cluster influences greatly the associated mean-square displacement. Aggregation in a 50-vacancy box also shows a notable dispersion in relaxation time associated with effective barriers varying from 0.84 to 1.1 eV depending on the exact pathway selected. We isolate the effects of long-range elastic interactions between defects by comparing to simulations where those effects are deliberately suppressed. This allows us to demonstrate that in bcc Fe, suppressing long-range interactions mainly influences kinetics in the first 0.3 ms, slowing down quick energy release cascades seen more frequently in full simulations, whereas long-term behavior and final state are not significantly affected.
Temperature dependence of proton NMR relaxation times at earth's magnetic field
NASA Astrophysics Data System (ADS)
Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd
The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.
NASA Astrophysics Data System (ADS)
Shan, Feng; Guo, Xiasheng; Tu, Juan; Cheng, Jianchun; Zhang, Dong
The high-intensity focused ultrasound (HIFU) has become an attractive therapeutic tool for the noninvasive tumor treatment. The ultrasonic transducer is the key component in HIFU treatment to generate the HIFU energy. The dimension of focal region generated by the transducer is closely relevant to the safety of HIFU treatment. Therefore, it is essential to numerically investigate the focal region of the transducer. Although the conventional acoustic wave equations have been used successfully to describe the acoustic field, there still exist some inherent drawbacks. In this work, we presented an axisymmetric isothermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) model with the Bouzidi-Firdaouss-Lallemand (BFL) boundary condition in cylindrical coordinate system. With this model, some preliminary simulations were firstly conducted to determine a reasonable value of the relaxation parameter. Then, the validity of the model was examined by comparing the results obtained with the LBM results with the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and the Spheroidal beam equation (SBE) for the focused transducers with different aperture angles, respectively. In addition, the influences of the aperture angle on the focal region were investigated. The proposed model in this work will provide significant references for the parameter optimization of the focused transducer for applications in the HIFU treatment or other fields, and provide new insights into the conventional acoustic numerical simulations.
2011-01-01
Background Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns. Method We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55), and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend), season (warm/cool), sex, employment status, and over the follow-up period. Results As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession. Conclusions This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and seasonal patterns should be
Ghasemi, Mehdi; Sadeghipour, Hamed; Asadi, Shahrzad; Dehpour, Ahmad Reza
2007-09-01
The purpose of the present study was to investigate the relaxant responses to the ATP-sensitive potassium (K(ATP)) channel opener cromakalim in corpus cavernosum strips from 1-, 2-, 4-, 6-, and 8-week streptozocin-induced diabetic rats. Cromakalim (1 nM-0.1 mM) produced concentration-dependent relaxation in phenylephrine (7.5 microM)-precontracted isolated rat corporal strips. Compared with age-matched control animals, a significant enhancement in cromakalim-induced relaxation of corpus cavernosum was observed in 2-week diabetic animals, whereas the relaxant responses to cromakalim were decreased in 6-and 8-week diabetic animals. However, the cromakalim-induced relaxation was not altered in either 1-week or 4-week rat corporal strips in comparison with corresponding age-matched non-diabetic groups. Preincubation with the K(ATP) channel blocker glibenclamide (10 microM) significantly inhibited the cromakalim-induced relaxation in both non-diabetic and diabetic rat corpus cavernosum, but neither the voltage-dependent K(+) channel (K(V)) antagonist 4-aminopyridine (1 mM) nor the calcium-activated K(+) channel (K(Ca)) antagonist charybdotoxin (0.1 microM) had significant effect on cromakalim-induced relaxation in both control and diabetic rat corporal strips. Relaxation responses to the nitric oxide donor sodium nitroprusside (1 nM-0.1 mM) in diabetic rat corpus cavernosum were similar to that of age-matched controls. These data demonstrated that the relaxant responses to cromakalim were altered in diabetic cavernosal strips in a time dependent manner, suggesting that the period of diabetes mellitus may play a key role in the K(ATP) channels function in rat corpus cavernosum.
Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng
2015-03-01
Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way
The Timing of Maternal Depressive Symptoms and Child Cognitive Development: A Longitudinal Study
ERIC Educational Resources Information Center
Evans, Jonathan; Melotti, Roberto; Heron, Jon; Ramchandani, Paul; Wiles, Nicola; Murray, Lynne; Stein, Alan
2012-01-01
Background: Maternal depression is known to be associated with impairments in child cognitive development, although the effect of timing of exposure to maternal depression is unclear. Methods: Data collected for the Avon Longitudinal Study of Parents and Children, a longitudinal study beginning in pregnancy, included self-report measures of…
The Timing of Maternal Depressive Symptoms and Child Cognitive Development: A Longitudinal Study
ERIC Educational Resources Information Center
Evans, Jonathan; Melotti, Roberto; Heron, Jon; Ramchandani, Paul; Wiles, Nicola; Murray, Lynne; Stein, Alan
2012-01-01
Background: Maternal depression is known to be associated with impairments in child cognitive development, although the effect of timing of exposure to maternal depression is unclear. Methods: Data collected for the Avon Longitudinal Study of Parents and Children, a longitudinal study beginning in pregnancy, included self-report measures of…
Van Rossom, Sam; Smith, Colin Robert; Zevenbergen, Lianne; Thelen, Darryl Gerard; Vanwanseele, Benedicte; Van Assche, Dieter; Jonkers, Ilse
2017-01-01
Cartilage is responsive to the loading imposed during cyclic routine activities. However, the local relation between cartilage in terms of thickness distribution and biochemical composition and the local contact pressure during walking has not been established. The objective of this study was to evaluate the relation between cartilage thickness, proteoglycan and collagen concentration in the knee joint and knee loading in terms of contact forces and pressure during walking. 3D gait analysis and MRI (3D-FSE, T1ρ relaxation time and T2 relaxation time sequence) of fifteen healthy subjects were acquired. Experimental gait data was processed using musculoskeletal modeling to calculate the contact forces, impulses and pressure distribution in the tibiofemoral joint. Correlates to local cartilage thickness and mean T1ρ and T2 relaxation times of the weight-bearing area of the femoral condyles were examined. Local thickness was significantly correlated with local pressure: medial thickness was correlated with medial condyle contact pressure and contact force, and lateral condyle thickness was correlated with lateral condyle contact pressure and contact force during stance. Furthermore, average T1ρ and T2 relaxation time correlated significantly with the peak contact forces and impulses. Increased T1ρ relaxation time correlated with increased shear loading, decreased T1ρ and T2 relaxation time correlated with increased compressive forces and pressures. Thicker cartilage was correlated with higher condylar loading during walking, suggesting that cartilage thickness is increased in those areas experiencing higher loading during a cyclic activity such as gait. Furthermore, the proteoglycan and collagen concentration and orientation derived from T1ρ and T2 relaxation measures were related to loading. PMID:28076431
NASA Astrophysics Data System (ADS)
Eltrudis, K.; Al-Ashouri, A.; Beckel, A.; Ludwig, A.; Wieck, A. D.; Geller, M.; Lorke, A.
2017-08-01
We have measured the spin relaxation time of an excited two-electron spin-triplet state into its singlet ground state in self-assembled InAs/GaAs quantum dots. We use a time-resolved measurement scheme that combines transconductance spectroscopy with spin-to-charge conversion to address the |s ↑,p ↑ 〉 triplet state, where one electron is in the quantum dot s-shell and a second one in the p-shell. The evaluation of the state-selective tunneling times from the dots into a nearby two-dimensional electron gas allows us to determine the s- and p-shell occupation and extract the relaxation time from a rate equation model. A comparably long triplet-to-singlet spin relaxation time of 25 μs is found.
Prolonged spin relaxation time in Zn-doped GaAs/GaAsP strain-compensated superlattice
NASA Astrophysics Data System (ADS)
Ohki, Shunsuke; Jin, Xiuguang; Ishikawa, Tomoki; Kamezaki, Takuya; Yamada, Kizuku; Muto, Shunichi; Tackeuchi, Atsushi
2017-07-01
A GaAs/GaAsP strain-compensated superlattice (SL) is a highly promising spin-polarized electron source. To realize higher quantum efficiency, it is necessary to consider spin relaxation mechanisms. We have investigated the electron spin relaxation time in a Zn-doped GaAs/GaAsP strain-compensated SL by time-resolved spin-dependent pump and probe reflection measurements. The long spin relaxation time of 104 ps was observed at room temperature (RT), which is about three times longer than that of conventional undoped GaAs multiple quantum wells. Even when the excitation power increases from 30 to 110 mW, the change in the spin relaxation time at RT was small. This relationship implies that the intensity of the electron beam can be increased without affecting the spin relaxation time. These results indicate that a Zn-doped GaAs/GaAsP strain-compensated SL has the great advantage for use as a spin-polarized electron source.
Gao, J; Hentel, K; Kazam, J; Min, R
2016-10-01
Purpose: To evaluate the ability of ultrasound strain relaxation time ratio to assess cortical inflammation/edema in renal allografts. Materials and Methods: We prospectively assessed renal allograft cortical inflammation/edema in 16 renal transplants using ultrasound elasticity imaging and correlated the findings with kidney biopsy. Strain relaxation times in the renal cortex and reference soft tissue were produced by free-hand compression with the ultrasound transducer and estimated with 2 D speckle tracking. Compression was performed in 3-second compression-relaxation cycles (push for 1 second, constant pressure for 1 second, and release for 1 second). We propose a strain relaxation time ratio (time of cortical strain to return to zero/time of the reference strain return to zero) to assess the relationship of compression-induced time-dependent strain relaxation in the cortex and reference tissue. 16 patients were divided into a group with ≤ 25 % (n = 8) and a group with > 26 % (n = 8) cortical inflammation/edema based on the Banff score. A t-test was used to examine the difference in the strain relaxation time ratio between the two groups. The diagnostic accuracy, inter-rater reliability, and reproducibility of this technique in discriminating between the groups were tested. Results: The strain relaxation time ratio of cortex/reference tissue was significantly higher in patients with > 26 % than in patients with ≤ 25 % cortical inflammation/edema (1.15 ± 0.10 vs. 0.91 ± 0.08, P = 0.0002). The strain relaxation time ratio has high reliability (Pearson correlation coefficient, R² = 0.93), reproducibility (intraclass correlation coefficient = 0.98, P = 0.000), and accuracy (area under curve = 1) in determining > 26 % renal cortical inflammation/edema. Conclusion: The strain relaxation time ratio of cortex/reference tissue can be used as a quantitative marker for the assessment of cortical
Time constant of defect relaxation in ion-irradiated 3C-SiC
NASA Astrophysics Data System (ADS)
Wallace, J. B.; Bayu Aji, L. B.; Shao, L.; Kucheyev, S. O.
2015-05-01
Above room temperature, the buildup of radiation damage in SiC is a dynamic process governed by the mobility and interaction of ballistically generated point defects. Here, we study the dynamics of radiation defects in 3C-SiC bombarded at 100 °C with 500 keV Ar ions, with the total ion dose split into a train of equal pulses. Damage-depth profiles are measured by ion channeling for a series of samples irradiated under identical conditions except for different durations of the passive part of the beam cycle. Results reveal an effective defect relaxation time constant of ˜ 3 ms (for second order kinetics) and a dynamic annealing efficiency of ˜ 40 % for defects in both Si and C sublattices. This demonstrates a crucial role of dynamic annealing at elevated temperatures and provides evidence of the strong coupling of defect accumulation processes in the two sublattices of 3C-SiC.
Senra Filho, Antonio Carlos da S; Barbosa, Jeam Haroldo O; Salmon, Carlos E G; Murta, Luiz O
2014-01-01
Relaxometry mapping is a quantitative modality in magnetic resonance imaging (MRI) widely used in neuroscience studies. Despite its relevance and utility, voxel measurement of relaxation time in relaxometry MRI is compromised by noise that is inherent to MRI modality and acquisition hardware. In order to enhance signal to noise ratio (SNR) and quality of relaxometry mapping we propose application of anisotropic anomalous diffusion (AAD) filter that is consistent with inhomogeneous complex media. Here we evaluated AAD filter in comparison to two usual spatial filters: Gaussian and non local means (NLM) filters applied to real and simulated T2 relaxometry image sequences. The results demonstrate that AAD filter is comparatively more efficient in noise reducing and maintaining the image structural edges. AAD shows to be a robust and reliable spatial filter for brain image relaxometry.
Magnetic field dependence of the distribution of NMR relaxation times in the living human brain.
Oros-Peusquens, A M; Laurila, M; Shah, N J
2008-03-01
This study investigates the field dependence of the distribution of in vivo, whole-brain T1 values, and its usefulness for white matter/grey matter segmentation. Results on T1 values are presented on 12 healthy volunteers. T2 and T2* distributions and their field dependence have been measured on the same cohort of volunteers. In this paper, however, only the T2 and T2* results on a single volunteer are presented. The reported field dependence of T2 and T2* values should, therefore, be given less weight than that of T1 times. Relaxation times were measured in vivo on 12 healthy volunteers, using three nearly identical whole-body scanners, operating at field strengths of 1.5, 3, and 4 T and employing nearly identical software platforms and very similar hardware. T1 mapping was performed using TAPIR, a sequence based on the Look-Locker method. T2* mapping was performed with a multi-slice, multi-echo, gradient echo sequence. A multi-slice, multi-echo T2 mapping sequence based on the Carr-Purcell-Meiboom-Gill (CPMG) method was used to map T2. For each volunteer, the global distribution of T1 relaxation times was described as the superposition of three Gaussian distributions. The field and age-dependence of the centroids and widths of the three Gaussians was investigated. The segmentation of the brain in white and grey matter was performed separately for each field strength. Using the T1 segmentation and the fact that all maps were coregistered, we investigated the distribution of T2 and T*(2) values separately for the white and grey matter and described them with a Gaussian distribution in each case. Multi-slice quantitative maps were produced for the relaxation parameters T1 (near whole-brain coverage with 41 slices), T2* (whole-brain coverage, 55 slices), and T2 (27 slices). A clear age dependence was identified for grey matter T1 values and correlated with similar behaviour observed in a separate study of the brain water content. The increase with field strength of
Equilibrium distributions and relaxation times in gaslike economic models: an analytical derivation.
Calbet, Xavier; López, José-Luis; López-Ruiz, Ricardo
2011-03-01
A step-by-step procedure to derive analytically the exact dynamical evolution equations of the probability density functions (PDFs) of well-known kinetic wealth exchange economic models is shown. This technique gives a dynamical insight into the evolution of the PDF, for example, allowing the calculation of its relaxation times. Their equilibrium PDFs can also be calculated by finding its stationary solutions. This gives as a result an integro-differential equation, which can be solved analytically in some cases and numerically in others. This should provide some guidance into the type of PDFs that can be derived from particular economic agent exchange rules or, for that matter, any other kinetic model of gases with particular collision physics.
Time-resolved photoluminescence study of excitonic relaxation in one-dimensional systems
NASA Astrophysics Data System (ADS)
Tanino, H.; Rühle, W. W.; Takahashi, K.
1988-12-01
Self-trapped exciton luminescence of quasi-one-dimensional (1D) halogen-bridged mixed-valence platinum complexes [Pt(II) (EA)4][Pt(IV)Cl2(EA)4] Cl4.4H2O (EA=ethylamine) and [Pt(II)(en)2] [Pt(IV)Cl2(en)2](ClO4)4 (en=1,2-diaminoethane) are studied by time-resolved photoluminescence experiments. The lifetimes of the luminescence of self-trapped exciton are exceptionally short, of the order of 100 psec. We interpret the short lifetime by a ``giant oscillator strength'' caused by a strong coupling between the electron and hole of the 1D charge transfer exciton and an extended polaronlike character of the 1D state. The lifetimes of the broad luminescence and of the resonant Raman lines during the barrier-free relaxation process are both faster than 7 psec.
Multiple-relaxation-time lattice Boltzmann modeling of incompressible flows in porous media
NASA Astrophysics Data System (ADS)
Liu, Qing; He, Ya-Ling
2015-07-01
In this paper, a two-dimensional eight-velocity multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed for incompressible porous flows at the representative elementary volume scale based on the Brinkman-Forchheimer-extended Darcy model. In the model, the porosity is included into the pressure-based equilibrium moments, and the linear and nonlinear drag forces of the porous matrix are incorporated into the model by adding a forcing term to the MRT-LB equation in the moment space. Through the Chapman-Enskog analysis, the incompressible generalized Navier-Stokes equations can be recovered. Numerical simulations of several typical porous flows are carried out to validate the present MRT-LB model. It is found that the present numerical results agree well with the analytical solutions and/or other numerical results reported in the literature.
Equilibrium distributions and relaxation times in gaslike economic models: An analytical derivation
NASA Astrophysics Data System (ADS)
Calbet, Xavier; López, José-Luis; López-Ruiz, Ricardo
2011-03-01
A step-by-step procedure to derive analytically the exact dynamical evolution equations of the probability density functions (PDFs) of well-known kinetic wealth exchange economic models is shown. This technique gives a dynamical insight into the evolution of the PDF, for example, allowing the calculation of its relaxation times. Their equilibrium PDFs can also be calculated by finding its stationary solutions. This gives as a result an integro-differential equation, which can be solved analytically in some cases and numerically in others. This should provide some guidance into the type of PDFs that can be derived from particular economic agent exchange rules or, for that matter, any other kinetic model of gases with particular collision physics.
