Robust solid 129Xe longitudinal relaxation times
NASA Astrophysics Data System (ADS)
Limes, M. E.; Ma, Z. L.; Sorte, E. G.; Saam, B.
2016-09-01
We find that if solid xenon is formed from liquid xenon, denoted "ice," there is a 10% increase in 129Xe longitudinal relaxation T1 time (taken at 77 K and 2 T) over a trickle-freeze formation, denoted "snow." Forming xenon ice also gives an unprecedented reproducibility of 129Xe T1 measurements across a range of 77-150 K. This temperature dependence roughly follows the theory of spin rotation mediated by Raman scattering of harmonic phonons, though it results in a smaller-than-predicted spin-rotation coupling strength cK 0/h . Enriched ice 129Xe T1 experiments show no isotopic dependence of bulk relaxation mechanisms at 77 K and at kilogauss fields.
Rapid MRI method for mapping the longitudinal relaxation time
NASA Astrophysics Data System (ADS)
Hsu, Jung-Jiin; Glover, Gary H.
2006-07-01
A novel method for mapping the longitudinal relaxation time in a clinically acceptable time is developed based on a recent proposal [J.-J. Hsu, I.J. Lowe, Spin-lattice relaxation and a fast T1-map acquisition method in MRI with transient-state magnetization, J. Magn. Reson. 169 (2004) 270-278] and the speed of the spiral pulse sequence. The method acquires multiple curve-fitting samples with one RF pulse train. It does not require RF pulses of specific flip angles (e.g., 90° or 180°), nor are the long recovery waiting time and the measurement of the magnetization at thermal equilibrium needed. Given the value of the flip angle, the curve fitting is semi-logarithmic and not computationally intensive. On a heterogeneous phantom, the average percentage difference between measurements of the present method and those of an inversion-recovery method is below 2.7%. In mapping the human brain, the present method, for example, can obtain four curve-fitting samples for five 128 × 128 slices in less than 3.2 s and the results are in agreement with other studies in the literature.
NASA Astrophysics Data System (ADS)
Carvalho, A.; Taborda, A.
2007-12-01
Superparamagnetic nanoparticles are very interesting objects having many applications among which MRI contrast agents are one of the more important. In this work the longitudinal relaxation times of Endorem and Lumirem, two colloidal solutions of iron oxide nanoparticles used as contrast agents for magnetic resonance imaging were measured at magnetic field intensities similar to the ones used in MRI. T1 was seen to depend on nanoparticle concentrations as expected but, for the Lumirem, also on the time spend by the sample under the influence of the static magnetic field. The T1 evolution was measured for colloidal solutions both different concentrations and different viscosities. The strange T1 dependence is presented and discussed relating to the nanoparticles superparamagnetic properties. It is shown that one of the possible reasons for the fact is the formation of local field enhanced linear arrays of SPIO.
Panagiotelis, I; Nicholson, I; Hutchison, J M
2001-03-01
Longitudinally detected ESR (LODESR) involves transverse ESR irradiation with a modulated source and observing oscillations in the spin magnetization parallel to the main magnetic field. In this study, radiofrequency-LODESR was used for oximetry by measuring the relaxation times of the electron. T1e and T2e were measured by investigating LODESR signal magnitude as a function of detection frequency. We have also predicted theoretically and verified experimentally the LODESR signal phase dependence on detection frequency and relaxation times. These methods are valid even for inhomogeneous lines provided that T1e>T2e. We have also developed a new method for measuring T1e, valid for inhomogeneous spectra, for all values of T1e and T2e, based on measuring the spectral area as a function of detection frequency. We have measured T1e and T2e for lithium phthalocyanine crystals, for the nitroxide TEMPOL, and for the single line agent Triarylmethyl (TAM). Furthermore, we have collected spectra from aqueous solutions of TEMPOL and TAM at different oxygen concentrations and confirmed that T1e values are reduced with increased oxygen concentration. We have also measured the spin-lattice electronic relaxation time for degassed aqueous solutions of the same agents at different agent concentrations. T1e decreases as a function of concentration for TAM while it remains independent of free radical concentration for TEMPOL, a major advantage for oxygen mapping. This method, combined with the ability of LODESR to provide images of exogenous free radicals in vivo, presents an attractive alternative to the conventional transverse ESR linewidth based oximetry methods.
Magnetization Transfer Induced Biexponential Longitudinal Relaxation
Prantner, Andrew M.; Bretthorst, G. Larry; Neil, Jeffrey J.; Garbow, Joel R.; Ackerman, Joseph J.H.
2009-01-01
Longitudinal relaxation of brain water 1H magnetization in mammalian brain in vivo is typically analyzed on a per voxel basis using a monoexponential model, thereby assigning a single relaxation time constant to all 1H magnetization within a given voxel. This approach was tested by obtaining inversion recovery data from grey matter of rats at 64 exponentially-spaced recovery times. Using Bayesian probability for model selection, brain water data were best represented by a biexponential function characterized by fast and slow relaxation components. At 4.7 T, the amplitude fraction of the rapidly relaxing component is 3.4 ± 0.7 % with a rate constant of 44 ± 12 s-1 (mean ± SD; 174 voxels from 4 rats). The rate constant of the slow relaxing component is 0.66 ± 0.04 s-1. At 11.7 T, the corresponding values are 6.9 ± 0.9 %, 19 ± 5 s-1, and 0.48 ± 0.02 s-1 (151 voxels from 4 rats). Several putative mechanisms for biexponential relaxation behavior were evaluated, and magnetization transfer between bulk water protons and non-aqueous protons was determined to be the source of biexponential longitudinal relaxation. MR methods requiring accurate quantification of longitudinal relaxation may need to take this effect explicitly into account. PMID:18759367
De Vis, J.B.; Hendrikse, J.; Groenendaal, F.; de Vries, L.S.; Kersbergen, K.J.; Benders, M.J.N.L.; Petersen, E.T.
2014-01-01
Background and purpose The longitudinal relaxation time of blood (T1b) is influenced by haematocrit (Hct) which is known to vary in neonates. The purpose of this study was threefold: to obtain T1b values in neonates, to investigate how the T1b influences quantitative arterial spin labelling (ASL), and to evaluate if known relationships between T1b and haematocrit (Hct) hold true when Hct is measured by means of a point-of-care device. Materials and methods One hundred and four neonates with 120 MR scan sessions (3 T) were included. The T1b was obtained from a T1 inversion recovery sequence. T1b-induced changes in ASL cerebral blood flow estimates were evaluated. The Hct was obtained by means of a point-of-care device. Linear regression analysis was used to investigate the relation between Hct and MRI-derived R1 of blood (the inverse of the T1b). Results Mean T1b was 1.85 s (sd 0.2 s). The mean T1b in preterm neonates was 1.77 s, 1.89 s in preterm neonates scanned at term-equivalent age (TEA) and 1.81 s in diseased neonates. The T1b in the TEA was significantly different from the T1b in the preterm (p < 0.05). The change in perfusion induced by the T1b was −11% (sd 9.1%, p < 0.001). The relation between arterial-drawn Hct and R1b was R1b = 0.80 × Hct + 0.22, which falls within the confidence interval of the previously established relationships, whereas capillary-drawn Hct did not correlate with R1b. Conclusion We demonstrated a wide variability of the T1b in neonates and the implications it could have in methods relying on the actual T1b as for instance ASL. It was concluded that arterial-drawn Hct values obtained from a point-of-care device can be used to infer the T1b whereas our data did not support the use of capillary-drawn Hct for T1b correction. PMID:24818078
NASA Astrophysics Data System (ADS)
Liu, Maili; Ye, Chaohui; Farrant, R. Duncan; Nicholson, Jeremy K.; Lindon, John C.
Methods for measuring longitudinal relaxation times of protons in heavily overlapped 1H NMR spectra are introduced and exemplified using a solution of cholesteryl acetate. The methods are based on 1-dimensional and 2-dimensional maximum quantum NMR spectroscopy (MAXY), which makes possible the selective detection of CH, CH2 and CH31H NMR resonances. A modification of the BIRD pulse sequence to achieve selective inversion of protons bonded to either 12C or 13C is given. The approach should find application in studies of molecular dynamics where isotopic enrichment is not possible and the level of available sample dictates the use of 1H NMR spectroscopy.
Rauhalammi, Samuli M.O.; Mangion, Kenneth; Barrientos, Pauline Hall; Carrick, David J.A.; Clerfond, Guillaume; McClure, John; McComb, Christie; Radjenovic, Aleksandra
2016-01-01
Purpose To use magnetic resonance imaging (MRI) at two field strengths to assess healthy adults' regional myocardial noncontrast (native) T 1 relaxation time distribution, and global myocardial native T 1 between sexes and across age groups. Materials and Methods In all, 84 healthy volunteers underwent MRI at 1.5T and 3.0T. T 1 maps were acquired in three left ventricular short axis slices using an optimized modified Look–Locker inversion recovery investigational prototype sequence. T 1 measurements in msec were calculated from 16 regions‐of‐interest, and a global T 1 value from all evaluable segments per subject. Associations were assessed with a multivariate linear regression model. Results In total, 1297 (96.5%) segments were evaluable at 1.5T and 1263 (94.0%) segments at 3.0T. Native T 1 was higher in septal than lateral myocardium (1.5T: 956.3 ± 44.4 vs. 939.2 ± 54.2 msec; P < 0.001; 3.0T: 1158.2 ± 45.9 vs. 1148.9 ± 56.9 msec; P = 0.012). Native T 1 decreased with increasing age in females but not in males. Among lowest age tertile (<33 years) global native T 1 was higher in females than in males at 1.5T (960.0 ± 20.3 vs. 931.5 ± 22.2 msec, respectively; P = 0.003) and 3.0T (1166.5 ± 19.7 vs. 1130.2 ± 20.6 msec; P < 0.001). No sex differences were observed in upper age tertile (≥55 years) at 1.5T (937.7 ± 25.4 vs. 934.7 ± 22.3 msec; P = 0.762) or 3.0T (1153.0 ± 30.0 vs. 1132.3 ± 23.5 msec; P = 0.056). Association of global native T 1 to age (P = 0.002) and sex (P < 0.001) was independent of field strength and body size. Conclusion In healthy adults, native T 1 values are highest in the ventricular septum. Global native T 1 was inversely associated with age in women, but not in men. J. Magn. Reson. Imaging 2016;44:541–548. PMID:26946323
Hsu, Jung-Jiin
2015-08-01
In MRI, the flip angle (FA) of slice-selective excitation is not uniform across the slice-thickness dimension. This work investigates the effect of the non-uniform FA profile on the accuracy of a commonly-used method for the measurement, in which the T1 value, i.e., the longitudinal relaxation time, is determined from the steady-state signals of an equally-spaced RF pulse train. By using the numerical solutions of the Bloch equation, it is shown that, because of the non-uniform FA profile, the outcome of the T1 measurement depends significantly on T1 of the specimen and on the FA and the inter-pulse spacing τ of the pulse train. A new method to restore the accuracy of the T1 measurement is described. Different from the existing approaches, the new method also removes the FA profile effect for the measurement of the FA, which is normally a part of the T1 measurement. In addition, the new method does not involve theoretical modeling, approximation, or modification to the underlying principle of the T1 measurement. An imaging experiment is performed, which shows that the new method can remove the FA-, the τ-, and the T1-dependence and produce T1 measurements in excellent agreement with the ones obtained from a gold standard method (the inversion-recovery method).
Relaxation times estimation in MRI
NASA Astrophysics Data System (ADS)
Baselice, Fabio; Caivano, Rocchina; Cammarota, Aldo; Ferraioli, Giampaolo; Pascazio, Vito
2014-03-01
Magnetic Resonance Imaging is a very powerful techniques for soft tissue diagnosis. At the present, the clinical evaluation is mainly conducted exploiting the amplitude of the recorded MR image which, in some specific cases, is modified by using contrast enhancements. Nevertheless, spin-lattice (T1) and spin-spin (T2) relaxation times can play an important role in many pathology diagnosis, such as cancer, Alzheimer or Parkinson diseases. Different algorithms for relaxation time estimation have been proposed in literature. In particular, the two most adopted approaches are based on Least Squares (LS) and on Maximum Likelihood (ML) techniques. As the amplitude noise is not zero mean, the first one produces a biased estimator, while the ML is unbiased but at the cost of high computational effort. Recently the attention has been focused on the estimation in the complex, instead of the amplitude, domain. The advantage of working with real and imaginary decomposition of the available data is mainly the possibility of achieving higher quality estimations. Moreover, the zero mean complex noise makes the Least Square estimation unbiased, achieving low computational times. First results of complex domain relaxation times estimation on real datasets are presented. In particular, a patient with an occipital lesion has been imaged on a 3.0T scanner. Globally, the evaluation of relaxation times allow us to establish a more precise topography of biologically active foci, also with respect to contrast enhanced images.
NASA Astrophysics Data System (ADS)
Hansen, D. Flemming; Led, Jens J.
2001-08-01
A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180° inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180° pulses separated by two variable delays, Δ1 and Δ2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.
Hansen, D F; Led, J J
2001-08-01
A new experiment for selective determination of the relaxation rates of fast relaxing NMR signals is presented. The experiment is derived from the conventional inversion recovery experiment by substituting the 180 degrees inversion pulse of this experiment with a signal eliminating relaxation filter (SERF) consisting of three 180 degrees pulses separated by two variable delays, Delta1 and Delta2. The SERF experiment allows a selective suppression of signals with relaxation rates below a given limit while monitoring the relaxation of faster relaxing signals. The experiment was tested on a sample of 20% oxidized plastocyanin from Anabaena variabilis, where the fast exchange of an electron between the reduced (diamagnetic) and the oxidized (paramagnetic) form results in a series of average signals with widely different relaxation rates. To ensure an optimum extraction of information from the experimental data, the relaxation rates were obtained from the SERF experiment by a simultaneous analysis of all the FIDs of the experiment using a fast linear prediction model method developed previously. The reliability of the relaxation rates obtained from the SERF experiment was confirmed by a comparison of the rates with the corresponding rates obtained from a conventional inversion recovery experiment.
Relaxation time in disordered molecular systems
Rocha, Rodrigo P.; Freire, José A.
2015-05-28
Relaxation time is the typical time it takes for a closed physical system to attain thermal equilibrium. The equilibrium is brought about by the action of a thermal reservoir inducing changes in the system micro-states. The relaxation time is intuitively expected to increase with system disorder. We derive a simple analytical expression for this dependence in the context of electronic equilibration in an amorphous molecular system model. We find that the disorder dramatically enhances the relaxation time but does not affect its independence of the nature of the initial state.
Rounded stretched exponential for time relaxation functions.
Powles, J G; Heyes, D M; Rickayzen, G; Evans, W A B
2009-12-01
A rounded stretched exponential function is introduced, C(t)=exp{(tau(0)/tau(E))(beta)[1-(1+(t/tau(0))(2))(beta/2)]}, where t is time, and tau(0) and tau(E) are two relaxation times. This expression can be used to represent the relaxation function of many real dynamical processes, as at long times, t>tau(0), the function converges to a stretched exponential with normalizing relaxation time, tau(E), yet its expansion is even or symmetric in time, which is a statistical mechanical requirement. This expression fits well the shear stress relaxation function for model soft soft-sphere fluids near coexistence, with tau(E)
Evaluation of brain edema using magnetic resonance proton relaxation times
Fu, Y.; Tanaka, K.; Nishimura, S. )
1990-01-01
Experimental and clinical studies on the evaluation of water content in cases of brain edema were performed in vivo, using MR proton relaxation times (longitudinal relaxation time, T1; transverse relaxation time, T2). Brain edema was produced in the white matter of cats by the direct infusion method. The correlations between proton relaxation times obtained from MR images and the water content of white matter were studied both in autoserum-infused cats and in saline-infused cats. The correlations between T1 as well as T2 and the water content in human vasogenic brain edema were also examined and compared with the data obtained from the serum group. T1 and T2 showed good correlations with the water content of white matter not only in the experimental animals but also in the clinical cases. The quality of the edema fluid did not influence relaxation time and T1 seemed to represent almost solely the water content of the tissue. T2, however, was affected by the nature of existence of water and was more sensitive than T1 in detecting extravasated edema fluid. It seems feasible therefore to evaluate the water content of brain edema on the basis of T1 values.
Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging.
Cho, Minjung; Sethi, Richa; Narayanan, Jeyarama Subramanian Ananta; Lee, Seung Soo; Benoit, Denise N; Taheri, Nasim; Decuzzi, Paolo; Colvin, Vicki L
2014-11-21
Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)(-1) were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values moderately reduce as the size of the Gd2O3 nanoplates increases, and are always larger for the PAA-OA coating. Cytotoxicity studies on human dermal fibroblast cells documented no significant toxicity, with 100% cell viability preserved up to 250 μM for the PAA-OA coated Gd2O3 nanoplates. Given the 10 times increase in longitudinal relaxivity over the commercially available Gd-based molecular agents and the favorable toxicity profile, the 2 nm PAA-OA coated Gd2O3 nanoplates could represent a new class of highly effective T1 MRI contrast agents.
NASA Astrophysics Data System (ADS)
Shmyreva, Anna A.; Safdari, Majid; Furó, István; Dvinskikh, Sergey V.
2016-06-01
Orders of magnitude decrease of 207Pb and 199Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.
Shmyreva, Anna A; Safdari, Majid; Furó, István; Dvinskikh, Sergey V
2016-06-14
Orders of magnitude decrease of (207)Pb and (199)Hg NMR longitudinal relaxation times T1 upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX2 (Me = Pb, Hg and X = Cl, Br, I). In lead(ii) halides, the most dramatic decrease of T1 relative to that in a static sample is in PbI2, while it is smaller but still significant in PbBr2, and not detectable in PbCl2. The effect is magnetic-field dependent but independent of the spinning speed in the range 200-15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.
Spin-Lattice Relaxation Times in 1H NMR Spectroscopy.
ERIC Educational Resources Information Center
Wink, Donald J.
1989-01-01
Discussed are the mechanisms of nuclear magnetic relaxation, and applications of relaxation times. The measurement of spin-lattice relaxations is reviewed. It is stressed that sophisticated techniques such as these are becoming more important to the working chemist. (CW)
Relaxation times and charge conductivity of silicene
NASA Astrophysics Data System (ADS)
Mazloom, Azadeh; Parhizgar, Fariborz; Abedinpour, Saeed H.; Asgari, Reza
2016-07-01
We investigate the transport and single particle relaxation times of silicene in the presence of neutral and charged impurities. The static charge conductivity is studied using the semiclassical Boltzmann formalism when the spin-orbit interaction is taken into account. The screening is modeled within Thomas-Fermi and random-phase approximations. We show that the transport relaxation time is always longer than the single particle one. Easy electrical controllability of both carrier density and band gap in this buckled two-dimensional structure makes it a suitable candidate for several electronic and optoelectronic applications. In particular, we observe that the dc charge conductivity could be easily controlled through an external electric field, a very promising feature for applications as electrical switches and transistors. Our findings would be qualitatively valid for other buckled honeycomb lattices of the same family, such as germanine and stanine.
Relaxation time measurements by an electronic method.
NASA Technical Reports Server (NTRS)
Brousseau, R.; Vanier, J.
1973-01-01
Description of a simple electronic system that permits the direct measurement of time constants of decaying signals. The system was used in connection with relaxation experiments on hydrogen and rubidium masers and was found to operate well. The use of a computing counter in the systems gives the possibility of making averages on several experiments and obtaining the standard deviation of the results from the mean. The program for the computing counter is given.
Current relaxation time scales in toroidal plasmas
Mikkelsen, D.R.
1987-02-01
An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given.
Murase, Kenya
2013-11-01
We previously derived a simple equation for solving time-dependent Bloch equations by a matrix operation. The purpose of this study was to present a theoretical and numerical consideration of the longitudinal (R1ρ=1/T1ρ) and transverse relaxation rates in the rotating frame (R2ρ=1/T2ρ), based on this method. First, we derived an equation describing the time evolution of the magnetization vector (M(t)) by expanding the matrix exponential into the eigenvalues and the corresponding eigenvectors using diagonalization. Second, we obtained the longitudinal magnetization vector in the rotating frame (M1ρ(t)) by taking the inner product of M(t) and the eigenvector with the smallest eigenvalue in modulus, and then we obtained the transverse magnetization vector in the rotating frame (M2ρ(t)) by subtracting M1ρ(t) from M(t). For comparison, we also computed the spin-locked magnetization vector. We derived the exact solutions for R1ρ and R2ρ from the eigenvalues, and compared them with those obtained numerically from M1ρ(t) and M2ρ(t), respectively. There was excellent agreement between them. From the exact solutions for R1ρ and R2ρ, R2ρ was found to be given by R2ρ=(2R2+R1)/2-R1ρ/2, where R1 and R2 denote the conventional longitudinal and transverse relaxation rates, respectively. We also derived M1ρ(t) and M2ρ(t) for bulk water protons, in which the effect of chemical exchange was taken into account using a 2-pool chemical exchange model, and we compared the R1ρ and R2ρ values obtained from the eigenvalues and those obtained numerically from M1ρ(t) and M2ρ(t). There was also excellent agreement between them. In conclusion, this study will be useful for better understanding of the longitudinal and transverse relaxations in the rotating frame and for analyzing the contrast mechanisms in T1ρ- and T2ρ-weighted MRI.
Gadolinium oxide nanoplates with high longitudinal relaxivity for magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Cho, Minjung; Sethi, Richa; Ananta Narayanan, Jeyarama Subramanian; Lee, Seung Soo; Benoit, Denise N.; Taheri, Nasim; Decuzzi, Paolo; Colvin, Vicki L.
2014-10-01
Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values moderately reduce as the size of the Gd2O3 nanoplates increases, and are always larger for the PAA-OA coating. Cytotoxicity studies on human dermal fibroblast cells documented no significant toxicity, with 100% cell viability preserved up to 250 μM for the PAA-OA coated Gd2O3 nanoplates. Given the 10 times increase in longitudinal relaxivity over the commercially available Gd-based molecular agents and the favorable toxicity profile, the 2 nm PAA-OA coated Gd2O3 nanoplates could represent a new class of highly effective T1 MRI contrast agents.Molecular-based contrast agents for magnetic resonance imaging (MRI) are often characterized by insufficient relaxivity, thus requiring the systemic injection of high doses to induce sufficient contrast enhancement at the target site. In this work, gadolinium oxide (Gd2O3) nanoplates are produced via a thermal decomposition method. The nanoplates have a core diameter varying from 2 to 22 nm, a thickness of 1 to 2 nm and are coated with either an oleic acid bilayer or an octylamine modified poly(acrylic acid) (PAA-OA) polymer layer. For the smaller nanoplates, longitudinal relaxivities (r1) of 7.96 and 47.2 (mM s)-1 were measured at 1.41 T for the oleic acid bilayer and PAA-OA coating, respectively. These values
Various time-scales of relaxation
NASA Astrophysics Data System (ADS)
Ali-Akbari, M.; Charmchi, F.; Ebrahim, H.; Shahkarami, L.
2016-08-01
Via gauge-gravity duality, relaxation of far-from-equilibrium initial states in a strongly coupled gauge theory has been investigated. In the system we consider in this paper there are two ways where the state under study can deviate from its equilibrium: anisotropic pressure and time-dependent expectation value of a scalar operator with Δ =3 . In the gravity theory, this system corresponds to Einstein's general relativity with a nontrivial metric, including the anisotropy function, coupled to a massive scalar matter field. We study the effect of different initial configurations for the scalar field and anisotropy function on physical processes such as thermalization, i.e., time evolution of an event horizon; equilibration of the expectation value of a scalar operator; and isotropization. We also discuss time ordering of these time-scales.
First Passage Times, Lifetimes, and Relaxation Times of Unfolded Proteins
NASA Astrophysics Data System (ADS)
Dai, Wei; Sengupta, Anirvan M.; Levy, Ronald M.
2015-07-01
The dynamics of proteins in the unfolded state can be quantified in computer simulations by calculating a spectrum of relaxation times which describes the time scales over which the population fluctuations decay to equilibrium. If the unfolded state space is discretized, we can evaluate the relaxation time of each state. We derive a simple relation that shows the mean first passage time to any state is equal to the relaxation time of that state divided by the equilibrium population. This explains why mean first passage times from state to state within the unfolded ensemble can be very long but the energy landscape can still be smooth (minimally frustrated). In fact, when the folding kinetics is two-state, all of the unfolded state relaxation times within the unfolded free energy basin are faster than the folding time. This result supports the well-established funnel energy landscape picture and resolves an apparent contradiction between this model and the recently proposed kinetic hub model of protein folding. We validate these concepts by analyzing a Markov state model of the kinetics in the unfolded state and folding of the miniprotein NTL9 (where NTL9 is the N -terminal domain of the ribosomal protein L9), constructed from a 2.9 ms simulation provided by D. E. Shaw Research.
Longitudinal spin relaxation of donor-bound electrons in direct band-gap semiconductors
NASA Astrophysics Data System (ADS)
Linpeng, Xiayu; Karin, Todd; Durnev, M. V.; Barbour, Russell; Glazov, M. M.; Sherman, E. Ya.; Watkins, S. P.; Seto, Satoru; Fu, Kai-Mei C.
2016-09-01
We measure the donor-bound electron longitudinal spin-relaxation time (T1) as a function of magnetic field (B ) in three high-purity direct band-gap semiconductors: GaAs, InP, and CdTe, observing a maximum T1 of 1.4, 0.4, and 1.2 ms, respectively. In GaAs and InP at low magnetic field, up to ˜2 T, the spin-relaxation mechanism is strongly density and temperature dependent and is attributed to the random precession of the electron spin in hyperfine fields caused by the lattice nuclear spins. In all three semiconductors at high magnetic field, we observe a power-law dependence T1∝B-ν with 3 ≲ν ≲4 . Our theory predicts that the direct spin-phonon interaction is important in all three materials in this regime in contrast to quantum dot structures. In addition, the "admixture" mechanism caused by Dresselhaus spin-orbit coupling combined with single-phonon processes has a comparable contribution in GaAs. We find excellent agreement between high-field theory and experiment for GaAs and CdTe with no free parameters, however a significant discrepancy exists for InP.
Ultrafast NMR T1 Relaxation Measurements: Probing Molecular Properties in Real Time
Smith, Pieter E. S.; Donovan, Kevin J.; Szekely, Or; Baias, Maria; Frydman, Lucio
2016-01-01
The longitudinal relaxation properties of NMR active nuclei carry useful information about the site-specific chemical environments and about the mobility of molecular fragments. Molecular mobility is in turn a key parameter reporting both on stable properties like size, as well as on dynamic ones such as transient interactions and irreversible aggregation. In order to fully investigate the latter, a fast sampling of the relaxation parameters of transiently formed molecular species may be needed. Nevertheless, the acquisition of longitudinal relaxation data is typically slow, being limited by the requirement that the time for which the nucleus relaxes be varied incrementally until a complete build-up curve is generated. Recently a number of single-shot inversion recovery methods have been developed capable of alleviating this need; still, these may be challenged by either spectral resolution restrictions or when coping with very fast relaxing nuclei. Here we present a new experiment to measure the T1s of multiple nuclear spins that experience fast longitudinal relaxation, while retaining full high-resolution chemical shift information. Good agreement is observed between T1s measured with conventional means and T1s measured using the new technique. The method is applied to the real time investigation of the reaction between D-xylose and sodium borate, which is in turn elucidated with the aid of ancillary ultrafast and conventional 2D TOCSY measurements. PMID:23878001
Varga-Szemes, Akos; Kiss, Pal; Rab, Andras; Suranyi, Pal; Lenkey, Zsofia; Simor, Tamas; Bryant, Robert G.; Elgavish, Gabriel A.
2016-01-01
Purpose MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA). Materials and Methods The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4. Results The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s-1mM-1 and 18.1, 16.7, and 13.5 s-1mM-1, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s-1mM-1, respectively. Conclusions The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end. PMID:26872055
NASA Astrophysics Data System (ADS)
Zheng, W.; Gao, H.; Liu, J.-G.; Zhang, Y.; Ye, Q.; Swank, C.
2011-11-01
We develop an approach, by calculating the autocorrelation function of spins, to derive the magnetic field gradient-induced transverse (T2) relaxation of spins undergoing restricted diffusion. This approach is an extension to the method adopted by McGregor. McGregor's approach solves the problem only in the fast diffusion limit; however, our approach yields a single analytical solution suitable in all diffusion regimes, including the intermediate regime. This establishes a direct connection between the well-known slow diffusion result of Torrey and the fast diffusion result. We also perform free induction decay measurements on spin-exchange optically polarized 3He gas with different diffusion constants. The measured transverse relaxation profiles are compared with the theory and satisfactory agreement has been found throughout all diffusion regimes. In addition to the transverse relaxation, this approach is also applicable to solving the longitudinal relaxation (T1) regardless of the diffusion limits. It turns out that the longitudinal relaxation in the slow diffusion limit differs by a factor of 2 from that in the fast diffusion limit.
Ultrafast relaxation rates and reversal time in disordered ferrimagnets
NASA Astrophysics Data System (ADS)
Suarez, O. J.; Nieves, P.; Laroze, D.; Altbir, D.; Chubykalo-Fesenko, O.
2015-10-01
In response to ultrafast laser pulses, single-phase metals have been classified as "fast" (with magnetization quenching on the time scale of the order of 100 fs and recovery in the time scale of several picoseconds and below) and "slow" (with longer characteristic time scales). Disordered ferrimagnetic alloys consisting of a combination of "fast" transition (TM) and "slow" rare-earth (RE) metals have been shown to exhibit an ultrafast all-optical switching mediated by the heat mechanism. The behavior of the characteristic time scales of coupled alloys is more complicated and is influenced by many parameters such as the intersublattice exchange, doping (RE) concentration, and the temperature. Here, the longitudinal relaxation times of each sublattice are analyzed within the Landau-Lifshitz-Bloch framework. We show that for moderate intersublattice coupling strength both materials slow down as a function of slow (RE) material concentration. For larger coupling, the fast (TM) material may become faster, while the slow (RE) one is still slower. These conclusions may have important implications in the switching time of disordered ferrimagnets such as GdFeCo with partial clustering. Using atomistic modeling, we show that in the moderately coupled case, the reversal would start in the Gd-rich region, while the situation may be reversed if the coupling strength is larger.
Shemesh, Noam; Rosenberg, Jens T; Dumez, Jean-Nicolas; Grant, Samuel C; Frydman, Lucio
2014-11-01
Interruptions in cerebral blood flow may lead to devastating neural outcomes. Magnetic resonance has a central role in diagnosing and monitoring these insufficiencies, as well as in understanding their underlying metabolic consequences. Magnetic resonance spectroscopy (MRS) in particular can probe ischemia via the signatures of endogenous metabolites including lactic acid (Lac), N-acetylaspartate, creatine (Cre), and cholines. Typically, MRS reports on these metabolites' concentrations. This study focuses on establishing the potential occurrence of in vivo longitudinal relaxation enhancement (LRE) effects-a phenomenon involving a reduction of the apparent T1 with selective bandwidth excitations- in a rat stroke model at 21.1 T. Statistically significant reductions in Cre's apparent T1s were observed at all the examined post-ischemia time points for both ipsi- and contralateral hemispheres, thereby establishing the existence of LREs for this metabolite in vivo. Ischemia-dependent LRE trends were also noted for Lac in the ipsilateral hemisphere only 24 hours after ischemia. Metabolic T1s were also found to vary significantly as a function of post-stroke recovery time, with the most remarkable and rapid changes observed for Lac T1s. The potential of such measurements to understand stroke at a molecular level and assist in its diagnosis, is discussed. PMID:25204392
Shemesh, Noam; Rosenberg, Jens T; Dumez, Jean-Nicolas; Grant, Samuel C; Frydman, Lucio
2014-01-01
Interruptions in cerebral blood flow may lead to devastating neural outcomes. Magnetic resonance has a central role in diagnosing and monitoring these insufficiencies, as well as in understanding their underlying metabolic consequences. Magnetic resonance spectroscopy (MRS) in particular can probe ischemia via the signatures of endogenous metabolites including lactic acid (Lac), N-acetylaspartate, creatine (Cre), and cholines. Typically, MRS reports on these metabolites' concentrations. This study focuses on establishing the potential occurrence of in vivo longitudinal relaxation enhancement (LRE) effects—a phenomenon involving a reduction of the apparent T1 with selective bandwidth excitations— in a rat stroke model at 21.1 T. Statistically significant reductions in Cre's apparent T1s were observed at all the examined post-ischemia time points for both ipsi- and contralateral hemispheres, thereby establishing the existence of LREs for this metabolite in vivo. Ischemia-dependent LRE trends were also noted for Lac in the ipsilateral hemisphere only 24 hours after ischemia. Metabolic T1s were also found to vary significantly as a function of post-stroke recovery time, with the most remarkable and rapid changes observed for Lac T1s. The potential of such measurements to understand stroke at a molecular level and assist in its diagnosis, is discussed. PMID:25204392
Times of metastable droplet relaxation to equilibrium states
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.; Komarov, V. N.; Zaitseva, E. S.
2016-10-01
Times of metastable droplet relaxation to their equilibrium state are calculated at saturated vapor pressures, depending on the droplet size. It is shown that for small droplets with radius R = 6 molecular diameters (or ~2 nm) the relaxation times are ~1 ns (which is comparable to the characteristic flight times of rarefied gas molecules). For large droplets with radius R ~ 800 molecular diameters, the relaxation times are as long as 10 μs. At a fixed droplet radius (6 ≤ R ≤ 800), the range of variation in relaxation time from the melting point to the critical temperature does not exceed one order of magnitude: the lower the temperature, the slower the relaxation process.
Correlation of transverse relaxation time with structure of biological tissue
NASA Astrophysics Data System (ADS)
Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2016-09-01
Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.
Cassaignau, Anaïs M. E.; Cabrita, Lisa D.
2016-01-01
The translational diffusion of macromolecules can be examined non-invasively by stimulated echo (STE) NMR experiments to accurately determine their molecular sizes. These measurements can be important probes of intermolecular interactions and protein folding and unfolding, and are crucial in monitoring the integrity of large macromolecular assemblies such as ribosome–nascent chain complexes (RNCs). However, NMR studies of these complexes can be severely constrained by their slow tumbling, low solubility (with maximum concentrations of up to 10 μM), and short lifetimes resulting in weak signal, and therefore continuing improvements in experimental sensitivity are essential. Here we explore the use of the paramagnetic longitudinal relaxation enhancement (PLRE) agent NiDO2A on the sensitivity of 15N XSTE and SORDID heteronuclear STE experiments, which can be used to monitor the integrity of these unstable complexes. We exploit the dependence of the PLRE effect on the gyromagnetic ratio and electronic relaxation time to accelerate recovery of 1H magnetization without adversely affecting storage on Nz during diffusion delays or introducing significant transverse relaxation line broadening. By applying the longitudinal relaxation-optimized SORDID pulse sequence together with NiDO2A to 70S Escherichia coli ribosomes and RNCs, NMR diffusion sensitivity enhancements of up to 4.5-fold relative to XSTE are achieved, alongside ~1.9-fold improvements in two-dimensional NMR sensitivity, without compromising the sample integrity. We anticipate these results will significantly advance the use of NMR to probe dynamic regions of ribosomes and other large, unstable macromolecular assemblies. PMID:26253948
A quantum relaxation-time approximation for finite fermion systems
Reinhard, P.-G.; Suraud, E.
2015-03-15
We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.
Ab Initio Electronic Relaxation Times and Transport in Noble Metals
NASA Astrophysics Data System (ADS)
Mustafa, Jamal I.; Bernardi, Marco; Neaton, Jeffrey B.; Louie, Steven G.
Relaxation times employed to study electron transport in metals are typically assumed to be constants and obtained empirically using the Drude model. Here, we employ ab initio calculations to compute the electron-phonon relaxation times of Cu, Ag, and Au, and find that they vary significantly on the Fermi surface, spanning ~15 -45 fs. We compute room temperature resistivities in excellent agreement with experiment by combining GW bandstructures, Wannier-interpolated band velocities, and ab initio relaxation times. Our calculations are compared to other approximations used for the relaxation times. Additionally, an importance sampling scheme is introduced to speed up the convergence of resistivity and transport calculations by sampling directly points on the Fermi surface. This work was supported by NSF Grant No. DMR15-1508412 and U.S. DOE under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at LBNL's NERSC facility.
Garello, Francesca; Vibhute, Sandip; Gündüz, Serhat; Logothetis, Nikos K; Terreno, Enzo; Angelovski, Goran
2016-04-11
Bioresponsive MRI contrast agents sensitive to Ca(II) fluctuations may play a critical role in the development of functional molecular imaging methods to study brain physiology or abnormalities in muscle contraction. A great challenge in their chemistry is the preparation of probes capable of inducing a strong signal variation that could be detected in a robust way. To this end, the incorporation of small molecular weight bioresponsive agents into nanocarriers can improve the overall properties in a few ways: (i) the agent can be delivered into the tissue of interest, increasing the local concentration; (ii) its biokinetic properties and retention time will improve; (iii) the high molecular weight and size of the nanocarrier may cause additional changes in the MRI signal and raise the chances for their detection in functional experiments. In this work, we report the preparation of the new class of liposome-based, Ca-sensitive MRI agents. We synthesized a novel amphiphilic ligand which was incorporated into the liposome bilayer. A remarkable increase of ∼420% in longitudinal relaxivity r1, from 7.3 mM(-1) s(-1) to 38.1 mM(-1) s(-1) at 25 °C and 21.5 MHz in the absence and presence of Ca(II), respectively, was achieved by the most active liposomal formulation. To the best of our knowledge, this is the highest change in r1 observed for Ca-sensitive agents at physiological pH and can be explained by simultaneous Ca-triggered increase in hydration and reduction of local motion of Gd(III) complex, which can be followed at low magnetic fields. PMID:26956911
Multiple-Relaxation-Time Lattice Boltzmann Models in 3D
NASA Technical Reports Server (NTRS)
dHumieres, Dominique; Ginzburg, Irina; Krafczyk, Manfred; Lallemand, Pierre; Luo, Li-Shi; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
This article provides a concise exposition of the multiple-relaxation-time lattice Boltzmann equation, with examples of fifteen-velocity and nineteen-velocity models in three dimensions. Simulation of a diagonally lid-driven cavity flow in three dimensions at Re=500 and 2000 is performed. The results clearly demonstrate the superior numerical stability of the multiple-relaxation-time lattice Boltzmann equation over the popular lattice Bhatnagar-Gross-Krook equation.