Effects of the individual particle relaxation time on superspin glass dynamics
NASA Astrophysics Data System (ADS)
Andersson, Mikael Svante; De Toro, Jose Angel; Lee, Su Seong; Normile, Peter S.; Nordblad, Per; Mathieu, Roland
2016-02-01
The low temperature dynamic magnetic properties of two dense magnetic nanoparticle assemblies with similar superspin glass transition temperatures Tg˜140 K are compared. The two samples are made from batches of 6 and 8 nm monodisperse γ -Fe2O3 nanoparticles, respectively. The properties of the individual particles are extracted from measurements on reference samples where the particles have been covered with a thick silica coating. The blocking temperatures of these dilute assemblies are found at 12.5 K for the 6 nm particles and at 35 K for the 8 nm particles, which implies different anisotropy energy barriers of the individual particles and vastly different temperature evolution of their relaxation times. The results of the measurements on the concentrated particle assemblies suggest a strong influence of the particle energy barrier on the details of the aging dynamics, memory behavior, and apparent superspin dimensionality of the particles.
A multiple relaxation time extension of the constant speed kinetic model
NASA Astrophysics Data System (ADS)
Zadehgol, Abed; Ashrafizaadeh, Mahmud
2016-02-01
In this work, a multiple relaxation time (MRT) extension of the recently introduced constant speed kinetic model (CSKM) is proposed. The CSKM, which is an entropic kinetic model and based on unconventional entropies of Burg and Tssalis, was introduced in [A. Zadehgol and M. Ashrafizaadeh, J. Comput. Phys. 274, 803 (2014)]; [A. Zadehgol Phys. Rev. E 91, 063311 (2015)] as an extension of the model of Boghosian et al. [Phys. Rev. E 68, 025103 (2003)] in the limit of fixed speed continuous velocities. The present extension improves the stability of the previous models at very high Reynolds numbers, while allowing for a more convenient orthogonal lattice. The model is verified by solving the following benchmark problems: (i) the lid driven square cavity and (ii) the Kelvin-Helmholtz instability of thin shear layers in a doubly periodic square domain.
Time constant of defect relaxation in ion-irradiated 3C-SiC
Wallace, J. B.; Bayu Aji, L. B.; Kucheyev, S. O.; Shao, L.
2015-05-18
Above room temperature, the buildup of radiation damage in SiC is a dynamic process governed by the mobility and interaction of ballistically generated point defects. Here, we study the dynamics of radiation defects in 3C-SiC bombarded at 100 °C with 500 keV Ar ions, with the total ion dose split into a train of equal pulses. Damage–depth profiles are measured by ion channeling for a series of samples irradiated under identical conditions except for different durations of the passive part of the beam cycle. Results reveal an effective defect relaxation time constant of ∼3 ms (for second order kinetics) and a dynamic annealing efficiency of ∼40% for defects in both Si and C sublattices. This demonstrates a crucial role of dynamic annealing at elevated temperatures and provides evidence of the strong coupling of defect accumulation processes in the two sublattices of 3C-SiC.
Structural relaxation dynamics and annealing effects of sodium silicate glass.
Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann
2013-05-09
Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.
NASA Astrophysics Data System (ADS)
Balaev, D. A.; Dubrovskiy, A. A.; Shaykhutdinov, K. A.; Popkov, S. I.; Petrov, M. I.
2009-03-01
In order to clarify the mechanism of hysteretic behavior of magnetoresistance of granular HTSC the magnetoresistance curves R(H) and time evolution of the resistance in constant applied magnetic fields have been studied in granular YBCO at T=77 K. It was found that on ascending branch of R(H) dependence the resistance at H=const decreased with time while on the descending branch the resistance increased with time in applied constant magnetic field. For the range of low magnetic fields (below the minimum point of the descending branch of R(H) dependence) the resistance at H=const decreased again. The behavior observed is well described by the model of granular HTSC, where the intergrain space is in effective magnetic field which is the superposition of the applied field and the field induced by superconducting grains. The time evolution of resistance reflects processes of time relaxation of magnetization of HTSC grains due to the intragrain flux creep.
Nuclear Spin-Lattice Relaxation Times from Continuous Wave NMR Spectroscopy.
ERIC Educational Resources Information Center
Wooten, Jan B.; And Others
1979-01-01
The experiment described, suitable for undergraduate physical chemistry laboratories, illustrates the general principles of relaxation and introduces the nmr concepts of saturation and spin-inversion. (BB)
Time-dependent pseudo Jahn-Teller effect: Phonon-mediated long-time nonadiabatic relaxation
Vaikjärv, Taavi Hizhnyakov, Vladimir
2014-02-14
Our system under theoretical consideration is an impurity center in a solid. We are considering the time evolution of the center in a quasi-degenerate electronic state. Strict quantum mechanical treatment of non-adiabadicity of the state is used. The phonon continuum is taken into account in addition to the vibration responsible for the main vibronic interaction. To describe the dynamics of the excited state a master equation has been used. The theoretical considerations are illustrated by the calculations of the long-time evolution of vibrations of the center, influenced by the emission of phonons to the bulk.
NASA Astrophysics Data System (ADS)
Paruthi, Archini; Misra, Superb K.
2017-08-01
The toxicological impact of engineered nanoparticles in environmental or biological milieu is very difficult to predict and control because of the complexity of interactions of nanoparticles with the varied constituents in the suspended media. Nanoparticles are different from their bulk counterparts due to their high surface area-to-volume ratio per unit mass, which plays a vital role in bioavailability of these nanoparticles to its surroundings. This study explores how changes in the spin-spin nuclear relaxation time can be used to gauge the availability of surface area and suspension stability of selected nanoparticles (CuO, ZnO, and SiO2), in a range of simulated media. Spin-spin nuclear relaxation time can be mathematically correlated to wetted surface area, which is well backed up by the data of hydrodynamic size measurements and suspension stability. We monitored the change in spin-spin relaxation time for all the nanoparticles, over a range of concentrations (2.5 -100 ppm) in deionized water and artificial seawater. Selective concentrations of nanoparticle suspensions were subjected for temporal studies over a period of 48 hrs to understand the concept of spin-spin nuclear relaxation time-based reactivity of nanoparticle suspension. The nanoparticles showed high degree of agglomeration, when suspended in artificial seawater. This was captured by a decrease in spin-spin nuclear relaxation time and also an increment in the hydrodynamic size of the nanoparticles.
Estimating Pore Properties from NMR Relaxation Time Measurements in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Grunewald, E.; Knight, R.
2008-12-01
The link between pore geometry and the nuclear magnetic resonance (NMR) relaxation time T2 is well- established for simple systems but is poorly understood for complex media with heterogeneous pores. Conventional interpretation of NMR relaxation data employs a model of isolated pores in which each hydrogen proton samples only one pore type, and the T2-distribution is directly scaled to estimate a pore-size distribution. During an actual NMR measurement, however, each proton diffuses through a finite volume of the pore network, and so may sample multiple pore types encountered within this diffusion cell. For cases in which heterogeneous pores are strongly coupled by diffusion, the meaning of the T2- distribution is not well understood and further research is required to determine how such measurements should be interpreted. In this study we directly investigate the implications of pore coupling in two groups of laboratory NMR experiments. We conduct two suites of experiments, in which samples are synthesized to exhibit a range of pore coupling strengths using two independent approaches: (a) varying the scale of the diffusion cell and (b) varying the scale over which heterogeneous pores are encountered. In the first set of experiments, we vary the scale of the diffusion cell in silica gels which have a bimodal pore-size distribution comprised of intragrannular micropores and much larger intergrannular pores. The untreated gel exhibits strong pore coupling with a single broad peak observed in the T2-distribution. By treating the gel with varied amounts of paramagnetic iron surface coatings, we decrease the surface relaxation time, T2S, and effectively decrease both the size of the diffusion cell and the degree of pore coupling. As more iron is coated to the grain surfaces, we observe a separation of the broad T2-distribution into two peaks that more accurately represent the true bimodal pore-size distribution. In the second set of experiments, we vary the scale over
Bedroom media, sedentary time and screen-time in children: a longitudinal analysis
2013-01-01
Background Having electronic media in the bedroom is cross-sectionally associated with greater screen-time in children, but few longitudinal studies exist. The aim of this study was to describe longitudinal patterns of ownership and examine cross-sectional and longitudinal associations of bedroom media with children’s sedentary behaviour. Methods Data are from the Sport, Physical activity and Eating behaviour: Environmental Determinants in Young people (SPEEDY) study, collected at 3 time-points: baseline (2007, T0; age 10.3 ± 0.3 years), 1-year (T1y) and 4-year (T4y) follow-up. For each assessment, 1512 (44.9% male), 715 (41.0% male), and 319 (48.3% male) participants provided valid accelerometer data. Outcome variables were accelerometer-assessed sedentary time and self-reported screen-time. The presence of a television or computer in the bedroom was self-reported by participants and a combined bedroom media score calculated as the sum of such items. Cross-sectional and longitudinal associations between bedroom media and each outcome were examined using multi-level linear regression. Results Bedroom TV ownership fell from 70.9% at T0 to 42.5% at T4y. Having a TV in the bedroom (beta; 95% CI*100, T0: -1.17; -1.88, -0.46. T1y: -1.68; -2.67, -0.70) and combined bedroom media (T0: -0.76; -1.26, -0.27. T1y: -0.79; -1.51, -0.07) were negatively associated with objectively measured weekly sedentary time at T0 and T1y. Having a computer in the bedroom (beta; 95% CI, T0: 0.15; 0.02, 0.29. T4y: 0.35; 0.10, 0.60) and combined bedroom media (T0: 0.09: 0.01, 0.18. T4y: 0.20; 0.05, 0.34) were positively associated with screen-time at T0 and T4y. Relative to participants without a computer throughout the study, children that had a computer in their bedroom at T0 but not at T4y (beta; 95% CI for change in screen-time: -8.02; -12.75, -3.29) reported smaller increases in screen-time. Conclusions The bedroom media environment changes with age and exhibits a complex
NASA Astrophysics Data System (ADS)
Monaretto, Tatiana; Andrade, Fabiana Diuk; Moraes, Tiago Bueno; Souza, Andre Alves; deAzevedo, Eduardo Ribeiro; Colnago, Luiz Alberto
2015-10-01
T1 and T2 relaxation times have been frequently used as probes for physical-chemical properties in several time-domain NMR applications (TD-NMR) such as food, polymers and petroleum industries. T2 measurements are usually achieved using the traditional Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence because it is a fast and robust method. On the other hand, the traditional methods for determining T1, i.e., inversion and saturation recovery, are time-consuming, driving several authors to develop rapid 1D and 2D methods to obtain T1 and T2 or T1/T2 ratio. However, these methods usually require sophisticated processing and/or high signal to noise ratio (SNR). This led us to develop simple methods for rapid and simultaneous determination of T1 and T2 using Continuous Wave Free Precession (CWFP) and Carr-Purcell Continuous Wave Free Precession (CP-CWFP) pulse sequences. Nevertheless, a drawback of these sequences is that they require specific adjustment of the frequency offset or the time interval between pulses (Tp). In this paper we present an alternative form of these sequences, named CWFPx-x, CP-CWFPx-x, where a train of π/2 pulses with phases alternated by π enable performing the experiments on-resonance and independently of Tp, when Tp < T2∗ . Moreover, a CPMG type sequence with π/2 refocusing pulses shows similar results to CP-CWFP when the pulses are alternated between y and -y axis, CPMG90y-y. In these approaches, the relaxation times are determined using the magnitude of the signals after the first pulse |M0| and in the steady-state |Mss|, as well as the exponential time constant T∗ to reach the steady-state regime, as in conventional CWFP. CP-CWFPx-x shows the highest dynamic range to measure T∗ among CWFP sequences and, therefore, is the best technique to measure T1 and T2 since it is less susceptible to SNR and can be performed for any T1/T2 ratio.
Soroushian, Behrouz; Yang, Xinmai
2011-01-01
Modulated tone-burst light was employed to measure non-radiative relaxation time of fluorophores with biomedical importance through photoacoustic effect. Non-radiative relaxation time was estimated through the frequency dependence of photoacoustic signal amplitude. Experiments were performed on solutions of new indocyanine green (IR-820), which is a near infrared dye and has biomedical applications, in two different solvents (water and dimethyl sulfoxide (DMSO)). A 1.5 times slower non-radiative relaxation for the solution of dye in DMSO was observed comparing with the aqueous solution. This result agrees well with general finding that non-radiative relaxation of molecules in triplet state depends on viscosity of solvents in which they are dissolved. Measurements of the non-radiative relaxation time can be used as a new source of contrast mechanism in photoacoustic imaging technique. The proposed method has potential applications such as imaging tissue oxygenation and mapping of other chemophysical differences in microenvironment of exogenous biomarkers. PMID:22025981
NASA Astrophysics Data System (ADS)
Mitchell, J.; Chandrasekera, T. C.
2014-12-01
The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Kokshenev, Valery B; Borges, Pablo D; Sullivan, Neil S
2005-03-15
The primary relaxation time scale tau(T) derived from the glass forming supercooled liquids (SCLs) is discussed within ergodic-cluster Gaussian statistics, theoretically justified near and above the glass-transformation temperature T(g). An analysis is given for the temperature-derivative data by Stickel et al. on the steepness and the curvature of tau(T). Near the mode-coupling-theory (MCT) crossover T(c), these derivatives separate by a kink and a jump, respectively, the moderately and strongly SCL states. After accounting for the kink and the jump, the steepness remains a piecewise conitnuous function, a material-independent equation for the three fundamental characteristic temperatures, T(g), T(c), and the Vogel-Fulcher-Tamman (VFT) T(0), is found. Both states are described within the heterostructured model of solidlike clusters parametrized in a self-consistent manner by a minimum set of observable parameters: the fragility index, the MCT slowing-down exponent, and the chemical excess potential of Adam and Gibbs model (AGM). Below the Arrhenius temperature, the dynamically and thermodynamically stabilized clusters emerge with a size of around of seven to nine and two to three molecules above and close to T(g) and T(c), respectively. On cooling, the main transformation of the moderately into the strongly supercooled state is due to rebuilding of the cluster structure, and is attributed to its rigidity, introduced through the cluster compressibility. It is shown that the validity of the dynamic AGM (dynamically equivalent to the standard VFT form) is limited by the strongly supercooled state (T(g) < T < T(c)) where the superrigid cooperative rearranging regions are shown to be well-chosen parametrized solidlike clusters. Extension of the basic parameter set by the observable kinetic and diffusive exponents results in prediction of a subdiffusion relaxation regime in SCLs that is distinct from that established for amorphous polymers.
Mitchell, J.; Chandrasekera, T. C.
2014-12-14
The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{sup k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Time Out from Tension: Teaching Young Children How To Relax. Teaching Strategies.
ERIC Educational Resources Information Center
Scully, Patricia
2003-01-01
Discusses how using relaxation and stress reduction activities with individual preschool and elementary school-age children during difficult periods can help them regain control, and how integrating relaxation techniques into everyday activities helps to establish positive behavior patterns to support healthy living. Presents breathing activities…
Wang, Li-Na; Tao, Hong; Zhao, Yue; Zhou, Yu-Qiu; Jiang, Xiu-Rong
2014-07-01
Clinical studies have shown that biofeedback-assisted relaxation positively influences the treatment outcomes of sleep disturbance. However, there are only few studies reporting the timing of relaxation training initiation, and the relationships between the timing of initiation and the effectiveness of relaxation remain unclear. The aim of this study was to determine the optimal timing for initiating nurse-led biofeedback-assisted relaxation on hospitalized coronary heart disease patients with sleep disturbance. An experimental pretest and repeated posttest design was used to compare the effectiveness of nurse-led biofeedback-assisted relaxation. A total of 128 patients with coronary heart disease were randomly assigned to 1 of 4 groups: morning group, night group, morning-night group, or control group. Outcome measures included self-report of sleep-related indicators, the scores of the Pittsburgh Sleep Quality Index (PSQI) and the Zung's Self-rating Anxiety Scale (SAS), and the dosage of sleep medication used. A 2-way analysis of variance and a simple effect test were used to analyze the differences among the 4 groups. No significant differences could be detected at baseline. Compared with the control group, the nurse-led biofeedback-assisted relaxation yielded a greater benefit for patients in the 3 intervention groups. Group and time factors (pretest-protest) could explain the variation in the effectiveness of this program (main effect P < .01). There were statistical differences among the groups: patients in the night group (FSOL = 33.15, P < .001; FTST = 17.99, P < .001; FSE = 10.26, P = .002; FPSQI = 27.38, P < .001; FSAS = 54.39, P < .001, respectively) and in the morning-night group (FSOL = 33.62, P < .001; FTST = 34.13, P < .001; FSE = 24.04, P < .001; FPSQI = 31.26, P < .001; FSAS = 73.93, P < .001, respectively) had slightly shorter sleep latency, experienced fewer awakenings, reported higher sleep quality, and used significantly fewer sleep medications
Hoad, Caroline L; Palaniyappan, Naaventhan; Kaye, Philip; Chernova, Yulia; James, Martin W; Costigan, Carolyn; Austin, Andrew; Marciani, Luca; Gowland, Penny A; Guha, Indra N; Francis, Susan T; Aithal, Guruprasad P
2015-06-01
Liver biopsy is the standard test for the assessment of fibrosis in liver tissue of patients with chronic liver disease. Recent studies have used a non-invasive measure of T1 relaxation time to estimate the degree of fibrosis in a single slice of the liver. Here, we extend this work to measure T1 of the whole liver and investigate the effects of additional histological factors such as steatosis, inflammation and iron accumulation on the relationship between liver T1 and fibrosis. We prospectively enrolled patients who had previously undergone liver biopsy to have MR scans. A non-breath-holding, fast scanning protocol was used to acquire MR relaxation time data (T1 and T2*), and blood serum was used to determine the enhanced liver fibrosis (ELF) score. Areas under the receiver operator curves (AUROCs) for T1 to detect advanced fibrosis and cirrhosis were derived in a training cohort and then validated in a second cohort. Combining the cohorts, the influence of various histology factors on liver T1 relaxation time was investigated. The AUROCs (95% confidence interval (CI)) for detecting advanced fibrosis (F ≥ 3) and cirrhosis (F = 4) for the training cohort were 0.81 (0.65-0.96) and 0.92 (0.81-1.0) respectively (p < 0.01). Inflammation and iron accumulation were shown to significantly alter T1 in opposing directions in the absence of advanced fibrosis; inflammation increasing T1 and iron decreasing T1. A decision tree model was developed to allow the assessment of early liver disease based on relaxation times and ELF, and to screen for the need for biopsy. T1 relaxation time increases with advanced fibrosis in liver patients, but is also influenced by iron accumulation and inflammation. Together with ELF, relaxation time measures provide a marker to stratify patients with suspected liver disease for biopsy.
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2014-01-21
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible
Change over Time: Conducting Longitudinal Studies of Children’s Cognitive Development
Grammer, Jennie K.; Coffman, Jennifer L.; Ornstein, Peter A.; Morrison, Frederick J.
2014-01-01
Developmental scientists have argued that the implementation of longitudinal methods is necessary for obtaining an accurate picture of the nature and sources of developmental change (Magnusson & Cairns, 1996; Morrison & Ornstein, 1996; Magnusson & Stattin, 2006). Developmentalists studying cognition have been relatively slow to embrace longitudinal research, and thus few exemplar studies have tracked individual children’s cognitive performance over time and even fewer have examined contexts that are associated with this growth. In this article we first outline some of the benefits of implementing longitudinal designs. Using illustrations from existing studies of children’s basic cognitive development and of their school-based academic performance, we discuss when it may be appropriate to employ longitudinal (versus other) methods. We then outline methods for integrating longitudinal data into one’s research portfolio, contrasting the leveraging of existing longitudinal data sets with the launching of new longitudinal studies in order to address specific questions concerning cognitive development. Finally, for those who are interested in conducting longitudinal investigations of their own, we provide practical on-the-ground guidelines for designing and carrying out such studies of cognitive development. PMID:24955035
Tabraiz, Shamas; Haydar, Sajjad; Sallis, Paul; Nasreen, Sadia; Mahmood, Qaisar; Awais, Muhammad; Acharya, Kishor
2017-08-01
Intermittent backwashing and relaxation are mandatory in the membrane bioreactor (MBR) for its effective operation. The objective of the current study was to evaluate the effects of run-relaxation and run-backwash cycle time on fouling rates. Furthermore, comparison of the effects of backwashing and relaxation on the fouling behavior of membrane in high rate submerged MBR. The study was carried out on a laboratory scale MBR at high flux (30 L/m(2)·h), treating sewage. The MBR was operated at three relaxation operational scenarios by keeping the run time to relaxation time ratio constant. Similarly, the MBR was operated at three backwashing operational scenarios by keeping the run time to backwashing time ratio constant. The results revealed that the provision of relaxation or backwashing at small intervals prolonged the MBR operation by reducing fouling rates. The cake and pores fouling rates in backwashing scenarios were far less as compared to the relaxation scenarios, which proved backwashing a better option as compared to relaxation. The operation time of backwashing scenario (lowest cycle time) was 64.6% and 21.1% more as compared to continuous scenario and relaxation scenario (lowest cycle time), respectively. Increase in cycle time increased removal efficiencies insignificantly, in both scenarios of relaxation and backwashing.
Rajagopal, Senthilkumar; Nalli, Ancy D; Kumar, Divya P; Bhattacharya, Sayak; Hu, Wenhui; Mahavadi, Sunila; Grider, John R; Murthy, Karnam S
2015-03-01
The effect of proinflammatory cytokines on the expression and activity of soluble guanylyl cyclase (sGC) and cGMP-phosphodiesterases (PDEs) was determined in intestinal longitudinal smooth muscle. In control muscle cells, cGMP levels are regulated via activation of sGC and PDE5; the activity of the latter is regulated via feedback phosphorylation by cGMP-dependent protein kinase. In muscle cells isolated from muscle strips cultured with interleukin-1β (IL-1β) or tumor necrosis factor α (TNF-α) or obtained from the colon of TNBS (2,4,6-trinitrobenzene sulfonic acid)-treated mice, expression of inducible nitric oxide synthase (iNOS) was induced and sGC was S-nitrosylated, resulting in attenuation of nitric oxide (NO)-induced sGC activity and cGMP formation. The effect of cytokines on sGC S-nitrosylation and activity was blocked by the iNOS inhibitor 1400W [N-([3-(aminomethyl)phenyl]methyl)ethanimidamide dihydrochloride]. The effect of cytokines on cGMP levels measured in the absence of IBMX (3-isobutyl-1-methylxanthine), however, was partly reversed by 1400W or PDE1 inhibitor vinpocetine and completely reversed by a combination of 1400W and vinpocetine. Expression of PDE1A was induced and was accompanied by an increase in PDE1A activity in muscle cells isolated from muscle strips cultured with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice; the effect of cytokines on PDE1 expression and activity was blocked by MG132 (benzyl N-[(2S)-4-methyl-1-[[(2S)-4-methyl-1-[[(2S)-4-methyl-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]amino]-1-oxopentan-2-yl]carbamate), an inhibitor of nuclear factor κB activity. NO-induced muscle relaxation was inhibited in longitudinal muscle cells isolated from muscle strips cultured with IL-1β or TNF-α or obtained from the colon of TNBS-treated mice, and this inhibition was completely reversed by the combination of both 1400W and vinpocetine. Inhibition of smooth muscle relaxation during inflammation reflects the combined
Analytical estimate of phase mixing time of longitudinal Akhiezer-Polovin waves
NASA Astrophysics Data System (ADS)
Mukherjee, Arghya; Sengupta, Sudip
2014-11-01
Phase mixing of a longitudinal Akhiezer-Polovin wave subjected to a small amplitude longitudinal perturbation and its eventual breaking is studied analytically. It is well known that longitudinal Akhiezer-Polovin wave subjected to arbitrarily small longitudinal perturbation breaks via the process of phase mixing at an amplitude well below its limiting amplitude [Verma et al., Phys. Rev. Lett. 108, 125005 (2012)]. We analytically show that the phase mixing time (breaking time, ωpτmix) scales with β (phase velocity) and um(maximum fluid velocity) as ωpτmi x˜2/πβ 3 δ [1 /um2-1 /4 ] , where δ is the amplitude of velocity perturbation and ωp is the non-relativistic plasma frequency. This analytical dependence of phase mixing time on β, um, and δ is further verified using numerical simulations based on Dawson sheet model.
NASA Astrophysics Data System (ADS)
Morozova, O. B.; Tsentalovich, Yu. P.; Yurkovskaya, A. V.; Sagdeev, R. Z.
1995-12-01
The kinetics of the nuclear polarization formed during the photolysis of acetone in isopropanol- d8 were analyzed quantitatively. Model calculations show that the spin-selective recombination of radicals gives rise to the electron polarization and, with regard to the electron-nuclear cross-relaxation, are adequate to describe the formation of the net nuclear polarization of the reaction products even if the solution contains only one type of radical. For the 2-hydroxy-2-propyl radicals at a magnetic field of 7 T, fitting the theoretical results to the experimental data gives the electron relaxation time T1e = 1.0 ± 0.2 μs and the cross-relaxation time Tx = 92 ± 18 μs.
Chang, Wen-Jer; Ku, Cheung-Chieh; Huang, Pei-Hwa; Chang, Wei
2009-07-01
In order to design a fuzzy controller for complex nonlinear systems, the work of this paper deals with developing the relaxed stability conditions for continuous-time affine Takagi-Sugeno (T-S) fuzzy models. By applying the passivity theory and Lyapunov theory, the relaxed stability conditions are derived to guarantee the stability and passivity property of closed-loop systems. Based on these relaxed stability conditions, the synthesis of fuzzy controller design problem for passive continuous-time affine T-S fuzzy models can be easily solved via the Optimal Convex Programming Algorithm (OCPA) and Linear Matrix Inequality (LMI) technique. At last, a simulation example for the fuzzy control of a nonlinear synchronous generator system is presented to manifest the applications and effectiveness of proposed fuzzy controller design approach.
Dinh, Thanh-Chung; Renger, Thomas
2016-07-21
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures
NASA Astrophysics Data System (ADS)
Dinh, Thanh-Chung; Renger, Thomas
2016-07-01
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures
Yoshioka, Sumie; Aso, Yukio; Osako, Tsutomu; Kawanishi, Toru
2008-10-01
In order to examine the possibility of determining the molecular mobility of hydration water in active pharmaceutical ingredient (API) hydrates by NMR relaxation measurement, spin-spin relaxation and spin-lattice relaxation were measured for the 11 API hydrates listed in the Japanese Pharmacopeia using pulsed (1)H-NMR. For hydration water that has relatively high mobility and shows Lorentzian decay, molecular mobility as determined by spin-spin relaxation time (T(2)) was correlated with ease of evaporation under both nonisothermal and isothermal conditions, as determined by DSC and water vapor sorption isotherm analysis, respectively. Thus, T(2) may be considered a useful parameter which indicates the molecular mobility of hydration water. In contrast, for hydration water that has low mobility and shows Gaussian decay, T(2) was found not to correlate with ease of evaporation under nonisothermal conditions, which suggests that in this case, the molecular mobility of hydration water was too low to be determined by T(2). A wide range of water mobilities was found among API hydrates, from low mobility that could not be evaluated by NMR relaxation time, such as that of the water molecules in pipemidic acid hydrate, to high mobility that could be evaluated by this method, such as that of the water molecules in ceftazidime hydrate. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Kim, Ilki; von Spakovsky, Michael R.
2017-08-01
Quantum systems driven by time-dependent Hamiltonians are considered here within the framework of steepest-entropy-ascent quantum thermodynamics (SEAQT) and used to study the thermodynamic characteristics of such systems. In doing so, a generalization of the SEAQT framework valid for all such systems is provided, leading to the development of an ab initio physically relevant expression for the intrarelaxation time, an important element of this framework and one that had as of yet not been uniquely determined as an integral part of the theory. The resulting expression for the relaxation time is valid as well for time-independent Hamiltonians as a special case and makes the description provided by the SEAQT framework more robust at the fundamental level. In addition, the SEAQT framework is used to help resolve a fundamental issue of thermodynamics in the quantum domain, namely, that concerning the unique definition of process-dependent work and heat functions. The developments presented lead to the conclusion that this framework is not just an alternative approach to thermodynamics in the quantum domain but instead one that uniquely sheds new light on various fundamental but as of yet not completely resolved questions of thermodynamics.
Picosecond-time-resolved studies of nonradiative relaxation in ruby and alexandrite
Gayen, S.K.; Wang, W.B.; Petricevic, V.; Alfano, R.R.
1985-01-01
Dynamics of the nonradiative transitions between the /sup 4/T/sub 2/ pump band and the /sup 2/E storage level of the Cr/sup 3 +/ ion in ruby and alexandrite crystals is studied using the picosecond excite-and-probe absorption technique. A 527-nm picosecond pulse excites the /sup 4/T/sub 2/ state of the Cr/sup 3 +/ ion, and an infrared picosecond probe pulse monitors the subsequent growth and decay of population in the excited states as a function of pump-probe delay. An upper limit of 7 ps is determined for the nonradiative lifetime of the /sup 4/T/sub 2/ state in ruby. A vibrational relaxation time of 25 ps for the /sup 4/T/sub 2/ band in alexandrite is estimated. The time to attain thermal equilibrium population between the /sup 2/E and /sup 4/T/sub 2/ levels of alexandrite following excitation of /sup 4/T/sub 2/ band is estimated to be approx. 100 ps.
Electron Spin Relaxation and Coherence Times in Si/SiGe Quantum Dots
NASA Astrophysics Data System (ADS)
Jock, R. M.; He, Jianhua; Tyryshkin, A. M.; Lyon, S. A.; Lee, C.-H.; Huang, S.-H.; Liu, C. W.
2013-03-01
Single electron spin states in Si/SiGe quantum dots have shown promise as qubits for quantum information processing. Recently, electron spins in gated Si/SiGe quantum dots have displayed relaxation (T1) and coherence (T2) times of 250 μs at 350mK. The experiments used conventional X-band (10 GHz) pulsed Electron Spin Resonance (pESR) on a large area (3.5 x 20 mm2) , double gated, undoped Si/SiGe heterostructure, which was patterned with 2 x 108 quantum dots using e-beam lithography. Dots with 150 nm radii and 700 nm period are induced in a natural Si quantum well by the gates. Smaller dots are expected to reduce the effects of nearly degenerate valley states and spin-orbit coupling on the electron spin coherence. However, the small number of spins makes signal recovery extremely challenging. We have implemented a broadband cryogenic HEMT low-noise-amplifier and a high-speed single-pole double-throw switch operating at liquid helium temperatures. The switch and preamp have improved our signal to noise by an order of magnitude, allowing for smaller samples and shorter measurement times. We will describe these improvements and the data they have enabled. supported by the ARO
NASA Astrophysics Data System (ADS)
Ma, Qiang; Chen, Zhenqian; Liu, Hao
2017-07-01
In this paper, to predict the dynamics behaviors of flow and mass transfer with adsorption phenomena in porous media at the representative elementary volume (REV) scale, a multiple-relaxation-time (MRT) lattice Boltzmann (LB) model for the convection-diffusion equation is developed to solve the transfer problem with an unsteady source term in porous media. Utilizing the Chapman-Enskog analysis, the modified MRT-LB model can recover the macroscopic governing equations at the REV scale. The coupled MRT-LB model for momentum and mass transfer is validated by comparing with the finite-difference method and the analytical solution. Moreover, using the MRT-LB method coupled with the linear driving force model, the fluid transfer and adsorption behaviors of the carbon dioxide in a porous fixed bed are explored. The breakthrough curve of adsorption from MRT-LB simulation is compared with the experimental data and the finite-element solution, and the transient concentration distributions of the carbon dioxide along the porous fixed bed are elaborated upon in detail. In addition, the MRT-LB simulation results show that the appearance time of the breakthrough point in the breakthrough curve is advanced as the mass transfer resistance in the linear driving force model increases; however, the saturation point is prolonged inversely.
Deelchand, Dinesh Kumar; Henry, Pierre-Gilles; Uǧurbil, Kâmil; Marjańska, Małgorzata
2012-04-01
Accurate quantification of (1) H NMR spectra often requires knowledge of the relaxation times to correct for signal losses due to relaxation and saturation. In human brain, T(2) values for singlets such as N-acetylaspartate, creatine, and choline have been reported, but few T(2) values are available for J-coupled spin systems. The purpose of this study was to measure the T(2) relaxation times of J-coupled metabolites in the human occipital lobe using the LASER sequence. Spectra were acquired at multiple echo times and were analyzed with an LCModel using basis sets simulated at each echo time. Separate basis spectra were used for resonances of protons belonging to the same molecule but having very different T(2) values (e.g., two separate basis spectra were used for the singlet and multiplet signal in N-acetylaspartate). The T(2) values for the N-acetylaspartate multiplet (149 ± 12 ms), glutamate (125 ± 10 ms), myo-inositol (139 ± 20 ms), and taurine (196 ± 28 ms) were successfully measured in the human visual cortex at 4 T. These measured T(2) relaxation times have enabled the accurate and absolute quantification of cerebral metabolites at longer echo times. Copyright © 2011 Wiley-Liss, Inc.
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.
NASA Technical Reports Server (NTRS)
1983-01-01
The results of a piloted simulation of longitudinal handling qualities of an airplane with relaxed static stability are described. This task was performed under the Integrated Application of Active Controls (IAAC) Technology Project within the NASA Energy Efficient Transport Program. A representative medium range transport airplane, the Boeing Model 757, was simulated. Evaluations were made of the unaugmented airplane and of the airplane with an Essential Pitch Augmented Stability (PAS) System and with a Primary PAS System at various center of gravity (cg) conditions. Level 2 pilot ratings were attained with cg locations aft to about 57% mean aerodynamic chord (MAC) or 6% aft of the neutral point for unaugmented landing approach. For Mach = 0.80, unaugmented cruise Level 2 ratings were attained to 47% MAC or 5% forward of the maneuver point. The augmented airplane model provided handling qualities close to or within the Level 1 boundary at all cg locations for both Essential and Primary PAS. Analyses of the test conditions when compared with existing handling qualities criteria based on classical unaugmented airplane characteristics agreed well with the pilot ratings. The unaugmented results are comparable to those reported by both the Douglas Aircraft Company and Lockheed California Company from simulation investigations of transport configurations with roughly similar dimensional and mass characteristics.
Grain boundary effects on the optical constants and Drude relaxation times of silver films
NASA Astrophysics Data System (ADS)
Jiang, Yajie; Pillai, Supriya; Green, Martin A.
2016-12-01
Silver demonstrates the unique optical properties that make it suitable for various plasmonic applications. Determining the accurate optical constants for silver and investigating its dependence on grain structures are necessary for reliable theoretical predictions. This work investigates the effects of different deposition conditions and the resultant variable grain sizes, upon the optical properties of the silver films in conjunction with ellipsometry and optical characterization. Annealing conditions of substrate SiNx films were also studied to ensure good quality of deposited polycrystalline silver films. The effects of grain sizes of silver on its electronic relaxation times were studied and shown to be consistent with the theoretical electrical resistivity model. This study shows that voids and surface layers can affect the optical constant values and that reproducible results can be obtained by avoiding such artefacts. The results will have implications on the analysis of different silver based nanostructures like nanowires and nanorods where grain boundary scattering can affect the optical and electrical properties like reflection and resistivity.