Relaxation time and elasticity during polymerization with DER 332
NASA Astrophysics Data System (ADS)
Venkateshan, K.; Johari, G. P.
2006-10-01
To complement a study of the dielectric relaxation time's relation with the velocity of propagation of hypersound wave in a polymerizing liquid [K. Venkateshan and G. P. Johari J. Chem. Phys.125, 014907 (2006)], we report results of an analogous study by using the same diglycidylether of bisphenol-A that had been used for measuring the velocity. The data show that the logarithmic relaxation time increases linearly with the square of the velocity of propagation of transverse hypersound wave.
Femtosecond time-resolved electronic relaxation dynamics in tetrathiafulvalene
Staedter, D.; Polizzi, L.; Thiré, N.; Mairesse, Y.; Mayer, P.; Blanchet, V.
2015-05-21
In the present paper, the ultrafast electronic relaxation of tetrathiafulvalene (TTF) initiated around 4 eV is studied by femtosecond time-resolved velocity-map imaging. The goal is to investigate the broad double structure observed in the absorption spectrum at this energy. By monitoring the transients of the parent cation and its fragments and by varying the pump and the probe wavelengths, two internal conversions and intramolecular vibrational relaxation are detected both on the order of a few hundred of femtoseconds. Photoelectron images permit the assignment of a dark electronic state involved in the relaxation. In addition, the formation of the dimer of TTF has been observed.
Chang, Zhiwei; Halle, Bertil
2015-12-21
A system of three dipole-coupled spins exhibits a surprisingly intricate relaxation behavior. Following Hubbard’s pioneering 1958 study, many authors have investigated different aspects of this problem. Nevertheless, on revisiting this classic relaxation problem, we obtain several new results, some of which are at variance with conventional wisdom. Most notably from a fundamental point of view, we find that the odd-valued spectral density function influences longitudinal relaxation. We also show that the effective longitudinal relaxation rate for a non-isochronous three-spin system can exhibit an unusual inverted dispersion step. To clarify these and other issues, we present a comprehensive theoretical treatment of longitudinal relaxation in a three-spin system of arbitrary geometry and with arbitrary rotational dynamics. By using the Liouville-space formulation of Bloch-Wangsness-Redfield theory and a basis of irreducible spherical tensor operators, we show that the number of relaxation components in the different cases can be deduced from symmetry arguments. For the isochronous case, we present the relaxation matrix in analytical form, whereas, for the non-isochronous case, we employ a computationally efficient approach based on the stochastic Liouville equation.
NASA Astrophysics Data System (ADS)
Chang, Zhiwei; Halle, Bertil
2015-12-01
A system of three dipole-coupled spins exhibits a surprisingly intricate relaxation behavior. Following Hubbard's pioneering 1958 study, many authors have investigated different aspects of this problem. Nevertheless, on revisiting this classic relaxation problem, we obtain several new results, some of which are at variance with conventional wisdom. Most notably from a fundamental point of view, we find that the odd-valued spectral density function influences longitudinal relaxation. We also show that the effective longitudinal relaxation rate for a non-isochronous three-spin system can exhibit an unusual inverted dispersion step. To clarify these and other issues, we present a comprehensive theoretical treatment of longitudinal relaxation in a three-spin system of arbitrary geometry and with arbitrary rotational dynamics. By using the Liouville-space formulation of Bloch-Wangsness-Redfield theory and a basis of irreducible spherical tensor operators, we show that the number of relaxation components in the different cases can be deduced from symmetry arguments. For the isochronous case, we present the relaxation matrix in analytical form, whereas, for the non-isochronous case, we employ a computationally efficient approach based on the stochastic Liouville equation.
Analysis of the Palierne model by relaxation time spectrum
NASA Astrophysics Data System (ADS)
Kwon, Mi Kyung; Cho, Kwang Soo
2016-02-01
Viscoelasticity of immiscible polymer blends is affected by relaxation of the interface. Several attempts have been made for linear viscoelasticity of immiscible polymer blends. The Palierne model (1990) and the Gramespacher-Meissner model (1992) are representative. The Gramespacher-Meissner model consists of two parts: ingredients and interface. Moreover, it provides us the formula of the peak of interface in weighted relaxation time spectrum, which enables us to analyze the characteristics relating to interface more obviously. However, the Gramespacher-Meissner model is a kind of empirical model. Contrary to the Gramespacher-Meissner model, the Palierne model was derived in a rigorous manner. In this study, we investigated the Palierne model through the picture of the Gramespacher-Meissner model. We calculated moduli of immiscible blend using two models and obtained the weighted relaxation time spectra of them. The fixed-point iteration of Cho and Park (2013) was used in order to determine the weighted relaxation spectra.
Mindfulness meditation and relaxation training increases time sensitivity.
Droit-Volet, S; Fanget, M; Dambrun, M
2015-01-01
Two experiments examined the effect of mindfulness meditation and relaxation on time perception using a temporal bisection task. In Experiment 1, the participants performed a temporal task before and after exercises of mindfulness meditation or relaxation. In Experiment 2, the procedure was similar than that used in Experiment 1, except that the participants were trained to mediate or relax every day over a period of several weeks. The results showed that mindfulness meditation exercises increased sensitivity to time and lengthened perceived time. However, this temporal improvement with meditation exercises was primarily observed in the experienced meditators. Our results also showed the experienced meditators were less anxious than the novice participants, and that the sensitivity to time increased when the level of anxiety decreased. Our results were explained by the practice of mindfulness technique that had developed individuals' abilities in devoting more attention resources to temporal information processing.
NASA Technical Reports Server (NTRS)
Nguyen, L. T.; Ogburn, M. E.; Gilbert, W. P.; Kibler, K. S.; Brown, P. W.; Deal, P. L.
1979-01-01
A real-time piloted simulation was conducted to evaluate the high-angle-of-attack characteristics of a fighter configuration based on wind-tunnel testing of the F-16, with particular emphasis on the effects of various levels of relaxed longitudinal static stability. The aerodynamic data used in the simulation was conducted on the Langley differential maneuvering simulator, and the evaluation involved representative low-speed combat maneuvering. Results of the investigation show that the airplane with the basic control system was resistant to the classical yaw departure; however, it was susceptible to pitch departures induced by inertia coupling during rapid, large-amplitude rolls at low airspeed. The airplane also exhibited a deep-stall trim which could be flown into and from which it was difficult to recover. Control-system modifications were developed which greatly decreased the airplane susceptibility to the inertia-coupling departure and which provided a reliable means for recovering from the deep stall.
NASA Astrophysics Data System (ADS)
Rios, Edmilson Helton; Figueiredo, Irineu; Moss, Adam Keith; Pritchard, Timothy Neil; Glassborow, Brent Anthony; Domingues, Ana Beatriz Guedes; Azeredo, Rodrigo Bagueira de Vasconcellos
2016-07-01
The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cut-off. Select portions of the longitudinal (T1) and transverse (T2) relaxation-time distributions are systematically evaluated by applying various cut-offs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.
NASA Astrophysics Data System (ADS)
Rios, Edmilson Helton; Figueiredo, Irineu; Moss, Adam Keith; Pritchard, Timothy Neil; Glassborow, Brent Anthony; Guedes Domingues, Ana Beatriz; Bagueira de Vasconcellos Azeredo, Rodrigo
2016-07-01
The effect of the selection of different nuclear magnetic resonance (NMR) relaxation times for permeability estimation is investigated for a set of fully brine-saturated rocks acquired from Cretaceous carbonate reservoirs in the North Sea and Middle East. Estimators that are obtained from the relaxation times based on the Pythagorean means are compared with estimators that are obtained from the relaxation times based on the concept of a cumulative saturation cut-off. Select portions of the longitudinal (T1) and transverse (T2) relaxation-time distributions are systematically evaluated by applying various cut-offs, analogous to the Winland-Pittman approach for mercury injection capillary pressure (MICP) curves. Finally, different approaches to matching the NMR and MICP distributions using different mean-based scaling factors are validated based on the performance of the related size-scaled estimators. The good results that were obtained demonstrate possible alternatives to the commonly adopted logarithmic mean estimator and reinforce the importance of NMR-MICP integration to improving carbonate permeability estimates.
Phenomenological Theory of the Translational Relaxation Times in Gases
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.
1999-01-01
The exact solution to the classical equations governing the translational dispersion and absorption of sound in a gas obscures its relaxational character because of its mathematical complexity. The approach taken here is to solve the secular equation by the method of Pade approximants, which even to the relatively low order R(sub 11) yields a remarkably close approximation to the exact solution over a wide range of frequency/pressure (f/P) ratios. As a result, translational relaxation can be formulated in terms of a conventional relaxation process with well-defined relaxation times, relaxation strength, collision numbers, additivity relations, etc. To extend the theory to high values of f/P ratio, a model is proposed to account for the noncontinuum behavior of the transport coefficients (viscosity and thermal conductivity) as the molecular mean free path approaches the acoustical enclosure dimensions. The theoretical dispersion and absorption show good agreement with measurements in argon over the classical and transition regions of f/P, but a discrepancy appears at higher values of f/P, where collective propagating modes, assumed in the theory, give way to single-particle modes, prevailing in the experiments.
Relaxation Characteristics of 828 DGEBA Epoxy Over Long Time Periods
NASA Astrophysics Data System (ADS)
Hoo, Jasmine; Reprogle, Riley C.; Wisler, Brian; Arechederra, Gabriel K.; McCoy, John D.; Kropka, Jamie M.; Long, Kevin N.
The mechanical relaxation response in uniaxial compression of a diglycidyl ether of bisphenol-A epoxy was studied over long time periods. The epoxy, 828DEA, was Epon 828 cured with diethanolamine (DEA). A sample was compressed at constant strain rate and held at various strain levels for days to allow the sample to relax. The sample was then compressed further and held once more. The relaxation curves were fit with a stretched exponential function. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Electron–ion relaxation time in moderately degenerate plasma
Vronskii, M. A. Koryakina, Yu. V.
2015-09-15
A formula is derived for the electron–ion relaxation time in a partially degenerate plasma with electron-ion interaction via a central field. The resulting expression in the form of an integral of the transport cross section generalizes the well-known Landau and Brysk approximations.
Modeling the Relaxation Time of DNA Confined in a Nanochannel
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Tree, Douglas R.; Dorfman, Kevin D.
2014-03-01
Using a mapping between a dumbbell model and fine-grained Monte Carlo simulations, we have computed the relaxation time of λ-DNA in a high ionic strength buffer confined in a nanochannel (Tree et al., Biomicrofluidics 2013, 7, 054118). The relaxation time thus obtained agrees quantitatively with experimental data (Reisner et al., PRL 2005, 94, 196101) using only a single O(1) fitting parameter to account for the uncertainty in model parameters. In addition to validating our mapping, this agreement supports our previous estimates of the friction coefficient of DNA confined in a nanochannel (Tree et al., PRL 2012, 108, 228105), which have been difficult to validate due to the lack of direct experimental data. Furthermore, our calculation shows that as the channel size passes below ~100 nm (or roughly the Kuhn length of DNA) there is a dramatic drop in the relaxation time. Inasmuch as the chain friction rises with decreasing channel size, the reduction in the relaxation time can be solely attributed to the sharp decline in the fluctuations of the chain extension. Practically, the low variance in the observed DNA extension in such small channels has important implications for genome mapping. This work was supported by the NIH (R01-HG005216 and R01-HG006851) and the NSFC (21204061) and was carried out in part using computing resources at the University of Minnesota Supercomputing Institute.
Modeling the relaxation time of DNA confined in a nanochannel
Tree, Douglas R.; Wang, Yanwei; Dorfman, Kevin D.
2013-01-01
Using a mapping between a Rouse dumbbell model and fine-grained Monte Carlo simulations, we have computed the relaxation time of λ-DNA in a high ionic strength buffer confined in a nanochannel. The relaxation time thus obtained agrees quantitatively with experimental data [Reisner et al., Phys. Rev. Lett. 94, 196101 (2005)] using only a single O(1) fitting parameter to account for the uncertainty in model parameters. In addition to validating our mapping, this agreement supports our previous estimates of the friction coefficient of DNA confined in a nanochannel [Tree et al., Phys. Rev. Lett. 108, 228105 (2012)], which have been difficult to validate due to the lack of direct experimental data. Furthermore, the model calculation shows that as the channel size passes below approximately 100 nm (or roughly the Kuhn length of DNA) there is a dramatic drop in the relaxation time. Inasmuch as the chain friction rises with decreasing channel size, the reduction in the relaxation time can be solely attributed to the sharp decline in the fluctuations of the chain extension. Practically, the low variance in the observed DNA extension in such small channels has important implications for genome mapping. PMID:24309551
Measurement of cyclotron resonance relaxation time in the two-dimensional electron system
Andreev, I. V. Muravev, V. M.; Kukushkin, I. V.; Belyanin, V. N.
2014-11-17
Dependence of cyclotron magneto-plasma mode relaxation time on electron concentration and temperature in the two-dimensional electron system in GaAs/AlGaAs quantum wells has been studied. Comparative analysis of cyclotron and transport relaxation time has been carried out. It was demonstrated that with the temperature increase transport relaxation time tends to cyclotron relaxation time. It was also shown that cyclotron relaxation time, as opposed to transport relaxation time, has a weak electron density dependence. The cyclotron time can exceed transport relaxation time by an order of magnitude in a low-density range.
Relaxed Time Slot Negotiation for Grid Resource Allocation
NASA Astrophysics Data System (ADS)
Son, Seokho; Sim, Kwang Mong
Since participants in a computational grid may be independent bodies, some mechanisms are necessary for resolving the differences in their preferences for price and desirable time slots for utilizing/leasing computing resources. Whereas there are mechanisms for supporting price negotiation for grid resource allocation, there is little or no negotiation support for allocating mutually acceptable time slots for grid participants. The contribution of this work is designing a negotiation mechanism for facilitating time slot negotiations between grid participants. In particular, this work adopts a relaxed time slot negotiation protocol designed to enhance the success rate and resource utilization level by allowing some flexibility for making slight adjustments following a tentative agreement for a mutually acceptable time slot. The ideas of the relaxed time slot negotiation are implemented in an agent-based grid testbed, and empirical results of the relaxed time slot negotiation mechanism carried out, (i) a consumer and a provider agent have a mutually satisfying agreement on time slot and price, (ii) consumer agents achieved higher success rates in negotiation, and (iii) provider agents achieved higher utility and resource utilization of overall grid.
Temperature dependence of proton relaxation times in vitro.
Nelson, T R; Tung, S M
1987-01-01
Accurate measurement of tissue relaxation characteristics is dependent on many factors, including field strength and temperature. The purpose of this study was to evaluate the relationship between sample temperature, viscosity and proton spin-lattice relaxation time (T1) and spin-spin relaxation time (T2). A review of two basic models of relaxation the simple molecular motion model and the fast exchange two state model is given with reference to their thermal dependencies. The temperature dependence for both T1 and T2 was studied on a 0.15 Tesla whole body magnetic resonance imager. Thirteen samples comprising both simple and complex materials were investigated by using a standard spin-echo (SE) technique and a modified Carr-Purcell-Meiboom-Gill (CPMG) multi-echo sequence. A simple linear relationship between T1 and temperature was observed for all samples over the range of 20 degrees C to 50 degrees C. There is an inverse relationship between viscosity and T1 and T2. A quantity called the temperature dependence coefficient (TDC) is introduced and defined as the percent rate of change of the proton relaxation time referenced to a specific temperature. The large TDC found for T1 values, e.g. 2.37%/degrees C for CuSO4 solutions and 3.59%/degrees C for light vegetable oils at 22 degrees C, indicates that a temperature correction should be made when comparing in-vivo and in-vitro T1 times. The T2 temperature dependence is relatively small. PMID:3041151
Kemper, Sebastian; Patel, Mitul K; Errey, James C; Davis, Benjamin G; Jones, Jonathan A; Claridge, Timothy D W
2010-03-01
In the application of saturation transfer difference (STD) experiments to the study of protein-ligand interactions, the relaxation of the ligand is one of the major influences on the experimentally observed STD factors, making interpretation of these difficult when attempting to define a group epitope map (GEM). In this paper, we describe a simplification of the relaxation matrix that may be applied under specified experimental conditions, which results in a simplified equation reflecting the directly transferred magnetisation rate from the protein onto the ligand, defined as the summation over the whole protein of the protein-ligand cross-relaxation multiplied by with the fractional saturation of the protein protons. In this, the relaxation of the ligand is accounted for implicitly by inclusion of the experimentally determined longitudinal relaxation rates. The conditions under which this "group epitope mapping considering relaxation of the ligand" (GEM-CRL) can be applied were tested on a theoretical model system, which demonstrated only minor deviations from that predicted by the full relaxation matrix calculations (CORCEMA-ST) [7]. Furthermore, CORCEMA-ST calculations of two protein-saccharide complexes (Jacalin and TreR) with known crystal structures were performed and compared with experimental GEM-CRL data. It could be shown that the GEM-CRL methodology is superior to the classical group epitope mapping approach currently used for defining ligand-protein proximities. GEM-CRL is also useful for the interpretation of CORCEMA-ST results, because the transferred magnetisation rate provides an additional parameter for the comparison between measured and calculated values. The independence of this parameter from the above mentioned factors can thereby enhance the value of CORCEMA-ST calculations.
Inversion of generalized relaxation time distributions with optimized damping parameter
NASA Astrophysics Data System (ADS)
Florsch, Nicolas; Revil, André; Camerlynck, Christian
2014-10-01
Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.
Hyperpolarized nanodiamond with long spin-relaxation times
Rej, Ewa; Gaebel, Torsten; Boele, Thomas; Waddington, David E.J.; Reilly, David J.
2015-01-01
The use of hyperpolarized agents in magnetic resonance, such as 13C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for 13C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance 13C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance. PMID:26450570
Patel, Nirali; Jiang, Yanfen; Mittal, Ravinder K.; Kim, Tae Ho; Ledgerwood, Melissa
2015-01-01
Esophageal axial shortening is caused by longitudinal muscle (LM) contraction, but circular muscle (CM) may also contribute to axial shortening because of its spiral morphology. The goal of our study was to show patterns of contraction of CM and LM layers during peristalsis and transient lower esophageal sphincter (LES) relaxation (TLESR). In rats, esophageal and LES morphology was assessed by histology and immunohistochemistry, and function with the use of piezo-electric crystals and manometry. Electrical stimulation of the vagus nerve was used to induce esophageal contractions. In 18 healthy subjects, manometry and high frequency intraluminal ultrasound imaging during swallow-induced esophageal contractions and TLESR were evaluated. CM and LM thicknesses were measured (40 swallows and 30 TLESRs) as markers of axial shortening, before and at peak contraction, as well as during TLESRs. Animal studies revealed muscular connections between the LM and CM layers of the LES but not in the esophagus. During vagal stimulated esophageal contraction there was relative movement between the LM and CM. Human studies show that LM-to-CM (LM/CM) thickness ratio at baseline was 1. At the peak of swallow-induced contraction LM/CM ratio decreased significantly (<1), whereas the reverse was the case during TLESR (>2). The pattern of contraction of CM and LM suggests sliding of the two muscles. Furthermore, the sliding patterns are in the opposite direction during peristalsis and TLESR. PMID:26045610
Longitudinal-relaxation-enhanced NMR experiments for the study of nucleic acids in solution.
Farjon, Jonathan; Boisbouvier, Jérôme; Schanda, Paul; Pardi, Arthur; Simorre, Jean-Pierre; Brutscher, Bernhard
2009-06-24
Atomic-resolution information on the structure and dynamics of nucleic acids is essential for a better understanding of the mechanistic basis of many cellular processes. NMR spectroscopy is a powerful method for studying the structure and dynamics of nucleic acids; however, solution NMR studies are currently limited to relatively small nucleic acids at high concentrations. Thus, technological and methodological improvements that increase the experimental sensitivity and spectral resolution of NMR spectroscopy are required for studies of larger nucleic acids or protein-nucleic acid complexes. Here we introduce a series of imino-proton-detected NMR experiments that yield an over 2-fold increase in sensitivity compared to conventional pulse schemes. These methods can be applied to the detection of base pair interactions, RNA-ligand titration experiments, measurement of residual dipolar (15)N-(1)H couplings, and direct measurements of conformational transitions. These NMR experiments employ longitudinal spin relaxation enhancement techniques that have proven useful in protein NMR spectroscopy. The performance of these new experiments is demonstrated for a 10 kDa TAR-TAR*(GA) RNA kissing complex and a 26 kDa tRNA.
Carrier relaxation time divergence in single and double layer cuprates
NASA Astrophysics Data System (ADS)
Schneider, M. L.; Rast, S.; Onellion, M.; Demsar, J.; Taylor, A. J.; Glinka, Y.; Tolk, N. H.; Ren, Y. H.; Lüpke, G.; Klimov, A.; Xu, Y.; Sobolewski, R.; Si, W.; Zeng, X. H.; Soukiassian, A.; Xi, X. X.; Abrecht, M.; Ariosa, D.; Pavuna, D.; Krapf, A.; Manzke, R.; Printz, J. O.; Williamsen, M. S.; Downum, K. E.; Guptasarma, P.; Bozovic, I.
2003-12-01
We report the transient optical pump-probe reflectivity measurements on single and double layer cuprate single crystals and thin films of ten different stoichiometries. We find that with sufficiently low fluence the relaxation time (tauR) of all samples exhibits a power law divergence with temperature (T): tauR ∝ T^{-3 ± 0.5}. Further, the divergence has an onset temperature above the superconducting transition temperature for all superconducting samples. Possible causes of this divergence are discussed.
On relaxation times in the Navier-Stokes-Voigt model
NASA Astrophysics Data System (ADS)
Layton, William J.; Rebholz, Leo G.
2013-03-01
We study analytically and numerically the relaxation time of flow evolution governed by the Navier-Stokes-Voigt (NSV) model. We first show that for the Taylor-Green vortex decay problem, NSV admits an exact solution which evolves slower than true fluid flow. Secondly, we show numerically for a channel flow test problem using standard discretisation methods that although NSV provides more regular solutions compared to usual Navier-Stokes solutions, NSV approximations take significantly longer to reach the steady state.
NASA Astrophysics Data System (ADS)
Uneyama, Takashi; Akimoto, Takuma; Miyaguchi, Tomoshige
2012-09-01
In entangled polymer systems, there are several characteristic time scales, such as the entanglement time and the disengagement time. In molecular simulations, the longest relaxation time (the disengagement time) can be determined by the mean square displacement (MSD) of a segment or by the shear relaxation modulus. Here, we propose the relative fluctuation analysis method, which is originally developed for characterizing large fluctuations, to determine the longest relaxation time from the center of mass trajectories of polymer chains (the time-averaged MSDs). Applying the method to simulation data of entangled polymers (by the slip-spring model and the simple reptation model), we provide a clear evidence that the longest relaxation time is estimated as the crossover time in the relative fluctuations.
Damping effects in doped graphene: The relaxation-time approximation
NASA Astrophysics Data System (ADS)
Kupčić, I.
2014-11-01
The dynamical conductivity of interacting multiband electronic systems derived by Kupčić et al. [J. Phys.: Condens. Matter 90, 145602 (2013), 10.1088/0953-8984/25/14/145602] is shown to be consistent with the general form of the Ward identity. Using the semiphenomenological form of this conductivity formula, we have demonstrated that the relaxation-time approximation can be used to describe the damping effects in weakly interacting multiband systems only if local charge conservation in the system and gauge invariance of the response theory are properly treated. Such a gauge-invariant response theory is illustrated on the common tight-binding model for conduction electrons in doped graphene. The model predicts two distinctly resolved maxima in the energy-loss-function spectra. The first one corresponds to the intraband plasmons (usually called the Dirac plasmons). On the other hand, the second maximum (π plasmon structure) is simply a consequence of the Van Hove singularity in the single-electron density of states. The dc resistivity and the real part of the dynamical conductivity are found to be well described by the relaxation-time approximation, but only in the parametric space in which the damping is dominated by the direct scattering processes. The ballistic transport and the damping of Dirac plasmons are thus the problems that require abandoning the relaxation-time approximation.
Krylov-subspace acceleration of time periodic waveform relaxation
Lumsdaine, A.
1994-12-31
In this paper the author uses Krylov-subspace techniques to accelerate the convergence of waveform relaxation applied to solving systems of first order time periodic ordinary differential equations. He considers the problem in the frequency domain and presents frequency dependent waveform GMRES (FDWGMRES), a member of a new class of frequency dependent Krylov-subspace techniques. FDWGMRES exhibits many desirable properties, including finite termination independent of the number of timesteps and, for certain problems, a convergence rate which is bounded from above by the convergence rate of GMRES applied to the static matrix problem corresponding to the linear time-invariant ODE.
Diffusion MRI/NMR magnetization equations with relaxation times
NASA Astrophysics Data System (ADS)
de, Dilip; Daniel, Simon
2012-10-01
Bloch-Torrey diffusion magnetization equation ignores relaxation effects of magnetization. Relaxation times are important in any diffusion magnetization studies of perfusion in tissues(Brain and heart specially). Bloch-Torrey equation cannot therefore describe diffusion magnetization in a real-life situation where relaxation effects play a key role, characteristics of tissues under examination. This paper describes derivations of two equations for each of the y and z component diffusion NMR/MRI magnetization (separately) in a rotating frame of reference, where rf B1 field is applied along x direction and bias magnetic field(Bo) is along z direction. The two equations are expected to further advance the science & technology of Diffusion MRI(DMRI) and diffusion functional MRI(DFMRI). These two techniques are becoming increasingly important in the study and treatment of neurological disorders, especially for the management of patients with acute stroke. It is rapidly becoming a standard for white matter disorders, as diffusion tensor imaging (DTI) can reveal abnormalities in white matter fibre structure and provide models of brain connectivity.
Clustered continuous-time random walks: diffusion and relaxation consequences
Weron, Karina; Stanislavsky, Aleksander; Jurlewicz, Agnieszka; Meerschaert, Mark M.; Scheffler, Hans-Peter
2012-01-01
We present a class of continuous-time random walks (CTRWs), in which random jumps are separated by random waiting times. The novel feature of these CTRWs is that the jumps are clustered. This introduces a coupled effect, with longer waiting times separating larger jump clusters. We show that the CTRW scaling limits are time-changed processes. Their densities solve two different fractional diffusion equations, depending on whether the waiting time is coupled to the preceding jump, or the following one. These fractional diffusion equations can be used to model all types of experimentally observed two power-law relaxation patterns. The parameters of the scaling limit process determine the power-law exponents and loss peak frequencies. PMID:22792038
Dependence on chain length of NMR relaxation times in mixtures of alkanes
NASA Astrophysics Data System (ADS)
Freed, Denise E.
2007-05-01
Many naturally occurring fluids, such as crude oils, consist of a very large number of components. It is often of interest to determine the composition of the fluids in situ. Diffusion coefficients and nuclear magnetic resonance (NMR) relaxation times can be measured in situ and depend on the size of the molecules. It has been shown [D. E. Freed et al., Phys. Rev. Lett. 94, 067602 (2005)] that the diffusion coefficient of each component in a mixture of alkanes follows a scaling law in the chain length of that molecule and in the mean chain length of the mixture, and these relations were used to determine the chain length distribution of crude oils from NMR diffusion measurements. In this paper, the behavior of NMR relaxation times in mixtures of chain molecules is addressed. The author explains why one would expect scaling laws for the transverse and longitudinal relaxation times of mixtures of short chain molecules and mixtures of alkanes, in particular. It is shown how the power law dependence on the chain length can be calculated from the scaling laws for the translational diffusion coefficients. The author fits the literature data for NMR relaxation in binary mixtures of alkanes and finds that its dependence on chain length agrees with the theory. Lastly, it is shown how the scaling laws in the chain length and the mean chain length can be used to determine the chain length distribution in crude oils that are high in saturates. A good fit is obtained between the NMR-derived chain length distributions and the ones from gas chromatography.
Multiple-relaxation-time model for the correct thermohydrodynamic equations.
Zheng, Lin; Shi, Baochang; Guo, Zhaoli
2008-08-01
A coupling lattice Boltzmann equation (LBE) model with multiple relaxation times is proposed for thermal flows with viscous heat dissipation and compression work. In this model the fixed Prandtl number and the viscous dissipation problems in the energy equation, which exist in most of the LBE models, are successfully overcome. The model is validated by simulating the two-dimensional Couette flow, thermal Poiseuille flow, and the natural convection flow in a square cavity. It is found that the numerical results agree well with the analytical solutions and/or other numerical results.
Theoretical evaluation of bulk viscosity: Expression for relaxation time
NASA Astrophysics Data System (ADS)
Hossein Mohammad Zaheri, Ali; Srivastava, Sunita; Tankeshwar, K.
2007-10-01
A theoretical calculation of bulk viscosity has been carried out by deriving an expression for the relaxation time which appears in the formula for bulk viscosity derived by Okumura and Yonezawa. The expression involved a pair distribution function and interaction potential. Numerical results have been obtained over a wide range of densities and temperatures for Lennard-Jones fluids. It is found that our results provide a good description of bulk viscosity as has been judged by comparing the results with nonequilibrium molecular dynamics results. In addition, our results demonstrate the importance of the multiparticle correlation function.
Electron number dependence of spin triplet-singlet relaxation time
NASA Astrophysics Data System (ADS)
Li, H. O.; Xiao, M.; Cao, G.; You, J.; Guo, G. P.
2014-02-01
In a GaAs single quantum dot, the relaxation time T1 between spin triplet and singlet states has been measured for the last few even electron numbers. The singlet-triplet energy separation EST is tuned as a control parameter for the comparison of T1 between different electron numbers. T1 steadily decreases with increasing electron numbers from 2-electrons to 6-electrons. This implies an enhancement of the spin-orbit coupling strength due to multi-electron interaction in a quantum dot.
Role of relaxation time scale in noisy signal transduction.
Maity, Alok Kumar; Chaudhury, Pinaki; Banik, Suman K
2015-01-01
Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenomenon observed in living cells. It influences generation of phenotypic diversity in genetically identical cells. Such variation of cellular components is beneficial in some contexts but detrimental in others. To quantify the fluctuations in a gene product, we undertake an analytical scheme for studying few naturally abundant linear as well as branched chain network motifs. We solve the Langevin equations associated with each motif under the purview of linear noise approximation and derive the expressions for Fano factor and mutual information in close analytical form. Both quantifiable expressions exclusively depend on the relaxation time (decay rate constant) and steady state population of the network components. We investigate the effect of relaxation time constraints on Fano factor and mutual information to indentify a time scale domain where a network can recognize the fluctuations associated with the input signal more reliably. We also show how input population affects both quantities. We extend our calculation to long chain linear motif and show that with increasing chain length, the Fano factor value increases but the mutual information processing capability decreases. In this type of motif, the intermediate components act as a noise filter that tune up input fluctuations and maintain optimum fluctuations in the output. For branched chain motifs, both quantities vary within a large scale due to their network architecture and facilitate survival of living system in diverse environmental conditions.
Impact of Internal Magnetic Field Gradients on the NMR Relaxation Time Distribution
NASA Astrophysics Data System (ADS)
Grombacher, D. J.; Fay, E. L.; Knight, R. J.
2014-12-01
We explore the impact of internal magnetic field gradients, which arise due to the presence of a magnetic susceptibility contrast between grains and the pore fluid, on the relaxation time distribution. Relaxation times provide powerful insight into the pore geometry. This link to pore geometry relies on the fast-diffusion assumption, where relaxation is controlled by the pore surface and each pore is treated as isolated and is described by a single relaxation time. This allows the relaxation time distribution to be interpreted as a pore size distribution. However, internal gradients can complicate this interpretation by providing an additional relaxation mechanism impacting the decay. We present both synthetic and laboratory studies investigating the impact of internal gradients on the relaxation time distribution. A COMSOL multiphysics package is employed to determine the magnetic field's spatial distribution across the pore space, and to simulate the pore's NMR relaxation. The NMR simulation accounts for both surface relaxation, and relaxation related to internal gradients. We observe that as the influence of internal gradients increases, through either greater magnetic susceptibility contrasts or the use of longer echo times, the shape of the relaxation time distribution is altered. In these cases, relaxation within a single pore is no longer described by a single characteristic relaxation time, instead requiring multiple relaxation times to capture the time-dependent behavior. As a result, the relaxation time distribution is broadened and shifted to faster relaxation times. Laboratory results, performed for several samples sieved to ensure narrow grain size distributions and with varying magnitudes of magnetic susceptibility contrasts, exhibit similar trends to those observed in the synthetic studies. These results have significant implications for the interpretation of relaxation data to obtain pore size distributions, and the derived estimates of hydraulic
The time correlation function perspective of NMR relaxation in proteins
NASA Astrophysics Data System (ADS)
Shapiro, Yury E.; Meirovitch, Eva
2013-08-01
We applied over a decade ago the two-body coupled-rotator slowly relaxing local structure (SRLS) approach to NMR relaxation in proteins. One rotator is the globally moving protein and the other rotator is the locally moving probe (spin-bearing moiety, typically the 15N-1H bond). So far we applied SRLS to 15N-H relaxation from seven different proteins within the scope of the commonly used data-fitting paradigm. Here, we solve the SRLS Smoluchowski equation using typical best-fit parameters as input, to obtain the corresponding generic time correlation functions (TCFs). The following new information is obtained. For actual rhombic local ordering and main ordering axis pointing along C_{i - 1}^α - C_i^α, the measurable TCF is dominated by the (K,K') = (-2,2), (2,2), and (0,2) components (K is the order of the rank 2 local ordering tensor), determined largely by the local motion. Global diffusion axiality affects the analysis significantly when the ratio between the parallel and perpendicular components exceeds approximately 1.5. Local diffusion axiality has a large and intricate effect on the analysis. Mode-coupling becomes important when the ratio between the global and local motional rates falls below 0.01. The traditional method of analysis - model-free (MF) - represents a simple limit of SRLS. The conditions under which the MF and SRLS TCFs are the same are specified. The validity ranges of wobble-in-a-cone and rotation on the surface of a cone as local motions are determined. The evolution of the intricate Smoluchowski operator from the simple diffusion operator for a sphere reorienting in isotropic medium is delineated. This highlights the fact that SRLS is an extension of the established stochastic theories for treating restricted motions. This study lays the groundwork for TCF-based comparison between mesoscopic SRLS and atomistic molecular dynamics.
Relaxation time effects of wave ripples on tidal beaches
NASA Astrophysics Data System (ADS)
Austin, M. J.; Masselink, G.; O'Hare, T. J.; Russell, P. E.
2007-08-01
Seabed roughness due to wave ripples is a key factor in controlling sediment transport processes in the nearshore zone. Roughness is commonly considered a function of the ripple geometry, which in turn, can be predicted from sediment and hydrodynamic parameters. Existing ripple predictors consider the bed morphology to be in equilibrium with the hydrodynamics, whereas recent laboratory measurements show that the time scale for ripple development is of the order of tens of minutes to hours. Here we show that wave ripples on tidal beaches are significantly affected by relaxation time effects, with ripple height and length progressively increasing during the rising tide and remaining constant during the falling tide. Moreover, we examine the ripples in the context of existing empirical models and suggest how the temporal evolution over a tidal cycle may be predicted.
Critical comparison between time- and frequency-domain relaxation functions
NASA Astrophysics Data System (ADS)
Snyder, Chad R.; Mopsik, Frederick I.
1999-07-01
Considerable work has been performed on providing a theoretical basis for the Kohlrausch-Williams-Watts (KWW) and Havriliak-Negami (HN) relaxation functions. Because of this, several papers have examined the ``interconnection'' of these two functions. In this paper, we demonstrate that, with achievable instrumental sensitivity, these two functions are distinguishable. We further address the issue of the ``universal'' limiting power laws and the ability to obtain the exponents associated with them. Finally, the stability and accuracy of our numerical Laplace transform is demonstrated by comparison between functions with known analytical time and frequency solutions. The stability of our algorithm indicates that the method of Alvarez and co-workers [F. Alvarez, A. Alegría, and J. Colmenero, Phys. Rev. B 44, 7306 (1991)] is an unnecessary approximation for converting between the time and frequency domain.
Upper D region chemical kinetic modeling of LORE relaxation times
NASA Astrophysics Data System (ADS)
Gordillo-Vázquez, F. J.; Luque, A.; Haldoupis, C.
2016-04-01
The recovery times of upper D region electron density elevations, caused by lightning-induced electromagnetic pulses (EMP), are modeled. The work was motivated from the need to understand a recently identified narrowband VLF perturbation named LOREs, an acronym for LOng Recovery Early VLF events. LOREs associate with long-living electron density perturbations in the upper D region ionosphere; they are generated by strong EMP radiated from large peak current intensities of ±CG (cloud to ground) lightning discharges, known also to be capable of producing elves. Relaxation model scenarios are considered first for a weak enhancement in electron density and then for a much stronger one caused by an intense lightning EMP acting as an impulsive ionization source. The full nonequilibrium kinetic modeling of the perturbed mesosphere in the 76 to 92 km range during LORE-occurring conditions predicts that the electron density relaxation time is controlled by electron attachment at lower altitudes, whereas above 79 km attachment is balanced totally by associative electron detachment so that electron loss at these higher altitudes is controlled mainly by electron recombination with hydrated positive clusters H+(H2O)n and secondarily by dissociative recombination with NO+ ions, a process which gradually dominates at altitudes >88 km. The calculated recovery times agree fairly well with LORE observations. In addition, a simplified (quasi-analytic) model build for the key charged species and chemical reactions is applied, which arrives at similar results with those of the full kinetic model. Finally, the modeled recovery estimates for lower altitudes, that is <79 km, are in good agreement with the observed short recovery times of typical early VLF events, which are known to be associated with sprites.
NASA Astrophysics Data System (ADS)
Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto
2016-09-01
Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications.