Role of band-index-dependent transport relaxation times in anomalous Hall effect
NASA Astrophysics Data System (ADS)
Xiao, Cong; Li, Dingping; Ma, Zhongshui
2017-01-01
We revisit model calculations of the anomalous Hall effect (AHE) and show that, in isotropic Rashba-coupled two-dimensional electron gas with pointlike potential impurities, the full solution of the semiclassical Boltzmann equation (SBE) may differ from the widely used 1 /τ|| and 1 /τ⊥ solution [Schliemann and Loss, Phys. Rev. B 68, 165311 (2003), 10.1103/PhysRevB.68.165311]. Our approach to solving the SBE is consistent with the integral equation approach [Vyborny et al., Phys. Rev. B 79, 045427 (2009), 10.1103/PhysRevB.79.045427] but in the present case, we reduce the description to band-index-dependent transport relaxation times. When both Rashba bands are partially occupied, these are determined by solving a system of linear equations. Detailed calculations show that, for intrinsic and hybrid skew scatterings the difference between 1 /τ|| and 1 /τ⊥ and the full solution of SBE is notable for large Fermi energies. For coordinate-shift effects, the side-jump velocity acquired in the interband elastic-scattering process is shown to be more important for larger Rashba coupling and may even exceed the intraband one for the outer Rashba band. The coordinate-shift contribution to AHE in the considered case notably differs from that in the limit of smooth disorder potential analyzed before.
NASA Astrophysics Data System (ADS)
Socratous, Josephine; Watanabe, Shun; Banger, Kulbinder K.; Warwick, Christopher N.; Branquinho, Rita; Barquinha, Pedro; Martins, Rodrigo; Fortunato, Elvira; Sirringhaus, Henning
2017-01-01
Despite the success of exploiting the properties of amorphous oxide semiconductors for device applications, the charge transport in these materials is still not clearly understood. The observation of a definite Hall voltage suggests that electron transport in the conduction band is free-electron-like. However, the temperature dependence of the Hall and field-effect mobilities cannot be explained using a simple bandlike model. Here, we perform gated Hall effect measurements in field-effect transistors, which allow us to make two independent estimates of the charge carrier concentration and determine the Hall factor providing information on the energy dependence of the relaxation time. We demonstrate that the Hall factor in a range of sputtered and solution-processed quaternary amorphous oxides, such as a-InGaZnO, is close to two, while in ternary oxides, such as InZnO, it is near unity. This suggests that quaternary elements like Ga act as strong ionized impurity scattering centers in these materials.
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2017-08-01
The possibility of obtaining analytical estimates in a diffusion approximation of the times needed by nonequilibrium small bodies to relax to their equilibrium states based on knowledge of the mass transfer coefficient is considered. This coefficient is expressed as the product of the self-diffusion coefficient and the thermodynamic factor. A set of equations for the diffusion transport of mixture components is formulated, characteristic scales of the size of microheterogeneous phases are identified, and effective mass transfer coefficients are constructed for them. Allowing for the developed interface of coexisting and immiscible phases along with the porosity of solid phases is discussed. This approach can be applied to the diffusion equalization of concentrations of solid mixture components in many physicochemical systems: the mutual diffusion of components in multicomponent systems (alloys, semiconductors, solid mixtures of inert gases) and the mass transfer of an absorbed mobile component in the voids of a matrix consisting of slow components or a mixed composition of mobile and slow components (e.g., hydrogen in metals, oxygen in oxides, and the transfer of molecules through membranes of different natures, including polymeric).
Kendall, William L.; Hines, James E.; Nichols, James D.; Grant, Evan H. Campbell
2013-01-01
Occupancy statistical models that account for imperfect detection have proved very useful in several areas of ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which it is assumed the species is either absent or present and available for detection while each sample is taken. However, for some species, individuals are only present or available for detection seasonally. We present a statistical model that relaxes the closure assumption within a season by permitting staggered entry and exit times for the species of interest at each site. Based on simulation, our open model eliminates bias in occupancy estimators and in some cases increases precision. The power to detect the violation of closure is high if detection probability is reasonably high. In addition to providing more robust estimation of occupancy, this model permits comparison of phenology across sites, species, or years, by modeling variation in arrival or departure probabilities. In a comparison of four species of amphibians in Maryland we found that two toad species arrived at breeding sites later in the season than a salamander and frog species, and departed from sites earlier.
Phylogeography Takes a Relaxed Random Walk in Continuous Space and Time
Lemey, Philippe; Rambaut, Andrew; Welch, John J.; Suchard, Marc A.
2010-01-01
Research aimed at understanding the geographic context of evolutionary histories is burgeoning across biological disciplines. Recent endeavors attempt to interpret contemporaneous genetic variation in the light of increasingly detailed geographical and environmental observations. Such interest has promoted the development of phylogeographic inference techniques that explicitly aim to integrate such heterogeneous data. One promising development involves reconstructing phylogeographic history on a continuous landscape. Here, we present a Bayesian statistical approach to infer continuous phylogeographic diffusion using random walk models while simultaneously reconstructing the evolutionary history in time from molecular sequence data. Moreover, by accommodating branch-specific variation in dispersal rates, we relax the most restrictive assumption of the standard Brownian diffusion process and demonstrate increased statistical efficiency in spatial reconstructions of overdispersed random walks by analyzing both simulated and real viral genetic data. We further illustrate how drawing inference about summary statistics from a fully specified stochastic process over both sequence evolution and spatial movement reveals important characteristics of a rabies epidemic. Together with recent advances in discrete phylogeographic inference, the continuous model developments furnish a flexible statistical framework for biogeographical reconstructions that is easily expanded upon to accommodate various landscape genetic features. PMID:20203288
[Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces
Not Available
1992-01-01
Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.
[Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces
Not Available
1992-12-31
Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.
Structural relaxation time and cooling rate of a melt in the glass transition region
NASA Astrophysics Data System (ADS)
Sanditov, D. S.; Sydykov, B. S.
2015-03-01
The nature of the parameter involved in the Bartenev equation qτg = C relating the cooling rate of a glass-forming melt to its structural relaxation time in the glass transition region is discussed on the basis of the Volkenshtein-Ptitsyn theory using a number of known relationships. It is established that parameter C for amorphous substances with the same fragility is linearly temperature dependent. This parameter is shown to equal the narrow temperature range δ T g characterizing the liquid-glass transition region (by Nemilov); i.e., C = δ T g. It is concluded that δ T g for most glassy systems is only ˜0.7% of the glass transition temperature T g. The narrowness of temperature range δ T g is explained by the small fluctuation volume fraction f g "frozen" at the glass transition temperature. The concept of a close relationship between constant C and the structural order at T g (i.e., the characteristic of the inner state of a nonequilibrium "frozen" amorphous system) is developed.
Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time
Wang, Zhaoran; Lu, Huanran; Liu, Han
2014-01-01
We provide statistical and computational analysis of sparse Principal Component Analysis (PCA) in high dimensions. The sparse PCA problem is highly nonconvex in nature. Consequently, though its global solution attains the optimal statistical rate of convergence, such solution is computationally intractable to obtain. Meanwhile, although its convex relaxations are tractable to compute, they yield estimators with suboptimal statistical rates of convergence. On the other hand, existing nonconvex optimization procedures, such as greedy methods, lack statistical guarantees. In this paper, we propose a two-stage sparse PCA procedure that attains the optimal principal subspace estimator in polynomial time. The main stage employs a novel algorithm named sparse orthogonal iteration pursuit, which iteratively solves the underlying nonconvex problem. However, our analysis shows that this algorithm only has desired computational and statistical guarantees within a restricted region, namely the basin of attraction. To obtain the desired initial estimator that falls into this region, we solve a convex formulation of sparse PCA with early stopping. Under an integrated analytic framework, we simultaneously characterize the computational and statistical performance of this two-stage procedure. Computationally, our procedure converges at the rate of 1∕t within the initialization stage, and at a geometric rate within the main stage. Statistically, the final principal subspace estimator achieves the minimax-optimal statistical rate of convergence with respect to the sparsity level s*, dimension d and sample size n. Our procedure motivates a general paradigm of tackling nonconvex statistical learning problems with provable statistical guarantees. PMID:25620858
Long Spin Relaxation and Coherence Times of Electrons In Gated Si/SiGe Quantum Dots
NASA Astrophysics Data System (ADS)
He, Jianhua; Tyryshkin, A. M.; Lyon, S. A.; Lee, C.-H.; Huang, S.-H.; Liu, C. W.
2012-02-01
Single electron spin states in semiconductor quantum dots are promising candidate qubits. We report the measurement of 250 μs relaxation (T1) and coherence (T2) times of electron spins in gated Si/SiGe quantum dots at 350 mK. The experiments used conventional X-band (10 GHz) pulsed electron spin resonance (pESR), on a large area (3.5 x 20 mm^2) dual-gate undoped high mobility Si/SiGe heterostructure sample, which was patterned with 2 x 10^8 quantum dots using e-beam lithography. Dots having 150 nm radii with a 700 nm period are induced in a natural Si quantum well by the gates. The measured T1 and T2 at 350 mK are much longer than those of free 2D electrons, for which we measured T1 to be 10 μs and T2 to be 6.5 μs in this gated sample. The results provide direct proof that the effects of a fluctuating Rashba field have been greatly suppressed by confining the electrons in quantum dots. From 0.35 K to 0.8 K, T1 of the electron spins in the quantum dots shows little temperature dependence, while their T2 decreased to about 150 μs at 0.8 K. The measured 350 mK spin coherence time is 10 times longer than previously reported for any silicon 2D electron-based structures, including electron spins confined in ``natural quantum dots'' formed by potential disorder at the Si/SiO2ootnotetextS. Shankar et al., Phys. Rev. B 82, 195323 (2010) or Si/SiGe interface, where the decoherence appears to be controlled by spin exchange.
Hu, Lili; Song, Tao; Yang, Wenhui; Wang, Ming; Zhang, Fang; Tao, Chunjing
2007-06-01
To research on the effect of three different magnetic nanoparticles upon relaxation time of proton. The detection by magnetic resonance imaging (MRI) indicates that there is the effect of marked difference to right control experiment and to analyze the difference from theory. The result discloses that will be able to perform the experiment of molecular recognition using magnetic nanoparticles later.
ERIC Educational Resources Information Center
Gasyna, Zbigniew L.; Jurkiewicz, Antoni
2004-01-01
An experiment designed for the physical chemistry laboratory where (super 13)C NMR is applied to determine the spin-lattice relaxation time for carbon atoms in n-hexanol is proposed. It is concluded that students learn the principles and concepts of NMR spectroscopy as well as dynamic NMR experiments.
Ikeda, Kazuhiro Kawaguchi, Hitoshi
2015-02-07
We performed measurements at room temperature for a GaAs/AlGaAs multiple quantum well grown on GaAs(110) using a time-resolved microscopic photoluminescence (micro-PL) technique to find what effects spin diffusion had on the measured electron spin relaxation time, τ{sub s}, and developed a method of estimating the spin diffusion coefficient, D{sub s}, using the measured data and the coupled drift-diffusion equations for spin polarized electrons. The spatial nonuniformities of τ{sub s} and the initial degree of electron spin polarization caused by the pump intensity distribution inside the focal spot were taken into account to explain the dependence of τ{sub s} on the measured spot size, i.e., a longer τ{sub s} for a smaller spot size. We estimated D{sub s} as ∼100 cm{sup 2}/s, which is similar to a value reported in the literature. We also provided a qualitative understanding on how spin diffusion lengthens τ{sub s} in micro-PL measurements.
ERIC Educational Resources Information Center
Lerner, Richard M.; Schwartz, Seth J.; Phelps, Erin
2009-01-01
Studying human development involves describing, explaining, and optimizing intraindividual change and interindividual differences in such change and, as such, requires longitudinal research. The selection of the appropriate type of longitudinal design requires selecting the option that best addresses the theoretical questions asked about…
2016-11-16
AFRL-RY-WP-TP-2016-0197 RELAXED BI-QUADRATIC OPTIMIZATION FOR JOINT FILTER-SIGNAL DESIGN IN SIGNAL-DEPENDENT SPACE -TIME ADAPTIVE PROCESSING...SIGNAL DESIGN IN SIGNAL-DEPENDENT SPACE -TIME ADAPTIVE PROCESSING (STAP) (PREPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c. PROGRAM...processing, space -time adaptive processing (STAP) 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT: SAR 8. NUMBER OF PAGES 82 19a
Kumar, Deepak; Subburaj, Karupppasamy; Lin, Wilson; Karampinos, Dimitrios C; McCulloch, Charles E; Li, Xiaojuan; Link, Thomas M; Souza, Richard B; Majumdar, Sharmila
2013-12-01
Controlled laboratory study using a cross-sectional design. To analyze the relationship of quadriceps-hamstrings and medial-lateral quadriceps anatomical cross-sectional area (ACSA) ratios with knee loads during walking and articular and meniscal cartilage composition in young, healthy subjects. Muscle forces affect knee loading during walking, but it is not known if muscle morphology is associated with walking mechanics and cartilage composition in young subjects. Forty-two knees from 27 young, healthy, active volunteers (age, 20-35 years; body mass index, <28 kg/m(2)) underwent 3-T magnetic resonance imaging (MRI) and 3-D motion capture. Standard MRI sequences were used for articular and meniscal cartilage T1rho and T2 relaxation times and for quadriceps and hamstrings muscle ACSA. Frontal plane kinetics during the stance phase of walking was calculated. Generalized estimating equation models were used to identify muscle variables that predicted MRI and gait parameters. Quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were positively related to frontal plane loading (β = .21-.54, P≤.006), global articular cartilage relaxation times (β = .22-.28, P≤.041), and the medial-lateral ratio of meniscus T1rho relaxation time (β = .26-.36, P≤.049). The medial-lateral quadriceps ACSA ratio was positively related to global meniscus T1rho relaxation times (β = .30, P = .046). Higher quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were associated with higher frontal plane loading during walking and with articular and meniscal cartilage T1rho and T2 relaxation times. These findings highlight the relationships between different knee tissues and knee mechanics in young, healthy individuals.
KUMAR, DEEPAK; SUBBURAJ, KARUPPPASAMY; LIN, WILSON; KARAMPINOS, DIMITRIOS C.; MCCULLOCH, CHARLES E.; LI, XIAOJUAN; LINK, THOMAS M.; SOUZA, RICHARD B.; MAJUMDAR, SHARMILA
2015-01-01
STUDY DESIGN Controlled laboratory study using a cross-sectional design. OBJECTIVES To analyze the relationship of quadriceps-hamstrings and medial-lateral quadriceps anatomical cross-sectional area (ACSA) ratios with knee loads during walking and articular and meniscal cartilage composition in young, healthy subjects. BACKGROUND Muscle forces affect knee loading during walking, but it is not known if muscle morphology is associated with walking mechanics and cartilage composition in young subjects. METHODS Forty-two knees from 27 young, healthy, active volunteers (age, 20-35 years; body mass index, <28 kg/m2) underwent 3-T magnetic resonance imaging (MRI) and 3-D motion capture. Standard MRI sequences were used for articular and meniscal cartilage T1rho and T2 relaxation times and for quadriceps and hamstrings muscle ACSA. Frontal plane kinetics during the stance phase of walking was calculated. Generalized estimating equation models were used to identify muscle variables that predicted MRI and gait parameters. RESULTS Quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were positively related to frontal plane loading (β = .27-.54, P≤.006), global articular cartilage relaxation times (β = .22-.28, P≤.041), and the medial-lateral ratio of meniscus T1rho relaxation time (β = .26-.36, P≤.049). The medial-lateral quadriceps ACSA ratio was positively related to global meniscus T1rho relaxation times (β = .30, P = .046). CONCLUSION Higher quadriceps-hamstrings and medial-lateral quadriceps ACSA ratios were associated with higher frontal plane loading during walking and with articular and meniscal cartilage T1rho and T2 relaxation times. These findings highlight the relationships between different knee tissues and knee mechanics in young, healthy individuals. PMID:24175607
Electrochemical properties and relaxation times of the hematite/water interface.
Shimizu, Kenichi; Boily, Jean-François
2014-08-12
Electric double layer properties and protonation rates at the surface of a mechanically and chemically polished (001) surface of hematite (α-Fe2O3) contacted with aqueous solutions of NaCl were extracted by electrochemical impedance spectroscopy (EIS). Effects of pH (4-12) and ionic strength (10-1000 mM) on the EIS response of the electrode were predicted using an electrical equivalent circuit model accounting for hematite bulk and interfacial processes. These efforts generated diffuse layer as well as compact layer capacitances and resistance values pertaining to interfacial processes. Diffuse layer capacitance values lie in the 0.5-0.6 μF cm(-2) region and are about 1.5 times smaller than those obtained on a roughened hematite surface. Compact layer capacitances are strongly pH dependent as they pertain to the transfer of ions (charge carriers) from the diffuse layer onto surface (hydr)oxo groups. These values, alongside those of resistance adsorption, pointed a 50% decrease in proton adsorption/desorption resistance under acidic and alkaline conditions relative to that of the point of zero charge (pH 8-9). Increasing ionic strength generally induces larger diffuse layer capacitances, larger adsorption capacitances, and lower resistance values. Such a response is in line with the concept for thinner electric double layers and facilitated proton adsorption reactions by solutions of high ionic strengths. Relaxation times pertaining to the transfer of charge carriers across the compact plane induced by the EIS experiments lie in the 0.7-4.2 s range and become larger under acidic conditions. Decreases in site availability and increases in electrostatic repulsion are two possible contributing factors impeding reaction rates below the point of zero charge. Collectively, these finding are underpinning important relationships between classical views on mineral surface complexation reactions and electrochemical views of semiconductor/water interfaces.
MRI of bone marrow in the distal radius: in vivo precision of effective transverse relaxation times
NASA Technical Reports Server (NTRS)
Grampp, S.; Majumdar, S.; Jergas, M.; Lang, P.; Gies, A.; Genant, H. K.
1995-01-01
The effective transverse relaxation time T2* is influenced by the presence of trabecular bone, and can potentially provide a measure of bone density as well as bone structure. We determined the in vivo precision of T2* in repeated bone marrow measurements. The T2* measurements of the bone marrow of the distal radius were performed twice within 2 weeks in six healthy young volunteers using a modified water-presaturated 3D Gradient-Recalled Acquisition at Steady State (GRASS) sequence with TE 7, 10, 12, 20, and 30; TR 67; flip angle (FA) 90 degrees. An axial volume covering a length of 5.6 cm in the distal radius was measured. Regions of interest (ROIs) were determined manually and consisted of the entire trabecular bone cross-section extending proximally from the radial subchondral endplate. Reproducibility of T2* and area measurements was expressed as the absolute precision error (standard deviation [SD] in ms or mm2) or as the relative precision error (SD/mean x 100, or coefficient of variation [CV] in %) between the two-point measurements. Short-term precision of T2* and area measurements varied depending on section thickness and location of the ROI in the distal radius. Absolute precision errors for T2* times were between 1.3 and 2.9 ms (relative precision errors 3.8-9.5 %) and for area measurements between 20 and 55 mm2 (relative precision errors 5.1-16.4%). This MR technique for quantitative assessment of trabecular bone density showed reasonable reproducibility in vivo and is a promising future tool for the assessment of osteoporosis.
On longitudinal prediction with time-to-event outcome: Comparison of modeling options.
Maziarz, Marlena; Heagerty, Patrick; Cai, Tianxi; Zheng, Yingye
2017-03-01
Long-term follow-up is common in many medical investigations where the interest lies in predicting patients' risks for a future adverse outcome using repeatedly measured predictors over time. A key quantity is the likelihood of developing an adverse outcome among individuals who survived up to time s given their covariate information up to time s. Simple, yet reliable, methodology for updating the predicted risk of disease progression using longitudinal markers remains elusive. Two main approaches have been considered in the literature. One approach, based on joint modeling (JM) of failure time and longitudinal covariate process (Tsiatis and Davidian, 2004), derives such longitudinal predictive probability from the joint probability of a longitudinal marker and an event at a given time. A second approach, the partly conditional (PC) modeling (Zheng and Heagerty, 2005), directly models the predictive probability conditional on survival up to a landmark time and information accrued by that time. In this article, we propose new PC models for longitudinal prediction that are more flexible than joint modeling and improve the prediction accuracy over existing PC models. We provide procedures for making inference regarding future risk for an individual with longitudinal measures up to a given time. In addition, we conduct simulations to evaluate both JM and PC approaches in order to provide practical guidance on modeling choices. We use standard measures of predictive accuracy adapted to our setting to explore the predictiveness of the two approaches. We illustrate the performance of the two approaches on a dataset from the End Stage Renal Disease Study (ESRDS).
Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P
2006-08-22
The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.
Zakharov, Anatoly I.; Adzhemyan, Loran Ts.; Shchekin, Alexander K.
2015-09-28
We have performed direct numerical calculations of the kinetics of relaxation in the system of surfactant spherical micelles under joint action of the molecular mechanism with capture and emission of individual surfactant molecules by molecular aggregates and the mechanism of fusion and fission of the aggregates. As a basis, we have taken the difference equations of aggregation and fragmentation in the form of the generalized kinetic Smoluchowski equations for aggregate concentrations. The calculations have been made with using the droplet model of molecular surfactant aggregates and two modified Smoluchowski models for the coefficients of aggregate-monomer and aggregate-aggregate fusions which take into account the effects of the aggregate size and presence of hydrophobic spots on the aggregate surface. A full set of relaxation times and corresponding relaxation modes for nonequilibrium aggregate distribution in the aggregation number has been found. The dependencies of these relaxation times and modes on the total concentration of surfactant in the solution and the special parameter controlling the probability of fusion in collisions of micelles with other micelles have been studied.
Biller, Joshua R.; Meyer, Virginia; Elajaili, Hanan; Rosen, Gerald M.; Kao, Joseph P.Y.; Eaton, Sandra S.; Eatona, Gareth R.
2011-01-01
Optimization of nitroxides as probes for EPR imaging requires detailed understanding of spectral properties. Spin lattice relaxation times, spin packet line widths, nuclear hyperfine splitting, and overall lineshapes were characterized for six low molecular weight nitroxides in dilute deoxygenated aqueous solution at X-band. The nitroxides included 6-member, unsaturated 5-member, or saturated 5-member rings, most of which were isotopically labeled. The spectra are near the fast tumbling limit with T1 ~ T2 in the range of 0.50 to 1.1 μs at ambient temperature. Both spin-lattice relaxation T1 and spin-spin relaxation T2 are longer for 15N- than for 14N-nitroxides. The dominant contributions to T1 are modulation of nitrogen hyperfine anisotropy and spin rotation. Dependence of T1 on nitrogen nuclear spin state mI was observed for both 14N and 15N. Unresolved hydrogen/deuterium hyperfine couplings dominate overall line widths. Lineshapes were simulated by including all nuclear hyperfine couplings and spin packet line widths that agreed with values obtained by electron spin echo. Line widths and relaxation times are predicted to be about the same at 250 MHz as at X-band. PMID:21843961
Harsh Corporal Punishment Is Associated With Increased T2 Relaxation Time in Dopamine-Rich Regions
Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M.; Teicher, Martin H.
2010-01-01
Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse. PMID:20600981
Mukaimoto, Takahiro; Semba, Syun; Inoue, Yosuke; Ohno, Makoto
2014-01-01
The purpose of this study was to examine the changes in the metabolic state of quadriceps femoris muscles using transverse relaxation time (T2), measured by muscle functional magnetic resonance (MR) imaging, after inactive or active recovery exercises with different intensities following high-intensity knee-extension exercise. Eight healthy men performed recovery sessions with four different conditions for 20 min after high-intensity knee-extension exercise on separate days. During the recovery session, the participants conducted a light cycle exercise for 20 min using a cycle (50%, 70% and 100% of the lactate threshold (LT), respectively: active recovery), and inactive recovery. The MR images of quadriceps femoris muscles were taken before the trial and after the recovery session every 30 min for 120 min. The percentage changes in T2 for the rectus femoris and vastus medialis muscles after the recovery session in 50% LT and 70% LT were significantly lower than those in either inactive recovery or 100% LT. There were no significant differences in those for vastus lateralis and vastus intermedius muscles among the four trials. The percentage changes in T2 of rectus femoris and vastus medialis muscles after the recovery session in 50% LT and 70% LT decreased to the values before the trial faster than those in either inactive recovery or 100% LT. Those of vastus lateralis and vastus intermedius muscles after the recovery session in 50% LT and 70% LT decreased to the values before the trial faster than those in 100% LT. Although the changes in T2 after active recovery exercises were not uniform in exercised muscles, the results of this study suggest that active recovery exercise with the intensities below LT are more effective to recover the metabolic state of quadriceps femoris muscles after intense exercise than with either intensity at LT or inactive recovery.
Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions.
Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M; Teicher, Martin H
2010-11-01
Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse.
A joint model for nonparametric functional mapping of longitudinal trajectory and time-to-event
Lin, Min; Wu, Rongling
2006-01-01
Background The characterization of the relationship between a longitudinal response process and a time-to-event has been a pressing challenge in biostatistical research. This has emerged as an important issue in genetic studies when one attempts to detect the common genes or quantitative trait loci (QTL) that govern both a longitudinal trajectory and developmental event. Results We present a joint statistical model for functional mapping of dynamic traits in which the event times and longitudinal traits are taken to depend on a common set of genetic mechanisms. By fitting the Legendre polynomial of orthogonal properties for the time-dependent mean vector, our model does not rely on any curve, which is different from earlier parametric models of functional mapping. This newly developed nonparametric model is demonstrated and validated by an example for a forest tree in which stemwood growth and the time to first flower are jointly modelled. Conclusion Our model allows for the detection of specific QTL that govern both longitudinal traits and developmental processes through either pleiotropic effects or close linkage, or both. This model will have great implications for integrating longitudinal and event data to gain better insights into comprehensive biology and biomedicine. PMID:16539724
Globus, Tatiana; Sizov, Igor; Gelmont, Boris
2014-01-01
Hydrogen bonds (H-bonds) in biological macromolecules are important for the molecular structure and functions. Since interactions via hydrogen bonds are weaker than covalent bonds, it can be expected that atomic movements involving H-bonds have low frequency vibrational modes. Sub-Terahertz (sub-THz) vibrational spectroscopy that combines measurements with molecular dynamics (MD) computational prediction has been demonstrated as a promising approach for biological molecule characterization. Multiple resonance absorption lines have been reported. The knowledge of relaxation times of atomic oscillations is critical for the successful application of THz spectroscopy for hydrogen bond characterization. The purpose of this work is to use atomic oscillations in the 0.35-0.7 THz range, found from molecular dynamic (MD) simulations of E.coli thioredoxin (2TRX), to study relaxation dynamics of two intra-molecular H-bonds, OH-N and OH-C. Two different complimentary techniques are used in this study, one is the analysis of the statistical distribution of relaxation time and dissipation factor values relevant to low frequency oscillations, and the second is the analysis of the autocorrelation function of low frequency quasi-periodic movements. By studying hydrogen bond atomic displacements, it was found that the atoms are involved in a number of collective oscillations, which are characterized by different relaxation time scales ranging from 2-3 ps to more than 150 ps. The existence of long lasting relaxation processes opens the possibility to directly observe and study H-bond vibrational modes in sub-THz absorption spectra of bio-molecules if measured with an appropriate spectral resolution. The results of measurements using a recently developed frequency domain spectroscopic sensor with a spectral resolution of 1 GHz confirm the MD analysis.
William T. Simpson; Xiping. Wang
2001-01-01
The relationship between longitudinal stress wave transit time and wood moisture content (MC) was examined as a potential means of estimating MC control points in dry kiln schedules for lumber. A linear relationship was found between the relative transit time and the average MC of sugar maple and ponderosa pine boards dried according to typical kiln schedules.
Longitudinal Hemispheric Differences During Geomagnetic Storm Times Examined with GITM
NASA Astrophysics Data System (ADS)
Greer, K.; Immel, T. J.; Ridley, A. J.
2015-12-01
Work by Immel and Mannucci [2013] has indicated that geomagnetic storms cause larger effects on the ionospheric TEC (Total Electron Count) in the American sector than anywhere else on the planet, suggesting that there is a longitude dependent (UT) effect which is important for correctly understanding the impact, structure and timing of geomagnetic storms. Using Global Ionosphere-Thermosphere Model (GITM) [Ridley et al., 2006] coupled with realistic transport, we examine the underlying mechanisms of the longitude-dependent storm enhancements. We accomplish this by using a case study storm observed on 5 August 2011 and then conducting model experiments with GITM by shifting the storm onset time over the course of 24 hours. TEC measurements, the Dst index, and IMF are used in conjunction with model output.
NASA Astrophysics Data System (ADS)
Vazina, A. A.; Gadzhiev, A. M.; Gerasimov, V. S.; Gorbunova, N. P.; Sergienko, P. M.; Korneev, V. N.; Aulchenko, V. M.; Baru, S. E.
1995-02-01
The use of the modern time-resolved X-ray diffraction and sample technique has played an important role in studying muscle structures during contraction at various physiological conditions. We represent time-resolved X-ray data on equatorial diffraction and tension response of the frog sartorius muscle during relaxation. The measurements of the time-course of the intensity change of reflections (1,0), (1,1) and the background under them give a possibility to study the effect of potentiation of contraction by repetitive stimulation in fresh and tired muscles. Model calculations of meridional diffraction patterns for various configurations of cross-bridges in the relaxation phase were carried out.
A stable and accurate relaxation technique using multiple penalty terms in space and time
NASA Astrophysics Data System (ADS)
Frenander, Hannes; Nordström, Jan
2017-09-01
A new method for data relaxation based on weak imposition of external data is introduced. The technique is simple, easy to implement, and the resulting numerical scheme is unconditionally stable. Numerical experiments show that the error growth naturally present in long term simulations can be prevented by using the new technique.
Pollack, L.; Smith, E.N.; Parpia, J.M.; Richardson, R.C. )
1992-06-01
Results are presented of measurements on a single crystal sample of scandium metal at temperatures down to 100 {mu}K using nuclear quadrupole resonance (NQR). Two regimes are found in the relaxation curves; an initial fast relaxation, followed by a slower relaxation consistent with the three exponential recovery expected for an I = 7/2 system in zero external magnetic field. The Korringa constant for this longer time relaxation in the sample is 90 {plus minus} 9 msec K{sup {minus}1}. By observing deviations in the ratio of the intensities of adjacent nuclear spin transitions at the lowest attainable temperatures, the authors were able to make a determination of the sign of the total electric field gradient present in the crystal. Results show that the lowest energy state of the nuclear spin system corresponds to m{sub I} = {plus minus} 7/2. A combination of these deviations and pulse NQR allows this system to be used as an absolute thermometer in the {mu}Kelvin regime.
NASA Astrophysics Data System (ADS)
Iyengar, Shruthi S.; Parthasarathi, Praveen; Selvan, Rekha; Bhattacharya, Sarbari; Ananthamurthy, Sharath
2016-04-01
Optical Tweezers are capable of trapping individual particles of sizes that range from micrometers to sub micrometers. One can compute the trap strength experienced by a particle by analyzing the fluctuations in the position of the trapped particle with time. It is reported that the trap strength of a dielectric bead increases linearly with increase in the power of the trapping laser. The situation with metallic particles, however, is strongly dependent on the particle size. Available literature shows that metallic Rayleigh particles experience enhanced trap strengths when compared to dielectric particles of similar sizes due to a larger polarizability. On the contrary, micrometer sized metallic particles are poor candidates for trapping due to high reflectivity. We report here that commercially available micrometer sized metal oxide core - dielectric shell (core - shell) beads are trapped in a single beam optical tweezer in a manner similar to dielectric beads. However as the laser power is increased these core - shell beads are trapped with a reduced corner frequency, which represents a lowered trap strength, in contrast to the situation with ordinary dielectric beads. We attribute this anomaly to an increase in the temperature of the medium in the vicinity of the core - shell bead due to an enhanced dissipation of the laser power as heat. We have computed autocorrelation functions for both types of beads at various trapping laser powers and observe that the variation in the relaxation times with laser power for core - shell beads is opposite in trend to that of ordinary dielectric beads. This supports our claim of an enhanced medium temperature about the trapped core - shell bead. Since an increase in temperature should lead to a change in the local viscosity of the medium, we have estimated the ratio of viscosity to temperature for core - shell and dielectric beads of the same size. We observe that while for ordinary dielectric beads this ratio remains a
Modeling Longitudinal Hemispheric Differences during Geomagnetic Storm Times
NASA Astrophysics Data System (ADS)
Greer, K.; Immel, T. J.; Ridley, A. J.
2014-12-01
Work by Immel and Mannucci [2013] has indicated that geomagnetic storms causes a larger effect on the ionospheric TEC (Total Electron Count) in the American sector than anywhere else on the planet, suggesting that there is a longitude dependent (UT) effect which is important for correctly understanding the impact, structure and timing of geomagnetic storms. Here we examine the extent to which numerical models appropriately reproduce the observed results. Using Global Ionosphere-Thermosphere Model (GITM) [Ridley et al., 2006] coupled with realistic transport to examine the underlying mechanisms of the longitude-dependent storm enhancements and whether these mid-latitude enhancements are connected to high-latitude changes. TEC measurements, the Dst index, and are used in conjunction with model output.
Gas-phase spin relaxation of Xe129
NASA Astrophysics Data System (ADS)
Anger, B. C.; Schrank, G.; Schoeck, A.; Butler, K. A.; Solum, M. S.; Pugmire, R. J.; Saam, B.
2008-10-01
We have completed an extensive study of Xe129 longitudinal spin relaxation in the gas phase, involving both intrinsic and extrinsic mechanisms. The dominant intrinsic relaxation is mediated by the formation of persistent Xe2 van der Waals dimers. The dependence of this relaxation on applied magnetic field yields the relative contributions of the spin-rotation and chemical-shift-anisotropy interactions; the former dominates at magnetic fields below a few tesla. This relaxation also shows an inverse quadratic dependence on temperature T ; the maximum low-field intrinsic relaxation for pure xenon at room temperature (measured here to be 4.6h , in agreement with previous work) increases by ≈60% for T=100°C . The dominant extrinsic relaxation is mediated by collisions with the walls of the glass container. Wall relaxation was studied in silicone-coated alkali-metal-free cells, which showed long (many hours or more) and robust relaxation times, even at the low magnetic fields typical for spin-exchange optical pumping (≈3mT) . The further suppression of wall relaxation for magnetic fields above a few tesla is consistent with the interaction of Xe129 with paramagnetic spins on or inside the surface coating. At 14.1T and sufficiently low xenon density, we measured a relaxation time T1=99h , with an inferred wall-relaxation time of 174h . A prototype large storage cell ( 12cm diameter) was constructed to take advantage of the apparent increase in wall-relaxation time for cells with a smaller surface-to-volume ratio. The measured relaxation time in this cell at 3mT and 100°C was 5.75h . Such a cell (or one even larger) could be used to store many liters of hyperpolarized Xe129 produced by a flow-through polarizer and accumulator for up to three times longer than currently implemented schemes involving freezing xenon in liquid nitrogen.