Moraes, Tiago Bueno; Monaretto, Tatiana; Colnago, Luiz Alberto
2016-09-01
Longitudinal (T1) and transverse (T2) relaxation times have been widely used in time-domain NMR (TD-NMR) to determine several physicochemical properties of petroleum, polymers, and food products. The measurement of T2 through the CPMG pulse sequence has been used in most of these applications because it denotes a rapid, robust method. On the other hand, T1 has been occasionally used in TD-NMR due to the long measurement time required to collect multiple points along the T1 relaxation curve. Recently, several rapid methods to measure T1 have been proposed. Those methods based upon single shot, known as Continuous Wave Free Precession (CWFP) pulse sequences, have been employed in the simultaneous measurement of T1 and T2 in a rapid fashion. However, these sequences can be used exclusively in instrument featuring short dead time because the magnitude of the signal at thermal equilibrium is required. In this paper, we demonstrate that a special CWFP sequence with a low flip angle can be a simple and rapid method to measure T1 regardless of instruments dead time. Experimental results confirmed that the method called CWFP-T1 may be used to measure both single T1 value and T1 distribution in heterogeneous samples. Therefore, CWFP-T1 sequence can be a feasible alternative to CPMG in the determination of physicochemical properties, particularly in processes where fast protocols are requested such as industrial applications. PMID:27376553
Implicit versus explicit momentum relaxation time solution for semiconductor nanowires
Marin, E. G. Ruiz, F. G. Godoy, A. Tienda-Luna, I. M.; Gámiz, F.
2015-07-14
We discuss the necessity of the exact implicit Momentum Relaxation Time (MRT) solution of the Boltzmann transport equation in order to achieve reliable carrier mobility results in semiconductor nanowires. Firstly, the implicit solution for a 1D electron gas with a isotropic bandstructure is presented resulting in the formulation of a simple matrix system. Using this solution as a reference, the explicit approach is demonstrated to be inaccurate for the calculation of inelastic anisotropic mechanisms such as polar optical phonons, characteristic of III-V materials. Its validity for elastic and isotropic mechanisms is also evaluated. Finally, the implications of the MRT explicit approach inaccuracies on the total mobility of Si and III-V NWs are studied.
NASA Astrophysics Data System (ADS)
Chen, Ming-Jye; Liao, Shu-Hsien; Yang, Hong-Chang; Lee, Hsin-Yi; Liu, Yi-Jia; Chen, Hsin-Hsien; Horng, Herng-Er; Yang, Shieh-Yueh
2011-12-01
Shortening spin-lattice relaxation rates (1/T1) or spin-spin relaxation rates (1/T2) is the purpose of magnetic resonance imaging contrast agents. In this work, an ultralow field nuclear magnetic resonance spectrometer and imager are set up to characterize the spin relaxation rates of Fe3O4 superparamagnetic iron oxide (SPIO) for image contrast. It was found that both 1/T1 and 1/T2 increase linearly when the magnetic susceptibility χ of SPIO increases by increasing the concentration of SPIO dispersed in water. In an applied field, magnetic moments of SPIO generate microscopic field gradients that weaken the field homogeneity, in turn de-phasing the proton's nuclear spin and enhancing the relaxation rates. A T1-contrast image is demonstrated, using SPIO as the contrast agent and high-Tc superconducting quantum interference devices as the detector. T1-contrast imaging in microtesla fields might provide a potential modality for discriminating cancer.
NASA Astrophysics Data System (ADS)
Liu, Fu-Sui; Chao, Wen
1989-10-01
This paper attempts to establish the dynamics of a microscopic model for a continuous-time random walk. The waiting-time distribution Q(t) is derived from the time-dependent perturbation theory of quantum mechanics for the walker's motion coupled with the media. The walker's motion includes the hopping of a localized particle and a spin (or dipole) flip. The medium is modeled as a harmonic heat bath. The walker moves among a set of degenerate localized states. The scaling behavior of the effective spectrum at low frequency with index β is modeled by using stochastic theory. It is found that Q(t)=exp(-at(2-β)) for 0<=β<2 and Q(t)~t-α for β=2. The applications of our theory include dispersion diffusion, the transient drift of hopping control light excitation in a-Si:H, and thermoremanent magnetization relaxation in spin glasses.
Dependence of Brownian and Néel relaxation times on magnetic field strength
Deissler, Robert J. Wu, Yong; Martens, Michael A.
2014-01-15
Purpose: In magnetic particle imaging (MPI) and magnetic particle spectroscopy (MPS) the relaxation time of the magnetization in response to externally applied magnetic fields is determined by the Brownian and Néel relaxation mechanisms. Here the authors investigate the dependence of the relaxation times on the magnetic field strength and the implications for MPI and MPS. Methods: The Fokker–Planck equation with Brownian relaxation and the Fokker–Planck equation with Néel relaxation are solved numerically for a time-varying externally applied magnetic field, including a step-function, a sinusoidally varying, and a linearly ramped magnetic field. For magnetic fields that are applied as a step function, an eigenvalue approach is used to directly calculate both the Brownian and Néel relaxation times for a range of magnetic field strengths. For Néel relaxation, the eigenvalue calculations are compared to Brown's high-barrier approximation formula. Results: The relaxation times due to the Brownian or Néel mechanisms depend on the magnitude of the applied magnetic field. In particular, the Néel relaxation time is sensitive to the magnetic field strength, and varies by many orders of magnitude for nanoparticle properties and magnetic field strengths relevant for MPI and MPS. Therefore, the well-known zero-field relaxation times underestimate the actual relaxation times and, in particular, can underestimate the Néel relaxation time by many orders of magnitude. When only Néel relaxation is present—if the particles are embedded in a solid for instance—the authors found that there can be a strong magnetization response to a sinusoidal driving field, even if the period is much less than the zero-field relaxation time. For a ferrofluid in which both Brownian and Néel relaxation are present, only one relaxation mechanism may dominate depending on the magnetic field strength, the driving frequency (or ramp time), and the phase of the magnetization relative to the
Jiménez-Aquino, J I; Romero-Bastida, M
2011-07-01
The detection of weak signals through nonlinear relaxation times for a Brownian particle in an electromagnetic field is studied in the dynamical relaxation of the unstable state, characterized by a two-dimensional bistable potential. The detection process depends on a dimensionless quantity referred to as the receiver output, calculated as a function of the nonlinear relaxation time and being a characteristic time scale of our system. The latter characterizes the complete dynamical relaxation of the Brownian particle as it relaxes from the initial unstable state of the bistable potential to its corresponding steady state. The one-dimensional problem is also studied to complement the description.
Time dependent parallel viscosity and relaxation rate of poloidal rotation in the banana regime
Hsu, C.T.; Shaing, K.C.; Gormley, R. )
1994-01-01
Time dependent ion parallel viscous force in the banana regime with arbitrary inverse aspect ratio [epsilon] is calculated using the eigenfunction approach. The flux surface averaged viscosity is then used to study the relaxation process of the poloidal rotation which leads to oscillatory relaxation behavior. The relaxation rate [nu][sub [ital p
Joint Analysis of Survival Time and Longitudinal Categorical Outcomes
Choi, Jaeun; Cai, Jianwen; Zeng, Donglin; Olshan, Andrew F.
2013-01-01
In biomedical or public health research, it is common for both survival time and longitudinal categorical outcomes to be collected for a subject, along with the subject’s characteristics or risk factors. Investigators are often interested in finding important variables for predicting both survival time and longitudinal outcomes which could be correlated within the same subject. Existing approaches for such joint analyses deal with continuous longitudinal outcomes. New statistical methods need to be developed for categorical longitudinal outcomes. We propose to simultaneously model the survival time with a stratified Cox proportional hazards model and the longitudinal categorical outcomes with a generalized linear mixed model. Random effects are introduced to account for the dependence between survival time and longitudinal outcomes due to unobserved factors. The Expectation-Maximization (EM) algorithm is used to derive the point estimates for the model parameters, and the observed information matrix is adopted to estimate their asymptotic variances. Asymptotic properties for our proposed maximum likelihood estimators are established using the theory of empirical processes. The method is demonstrated to perform well in finite samples via simulation studies. We illustrate our approach with data from the Carolina Head and Neck Cancer Study (CHANCE) and compare the results based on our simultaneous analysis and the separately conducted analyses using the generalized linear mixed model and the Cox proportional hazards model. Our proposed method identifies more predictors than by separate analyses. PMID:26052353
7Li relaxation time measurements at very low magnetic field by 1H dynamic nuclear polarization
NASA Astrophysics Data System (ADS)
Zeghib, Nadir; Grucker, Daniel
2001-09-01
Dynamic nuclear polarization (DNP) of water protons was used to measure the relaxation time of lithium at very low magnetic field as a demonstration of the use of DNP for nuclei less abundant than water protons. Lithium (Li+) was chosen because it is an efficient treatment for manic-depressive illness, with an unknown action mechanism. After having recalled the theoretical basis of a three-spin system comprising two nuclei - the water proton of the solvent, the dissolved Li+ ion and the free electron of a free radical - we have developed a transient solution in order to optimize potential biological applications of Li DNP. The three-spin model has allowed computation of all the parameters of the system - the longitudinal relaxation rate per unit of free radical concentration, the dipolar and scalar part of the coupling between the nuclei and the electron, and the maximum signal enhancement achievable for both proton and lithium spins. All these measurements have been obtained solely through the detection of the proton resonance.
NASA Astrophysics Data System (ADS)
Luo, Ningqi; Tian, Xiumei; Xiao, Jun; Hu, Wenyong; Yang, Chuan; Li, Li; Chen, Dihu
2013-04-01
Ultra-small gadolinium oxide (Gd2O3) can be used as T1-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r1) and has attracted intensive attention in these years. In this paper, ultra-small Gd2O3 nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd2O3 by laser ablation in DEG. The r1 value and T1-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r1 value of 9.76 s-1 mM-1 to be good MRI contrast agents. We propose an explanation for the high r1 value of ultra-small Gd2O3 by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd3+ on Gd2O3 surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd2O3 of high r1 value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd2O3 MRI contrast agents.
Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films
Chugh, Sunny; Mehta, Ruchit; Man, Mengren; Chen, Zhihong
2016-01-01
Due to the small skin depth in metals at optical frequencies, their plasmonic response is strongly dictated by their surface properties. Copper (Cu) is one of the standard materials of choice for plasmonic applications, because of its high conductivity and CMOS compatibility. However, being a chemically active material, it gets easily oxidized when left in ambient environment, causing an inevitable degradation in its plasmonic resonance. Here, for the first time, we report a strong enhancement in the optical relaxation time in Cu by direct growth of few-layer graphene that is shown to act as an excellent passivation layer protecting Cu surface from any deterioration. Spectroscopic ellipsometry measurements reveal a 40–50% reduction in the total scattering rate in Cu itself, which is attributed to an improvement in its surface properties. We also study the impact of graphene quality and show that high quality graphene leads to an even larger improvement in electron scattering rate. These findings are expected to provide a big push towards graphene-protected Cu plasmonics. PMID:27461968
Optical Relaxation Time Enhancement in Graphene-Passivated Metal Films
NASA Astrophysics Data System (ADS)
Chugh, Sunny; Mehta, Ruchit; Man, Mengren; Chen, Zhihong
2016-07-01
Due to the small skin depth in metals at optical frequencies, their plasmonic response is strongly dictated by their surface properties. Copper (Cu) is one of the standard materials of choice for plasmonic applications, because of its high conductivity and CMOS compatibility. However, being a chemically active material, it gets easily oxidized when left in ambient environment, causing an inevitable degradation in its plasmonic resonance. Here, for the first time, we report a strong enhancement in the optical relaxation time in Cu by direct growth of few-layer graphene that is shown to act as an excellent passivation layer protecting Cu surface from any deterioration. Spectroscopic ellipsometry measurements reveal a 40–50% reduction in the total scattering rate in Cu itself, which is attributed to an improvement in its surface properties. We also study the impact of graphene quality and show that high quality graphene leads to an even larger improvement in electron scattering rate. These findings are expected to provide a big push towards graphene-protected Cu plasmonics.
Reconstruction of relaxation time distribution from linear electrochemical impedance spectroscopy
NASA Astrophysics Data System (ADS)
Zhang, Yanxiang; Chen, Yu; Yan, Mufu; Chen, Fanglin
2015-06-01
Linear electrochemical impedance spectroscopy (EIS), and in particular its representation of distribution of relaxation time (DRT), enables the identification of the number of processes and their nature involved in electrochemical cells. With the advantage of high frequency resolution, DRT has recently drawn increasing attention for applications in solid oxide fuel cells (SOFCs). However, the method of DRT reconstruction is not yet presented clearly in terms of what mathematical treatments and theoretical assumptions have been made. Here we present unambiguously a method to reconstruct DRT function of impedance based on Tikhonov regularization. By using the synthetic impedances and analytic DRT functions of RQ element, generalized finite length Warburg element, and Gerischer element with physical quantities representative to those of SOFC processes, we show that the quality of DRT reconstruction is sensitive to the sampling points per decade (ppd) of frequency from the impedance measurement. The robustness of the DRT reconstruction to resist noise imbedded in impedance data and numerical calculations can be accomplished by optimizing the weighting factor λ according to well defined criterion.
State of water at 136 K determined by its relaxation time.
Johari, G P
2005-03-21
Dielectric relaxation time of pure bulk water has been determined from the dielectric loss tangent scans against temperature at two frequencies. After calculating the frequency-independent background loss, the relaxation loss was obtained, and the relaxation time determined. The dielectric relaxation time of water is 35 +/- 13 s at 136 +/- 1 K, which is comparable with its structural relaxation time of ca. 33 s estimated from its T(g) endotherm (G. P. Johari, A. Hallbrucker and E. Mayer, Nature, 1987, 330, 552). Therefore, water is an ultraviscous liquid at 136 K, and this removes the basis for a comparison-based inference that water is a rigid glass up to a temperature of 165 K or higher (Y. Yue and C. A. Angell, Nature, 2004, 427, 717). The method yields satisfactory values for the relaxation time of stable glasses at their known calorimetric T(g). PMID:19791317
Nuclear Spin Relaxation Times for Methane-Helium ``Slush'' at 4 MHz using Pulsed NMR
NASA Astrophysics Data System (ADS)
Hamida, J. A.; Sullivan, N. S.
2006-09-01
We report measurements of the nuclear spin-lattice relaxation times (T1) and spin-spin relaxation times (T2) for small grains of methane suspended in liquid helium (methane-helium "slush") for temperatures 2 K
Short relaxation times but long transient times in both simple and complex reaction networks
Henry, Adrien; Martin, Olivier C.
2016-01-01
When relaxation towards an equilibrium or steady state is exponential at large times, one usually considers that the associated relaxation time τ, i.e. the inverse of the decay rate, is the longest characteristic time in the system. However, that need not be true, other times such as the lifetime of an infinitesimal perturbation can be much longer. In the present work, we demonstrate that this paradoxical property can arise even in quite simple systems such as a linear chain of reactions obeying mass action (MA) kinetics. By mathematical analysis of simple reaction networks, we pin-point the reason why the standard relaxation time does not provide relevant information on the potentially long transient times of typical infinitesimal perturbations. Overall, we consider four characteristic times and study their behaviour in both simple linear chains and in more complex reaction networks taken from the publicly available database ‘Biomodels’. In all these systems, whether involving MA rates, Michaelis–Menten reversible kinetics, or phenomenological laws for reaction rates, we find that the characteristic times corresponding to lifetimes of tracers and of concentration perturbations can be significantly longer than τ. PMID:27411726
The time dependence of rock healing as a universal relaxation process, a tutorial
NASA Astrophysics Data System (ADS)
Snieder, Roel; Sens-Schönfelder, Christoph; Wu, Renjie
2016-10-01
The material properties of earth materials often change after the material has been perturbed (slow dynamics). For example, the seismic velocity of subsurface materials changes after earthquakes, and granular materials compact after being shaken. Such relaxation processes are associated by observables that change logarithmically with time. Since the logarithm diverges for short and long times, the relaxation can, strictly speaking, not have a log-time dependence. We present a self-contained description of a relaxation function that consists of a superposition of decaying exponentials that has log-time behavior for intermediate times, but converges to zero for long times, and is finite for t = 0. The relaxation function depends on two parameters, the minimum and maximum relaxation time. These parameters can, in principle, be extracted from the observed relaxation. As an example, we present a crude model of a fracture that is closing under an external stress. Although the fracture model violates some of the assumptions on which the relaxation function is based, it follows the relaxation function well. We provide qualitative arguments that the relaxation process, just like the Gutenberg-Richter law, is applicable to a wide range of systems and has universal properties.
Rajagopal, Senthilkumar; Nalli, Ancy D; Kumar, Divya P; Bhattacharya, Sayak; Hu, Wenhui; Mahavadi, Sunila; Grider, John R; Murthy, Karnam S
2014-09-01
The following manuscript was published as a Fast Forward article on September 9, 2014: Rajagopal S, Nalli AD, Kumar DP, Bhattacharya S, Hu W, Mahavadi S, Grider JR, and Murthy KS, Cytokine-Induced S-Nitrosylation of Soluble Guanylyl Cyclase and Expression of Phosphodiesterase 1A Contribute to Dysfunction of Longitudinal Smooth Muscle Relaxation. J Pharmacol Exp Ther jpet.114.218156; doi:10.1124/jpet.114.218156. It was later found that the chemical identity of IC86340 was not sufficiently disclosed. The authors are unable, at this time, to provide this information in accordance with the editorial policies of The Journal of Pharmacology and Experimental Therapeutics. As a result, the manuscript has been withdrawn from publication. We apologize for any inconvenience this may cause JPET's readers. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.
Time Course of Corticospinal Excitability and Intracortical Inhibition Just before Muscle Relaxation
Suzuki, Tomotaka; Sugawara, Kenichi; Ogahara, Kakuya; Higashi, Toshio
2016-01-01
Using transcranial magnetic stimulation (TMS), we investigated how short-interval intracortical inhibition (SICI) was involved with transient motor cortex (M1) excitability changes observed just before the transition from muscle contraction to muscle relaxation. Ten healthy participants performed a simultaneous relaxation task of the ipsilateral finger and foot, relaxing from 10% of their maximal voluntary contraction (MVC) force after the go signal. In the simple reaction time (RT) paradigm, single or paired TMS pulses were randomly delivered after the go signal, and motor evoked potentials (MEPs) were recorded from the right first dorsal interosseous (FDI) muscle. We analyzed the time course prior to the estimated relaxation reaction time (RRT), defined here as the onset of voluntary relaxation. SICI decreased in the 80–100 ms before RRT, and MEPs were significantly greater in amplitude in the 60–80 ms period before RRT than in the other intervals in single-pulse trials. TMS pulses did not effectively increase RRT. These results show that cortical excitability in the early stage, before muscle relaxation, plays an important role in muscle relaxation control. SICI circuits may vary between decreased and increased activation to continuously maintain muscle relaxation during or after a relaxation response. With regard to M1 excitability dynamics, we suggest that SICI also dynamically changes throughout the muscle relaxation process. PMID:26858619
O'Connor, James P.B.; Naish, Josephine H.; Parker, Geoff J.M.; Waterton, John C.; Watson, Yvonne; Jayson, Gordon C.; Buonaccorsi, Giovanni A.; Cheung, Sue; Buckley, David L.; McGrath, Deirdre M.; West, Catharine M.L.; Davidson, Susan E.; Roberts, Caleb; Mills, Samantha J.; Mitchell, Claire L.; Hope, Lynn; Ton, N. Chan; Jackson, Alan
2009-11-15
Purpose: There is considerable interest in developing non-invasive methods of mapping tumor hypoxia. Changes in tissue oxygen concentration produce proportional changes in the magnetic resonance imaging (MRI) longitudinal relaxation rate (R{sub 1}). This technique has been used previously to evaluate oxygen delivery to healthy tissues and is distinct from blood oxygenation level-dependent (BOLD) imaging. Here we report application of this method to detect alteration in tumor oxygenation status. Methods and materials: Ten patients with advanced cancer of the abdomen and pelvis underwent serial measurement of tumor R{sub 1} while breathing medical air (21% oxygen) followed by 100% oxygen (oxygen-enhanced MRI). Gadolinium-based dynamic contrast-enhanced MRI was then performed to compare the spatial distribution of perfusion with that of oxygen-induced DELTAR{sub 1}. Results: DELTAR{sub 1} showed significant increases of 0.021 to 0.058 s{sup -1} in eight patients with either locally recurrent tumor from cervical and hepatocellular carcinomas or metastases from ovarian and colorectal carcinomas. In general, there was congruency between perfusion and oxygen concentration. However, regional mismatch was observed in some tumor cores. Here, moderate gadolinium uptake (consistent with moderate perfusion) was associated with low area under the DELTAR{sub 1} curve (consistent with minimal increase in oxygen concentration). Conclusions: These results provide evidence that oxygen-enhanced longitudinal relaxation can monitor changes in tumor oxygen concentration. The technique shows promise in identifying hypoxic regions within tumors and may enable spatial mapping of change in tumor oxygen concentration.
The derivation of thermal relaxation time between two-phase bubbly flow
NASA Astrophysics Data System (ADS)
Mohammadein, S. A.
2006-03-01
Thermal relaxation time constant is derived analytically for the relaxed model with unequal phase-temperatures of a vapour bubble at saturation temperature and a non-steady temperature field around the growing vapour bubble. The energy and state equation are solved between two finite boundary conditions. Thermal relaxation time perform a good agreement with Mohammadein (in Doctoral thesis, PAN, Gdansk, 1994) and Moby Dick experiment in terms of non-equilibrium homogeneous model (Bilicki et al. in Proc R Soc Lond A428:379-397, 1990) for lower values of initial void fraction. Thermal relaxation is affected by Jacob number, superheating, initial bubble radius and thermal diffusivity.
Luo Ningqi; Xiao Jun; Hu Wenyong; Chen Dihu; Tian Xiumei; Yang Chuan; Li Li
2013-04-28
Ultra-small gadolinium oxide (Gd{sub 2}O{sub 3}) can be used as T{sub 1}-weighted Magnetic Resonance Imaging (MRI) contrast agent own to its high longitudinal relaxivity (r{sub 1}) and has attracted intensive attention in these years. In this paper, ultra-small Gd{sub 2}O{sub 3} nanoparticles of 3.8 nm in diameter have been successfully synthesized by a microsecond laser ablating a gadolinium (Gd) target in diethylene glycol (DEG). The growth inhibition effect induced by the large viscosity of DEG makes it possible to synthesize ultra-small Gd{sub 2}O{sub 3} by laser ablation in DEG. The r{sub 1} value and T{sub 1}-weighted MR images are measured by a 3.0 T MRI spectroscope. The results show these nanoparticles with a high r{sub 1} value of 9.76 s{sup -1} mM{sup -1} to be good MRI contrast agents. We propose an explanation for the high r{sub 1} value of ultra-small Gd{sub 2}O{sub 3} by considering the decreasing factor (surface to volume ratio of the nanoparticles, S/V) and the increasing factor (water hydration number of the Gd{sup 3+} on Gd{sub 2}O{sub 3} surface, q), which offer a new look into the relaxivity studies of MRI contrast agents. Our research provides a new approach to preparing ultra-small Gd{sub 2}O{sub 3} of high r{sub 1} value by laser ablation in DEG and develops the understanding of high relaxivity of ultra-small Gd{sub 2}O{sub 3} MRI contrast agents.
T2 relaxation time is related to liver fibrosis severity
Siqueira, Luiz; Uppal, Ritika; Alford, Jamu; Fuchs, Bryan C.; Yamada, Suguru; Tanabe, Kenneth; Chung, Raymond T.; Lauwers, Gregory; Chew, Michael L.; Boland, Giles W.; Sahani, Duhyant V.; Vangel, Mark; Hahn, Peter F.; Caravan, Peter
2016-01-01
Background The grading of liver fibrosis relies on liver biopsy. Imaging techniques, including elastography and relaxometric, techniques have had varying success in diagnosing moderate fibrosis. The goal of this study was to determine if there is a relationship between the T2-relaxation time of hepatic parenchyma and the histologic grade of liver fibrosis in patients with hepatitis C undergoing both routine, liver MRI and liver biopsy, and to validate our methodology with phantoms and in a rat model of liver fibrosis. Methods This study is composed of three parts: (I) 123 patients who underwent both routine, clinical liver MRI and biopsy within a 6-month period, between July 1999 and January 2010 were enrolled in a retrospective study. MR imaging was performed at 1.5 T using dual-echo turbo-spin echo equivalent pulse sequence. T2 relaxation time of liver parenchyma in patients was calculated by mono-exponential fit of a region of interest (ROI) within the right lobe correlating to histopathologic grading (Ishak 0–6) and routine serum liver inflammation [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Statistical comparison was performed using ordinary logistic and ordinal logistic regression and ANOVA comparing T2 to Ishak fibrosis without and using AST and ALT as covariates; (II) a phantom was prepared using serial dilutions of dextran coated magnetic iron oxide nanoparticles. T2 weighed imaging was performed by comparing a dual echo fast spin echo sequence to a Carr-Purcell-Meigboom-Gill (CPMG) multi-echo sequence at 1.5 T. Statistical comparison was performed using a paired t-test; (III) male Wistar rats receiving weekly intraperitoneal injections of phosphate buffer solution (PBS) control (n=4 rats); diethylnitrosamine (DEN) for either 5 (n=5 rats) or 8 weeks (n=4 rats) were MR imaged on a Bruker Pharmascan 4.7 T magnet with a home-built bird-cage coil. T2 was quantified by using a mono-exponential fitting algorithm on multi-slice multi
Vandewalle, S.
1994-12-31
Time-stepping methods for parabolic partial differential equations are essentially sequential. This prohibits the use of massively parallel computers unless the problem on each time-level is very large. This observation has led to the development of algorithms that operate on more than one time-level simultaneously; that is to say, on grids extending in space and in time. The so-called parabolic multigrid methods solve the time-dependent parabolic PDE as if it were a stationary PDE discretized on a space-time grid. The author has investigated the use of multigrid waveform relaxation, an algorithm developed by Lubich and Ostermann. The algorithm is based on a multigrid acceleration of waveform relaxation, a highly concurrent technique for solving large systems of ordinary differential equations. Another method of this class is the time-parallel multigrid method. This method was developed by Hackbusch and was recently subject of further study by Horton. It extends the elliptic multigrid idea to the set of equations that is derived by discretizing a parabolic problem in space and in time.
Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature
NASA Astrophysics Data System (ADS)
Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth
2016-02-01
Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. Using molecular dynamics simulations for three model glass-forming liquids, we show that the short-time β relaxation is cooperative in nature. Using finite-size scaling analysis, we extract a growing length scale associated with beta relaxation from the observed dependence of the beta relaxation time on the system size. We find, in qualitative agreement with the prediction of the inhomogeneous mode coupling theory, that the temperature dependence of this length scale is the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time α -relaxation regime.
Short-Time Beta Relaxation in Glass-Forming Liquids Is Cooperative in Nature.
Karmakar, Smarajit; Dasgupta, Chandan; Sastry, Srikanth
2016-02-26
Temporal relaxation of density fluctuations in supercooled liquids near the glass transition occurs in multiple steps. Using molecular dynamics simulations for three model glass-forming liquids, we show that the short-time β relaxation is cooperative in nature. Using finite-size scaling analysis, we extract a growing length scale associated with beta relaxation from the observed dependence of the beta relaxation time on the system size. We find, in qualitative agreement with the prediction of the inhomogeneous mode coupling theory, that the temperature dependence of this length scale is the same as that of the length scale that describes the spatial heterogeneity of local dynamics in the long-time α-relaxation regime.
Active open boundary forcing using dual relaxation time-scales in downscaled ocean models
NASA Astrophysics Data System (ADS)
Herzfeld, M.; Gillibrand, P. A.
2015-05-01
Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.
Tuncer, Enis
2006-01-01
The distribution of relaxation times approach, a less frequently employed dielectric data analysis technique, is utilized to better understand the relaxation characteristics of composites consisting of metal-coated, hollow glass spheres dispersed in a paraffin wax matrix. The dielectric properties of the composite samples are measured by means of impedance spectroscopy in the frequency range 0.1mHz to 10 MHz. The application of a mixture law is not appropriate for the analysis of the frequency-dependent properties of the considered system on this broad frequency range. However, utilization of the distribution of relaxation times procedure to study the dielectric behaviour shows clear trends in the mixtures' relaxation spectra. Relaxation processes of the paraffin wax and those specific to the composites are found from the extracted distribution of relaxation times spectra. The influence of the filler concentration, q, on the dielectric properties is examined; a relaxation with a narrow distribution at intermediate frequencies becomes broad with the addition of the filler. This relaxation, in the form of the low-frequency-dispersions (also known as constant phase angle) phenomenon, dominates the dielectric properties of the composites with high bead concentration, q > 0:15. The variation in dielectric properties of individual samples whose bead concentrations q are nominally the same is discussed in terms of possible microstructural variations.
Tuncer, Enis; Bowler, Nicola; Youngs, I. J.; Lymer, K. P.
2006-01-01
The distribution of relaxation times approach, a less frequently employed dielectric data analysis technique, is utilized to better understand the relaxation characteristics of composites consisting of metal-coated, hollow glass spheres dispersed in a paraffin wax matrix. The dielectric properties of the composite samples are measured by means of impedance spectroscopy in the frequency range 0.1 mHz to 10 MHz. The application of a mixture law is not appropriate for the analysis of the frequency-dependent properties of the considered system on this broad frequency range. However, utilization of the distribution of relaxation times procedure to study the dielectric behaviour shows clear trends in the mixtures' relaxation spectra. Relaxation processes of the paraffin wax and those specific to the composites are found from the extracted distribution of relaxation times spectra. The influence of the filler concentration, q, on the dielectric properties is examined; a relaxation with a narrow distribution at intermediate frequencies becomes broad with the addition of the filler. This relaxation, in the form of the low-frequency-dispersions (also known as constant phase angle) phenomenon, dominates the dielectric properties of the composites with high bead concentration, q>0.15. The variation in dielectric properties of individual samples whose bead concentrations q are nominally the same is discussed in terms of possible microstructural variations.
Spin relaxation time dependence on optical pumping intensity in GaAs:Mn
Burobina, V.; Binek, Ch.
2014-04-28
We analyze the dependence of electron spin relaxation time on optical pumping intensity in a partially compensated acceptor semiconductor GaAs:Mn using analytic solutions for the kinetic equations of the charge carrier concentrations. Our results are applied to previous experimental data of spin-relaxation time vs. excitation power for magnetic concentrations of approximately 10{sup 17} cm{sup −3}. The agreement of our analytic solutions with the experimental data supports the mechanism of the earlier-reported atypically long electron-spin relaxation time in the magnetic semiconductor.
Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport
NASA Astrophysics Data System (ADS)
Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael
2016-04-01
Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their natural dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. We also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport.
Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport
Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael
2016-04-20
Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their naturalmore » dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. Lastly, we also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport.« less
Variable thermal properties and thermal relaxation time in hyperbolic heat conduction
NASA Technical Reports Server (NTRS)
Glass, David E.; Mcrae, D. Scott
1989-01-01
Numerical solutions were obtained for a finite slab with an applied surface heat flux at one boundary using both the hyperbolic (MacCormack's method) and parabolic (Crank-Nicolson method) heat conduction equations. The effects on the temperature distributions of varying density, specific heat, and thermal relaxation time were calculated. Each of these properties had an effect on the thermal front velocity (in the hyperbolic solution) as well as the temperatures in the medium. In the hyperbolic solutions, as the density or specific heat decreased with temperature, both the temperatures within the medium and the thermal front velocity increased. The value taken for the thermal relaxation time was found to determine the 'hyperbolicity' of the heat conduction model. The use of a time dependent relaxation time allowed for solutions where the thermal energy propagated as a high temperature wave initially, but approached a diffusion process more rapidly than was possible with a constant large relaxation time.
NASA Astrophysics Data System (ADS)
Tsuchida, Hidetsugu; Mizuno, Shohei; Tsutsumi, Hironori; Kinomura, Atsushi; Suzuki, Ryoichi; Itoh, Akio
2016-05-01
Relaxation dynamics of ion damage in fused quartz is investigated by our newly developed pump–probe technique combining energetic ions (pump) with slow positrons (probe). This method enables determination of time-resolved positron lifetime. We study the time-dependent relaxation of ion damage, by analyzing the intensity variation in the ortho-positronium lifetime component associated with irradiation damage. For irradiation with 160 keV He ions in the temperature range of 300–573 K, the positron annihilation lifetime spectra are obtained as a function of time after ion irradiation. We observe that the relaxation time of ion damage is strongly influenced by specimen temperatures; the relaxation time constant is approximately 400 ms at room temperature (300 K) and becomes smaller with an increasing temperature. Analysis for the effect of temperature on damage accumulation reveals that the activation energy for thermal annealing of the observed damage is approximately 0.1 eV.
Landauer’s formula with finite-time relaxation: Kramers’ crossover in electronic transport
Gruss, Daniel; Velizhanin, Kirill A.; Zwolak, Michael
2016-01-01
Landauer’s formula is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions, but it necessitates that any variation of the junction with time must be slow compared to characteristic times of the system, e.g., the relaxation time of local excitations. Transport through structurally dynamic junctions is, however, increasingly of interest for sensing, harnessing fluctuations, and real-time control. Here, we calculate the steady-state current when relaxation of electrons in the reservoirs is present and demonstrate that it gives rise to three regimes of behavior: weak relaxation gives a contact-limited current; strong relaxation localizes electrons, distorting their natural dynamics and reducing the current; and in an intermediate regime the Landauer view of the system only is recovered. We also demonstrate that a simple equation of motion emerges, which is suitable for efficiently simulating time-dependent transport. PMID:27094206
NASA Astrophysics Data System (ADS)
Dinesen, T. R. J.; Bryant, R. G.
1999-04-01
1H and 7Li magnetic relaxation dispersion data are presented, showing the field dependence of the spin-lattice relaxation rates of (H 3C) 4N + and Li(H 2O) n+ in Gd(III) and Mn(II) solutions. The limit of short electronic relaxation time is observed for Gd(III) up to about 7 T, in contrast to Mn(II) solutions wherein the intermolecular contribution to nuclear relaxation is dominated by relative translational diffusion. These results contradict the assumption made by Fries et al. (Chem. Phys. Lett. 286 (1998) 93) that the electron relaxation times may be neglected in the analysis of tetramethylammonium proton relaxation rates in Gd(III) solutions.
Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer
2007-09-28
The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules. PMID:17902934
Garcia-Bernabé, Abel; Dominguez-Espinosa, Gustavo; Diaz-Calleja, Ricardo; Riande, Evaristo; Haag, Rainer
2007-09-28
The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules.
NASA Astrophysics Data System (ADS)
Springer, Fabian; Steidle, Günter; Martirosian, Petros; Claussen, Claus D.; Schick, Fritz
2010-09-01
The introduction of ultrashort-echo-time-(UTE)-sequences to clinical whole-body MR scanners has opened up the field of MR characterization of materials or tissues with extremely fast signal decay. If the transverse relaxation time is in the range of the RF-pulse duration, approximation of the RF-pulse by an instantaneous rotation applied at the middle of the RF-pulse and immediately followed by free relaxation will lead to a distinctly underestimated echo signal. Thus, the regular Ernst equation is not adequate to correctly describe steady state signal under those conditions. The paper presents an analytically derived modified Ernst equation, which correctly describes in-pulse relaxation of transverse magnetization under typical conditions: The equation is valid for rectangular excitation pulses, usually applied in 3D UTE sequences. Longitudinal relaxation time of the specimen must be clearly longer than RF-pulse duration, which is fulfilled for tendons and bony structures as well as many solid materials. Under these conditions, the proposed modified Ernst equation enables adequate and relatively simple calculation of the magnetization of materials or tissues. Analytically derived data are compared to numerical results obtained by using an established Runge-Kutta-algorithm based on the Bloch equations. Validity of the new approach was also tested by systematical measurements of a solid polymeric material on a 3 T whole-body MR scanner. Thus, the presented modified Ernst equation provides a suitable basis for T1 measurements, even in tissues with T2 values as short as the RF-pulse duration: independent of RF-pulse duration, the 'variable flip angle method' led to consistent results of longitudinal relaxation time T1, if the T2 relaxation time of the material of interest is known as well.
NASA Astrophysics Data System (ADS)
Kikuchi, Yuta; Tsumura, Kyosuke; Kunihiro, Teiji
2016-05-01
We give a quantitative analysis of the dynamical properties of fermionic cold atomic gases in normal phase, such as the shear viscosity, heat conductivity, and viscous relaxation times, using the novel microscopic expressions derived by the renormalization group (RG) method, where the Boltzmann equation is faithfully solved to extract the hydrodynamics without recourse to any ansatz. In particular, we examine the quantum statistical effects, temperature dependence, and scattering-length dependence of the transport coefficients and the viscous relaxation times. The numerical calculation shows that the relation τπ = η / P, which is derived in the relaxation-time approximation (RTA) and is used in most of the literature, turns out to be satisfied quite well, while the similar relation for the viscous relaxation time τJ of the heat conductivity is satisfied only approximately with a considerable error.
Huang, Yangxin; Yan, Chunning; Xing, Dongyuan; Zhang, Nanhua; Chen, Henian
2015-01-01
In longitudinal studies it is often of interest to investigate how a repeatedly measured marker in time is associated with a time to an event of interest. This type of research question has given rise to a rapidly developing field of biostatistics research that deals with the joint modeling of longitudinal and time-to-event data. Normality of model errors in longitudinal model is a routine assumption, but it may be unrealistically obscuring important features of subject variations. Covariates are usually introduced in the models to partially explain between- and within-subject variations, but some covariates such as CD4 cell count may be often measured with substantial errors. Moreover, the responses may encounter nonignorable missing. Statistical analysis may be complicated dramatically based on longitudinal-survival joint models where longitudinal data with skewness, missing values, and measurement errors are observed. In this article, we relax the distributional assumptions for the longitudinal models using skewed (parametric) distribution and unspecified (nonparametric) distribution placed by a Dirichlet process prior, and address the simultaneous influence of skewness, missingness, covariate measurement error, and time-to-event process by jointly modeling three components (response process with missing values, covariate process with measurement errors, and time-to-event process) linked through the random-effects that characterize the underlying individual-specific longitudinal processes in Bayesian analysis. The method is illustrated with an AIDS study by jointly modeling HIV/CD4 dynamics and time to viral rebound in comparison with potential models with various scenarios and different distributional specifications. PMID:24905593
Probing the Nuclear Spin-Lattice Relaxation Time at the Nanoscale
NASA Astrophysics Data System (ADS)
Wagenaar, J. J. T.; den Haan, A. M. J.; de Voogd, J. M.; Bossoni, L.; de Jong, T. A.; de Wit, M.; Bastiaans, K. M.; Thoen, D. J.; Endo, A.; Klapwijk, T. M.; Zaanen, J.; Oosterkamp, T. H.