Kumar, Deepak; Schooler, Joseph; Zuo, Jin; McCulloch, Charles E.; Nardo, Lorenzo; Link, Thomas M.; Li, Xiaojuan; Majumdar, Sharmila
2012-01-01
Objective To analyze knee trabecular bone structure and spatial cartilage T1ρ and T2 relaxation times using 3-T MRI in subjects with and without tears of posterior horn of medial meniscus (PHMM). Design 3-T MRI from 59 subjects (> 18 years), were used to evaluate PHMM tears based on modified WORMS scoring; and to calculate apparent trabecular bone - volume over total bone volume fraction (app. BV/TV), number (app. Tb.N), separation (app. Tb.Sp) and thickness (app. Tb.Th) for overall femur/tibia and medial/lateral femur/tibia; and relaxation times for deep and superficial layers of articular cartilage. A repeated measures analysis using GEE was performed to compare trabecular bone and cartilage relaxation time parameters between people with (n = 35) and without (n= 24) PHMM tears, while adjusting for age and knee OA presence. Results Subjects with PHMM tears had lower app. BV./TV and app. Tb.N, and greater app. Tb.Th, and app. Tb.Sp. They also had higher T1ρ times in the deep cartilage layer for lateral tibia and medial femur and higher T2 relaxation times for the deep cartilage layer across all compartments. Conclusions PHMM tears are associated with differences in underlying trabecular bone and deep layer of cartilage. Overload of subchondral bone can lead to its sclerosis and stress shielding of trabecular bone leading to the resorptive changes observed in this study. The results underline the importance of interactions of trabecular bone and cartilage in the pathogenesis of knee OA in people with PHMM tears. PMID:23047010
Souza, Richard B.; Fang, Charles; Luke, Anthony; Wu, Samuel; Li, Xiaojuan; Majumdar, Sharmila
2012-01-01
Background Articular cartilage of young healthy individuals is dynamic and responsive to loading behaviors. The purpose of this study was to evaluate the relationship of cartilage T1ρ and T2 relaxation times with loading kinetics during jumping tasks in healthy young individuals. Methods Fourteen healthy subjects underwent: 1) motion analysis while performing a unilateral hopping task and bilateral drop jumping task; and 2) quantitative imaging using a 3 Tesla MRI for T1ρ and T2 relaxation time analysis. Three dimensional net joint moments and angular impulse was calculated using standard inverse dynamics equations. Average T1ρ and T2 relaxation times and medial-lateral ratios for each were calculated. Multiple regression was used to identify predictors of cartilage relaxation times. Findings Average knee flexion moment during hopping was observed to best predict overall T1ρ (R2=.185) and T2 (R2=.154) values. Peak knee adduction moment during a drop jump was the best predictor of the T1ρ medial-lateral ratio (R2=.220). The T2 medial-lateral ratio was best predicted by average internal rotation moment during the drop jump (R2=.174). Interpretation These data suggest that loads across the knee may affect the biochemistry of the cartilage. In young healthy individuals, higher flexion moments were associated with decreased T1ρ and T2 values, suggesting a potentially beneficial effect. The medial-to-lateral ratio of T1ρ and T2 times appears to be related to the frontal and transverse plane joint mechanics. These data offer promising findings of potentially modifiable parameters associated with cartilage composition. PMID:22115848
Messroghli, Daniel R; Rudolph, Andre; Abdel-Aty, Hassan; Wassmuth, Ralf; Kühne, Titus; Dietz, Rainer; Schulz-Menger, Jeanette
2010-07-30
In magnetic resonance (MR) imaging, T1, T2 and T2* relaxation times represent characteristic tissue properties that can be quantified with the help of specific imaging strategies. While there are basic software tools for specific pulse sequences, until now there is no universal software program available to automate pixel-wise mapping of relaxation times from various types of images or MR systems. Such a software program would allow researchers to test and compare new imaging strategies and thus would significantly facilitate research in the area of quantitative tissue characterization. After defining requirements for a universal MR mapping tool, a software program named MRmap was created using a high-level graphics language. Additional features include a manual registration tool for source images with motion artifacts and a tabular DICOM viewer to examine pulse sequence parameters. MRmap was successfully tested on three different computer platforms with image data from three different MR system manufacturers and five different sorts of pulse sequences: multi-image inversion recovery T1; Look-Locker/TOMROP T1; modified Look-Locker (MOLLI) T1; single-echo T2/T2*; and multi-echo T2/T2*. Computing times varied between 2 and 113 seconds. Estimates of relaxation times compared favorably to those obtained from non-automated curve fitting. Completed maps were exported in DICOM format and could be read in standard software packages used for analysis of clinical and research MR data. MRmap is a flexible cross-platform research tool that enables accurate mapping of relaxation times from various pulse sequences. The software allows researchers to optimize quantitative MR strategies in a manufacturer-independent fashion. The program and its source code were made available as open-source software on the internet.
Two-exponential analysis of spin-spin proton relaxation times in MR imaging using surface coils
Schad, L.R.; Brix, G.; Semmler, W.; Gueckel, F.L.; Lorenz, W.J. )
1989-07-01
Proton relaxation time measurements were performed on a standard whole body MR imager operating at 1.5 T using a conventional surface coil of the manufacturer. A combined CP/CPMG multiecho, multislice sequence was used for the T1 and T2 relaxation time measurements. Two repetition times of 2000 ms (30 echoes) and 600 ms (2 echoes) with 180 degrees-pulse intervals of 2 tau = 22 ms were interleaved in this sequence. A two-exponential T2 analysis of each pixel of the spin-echo images was computed in a case of an acoustic neurinoma. The two-exponential images show a short component (T2S) due to white and gray matter and a long component (T2S) due to the cerebrospinal fluid. In the fatty tissue two components with T2S = 35 {plus minus} 3 ms and T2L = 164 {plus minus} 7 ms were measured. Comparing with Gd-DTPA imaging the relaxation time images show a clear differentiation of vital tumor tissue and cerebrospinal fluid.
Colla, M. -S.; Amin-Ahmadi, B.; Idrissi, H.; Malet, L.; Godet, S.; Raskin, J. -P.; Schryvers, D.; Pardoen, T.
2015-01-01
The high-rate sensitivity of nanostructured metallic materials demonstrated in the recent literature is related to the predominance of thermally activated deformation mechanisms favoured by a large density of internal interfaces. Here we report time-resolved high-resolution electron transmission microscopy creep tests on thin nanograined films using on-chip nanomechanical testing. Tests are performed on palladium, which exhibited unexpectedly large creep rates at room temperature. Despite the small 30-nm grain size, relaxation is found to be mediated by dislocation mechanisms. The dislocations interact with the growth nanotwins present in the grains, leading to a loss of coherency of twin boundaries. The density of stored dislocations first increases with applied deformation, and then decreases with time to drive additional deformation while no grain boundary mechanism is observed. This fast relaxation constitutes a key issue in the development of various micro- and nanotechnologies such as palladium membranes for hydrogen applications. PMID:25557273
Papaleo, R. M.; Leal, R.; Carreira, W. H.; Barbosa, L. G.; Bello, I.; Bulla, A.
2006-09-01
We report on measurements of relaxation times of nanometer-sized deformations resulting from the impact of individual energetic ions on poly(methyl methacrylate) surfaces at temperatures close to and below the glass transition T{sub g}. The temporal evolution of the dimensions of the deformations is well described by a stretched exponential function, but with relaxation times {tau}(T) many orders of magnitude smaller than bulk values at the same T. The local T{sub g} was around 86 deg. C, roughly 30 deg. C below the conventional bulk T{sub g}. At the vicinity of the local T{sub g}, {tau}(T) follows the Vogel-Fulcher type of T dependence, but at lower T a transition towards a less steep behavior is seen.
NASA Astrophysics Data System (ADS)
Papaléo, R. M.; Leal, R.; Carreira, W. H.; Barbosa, L. G.; Bello, I.; Bulla, A.
2006-09-01
We report on measurements of relaxation times of nanometer-sized deformations resulting from the impact of individual energetic ions on poly(methyl methacrylate) surfaces at temperatures close to and below the glass transition Tg . The temporal evolution of the dimensions of the deformations is well described by a stretched exponential function, but with relaxation times τ(T) many orders of magnitude smaller than bulk values at the same T . The local Tg was around 86°C , roughly 30°C below the conventional bulk Tg . At the vicinity of the local Tg , τ(T) follows the Vogel-Fulcher type of T dependence, but at lower T a transition towards a less steep behavior is seen.
Baghfalaki, T; Ganjali, M; Hashemi, R
2014-01-01
Distributional assumptions of most of the existing methods for joint modeling of longitudinal measurements and time-to-event data cannot allow incorporation of outlier robustness. In this article, we develop and implement a joint modeling of longitudinal and time-to-event data using some powerful distributions for robust analyzing that are known as normal/independent distributions. These distributions include univariate and multivariate versions of the Student's t, the slash, and the contaminated normal distributions. The proposed model implements a linear mixed effects model under a normal/independent distribution assumption for both random effects and residuals of the longitudinal process. For the time-to-event process a parametric proportional hazard model with a Weibull baseline hazard is used. Also, a Bayesian approach using the Markov-chain Monte Carlo method is adopted for parameter estimation. Some simulation studies are performed to investigate the performance of the proposed method under presence and absence of outliers. Also, the proposed methods are applied for analyzing a real AIDS clinical trial, with the aim of comparing the efficiency and safety of two antiretroviral drugs, where CD4 count measurements are gathered as longitudinal outcomes. In these data, time to death or dropout is considered as the interesting time-to-event outcome variable. Different model structures are developed for analyzing these data sets, where model selection is performed by the deviance information criterion (DIC), expected Akaike information criterion (EAIC), and expected Bayesian information criterion (EBIC).
SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats
Song, K-H; Lee, D-W; Choe, B-Y
2015-06-15
Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley rats were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)
NASA Astrophysics Data System (ADS)
Lafarge, Denis
1993-02-01
Recently, Avellaneda and Torquato [Phys. Fluids A 3, 2529 (1991)] derived several expressions for both the static and dynamic permeability for flow through porous media, in terms of the characteristic viscous relaxation times. In this Brief Communication the focus is on the physical interpretation, Darcy's law is explicitly obtained, and a slightly misleading statement (which has no effect on the mathematics but may induce erroneous interpretations) is corrected.
NASA Astrophysics Data System (ADS)
Hess, C.; Herick, J.; Berlin, A.; Meyer, W.; Reicherz, G.
2012-12-01
The electron spin-lattice relaxation time (T1e) of TEMPO- and trityl-doped butanol samples at 2.5 T and temperatures between 0.95 K and 2.17 K was studied by pulsed nuclear magnetic resonance (NMR) using the nuclear-electron double resonance (NEDOR) method. This method is based on the idea to measure the NMR lineshift produced by the local field of paramagnetic impurities, whose polarization can be manipulated. This is of technical advantage as measurements can be performed under conditions typically used for the dynamic nuclear polarization (DNP) process - in our case 2.5 T and temperatures around 1 K - where a direct measurement on the electronic spins would be far more complicated to perform. As T1e is a crucial parameter determining the overall efficiency of DNP, the effect of the radical type, its spin concentration, the temperature and the oxygen content on T1e has been investigated. For radical concentrations as used in DNP (several 1019 spins/cm3) the relaxation rate (T1e-1) has shown a linear dependence on the paramagnetic electron concentration for both radicals investigated. Experiments with perdeuterated and ordinary butanol have given no indication for any influence of the host materials isotopes. The measured temperature dependence has shown an exponential characteristic. It is further observed that the oxygen content in the butanol samples has a considerable effect on the electron relaxation time and thus influences the nuclear relaxation time and polarization rate during the DNP. The experiments also show a variation in the NMR linewidth, leading to comparable time constants as determined by the lineshift. NEDOR measurements were also performed on irradiated, crystal grains of 6LiD. These samples exhibited a linewidth behavior similar to that of the cylindrically shaped butanol samples.
Measurement of T1/T2 relaxation times in overlapped regions from homodecoupled 1H singlet signals
NASA Astrophysics Data System (ADS)
Castañar, Laura; Nolis, Pau; Virgili, Albert; Parella, Teodor
2014-07-01
The implementation of the HOmodecoupled Band-Selective (HOBS) technique in the conventional Inversion-Recovery and CPMG-based PROJECT experiments is described. The achievement of fully homodecoupled signals allows the distinction of overlapped 1H resonances with small chemical shift differences. It is shown that the corresponding T1 and T2 relaxation times can be individually measured from the resulting singlet lines using conventional exponential curve-fitting methods.
NASA Astrophysics Data System (ADS)
Bello, A.; Laredo, E.; Grimau, M.
1999-11-01
The existence of a distribution of relaxation times has been widely used to describe the relaxation function versus frequency in glass-forming liquids. Several empirical distributions have been proposed and the usual method is to fit the experimental data to a model that assumes one of these functions. Another alternative is to extract from the experimental data the discrete profile of the distribution function that best fits the experimental curve without any a priori assumption. To test this approach a Monte Carlo algorithm using the simulated annealing is used to best fit simulated dielectric loss data, ɛ''(ω), generated with Cole-Cole, Cole-Davidson, Havriliak-Negami, and Kohlrausch-Williams-Watts (KWW) functions. The relaxation times distribution, G(ln(τ)), is obtained as an histogram that follows very closely the analytical expression for the distributions that are known in these cases. Also, the temporal decay functions, φ(t), are evaluated and compared to a stretched exponential. The method is then applied to experimental data for α-polyvinylidene fluoride over a temperature range 233 K<=T<=278 K and frequencies varying from 3 MHz to 0.001 Hz. These data show the existence of two relaxation processes: the fast segmental αa process associated with the glass transition and a αc mode, which is slower and due to changes in conformation that can occur in the crystalline regions. The experimental curves are fitted by the simulated annealing direct signal analysis procedure, and the relaxation times distributions are calculated and found to vary with temperature. The decay function is also evaluated and it shows clearly its bimodal character and a good agreement with a KWW function with a temperature dependent β for each mode. The relaxation plots are drawn for each mode and the Vogel-Tammann-Fulcher and Arrhenius parameters are found. The fragility parameter for polyvinylidene flouride (PVDF) is found to be 87, which characterizes this polymer as a
NASA Astrophysics Data System (ADS)
Trochet, Mickaël; Sauvé-Lacoursière, Alecsandre; Mousseau, Normand
2017-10-01
In spite of the considerable computer speed increase of the last decades, long-time atomic simulations remain a challenge and most molecular dynamical simulations are limited to 1 μ s at the very best in condensed matter and materials science. There is a need, therefore, for accelerated methods that can bridge the gap between the full dynamical description of molecular dynamics and experimentally relevant time scales. This is the goal of the kinetic Activation-Relaxation Technique (k-ART), an off-lattice kinetic Monte-Carlo method with on-the-fly catalog building capabilities based on the topological tool NAUTY and the open-ended search method Activation-Relaxation Technique (ART nouveau) that has been applied with success to the study of long-time kinetics of complex materials, including grain boundaries, alloys, and amorphous materials. We present a number of recent algorithmic additions, including the use of local force calculation, two-level parallelization, improved topological description, and biased sampling and show how they perform on two applications linked to defect diffusion and relaxation after ion bombardement in Si.
Measurements of T1 and T2 relaxation times of colon cancer metastases in rat liver at 7 T.
Gambarota, G; Veltien, A; van Laarhoven, H; Philippens, M; Jonker, A; Mook, O R; Frederiks, W M; Heerschap, A
2004-12-01
The purpose of this study was to investigate the magnetic resonance imaging (MRI) characteristics of colon cancer metastases in rat liver at 7 T. A dedicated RF microstrip coil of novel design was built in order to increase the signal-to-noise ratio and, in combination with respiratory triggering, to minimize motion artifacts. T1- and T2-weighted MR imaging was performed to follow tumor growth. T1-weighted images provided a good anatomical delineation of the liver structure, while the best contrast between metastases and normal liver tissue was achieved with T2-weighted images. Measurements of T1 and T2 relaxation times were performed with inversion recovery FLASH and Carr-Purcell-Meiboom-Gill and inversion recovery FLASH imaging sequences, respectively, for quantitative MR characterization of metastases. Both the T1 and T2 of the metastases were significantly higher than those of normal liver tissue. Further, an increase in the T1 relaxation time of the metastases was observed with tumor growth. These findings suggest that quantitative in vivo MR characterization provides information on tumor development and possibly response to therapy, though additional studies are needed to elucidate the correlation between the changes in relaxation times and tumor microenvironment.
Polarized Alkali-Metal Vapor with Minute-Long Transverse Spin-Relaxation Time
Balabas, M. V.; Karaulanov, T.; Ledbetter, M. P.; Budker, D.
2010-08-13
We demonstrate lifetimes of Zeeman populations and coherences in excess of 60 sec in alkali-metal vapor cells with inner walls coated with an alkene material. This represents 2 orders of magnitude improvement over the best paraffin coatings. We explore the temperature dependence of cells coated with this material and investigate spin-exchange relaxation-free magnetometry in a room-temperature environment, a regime previously inaccessible with conventional coating materials.