2016-07-01
Nuclear spin-lattice relaxation times are measured on copper using magnetic-resonance force microscopy performed at temperatures down to 42 mK. The low temperature is verified by comparison with the Korringa relation. Measuring spin-lattice relaxation times locally at very low temperatures opens up the possibility to measure the magnetic properties of inhomogeneous electron systems realized in oxide interfaces, topological insulators, and other strongly correlated electron systems such as high-Tc superconductors.
NASA Astrophysics Data System (ADS)
Kingsley, Peter B.; Monahan, W. Gordon
2000-04-01
In the presence of an off-resonance radiofrequency field, recovery of longitudinal magnetization to a steady state is not purely monoexponential. Under reasonable conditions with zero initial magnetization, recovery is nearly exponential and an effective relaxation rate constant R1eff = 1/T1eff can be obtained. Exact and approximate formulas for R1eff and steady-state magnetization are derived from the Bloch equations for spins undergoing cross-relaxation and chemical exchange between two sites in the presence of an off-resonance radiofrequency field. The relaxation formulas require that the magnetization of one spin is constant, but not necessarily zero, while the other spin relaxes. Extension to three sites with one radiofrequency field is explained. The special cases of off-resonance effects alone and with cross-relaxation or chemical exchange, cross-relaxation alone, and chemical exchange alone are compared. The inaccuracy in saturation transfer measurements of exchange rate constants by published formulas is discussed for the creatine kinase reaction.
Difference-NMR techniques for selection of components on the basis of relaxation times
NASA Astrophysics Data System (ADS)
Harris, Douglas J.; de Azevedo, Eduardo R.; Bonagamba, Tito J.
2003-05-01
This work describes a numerical methodology to obtain more efficient relaxation filters to selectively retain or remove components based on relaxation times. The procedure uses linear combinations of spectra with various recycle or filter delays to obtain components that are both quantitative and pure. Modulation profiles are calculated assuming exponential relaxation behavior. The method is general and can be applied to a wide range of solution or solid-state NMR experiments including direct-polarization (DP), or filtered cross-polarization (CP) spectra. 13C NMR experiments on isotactic poly(1-butene) and dimethyl sulfone showed the utility of the technique for selectively suppressing peaks.
Attractors of relaxation discrete-time systems with chaotic dynamics on a fast time scale.
Maslennikov, Oleg V; Nekorkin, Vladimir I
2016-07-01
In this work, a new type of relaxation systems is considered. Their prominent feature is that they comprise two distinct epochs, one is slow regular motion and another is fast chaotic motion. Unlike traditionally studied slow-fast systems that have smooth manifolds of slow motions in the phase space and fast trajectories between them, in this new type one observes, apart the same geometric objects, areas of transient chaos. Alternating periods of slow regular motions and fast chaotic ones as well as transitions between them result in a specific chaotic attractor with chaos on a fast time scale. We formulate basic properties of such attractors in the framework of discrete-time systems and consider several examples. Finally, we provide an important application of such systems, the neuronal electrical activity in the form of chaotic spike-burst oscillations.
NASA Astrophysics Data System (ADS)
Ntarlagiannis, D.; Ustra, A.; Slater, L. D.; Zhang, C.; Mendonça, C. A.
2015-12-01
In this work we present an alternative formulation of the Debye Decomposition (DD) of complex conductivity spectra, with a new set of parameters that are directly related to the continuous Debye relaxation model. The procedure determines the relaxation time distribution (RTD) and two frequency-independent parameters that modulate the induced polarization spectra. The distribution of relaxation times quantifies the contribution of each distinct relaxation process, which can in turn be associated with specific polarization processes and characterized in terms of electrochemical and interfacial parameters as derived from mechanistic models. Synthetic tests show that the procedure can successfully fit spectral induced polarization (SIP) data and accurately recover the RTD. The procedure was applied to different data sets, focusing on environmental applications. We focus on data of sand-clay mixtures artificially contaminated with toluene, and crude oil-contaminated sands experiencing biodegradation. The results identify characteristic relaxation times that can be associated with distinct polarization processes resulting from either the contaminant itself or transformations associated with biodegradation. The inversion results provide information regarding the relative strength and dominant relaxation time of these polarization processes.
Real-time relaxation and kinetics in hot scalar QED: Landau damping
Boyanovsky, D.; de Vega, H.J.; Holman, R.; Kumar, S.P.; Pisarski, R.D.
1998-12-01
The real time evolution of non-equilibrium expectation values with soft length scales {approximately}k{sup {minus}1}{gt}(eT){sup {minus}1} is solved in hot scalar electrodynamics, with a view towards understanding relaxational phenomena in the QGP and the electroweak plasma. We find that the gauge invariant non-equilibrium expectation values relax via {ital power laws} to asymptotic amplitudes that are determined by the quasiparticle poles. The long time relaxational dynamics and relevant time scales are determined by the behavior of the retarded self-energy not at the small frequencies, but at the Landau damping thresholds. This explains the presence of power laws and not of exponential decay. In the process we rederive the HTL effective action using {ital non-equilibrium} field theory. Furthermore we obtain the influence functional, the Langevin equation and the fluctuation-dissipation theorem for the soft modes, identifying the correlators that emerge in the classical limit. We show that a Markovian approximation fails to describe the dynamics {ital both} at short and long times. We find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We also introduce a novel kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We find an unusual dressing dynamics of bare particles and anomalous (logarithmic) relaxation of hard quasiparticles. {copyright} {ital 1998} {ital The American Physical Society}
NASA Astrophysics Data System (ADS)
Schäfer-Nolte, Eike; Schlipf, Lukas; Ternes, Markus; Reinhard, Friedemann; Kern, Klaus; Wrachtrup, Jörg
2014-11-01
We demonstrate the tracking of the spin dynamics of ensemble and individual magnetic ferritin proteins from cryogenic up to room temperature using the nitrogen-vacancy color center in diamond as a magnetic sensor. We employ different detection protocols to probe the influence of the ferritin nanomagnets on the longitudinal and transverse relaxation of the nitrogen-vacancy center, which enables magnetic sensing over a wide frequency range from Hz to GHz. The temperature dependence of the observed spectral features can be well understood by the thermally induced magnetization reversals of the ferritin and enables the determination of the anisotropy barrier of single ferritin molecules.
Takeuchi, Tadayoshi; Fujinami, Kaori; Fujita, Akikazu; Okishio, Yutaka; Takewaki, Tadashi; Hata, Fumiaki
2004-05-01
The role of interstitial cells of Cajal (ICC) in electrical field stimulation (EFS)-induced neurogenic responses in ileum was studied by using the ICC-deficient mutant (SLC-W/W(V)) mouse and its wild type. In the immunohistochemical study with anti-c-Kit antibody, ICC was observed in the myenteric plexus (MY) and deep muscular plexus (DMP) region in the wild type. In the mutant, ICC-MY were lost, only ICC-DMP were present. EFS induced a rapid contraction of the ileal segments from the wild type mouse in the direction of longitudinal muscle. In the mutant mouse, onset of contraction was delayed and its rate was slowed. EFS induced nonadrenergic, noncholinergic (NANC) relaxation in the presence of atropine and guanethidine in the wild type. A nitric oxide synthase inhibitor inhibited the relaxation and L-arginine reversed it. In the mutant, EFS did not induce NANC relaxation. There was no difference between the responsiveness of the segments from wild type and mutant mice to exogenously added acetylcholine or Nor-1. Taking into account the selective loss of ICC-MY in the mutant mice, it seems likely that ICC-MY have an essential role in inducing nitric oxide-mediated relaxation of longitudinal muscle of the mouse ileum and that ICC-MY partly participate in EFS-induced contraction.
NASA Astrophysics Data System (ADS)
Huang, K.-W.; Chen, H.-H.; Yang, H.-C.; Horng, H.-E.; Liao, S.-H.; Chieh, J.-J.; Yang, S. Y.
2012-06-01
This study uses a sensitive, high-Tc SQUID-detected nuclear magnetic resonance spectrometer in magnetically unshielded environments to discriminate liver tumors in rats, by characterizing the longitudinal relaxation rate, T1-1. The high-Tc SQUID-based spectrometer has a spectral line width of 0.9Hz in low magnetic fields. It was found that relaxation rate for tumor tissues is (3.6 ± 0.02) s-1 and the relaxation rate for normal tissues is (7.7 ± 0.02) s-1. The difference in the longitudinal relaxation rates suggests that water structures around the DNA of cancer cells are different from those of normal tissues. The optimized detection sensitivity for the established system is 0.21 g at the present stage. It is concluded that T1-1 can be used to distinguish cancerous tissues from normal tissues. The high-Tc, SQUID-detected NMR and MRI in magnetically unshielded environments may also be useful for discriminating other tumors.
Shchepin, Roman V.; Chekmenev, Eduard Y.
2015-01-01
Previously unreported 15N labeled Azidothymidine (AZT) was prepared as an equimolar mixture of two isotopomers: 1-15N-AZT and 3-15N-AZT. Polarization decay of 15N NMR signal was studied in high (9.4 T) and low (~50 mT) magnetic fields. 15N T1 values were 45 ± 5 s (1-15N-AZT) and 37 ± 2 s (3-15N-AZT) at 9.4 T, and 140 ± 16 s (3-15N-AZT) at 50 mT. 15N-AZT can be potentially 15N hyperpolarized by several methods. These sufficiently long 15N-AZT T1 values potentially enable hyperpolarized in vivo imaging of 15N-AZT, because of the known favorable efficient (i.e., of the time scale shorter than the longest reported here 15N T1) kinetics of uptake of injected AZT. Therefore, 3-15N-AZT can be potentially used for HIV molecular imaging using hyperpolarized magnetic resonance imaging. PMID:25156931
Rotational relaxation times of individual compounds within simulations of molecular asphalt models
NASA Astrophysics Data System (ADS)
Zhang, Liqun; Greenfield, Michael L.
2010-05-01
The dynamical properties of a complex system incorporate contributions from the diverse components from which it is constituted. To study this relationship in a multicomponent system, relaxation times based on rotation autocorrelation functions in molecular dynamics simulations were analyzed for molecules in two sets of unmodified and polymer-modified model asphalt/bitumen systems over 298-473 K. The model asphalt systems were proposed previously to approximate the chemical and mechanical properties of real asphalts. Relaxations were modeled using a modified Kaulrausch-Williams-Watts function and were based on the third Legendre polynomial of normal vector time correlation functions for aromatic species (asphaltene, polar aromatic, naphthene aromatic). Both the end-to-end vector and the longest axis eigenvector of the radius of gyration matrix were used for time correlation functions of chain molecules (C22, polystyrene). Decreases in temperature induced large increases in relaxation time consistent with the Vogel-Fulcher-Tammann equation. The presence of a polymer slowed the decay of each correlation function to some extent. The product of relaxation time and diffusion coefficient revealed qualitative differences between larger and smaller molecules in the same system. These relaxation mechanisms remained coupled for small molecules, while the larger asphaltene and polymer molecules revealed significant slowdowns in rotation compared to translational diffusion at lower temperatures. Smaller values of the stretched exponential parameter β for asphaltenes compared to smaller molecules suggested a broader range of relaxation times and were consistent with this distinction. Difficulties in converging polymer chain relaxation times are discussed in terms of fluctuations in the magnitude and orientation of the end-to-end vector and chain axis eigenvector. Viscosity results suggested by the Debye-Stokes-Einstein relationship are consistent with trends shown in the
Time-Dependent Behaviors of Granite: Loading-Rate Dependence, Creep, and Relaxation
NASA Astrophysics Data System (ADS)
Hashiba, K.; Fukui, K.
2016-07-01
To assess the long-term stability of underground structures, it is important to understand the time-dependent behaviors of rocks, such as their loading-rate dependence, creep, and relaxation. However, there have been fewer studies on crystalline rocks than on tuff, mudstone, and rock salt, because the high strength of crystalline rocks makes the detection of their time-dependent behaviors much more difficult. Moreover, studies on the relaxation, temporal change of stress and strain (TCSS) conditions, and relations between various time-dependent behaviors are scarce for not only granites, but also other rocks. In this study, previous reports on the time-dependent behaviors of granites were reviewed and various laboratory tests were conducted using Toki granite. These tests included an alternating-loading-rate test, creep test, relaxation test, and TCSS test. The results showed that the degree of time dependence of Toki granite is similar to other granites, and that the TCSS resembles the stress-relaxation curve and creep-strain curve. A viscoelastic constitutive model, proposed in a previous study, was modified to investigate the relations between the time-dependent behaviors in the pre- and post-peak regions. The modified model reproduced the stress-strain curve, creep, relaxation, and the results of the TCSS test. Based on a comparison of the results of the laboratory tests and numerical simulations, close relations between the time-dependent behaviors were revealed quantitatively.
NASA Astrophysics Data System (ADS)
Chandran, Parwathy; Sasidharan, Abhilash; Ashokan, Anusha; Menon, Deepthy; Nair, Shantikumar; Koyakutty, Manzoor
2011-10-01
We report the development of a novel magnetic nano-contrast agent (nano-CA) based on Gd3+ doped amorphous TiO2 of size ~25 nm, exhibiting enhanced longitudinal relaxivity (r1) and magnetic resonance (MR) contrasting together with excellent biocompatibility. Quantitative T1 mapping of phantom samples using a 1.5 T clinical MR imaging system revealed that the amorphous phase of doped titania has the highest r1 relaxivity which is ~2.5 fold higher than the commercially used CA Magnevist™. The crystalline (anatase) samples formed by air annealing at 250 °C and 500 °C showed significant reduction in r1 values and MR contrast, which is attributed to the loss of proton-exchange contribution from the adsorbed water and atomic re-arrangement of Gd3+ ions in the crystalline host lattice. Nanotoxicity studies including cell viability, plasma membrane integrity, reactive oxygen stress and expression of pro-inflammatory cytokines, performed on human primary endothelial cells (HUVEC), human blood derived peripheral blood mononuclear cells (PBMC) and nasopharyngeal epidermoid carcinoma (KB) cell line showed excellent biocompatibility up to relatively higher doses of 200 μg ml-1. The potential of this nano-CA to cause hemolysis, platelet aggregation and plasma coagulation were studied using human peripheral blood samples and found no adverse effects, illustrating the possibility of the safe intravenous administration of these agents for human applications. Furthermore, the ability of these agents to specifically detect cancer cells by targeting molecular receptors on the cell membrane was demonstrated on folate receptor (FR) positive oral carcinoma (KB) cells, where the folic acid conjugated nano-CA showed receptor specific accumulation on cell membrane while leaving the normal fibroblast cells (L929) unstained. This study reveals that the Gd3+ doped amorphous TiO2 nanoparticles having enhanced magnetic resonance contrast and high biocompatibility is a promising candidate for
Landauer's formula with finite-time relaxation: Kramers' crossover in electronic transport
NASA Astrophysics Data System (ADS)
Gruss, Daniel; Velizhanin, Kirill; Zwolak, Michael
Landauer's formula relates the conductance of a region of interest to its transmission probability. It is the standard theoretical tool to examine ballistic transport in nano- and meso-scale junctions and devices. This view of transport as transmission necessitates a simplified view of transmission, one occurring through an essentially fixed structure. Starting from a description of transport that includes relaxation of electrons in the reservoirs, we derive a Landauer-like formula for the steady-state current. We demonstrate that the finite relaxation time gives rise to three regimes of behavior. Weak relaxation within a small region nearby to the junction gives a contact limited current. Strong relaxation also influences the current by localizing electrons, distorting their natural dynamics and reducing the current. In an intermediate regime, the standard Landauer view is recovered. This behavior is analogous to Kramers' turnover in chemical reactions. Supported by UMD/CNST Cooperative Research Agreement, Award 70NANB10H193.
Artmann, G M
1995-01-01
The Microscopic Photometric Monolayer Technique provides a tool to measure red blood cell (RBC) stiffness (resistance to elongation) and relaxation time. It combines many of the advantages of flow channel studies of point-attached RBCs with the simplicity, sensitivity and accuracy of photometric light transmission measurement. This technique allows the study of the effects of physicochemical factors on the elongation and relaxation time of the same cells within an average of four to five thousand cells adhered as a monolayer to glass. Further, the time course of physicochemical effects on cell membrane and wash-in/wash-out kinetics of interactions can be followed. An automated version of this technique was developed. A dense monolayer of point-attached RBCs was prepared at the bottom of a flow-chamber. A steady-state flow, with stepwise increases of flow rate, induced the RBC elongation. The light transmission perpendicular through the monolayer plane was measured photometrically. Photomicrographs compared with photometric results showed that the flow-induced bending and curvature change of RBC membrane was associated with the increase of light transmission. There was a linear correlation between the photometric index of elongation and the elongation taken from photomicrographs for shear stresses up to 0.75 Pa. A stiffness parameter, S (in Pa), was defined as the ratio of shear stress and elongation at a shear stress of 0.25 Pa. Following a sudden flow stoppage, the RBCs returned to their resting shape and the RBC relaxation time was measured. The stiffness-relaxation time product, V (in mPas), was calculated to provide an estimate of viscosity. Diamide treatment, known to stiffen RBCs, did result in dose-dependent decreases of elongation and relaxation time. With increasing temperature, the relaxation time decreased at a rate of -2.96 ms/K; the stiffness increased significantly at a rate of 0.0038 Pa/K, and the stiffness-relaxation time product decreased with -2
NASA Astrophysics Data System (ADS)
Huang, Kevin; Tan, Cheng; Zhang, Jian; Ding, Zhaofeng; Maclaughlin, Douglas; Bernal, Oscar; Ho, Pei-Chun; Wu, Liusuo; Aronson, Meigan; Shu, Lei
Muon spin relaxation (μSR) measurements were performed on single crystalline YFe2Al10 down to 19 mK and in magnetic fields up to ~100 Oe. Zero-field- μSR measurements showed no evidence of magnetic order down to 19 mK, consistent with previous measurements. However, we also find that the depolarization rate Λ is temperature independent above 1 K but increases in an exponential behavior for T < 1 K. Longitudinal-field μSR measurements also reveals a time-field scaling where G (t , H) = G (t /Hγ), with γ = 0.67. This is further confirmed from the magnetic field dependence of Λ, which finds Λ (H) ~H0. 67 at 19 mK. This is further evidence that single crystalline YFe2Al10 is in close proximity to a ferromagnetic quantum critical point. The research performed in this study was supported by the National NSF of China under Grant No. 11474060 and STCSM of China (No. 15XD1500200). Work at CSULA funded by NSF/DMR-1105380. Research at CSU-Fresno is supported by NSF DMR-1506677.
NASA Astrophysics Data System (ADS)
Fantazzini, Paola; Bortolotti, Villiam; Brown, Robert J. S.; Camaiti, Mara; Garavaglia, Carla; Viola, Rossella; Giavaresi, Gianluca
2004-01-01
Parameters related to pore-space structure of the trabeculae in cancellous bone are difficult to determine quantitatively, but they can be important to characterize changes induced in bone by diseases such as osteoporosis. We present two nuclear magnetic resonance (NMR) methods to measure the internal porosity φtrab of the trabeculae, based on two different measurements of the fraction of intratrabecular and intertrabecular pore-space in animal femur samples. These procedures have been developed within the more general framework of the NMR studies for fluids in porous media. In the first method we use the ratio between the amount of collagen (solid-like) 1H and that of the fluids in the samples. In the second, which can be applied only on defatted and water saturated samples, we use the distributions of longitudinal relaxation times. The φtrab values obtained are constant for porosity φ of the samples over the range 40%-70%, with each method giving φtrab=(29±4)%, which is consistent with the only data available, the porosity of related cortical bone. The traditional parameter bone volume fraction is simply given by (1-φ)/(1-φtrab).
Dufourc, E J; Mayer, C; Stohrer, J; Althoff, G; Kothe, G
1992-01-01
Phospholipid head group dynamics have been studied by pulsed phosphorus-31 nuclear magnetic resonance (31P-NMR) of unoriented and macroscopically aligned dimyristoylphosphatidylcholine model membranes in the temperature range, 203-343 K. Lineshapes and echo intensities have been recorded as a function of interpulse delay times, temperature and macroscopic orientation of the bilayer normal with respect to the magnetic field. The dipolar proton-phosphorus (1H-31P) contribution to the transverse relaxation time, T2E, and to lineshapes was eliminated by means of a proton spin-lock sequence. In case of longitudinal spin relaxation, T1Z, the amount of dipolar coupling was evaluated by measuring the maximum nuclear Overhauser enhancement. Hence, the results could be analyzed by considering chemical shift anisotropy as the only relaxation mechanism. The presence of various minima both in T1Z and T2E temperature plots as well as the angular dependence of these relaxation times allowed description of the dynamics of the phosphate head group in the 31P-NMR time window, by three different motional classes, i.e., intramolecular, intermolecular and collective motions. The intramolecular motions consist of two hindered rotations and one free rotation around the bonds linking the phosphate head group to the glycerol backbone. These motions are the fastest in the hierarchy of time with correlation times varying from less than 10(-12) to 10(-6) s in the temperature range investigated. The intermolecular motions are assigned to phospholipid long axis rotation and fluctuation. They have correlation times ranging from 10(-11) s at high temperatures to 10(-3) s at low temperatures. The slowest motion affecting the 31P-NMR observables is assigned to viscoelastic modes, i.e., so called order director fluctuations and is only detected at high temperatures, above the main transition in pulse frequency dependent T2ECP experiments. Comprehensive analysis of the phosphate head group dynamics
Menger, Marcus; Eckstein, Fritz; Porschke, Dietmar
2000-01-01
The dynamics of a hammerhead ribozyme was analyzed by measurements of fluorescence-detected temperature jump relaxation. The ribozyme was substituted at different positions by 2-aminopurine (2-AP) as fluorescence indicator; these substitutions do not inhibit catalysis. The general shape of relaxation curves reported from different positions of the ribozyme is very similar: a fast decrease of fluorescence, mainly due to physical quenching, is followed by a slower increase of fluorescence due to conformational relaxation. In most cases at least three relaxation time constants in the time range from a few microseconds to ~200 ms are required for fitting. Although the relaxation at different positions of the ribozyme is similar in general, suggesting a global type of ribozyme dynamics, a close examination reveals differences, indicating an individual local response. For example, 2-AP in a tetraloop reports mainly the local loop dynamics known from isolated loops, whereas 2-AP located at the core, e.g. at the cleavage site or its vicinity, also reports relatively large amplitudes of slower components of the ribozyme dynamics. A variant with an A→G substitution in domain II, resulting in an inactive form, leads to the appearance of a particularly slow relaxation process (τ ≈200 ms). Addition of Mg2+ ions induces a reduction of amplitudes and in most cases a general increase of time constants. Differences between the hammerhead variants are clearly demonstrated by subtraction of relaxation curves recorded under corresponding conditions. The changes induced in the relaxation response by Mg2+ are very similar to those induced by Ca2+. The relaxation data do not provide any evidence for formation of Mg2+-inner sphere complexes in hammerhead ribozymes, because a Mg2+-specific relaxation effect was not visible. However, a Mg2+-specific effect was found for a dodeca-riboadenylate substituted with 2-AP, showing that the fluorescence of 2-AP is able to indicate inner sphere
Dielectric relaxation time of bulk water at 136-140 K, background loss and crystallization effects
NASA Astrophysics Data System (ADS)
Johari, G. P.
2005-04-01
Dielectric relaxation time, τ, of ultraviscous bulk water has been determined by analyzing its loss tangent, tanδ, data, which had been measured on heating the vapor-deposited amorphous solid water and hyperquenched glassy water in our earlier studies. [Johari, Hallbrucker, and Mayer, J. Chem. Phys. 95, 2955 (1991); 97, 5851 (1992)]. As for glasses and liquids generally, the measured tanδ of water is the sum of a frequency-independent background loss and a frequency-dependent relaxational loss. A two-frequency method is provided for determining the background loss and used for obtaining the relaxational part of tanδ. After considering the structural relaxation and crystal-nuclei growth effects, τ for water has been determined. At 136±1K, it is 2.5±0.6s when a single relaxation time is (untenably) assumed, and 42±14s when a distribution of relaxation times, a characteristic of viscous liquids, is assumed, with Davidson-Cole distribution parameter of 0.75. Structural relaxation time of ˜70s for water at 136K, which was originally estimated from the DSC endotherm [Johari, Hallbrucker, and Mayer, Nature (London) 330, 552 (1987)], has been revised to ˜33s. Temperature dependence of τ could not be determined because ultraviscous water crystallizes too rapidly to cubic ice containing stacking faults and intergranular water. The study demonstrates that water is a liquid over the 136-155K range, thus removing the basis for a recent contention on its state.
Kaminski, K.; Adrjanowicz, K.; Paluch, M.; Kaminska, E.
2011-06-15
Time-dependent isothermal dielectric measurements were carried out deeply in the glassy state on two very important saccharides: sucrose and trehalose. In both compounds two prominent secondary relaxation processes were identified. The faster one is an inherent feature of the whole family of carbohydrates. The slower one can also be detected in oligo- and polysaccharides. It was shown earlier that the {beta} process is the Johari-Goldstein (JG) relaxation coupled to motions of the glycosidic linkage, while the {gamma} relaxation originates from motions of the exocyclic hydroxymethyl unit. Recently, it was shown that the JG relaxation process can be used to determine structural relaxation times in the glassy state [R. Casalini and C. M. Roland, Phys. Rev. Lett. 102, 035701 (2009)]. In this paper we present the results of an analysis of the data obtained during aging using two independent approaches. The first was proposed by Casalini and Roland, and the second one is based on the variation of the dielectric strength of the secondary relaxation process during aging [J. K. Vij and G. Power, J. Non-Cryst. Solids 357, 783 (2011)]. Surprisingly, we found that the estimated structural relaxation times in the glassy state of both saccharides are almost the same, independent of the type of secondary mode. This finding calls into question the common view that secondary modes of intramolecular origin do not provide information about the dynamics of the glassy state.
Time derivatives of the spectrum: Relaxing the stationarity assumption
NASA Astrophysics Data System (ADS)
Prieto, G. A.; Thomson, D. J.; Vernon, F. L.
2005-12-01
Spectrum analysis of seismic waveforms has played a significant role towards the understanding of multiple aspects of Earth structure and earthquake source physics. In recent years the multitaper spectrum estimation approach (Thomson, 1982) has been applied to geophysical problems providing not only reliable estimates of the spectrum, but also estimates of spectral uncertainties (Thomson and Chave, 1991). However, these improved spectral estimates were developed under the assumption of local stationarity and provide an incomplete description of the observed process. It is obvious that due to the intrinsic attenuation of the Earth, the amplitudes, and thus the frequency contents are changing with time as waves pass through a seismic station. There have been incredible improvements in different techniques to analyze non-stationary signals, including wavelet decomposition, Wigner-Ville spectrum and the dual-frequency spectrum. We apply one of the recently developed techniques, the Quadratic Inverse Theory (Thomson, 1990, 1994), combined with the multitaper technique to look at the time derivatives of the spectrum. If the spectrum is reasonably white in a certain bandwidth, using QI theory, we can estimate the derivatives of the spectrum at each frequency. We test synthetic signals to corroborate the approach and apply it the records of small earthquakes at local distances. This is a first approach to try and combine the classical spectrum analysis without the assumption of stationarity that is generally taken.
Option pricing during post-crash relaxation times
NASA Astrophysics Data System (ADS)
Dibeh, Ghassan; Harmanani, Haidar M.
2007-07-01
This paper presents a model for option pricing in markets that experience financial crashes. The stochastic differential equation (SDE) of stock price dynamics is coupled to a post-crash market index. The resultant SDE is shown to have stock price and time dependent volatility. The partial differential equation (PDE) for call prices is derived using risk-neutral pricing. European call prices are then estimated using Monte Carlo and finite difference methods. Results of the model show that call option prices after the crash are systematically less than those predicted by the Black-Scholes model. This is a result of the effect of non-constant volatility of the model that causes a volatility skew.
NASA Astrophysics Data System (ADS)
Rottler, Jörg
2016-08-01
Relaxation times in polymer glasses are computed with molecular dynamics simulations of a coarse-grained polymer model during creep and constant strain rate deformation. The dynamics is governed by a competition between physical aging that increases relaxation times and applied load or strain rate which accelerates dynamics. We compare the simulation results quantitatively to two recently developed theories of polymer deformation, which treat aging and rejuvenation in an additive manner. Through stress release and strain rate reversal simulations, we then show that the quantity governing mechanical rejuvenation is the rate of irreversible work performed on the polymer.
Direct Visualization of Short Transverse Relaxation Time Component (ViSTa)
Oh, Se-Hong; Bilello, Michel; Schindler, Matthew; Markowitz, Clyde E.; Detre, John A.; Lee, Jongho
2013-01-01
White matter of the brain has been demonstrated to have multiple relaxation components. Among them, the short transverse relaxation time component (T2 < 40 ms; T2* < 25 ms at 3T) has been suggested to originate from myelin water whereas long transverse relaxation time components have been associated with axonal and/or interstitial water. In myelin water imaging, T2 or T2* signal decay is measured to estimate myelin water fraction based on T2 or T2* differences among the water components. This method has been demonstrated to be sensitive to demyelination in the brain but suffers from low SNR and image artifacts originating from ill-conditioned multi-exponential fitting. In this study, a novel approach that selectively acquires short transverse relaxation time signal is proposed. The method utilizes a double inversion RF pair to suppress a range of long T1 signal. This suppression leaves short T2* signal, which has been suggested to have short T1, as the primary source of the image. The experimental results confirms that after suppression of long T1 signals, the image is dominated by short T2* in the range of myelin water, allowing us to directly visualize the short transverse relaxation time component in the brain. Compared to conventional myelin water imaging, this new method of direct visualization of short relaxation time component (ViSTa) provides high quality images. When applied to multiple sclerosis patients, chronic lesions show significantly reduced signal intensity in ViSTa images suggesting sensitivity to demyelination. PMID:23796545
The effects of bone on proton NMR relaxation times of surrounding liquids
NASA Technical Reports Server (NTRS)
Davis, C. A.; Genant, H. K.; Dunham, J. S.
1986-01-01
Preliminary attempts by our group at UCSF to assess fat content of vertebral marrow in the lumbar spine using relaxation time information demonstrated that the presence of trabecular bone affects relaxation times. The objective of this work was a thorough study of the effects of bone on NMR relaxation characteristics of surrounding liquids. Trabecular bone from autopsy specimens was ground up and sifted into a series of powders with graded densities ranging from 0.3 gm/cc to 0.8 gm/cc. Each powder was placed first in n-saline and then in cottonseed oil. With spectroscopy, spin-lattice relaxation times (T1) and effective spin-spin relaxation times (T2*) were measured for each liquid in each bone powder. As bone density and surface to volume ratio increased, T1 decreased faster for saline than for oil. T2* decreased significantly for both water and oil as the surface to volume ratio increased. It was concluded that effects of water on T1 could be explained by a surface interaction at the bone/liquid interface, which restricted rotational and translational motion of nearby molecules. The T1s of oil were not affected since oil molecules are nonpolar, do not participate in significant intermolecular hydrogen bonding, and therefore would not be expected to interact strongly with the bone surface. Effects on T2* could be explained by local magnetic field inhomogeneities created by discontinuous magnetic susceptibility near the bone surface. These preliminary results suggest that water in contact with trabecular bone in vivo will exhibit shortened relaxation times.
Direct visualization of short transverse relaxation time component (ViSTa).
Oh, Se-Hong; Bilello, Michel; Schindler, Matthew; Markowitz, Clyde E; Detre, John A; Lee, Jongho
2013-12-01
White matter of the brain has been demonstrated to have multiple relaxation components. Among them, the short transverse relaxation time component (T2<40 ms; T2⁎<25 ms at 3 T) has been suggested to originate from myelin water whereas long transverse relaxation time components have been associated with axonal and/or interstitial water. In myelin water imaging, T2 or T2⁎ signal decay is measured to estimate myelin water fraction based on T2 or T2⁎ differences among the water components. This method has been demonstrated to be sensitive to demyelination in the brain but suffers from low SNR and image artifacts originating from ill-conditioned multi-exponential fitting. In this study, a novel approach that selectively acquires short transverse relaxation time signal is proposed. The method utilizes a double inversion RF pair to suppress a range of long T1 signal. This suppression leaves short T2⁎ signal, which has been suggested to have short T1, as the primary source of the image. The experimental results confirm that after suppression of long T1 signals, the image is dominated by short T2⁎ in the range of myelin water, allowing us to directly visualize the short transverse relaxation time component in the brain. Compared to conventional myelin water imaging, this new method of direct visualization of short relaxation time component (ViSTa) provides high quality images. When applied to multiple sclerosis patients, chronic lesions show significantly reduced signal intensity in ViSTa images suggesting sensitivity to demyelination.
NASA Astrophysics Data System (ADS)
Yuhao, Liu; Mengmeng, Li; Dong, Lan; Guangming, Xue; Xinsheng, Tan; Haifeng, Yu; Yang, Yu
2016-05-01
One of the primary origins of the energy relaxation in superconducting qubits is the quasiparticle loss. The quasiparticles can be excited remarkably by infrared radiation. In order to minimize the density of quasiparticle and increase the qubit relaxation time, we design and fabricate the infrared filter and shield for superconducting qubits. In comparison with previous filters and shields, a nonmagnetic dielectric is used as the infrared absorbing material, greatly suppressing the background magnetic fluctuations. The filters can be made to impedance-match with other microwave devices. Using the as-fabricated infrared filter and shield, we increased the relaxation time of a transmon qubit from 519 ns to 1125 ns. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Program for Basic Research of China (Grant Nos. 2011CB922104 and 2011CBA00205).
NASA Astrophysics Data System (ADS)
Singh, Simranjeet; Katoch, Jyoti; Xu, Jinsong; Tan, Cheng; Zhu, Tiancong; Amamou, Walid; Hone, James; Kawakami, Roland
2016-09-01
We present an experimental study of spin transport in single layer graphene using atomic sheets of hexagonal boron nitride (h-BN) as a tunnel barrier for spin injection. While h-BN is expected to be favorable for spin injection, previous experimental studies have been unable to achieve spin relaxation times in the nanosecond regime, suggesting potential problems originating from the contacts. Here, we investigate spin relaxation in graphene spin valves with h-BN barriers and observe room temperature spin lifetimes in excess of a nanosecond, which provides experimental confirmation that h-BN is indeed a good barrier material for spin injection into graphene. By carrying out measurements with different thicknesses of h-BN, we show that few layer h-BN is a better choice than monolayer for achieving high non-local spin signals and longer spin relaxation times in graphene.
Nonradiative Relaxation in Real-Time Electronic Dynamics OSCF2: Organolead Triiodide Perovskite.
Nguyen, Triet S; Parkhill, John
2016-09-01
We apply our recently developed nonequilibrium real-time time-dependent density functional theory (OSCF2) to investigate the transient spectrum and relaxation dynamics of the tetragonal structure of methylammonium lead triiodide perovskite (MAPbI3). We obtain an estimate of the interband relaxation kinetics and identify multiple ultrafast cooling channels for hot electrons and hot holes that largely corroborate the dual valence-dual conduction model. The computed relaxation rates and absorption spectra are in good agreement with the existing experimental data. We present the first ab initio simulations of the perovskite transient absorption (TA) spectrum, substantiating the assignment of induced bleaches and absorptions including a Pauli-bleach signal. This paper validates both OSCF2 as a good qualitative model of electronic dynamics, and the dominant interpretation of the TA spectrum of this material. PMID:27523194
A Time-Varying Effect Model for Intensive Longitudinal Data
Tan, Xianming; Shiyko, Mariya P.; Li, Runze; Li, Yuelin; Dierker, Lisa
2011-01-01
Understanding temporal change in human behavior and psychological processes is a central issue in the behavioral sciences. With technological advances, intensive longitudinal data (ILD) are increasingly generated by studies of human behavior that repeatedly administer assessments over time. ILD offer unique opportunities to describe temporal behavioral changes in detail and identify related environmental and psychosocial antecedents and consequences. Traditional analytical approaches impose strong parametric assumptions about the nature of change in the relationship between time-varying covariates and outcomes of interest. This paper introduces time-varying effect models (TVEM) that explicitly model changes in the association between ILD covariates and ILD outcomes over time in a flexible manner. In this article, we describes unique research questions that the TVEM addresses, outline the model-estimation procedure, share a SAS macro for implementing the model, demonstrate model utility with a simulated example, and illustrate model applications in ILD collected as part of a smoking-cessation study to explore the relationship between smoking urges and self-efficacy during the course of the pre- and post- cessation period. PMID:22103434
NASA Astrophysics Data System (ADS)
Revil, A.; Binley, A.; Mejus, L.; Kessouri, P.
2015-08-01
Low-frequency quadrature conductivity spectra of siliclastic materials exhibit typically a characteristic relaxation time, which either corresponds to the peak frequency of the phase or the quadrature conductivity or a typical corner frequency, at which the quadrature conductivity starts to decrease rapidly toward lower frequencies. This characteristic relaxation time can be combined with the (intrinsic) formation factor and a diffusion coefficient to predict the permeability to flow of porous materials at saturation. The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities. The diffusion coefficient entering into the relationship between the permeability, the characteristic relaxation time, and the formation factor takes only two distinct values for isothermal conditions. For pure silica, the diffusion coefficient of cations, like sodium or potassium, in the Stern layer is equal to the diffusion coefficient of these ions in the bulk pore water, indicating weak sorption of these couterions. For clayey materials and clean sands and sandstones whose surface have been exposed to alumina (possibly iron), the diffusion coefficient of the cations in the Stern layer appears to be 350 times smaller than the diffusion coefficient of the same cations in the pore water. These values are consistent with the values of the ionic mobilities used to determine the amplitude of the low and high-frequency quadrature conductivities and surface conductivity. The database used to test the model comprises a total of 202 samples. Our analysis reveals that permeability prediction with the proposed model is usually within an order of magnitude from the measured value above 0.1 mD. We also discuss the relationship between the different time constants that have been considered in previous works as characteristic relaxation time, including
Hot-electron energy relaxation time in Ga-doped ZnO films
Šermukšnis, E. Liberis, J.; Ramonas, M.; Matulionis, A.; Toporkov, M.; Liu, H. Y.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2015-02-14
Hot-electron energy relaxation time is deduced for Ga-doped ZnO epitaxial layers from pulsed hot-electron noise measurements at room temperature. The relaxation time increases from ∼0.17 ps to ∼1.8 ps when the electron density increases from 1.4 × 10{sup 17 }cm{sup −3} to 1.3 × 10{sup 20 }cm{sup −3}. A local minimum is resolved near an electron density of 1.4 × 10{sup 19 }cm{sup −3}. The longest energy relaxation time (1.8 ps), observed at the highest electron density, is in good agreement with the published values obtained by optical time-resolved luminescence and absorption experiments. Monte Carlo simulations provide a qualitative interpretation of our observations if hot-phonon accumulation is taken into account. The local minimum of the electron energy relaxation time is explained by the ultrafast plasmon-assisted decay of hot phonons in the vicinity of the plasmon–LO-phonon resonance.