NASA Astrophysics Data System (ADS)
Xue, Yuting; Mishra, Brijes; Gao, Danqing
2017-09-01
Field observations have demonstrated that roof failure occurs spatially in a mine from the time of excavation. It is suspected that time-dependent deformation propagates failure in the rock mass. In this paper, the relaxation test is used to study variation in the time-dependent property of rock and the consequent effect on time-dependent roof failure. This investigation uses a numerical simulation in 3DEC. The relaxation equation is developed from Burgers model. Variations in the time-dependent property in the post-failure region show negligible variation and, therefore, are averaged to represent the time-dependent property of the failed rock. Finally, these parameters are used in the numerical simulation of underground excavations. Two groups of parameters are used to represent the time-dependent property for pre- and post-failure conditions. FISH functions within 3DEC are used to monitor the state of each zone. Once failure is detected, the parameters are changed to the values corresponding to failed rock. The results show that the new relaxation model accurately predicts the time-dependent propagation of the failure zone. The variation of the time-dependent parameters significantly affects the rock mass behavior and roof convergence.
Byles, Julie E; Dobson, Annette
2011-10-01
The Australian Longitudinal Study on Women's Health (ALSWH) involves three cohorts of women born in 1921-1926, 1946-1951 and 1973-1978, who have been surveyed every 3 years since 1996. We describe how the 1921-1926 cohort have changed over time. We also describe trends in health risks among the younger cohorts, providing an indication of future health threats. By Survey 5, 28.4% of the 1921-1926 cohort had died. Among those who survived and remained in the study, 61% maintained high physical function scores over time. Chronic conditions such as arthritis, diabetes, heart disease and stroke were associated with lower physical function scores and decline in scores over time. ALSWH will continue to provide information on changes in health and health service use as we follow the oldest cohort through their 90 s, and as younger cohorts accumulate increasing burden of disease and disability as they age. © 2011 The Authors. Australasian Journal on Ageing © 2011 ACOTA.
A Longitudinal Study of Speech Timing in Young Children Later Found to Have Reading Disability
ERIC Educational Resources Information Center
Smith, Allan B.; Smith, Susan Lambrecht; Locke, John L.; Bennett, Jane
2008-01-01
Purpose: This study examined the development of timing characteristics in early spontaneous speech of children who were later identified as having reading disability (RD). Method: Child-adult play sessions were recorded longitudinally at 2 and 3 years of age in 27 children, most of whom were at high familial risk for RD. For each speaking turn,…
Reporting of Life Events Over Time: Methodological Issues in a Longitudinal Sample of Women
ERIC Educational Resources Information Center
Pachana, Nancy A.; Brilleman, Sam L.; Dobson, Annette J.
2011-01-01
The number of life events reported by study participants is sensitive to the method of data collection and time intervals under consideration. Individual characteristics also influence reporting; respondents with poor mental health report more life events. Much current research on life events is cross-sectional. Data from a longitudinal study of…
Reporting of Life Events Over Time: Methodological Issues in a Longitudinal Sample of Women
ERIC Educational Resources Information Center
Pachana, Nancy A.; Brilleman, Sam L.; Dobson, Annette J.
2011-01-01
The number of life events reported by study participants is sensitive to the method of data collection and time intervals under consideration. Individual characteristics also influence reporting; respondents with poor mental health report more life events. Much current research on life events is cross-sectional. Data from a longitudinal study of…
A Longitudinal Study of Speech Timing in Young Children Later Found to Have Reading Disability
ERIC Educational Resources Information Center
Smith, Allan B.; Smith, Susan Lambrecht; Locke, John L.; Bennett, Jane
2008-01-01
Purpose: This study examined the development of timing characteristics in early spontaneous speech of children who were later identified as having reading disability (RD). Method: Child-adult play sessions were recorded longitudinally at 2 and 3 years of age in 27 children, most of whom were at high familial risk for RD. For each speaking turn,…
Klimavicius, Vytautas; Gdaniec, Zofia; Balevicius, Vytautas
2014-11-11
NMR relaxation processes of anions were studied in two neat imidazolium-based room temperature ionic liquids (RTILs) 1-decyl-3-methyl-imidazolium bromide- and chloride. The spin-lattice and spin-spin relaxations of 81Br and 35Cl nuclei were found to be extremely fast due to very strong quadrupolar interactions. The determined relaxation rates are comparable with those observed in the solids or in some critical organic solute/water/salt systems. In order to eliminate the acoustic ringing of the probe-head during relaxation times measurements the novel pulse sequence has been devised. It is based on the conventional inversion recovery pulse sequence, however, instead of the last 90° pulse the subsequence of three 90° pulses applied along axes to fulfill the phase cycling condition is used. Using this pulse sequence it was possible to measure T1 for both studied nuclei. The viscosity measurements have been carried out and the rotational correlation times were calculated. The effective 35Cl quadrupolar coupling constant was found to be almost one order lower than that for 81Br, i.e. 1.8 MHz and 16.0 MHz, respectively. Taking into account the facts that the ratio of (Q(35Cl)/Q(81Br))2≈0.1 and EFG tensors on the anions are quite similar, analogous structural organizations are expected for both RTILs. The observed T1/T2 (1.27-1.44) ratios were found to be not sufficiently high to confirm the presence of long-living (on the time scale of ≥10(-8) s) mesoscopic structures or heterogeneities in the studied neat ionic liquids.
Chieng, Norman; Mizuno, Masayasu; Pikal, Michael
2013-01-01
The purposes of this study are to characterize the relaxation dynamics in complex freeze dried formulations and to investigate the quantitative relationship between the structural relaxation time as measured by thermal activity monitor (TAM) and that estimated from the width of the glass transition temperature (ΔTg). The latter method has advantages over TAM because it is simple and quick. As part of this objective, we evaluate the accuracy in estimating relaxation time data at higher temperatures (50°C and 60°C) from TAM data at lower temperature (40°C) and glass transition region width (ΔTg) data obtained by differential scanning calorimetry. Formulations studied here were hydroxyethyl starch (HES)-disaccharide, HES-polyol and HES-disaccharide-polyol at various ratios. We also re-examine, using TAM derived relaxation times, the correlation between protein stability (human growth hormone, hGH) and relaxation times explored in a previous report, which employed relaxation time data obtained from ΔTg. Results show that most of the freeze dried formulations exist in single amorphous phase, and structural relaxation times were successfully measured for these systems. We find a reasonably good correlation between TAM measured relaxation times and corresponding data obtained from estimates based on ΔTg, but the agreement is only qualitative. The comparison plot showed that TAM data is directly proportional to the 1/3 power of ΔTg data, after correcting for an offset. Nevertheless, the correlation between hGH stability and relaxation time remained qualitatively the same as found with using ΔTg derived relaxation data, and it was found that the modest extrapolation of TAM data to higher temperatures using ΔTg method and TAM data at 40°C resulted in quantitative agreement with TAM measurements made at 50 °C and 60 °C, provided the TAM experiment temperature is well below the Tg of the sample. PMID:23608636
Rizopoulos, Dimitris; Ghosh, Pulak
2011-05-30
Motivated by a real data example on renal graft failure, we propose a new semiparametric multivariate joint model that relates multiple longitudinal outcomes to a time-to-event. To allow for greater flexibility, key components of the model are modelled nonparametrically. In particular, for the subject-specific longitudinal evolutions we use a spline-based approach, the baseline risk function is assumed piecewise constant, and the distribution of the latent terms is modelled using a Dirichlet Process prior formulation. Additionally, we discuss the choice of a suitable parameterization, from a practitioner's point of view, to relate the longitudinal process to the survival outcome. Specifically, we present three main families of parameterizations, discuss their features, and present tools to choose between them.
Liu, Y H; Hawk, R M; Ramaprasad, S
1995-01-01
RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.
Hu, Jian Zhi; Wind, Robert A.; Rommereim, Donald N.
2006-03-01
Methods suitable for measuring 1H relaxation times such as T1, T2 and T1p, in small sized biological objects including live cells, excised organs and tissues, oil seeds etc., were developed in this work. This was achieved by combining inversion-recovery, spin-echo, or spin lock segment with the phase-adjusted spinning sideband (PASS) technique that was applied at slow sample spinning rate. Here, 2D-PASS was used to produce a high-resolution 1H spectrum free from the magnetic susceptibility broadening so that the relaxation parameters of individual metabolite can be determined. Because of the slow spinning employed, tissue and cell damage due to sample spinning is minimized. The methodologies were demonstrated by measuring 1H T1, T2 and T1p of metabolites in excised rat livers and sesame seeds at spinning rates of as low as 40 Hz.
Leyet, Y.; Guerrero, F.; Amorin, H.; Guerra, J. de Los S.; Eiras, J. A.
2010-10-18
The influence of the ferroelectric to paraelectric transition on the relaxation parameters of conductive processes in ferroelectric materials is studied in the time domain. Three well-known ferroelectric systems were chosen with transition temperatures in different regions, these are, high-temperature PbNb{sub 2}O{sub 6}-based ceramics; nanostructured Pb(Zr{sub 0.6}Ti{sub 0.4})O{sub 3} ceramics; and submicron BaTiO{sub 3}. The thermal evolution of relaxation parameters shows clear anomalies in their typical behavior when conductivity processes arise in the temperature range where the ferroelectric transition takes place. The method here described allows obtaining information about the correlation between charge transport and the motion of the off-center ions at the phase transition.
Zhuo, Kelei; Liu, Hongxun; Tang, Junming; Chen, Yujuan; Wang, Jianji
2009-10-15
Viscosity B-coefficients for sodium halides (NaX, X- = Cl-, Br-, and I-) in aqueous monosaccharides (d-glucose, d-galactose, d-xylose, and d-arabinose) were determined from density and viscosity (eta) measurements at 298.15 K. The contributions of solvent property (B1) and the electrolyte-solvent interaction (B2) to the B-coefficient were also obtained together with molar activation energies (Delta(mu)E0(not equal)) of the electrolytes for viscous flow of the aqueous saccharide-electrolyte solution. In addition, 1H spin-lattice relaxation times (T1) were measured for two glycosides in D2O with and without sodium halides. The results show the interactions between X- and the saccharides are in the following order: Cl- > Br- > I-. A linear relationship is observed between the relaxation rate (1/T1) and electrolyte concentration.
Perez, Silvina C.; Schurrer, Clemar; Wolfenson, Alberto
2001-06-01
The present work is an extention of the theoretical calculation developed by Blinc to explain the temperature and frequency dependence of the spin-lattice relaxation time in incommensurate phases. We have evaluated the influence of the nonsinusoidal character of the atomic modulation, in the linear approximation, over the NQR spectra and over the spin-lattice relaxation due to direct and Raman processes. It is shown that the peak with lower intensity in the NQR spectra always has a larger T{sub 1} and viceversa. The results have been applied to bis(4-chlorophenyl)sulfone T{sub 1} and line-shape data. The temperature and frequency dependence of T{sub 1} are well reproduced if Raman processes are considered.
Shared parameter models for the joint analysis of longitudinal data and event times.
Vonesh, Edward F; Greene, Tom; Schluchter, Mark D
2006-01-15
Longitudinal studies often gather joint information on time to some event (survival analysis, time to dropout) and serial outcome measures (repeated measures, growth curves). Depending on the purpose of the study, one may wish to estimate and compare serial trends over time while accounting for possibly non-ignorable dropout or one may wish to investigate any associations that may exist between the event time of interest and various longitudinal trends. In this paper, we consider a class of random-effects models known as shared parameter models that are particularly useful for jointly analysing such data; namely repeated measurements and event time data. Specific attention will be given to the longitudinal setting where the primary goal is to estimate and compare serial trends over time while adjusting for possible informative censoring due to patient dropout. Parametric and semi-parametric survival models for event times together with generalized linear or non-linear mixed-effects models for repeated measurements are proposed for jointly modelling serial outcome measures and event times. Methods of estimation are based on a generalized non-linear mixed-effects model that may be easily implemented using existing software. This approach allows for flexible modelling of both the distribution of event times and of the relationship of the longitudinal response variable to the event time of interest. The model and methods are illustrated using data from a multi-centre study of the effects of diet and blood pressure control on progression of renal disease, the modification of diet in renal disease study.
Dietrich, Olaf; Gaass, Thomas; Reiser, Maximilian F
2017-01-01
To pool and summarize published data from magnetic resonance longitudinal relaxation measurements of the human lung at 1.5T to provide a reliable basis of T1 relaxation time constants of healthy lung tissue both under respiration of room air and of pure oxygen. In particular, the oxygen-induced shortening of T1 was evaluated. The PubMed database was comprehensively searched up to June 2016 for original publications in English containing quantitative T1 data (at least mean values and standard deviations) of the lung parenchyma of healthy subjects (minimum subject number: 3) at 1.5T. From all included publications, T1 values of the lung of healthy subjects were extracted (inhaling room air and, if available, inhaling pure oxygen). Weighted mean values and standard deviations of all extracted data and the oxygen transfer function (OTF) were calculated. 22 publications were included with a total number of 188 examined healthy subjects. 103 of these subjects (from 13 studies) were examined while breathing pure oxygen and room air; 85 subjects were examined only under room-air conditions. The weighted mean value (weighted sample standard deviation) of the room-air T1 values over all 22 studies was 1196ms (152ms). Based on studies with room-air and oxygen results, the mean T1 value at room-air conditions was 1172ms (161ms); breathing pure oxygen, the mean T1 value was reduced to 1054ms (138 ms). This corresponds to a mean T1 reduction by 118ms (35ms) or 10.0 % (2.3 %) and to a mean OTF value of 1.22 (0.32)×10(-3)s(-1)/(%O2). This meta-analysis with data from 188 subjects indicates that the average T1 relaxation time constant of healthy lung tissue at 1.5T is distributed around 1200ms with a standard deviation of about 150 ms; breathing pure oxygen reduces this value significantly by 10 % to about 1050 ms. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Can-Jun; Wei, Qun; Mei, Dong-Cheng
2008-03-01
The associated relaxation time T and the normalized correlation function C(s) for a tumor cell growth system subjected to color noises are investigated. Using the Novikov theorem and Fox approach, the steady probability distribution is obtained. Based on them, the expressions of T and C(s) are derived by means of projection operator method, in which the effects of the memory kernels of the correlation function are taken into account. Performing the numerical computations, it is found: (1) With the cross-correlation intensity |λ|, the additive noise intensity α and the multiplicative noise self-correlation time τ increasing, the tumor cell numbers can be restrained; And the cross-correlation time τ, the multiplicative noise intensity D can induce the tumor cell numbers increasing; However, the additive noise self-correlation time τ cannot affect the tumor cell numbers; The relaxation time T is a stochastic resonant phenomenon, and the distribution curves exhibit a single-maximum structure with D increasing. (2) The cross-correlation strength λ weakens the related activity between two states of the tumor cell numbers at different time, and enhances the stability of the tumor cell growth system in the steady state; On the contrast, τ and τ enhance the related activity between two states at different time; However, τ has no effect on the related activity between two states at different time.
Bolinger, Joshua C.; Bixby, Teresa J.; Reid, Philip J.
2005-08-22
We report a series of time-resolved infrared absorption studies on chlorine dioxide (OClO) dissolved in H{sub 2}O, D{sub 2}O, and acetonitrile. Following the photoexcitation at 401 nm, the evolution in optical density for frequencies corresponding to asymmetric stretch of OClO is measured with a time resolution of 120{+-}50 fs. The experimentally determined optical-density evolution is compared with theoretical models of OClO vibrational relaxation derived from collisional models as well as classical molecular-dynamics (MD) studies. The vibrational relaxation rates in D{sub 2}O are reduced by a factor of 3 relative to H{sub 2}O consistent with the predictions of MD. This difference reflects modification of the frequency-dependent solvent-solute coupling accompanying isotopic substitution of the solvent. Also, the geminate-recombination quantum yield for the primary photofragments resulting in the reformation of ground-state OClO is reduced in D{sub 2}O relative to H{sub 2}O. It is proposed that this reduction reflects enhancement of the dissociation rate accompanying vibrational excitation along the asymmetric-stretch coordinate. In contrast to H{sub 2}O and D{sub 2}O, the vibrational-relaxation dynamics in acetonitrile are not well described by the theoretical models. Reproduction of the optical-density evolution in acetonitrile requires significant modification of the frequency-dependent solvent-solute coupling derived from MD. It is proposed that this modification reflects vibrational-energy transfer from the asymmetric stretch of OClO to the methyl rock of acetonitrile. In total, the results presented here provide a detailed description of the solvent-dependent geminate-recombination and vibrational-relaxation dynamics of OClO in solution.
NASA Astrophysics Data System (ADS)
Bolinger, Joshua C.; Bixby, Teresa J.; Reid, Philip J.
2005-08-01
We report a series of time-resolved infrared absorption studies on chlorine dioxide (OClO) dissolved in H2O, D2O, and acetonitrile. Following the photoexcitation at 401 nm, the evolution in optical density for frequencies corresponding to asymmetric stretch of OClO is measured with a time resolution of 120±50fs. The experimentally determined optical-density evolution is compared with theoretical models of OClO vibrational relaxation derived from collisional models as well as classical molecular-dynamics (MD) studies. The vibrational relaxation rates in D2O are reduced by a factor of 3 relative to H2O consistent with the predictions of MD. This difference reflects modification of the frequency-dependent solvent-solute coupling accompanying isotopic substitution of the solvent. Also, the geminate-recombination quantum yield for the primary photofragments resulting in the reformation of ground-state OClO is reduced in D2O relative to H2O. It is proposed that this reduction reflects enhancement of the dissociation rate accompanying vibrational excitation along the asymmetric-stretch coordinate. In contrast to H2O and D2O, the vibrational-relaxation dynamics in acetonitrile are not well described by the theoretical models. Reproduction of the optical-density evolution in acetonitrile requires significant modification of the frequency-dependent solvent-solute coupling derived from MD. It is proposed that this modification reflects vibrational-energy transfer from the asymmetric stretch of OClO to the methyl rock of acetonitrile. In total, the results presented here provide a detailed description of the solvent-dependent geminate-recombination and vibrational-relaxation dynamics of OClO in solution.