Aso, Y; Yoshioka, S; Kojima, S
2000-03-01
Isothermal crystallization of amorphous nifedipine, phenobarbital, and flopropione was studied at temperatures above and below their glass transition temperatures (T(g)). A sharp decrease in the crystallization rate with decreasing temperature was observed for phenobarbital and flopropione, such that no crystallization was observed at temperatures 20-30 degrees C lower than their T(g) within ordinary experimental time periods. In contrast, the crystallization rate of nifedipine decreased moderately with decreasing temperature, and considerable crystallization was observed at 40 degrees C below its T(g) within 4 months. The molecular mobility of these amorphous drugs was assessed by enthalpy relaxation and (1)H-NMR relaxation measurements. The enthalpy relaxation time of nifedipine was smaller than that of phenobarbital or flopropinone at the same T - T(g) values, suggesting higher molecular mobility of nifedipine. The spin-lattice relaxation time in the rotating frame (T(1rho)) decreased markedly at temperature above T(g). The slope of the Arrhenius type plot of the T(1rho) for nifedipine protons changed at about 10 degrees C below the T(g), whereas the slope for phenobarbital protons became discontinuous at about 10 degrees C above the T(g). Even at temperatures below its T(g), the spin-spin relaxation process of nifedipine could be described by the sum of its Gaussian relaxation, which is characteristic of solid protons, and its Lorentzian relaxation, which is characteristic of protons with higher mobility. In contrast, no Lorentzian relaxation was observed for phenobarbital or flopropione at temperatures below their T(g). These results also suggest that nifedipine has higher molecular mobility than phenobarbital and flopropione at temperatures below T(g). The faster crystallization of nifedipine than that of phenobarbital or flopropione observed at temperatures below its T(g) may be partly ascribed to its higher molecular mobility at these temperatures.
Richardson, P. M. Voice, A. M. Ward, I. M.
2013-12-07
Longitudinal relaxation (T{sub 1}) measurements of {sup 19}F, {sup 7}Li, and {sup 1}H in propylene carbonate/LiBF{sub 4} liquid electrolytes are reported. Comparison of T{sub 1} values with those for the transverse relaxation time (T{sub 2}) confirm that the measurements are in the high temperature (low correlation time) limit of the T{sub 1} minimum. Using data from pulsed field gradient measurements of self-diffusion coefficients and measurements of solution viscosity measured elsewhere, it is concluded that although in general there are contributions to T{sub 1} from both translational and rotational motions. For the lithium ions, this is mainly translational, and for the fluorine ions mainly rotational.
NASA Astrophysics Data System (ADS)
Zhang, Yanxiang; Chen, Yu; Li, Mei; Yan, Mufu; Ni, Meng; Xia, Changrong
2016-03-01
A new Tikhonov regularization approach without adjusting parameters is proposed for reconstructing distribution of relaxation time (DRT). It is capable of eliminating the pseudo peaks and capturing discontinuities in the DRT, making it feasible to resolve the number and the nature of electrochemical processes without making assumptions.
Will spin-relaxation times in molecular magnets permit quantum information processing?
NASA Astrophysics Data System (ADS)
Ardavan, Arzhang
2007-03-01
Certain computational tasks can be efficiently implemented using quantum logic, in which the information-carrying elements are permitted to exist in quantum superpositions. To achieve this in practice, a physical system that is suitable for embodying quantum bits (qubits) must be identified. Some proposed scenarios employ electron spins in the solid state, for example phosphorous donors in silicon, quantum dots, heterostructures and endohedral fullerenes, motivated by the long electron-spin relaxation times exhibited by these systems. An alternative electron-spin based proposal exploits the large number of quantum states and the non-degenerate transitions available in high spin molecular magnets. Although these advantages have stimulated vigorous research in molecular magnets, the key question of whether the intrinsic spin relaxation times are long enough has hitherto remained unaddressed. Using X-band pulsed electron spin resonance, we measure the intrinsic spin-lattice (T1) and phase coherence (T2) relaxation times in molecular nanomagnets for the first time. In Cr7M heterometallic wheels, with M = Ni and Mn, phase coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2 reaches 3 μs at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.
Reassessing the single relaxation time Lattice Boltzmann method for the simulation of Darcy’s flows
NASA Astrophysics Data System (ADS)
Prestininzi, Pietro; Montessori, Andrea; La Rocca, Michele; Succi, Sauro
2016-09-01
It is shown that the single relaxation time (SRT) version of the Lattice Boltzmann (LB) equation permits to compute the permeability of Darcy’s flows in porous media within a few percent accuracy. This stands in contrast with previous claims of inaccuracy, which we relate to the lack of recognition of the physical dependence of the permeability on the Knudsen number.
Nelson, Krysta R.; Stevens, Shanlee M.; McLoon, Linda K.
2016-01-01
Purpose We tested the hypothesis that short-term treatment with brain derived neurotrophic factor (BDNF) would alter the contractile characteristics of rabbit extraocular muscle (EOM). Methods One week after injections of BDNF in adult rabbit superior rectus muscles, twitch properties were determined in treated and control muscles in vitro. Muscles were also examined for changes in mean cross-sectional areas, neuromuscular junction size, and percent of myofibers expressing specific myosin heavy chain isoforms, and sarcoendoplasmic reticulum calcium ATPases (SERCA) 1 and 2. Results Brain derived neurotrophic factor–treated muscles had prolonged relaxation times compared with control muscles. Time to 50% relaxation, time to 100% relaxation, and maximum rate of relaxation were increased by 24%, 27%, and 25%, respectively. No significant differences were seen in time to peak force, twitch force, or maximum rate of contraction. Brain derived neurotrophic factor treatment significantly increased mean cross-sectional areas of slow twitch and tonic myofibers, with increased areas ranging from 54% to 146%. Brain derived neurotrophic factor also resulted in an increased percentage of slow twitch myofibers in the orbital layers, ranging from 54% to 77%, and slow-tonic myofibers, ranging from 44% to 62%. No significant changes were seen SERCA1 or 2 expression or in neuromuscular junction size. Conclusions Short-term treatment with BDNF significantly prolonged the duration and rate of relaxation time and increased expression of both slow-twitch and slow-tonic myosin-expressing myofibers without changes in neuromuscular junctions or SERCA expression. The changes induced by BDNF treatment might have potential therapeutic value in dampening/reducing uncontrolled eye oscillations in nystagmus. PMID:27802489
Relaxation of terrace-width distributions: Physical information from Fokker Planck time
NASA Astrophysics Data System (ADS)
Hamouda, Ajmi BH.; Pimpinelli, Alberto; Einstein, T. L.
2008-12-01
Recently some of us have constructed a Fokker-Planck formalism to describe the equilibration of the terrace-width distribution of a vicinal surface from an arbitrary initial configuration. However, the meaning of the associated relaxation time, related to the strength of the random noise in the underlying Langevin equation, was rather unclear. Here we present a set of careful kinetic Monte Carlo simulations that demonstrate convincingly that the time constant shows activated behavior with a barrier that has a physically plausible dependence on the energies of the governing microscopic model. Remarkably, the rate-limiting step for relaxation in the far-from-equilibrium regime is the generation of kink-antikink pairs, involving the breaking of three lateral bonds on a cubic {0 0 1} surface, in contrast to the processes breaking two bonds that dominate equilibrium fluctuations. After an initial regime, the Fokker-Planck time at least semiquantitatively tracks the actual physical time.
Relaxation times of the two-phonon processes with spin-flip and spin-conserving in quantum dots
Wang, Zi-Wu; Liu, Lei; Li, Shu-Shen
2014-04-07
We perform a theoretical investigation on the two-phonon processes of the spin-flip and spin-conserving relaxation in quantum dots in the frame of the Huang-Rhys' lattice relaxation model. We find that the relaxation time of the spin-flip is two orders of magnitude longer than that of the spin-conserving, which is in agreement with previous experimental measurements. Moreover, the opposite variational trends of the relaxation time as a function of the energy separation for two-phonon processes are obtained in different temperature regime. The relaxation times display the oscillatory behaviors at the demarcation point with increasing magnetic field, where the energy separation matches the optical phonon energy and results in the optical phonon resonance. These results are useful in understanding the intraband levels' relaxation in quantum dots and could be helpful in designing photoelectric and spin-memory devices.
NASA Astrophysics Data System (ADS)
Kaminski, K.; Adrjanowicz, K.; Kaminska, E.; Paluch, M.
2011-06-01
Time-dependent isothermal dielectric measurements were carried out deeply in the glassy state on two very important saccharides: sucrose and trehalose. In both compounds two prominent secondary relaxation processes were identified. The faster one is an inherent feature of the whole family of carbohydrates. The slower one can also be detected in oligo- and polysaccharides. It was shown earlier that the β process is the Johari-Goldstein (JG) relaxation coupled to motions of the glycosidic linkage, while the γ relaxation originates from motions of the exocyclic hydroxymethyl unit. Recently, it was shown that the JG relaxation process can be used to determine structural relaxation times in the glassy state [R. Casalini and C. M. Roland, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.035701 102, 035701 (2009)]. In this paper we present the results of an analysis of the data obtained during aging using two independent approaches. The first was proposed by Casalini and Roland, and the second one is based on the variation of the dielectric strength of the secondary relaxation process during aging [J. K. Vij and G. Power, J. Non-Cryst. SolidsJNCSBJ0022-309310.1016/j.jnoncrysol.2010.07.067 357, 783 (2011)]. Surprisingly, we found that the estimated structural relaxation times in the glassy state of both saccharides are almost the same, independent of the type of secondary mode. This finding calls into question the common view that secondary modes of intramolecular origin do not provide information about the dynamics of the glassy state.
NASA Astrophysics Data System (ADS)
Fairbanks, Ethan Jefferson
1994-01-01
Off-resonance spin locking makes use of the novel relaxation time T_{1rho} ^{rm off}, which may be useful in characterizing breast disease. Knowledge of T _{rm 1rho}^{rm off} is essential for optimization of spin -locking imaging methods. The purpose of this work was to develop an optimal imaging technique for in vivo measurement of T_{rm 1rho}^ {rm off}. Measurement of T _{1rho}^{rm off } using conventional methods requires long exam times which are not suitable for patients. Exam time may be shortened by utilizing a one-shot method developed by Look and Locker, making in vivo measurements possible. The imaging method consisted of a 180^circ inversion pulse followed by a series of small-angle alpha pulses to tip a portion of the longitudinal magnetization into the transverse plane for readout. During each relaxation interval (between alpha pulses), a spin-locking pulse was applied off-resonance to achieve T_ {1rho}^{rm off} relaxation. The value of T_{rm 1rho}^{rm off} was then determined using a three-parameter non-linear least-squares fitting procedure. Values of T_ {1rho}^{rm off} were measured for normal and pathologic breast tissues at several resonant offsets. These measurements revealed that image contrast can be manipulated by altering the resonant offset of the spin-locking pulse. Whereas T _1 relaxation times were nearly identical for normal and cancerous tissues, T_{1 rho}^{rm off} relaxation times differed significantly. These results may be useful in improving image contrast in magnetic resonance imaging.
Yan, Song; Zhang, Daowen; Lu, Wenbin; Grifo, James A.; Liu, Mengling
2012-01-01
In a study conducted at the New York University Fertility Center, one of the scientific objectives is to investigate the relationship between the final pregnancy outcomes of participants receiving an in vitro fertilization (IVF) treatment and their β-human chorionic gonadotrophin (β-hCG) profiles. A common joint modeling approach to this objective is to use subject-specific normal random effects in a linear mixed model for longitudinal β-hCG data as predictors in a model (e.g., logistic model) for the final pregnancy outcome. Empirical data exploration indicates that the observation times for longitudinal β-hCG data may be informative and the distribution of random effects for longitudinal β-hCG data may not be normally distributed. We propose to introduce a third model in the joint model for the informative β-hCG observation times, and relax the normality distributional assumption of random effects using the semi-nonparametric (SNP) approach of Gallant and Nychka (1987) [8]. An EM algorithm is developed for parameter estimation. Extensive simulation designed to evaluate the proposed method indicates that ignoring either informative observation times or distributional assumption of the random effects would lead to invalid and/or inefficient inference. Applying our new approach to the data reveals some interesting findings the traditional approach failed to discover. PMID:23259008
Park, Ja Young; Baek, Myung Ju; Choi, Eun Sook; Woo, Seungtae; Kim, Joo Hyun; Kim, Tae Jeong; Jung, Jae Chang; Chae, Kwon Seok; Chang, Yongmin; Lee, Gang Ho
2009-11-24
Paramagnetic ultrasmall gadolinium oxide (Gd(2)O(3)) nanoparticles with particle diameters (d) of approximately 1 nm were synthesized by using three kinds of Gd(III) ion precursors and by refluxing each of them in tripropylene glycol under an O(2) flow. A large longitudinal relaxivity (r(1)) of water proton of 9.9 s(-1) mM(-1) was estimated. As a result, high contrast in vivo T(1) MR images of the brain tumor of a rat were observed. This large r(1) is discussed in terms of the huge surface to volume ratio (S/V) of the ultrasmall gadolinium oxide nanoparticles coupled with the cooperative induction of surface Gd(III) ions for the longitudinal relaxation of a water proton. It is found from the d dependence of r(1) that the optimal range of d for the maximal r(1), which may be used as an advanced T(1) MRI contrast agent, is 1-2.5 nm.
Assink, Roger Alan; Mowery, Daniel Michael; Celina, Mathias Christopher
2004-09-01
Solid-state {sup 1}H NMR relaxometry studies were conducted on a hydroxy-terminated polybutadiene (HTPB) based polyurethane elastomer thermo-oxidatively aged at 80 C. The {sup 1}H T{sub 1}, T{sub 2}, and T{sub 1{rho}} relaxation times of samples thermally aged for various periods of time were determined as a function of NMR measurement temperature. The response of each measurement was calculated from a best-fit linear function of the relaxation time vs. aging time. It was found that the T{sub 2,H} and T{sub 1{rho},H} relaxation times exhibited the largest response to thermal degradation, whereas T{sub 1,H} showed minimal change. All of the NMR relaxation measurements on solid samples showed significantly less sensitivity to thermal aging than the T{sub 2,H} relaxation times of solvent-swollen samples.
NASA Astrophysics Data System (ADS)
Yoder, Jacob
The Neutron Electric Dipole Moment (nEDM) experiment that will take place at the Spallation Neutron Source (SNS) in Oak Ridge, Tennessee will measure the electric dipole moment (EDM) of the neutron with a precision of order 10-28 e-cm, utilizing spin-polarized 3He in bulk liquid 4He to detect neutron precession in a 10 mG magnetic field and 50 kV/cm electric field. Since depolarized 3He will produce a background, relaxation of the polarized 3He, characterized by the probability of depolarization per bounce, Pd, was measured for materials that will be in contact with polarized 3He. Depolarization probabilities were determined from measurements of the longitudinal relaxation time of polarized 3He in bulk liquid 4He inside an acrylic cell coated with the wavelength shifter deuterated tetraphenyl butadiene (d-TPB), which will be used to coat the nEDM measurement cell. Relaxation measurements were also performed while rods, made from plumbing material Torlon and valve bellows material BeCu, were present in the cell. The BeCu was coated with Pyralin resin prior to relaxation measurements, while relaxation measurements were performed both before and after the Torlon rod was coated with Pyralin resin. The depolarization probabilities were found to be Pd-TPBd <1.32x10-7 PBareTorlon d=1.01+/-0.08 x10-6 PCoatedTorlon d=2.5+/-0.1 x10-7 PCoatedBeCu d=7.9+/-0.3 x10-7 The relaxation rates extrapolated from the observed values of Pd for d-TPB, coated Torlon, and coated BeCu in the nEDM apparatus were found to be consistent with design goals.
Using Dielectric Relaxation Spectroscopy to Characterize the Glass Transition Time of Polydextrose.
Buehler, Martin G; Kindle, Michael L; Carter, Brady P
2015-06-01
Dielectric relaxation spectroscopy was used to characterize the glass transition time, tg , of polydextrose, where the glass transition temperature, Tg , and water activity, aw (relative humidity), were held constant during polydextrose relaxation. The tg was determined from a shift in the peak frequency of the imaginary capacitance spectrum with time. It was found that when the peak frequency reaches 30 mHz, polydextrose undergoes glass transition. Glass transition time, tg , is the time for polydextrose to undergo glass transition at a specific Tg and aw . Results lead to a modified state diagram, where Tg is depressed with increasing aw . This curve forms a boundary: (a) below the boundary, polydextrose does not undergo glass transition and (b) above the boundary, polydextrose rapidly undergoes glass transition. As the boundary curve is specified by a tg value, it can assist in the selection of storage conditions. An important point on the boundary curve is at aw = 0, where Tg0 = 115 °C. The methodology can also be used to calculate the stress-relaxation viscosity of polydextrose as a function of Tg and aw , which is important when characterizing the flow properties of polydextrose initially in powder form.
Effect of gadolinium-DTPA on the magnetic relaxation times of normal and infarcted myocardium. [Dogs
Wesbey, G.E.; Higgins, C.B.; McNamara, M.T.; Engelstad, B.L.; Lipton, M.J.; Sievers, R.; Ehman, R.L.; Lovin, J.; Brasch, R.C.
1984-10-01
Acute myocardial infarctions were produced in 11 dogs by ligation of the left anterior descending coronary artery. Twenty-four hours after ligation Gd-DTPA was injected intravenously, followed by cardiectomy either 90 seconds (3 dogs) or 5 minutes (5 dogs) later. The remaining 3 dogs had cardiectomy without injection of Gd-DTPA at 24 hours after coronary occlusion. The 3 dogs that did not receive Gd-DTPA had longer T1 and T2 relaxation times in infarcted myocardium than in normal myocardium. The T1 and T2 relaxation times of normal myocardium at 90 seconds postinjection of Gd-DTPA were significantly shorter than those of the normal myocardium of animals that did not receive Gd-DTPA. At five minutes postinjection, significantly greater T1 shortening was exhibited in the infarcted myocardium compared with adjacent normal myocardium in the dogs injected with Gd-DTPA. Thus, Gd-DTPA has differential and time-varying effects on relaxation times of normal and infarcted myocardium.
Estimation of stress relaxation time for normal and abnormal breast phantoms using optical technique
NASA Astrophysics Data System (ADS)
Udayakumar, K.; Sujatha, N.
2015-03-01
Many of the early occurring micro-anomalies in breast may transform into a deadliest cancer tumor in future. Probability of curing early occurring abnormalities in breast is more if rightly identified. Even in mammogram, considered as a golden standard technique for breast imaging, it is hard to pick up early occurring changes in the breast tissue due to the difference in mechanical behavior of the normal and abnormal tissue when subjected to compression prior to x-ray or laser exposure. In this paper, an attempt has been made to estimate the stress relaxation time of normal and abnormal breast mimicking phantom using laser speckle image correlation. Phantoms mimicking normal breast is prepared and subjected to precise mechanical compression. The phantom is illuminated by a Helium Neon laser and by using a CCD camera, a sequence of strained phantom speckle images are captured and correlated by the image mean intensity value at specific time intervals. From the relation between mean intensity versus time, tissue stress relaxation time is quantified. Experiments were repeated for phantoms with increased stiffness mimicking abnormal tissue for similar ranges of applied loading. Results shows that phantom with more stiffness representing abnormal tissue shows uniform relaxation for varying load of the selected range, whereas phantom with less stiffness representing normal tissue shows irregular behavior for varying loadings in the given range.
NASA Technical Reports Server (NTRS)
Spodick, D. H.; Quarry, V. M.; Khan, A. H.
1974-01-01
Systolic and diastolic time intervals in 14 cardiac patients with pulsus alternans revealed significant alternation of preinjection period (PEP), isovolumic contraction time (IVCT), left ventricular ejection time (LVET), ejection time index (ETI), PEP/LVET, and carotid dD/dt with better functional values in the strong beats. Cycle length, duration of electromechanical systole (EMS) and total diastole, i.e., isovolumic relaxation period (IRP) and diastolic filling period (DFP) occurred in 7 out of 8 patients. These diastolic intervals alternated reciprocally such that the IRP of the strong beats encroached upon the DFP of the next (weak) beats.
Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics
NASA Astrophysics Data System (ADS)
Huang, Xu-Guang; Kodama, Takeshi; Koide, Tomoi; Rischke, Dirk H.
2011-02-01
The microscopic formulas of the bulk viscosity ζ and the corresponding relaxation time τΠ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and τΠ and ζ are related as τΠ=ζ/[β{(1/3-cs2)(ɛ+P)-2(ɛ-3P)/9}], where ɛ, P, and cs are the energy density, pressure, and velocity of sound, respectively. The predicted ζ and τΠ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.
Lattice Boltzmann equation with multiple effective relaxation times for gaseous microscale flow.
Guo, Zhaoli; Zheng, Chuguang; Shi, Baochang
2008-03-01
The standard lattice Boltzmann equation (LBE) is inadequate for simulating gas flows with a large Knudsen number. In this paper we propose a generalized lattice Boltzmann equation with effective relaxation times based on a recently developed generalized Navier-Stokes constitution [Guo, Europhys Lett. 80, 24001 (2007)] for nonequilibrium flows. A kinetic boundary condition corresponding to a generalized second-order slip scheme is also designed for the model. The LBE model and the boundary condition are analyzed for a unidirectional flow, and it is found that in order to obtain the generalized Navier-Stokes equations, the relaxation times must be properly chosen and are related to the boundary condition. Numerical results show that the proposed method is able to capture the Knudsen layer phenomenon and can yield improved predictions in comparison with the standard lattice Boltzmann equation.
Kasturi, S R; Chang, D C; Hazlewood, C F
1980-01-01
The anisotropy of the spin-lattice relaxation time (T1) and the spin-spin relaxation times (T2) of water protons in skeletal muscle tissue have been studied by the spin-echo technique. Both T1 and T2 have been measured for the water protons of the tibialis anterior muscle of mature male rats for theta = 0, 55, and 90 degrees, where theta is the orientation of the muscle fiber with respect to the static field. The anisotropy in T1 and T2 has been measured at temperatures of 28, -5 and -10 degrees C. No significant anisotropy was observed in the T1 of the tissue water, while an average anisotropy of approximately 5% was observed in T2 at room temperature. The average anisotropy of T2 at -5 and -10 degrees C was found to be approximately 2 and 1.3%, respectively. PMID:6266530
The generalized Phillips-Twomey method for NMR relaxation time inversion
NASA Astrophysics Data System (ADS)
Gao, Yang; Xiao, Lizhi; Zhang, Yi; Xie, Qingming
2016-10-01
The inversion of NMR relaxation time involves the Fredholm integral equation of the first kind. Due to its ill-posedness, numerical solutions to this type of equations are often found much less accurate and bear little resemblance to the true solution. There has been a strong interest in finding a well-posed method for this ill-posed problem since 1950s. In this paper, we prove the existence, the uniqueness, the stability and the convergence of the generalized Phillips-Twomey regularization method for solving this type of equations. Numerical simulations and core analyses arising from NMR transverse relaxation time inversion are conducted to show the effectiveness of the generalized Phillips-Twomey method. Both the simulation results and the core analyses agree well with the model and the realities.
Shear Viscosity Coefficient and Relaxation Time of Causal Dissipative Hydrodynamics in QCD
Koide, T.; Nakano, E.; Kodama, T.
2009-07-31
The shear viscosity coefficient and the corresponding relaxation time for causal dissipative hydrodynamics are calculated based on the microscopic formula proposed in T. Koide and T. Kodama [Phys. Rev. E 78, 051107 (2008)]. Here, the exact formula is transformed into a more compact form and applied to evaluate these transport coefficients in the chiral perturbation theory and perturbative QCD. It is shown that in the leading order calculation, the causal shear viscosity coefficient eta reduces to that of the ordinary Green-Kubo-Nakano formula, and the relaxation time tau{sub p}i is related to eta and pressure P by a simple relationship, tau{sub p}i=eta/P.
Statistical Properties of Longitudinal Time-Activity Data for Use in Human Exposure Modeling
Understanding the longitudinal properties of the time spent in different locations and activities is important in characterizing human exposure to pollutants. The results of a four-season longitudinal time-activity diary study in eight working adults are presented, with the goal ...
NASA Astrophysics Data System (ADS)
Michaeli, Shalom; Sorce, Dennis J.; Springer, Charles S.; Ugurbil, Kamil; Garwood, Michael
2006-07-01
Longitudinal relaxation in the rotating frame (T1ρ) is the dominant mechanism during a train of adiabatic full passage (AFP) RF pulses with no interpulse intervals, placed prior to an excitation pulse. Asymptotic apparent time constants (T1ρ ‧) were measured for human occipital lobe 1H2O at 4 T using brief imaging readouts following such pulse trains. Two members of the hyperbolic secant (HSn) AFP pulse family (n = 1 or 4; i.e., arising from different amplitude- and frequency-modulation functions) were used. These produced two different non-monoexponential signal decays during the pulse trains. Thus, there are differing contrasts in asymptotic T1ρ ‧ maps derived from these data. This behavior is quite different than that of 1H2O signals from an aqueous protein solution of roughly the same macromolecular volume fraction as tissue. The ROI-averaged decays from the two acquisitions can be simultaneously accommodated by a two-site-exchange model for an equilibrium isochronous process whose exchange condition is modulated during the pulse. The model employs a two-spin description of dipolar interaction fluctuations in each site. The intrinsic site R1ρ (≡T1ρ-1) value is sensitive to fluctuations at the effective Larmor frequency (ωeff) in the rotating frame, and this is modulated differently during the two types of AFP pulses. Agreement with the data is quite good for site orientation correlation time constants characteristic of macromolecule-interacting water (site A) and bulk-like water (site B). Since R1ρA is significantly modulated while R1ρB is not, the intrinsic relaxographic shutter-speed for the process (≡|R1ρA - R1ρB|), and thus the exchange condition, is modulated. However, the mean residence time (67 ms) and intrinsic population fraction (0.2) values found for site A are each rather larger than might be expected, suggesting a disproportionate role for the water molecules known to be "buried" within the large and concentrated macromolecules of
NASA Astrophysics Data System (ADS)
Wojnarowska, Z.; Ngai, K. L.; Paluch, M.
2014-05-01
Using broadband dielectric spectroscopy we investigate the changes in the conductivity relaxation times τσ observed during the physical aging of the protic ionic conductor carvedilol dihydrogen phosphate (CP). Due to the large decoupling of ion diffusion from host molecule reorientation, the ion conductivity relaxation time τσ(Tage,tage) can be directly measured at temperatures Tage below Tg for exceedingly long aging times tage till τσ(Tage,tage) has reached the equilibrium value τ _σ ^{eq} ( {T_{age} } ). The dependence of τσ(Tage,tage) on tage is well described by the stretched exponential function, τ _σ ( {T_{age},t_{age} } ) = Aexp[ { - ( {{t_{age} }/{τ _{age ( {T_{age} } )}}} )^β } ] + τ _σ ^{eq} ( {T_{age} } ), where β is a constant and τage(Tage) can be taken as the structural α-relaxation time of the equilibrium liquid at T = Tage. The value of τ _σ ^{eq} ( {T_{age} } ) obtained after 63 days long annealing of CP, deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHσ) dependence of τσ(T) determined from data taken above Tg and extrapolated down to Tage. Concurrently, τage(Tage) also deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHα) dependence. The results help to answer the longstanding question of whether the VFTH dependence of τσ(T) as well as the structural α-relaxation time τα(T) holds or not in the equilibrium liquid state far below Tg.
Wojnarowska, Z; Ngai, K L; Paluch, M
2014-05-01
Using broadband dielectric spectroscopy we investigate the changes in the conductivity relaxation times τσ observed during the physical aging of the protic ionic conductor carvedilol dihydrogen phosphate (CP). Due to the large decoupling of ion diffusion from host molecule reorientation, the ion conductivity relaxation time τσ(Tage,tage) can be directly measured at temperatures Tage below Tg for exceedingly long aging times tage till τσ(Tage,tage) has reached the equilibrium value τσ(eq)(Tage). The dependence of τσ(Tage,tage) on tage is well described by the stretched exponential function, τσ(Tage, tage) = Aexp[-((tage)/(τage(Tage)))(β)] + τσ(eq)(Tage), where β is a constant and τage(Tage) can be taken as the structural α-relaxation time of the equilibrium liquid at T = Tage. The value of τσ(eq)(Tage) obtained after 63 days long annealing of CP, deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHσ) dependence of τσ(T) determined from data taken above Tg and extrapolated down to Tage. Concurrently, τage(Tage) also deviates from the Vogel-Fulcher-Tammann-Hesse (VFTHα) dependence. The results help to answer the longstanding question of whether the VFTH dependence of τσ(T) as well as the structural α-relaxation time τα(T) holds or not in the equilibrium liquid state far below Tg.
T2 Relaxation Time Quantitation Differs Between Pulse Sequences in Articular Cartilage
Matzat, Stephen J.; McWalter, Emily J.; Kogan, Feliks; Chen, Weitian; Gold, Garry E.
2015-01-01
Background To compare T2 relaxation time measurements between MR pulse sequences at 3 Tesla in agar phantoms and in vivo patellar, femoral, and tibial articular cartilage. Methods T2 relaxation times were quantified in phantoms and knee articular cartilage of eight healthy individuals using a single echo spin echo (SE) as a reference standard and five other pulse sequences: multi-echo SE (MESE), fast SE (2D-FSE), magnetization-prepared spoiled gradient echo (3D-MAPSS), three-dimensional (3D) 3D-FSE with variable refocusing flip angle schedules (3D vfl-FSE), and quantitative double echo steady state (qDESS). Cartilage was manually segmented and average regional T2 relaxation times were obtained for each sequence. A regression analysis was carried out between each sequence and the reference standard, and root-mean-square error (RMSE) was calculated. Results Phantom measurements from all sequences demonstrated strong fits (R2>0.8; P<0.05). For in vivo cartilage measurements, R2 values, slope, and RMSE were: MESE: 0.25/0.42/5.0 ms, 2D-FSE: 0.64/1.31/9.3 ms, 3D-MAPSS: 0.51/0.66/3.8 ms, 3D vfl-FSE: 0.30/ 0.414.2 ms, qDESS: 0.60/0.90/4.6 ms. Conclusion 2D-FSE, qDESS, and 3D-MAPSS demonstrated the best fits with SE measurements as well as the greatest dynamic ranges. The 3D-MAPSS, 3D vfl-FSE, and qDESS demonstrated the closest average measurements to SE. Discrepancies in T2 relaxation time quantitation between sequences suggest that care should be taken when comparing results between studies. PMID:25244647
In-vivo T2-relaxation times of asymptomatic cervical intervertebral discs.
Driscoll, Sean J; Zhong, Weiye; Torriani, Martin; Mao, Haiqing; Wood, Kirkham B; Cha, Thomas D; Li, Guoan
2016-03-01
Limited research exists on T2-mapping techniques for cervical intervertebral discs and its potential clinical utility. The objective of this research was to investigate the in-vivo T2-relaxation times of cervical discs, including C2-C3 through C7-T1. Ten asymptomatic subjects were imaged using a 3.0 T MR scanner and a sagittal multi-slice multi-echo sequence. Using the mid-sagittal image, intervertebral discs were divided into five regions-of-interest (ROIs), centered along the mid-line of the disc. Average T2 relaxation time values were calculated for each ROI using a mono-exponential fit. Differences in T2 values between disc levels and across ROIs of the same disc were examined. For a given ROI, the results showed a trend of increasing relaxation times moving down the spinal column, particularly in the middle regions (ROIs 2, 3 and 4). The C6-C7 and C7-T1 discs had significantly greater T2 values compared to superior discs (discs between C2 and C6). The results also showed spatial homogeneity of T2 values in the C3-C4, C4-C5, and C5-C6 discs, while C2-C3, C6-C7, and C7-T1 showed significant differences between ROIs. The findings indicate there may be inherent differences in T2-relaxation time properties between different cervical discs. Clinical evaluations utilizing T2-mapping techniques in the cervical spine may need to be level-dependent.
NASA Astrophysics Data System (ADS)
Shan, Ming-Lei; Zhu, Chang-Ping; Yao, Cheng; Yin, Cheng; Jiang, Xiao-Yan
2016-10-01
The dynamics of the cavitation bubble collapse is a fundamental issue for the bubble collapse application and prevention. In the present work, the modified forcing scheme for the pseudopotential multi-relaxation-time lattice Boltzmann model developed by Li Q et al. [Li Q, Luo K H and Li X J 2013 Phys. Rev. E 87 053301] is adopted to develop a cavitation bubble collapse model. In the respects of coexistence curves and Laplace law verification, the improved pseudopotential multi-relaxation-time lattice Boltzmann model is investigated. It is found that the thermodynamic consistency and surface tension are independent of kinematic viscosity. By homogeneous and heterogeneous cavitation simulation, the ability of the present model to describe the cavitation bubble development as well as the cavitation inception is verified. The bubble collapse between two parallel walls is simulated. The dynamic process of a collapsing bubble is consistent with the results from experiments and simulations by other numerical methods. It is demonstrated that the present pseudopotential multi-relaxation-time lattice Boltzmann model is applicable and efficient, and the lattice Boltzmann method is an alternative tool for collapsing bubble modeling. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274092 and 1140040119) and the Natural Science Foundation of Jiangsu Province, China (Grant No. SBK2014043338).
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
NASA Astrophysics Data System (ADS)
Li, Derek D.; Greenfield, Michael L.
2014-01-01
The dynamics properties of a new "next generation" model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ˜42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules
Li, Derek D.; Greenfield, Michael L.
2014-01-21
The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion.
NASA Astrophysics Data System (ADS)
Egan, Thomas F.
The NMR spin-lattice relaxation rate, T(,1)(' -1), of water is independent of the Larmor frequency, (omega)/2(pi), in the normal rf range. However, T(,1)('-1) of intracellular water in biological systems, which accounts for as much as 80% of the cell mass, is frequency-dependent. This indicates that the NMR properties of water in the cellular environment are influenced by long-correlation time processes due to the interaction of water with proteins and other macromolecular constituents of the cell. In this research, the relaxation rate T(,1)(' -1) of water in the Artemia (brine shrimp) cyst is examined as a function of: (1) the proton NMR Larmor frequency for .01 <= (omega)/2(pi) <= 500 MHz, (2) different cyst hydration levels from 0.12 to 1.25 grams water/gram dry solid, (3) temperatures of 22C and 5C. The frequency-dependence of T(,1)('-1) is interpreted in terms of a two-phase exchange model. One water phase is similar to pure water and contributes a small constant relaxation rate. The second phase is water closely associated with the surfaces of large molecules and termed "hydration water". A polymer-dynamics relaxation mechanism, which treats fluctuations of long-chain molecules in aqueous solution, has been proposed by Rorschach and Hazlewood to explain the relaxation in this second water phase. In one limit, this mechanism predicts a frequency-dependent relaxation rate proportional to (omega)('- 1/2). This particular dependence has previously been observed in other NMR studies on biological systems and is also observed in this study for Artemia cysts between 10 and 500 MHz. At lower Larmor frequencies, below 1 MHz, the relaxation rates of water in brine shrimp cysts are influenced by additional relexation mechanisms; translational diffusion of hydration water is one possibility.
NASA Technical Reports Server (NTRS)
De Mey, S.; Thomas, J. D.; Greenberg, N. L.; Vandervoort, P. M.; Verdonck, P. R.
2001-01-01
The objective of this study was to use high-fidelity animal data and numerical simulations to gain more insight into the reliability of the estimated relaxation constant derived from left ventricular pressure decays, assuming a monoexponential model with either a fixed zero or free moving pressure asymptote. Comparison of the experimental data with the results of the simulations demonstrated a trade off between the fixed zero and the free moving asymptote approach. The latter method more closely fits the pressure curves and has the advantage of producing an extra coefficient with potential diagnostic information. On the other hand, this method suffers from larger standard errors on the estimated coefficients. The method with fixed zero asymptote produces values of the time constant of isovolumetric relaxation (tau) within a narrow confidence interval. However, if the pressure curve is actually decaying to a nonzero pressure asymptote, this method results in an inferior fit of the pressure curve and a biased estimation of tau.
Unified Theory of Activated Relaxation in Liquids over 14 Decades in Time
Mirigian, Stephen; Schweizer, Kenneth
2013-01-01
We formulate a predictive theory at the level of forces of activated relaxation in hard-sphere fluids and thermal liquids that covers in a unified manner the apparent Arrhenius, crossover, and deeply supercooled regimes. The alpha relaxation event involves coupled cage-scale hopping and a long-range collective elastic distortion of the surrounding liquid, which results in two inter-related, but distinct, barriers. The strongly temperature and density dependent collective barrier is associated with a growing length scale, the shear modulus, and density fluctuations. Thermal liquids are mapped to an effective hard-sphere fluid based on matching long wavelength density fluctuation amplitudes, resulting in a zeroth-order quasi-universal description. The theory is devoid of fit parameters, has no divergences at finite temperature nor below jamming, and captures the key features of the alpha time of molecular liquids from picoseconds to hundreds of seconds.
Comparative study of acoustic relaxation time of cholesteric liquid crystal and mixtures
NASA Astrophysics Data System (ADS)
Bhave, Manisha G.; Gharde, Rita; Radha, S.