NASA Astrophysics Data System (ADS)
Bretón, J.; Hardisson, A.; Mauricio, F.; Velasco, S.
1984-07-01
Given a quantum system of a few degrees of freedom in weak interaction with a bath, the expressions which connect its total-time-ordering-cumulant and partial-time-ordering-cumulant relaxation with the corresponding spectral line shapes of dipolar absorption are deduced. For simplicity we consider a system with a nondegenerate and nonequidistant energy spectrum. A special study in the cases of isolated resonances and of a weak interference effect between resonances is made.
Liu, Yu-Ying; Ishikawa, Hiroshi; Chen, Mei; Wollstein, Gadi; Schumnan, Joel S; Rehg, James M
2013-01-01
We propose a 2D continuous-time Hidden Markov Model (2D CT-HMM) for glaucoma progression modeling given longitudinal structural and functional measurements. CT-HMM is suitable for modeling longitudinal medical data consisting of visits at arbitrary times, and 2D state structure is more appropriate for glaucoma since the time courses of functional and structural degeneration are usually different. The learned model not only corroborates the clinical findings that structural degeneration is more evident than functional degeneration in early glaucoma and the opposite is observed in more advanced stages, but also reveals the exact stages where the trend reverses. A method to detect time segments of fast progression is also proposed. Our results show that this detector can effectively identify patients with rapid degeneration. The model and the derived detector can be of clinical value for glaucoma monitoring.
Lyulin, Alexey V; Michels, M A J
2007-08-24
Molecular-dynamics simulation is used to explore the influence of thermal and mechanical history of typical glassy polymers on their deformation. Polymer stress-strain and energy-strain developments have been followed for different deformation velocities, also in closed extension-recompression loops. The latter simulate for the first time the experimentally observed mechanical rejuvenation and overaging of polymers, and energy partitioning reveals essential differences between mechanical and thermal rejuvenation. All results can be qualitatively interpreted by considering the ratios of the relevant time scales: for cooling down, for deformation, and for segmental relaxation.
Spin qubit relaxation in a moving quantum dot
NASA Astrophysics Data System (ADS)
Huang, Peihao; Hu, Xuedong
2013-08-01
Long-range quantum communication for spin qubits is an important open problem. Here we study decoherence of an electron spin qubit that is being transported in a moving quantum dot. We focus on spin decoherence due to spin-orbit interaction and a random electric potential. We find that at the lowest order, the motion induces longitudinal spin relaxation, with a rate linear in the dot velocity. Our calculated spin relaxation time ranges from sub μs in GaAs to above ms in Si, making this relaxation a significant decoherence channel. Our results also give clear indications on how to reduce the decoherence effect of electron motion.
Time-resolved study of field-induced suppression of longitudinal spin Seebeck effect
NASA Astrophysics Data System (ADS)
Hioki, Tomosato; Iguchi, Ryo; Qiu, Zhiyong; Hou, Dazhi; Uchida, Ken-ichi; Saitoh, Eiji
2017-07-01
We have investigated the magnetic-field-induced suppression of the longitudinal spin Seebeck effect (LSSE) by using a time-resolved measurement technique at room temperature. The result manifested two distinctive time domains: the short-time domain where the observed voltage is insensitive to the magnetic fields, and the long-time domain where the both response time and the magnitude of the observed voltage decreased simultaneously by the magnetic fields. We estimated the magnon propagation length by fitting the transient LSSE response. The propagation length shows a strong dependence on the applied magnetic field, indicating the importance of long-range and low-frequency magnons in the LSSE.
Godefroy, Sophie; Korb, Jean-Pierre; Creamer, Lawrence K; Watkinson, Philip J; Callaghan, Paul T
2003-11-15
Most cheeses can be considered as solid emulsions of milk fat in a matrix of water and proteins. Regions of each of the phases can be liquid during processing and maturation. Identifying these regions and monitoring changes in them is important as a prelude to controlling the structure of the final cheese. We concentrate on the behavior of water in the vicinity of proteins as a function of cheese aging. Our method utilizes nuclear magnetic relaxation dispersion (NMRD) associated with the frequency dependence of water spin-lattice relaxation rates using the field cycling NMR technique. This method provides insight into the dynamical behavior of water molecules on a very large time scale. Moreover, we can distinguish between molecular motion in bulk and motion in the vicinity of a source of relaxation, such as proteins. A fit of our dispersion data using a theory developed by J.-P. Korb and R.G. Bryant (J. Chem. Phys. 115 (2001) 23) allowed us to determine the degree of hydration of proteins as a function of aging. In particular, we find that protein hydration increases with ripening.
Weiskopf, Nikolaus; Callaghan, Martina F.; Josephs, Oliver; Lutti, Antoine; Mohammadi, Siawoosh
2014-01-01
Relaxation rates provide important information about tissue microstructure. Multi-parameter mapping (MPM) estimates multiple relaxation parameters from multi-echo FLASH acquisitions with different basic contrasts, i.e., proton density (PD), T1 or magnetization transfer (MT) weighting. Motion can particularly affect maps of the apparent transverse relaxation rate R2*, which are derived from the signal of PD-weighted images acquired at different echo times. To address the motion artifacts, we introduce ESTATICS, which robustly estimates R2* from images even when acquired with different basic contrasts. ESTATICS extends the fitted signal model to account for inherent contrast differences in the PDw, T1w and MTw images. The fit was implemented as a conventional ordinary least squares optimization and as a robust fit with a small or large confidence interval. These three different implementations of ESTATICS were tested on data affected by severe motion artifacts and data with no prominent motion artifacts as determined by visual assessment or fast optical motion tracking. ESTATICS improved the quality of the R2* maps and reduced the coefficient of variation for both types of data—with average reductions of 30% when severe motion artifacts were present. ESTATICS can be applied to any protocol comprised of multiple 2D/3D multi-echo FLASH acquisitions as used in the general research and clinical setting. PMID:25309307
NASA Astrophysics Data System (ADS)
Buehler, Martin G.; Campbell, Zachary J.; Carter, Brady P.
2017-02-01
Dielectric relaxation methods are applicable to powdery materials such as carbohydrates. These materials have relaxations that occur in the milli-Hz range while samples are held at fixed temperatures and fixed water activities, a w, (relativity humidity). Under proper conditions these materials undergo physical changes where the initially glassy powder transitions to an amorphous equilibrium state at the glass transition temperature, T g. Determining this transition involves characterizing the boundary curve (T g versus a w) which determines T g and a w conditions where materials are stable with long-shelf life or unstable with very a short shelf-life. This paper serves to illustrate multiple methodologies which can be used to characterize glass transition from frequency-spectra. Three methodologies are described: peak-broadening, peak-shift, and single-frequency. The new single frequency method not only provides results that identical to those of the peak-shift method but increases the data acquisition speeds by a factor of 5. This method is illustrated on polydextrose, a common sugar substitute. The information gathered can then be used to construct the boundary curve which is used to characterize the shelf-life of a material at various conditions.
MRI under hyperbaric air and oxygen: effects on local magnetic field and relaxation times.
Muir, Eric R; Cardenas, Damon; Huang, Shiliang; Roby, John; Li, Guang; Duong, Timothy Q
2014-10-01
Hyperbaric oxygen therapy has shown efficacies in the treatment of a number of diseases. The goal of this study was to develop a rodent hyperbaric chamber for MRI studies and to investigate the effects of hyperbaric air and hyperbaric oxygen on local magnetic field (B0 ) and MRI relaxation parameters in the rat brain. A hyperbaric chamber, constructed to fit inside an animal MRI scanner, was pressurized with air to four atmospheres, while oxygen was delivered locally via nose cone. B0 , T2 , T2 *, and T1 maps in the rat brain were evaluated under normobaric air, hyperbaric air, and hyperbaric oxygen at 7T. Under hyperbaric oxygen, images exhibited artifacts and temporal instability, attributable to fluctuating oxygen concentration from air and oxygen mixing near the imaging region. Physically shielding the imaging region from fluctuating oxygen concentration resolved the problems. With increasing oxygen at hyperbaric pressure, B0 was shifted downfield with increased inhomogeneity near the ear canals and nose. Brain T2 and T2 * were lengthened, and T1 was shortened. This study establishes the means to perform MRI on rodents under hyperbaric conditions. Hyperbaric air and hyperbaric oxygen have significant effects on B0 and tissue relaxation parameters compared with normobaric air. Copyright © 2013 Wiley Periodicals, Inc.
Statistical properties of longitudinal time-activity data for use in human exposure modeling.
Isaacs, Kristin; McCurdy, Thomas; Glen, Graham; Nysewander, Melissa; Errickson, April; Forbes, Susan; Graham, Stephen; McCurdy, Lisa; Smith, Luther; Tulve, Nicolle; Vallero, Daniel
2013-01-01
Understanding the longitudinal properties of the time spent in different locations and activities is important in characterizing human exposure to pollutants. The results of a four-season longitudinal time-activity diary study in eight working adults are presented, with the goal of improving the parameterization of human activity algorithms in EPA's exposure modeling efforts. Despite the longitudinal, multi-season nature of the study, participant non-compliance with the protocol over time did not play a major role in data collection. The diversity (D)--a ranked intraclass correlation coefficient (ICC)-- and lag-one autocorrelation (A) statistics of study participants are presented for time spent in outdoor, motor vehicle, residential, and other-indoor locations. Day-type (workday versus non-workday, and weekday versus weekend), season, temperature, and gender differences in the time spent in selected locations and activities are described, and D & A statistics are presented. The overall D and ICC values ranged from approximately 0.08-0.26, while the mean population rank A values ranged from approximately 0.19-0.36. These statistics indicate that intra-individual variability exceeds explained inter-individual variability, and low day-to-day correlations among locations. Most exposure models do not address these behavioral characteristics, and thus underestimate population exposure distributions and subsequent health risks associated with environmental exposures.
NASA Astrophysics Data System (ADS)
Talon, L.; Bauer, D.; Gland, N.; Youssef, S.; Auradou, H.; Ginzburg, I.
2012-04-01
The recent advances in 3-D imaging of porous structures have generated a tremendous interest in the simulation of complex single and two-phase flows. Lattice-Boltzmann (LB) schemes present a powerful tool to solve the flow field directly from the binarized 3-D images. However, as viscosity often plays an important role, the LB scheme should correctly treat viscosity effects. This is the case using a LB scheme with two relaxation times (TRT) unlike the broadly used, the single-relaxation rate, BGK, where the velocity of the modeled fluid does not vary as the inverse of the viscosity applying the bounce-back (no-slip) boundary rule. The aim of this work is to apply the LB-TRT approach to different types of porous media (straight channels, 2-D model porous media, sandstone) to solve for the flow field and to evaluate the approach in terms of parameter dependence, error and convergence time on the basis of permeability. We show that the variation of permeability with the free relaxation parameter Λ of the TRT scheme depends on the heterogeneity of the sample and on the numerical resolution. The convergence time depends on the applied viscosity and the parameter standing for the speed of sound, thus the computation time can be reduced by choosing appropriate values of those parameters. Two approaches to calculate permeability (Darcy's law and viscous energy dissipation) are proposed and investigated. We recommend to use Darcy's law, as dependence on Λ is less important. Periodic (in the presence of a driving body force) and pressure boundary conditions are evaluated in terms of the results.
Spotting the Gel Point of Photopolymers by Examining NMR Relaxation
NASA Astrophysics Data System (ADS)
Lee, Jack; Hofmeister, Gretchen; Baylor, Martha-Elizabeth
Spotting when a polymer goes from liquid to solid during polymerization is necessary when working with certain optically cured polymers used to fabricate optofluidic devices that contain both optical and microfluidic features. Through the use of nuclear magnetic resonance (NMR) it may be possible to determine when the transition from liquid to solid, called the gel point, occurs. In examining the proton longitudinal relaxation time for one species of monomers in our polymer mix, our data shows as the polymer cures the relaxation time increases. By examining this data we were able to extract a time to gel point that was within the margin of error of the theoretical gel point of our materials. Outlined here is evidence of why we think longitudinal relaxation is applicable to studying polymerization, and how we are using it to attempt to extract the gel point.
Tan, Kay See; French, Benjamin; Troxel, Andrea B
2014-11-30
Conventional longitudinal data analysis methods assume that outcomes are independent of the data-collection schedule. However, the independence assumption may be violated, for example, when a specific treatment necessitates a different follow-up schedule than the control arm or when adverse events trigger additional physician visits in between prescheduled follow-ups. Dependence between outcomes and observation times may introduce bias when estimating the marginal association of covariates on outcomes using a standard longitudinal regression model. We formulate a framework of outcome-observation dependence mechanisms to describe conditional independence given observed observation-time process covariates or shared latent variables. We compare four recently developed semi-parametric methods that accommodate one of these mechanisms. To allow greater flexibility, we extend these methods to accommodate a combination of mechanisms. In simulation studies, we show how incorrectly specifying the outcome-observation dependence may yield biased estimates of covariate-outcome associations and how our proposed extensions can accommodate a greater number of dependence mechanisms. We illustrate the implications of different modeling strategies in an application to bladder cancer data. In longitudinal studies with potentially outcome-dependent observation times, we recommend that analysts carefully explore the conditional independence mechanism between the outcome and observation-time processes to ensure valid inference regarding covariate-outcome associations.
Yoshioka, Sumie; Aso, Yukio; Kojima, Shigeo
2002-10-01
The spin-lattice relaxation times in the laboratory and rotating frame (T(1) and T(1rho)) of protons and carbons in lyophilized bovine serum gamma-globulin formulation containing dextran were determined by (1)H solid-state pulsed nuclear magnetic resonance (NMR) and high-resolution (13)C solid-state NMR. The temperature dependence of T(1) and T(1rho) of dextran protons in the lyophilized formulation suggests that the correlation time, tau(c), of the methylene protons in dextran is approximately 10(-6) s at -100 degrees C and 60% relative humidity, and decreases to 10(-7) s at 0 degrees C. When temperature is increased from 0 degrees C, the increased motion of the methylene groups is reflected in T(1), but is too fast to be observed by changes in T(1rho). Thus, the motion of the methine groups rather than the methylene groups begins to be reflected in T(1rho). The correlation time of the methine protons as determined by T(1rho) was of the same order as that of the methine carbons as determined by T(1rho). As the temperature is increased past the glass/rubber transition temperature, both the methylene and methine motions are greatly enhanced, resulting in much shorter T(1) and T(1rho) relaxation times.
Relationship between aging and T1 relaxation time in deep gray matter: A voxel-based analysis.
Okubo, Gosuke; Okada, Tomohisa; Yamamoto, Akira; Fushimi, Yasutaka; Okada, Tsutomu; Murata, Katsutoshi; Togashi, Kaori
2017-09-01
To investigate age-related changes in T1 relaxation time in deep gray matter structures in healthy volunteers using magnetization-prepared 2 rapid acquisition gradient echoes (MP2RAGE). In all, 70 healthy volunteers (aged 20-76, mean age 42.6 years) were scanned at 3T magnetic resonance imaging (MRI). A MP2RAGE sequence was employed to quantify T1 relaxation times. After the spatial normalization of T1 maps with the diffeomorphic anatomical registration using the exponentiated Lie algebra algorithm, voxel-based regression analysis was conducted. In addition, linear and quadratic regression analyses of regions of interest (ROIs) were also performed. With aging, voxel-based analysis (VBA) revealed significant T1 value decreases in the ventral-inferior putamen, nucleus accumbens, and amygdala, whereas T1 values significantly increased in the thalamus and white matter as well (P < 0.05 at cluster level, false discovery rate). ROI analysis revealed that T1 values in the nucleus accumbens linearly decreased with aging (P = 0.0016), supporting the VBA result. T1 values in the thalamus (P < 0.0001), substantia nigra (P = 0.0003), and globus pallidus (P < 0.0001) had a best fit to quadratic curves, with the minimum T1 values observed between 30 and 50 years of age. Age-related changes in T1 relaxation time vary by location in deep gray matter. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:724-731. © 2017 International Society for Magnetic Resonance in Medicine.
Dornburg, Alex; Brandley, Matthew C; McGowen, Michael R; Near, Thomas J
2012-02-01
Various nucleotide substitution models have been developed to accommodate among lineage rate heterogeneity, thereby relaxing the assumptions of the strict molecular clock. Recently developed "uncorrelated relaxed clock" and "random local clock" (RLC) models allow decoupling of nucleotide substitution rates between descendant lineages and are thus predicted to perform better in the presence of lineage-specific rate heterogeneity. However, it is uncertain how these models perform in the presence of punctuated shifts in substitution rate, especially between closely related clades. Using cetaceans (whales and dolphins) as a case study, we test the performance of these two substitution models in estimating both molecular rates and divergence times in the presence of substantial lineage-specific rate heterogeneity. Our RLC analyses of whole mitochondrial genome alignments find evidence for up to ten clade-specific nucleotide substitution rate shifts in cetaceans. We provide evidence that in the uncorrelated relaxed clock framework, a punctuated shift in the rate of molecular evolution within a subclade results in posterior rate estimates that are either misled or intermediate between the disparate rate classes present in baleen and toothed whales. Using simulations, we demonstrate abrupt changes in rate isolated to one or a few lineages in the phylogeny can mislead rate and age estimation, even when the node of interest is calibrated. We further demonstrate how increasing prior age uncertainty can bias rate and age estimates, even while the 95% highest posterior density around age estimates decreases; in other words, increased precision for an inaccurate estimate. We interpret the use of external calibrations in divergence time studies in light of these results, suggesting that rate shifts at deep