2016-09-01
The present study focuses on the relaxation processes in Cholesteric Liquid Crystal and mixtures. We have dispersed two different monomers in CLC to form Polymer dispersed liquid crystals (PDCLCs). PDLC films have a remarkable electro-optical behavior since they can be switched from highly light scattering state (OFF) to transparent state (ON) simply by application of an electric field. We have also doped ferroelectric nano - powder (NP) in CLC. The phase transitions occurred at temperatures lower than those exhibited by the mesogenic component before doping. The viscosity, ultrasonic velocity and density show variation with change in the material as well as temperature. The acoustic relaxation time and ultrasonic attenuation decrease with increase in temperature for CLC and CLC+NP. The parameters of PDCLC2 in comparison with PDCLC1 are more linear in isotropic and anisotropic regions. For PDCLC2 the values reach maximum value at the Cholesteric-isotropic transition.
2011-01-01
Background Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns. Method We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55), and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend), season (warm/cool), sex, employment status, and over the follow-up period. Results As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession. Conclusions This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and seasonal patterns should be
The Timing of Maternal Depressive Symptoms and Child Cognitive Development: A Longitudinal Study
ERIC Educational Resources Information Center
Evans, Jonathan; Melotti, Roberto; Heron, Jon; Ramchandani, Paul; Wiles, Nicola; Murray, Lynne; Stein, Alan
2012-01-01
Background: Maternal depression is known to be associated with impairments in child cognitive development, although the effect of timing of exposure to maternal depression is unclear. Methods: Data collected for the Avon Longitudinal Study of Parents and Children, a longitudinal study beginning in pregnancy, included self-report measures of…
A Longitudinal Study on the Stability over Time of School and Teacher Effects on Student Outcomes
ERIC Educational Resources Information Center
Kyriakides, Leonidas; Creemers, Bert P. M.
2008-01-01
This paper reviews educational effectiveness theory, concentrating on the time stability of the teacher and school effect. The contribution of longitudinal studies investigating the long-term effect of schools and teachers to modelling educational effectiveness is discussed. Findings of a longitudinal study on the progress of students (N=1681) in…
Electron spin relaxation time in (110) InGaAs/InAlAs quantum wells
Yokota, Nobuhide; Yasuda, Yusuke; Ikeda, Kazuhiro; Kawaguchi, Hitoshi
2014-07-14
Electron spin relaxation time τ{sub s} in InGaAs/InAlAs quantum wells (QWs) grown on (110) and (100) InP substrates was investigated by pump-probe transmission measurements. Similar τ{sub s} of 0.83–1.0 ns were measured at room temperature for all the measured (110) and (100) QWs, indicating suppression of the D'yakonov-Perel' spin relaxation mechanism in (110) QWs is not effective in InGaAs/InAlAs QWs as opposed to GaAs/AlGaAs QWs. Contribution of the Bir-Aronov-Pikus mechanism dominant in (110) GaAs/AlGaAs QWs was found to be small in both the (110) and (100) InGaAs/InAlAs QWs from the weak dependences of τ{sub s} on pump intensity at room temperature. These results suggest that the spin relaxation mechanism dominant in InGaAs/InAlAs QWs at a temperature higher than 200 K is the Elliott-Yafet mechanism independent of the crystal orientation among the above three major mechanisms.
Unified Theory of Activated Relaxation in Cold Liquids over 14 Decades in Time
NASA Astrophysics Data System (ADS)
Schweizer, Kenneth; Mirigian, Stephen
2014-03-01
We formulate a predictive theory at the level of forces of activated relaxation in thermal liquids that covers in a unified manner the apparent Arrhenius, crossover and deeply supercooled regimes (J.Phys.Chem.Lett.4,3648(2013)). The alpha relaxation event involves coupled cage-scale hopping and a long range cooperative elastic distortion of the surrounding liquid, which results in two inter-related, but distinct, barriers. The strongly temperature and density dependent collective barrier is associated with a growing length scale, the shear modulus and density fluctuations. Thermal liquids are mapped to an effective hard sphere fluid based on matching long wavelength density fluctuation amplitudes. The theory is devoid of fit parameters, has no divergences at finite temperature nor below jamming, and captures the key features of the alpha relaxation time in molecular liquids from picoseconds to hundreds of seconds. The approach is extended to polymer liquids based on the Kuhn length as the key variable. The influence of chain length and backbone stiffness on the glass transition temperature and fragility have been studied where degree of polymerization enters via corrections to asymptotic conformational statistics.
NASA Astrophysics Data System (ADS)
Bradley, T. D.; Ilinova, E.; McFerran, J. J.; Jouin, J.; Debord, B.; Alharbi, M.; Thomas, P.; Gérôme, F.; Benabid, F.
2016-09-01
We report on the measurement of ground-state atomic polarization relaxation time of Rb vapor confined in five different hypocycloidal core-shape Kagome hollow-core photonic crystal fibers made with uncoated silica glass. We are able to distinguish between wall-collision and transit-time effects in an optical waveguide and deduce the contribution of the atom’s dwell time at the core wall surface. In contrast with conventional macroscopic atomic cell configuration, and in agreement with Monte Carlo simulations, the measured relaxation times were found to be at least one order of magnitude longer than the limit set by atom-wall collisional from thermal atoms. This extended relaxation time is explained by the combination of a stronger contribution of the slow atoms in the atomic polarization build-up, and of the relatively significant contribution of dwell time to the relaxation process of the ground state polarization.
The timing of eukaryotic evolution: does a relaxed molecular clock reconcile proteins and fossils?
Douzery, Emmanuel J P; Snell, Elizabeth A; Bapteste, Eric; Delsuc, Frédéric; Philippe, Hervé
2004-10-26
The use of nucleotide and amino acid sequences allows improved understanding of the timing of evolutionary events of life on earth. Molecular estimates of divergence times are, however, controversial and are generally much more ancient than suggested by the fossil record. The limited number of genes and species explored and pervasive variations in evolutionary rates are the most likely sources of such discrepancies. Here we compared concatenated amino acid sequences of 129 proteins from 36 eukaryotes to determine the divergence times of several major clades, including animals, fungi, plants, and various protists. Due to significant variations in their evolutionary rates, and to handle the uncertainty of the fossil record, we used a Bayesian relaxed molecular clock simultaneously calibrated by six paleontological constraints. We show that, according to 95% credibility intervals, the eukaryotic kingdoms diversified 950-1,259 million years ago (Mya), animals diverged from choanoflagellates 761-957 Mya, and the debated age of the split between protostomes and deuterostomes occurred 642-761 Mya. The divergence times appeared to be robust with respect to prior assumptions and paleontological calibrations. Interestingly, these relaxed clock time estimates are much more recent than those obtained under the assumption of a global molecular clock, yet bilaterian diversification appears to be approximately 100 million years more ancient than the Cambrian boundary.
Costabel, Stephan; Yaramanci, Ugur
2013-01-01
[1] For characterizing water flow in the vadose zone, the water retention curve (WRC) of the soil must be known. Because conventional WRC measurements demand much time and effort in the laboratory, alternative methods with shortened measurement duration are desired. The WRC can be estimated, for instance, from the cumulative pore size distribution (PSD) of the investigated material. Geophysical applications of nuclear magnetic resonance (NMR) relaxometry have successfully been applied to recover PSDs of sandstones and limestones. It is therefore expected that the multiexponential analysis of the NMR signal from water-saturated loose sediments leads to a reliable estimation of the WRC. We propose an approach to estimate the WRC using the cumulative NMR relaxation time distribution and approximate it with the well-known van-Genuchten (VG) model. Thereby, the VG parameter n, which controls the curvature of the WRC, is of particular interest, because it is the essential parameter to predict the relative hydraulic conductivity. The NMR curves are calibrated with only two conventional WRC measurements, first, to determine the residual water content and, second, to define a fixed point that relates the relaxation time to a corresponding capillary pressure. We test our approach with natural and artificial soil samples and compare the NMR-based results to WRC measurements using a pressure plate apparatus and to WRC predictions from the software ROSETTA. We found that for sandy soils n can reliably be estimated with NMR, whereas for samples with clay and silt contents higher than 10% the estimation fails. This is the case when the hydraulic properties of the soil are mainly controlled by the pore constrictions. For such samples, the sensitivity of the NMR method for the pore bodies hampers a plausible WRC estimation. Citation: Costabel, S., and U. Yaramanci (2013), Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions, Water
Centric scan SPRITE for spin density imaging of short relaxation time porous materials.
Chen, Quan; Halse, Meghan; Balcom, Bruce J
2005-02-01
The single-point ramped imaging with T1 enhancement (SPRITE) imaging technique has proven to be a very robust and flexible method for the study of a wide range of systems with short signal lifetimes. As a pure phase encoding technique, SPRITE is largely immune to image distortions generated by susceptibility variations, chemical shift and paramagnetic impurities. In addition, it avoids the line width restrictions on resolution common to time-based sampling, frequency encoding methods. The standard SPRITE technique is however a longitudinal steady-state imaging method; the image intensity is related to the longitudinal steady state, which not only decreases the signal-to-noise ratio, but also introduces many parameters into the image signal equation. A centric scan strategy for SPRITE removes the longitudinal steady state from the image intensity equation and increases the inherent image intensity. Two centric scan SPRITE methods, that is, Spiral-SPRITE and Conical-SPRITE, with fast acquisition and greatly reduced gradient duty cycle, are outlined. Multiple free induction decay (FID) points may be acquired during SPRITE sampling for signal averaging to increase signal-to-noise ratio or for T2* and spin density mapping without an increase in acquisition time. Experimental results show that most porous sedimentary rock and concrete samples have a single exponential T2* decay due to susceptibility difference-induced field distortion. Inhomogeneous broadening thus dominates, which suggests that spin density imaging can be easily obtained by SPRITE. PMID:15833624
Centric scan SPRITE for spin density imaging of short relaxation time porous materials.
Chen, Quan; Halse, Meghan; Balcom, Bruce J
2005-02-01
The single-point ramped imaging with T1 enhancement (SPRITE) imaging technique has proven to be a very robust and flexible method for the study of a wide range of systems with short signal lifetimes. As a pure phase encoding technique, SPRITE is largely immune to image distortions generated by susceptibility variations, chemical shift and paramagnetic impurities. In addition, it avoids the line width restrictions on resolution common to time-based sampling, frequency encoding methods. The standard SPRITE technique is however a longitudinal steady-state imaging method; the image intensity is related to the longitudinal steady state, which not only decreases the signal-to-noise ratio, but also introduces many parameters into the image signal equation. A centric scan strategy for SPRITE removes the longitudinal steady state from the image intensity equation and increases the inherent image intensity. Two centric scan SPRITE methods, that is, Spiral-SPRITE and Conical-SPRITE, with fast acquisition and greatly reduced gradient duty cycle, are outlined. Multiple free induction decay (FID) points may be acquired during SPRITE sampling for signal averaging to increase signal-to-noise ratio or for T2* and spin density mapping without an increase in acquisition time. Experimental results show that most porous sedimentary rock and concrete samples have a single exponential T2* decay due to susceptibility difference-induced field distortion. Inhomogeneous broadening thus dominates, which suggests that spin density imaging can be easily obtained by SPRITE.
NASA Astrophysics Data System (ADS)
Parson, William W.; Warshel, Arieh
2004-01-01
The dispersed-polaron (spin-boson) model is reviewed briefly and then used to develop a density-matrix model for studies of electron transfer in condensed phases. The frequencies and Franck-Condon factors for solvent vibrational modes that are coupled to electron transfer are obtained from molecular dynamics (MD) simulations by the dispersed-polaron treatment. Microscopic rate constants for vibrational relaxations, dephasing and coherence transfer between the solvent modes are obtained by fitting the time dependence of the solvent coordinates in the density-matrix treatment to the corresponding time dependence obtained from molecular-dynamics simulations with a classical linear-response approximation. This is done by adjusting a single parameter, the time constant for thermal equilibration of the two lowest levels of a solvent mode ( T10). The model thus focuses on the coupling between solvent modes, rather than on the more widely studied coupling of solute modes by the thermal bath. The resulting density-matrix model is used to examine vibronic coupling in the initial electron-transfer step in photosynthetic bacterial reaction centers. Values of T10 in the range of 1-2 ps are consistent with molecular-dynamics simulations of the time-dependent energy gap between the reactant and product states (P* and P +B -), and also with the damping of coherent vibrational motions that are seen experimentally after excitation of reaction centers with a short pulse of light. In both the density-matrix model and the MD simulations, the autocorrelation function of the energy gap also has a decay component with a time constant of about 50 fs, which we ascribe to the group dephasing of oscillatory motions at many different frequencies. This component is insensitive to vibrational relaxations and is largely irrelevant to the electron-transfer dynamics. Using values of T10 in the range of 1-2 ps, a model with five vibrational modes reproduces the main features of electron transfer
Joint Modeling of Longitudinal Data and Discrete-Time Survival Outcome
Qiu, Feiyou; Stein, Catherine M.; Elston, Robert C.
2013-01-01
A predictive joint shared parameter model is proposed for discrete time-to-event and longitudinal data. A discrete survival model with frailty and a generalized linear mixed model for the longitudinal data are joined to predict the probability of events. This joint model focuses on predicting discrete time-to-event outcome, taking advantage of repeated measurements. We show that the probability of an event in a time window can be more precisely predicted by incorporating the longitudinal measurements. The model was investigated by comparison with a two-step model and a discrete time survival model. Results from both a study on the occurrence of tuberculosis and simulated data show that the joint model is superior to the other models in discrimination ability, especially as the latent variables related to both survival times and the longitudinal measurements depart from 0. PMID:23709103
Joint modeling of longitudinal data and discrete-time survival outcome.
Qiu, Feiyou; Stein, Catherine M; Elston, Robert C
2016-08-01
A predictive joint shared parameter model is proposed for discrete time-to-event and longitudinal data. A discrete survival model with frailty and a generalized linear mixed model for the longitudinal data are joined to predict the probability of events. This joint model focuses on predicting discrete time-to-event outcome, taking advantage of repeated measurements. We show that the probability of an event in a time window can be more precisely predicted by incorporating the longitudinal measurements. The model was investigated by comparison with a two-step model and a discrete-time survival model. Results from both a study on the occurrence of tuberculosis and simulated data show that the joint model is superior to the other models in discrimination ability, especially as the latent variables related to both survival times and the longitudinal measurements depart from 0.
Relaxation time of the Cooper pairs near Tc in cuprate superconductors
NASA Astrophysics Data System (ADS)
Ramallo, M. V.; Carballeira, C.; Viña, J.; Veira, J. A.; Mishonov, T.; Pavuna, D.; Vidal, F.
1999-10-01
It is first shown that the thermal fluctuation effects on the transport and on the thermodynamic observables above the superconducting transition may provide, when they are analyzed simultaneously and consistently, a powerful tool to access the relaxation time, τ0, of the Cooper pairs with wave vector k = 0 in high-temperature cuprate superconductors (HTSC). Then, we apply this procedure to optimally doped YBa2Cu3O7 - δ (Y-123) crystals. It is found that in this HTSC τ0 follows, within 20% accuracy, the BCS temperature behaviour and amplitude given by τ0 = πhbar/[8kB(T - Tc0)].
A Novel Statistical Approach for Brain MR Images Segmentation Based on Relaxation Times
Ferraioli, Giampaolo; Pascazio, Vito
2015-01-01
Brain tissue segmentation in Magnetic Resonance Imaging is useful for a wide range of applications. Classical approaches exploit the gray levels image and implement criteria for differentiating regions. Within this paper a novel approach for brain tissue joint segmentation and classification is presented. Starting from the estimation of proton density and relaxation times, we propose a novel method for identifying the optimal decision regions. The approach exploits the statistical distribution of the involved signals in the complex domain. The technique, compared to classical threshold based ones, is able to globally improve the classification rate. The effectiveness of the approach is evaluated on both simulated and real datasets. PMID:26798631
Ronca, Enrico; Angeli, Celestino; Belpassi, Leonardo; De Angelis, Filippo; Tarantelli, Francesco; Pastore, Mariachiara
2014-09-01
Making use of the recently developed excited state charge displacement analysis [E. Ronca et al., J. Chem. Phys. 140, 054110 (2014)], suited to quantitatively characterize the charge fluxes coming along an electronic excitation, we investigate the role of the density relaxation effects in the overall description of electronically excited states of different nature, namely, valence, ionic, and charge transfer (CT), considering a large set of prototypical small and medium-sized molecular systems. By comparing the response densities provided by time-dependent density functional theory (TDDFT) and the corresponding relaxed densities obtained by applying the Z-vector postlinear-response approach [N. C. Handy and H. F. Schaefer, J. Chem. Phys. 81, 5031 (1984)] with those obtained by highly correlated state-of-the-art wave function calculations, we show that the inclusion of the relaxation effects is imperative to get an accurate description of the considered excited states. We also examine what happens at the quality of the response function when an increasing amount of Hartree-Fock (HF) exchange is included in the functional, showing that the usually improved excitation energies in the case of CT states are not always the consequence of an improved description of their overall properties. Remarkably, we find that the relaxation of the response densities is always able to reproduce, independently of the extent of HF exchange in the functional, the benchmark wave function densities. Finally, we propose a novel and computationally convenient strategy, based on the use of the natural orbitals derived from the relaxed TDDFT density to build zero-order wave function for multireference perturbation theory calculations. For a significant set of different excited states, the proposed approach provided accurate excitation energies, comparable to those obtained by computationally demanding ab initio calculations.
A method for measuring the Néel relaxation time in a frozen ferrofluid
NASA Astrophysics Data System (ADS)
Tackett, Ronald J.; Thakur, Jagdish; Mosher, Nathaniel; Perkins-Harbin, Emily; Kumon, Ronald E.; Wang, Lihua; Rablau, Corneliu; Vaishnava, Prem P.
2015-08-01
We report a novel method of determining the average Néel relaxation time and its temperature dependence by calculating derivatives of the measured time dependence of temperature for a frozen ferrofluid exposed to an alternating magnetic field. The ferrofluid, composed of dextran-coated Fe3O4 nanoparticles (diameter 13.7 nm ± 4.7 nm), was synthesized via wet chemical precipitation and characterized by x-ray diffraction and transmission electron microscopy. An alternating magnetic field of constant amplitude ( H 0 = 20 kA/m) driven at frequencies of 171 kHz, 232 kHz, and 343 kHz was used to determine the temperature dependent magnetic energy absorption rate in the temperature range from 160 K to 210 K. We found that the specific absorption rate of the ferrofluid decreased monotonically with temperature over this range at the given frequencies. From these measured data, we determined the temperature dependence of the Néel relaxation time and estimate a room-temperature magnetocrystalline anisotropy constant of 40 kJ/m3, in agreement with previously published results.
Klieber, Christoph; Hecksher, Tina; Pezeril, Thomas; Torchinsky, Darius H; Dyre, Jeppe C; Nelson, Keith A
2013-03-28
This paper presents and discusses the temperature and frequency dependence of the longitudinal and shear viscoelastic response at MHz and GHz frequencies of the intermediate glass former glycerol and the fragile glass former tetramethyl-tetraphenyl-trisiloxane (DC704). Measurements were performed using the recently developed time-domain Brillouin scattering technique, in which acoustic waves are generated optically, propagated through nm thin liquid layers of different thicknesses, and detected optically after transmission into a transparent detection substrate. This allows for a determination of the frequency dependence of the speed of sound and the sound-wave attenuation. When the data are converted into mechanical moduli, a linear relationship between longitudinal and shear acoustic moduli is revealed, which is consistent with the generalized Cauchy relation. In glycerol, the temperature dependence of the shear acoustic relaxation time agrees well with literature data for dielectric measurements. In DC704, combining the new data with data from measurements obtained previously by piezo-ceramic transducers yields figures showing the longitudinal and shear sound velocities at frequencies from mHz to GHz over an extended range of temperatures. The shoving model's prediction for the relaxation time's temperature dependence is fairly well obeyed for both liquids as demonstrated from a plot with no adjustable parameters. Finally, we show that for both liquids the instantaneous shear modulus follows an exponential temperature dependence to a good approximation, as predicted by Granato's interstitialcy model. PMID:23556795
Change over Time: Conducting Longitudinal Studies of Children’s Cognitive Development
Grammer, Jennie K.; Coffman, Jennifer L.; Ornstein, Peter A.; Morrison, Frederick J.
2014-01-01
Developmental scientists have argued that the implementation of longitudinal methods is necessary for obtaining an accurate picture of the nature and sources of developmental change (Magnusson & Cairns, 1996; Morrison & Ornstein, 1996; Magnusson & Stattin, 2006). Developmentalists studying cognition have been relatively slow to embrace longitudinal research, and thus few exemplar studies have tracked individual children’s cognitive performance over time and even fewer have examined contexts that are associated with this growth. In this article we first outline some of the benefits of implementing longitudinal designs. Using illustrations from existing studies of children’s basic cognitive development and of their school-based academic performance, we discuss when it may be appropriate to employ longitudinal (versus other) methods. We then outline methods for integrating longitudinal data into one’s research portfolio, contrasting the leveraging of existing longitudinal data sets with the launching of new longitudinal studies in order to address specific questions concerning cognitive development. Finally, for those who are interested in conducting longitudinal investigations of their own, we provide practical on-the-ground guidelines for designing and carrying out such studies of cognitive development. PMID:24955035
Enhancing Web applications in radiology with Java: estimating MR imaging relaxation times.
Dagher, A P; Fitzpatrick, M; Flanders, A E; Eng, J
1998-01-01
Java is a relatively new programming language that has been used to develop a World Wide Web-based tool for estimating magnetic resonance (MR) imaging relaxation times, thereby demonstrating how Java may be used for Web-based radiology applications beyond improving the user interface of teaching files. A standard processing algorithm coded with Java is downloaded along with the hypertext markup language (HTML) document. The user (client) selects the desired pulse sequence and inputs data obtained from a region of interest on the MR images. The algorithm is used to modify selected MR imaging parameters in an equation that models the phenomenon being evaluated. MR imaging relaxation times are estimated, and confidence intervals and a P value expressing the accuracy of the final results are calculated. Design features such as simplicity, object-oriented programming, and security restrictions allow Java to expand the capabilities of HTML by offering a more versatile user interface that includes dynamic annotations and graphics. Java also allows the client to perform more sophisticated information processing and computation than is usually associated with Web applications. Java is likely to become a standard programming option, and the development of stand-alone Java applications may become more common as Java is integrated into future versions of computer operating systems.
Du, Fei; Cooper, Alissa; Cohen, Bruce M.; Renshaw, Perry F.; Öngür, Dost
2012-01-01
Multiple lines of evidence suggest that microstructural abnormalities in the white matter are important in the pathophysiology of schizophrenia. Diffusion MRI approaches which can provide evidence on tissue structure have been widely used to probe these abnormalities in vivo, but transverse relaxation times (T2) may provide additional insights since they are determined by molecule-microenvironment interactions not revealed by diffusion MRI. T2 of water – located both intra and extracellularly – and N-acetylaspartate (NAA – located intracellularly) reflect related but distinct processes due to their differential localization and interactions with other molecules. In this study, we collected water and NAA T2 data from 16 healthy subjects (HC), and 16 patients with schizophrenia (SZ) at 4 Tesla in a 9cc voxel in the right prefrontal white matter. The SZ group had longer water but shorter NAA T2 relaxation times when compared with the HC group. This pattern resulted in a statistically significant metabolite x group interaction (F(18,1):4.980, p=0.039). Prolongation of water T2 and shortening of NAA T2 is consistent with an impoverishment of white matter macromolecule structures (including myelin) and abnormal intra-axonal milieu and volume in SZ. PMID:22356802
NASA Astrophysics Data System (ADS)
Leclaire, S.; Pellerin, N.; Reggio, M.; Trépanier, J.-Y.
2014-03-01
The lattice Boltzmann modeling of immiscible multiphase flows needs to be further validated, especially when density variation occurs between the different flow phases. From this perspective, the goal of this research is to introduce the multiple-relaxation-time operator into a lattice Boltzmann model in order to improve its numerical stability in the presence of large density and viscosity ratios. Essentially, this research shows that the introduction of this operator greatly improves the numerical stability of the approach compared to the original single-relaxation-time collision operator. In many lattice Boltzmann research studies, multiphase lattice Boltzmann methods are validated using a reduced number of test cases, and unsteady flow test cases are frequently omitted before much more complex flow configurations are simulated. In this context, several test cases are proposed to evaluate the behavior of a lattice Boltzmann method for simulating immiscible multiphase flows with high density and viscosity ratios. These are: (1) two-phase Couette flow; (2) three-phase Laplace law; (3) three-phase Zalesak disk; (4) two-phase flow between oscillating plates; (5) two-phase capillary wave; and (6) the two-phase oscillating cylindrical bubble. The first two involve a steady regime, and the remaining four an unsteady regime.
On the nonlinear variation of dc conductivity with dielectric relaxation time
NASA Astrophysics Data System (ADS)
Johari, G. P.; Andersson, Ove
2006-09-01
The long-known observations that dc conductivity σdc of an ultraviscous liquid varies nonlinearly with the dielectric relaxation time τ, and the slope of the logσdc against logτ plot deviates from -1 are currently seen as two of the violations of the Debye-Stokes-Einstein equation. Here we provide a formalism using a zeroth order Bjerrum description for ion association to show that in addition to its variation with temperature T and pressure P, impurity ion population varies with a liquid's equilibrium dielectric permittivity. Inclusion of this electrostatic effect modifies the Debye-Stokes-Einstein equation to log(σdcτ )=constant+logα, where α is the T and P-dependent degree of ionic dissociation of an electrolytic impurity. Variation of a liquid's shear modulus with T and P would add to the nonlinearity of σdc-τ relation, as would a nonequivalence of the shear and dielectric relaxation times, proton transfer along the hydrogen bonds, or occurrence of another chemical process. This is illustrated by using the data for ultraviscous acetaminophen-aspirin liquid.
McGarry, Bryony L.; Rogers, Harriet J.; Knight, Michael J.; Jokivarsi, Kimmo T.; Gröhn, Olli H.J.; Kauppinen, Risto A.
2016-01-01
Many ischaemic stroke patients are ineligible for thrombolytic therapy due to unknown onset time. Quantitative MRI (qMRI) is a potential surrogate for stroke timing. Rats were subjected to permanent middle cerebral artery occlusion and qMRI parameters including hemispheric differences in apparent diffusion coefficient, T2-weighted signal intensities, T1 and T2 relaxation times (qT1, qT2) and f1, f2 and Voverlap were measured at hourly intervals at 4.7 or 9.4 T. Accuracy and sensitivity for identifying strokes scanned within and beyond 3 h of onset was determined. Accuracy for Voverlap, f2 and qT2 (>90%) was significantly higher than other parameters. At a specificity of 1, sensitivity was highest for Voverlap (0.90) and f2 (0.80), indicating promise of these qMRI indices in the clinical assessment of stroke onset time.
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter
NASA Astrophysics Data System (ADS)
Johnson, W. R.; Nilsen, J.
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Average-atom treatment of relaxation time in x-ray Thomson scattering from warm dense matter.
Johnson, W R; Nilsen, J
2016-03-01
The influence of finite relaxation times on Thomson scattering from warm dense plasmas is examined within the framework of the average-atom approximation. Presently most calculations use the collision-free Lindhard dielectric function to evaluate the free-electron contribution to the Thomson cross section. In this work, we use the Mermin dielectric function, which includes relaxation time explicitly. The relaxation time is evaluated by treating the average atom as an impurity in a uniform electron gas and depends critically on the transport cross section. The calculated relaxation rates agree well with values inferred from the Ziman formula for the static conductivity and also with rates inferred from a fit to the frequency-dependent conductivity. Transport cross sections determined by the phase-shift analysis in the average-atom potential are compared with those evaluated in the commonly used Born approximation. The Born approximation converges to the exact cross sections at high energies; however, differences that occur at low energies lead to corresponding differences in relaxation rates. The relative importance of including relaxation time when modeling x-ray Thomson scattering spectra is examined by comparing calculations of the free-electron dynamic structure function for Thomson scattering using Lindhard and Mermin dielectric functions. Applications are given to warm dense Be plasmas, with temperatures ranging from 2 to 32 eV and densities ranging from 2 to 64 g/cc.
Dynamical theory of spin noise and relaxation: Prospects for real-time NMR measurements.
Field, Timothy R
2014-11-01
Recent developments in theoretical aspects of spin noise and relaxation and their interrelationship reveal a modified spin density, distinct from the density matrix, as the necessary object to describe fluctuations in spin systems. These fluctuations are to be viewed as an intrinsic quantum mechanical property of such systems immersed in random magnetic environments and are observed as "spin noise" in the absence of any radio frequency excitation. With the prospect of ultrafast digitization, the role of spin noise in real-time parameter extraction for (NMR) spin systems, and the advantage over standard techniques, is of essential importance, especially for systems containing a small number of spins. In this article we outline prospects for harnessing the recent dynamical theory in terms of spin-noise measurement, with attention to real-time properties.
Temperature dependence of proton NMR relaxation times at earth's magnetic field
NASA Astrophysics Data System (ADS)
Niedbalski, Peter; Kiswandhi, Andhika; Parish, Christopher; Ferguson, Sarah; Cervantes, Eduardo; Oomen, Anisha; Krishnan, Anagha; Goyal, Aayush; Lumata, Lloyd
The theoretical description of relaxation processes for protons, well established and experimentally verified at conventional nuclear magnetic resonance (NMR) fields, has remained untested at low fields despite significant advances in low field NMR technology. In this study, proton spin-lattice relaxation (T1) times in pure water and water doped with varying concentrations of the paramagnetic agent copper chloride have been measured from 6 to 92oC at earth's magnetic field (1700 Hz). Results show a linear increase of T1 with temperature for each of the samples studied. Increasing the concentration of the copper chloride greatly reduced T1 and reduced dependence on temperature. The consistency of the results with theory is an important confirmation of past results, while the ability of an ultra-low field NMR system to do contrast-enhanced magnetic resonance imaging (MRI) is promising for future applicability to low-cost medical imaging and chemical identification. This work is supported by US Dept of Defense Award No. W81XWH-14-1-0048 and the Robert A. Welch Foundation Grant No. AT-1877.
NASA Astrophysics Data System (ADS)
Akhmedshina, E. N.; Nefed'ev, L. A.; Garnaeva, G. I.
2016-09-01
The dependence of the time of the appearance of a Stark (gradient) echo response on the irreversible transverse relaxation time of a system in the nanosecond range and on the width of the excitation region of an inhomogeneously broadened line has been investigated. It has been shown that the use of nonresonant laser pulses with an artificially created spatial inhomogeneity makes it possible to determine the relaxation time in the nanosecond range from the time of the appearance of a Stark (gradient) echo response, which is a more accurate method than the method of determining the relaxation time from the decay of the intensity by varying time intervals of the exposure to inhomogeneous electromagnetic fields.
Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng
2015-03-01
Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way
Structural relaxation dynamics and annealing effects of sodium silicate glass.
Naji, Mohamed; Piazza, Francesco; Guimbretière, Guillaume; Canizarès, Aurélien; Vaills, Yann
2013-05-01
Here we report high-precision measurements of structural relaxation dynamics in the glass transition range at the intermediate and short length scale for a strong sodium silicate glass during long annealing times. We evidence for the first time the heterogeneous dynamics at the intermediate range order by probing the acoustic longitudinal frequency in the GHz region by Brillouin light scattering spectroscopy. Or, from in-situ Raman measurements, we show that relaxation is indeed homogeneous at the interatomic length scale. Our results show that the dynamics at the intermediate range order contains two distinct relaxation time scales, a fast and a slow component, differing by about a 10-fold factor below Tg and approaching to one another past the glass transition. The slow relaxation time agrees with the shear relaxation time, proving that Si-O bond breaking constitutes the primary control of structural relaxation at the intermediate range order.
Rotational relaxation time as unifying time scale for polymer and fiber drag reduction.
Boelens, A M P; Muthukumar, M
2016-05-01
Using hybrid direct numerical simulation plus Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.
Pauler, Donna K; Finkelstein, Dianne M
2002-12-30
Biological markers that are both sensitive and specific for tumour regrowth or metastasis are increasingly becoming available and routinely monitored during the regular follow-up of patients treated for cancer. Obtained by a simple blood test, these markers provide an inexpensive non-invasive means for the early detection of recurrence (or progression). Currently, the longitudinal behaviour of the marker is viewed as an indicator of early disease progression, and is applied by a physician in making clinical decisions. One marker that has been studied for use in both population screening for early disease and for detection of recurrence in prostate cancer patients is PSA. The elevation of PSA levels is known to precede clinically detectable recurrence by 2 to 5 years, and current clinical practice often relies partially on multiple recent rises in PSA to trigger a change in treatment. However, the longitudinal trajectory for individual markers is often non-linear; in many cases there is a decline immediately following radiation therapy or surgery, a plateau during remission, followed by an exponential rise following the recurrence of the cancer. The aim of this article is to determine the multiple aspects of the longitudinal PSA biomarker trajectory that can be most sensitive for predicting time to clinical recurrence. Joint Bayesian models for the longitudinal measures and event times are utilized based on non-linear hierarchical models, implied by unknown change-points, for the longitudinal trajectories, and a Cox proportional hazard model for progression times, with functionals of the longitudinal parameters as covariates in the Cox model. Using Markov chain Monte Carlo sampling schemes, the joint model is fit to longitudinal PSA measures from 676 patients treated at Massachusetts General Hospital between the years 1988 and 1995 with follow-up to 1999. Based on these data, predictive schemes for detecting cancer recurrence in new patients based on their
Multiple-relaxation-time lattice Boltzmann modeling of incompressible flows in porous media
NASA Astrophysics Data System (ADS)
Liu, Qing; He, Ya-Ling
2015-07-01
In this paper, a two-dimensional eight-velocity multiple-relaxation-time (MRT) lattice Boltzmann (LB) model is proposed for incompressible porous flows at the representative elementary volume scale based on the Brinkman-Forchheimer-extended Darcy model. In the model, the porosity is included into the pressure-based equilibrium moments, and the linear and nonlinear drag forces of the porous matrix are incorporated into the model by adding a forcing term to the MRT-LB equation in the moment space. Through the Chapman-Enskog analysis, the incompressible generalized Navier-Stokes equations can be recovered. Numerical simulations of several typical porous flows are carried out to validate the present MRT-LB model. It is found that the present numerical results agree well with the analytical solutions and/or other numerical results reported in the literature.
Time constant of defect relaxation in ion-irradiated 3C-SiC
Wallace, J. B.; Bayu Aji, L. B.; Kucheyev, S. O.; Shao, L.
2015-05-18
Above room temperature, the buildup of radiation damage in SiC is a dynamic process governed by the mobility and interaction of ballistically generated point defects. Here, we study the dynamics of radiation defects in 3C-SiC bombarded at 100 °C with 500 keV Ar ions, with the total ion dose split into a train of equal pulses. Damage–depth profiles are measured by ion channeling for a series of samples irradiated under identical conditions except for different durations of the passive part of the beam cycle. Results reveal an effective defect relaxation time constant of ∼3 ms (for second order kinetics) and a dynamic annealing efficiency of ∼40% for defects in both Si and C sublattices. This demonstrates a crucial role of dynamic annealing at elevated temperatures and provides evidence of the strong coupling of defect accumulation processes in the two sublattices of 3C-SiC.
Effects of the individual particle relaxation time on superspin glass dynamics
NASA Astrophysics Data System (ADS)
Andersson, Mikael Svante; De Toro, Jose Angel; Lee, Su Seong; Normile, Peter S.; Nordblad, Per; Mathieu, Roland
2016-02-01
The low temperature dynamic magnetic properties of two dense magnetic nanoparticle assemblies with similar superspin glass transition temperatures Tg˜140 K are compared. The two samples are made from batches of 6 and 8 nm monodisperse γ -Fe2O3 nanoparticles, respectively. The properties of the individual particles are extracted from measurements on reference samples where the particles have been covered with a thick silica coating. The blocking temperatures of these dilute assemblies are found at 12.5 K for the 6 nm particles and at 35 K for the 8 nm particles, which implies different anisotropy energy barriers of the individual particles and vastly different temperature evolution of their relaxation times. The results of the measurements on the concentrated particle assemblies suggest a strong influence of the particle energy barrier on the details of the aging dynamics, memory behavior, and apparent superspin dimensionality of the particles.
Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers.
Fakhari, Abbas; Lee, Taehun
2013-02-01
The lattice Boltzmann method for immiscible multiphase flows with large density ratio is extended to high Reynolds number flows using a multiple-relaxation-time (MRT) collision operator, and its stability and accuracy are assessed by simulating the Kelvin-Helmholtz instability. The MRT model is successful at damping high-frequency oscillations in the kinetic energy emerging from traveling waves generated by the inclusion of curvature. Numerical results are shown to be in good agreement with prior studies using adaptive mesh refinement techniques applied to the Navier-Stokes equations. Effects of viscosity and surface tension, as well as density ratio, are investigated in terms of the Reynolds and Weber numbers. It is shown that increasing the Reynolds number results in a more chaotic interface evolution and eventually shattering of the interface, while surface tension is shown to have a stabilizing effect.
NASA Astrophysics Data System (ADS)
Biagioli, Madeleine; Dinic, Jelena; Jimenez, Leidy Nallely; Sharma, Vivek
Free surface flows and drop formation processes present in printing, jetting, spraying, and coating involve the development of columnar necks that undergo spontaneous surface-tension driven instability, thinning, and pinch-off. Stream-wise velocity gradients that arise within the thinning neck create and extensional flow field, which induces micro-structural changes within complex fluids that contribute elastic stresses, changing the thinning and pinch-off dynamics. In this contribution, we use dripping-onto-substrate (DoS) extensional rheometry technique for visualization and analysis of the pinch-off dynamics of dilute and ultra-dilute aqueous polyethylene oxide (PEO) solutions. Using a range of molecular weights, we study the effect of both elasticity and finite extensibility. Both effective relaxation time and the transient extensional viscosity are found to be strongly concentration-dependent even for highly dilute solutions.
Equilibrium distributions and relaxation times in gaslike economic models: An analytical derivation
NASA Astrophysics Data System (ADS)
Calbet, Xavier; López, José-Luis; López-Ruiz, Ricardo
2011-03-01
A step-by-step procedure to derive analytically the exact dynamical evolution equations of the probability density functions (PDFs) of well-known kinetic wealth exchange economic models is shown. This technique gives a dynamical insight into the evolution of the PDF, for example, allowing the calculation of its relaxation times. Their equilibrium PDFs can also be calculated by finding its stationary solutions. This gives as a result an integro-differential equation, which can be solved analytically in some cases and numerically in others. This should provide some guidance into the type of PDFs that can be derived from particular economic agent exchange rules or, for that matter, any other kinetic model of gases with particular collision physics.
T2 relaxation time correlates of face recognition deficits in temporal lobe epilepsy.
Bengner, Thomas; Siemonsen, Susanne; Stodieck, Stefan; Fiehler, Jens
2008-11-01
This study explored structural correlates of immediate and delayed face recognition in 22 nonsurgical patients with nonlesional, unilateral mesial temporal lobe epilepsy (TLE, 10 left/12 right). We measured T2 relaxation time bilaterally in the hippocampus, the amygdala, and the fusiform gyrus. Apart from raised T2 values in the ipsilateral hippocampus, we found increased T2 values in the ipsilateral amygdala. Patients with right TLE exhibited impaired face recognition as a result of a decrease from immediate to delayed recognition. Higher T2 values in the right than left fusiform gyrus or hippocampus were related to worse immediate face recognition, but did not correlate with 24-hour face recognition. These preliminary results indicate that structural changes in the fusiform gyrus and hippocampus may influence immediate face recognition deficits, but have no linear influence on long-term face recognition in TLE. We suggest that long-term face recognition depends on a right hemispheric network encompassing structures outside the temporal lobe.
A multiple relaxation time extension of the constant speed kinetic model
NASA Astrophysics Data System (ADS)
Zadehgol, Abed; Ashrafizaadeh, Mahmud
2016-02-01
In this work, a multiple relaxation time (MRT) extension of the recently introduced constant speed kinetic model (CSKM) is proposed. The CSKM, which is an entropic kinetic model and based on unconventional entropies of Burg and Tssalis, was introduced in [A. Zadehgol and M. Ashrafizaadeh, J. Comput. Phys. 274, 803 (2014)]; [A. Zadehgol Phys. Rev. E 91, 063311 (2015)] as an extension of the model of Boghosian et al. [Phys. Rev. E 68, 025103 (2003)] in the limit of fixed speed continuous velocities. The present extension improves the stability of the previous models at very high Reynolds numbers, while allowing for a more convenient orthogonal lattice. The model is verified by solving the following benchmark problems: (i) the lid driven square cavity and (ii) the Kelvin-Helmholtz instability of thin shear layers in a doubly periodic square domain.
ERIC Educational Resources Information Center
Lerner, Richard M.; Schwartz, Seth J.; Phelps, Erin
2009-01-01
Studying human development involves describing, explaining, and optimizing intraindividual change and interindividual differences in such change and, as such, requires longitudinal research. The selection of the appropriate type of longitudinal design requires selecting the option that best addresses the theoretical questions asked about…
Choi, In-Young; Lee, Phil
2012-01-01
Mapping of a major antioxidant, glutathione (GSH), was achieved in the human brain in vivo using a doubly selective multiple quantum filtering based chemical shift imaging (CSI) of GSH at 3 T. Both in vivo and phantom tests in CSI and single voxel measurements were consistent with excellent suppression of overlapping signals from creatine, γ-Amino butyric acid (GABA) and macromolecules. The GSH concentration in the fronto-parietal region was 1.20 ± 0.16 µmol/g (mean ± SD, n = 7). The longitudinal relaxation time (T1) of GSH in the human brain was 397 ± 44 ms (mean ± SD, n = 5), which was substantially shorter than those of other metabolites. This GSH CSI method permits us to address regional differences of GSH in the human brain with conditions where oxidative stress has been implicated, including multiple sclerosis, aging and neurodegenerative diseases. PMID:22730142
Nuclear Spin-Lattice Relaxation Times from Continuous Wave NMR Spectroscopy.
ERIC Educational Resources Information Center
Wooten, Jan B.; And Others
1979-01-01
The experiment described, suitable for undergraduate physical chemistry laboratories, illustrates the general principles of relaxation and introduces the nmr concepts of saturation and spin-inversion. (BB)
NASA Astrophysics Data System (ADS)
Trivedi, C. M.; Rana, V. A.; Hudge, P. G.; Kumbharkhane, A. C.
2016-08-01
Complex permittivity spectra of binary mixtures of varying concentrations of β-picoline and Methanol (MeOH) have been obtained using time domain reflectometry (TDR) technique over frequency range 10 MHz to 25 GHz at 283.15, 288.15, 293.15 and 298.15 K temperatures. The dielectric relaxation parameters namely static permittivity (ɛ0), high frequency limit permittivity (ɛ∞1) and the relaxation time (τ) were determined by fitting complex permittivity data to the single Debye/Cole-Davidson model. Complex nonlinear least square (CNLS) fitting procedure was carried out using LEVMW software. The excess permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E which contain information regarding molecular structure and interaction between polar-polar liquids were also determined. From the experimental data, parameters such as effective Kirkwood correlation factor (geff), Bruggeman factor (fB) and some thermo dynamical parameters have been calculated. Excess parameters were fitted to the Redlich-Kister polynomial equation. The values of static permittivity and relaxation time increase nonlinearly with increase in the mol-fraction of MeOH at all temperatures. The values of excess static permittivity (ɛ0E) and the excess inverse relaxation time (1/τ)E are negative for the studied β-picoline — MeOH system at all temperatures.
Monaretto, Tatiana; Andrade, Fabiana Diuk; Moraes, Tiago Bueno; Souza, Andre Alves; deAzevedo, Eduardo Ribeiro; Colnago, Luiz Alberto
2015-10-01
T1 and T2 relaxation times have been frequently used as probes for physical-chemical properties in several time-domain NMR applications (TD-NMR) such as food, polymers and petroleum industries. T2 measurements are usually achieved using the traditional Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence because it is a fast and robust method. On the other hand, the traditional methods for determining T1, i.e., inversion and saturation recovery, are time-consuming, driving several authors to develop rapid 1D and 2D methods to obtain T1 and T2 or T1/T2 ratio. However, these methods usually require sophisticated processing and/or high signal to noise ratio (SNR). This led us to develop simple methods for rapid and simultaneous determination of T1 and T2 using Continuous Wave Free Precession (CWFP) and Carr-Purcell Continuous Wave Free Precession (CP-CWFP) pulse sequences. Nevertheless, a drawback of these sequences is that they require specific adjustment of the frequency offset or the time interval between pulses (Tp). In this paper we present an alternative form of these sequences, named CWFPx-x, CP-CWFPx-x, where a train of π/2 pulses with phases alternated by π enable performing the experiments on-resonance and independently of Tp, when Tp
NASA Astrophysics Data System (ADS)
Monaretto, Tatiana; Andrade, Fabiana Diuk; Moraes, Tiago Bueno; Souza, Andre Alves; deAzevedo, Eduardo Ribeiro; Colnago, Luiz Alberto
2015-10-01
T1 and T2 relaxation times have been frequently used as probes for physical-chemical properties in several time-domain NMR applications (TD-NMR) such as food, polymers and petroleum industries. T2 measurements are usually achieved using the traditional Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence because it is a fast and robust method. On the other hand, the traditional methods for determining T1, i.e., inversion and saturation recovery, are time-consuming, driving several authors to develop rapid 1D and 2D methods to obtain T1 and T2 or T1/T2 ratio. However, these methods usually require sophisticated processing and/or high signal to noise ratio (SNR). This led us to develop simple methods for rapid and simultaneous determination of T1 and T2 using Continuous Wave Free Precession (CWFP) and Carr-Purcell Continuous Wave Free Precession (CP-CWFP) pulse sequences. Nevertheless, a drawback of these sequences is that they require specific adjustment of the frequency offset or the time interval between pulses (Tp). In this paper we present an alternative form of these sequences, named CWFPx-x, CP-CWFPx-x, where a train of π/2 pulses with phases alternated by π enable performing the experiments on-resonance and independently of Tp, when Tp < T2∗. Moreover, a CPMG type sequence with π/2 refocusing pulses shows similar results to CP-CWFP when the pulses are alternated between y and -y axis, CPMG90y-y. In these approaches, the relaxation times are determined using the magnitude of the signals after the first pulse |M0| and in the steady-state |Mss|, as well as the exponential time constant T∗ to reach the steady-state regime, as in conventional CWFP. CP-CWFPx-x shows the highest dynamic range to measure T∗ among CWFP sequences and, therefore, is the best technique to measure T1 and T2 since it is less susceptible to SNR and can be performed for any T1/T2 ratio.
Soroushian, Behrouz; Yang, Xinmai
2011-01-01
Modulated tone-burst light was employed to measure non-radiative relaxation time of fluorophores with biomedical importance through photoacoustic effect. Non-radiative relaxation time was estimated through the frequency dependence of photoacoustic signal amplitude. Experiments were performed on solutions of new indocyanine green (IR-820), which is a near infrared dye and has biomedical applications, in two different solvents (water and dimethyl sulfoxide (DMSO)). A 1.5 times slower non-radiative relaxation for the solution of dye in DMSO was observed comparing with the aqueous solution. This result agrees well with general finding that non-radiative relaxation of molecules in triplet state depends on viscosity of solvents in which they are dissolved. Measurements of the non-radiative relaxation time can be used as a new source of contrast mechanism in photoacoustic imaging technique. The proposed method has potential applications such as imaging tissue oxygenation and mapping of other chemophysical differences in microenvironment of exogenous biomarkers. PMID:22025981
Mitchell, J; Chandrasekera, T C
2014-12-14
The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ante(k) (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries. PMID:25494741
Mitchell, J; Chandrasekera, T C
2014-12-14
The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ante(k) (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
NASA Astrophysics Data System (ADS)
Mitchell, J.; Chandrasekera, T. C.
2014-12-01
The nuclear magnetic resonance transverse relaxation time T2, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T2 provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T2 distributions demands appropriate processing of the measured data since T2 is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form -ant_e^k (where n is the number and te the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T2 distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Mitchell, J.; Chandrasekera, T. C.
2014-12-14
The nuclear magnetic resonance transverse relaxation time T{sub 2}, measured using the Carr-Purcell-Meiboom-Gill (CPMG) experiment, is a powerful method for obtaining unique information on liquids confined in porous media. Furthermore, T{sub 2} provides structural information on the porous material itself and has many applications in petrophysics, biophysics, and chemical engineering. Robust interpretation of T{sub 2} distributions demands appropriate processing of the measured data since T{sub 2} is influenced by diffusion through magnetic field inhomogeneities occurring at the pore scale, caused by the liquid/solid susceptibility contrast. Previously, we introduced a generic model for the diffusion exponent of the form −ant{sub e}{sup k} (where n is the number and t{sub e} the temporal separation of spin echoes, and a is a composite diffusion parameter) in order to distinguish the influence of relaxation and diffusion in CPMG data. Here, we improve the analysis by introducing an automatic search for the optimum power k that best describes the diffusion behavior. This automated method is more efficient than the manual trial-and-error grid search adopted previously, and avoids variability through subjective judgments of experimentalists. Although our method does not avoid the inherent assumption that the diffusion exponent depends on a single k value, we show through simulation and experiment that it is robust in measurements of heterogeneous systems that violate this assumption. In this way, we obtain quantitative T{sub 2} distributions from complicated porous structures and demonstrate the analysis with examples of ceramics used for filtration and catalysis, and limestone of relevance to the construction and petroleum industries.
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2014-01-21
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible
NASA Astrophysics Data System (ADS)
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2014-01-01
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible
NASA Astrophysics Data System (ADS)
Ishii, Hiroyuki; Kobayashi, Nobuhiko; Hirose, Kenji
2013-11-01
We present a theoretical study of the relationships between intermolecular vibrations and anisotropic transport properties of pentacene and rubrene single-crystal organic semiconductors. Using our wave-packet approach based on the Kubo formula beyond the effective-mass approximation with the assumption of an isotropic momentum-relaxation time, we find that the intermolecular vibrations induce a strong anisotropic momentum-relaxation time but moderate the anisotropy of carrier mobility much more than that of the effective mass. This clarifies the mechanism behind the deviation of the anisotropic ratio of mobility from that of effective mass observed in angle-resolved photoelectron spectroscopy experiments.
Cade-Menun, B J; Liu, C W; Nunlist, R; McColl, J G
2002-01-01
Phosphorus-31 nuclear magnetic resonance (NMR) spectroscopy is an excellent tool with which to study soil organic P, allowing quantitative, comparative analysis of P forms. However, for 31P NMR to be tative, all peaks must be completely visible, and in their correct relative proportions. There must be no line broadening, and adequate delay times must be used to avoid saturation of peaks. The objective of this study was to examine the effects of extractants on delay times and peak saturation. Two samples (a forest litter and a mineral soil sample) and three extractants (0.25 M NaOH, NaOH plus Chelex (Bio-Rad Laboratories, Hercules, CA), and NaOH plus EDTA) were used to determine the differences in the concentration of P and cations solubilized by each extractant, and to measure spin-lattice (T1) relaxation times of P peaks in each extract. For both soil and litter, NaOH-Chelex extracted the lowest concentrations of P. For the litter sample, T1 values were short for all extractants due to the high Fe concentration remaining after extraction. For the soil sample, there were noticeable differences among the extractants. The NaOH-Chelex sample had less Fe and Mn remaining in solution after extraction than the other extractants, and the longest delay times used in the study, 6.4 s, were not long enough for quantitative analysis. Delay times of 1.5 to 2 s for the NaOH and NaOH-EDTA were adequate. Line broadening was highest in the NaOH extracts, which had the highest concentration of Fe. On the basis of these results, recommendations for future analyses of soil and litter samples by solution 31P NMR spectroscopy include: careful selection of an extractant; measurement of paramagnetic ions extracted with P; use of appropriate delay times and the minimum number of scans; and measurement of T1 values whenever possible.
Dinh, Thanh-Chung; Renger, Thomas
2016-07-21
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures
NASA Astrophysics Data System (ADS)
Dinh, Thanh-Chung; Renger, Thomas
2016-07-01
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures
Dinh, Thanh-Chung; Renger, Thomas
2016-07-21
In pigment-protein complexes, often the excited states are partially delocalized and the exciton-vibrational coupling in the basis of delocalized states contains large diagonal and small off-diagonal elements. This inequality may be used to introduce potential energy surfaces (PESs) of exciton states and to treat the inter-PES coupling in Markov and secular approximations. The resulting lineshape function consists of a Lorentzian peak that is broadened by the finite lifetime of the exciton states caused by the inter-PES coupling and a vibrational sideband that results from the mutual displacement of the excitonic PESs with respect to that of the ground state. So far analytical expressions have been derived that relate the exciton relaxation-induced lifetime broadening to the Redfield [T. Renger and R. A. Marcus, J. Chem. Phys. 116, 9997 (2002)] or modified Redfield [M. Schröder, U. Kleinekathöfer, and M. Schreiber, J. Chem. Phys. 124, 084903 (2006)] rate constants of exciton relaxation, assuming that intra-PES nuclear relaxation is fast compared to inter-PES transfer. Here, we go beyond this approximation and provide an analytical expression, termed Non-equilibrium Modified Redfield (NeMoR) theory, for the lifetime broadening that takes into account the finite nuclear relaxation time. In an application of the theory to molecular dimers, we find that, for a widely used experimental spectral density of the exciton-vibrational coupling of pigment-protein complexes, the NeMoR spectrum at low-temperatures (T < 150 K) is better approximated by Redfield than by modified Redfield theory. At room temperature, the lifetime broadening obtained with Redfield theory underestimates the NeMoR broadening, whereas modified Redfield theory overestimates it by a similar amount. A fortuitous error compensation in Redfield theory is found to explain the good performance of this theory at low temperatures. Since steady state spectra of PPCs are often measured at low temperatures
Picosecond-time-resolved studies of nonradiative relaxation in ruby and alexandrite
Gayen, S.K.; Wang, W.B.; Petricevic, V.; Alfano, R.R.
1985-01-01
Dynamics of the nonradiative transitions between the /sup 4/T/sub 2/ pump band and the /sup 2/E storage level of the Cr/sup 3 +/ ion in ruby and alexandrite crystals is studied using the picosecond excite-and-probe absorption technique. A 527-nm picosecond pulse excites the /sup 4/T/sub 2/ state of the Cr/sup 3 +/ ion, and an infrared picosecond probe pulse monitors the subsequent growth and decay of population in the excited states as a function of pump-probe delay. An upper limit of 7 ps is determined for the nonradiative lifetime of the /sup 4/T/sub 2/ state in ruby. A vibrational relaxation time of 25 ps for the /sup 4/T/sub 2/ band in alexandrite is estimated. The time to attain thermal equilibrium population between the /sup 2/E and /sup 4/T/sub 2/ levels of alexandrite following excitation of /sup 4/T/sub 2/ band is estimated to be approx. 100 ps.
T2 relaxation time post febrile status epilepticus predicts cognitive outcome.
Barry, Jeremy M; Choy, ManKin; Dube, Celine; Robbins, Ashlee; Obenaus, Andre; Lenck-Santini, Pierre Pascal; Scott, Rod C; Baram, Tallie Z; Holmes, Gregory L
2015-07-01
Evidence from animal models and patient data indicates that febrile status epilepticus (FSE) in early development can result in permanently diminished cognitive abilities. To understand the variability in cognitive outcome following FSE, we used MRI to measure dynamic brain metabolic responses to the induction of FSE in juvenile rats. We then compared these measurements to the ability to learn an active avoidance spatial task weeks later. T2 relaxation times were significantly lower in FSE rats that were task learners in comparison to FSE non-learners. While T2 time in whole brain held the greatest predictive power, T2 in hippocampus and basolateral amygdala were also excellent predictors. These signal differences in response to FSE indicate that rats that fail to meet metabolic and oxygen demand are more likely to develop spatial cognition deficits. Place cells from FSE non-learners had significantly larger firing fields and higher in-field firing rate than FSE learners and control animals and imply increased excitability in the pyramidal cells of FSE non-learners. These findings suggest a mechanistic cause for the spatial memory deficits in active avoidance and are relevant to other acute neurological insults in early development where cognitive outcome is a concern. PMID:25939697
Relaxation-time limit in the multi-dimensional bipolar nonisentropic Euler-Poisson systems
NASA Astrophysics Data System (ADS)
Li, Yeping; Zhou, Zhiming
2015-05-01
In this paper, we consider the multi-dimensional bipolar nonisentropic Euler-Poisson systems, which model various physical phenomena in semiconductor devices, plasmas and channel proteins. We mainly study the relaxation-time limit of the initial value problem for the bipolar full Euler-Poisson equations with well-prepared initial data. Inspired by the Maxwell iteration, we construct the different approximation states for the case τσ = 1 and σ = 1, respectively, and show that periodic initial-value problems of the certain scaled bipolar nonisentropic Euler-Poisson systems in the case τσ = 1 and σ = 1 have unique smooth solutions in the time interval where the classical energy transport equation and the drift-diffusive equation have smooth solution. Moreover, it is also obtained that the smooth solutions converge to those of energy-transport models at the rate of τ2 and those of the drift-diffusive models at the rate of τ, respectively. The proof of these results is based on the continuation principle and the error estimates.
Baghfalaki, T; Ganjali, M; Hashemi, R
2014-01-01
Distributional assumptions of most of the existing methods for joint modeling of longitudinal measurements and time-to-event data cannot allow incorporation of outlier robustness. In this article, we develop and implement a joint modeling of longitudinal and time-to-event data using some powerful distributions for robust analyzing that are known as normal/independent distributions. These distributions include univariate and multivariate versions of the Student's t, the slash, and the contaminated normal distributions. The proposed model implements a linear mixed effects model under a normal/independent distribution assumption for both random effects and residuals of the longitudinal process. For the time-to-event process a parametric proportional hazard model with a Weibull baseline hazard is used. Also, a Bayesian approach using the Markov-chain Monte Carlo method is adopted for parameter estimation. Some simulation studies are performed to investigate the performance of the proposed method under presence and absence of outliers. Also, the proposed methods are applied for analyzing a real AIDS clinical trial, with the aim of comparing the efficiency and safety of two antiretroviral drugs, where CD4 count measurements are gathered as longitudinal outcomes. In these data, time to death or dropout is considered as the interesting time-to-event outcome variable. Different model structures are developed for analyzing these data sets, where model selection is performed by the deviance information criterion (DIC), expected Akaike information criterion (EAIC), and expected Bayesian information criterion (EBIC).
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions. PMID:27187211
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as (13)C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. (13)C) and abundant I (e.g. (1)H) spins affects the measured T1S values in solid-state NMR in the absence of (1)H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance l-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.
NASA Astrophysics Data System (ADS)
Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua
2016-07-01
Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.
Kendall, William L.; Hines, James E.; Nichols, James D.; Grant, Evan H. Campbell
2013-01-01
Occupancy statistical models that account for imperfect detection have proved very useful in several areas of ecology, including species distribution and spatial dynamics, disease ecology, and ecological responses to climate change. These models are based on the collection of multiple samples at each of a number of sites within a given season, during which it is assumed the species is either absent or present and available for detection while each sample is taken. However, for some species, individuals are only present or available for detection seasonally. We present a statistical model that relaxes the closure assumption within a season by permitting staggered entry and exit times for the species of interest at each site. Based on simulation, our open model eliminates bias in occupancy estimators and in some cases increases precision. The power to detect the violation of closure is high if detection probability is reasonably high. In addition to providing more robust estimation of occupancy, this model permits comparison of phenology across sites, species, or years, by modeling variation in arrival or departure probabilities. In a comparison of four species of amphibians in Maryland we found that two toad species arrived at breeding sites later in the season than a salamander and frog species, and departed from sites earlier.
Multiple-relaxation-time lattice Boltzmann simulations of turbulent channel and pipe flows.
NASA Astrophysics Data System (ADS)
Opadrishta, Harish; Peng, Cheng; Wang, Lian-Ping
2015-11-01
The mesoscopic Lattice Boltzmann method (LBM) has become a reliable alternative for solving incompressible turbulent flows. However, the statistics of a simulated turbulent flow near a curved boundary may deviate from the physical rotational invariance (RI) of lattice coordinates. The main objective of this study is to compare the effects of different lattice models on the simulation results of turbulent flows, and explore ways to restore RI near a curved boundary. We will apply D3Q19 and D3Q27 multiple-relaxation-time LBM models to simulate turbulent pipe and channel flows. The statistics of the simulated flows are examined to quantify the nature of departures from RI. To help understand whether the departure is originated from the bounce-back scheme at the solid wall, we will perform simulations of a turbulent channel flow with walls orientated at an angle from the lattice grid, and test the use of an overset lattice grid near a pipe wall. The Chapman-Enskog analysis of these models will be performed to probe RI errors near a boundary. Our goal is to eventually perform an accurate direct numerical simulation of a turbulent pipe flow, and compare the results to previous simulations based on the Navier-Stokes equations.
[Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces
Not Available
1992-01-01
Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.
[Time-resolved optical studies of charge relaxation and charge transfer at electrode interfaces
Not Available
1992-12-31
Key components were identified in a quantitative model of carrier relaxation in semiconductor electrodes: nonlinear aspects of nonradiative and radiative recombination, effect of space charge field on carrier dynamics, self-absorption effects in direct gas semiconductors, and influence of surface state population kinetics on charge carrier recombination. For CdSe, the first three are operative (no direct proof of the last one). A realistic kinetic model for carrier recombination in the bulk of CdSe was used which includes important nonlinear effects, both radiative and nonradiative. The change in interfacial recombination velocity with the chemical nature of the sinterface was studied (n-CdSe/silane interfaces). Temperature effect (278 to 328 K) on fluorescence decay of n-CdSe in contact with 0.5 M KOH was found to be weak. An analytical solution was obtained for time-resolved fluoresence from electrodes under potential bias, and is being tested. Fluorescence work on a different material, CdS, indicate different recombination kinetics; this material was used to directly pump an optical transition of a surface state.
Proton relaxation times and interstitial fluid pressure in human melanoma xenografts.
Lyng, H.; Tufto, I.; Skretting, A.; Rofstad, E. K.
1997-01-01
The interstitial fluid pressure (IFP) and the proton spin-lattice and spin-spin relaxation times (T1 and T2) of some experimental tumours have been shown to be related to tumour water content. These observations have led to the hypothesis that magnetic resonance imaging (MRI) might be a clinically useful non-invasive method for assessment of tumour IFP. The purpose of the work reported here was to examine the general validity of this hypothesis. R-18 human melanoma xenografts grown intradermally in Balb/c nu/nu mice were used as the tumour model system. Median T1 and T2 were determined by spin-echo MRI using a 1.5-T clinical whole-body tomograph. IFP was measured using the wick-in-needle technique. No correlation was found between tumour IFP and fractional tumour water content. Moreover, there was no correlation between median T1 or T2 and IFP, suggesting that proton T1 and T2 values determined by MRI cannot be used clinically to assess tumour IFP and thereby to predict the uptake of macromolecular therapeutic agents. PMID:9010023
Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation.
Johari, G P
2013-04-21
By using the known formalism for the effect of an externally applied electric field, E, on thermodynamics of a dielectric material, we calculated the field-induced configurational entropy factor, ΔSconf (E)/E(2), of 50 dipolar liquids, including those whose static permittivity, εs, decreases on cooling. The field induced change, ΔSconf (E), is found to be experimentally detectable only when E is on the order of 10(5) V∕cm, a value less than the dielectric breakdown field strength of some liquids but in the range of nonlinear dielectric response. We argue that the dielectric response is formally nonlinear already for E > 0, and then show that the difference between the Langevin-function and the extrapolated linear response is < 0.15% for E in the 10(5) V∕cm range. Therefore, such high E values may be used to estimate ΔSconf (E). We conclude that (i) for E in the 10(5) V∕cm range, ΔSconf (E) is high enough to produce a measurable change in the viscosity and relaxation time of some ultraviscous liquids with prominent dipolar interactions, thereby changing their glass formation temperature, and (ii) application of E would reversibly transform, isothermally, some liquids to glass, and transform some glasses to liquid. Finally, we suggest that the effect of E can be used to determine the merits of the models for non-Arrhenius kinetics.
Reporting of Life Events Over Time: Methodological Issues in a Longitudinal Sample of Women
ERIC Educational Resources Information Center
Pachana, Nancy A.; Brilleman, Sam L.; Dobson, Annette J.
2011-01-01
The number of life events reported by study participants is sensitive to the method of data collection and time intervals under consideration. Individual characteristics also influence reporting; respondents with poor mental health report more life events. Much current research on life events is cross-sectional. Data from a longitudinal study of…
A Longitudinal Study of Speech Timing in Young Children Later Found to Have Reading Disability
ERIC Educational Resources Information Center
Smith, Allan B.; Smith, Susan Lambrecht; Locke, John L.; Bennett, Jane
2008-01-01
Purpose: This study examined the development of timing characteristics in early spontaneous speech of children who were later identified as having reading disability (RD). Method: Child-adult play sessions were recorded longitudinally at 2 and 3 years of age in 27 children, most of whom were at high familial risk for RD. For each speaking turn,…
Ikeda, Kazuhiro Kawaguchi, Hitoshi
2015-02-07
We performed measurements at room temperature for a GaAs/AlGaAs multiple quantum well grown on GaAs(110) using a time-resolved microscopic photoluminescence (micro-PL) technique to find what effects spin diffusion had on the measured electron spin relaxation time, τ{sub s}, and developed a method of estimating the spin diffusion coefficient, D{sub s}, using the measured data and the coupled drift-diffusion equations for spin polarized electrons. The spatial nonuniformities of τ{sub s} and the initial degree of electron spin polarization caused by the pump intensity distribution inside the focal spot were taken into account to explain the dependence of τ{sub s} on the measured spot size, i.e., a longer τ{sub s} for a smaller spot size. We estimated D{sub s} as ∼100 cm{sup 2}/s, which is similar to a value reported in the literature. We also provided a qualitative understanding on how spin diffusion lengthens τ{sub s} in micro-PL measurements.
NASA Astrophysics Data System (ADS)
Riviere, J. V.; Shokouhi, P.; Marone, C.; Elsworth, D.; Guyer, R. A.; Johnson, P. A.
2015-12-01
We study nonlinear elastic/acoustic phenomena in rocks at the laboratory scale, with the goal of understanding observations at crustal scales, for instance during strong ground motion and earthquake slip processes. In particular, a long-term goal is to relate microstructure of rocks/gouge to nonlinear acoustic properties. A dynamic perturbation with modest (i.e. acoustic) strain amplitude (10-6 < ɛ < 10-5) in rocks typically leads to a transient elastic softening (elastic modulus decrease) followed by a log(t)-relaxation back to the initial elastic modulus as soon as the excitation is turned off. The relaxation typically lasts from minutes to hours depending on rock type and amplitude/duration/frequency of perturbation. This log(t)-recovery implies that no characteristic time or rate can be extracted, i.e., the relaxation spectrum is flat. In this study, we use Dynamic Acousto-Elasticity (DAE) to probe the relaxation characteristics of a sample of Berea sandstone to explore short-term relaxation, down to 10-4s (DAE is the dynamic equivalent of measuring acoustic velocity as a function of applied pressure). We find that early recovery does not follow a logarithmic law, while some earlier studies based on resonance techniques and at times larger than 1s do exhibit log(t)-recovery. From this non-log(t) dataset, we extract a spectrum of relaxation rates and discuss the potential relation between characteristic rates and rock microstructure. We also discuss the possible links between transient elastic softening and transient increase in permeability due to dynamic perturbation.
Analytical estimate of phase mixing time of longitudinal Akhiezer-Polovin waves
Mukherjee, Arghya Sengupta, Sudip
2014-11-15
Phase mixing of a longitudinal Akhiezer-Polovin wave subjected to a small amplitude longitudinal perturbation and its eventual breaking is studied analytically. It is well known that longitudinal Akhiezer-Polovin wave subjected to arbitrarily small longitudinal perturbation breaks via the process of phase mixing at an amplitude well below its limiting amplitude [Verma et al., Phys. Rev. Lett. 108, 125005 (2012)]. We analytically show that the phase mixing time (breaking time, ω{sub p}τ{sub mix}) scales with β (phase velocity) and u{sub m}(maximum fluid velocity) as ω{sub p}τ{sub mix}∼(2πβ)/(3δ) [1/u{sub m}{sup 2}−1/4], where δ is the amplitude of velocity perturbation and ω{sub p} is the non-relativistic plasma frequency. This analytical dependence of phase mixing time on β, u{sub m}, and δ is further verified using numerical simulations based on Dawson sheet model.
MRI of bone marrow in the distal radius: in vivo precision of effective transverse relaxation times
NASA Technical Reports Server (NTRS)
Grampp, S.; Majumdar, S.; Jergas, M.; Lang, P.; Gies, A.; Genant, H. K.
1995-01-01
The effective transverse relaxation time T2* is influenced by the presence of trabecular bone, and can potentially provide a measure of bone density as well as bone structure. We determined the in vivo precision of T2* in repeated bone marrow measurements. The T2* measurements of the bone marrow of the distal radius were performed twice within 2 weeks in six healthy young volunteers using a modified water-presaturated 3D Gradient-Recalled Acquisition at Steady State (GRASS) sequence with TE 7, 10, 12, 20, and 30; TR 67; flip angle (FA) 90 degrees. An axial volume covering a length of 5.6 cm in the distal radius was measured. Regions of interest (ROIs) were determined manually and consisted of the entire trabecular bone cross-section extending proximally from the radial subchondral endplate. Reproducibility of T2* and area measurements was expressed as the absolute precision error (standard deviation [SD] in ms or mm2) or as the relative precision error (SD/mean x 100, or coefficient of variation [CV] in %) between the two-point measurements. Short-term precision of T2* and area measurements varied depending on section thickness and location of the ROI in the distal radius. Absolute precision errors for T2* times were between 1.3 and 2.9 ms (relative precision errors 3.8-9.5 %) and for area measurements between 20 and 55 mm2 (relative precision errors 5.1-16.4%). This MR technique for quantitative assessment of trabecular bone density showed reasonable reproducibility in vivo and is a promising future tool for the assessment of osteoporosis.
Jointly modeling time-to-event and longitudinal data: A Bayesian approach.
Huang, Yangxin; Hu, X Joan; Dagne, Getachew A
2014-03-01
This article explores Bayesian joint models of event times and longitudinal measures with an attempt to overcome departures from normality of the longitudinal response, measurement errors, and shortages of confidence in specifying a parametric time-to-event model. We allow the longitudinal response to have a skew distribution in the presence of measurement errors, and assume the time-to-event variable to have a nonparametric prior distribution. Posterior distributions of the parameters are attained simultaneously for inference based on Bayesian approach. An example from a recent AIDS clinical trial illustrates the methodology by jointly modeling the viral dynamics and the time to decrease in CD4/CD8 ratio in the presence of CD4 counts with measurement errors and to compare potential models with various scenarios and different distribution specifications. The analysis outcome indicates that the time-varying CD4 covariate is closely related to the first-phase viral decay rate, but the time to CD4/CD8 decrease is not highly associated with either the two viral decay rates or the CD4 changing rate over time. These findings may provide some quantitative guidance to better understand the relationship of the virological and immunological responses to antiretroviral treatments. PMID:24611039
Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P
2006-08-22
The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.
Zakharov, Anatoly I.; Adzhemyan, Loran Ts.; Shchekin, Alexander K.
2015-09-28
We have performed direct numerical calculations of the kinetics of relaxation in the system of surfactant spherical micelles under joint action of the molecular mechanism with capture and emission of individual surfactant molecules by molecular aggregates and the mechanism of fusion and fission of the aggregates. As a basis, we have taken the difference equations of aggregation and fragmentation in the form of the generalized kinetic Smoluchowski equations for aggregate concentrations. The calculations have been made with using the droplet model of molecular surfactant aggregates and two modified Smoluchowski models for the coefficients of aggregate-monomer and aggregate-aggregate fusions which take into account the effects of the aggregate size and presence of hydrophobic spots on the aggregate surface. A full set of relaxation times and corresponding relaxation modes for nonequilibrium aggregate distribution in the aggregation number has been found. The dependencies of these relaxation times and modes on the total concentration of surfactant in the solution and the special parameter controlling the probability of fusion in collisions of micelles with other micelles have been studied.
Harsh corporal punishment is associated with increased T2 relaxation time in dopamine-rich regions.
Sheu, Yi-Shin; Polcari, Ann; Anderson, Carl M; Teicher, Martin H
2010-11-01
Harsh corporal punishment (HCP) was defined as frequent parental administration of corporal punishment (CP) for discipline, with occasional use of objects such as straps, or paddles. CP is linked to increased risk for depression and substance abuse. We examine whether long-term exposure to HCP acts as sub-traumatic stressor that contributes to brain alterations, particularly in dopaminergic pathways, which may mediate their increased vulnerability to drug and alcohol abuse. Nineteen young adults who experienced early HCP but no other forms of maltreatment and twenty-three comparable controls were studied. T2 relaxation time (T2-RT) measurements were performed with an echo planar imaging TE stepping technique and T2 maps were calculated and analyzed voxel-by-voxel to locate regional T2-RT differences between groups. Previous studies indicated that T2-RT provides an indirect index of resting cerebral blood volume. Region of interest (ROI) analyses were also conducted in caudate, putamen, nucleus accumbens, anterior cingulate cortex, dorsolateral prefrontal cortex, thalamus, globus pallidus and cerebellar hemispheres. Voxel-based relaxometry showed that HCP was associated with increased T2-RT in right caudate and putamen. ROI analyses also revealed increased T2-RT in dorsolateral prefrontal cortex, substantia nigra, thalamus and accumbens but not globus pallidus or cerebellum. There were significant associations between T2-RT measures in dopamine target regions and use of drugs and alcohol, and memory performance. Alteration in the paramagnetic or hemodynamic properties of dopaminergic cell body and projection regions were observed in subjects with HCP, and these findings may relate to their increased risk for drug and alcohol abuse.
NASA Astrophysics Data System (ADS)
Bejenari, I.; Kantser, V.
2008-09-01
Electronic structure of bismuth telluride nanowires with the growth directions [110] and [015] is studied in the framework of the anisotropic effective-mass method using the parabolic band approximation. The components of the electron and hole effective-mass tensors for six valleys are calculated for both growth directions. For a square nanowire, in the temperature range from 77 to 500 K, the dependence of the Seebeck coefficient S , the thermal κ , and electrical conductivity σ , as well as the figure of merit ZT on the nanowire thickness and on the excess hole concentration pex , are investigated in the constant relaxation-time approximation. The carrier confinement is shown to play essential role for nanowires with cross section less than 30×30nm2 . In contrast to the excess holes (impurities), the confinement decreases both the carrier concentration and the thermal conductivity but increases the maximum value of the Seebeck coefficient. The confinement effect is stronger for the direction [015] than for the direction [110] due to the carrier mass difference for these directions. In the restricted temperature range, the size quantum limit is valid when the P -type nanowire cross section is smaller than 8×10nm2 ( 6×7 and 5×5nm2 ) at the excess hole concentration pex=2×1018cm-3 ( pex=5×1018cm-3 and pex=1×1019cm-3 correspondingly). The carrier confinement increases the maximum value of ZT and shifts it toward high temperatures. For the growth direction [110], the maximum value of the figure of merit for the P -type nanowire is equal to 1.4, 1.6, and 2.8, correspondingly, at temperatures 310, 390, and 480 K and the cross sections 30×30 , 15×15 , and 7×7nm2 (pex=5×1018cm-3) . At room temperature, the figure of merit equals 1.2, 1.3, and 1.7, respectively.
NASA Astrophysics Data System (ADS)
Liu, Qing; He, Ya-Ling
2015-11-01
In this paper, a double multiple-relaxation-time lattice Boltzmann model is developed for simulating transient solid-liquid phase change problems in porous media at the representative elementary volume scale. The model uses two different multiple-relaxation-time lattice Boltzmann equations, one for the flow field and the other for the temperature field with nonlinear latent heat source term. The model is based on the generalized non-Darcy formulation, and the solid-liquid interface is traced through the liquid fraction which is determined by the enthalpy-based method. The present model is validated by numerical simulations of conduction melting in a semi-infinite space, solidification in a semi-infinite corner, and convection melting in a square cavity filled with porous media. The numerical results demonstrate the efficiency and accuracy of the present model for simulating transient solid-liquid phase change problems in porous media.
Colla, M. -S.; Amin-Ahmadi, B.; Idrissi, H.; Malet, L.; Godet, S.; Raskin, J. -P.; Schryvers, D.; Pardoen, T.
2015-01-01
The high-rate sensitivity of nanostructured metallic materials demonstrated in the recent literature is related to the predominance of thermally activated deformation mechanisms favoured by a large density of internal interfaces. Here we report time-resolved high-resolution electron transmission microscopy creep tests on thin nanograined films using on-chip nanomechanical testing. Tests are performed on palladium, which exhibited unexpectedly large creep rates at room temperature. Despite the small 30-nm grain size, relaxation is found to be mediated by dislocation mechanisms. The dislocations interact with the growth nanotwins present in the grains, leading to a loss of coherency of twin boundaries. The density of stored dislocations first increases with applied deformation, and then decreases with time to drive additional deformation while no grain boundary mechanism is observed. This fast relaxation constitutes a key issue in the development of various micro- and nanotechnologies such as palladium membranes for hydrogen applications. PMID:25557273
Luo, Sheng
2013-01-01
Impairment caused by Parkinson’s disease (PD) is multidimensional (e.g., sensoria, functions, and cognition) and progressive. Its multidimensional nature precludes a single outcome to measure disease progression. Clinical trials of PD use multiple categorical and continuous longitudinal outcomes to assess the treatment effects on overall improvement. A terminal event such as death or dropout can stop the follow-up process. Moreover, the time to the terminal event may be dependent on the multivariate longitudinal measurements. In this article, we consider a joint random-effects model for the correlated outcomes. A multilevel item response theory model is used for the multivariate longitudinal outcomes and a parametric accelerated failure time model is used for the failure time because of the violation of proportional hazard assumption. These two models are linked via random effects. The Bayesian inference via MCMC is implemented in ‘ BUGS’ language. Our proposed method is evaluated by a simulation study and is applied to DATATOP study, a motivating clinical trial to determine if deprenyl slows the progression of PD. PMID:24009073
Luo, Sheng
2014-02-20
Impairment caused by Parkinson's disease (PD) is multidimensional (e.g., sensoria, functions, and cognition) and progressive. Its multidimensional nature precludes a single outcome to measure disease progression. Clinical trials of PD use multiple categorical and continuous longitudinal outcomes to assess the treatment effects on overall improvement. A terminal event such as death or dropout can stop the follow-up process. Moreover, the time to the terminal event may be dependent on the multivariate longitudinal measurements. In this article, we consider a joint random-effects model for the correlated outcomes. A multilevel item response theory model is used for the multivariate longitudinal outcomes and a parametric accelerated failure time model is used for the failure time because of the violation of proportional hazard assumption. These two models are linked via random effects. The Bayesian inference via MCMC is implemented in 'BUGS' language. Our proposed method is evaluated by a simulation study and is applied to DATATOP study, a motivating clinical trial to determine if deprenyl slows the progression of PD. PMID:24009073
SU-E-I-64: Transverse Relaxation Time in Methylene Protons of Non-Alcoholic Fatty Liver Disease Rats
Song, K-H; Lee, D-W; Choe, B-Y
2015-06-15
Purpose: The aim of this study was to evaluate transverse relaxation time of methylene resonance compared to other lipid resonances. Methods: The examinations were performed using a 3.0 T scanner with a point — resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated considering repetition time (TR) as 6000 msec and echo time (TE) as 40 — 550 msec. For in vivo proton magnetic resonance spectroscopy ({sup 1}H — MRS), eight male Sprague — Dawley rats were given free access to a normal - chow (NC) and eight other male Sprague-Dawley rats were given free access to a high — fat (HF) diet. Both groups drank water ad libitum. T{sub 2} measurements in the rats’ livers were conducted at a fixed TR of 6000 msec and TE of 40 – 220 msec. Exponential curve fitting quality was calculated through the coefficients of determination (R{sup 2}). Results: A chemical analysis of phantom and liver was not performed but a T{sub 2} decay curve was acquired. The T{sub 2} relaxation time of methylene resonance was estimated as follows: NC rats, 37.07 ± 4.32 msec; HF rats, 31.43 ± 1.81 msec (p < 0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p < 0.005). Conclusion: This study of {sup 1}H-MRS led to sufficient spectral resolution and signal — to — noise ratio differences to characterize all observable resonances for yielding T{sub 2} relaxation times of methylene resonance. {sup 1}H — MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease. This study was supported by grant (2012-007883 and 2014R1A2A1A10050270) from the Mid-career Researcher Program through the NRF funded by Ministry of Science. In addition, this study was supported by the Industrial R&D of MOTIE/KEIT (10048997, Development of the core technology for integrated therapy devices based on real-time MRI-guided tumor tracking)
NASA Astrophysics Data System (ADS)
Zhou, Y.; Yu, T.; Wu, M. W.
2013-06-01
We report an anomalous scaling of the D’yakonov-Perel’ spin relaxation with the momentum relaxation in semiconductor quantum wells under a strong magnetic field in the Voigt configuration. We focus on the case in which the external magnetic field is perpendicular to the spin-orbit-coupling-induced effective magnetic field and its magnitude is much larger than the latter one. It is found that the longitudinal spin relaxation time is proportional to the momentum relaxation time even in the strong-scattering limit, indicating that the D’yakonov-Perel’ spin relaxation demonstrates Elliott-Yafet-like behavior. Moreover, the transverse spin relaxation time is proportional (inversely proportional) to the momentum relaxation time in the strong- (weak-) scattering limit, both in the opposite trends against the well-established conventional D’yakonov-Perel’ spin relaxation behaviors. We further demonstrate that all the above anomalous scaling relations come from the unique form of the effective inhomogeneous broadening.
Nordin, Matias; Jacobi, Martin Nilsson; Nydén, Magnus
2009-12-01
Porous systems are investigated using eigendecomposition of the Laplace matrix. Three parameters; tortuosity, surface-to-pore volume ratio and relaxation rate are derived from the eigenvalue spectrum of the Laplace matrix and connected to the parameters in the Padé approximation, an expression often used to describe the time-dependent diffusion coefficient in porous systems. The Padé length is identified for systems with large pore to connector volume ratio. The results are compared with simulations.
NASA Astrophysics Data System (ADS)
Othman, Mohamed I. A.; Said, Samia M.
2012-01-01
In this article, the Lord-Shulman (L-S) theory with one relaxation time and coupled theory are applied to study the influence of reinforcement on the total deformation of a rotating thermoelastic half-space and the interaction with each other. The problem of a thermal shock has been solved numerically using normal mode analysis. Numerical results for the temperature, displacement, and thermal stress components are given and illustrated graphically for both L-S and coupled theories.
Jazini, Ehsan; Sharan, Alok D; Morse, Lee Jae; Dyke, Jonathon P; Aronowitz, Eric A; Chen, Louis KH; Tang, Simon Y
2011-01-01
Study Design An in vitro study using ovine intervertebral discs to correlate the effects of advanced glycation end-products (AGEs) with disc hydration evaluated by magnetic resonance imaging (MRI). Objective To determine the relationship between the level of AGEs and tissue water content in intervertebral discs using T2 relaxation MRI. Summary of Background Data AGEs result from nonenzymatic glycation, and AGEs have been shown to accumulate in the IVD tissue with aging and degeneration. AGEs can alter biochemical properties, including the hydrophobicity of the extracellular matrix. Since one of the degenerative signs of the IVD is the reduced hydration, it was hypothesized that increased levels of tissue AGEs may contribute to disc hydration. T2 relaxation MRI has been shown to be sensitive to the hydration status of the disc, and may be valuable in detecting the changes in the IVD mediated by the increase of AGEs. Methods Thirty-eight IVDs were obtained from 4 ovine spines, and the annulus fibrosis (AF) and nucleus pulposus (NP) tissues were isolated from these discs. The tissues were incubated in either a ribosylation or control solution for up to 8 days to induce the formation of AGEs. These tissues were subsequently analyzed for tissue water content and concentration of AGEs. T2 relaxation times were obtained from these tissues after ribosylation. Results Ribosylation led to the increased accumulation of AGEs and reduced water content in both the AF and NP in a dose-dependent manner. When analyzed by MRI, ribosylation significantly altered the mean T2 relaxation times in the NP (p=0.001), but not in the AF (p=0.912). Furthermore, the mean T2 values in the NP significantly decreased with increasing periods of incubation time (p<0.001). Conclusion This study demonstrates that levels of AGEs in the IVD may affect the tissue water content. Moreover, these ribosylation-mediated changes in tissue hydration were detectable using T2 relaxation MRI. T2 relaxation MRI
Polarized Alkali-Metal Vapor with Minute-Long Transverse Spin-Relaxation Time
NASA Astrophysics Data System (ADS)
Balabas, M. V.; Karaulanov, T.; Ledbetter, M. P.; Budker, D.
2010-08-01
We demonstrate lifetimes of Zeeman populations and coherences in excess of 60 sec in alkali-metal vapor cells with inner walls coated with an alkene material. This represents 2 orders of magnitude improvement over the best paraffin coatings. We explore the temperature dependence of cells coated with this material and investigate spin-exchange relaxation-free magnetometry in a room-temperature environment, a regime previously inaccessible with conventional coating materials.
Appolonia, L; Borgia, G C; Bortolotti, V; Brown, R J; Fantazzini, P; Rezzaro, G
2001-01-01
The effects of protective hydrophobic products applied to porous media such as stone or mortar vary greatly with the product, the porous medium, and the mode of application. Nuclear Magnetic Resonance (NMR) measurements on fluids in the pore spaces of both treated and untreated samples can give information on the contact of the fluid with the internal surfaces, which is affected by all the above factors. Continuous distributions of relaxation times T(1) and T(2) of water in the pores of both synthetic and natural porous media were obtained before and after hydrophobic treatment. The synthetic porous media are ceramic filter materials characterized by narrow distributions of pore dimensions and show that the treatment does not produce large changes in the relaxation times of the water. For three travertine samples most of a long relaxation time component, presumably from the largest pores, remains after treatment, while the amplitude of an intermediate component is greatly reduced. For three pudding-stone samples, treatment leads to a substantial loss from the long component and an even greater loss from the intermediate component. PMID:11445343
Chelcea, R I; Fechete, R; Culea, E; Demco, D E; Blümich, B
2009-02-01
The single-sided NMR-MOUSE sensor that operates in highly inhomogeneous magnetic fields is used to record a CPMG (1)H transverse relaxation decay by CPMG echo trains for a series of cross-linked natural rubber samples. Effective transverse relaxation rates 1/T(2,short) and 1/T(2,long) were determined by a bi-exponential fit. A linear dependence of transverse relaxation rates on cross-link density is observed for medium to large values of cross-link density. As an alternative to multi-exponential fits the possibility to analyze the dynamics of soft polymer network in terms of multi-exponential decays via the inverse Laplace transformation was studied. The transient regime and the effect of the T(1)/T(2) ratio in inhomogeneous static and radiofrequency magnetic fields on the CPMG decays were studied numerically using a dedicated C++ program to simulate the temporal and spatial dependence of the CPMG response. A correction factor T(2)/T(2,eff) is derived as a function of the T(1)/T(2) ratio from numerical simulations and compared with earlier results from two different well logging devices. High-resolution T(1)-T(2) correlations maps are obtained by two-dimensional Laplace inversion of CPMG detected saturation recovery curves. The T(1)-T(2) experimental correlations maps were corrected for the T(1)/T(2) effect using the derived T(2)/T(2,eff) correction factor.
NASA Astrophysics Data System (ADS)
Klimavicius, Vytautas; Gdaniec, Zofia; Balevicius, Vytautas
2014-11-01
NMR relaxation processes of anions were studied in two neat imidazolium-based room temperature ionic liquids (RTILs) 1-decyl-3-methyl-imidazolium bromide- and chloride. The spin-lattice and spin-spin relaxations of 81Br and 35Cl nuclei were found to be extremely fast due to very strong quadrupolar interactions. The determined relaxation rates are comparable with those observed in the solids or in some critical organic solute/water/salt systems. In order to eliminate the acoustic ringing of the probe-head during relaxation times measurements the novel pulse sequence has been devised. It is based on the conventional inversion recovery pulse sequence, however, instead of the last 90° pulse the subsequence of three 90° pulses applied along axes to fulfill the phase cycling condition is used. Using this pulse sequence it was possible to measure T1 for both studied nuclei. The viscosity measurements have been carried out and the rotational correlation times were calculated. The effective 35Cl quadrupolar coupling constant was found to be almost one order lower than that for 81Br, i.e. 1.8 MHz and 16.0 MHz, respectively. Taking into account the facts that the ratio of (Q(35Cl)/Q(81Br))2 ≈ 0.1 and EFG tensors on the anions are quite similar, analogous structural organizations are expected for both RTILs. The observed T1/T2 (1.27-1.44) ratios were found to be not sufficiently high to confirm the presence of long-living (on the time scale of ⩾10-8 s) mesoscopic structures or heterogeneities in the studied neat ionic liquids.
Liu, Y H; Hawk, R M; Ramaprasad, S
1995-01-01
RIF tumors implanted on mice feet were investigated for changes in relaxation times (T1 and T2) after photodynamic therapy (PDT). Photodynamic therapy was performed using Photofrin II as the photosensitizer and laser light at 630 nm. A home-built proton solenoid coil in the balanced configuration was used to accommodate the tumors, and the relaxation times were measured before, immediately after, and up to several hours after therapy. Several control experiments were performed untreated tumors, tumors treated with Photofrin II alone, or tumors treated with laser light alone. Significant increases in T1s of water protons were observed after PDT treatment. In all experiments, 31P spectra were recorded before and after the therapy to study the tumor status and to confirm the onset of PDT. These studies show significant prolongation of T1s after the PDT treatment. The spin-spin relaxation measurements, on the other hand, did not show such prolongation in T2 values after PDT treatment.
Elajaili, Hanan B; Biller, Joshua R; Tseitlin, Mark; Dhimitruka, Ilirian; Khramtsov, Valery V; Eaton, Sandra S; Eaton, Gareth R
2015-04-01
Carboxy-substituted trityl (triarylmethyl) radicals are valuable in vivo probes because of their stability, narrow lines, and sensitivity of their spectroscopic properties to oxygen. Amino-substituted trityl radicals have the potential to monitor pH in vivo, and the suitability for this application depends on spectral properties. Electron spin relaxation times T1 and T2 were measured at X-band for the protonated and deprotonated forms of two amino-substituted triarylmethyl radicals. Comparison with relaxation times for carboxy-substituted triarylmethyl radicals shows that T1 exhibits little dependence on protonation or the nature of the substituent, which makes it useful for measuring O2 concentration, independent of pH. Insensitivity of T1 to changes in substituents is consistent with the assignment of the dominant contribution to spin lattice relaxation as a local mode that involves primarily atoms in the carbon and sulfur core. Values of T2 vary substantially with pH and the nature of the aryl group substituent, reflecting a range of dynamic processes. The narrow spectral widths for the amino-substituted triarylmethyl radicals facilitate spectral-spatial rapid scan electron paramagnetic resonance imaging, which was demonstrated with a phantom. The dependence of hyperfine splittings patterns on pH is revealed in spectral slices through the image.
Hu, Jian Zhi; Wind, Robert A.; Rommereim, Donald N.
2006-03-01
Methods suitable for measuring 1H relaxation times such as T1, T2 and T1p, in small sized biological objects including live cells, excised organs and tissues, oil seeds etc., were developed in this work. This was achieved by combining inversion-recovery, spin-echo, or spin lock segment with the phase-adjusted spinning sideband (PASS) technique that was applied at slow sample spinning rate. Here, 2D-PASS was used to produce a high-resolution 1H spectrum free from the magnetic susceptibility broadening so that the relaxation parameters of individual metabolite can be determined. Because of the slow spinning employed, tissue and cell damage due to sample spinning is minimized. The methodologies were demonstrated by measuring 1H T1, T2 and T1p of metabolites in excised rat livers and sesame seeds at spinning rates of as low as 40 Hz.
The relative efficiency of time-to-threshold and rate of change in longitudinal data
Donohue, M. C.; Gamst, A. C.; Thomas, R. G.; Xu, R.; Beckett, L.; Petersen, R. C.; Weiner, M. W.; Aisen, P.
2011-01-01
Randomized, placebo-controlled trials often use time-to-event as the primary endpoint, even when a continuous measure of disease severity is available. We compare the power to detect a treatment effect using either rate of change, as estimated by linear models of longitudinal continuous data, or time-to-event estimated by Cox proportional hazards models. We propose an analytic inflation factor for comparing the two types of analyses assuming that the time-to-event can be expressed as a time-to-threshold of the continuous measure. We conduct simulations based on a publicly available Alzheimer's disease data set in which the time-to-event is algorithmically defined based on a battery of assessments. A Cox proportional hazards model of the time-to-event endpoint is compared to a linear model of a single assessment from the battery. The simulations also explore the impact of baseline covariates in either analysis. PMID:21554992
Longitudinal Outcomes of Start Time Delay on Sleep, Behavior, and Achievement in High School
Thacher, Pamela V.; Onyper, Serge V.
2016-01-01
Study Objectives: To establish whether sleep, health, mood, behavior, and academics improved after a 45-minute delay in high school start time, and whether changes persisted longitudinally. Methods: We collected data from school records and student self-report across a number of domains at baseline (May 2012) and at two follow-up time points (November 2012 and May 2013), at a public high school in upstate New York. Students enrolled during academic years (AY) 2011–2012 and 2012–2013 completed the Pittsburgh Sleep Quality Index; the DASS-21; the “Owl-Lark” Scale; the Daytime Sleepiness Index; and a brief self-report of health. Reports from school records regarding attendance, tardiness, disciplinary violations, and academic performance were collected for AY 2010–2011 through 2013–2014. Results: Students delayed but did not extend their sleep period; we found lasting improvements in tardiness and disciplinary violations after the start-time delay, but no changes to other variables. At the first follow-up, students reported 20 minutes longer sleep, driven by later rise times and stable bed times. At the second follow-up, students maintained later rise times but delayed bedtimes, returning total sleep to baseline levels. A delay in rise time, paralleling the delay in the start time that occurred, resulted in less tardiness and decreased disciplinary incidents, but larger improvements to sleep patterns may be necessary to affect health, attendance, sleepiness, and academic performance. Conclusions: Later start times improved tardiness and disciplinary issues at this school district. A delay in start time may be a necessary but not sufficient means to increase sleep time and may depend on preexisting individual differences. Commentary: A commentary on this article appears in this issue on page 267. Citation: Thacher PV, Onyper SV. Longitudinal outcomes of start time delay on sleep, behavior, and achievement in high school. SLEEP 2016;39(2):271–281. PMID
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
Longitudinal Clinical Trials with Adaptive Choice of Follow-up Time
Jeffries, Neal O.; Geller, Nancy L.
2015-01-01
Summary In longitudinal studies comparing two treatments with a maximum follow-up time there may be interest in examining treatment effects for intermediate follow-up times. One motivation may be to identify the time period with greatest treatment difference when there is a non-monotone treatment effect over time; another motivation may be to make the trial more efficient in terms of time to reach a decision on whether a new treatment is efficacious or not. Here we test the composite null hypothesis of no difference at any follow-up time versus the alternative that there is a difference at at least one follow-up time. The methods are applicable when a few measurements are taken over time, such as in early longitudinal trials or in ancillary studies. Suppose the test statistic Ztk will be used to test the hypothesis of no treatment effect at a fixed follow-up time tk. In this context a common approach is to perform a pilot study on N1 subjects, and evaluate the treatment effect at the fixed time points t1, …, tK and choose t* as the value of tk for which Ztk is maximized. Having chosen t* a second trial can be designed. In a setting with group sequential testing we consider several adaptive alternatives to this approach that treat the pilot and second trial as a seamless, combined entity and evaluate Type I error and power characteristics. The adaptive designs we consider typically have improved power over the common, separate trial approach. PMID:25818116
NASA Astrophysics Data System (ADS)
Scheurer, Christoph; Saalfrank, Peter
1996-02-01
We employ time-dependent density matrix theory to characterize the concerted double-hydrogen transfer in benzoic acid dimers—the ``system''—embedded in their crystalline environment—the ``bath.'' The Liouville-von Neumann equation for the time evolution of the reduced nuclear density matrix is solved numerically, employing one- and two-dimensional models [R. Meyer and R. R. Ernst, J. Chem. Phys. 93, 5528 (1990)], the state representation for all operators and a matrix propagator based on Newton's polynomials [M. Berman, R. Kosloff, and H. Tal-Ezer, J. Phys. A 25, 1283 (1992)]. Dissipative processes such as environment-induced vibrational energy and phase relaxation, are accounted for within the Lindblad dynamical semigroup approach. The calculation of temperature-dependent relaxation matrix elements is based on a microscopic, perturbative theory proposed earlier [R. Meyer and R. R. Ernst, J. Chem. Phys. 93, 5528 (1990)]. For the evaluation of the dissipative system dynamics, we compute (i) time-dependent state populations, (ii) energy and entropy flow between system and bath, (iii) expectation values for the hydrogen transfer coordinate, (iv) characteristic dephasing times and (v) temperature-dependent infrared spectra, determined with a recently proposed method by Neugebauer et al. Various ``pure'' and ``thermal'' nonequilibrium initial states are considered, and their equilibration with the bath followed in time.
Smith, L; Hamer, M
2014-01-01
Aim To investigate the longitudinal association between television viewing time and risk of incident diabetes mellitus in an elderly sample of adults in England. Methods Analyses of data from the English Longitudinal Study of Ageing. At baseline (2008), participants reported their television viewing time and physical activity level. Diabetes mellitus was recorded from self-reported physician diagnosis at 2-year follow-up. Associations between television viewing time and combined television viewing time and physical activity level with risk of incident diabetes mellitus at follow-up were examined using adjusted logistic regression models. Results A total of 5964 participants (mean ± sd age 65 ± 9 years at baseline, 44% male) were included in the analyses. There was an association between baseline television viewing time and risk of incident diabetes mellitus at 2-year follow-up (≥ 6 h/day compared with <2 h/day; odds ratio 4.27, 95% CI 1.69, 10.77), although the association was attenuated to the null in final adjusted models that included BMI. Participants who were inactive/had high television viewing time at baseline were almost twice as likely to have diabetes mellitus at 2-year follow-up than those who were active/had low television viewing time (fully adjusted odds ratio 1.94, 95% CI 1.02, 3.68), although active participants reporting high television viewing were not at risk. Conclusion Interventions to reduce the incidence of diabetes in the elderly that focus on both increasing physical activity and reducing television viewing time might prove useful. PMID:24975987
Dornburg, Alex; Brandley, Matthew C; McGowen, Michael R; Near, Thomas J
2012-02-01
Various nucleotide substitution models have been developed to accommodate among lineage rate heterogeneity, thereby relaxing the assumptions of the strict molecular clock. Recently developed "uncorrelated relaxed clock" and "random local clock" (RLC) models allow decoupling of nucleotide substitution rates between descendant lineages and are thus predicted to perform better in the presence of lineage-specific rate heterogeneity. However, it is uncertain how these models perform in the presence of punctuated shifts in substitution rate, especially between closely related clades. Using cetaceans (whales and dolphins) as a case study, we test the performance of these two substitution models in estimating both molecular rates and divergence times in the presence of substantial lineage-specific rate heterogeneity. Our RLC analyses of whole mitochondrial genome alignments find evidence for up to ten clade-specific nucleotide substitution rate shifts in cetaceans. We provide evidence that in the uncorrelated relaxed clock framework, a punctuated shift in the rate of molecular evolution within a subclade results in posterior rate estimates that are either misled or intermediate between the disparate rate classes present in baleen and toothed whales. Using simulations, we demonstrate abrupt changes in rate isolated to one or a few lineages in the phylogeny can mislead rate and age estimation, even when the node of interest is calibrated. We further demonstrate how increasing prior age uncertainty can bias rate and age estimates, even while the 95% highest posterior density around age estimates decreases; in other words, increased precision for an inaccurate estimate. We interpret the use of external calibrations in divergence time studies in light of these results, suggesting that rate shifts at deep time scales may mislead inferences of absolute molecular rates and ages.
Scholz, T D; Fleagle, S R; Parrish, F C; Breon, T; Skorton, D J
1990-01-01
Understanding tissue determinants that affect the nuclear magnetic resonance (NMR) properties of myocardium would improve noninvasive characterization of myocardial tissue. To determine if NMR relaxation times would reflect changes in tissue fat content, two experimental models were investigated. First, an idealized model using mixtures of beef skeletal muscle and beef fat was studied to investigate the effects of a wide range of tissue fat content. Second, myocardium with varying fat content from hogs raised to have varying degrees of ponderosity was analyzed. Tissue fat and water contents and spin-lattice (T1) and spin-spin (T2) relaxation times at 20 MHz were measured. The skeletal muscle/fat mixtures ranged in fat content from 35% to 95% with water content variations from 50% to 75%. Water content decreased as fat content increased. A significant inverse linear relationship was found between T1 and sample fat content (r = -0.997). Spin-spin relaxation times showed a significant positive curvilinear relationship with fat content (r2 = 0.96). In the animal experiments, 18 hogs were studied with samples obtained from both right and left ventricular (LV) free walls, with care taken to avoid epicardial fat. Myocardial fat content ranged from 3% to 25%. A significant correlation was found between LV fat content and corrected LV mass (r = 0.62), which suggested that the increase in LV mass could be explained, at least in part, by changes in myocardial fat content. Similar to the muscle/fat mixture model, a significant positive curvilinear relationship was found between myocardial T2 and tissue fat content (r2 = 0.67) for all the myocardial samples.(ABSTRACT TRUNCATED AT 250 WORDS)
Safarkhani, Maryam; Moerbeek, Mirjam
2015-09-30
It is plausible to assume that the treatment effect in a longitudinal study will vary over time. It can become either stronger or weaker as time goes on. Here, we extend previous work on optimal designs for discrete-time survival analysis to trials with the treatment effect varying over time. In discrete-time survival analysis, subjects are measured in discrete time intervals, while they may experience the event at any point in time. We focus on studies where the width of time intervals is fixed beforehand, meaning that subjects are measured more often when the study duration increases. The optimal design is defined as the optimal combination of the number of subjects, the number of measurements for each subject, and the optimal proportion of subjects assigned to the experimental condition. We study optimal designs for different optimality criteria and linear cost functions. We illustrate the methodology of finding optimal designs using a clinical trial that studies the effect of an outpatient mental health program on reducing substance abuse among patients with severe mental illness. We observe that optimal designs depend to some extent on the rate at which group differences vary across time intervals and the direction of these changes over time. We conclude that an optimal design based on the assumption of a constant treatment effect is not likely to be efficient if the treatment effect varies across time. PMID:26179808
Zhao, M
1992-01-01
An extension of the graphic method of King & Altman (1956) (J. Phys. Chem. 60, 1375-1378) is applied to the analysis of relaxation times of enzyme-catalysed reactions and a simple graphic method is presented. Clear-cut graphs, simple drawing, easy operation (without the need to perform the usual complex mathematical operations), and reliable results are the main characteristics of this kind of graphic method. A system of enzyme-catalysed reactions (E <--> ES <--> EP) is used as the actual example for illustrating the graphic method. PMID:1445198
Clayton, Steven Michael
2010-12-03
A method is presented to calculate the spin relaxation times T{sub 1}, T{sub 2} due to a nonuniform magnetic field, and the linear-in-electric-field precession frequency shift {delta}{omega}{sub E} when an electric field is present, in the diffusion approximation for spins confined to a rectangular cell. It is found that the rectangular cell geometry admits of a general result for T{sub 1}, T{sub 2}, and {delta}{omega}{sub E} in terms of the spatial cosine-transform components of the magnetic field.
Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; Coppari, F.; Fratanduono, D.; Huntington, C. M.; Maddox, B. R.; Park, H. -S.; Plechaty, C.; Prisbrey, S. T.; et al
2015-09-29
We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa.more » The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.« less
Kjaer, L; Henriksen, O
1988-01-01
Quantitative in vivo determination of T1 relaxation times by magnetic resonance imaging (MRI) is hampered by several potential sources of error. This study focused on the influence of the radiofrequency pulse sequences applied with special attention to the significance of the repetition time (TR). T1 measurements were performed on the human brain using a whole body MR scanner operating at 1.5 tesla. Three different pulse sequences were compared including two 6-points inversion recovery (IR) sequences with TR = 2.0 s and 4.0, respectively, and a 12-points partial saturation inversion recovery (PSIR) sequence with TR varying between 0.24 and 8.0 s. The median T1 relaxation times obtained in cortical grey matter and cerebrospinal fluid were significantly shorter in the IR experiments at TR = 2 s than in those carried out at TR = 4 s. Concerning white matter the discrepancy was much less pronounced, but still statistically significant. Supplementary phantom measurements indicated that the higher T1 values are increasingly underestimated when TR is reduced to 2 s. The results suggest that the PSIR sequence or IR sequences with a TR greater than 2 X the T1 level of the tissue type investigated should be employed for accurate T1 determination by MRI in clinical work.
Laska, Melissa N.; Murray, David M.; Lytle, Leslie A.; Harnack, Lisa J.
2012-01-01
Previous studies have yielded inconsistent results in documenting the association between key dietary factors and adolescent weight change over time. The purpose of this study was to examine the extent to which changes in adolescent sugar-sweetened beverage, diet soda, breakfast and fast food consumption were associated with changes in BMI and percent body fat (PBF), both cross-sectionally and longitudinally. Our sample included 693 Minnesota adolescents followed over two years. Adjusting for physical activity, puberty, race, socio-economic status, age, and total energy intake, cross-sectional findings indicated that for both males and females, diet soda consumption was significantly and positively associated with BMI and PBF, and breakfast intake was significantly and negatively associated with BMI and PBF among girls. In longitudinal analyses, however, there were no significant associations after adjusting for the number of tests performed. This study adds to previous research through its methodological strengths, including adjustment for physical activity and energy intake assessed using state-of-the-art methods (i.e., accelerometers and 24-hour dietary recalls), as well as its evaluation of both BMI and PBF. Additional research is needed to better understand the complex constellation of factors that contribute to adolescent weight gain over time. PMID:21701567
NASA Astrophysics Data System (ADS)
Ye, Qiang
The search for the existence of a nonzero neutron electric dipole moment (nEDM) has the potential to reveal new sources of T and CP violation beyond the Standard Model and may have a significant impact on our understanding of the universe. A new experiment aiming at two orders of magnitude improvement (˜ 10--28 e·cm) over the current experimental upper limit has been proposed in the United States. In the experiment, the measurement cell will be made of dTPB-dPS coated acrylic and filled with superfluid 4He at ˜300-500 mK. The measurement of the neutron precession frequency will rely on the spin-dependence of the cross section of the nuclear reaction between polarized neutrons and 3He atoms: n⃗+H3 ⃗e → p + t + 764 keV. Polarized 3He will also be used as a comagnetometer based on the nuclear magnetic resonance technique. The 3He polarization needs to have sufficiently long relaxation time so that little polarization is lost during the measurement period in order to achieve the proposed sensitivity. Understanding the relaxation mechanism of 3He polarization in the measurement cell under the nEDM experimental conditions and maintaining 3He polarization is crucial for the experiment. With the presence of superfluid 4He, 3He relaxation time measurements in a dTPB-dPS coated cylindrical acrylic cell at the temperature of 1.9 K and ˜400 mK have been performed at the Triangle University Nuclear Laboratory (TUNL) on the campus of Duke University. The extracted depolarization probabilities of polarized 3He on the cell surface are on the order of (1 -- 2) x 10--7 at 1.9 K and ˜ 4.7 x 10--7 at ˜400 mK. The extrapolated relaxation time of polarized 3He in the nEDM cell geometry is ˜ 4870 seconds at ˜400 mK, which is sufficiently long for the nEDM experiment and further improvements are anticipated.
Timing of retinal neuronal and axonal loss in MS: a longitudinal OCT study.
Balk, Lisanne J; Cruz-Herranz, Andrés; Albrecht, Philipp; Arnow, Sam; Gelfand, Jeffrey M; Tewarie, Prejaas; Killestein, Joep; Uitdehaag, Bernard M J; Petzold, Axel; Green, Ari J
2016-07-01
The objective of the study was to investigate the timing of central nervous system tissue atrophy in MS by evaluating longitudinal retinal volume changes in a broadly representative cohort with disease duration across the entire arc of disease. In this longitudinal study, 135 patients with MS and 16 healthy reference subjects underwent spectral-domain optical coherence tomography (OCT) at baseline and 2 years later. Following OCT quality control, automated segmentation of the peripapillary retinal nerve fiber layer (pRNFL), macular ganglion cell-inner plexiform layer (mGCIPL) and macular inner nuclear layer (mINL) was performed. Generalized estimation equations were used to analyze longitudinal changes and associations with disease duration and clinical measures. Participants had a median disease duration at baseline of 16.4 years (range 0.1-45.4). Nearly half (44 %) of the MS patients had previously experienced MS-related optic neuritis (MSON) more than 6 months prior. The MS patients demonstrated a significant decrease over 2 years of the pRNFL (-1.1 µm, 95 % CI 1.4-0.7, p < 0.001) and mGCIPL (-1.1 µm, 95 % CI -1.4 to -0.8, p < 0.001). This thinning was most pronounced early in the course of disease. These findings were irrespective of previous episodes of MSON. No consistent pattern of change was observed for the mINL (-0.03 µm, 95 % CI -0.2 to 0.2, p = 0.795). This longitudinal study demonstrated that injury of the innermost retinal layers is found in MS and that this damage occurs most rapidly during the early stages of disease. The attenuation of atrophy with longer disease duration is suggestive of a plateau effect. These findings emphasize the importance of early intervention to prevent such injury.
Chavanis, P-H; Sire, C
2004-08-01
We determine an exact asymptotic expression of the blow-up time t(coll) for self-gravitating Brownian particles or bacterial populations (chemotaxis) close to the critical point in d=3. We show that t(coll) = t(*) (eta- eta(c) )(-1/2) with t(*) =0.917 677 02..., where eta represents the inverse temperature (for Brownian particles) or the mass (for bacterial colonies), and eta(c) is the critical value of eta above which the system blows up. This result is in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the exact asymptotic expression of the relaxation time close to but above the critical temperature and derive a large time asymptotic expansion for the density profile exactly at the critical point.
NASA Astrophysics Data System (ADS)
Wers, E.; Oudadesse, H.; Lefeuvre, B.; Merdrignac-Conanec, O.; Barroug, A.
2015-10-01
Chitosan scaffolds, combined with bioactive glass 46S6, were prepared to serve as gentamicin sulfate delivery in situ systems for bone biomaterials. This work presents a study about the effect of the ratio chitosan/bioactive glass (CH/BG) on the release of gentamicin sulfate and on the bioactivity during in vitro experiments. SEM observations allowed understanding the bond between the glass grains and the chitosan matrix. In vitro results showed that scaffolds form a hydroxyapatite (HA) Ca10(PO4)6(OH)2 after 15 days of immersion in a simulated body fluid (SBF).The interest of this study is to see that the increase of the content of bioactive glass in the chitosan matrix slows the release of gentamicin sulfate in the liquid medium. Starting concentration of gentamicin sulfate has an influence on the relaxation time of the scaffolds. Indeed, an increasing concentration delays the return to a new equilibrium. Contents of chitosan and bioactive glass do not affect the relaxation time. Synthesized scaffolds could be adapted to a clinical situation: severity and type of infection, weight and age of the patient.
Hyperpolarized 13C NMR lifetimes in the liquid-state: relating structures and T1 relaxation times
NASA Astrophysics Data System (ADS)
Parish, Christopher; Niedbalski, Peter; Hashami, Zohreh; Fidelino, Leila; Kovacs, Zoltan; Lumata, Lloyd
Among the various attempts to solve the insensitivity problem in nuclear magnetic resonance (NMR), the physics-based technique dissolution dynamic nuclear polarization (DNP) is probably the most successful method of hyperpolarization or amplifying NMR signals. Using this technique, liquid-state NMR signal enhancements of several thousand-fold are expected for low-gamma nuclei such as carbon-13. The lifetimes of these hyperpolarized 13C NMR signals are directly related to their 13C spin-lattice relaxation times T1. Depending upon the 13C isotopic location, the lifetimes of hyperpolarized 13C compounds can range from a few seconds to minutes. In this study, we have investigated the hyperpolarized 13C NMR lifetimes of several 13C compounds with various chemical structures from glucose, acetate, citric acid, naphthalene to tetramethylallene and their deuterated analogs at 9.4 T and 25 deg C. Our results show that the 13C T1s of these compounds can range from a few seconds to more than 60 s at this field. Correlations between the chemical structures and T1 relaxation times will be discussed and corresponding implications of these results on 13C DNP experiments will be revealed. US Dept of Defense Award No. W81XWH-14-1-0048 and Robert A. Welch Foundation Grant No. AT-1877.
Wilkinson, Iain; Boguslavskiy, Andrey E; Mikosch, Jochen; Bertrand, Julien B; Wörner, Hans Jakob; Villeneuve, David M; Spanner, Michael; Patchkovskii, Serguei; Stolow, Albert
2014-05-28
The excited state dynamics of isolated sulfur dioxide molecules have been investigated using the time-resolved photoelectron spectroscopy and time-resolved photoelectron-photoion coincidence techniques. Excited state wavepackets were prepared in the spectroscopically complex, electronically mixed (B̃)(1)B1/(Ã)(1)A2, Clements manifold following broadband excitation at a range of photon energies between 4.03 eV and 4.28 eV (308 nm and 290 nm, respectively). The resulting wavepacket dynamics were monitored using a multiphoton ionisation probe. The extensive literature associated with the Clements bands has been summarised and a detailed time domain description of the ultrafast relaxation pathways occurring from the optically bright (B̃)(1)B1 diabatic state is presented. Signatures of the oscillatory motion on the (B̃)(1)B1/(Ã)(1)A2 lower adiabatic surface responsible for the Clements band structure were observed. The recorded spectra also indicate that a component of the excited state wavepacket undergoes intersystem crossing from the Clements manifold to the underlying triplet states on a sub-picosecond time scale. Photoelectron signal growth time constants have been predominantly associated with intersystem crossing to the (c̃)(3)B2 state and were measured to vary between 750 and 150 fs over the implemented pump photon energy range. Additionally, pump beam intensity studies were performed. These experiments highlighted parallel relaxation processes that occurred at the one- and two-pump-photon levels of excitation on similar time scales, obscuring the Clements band dynamics when high pump beam intensities were implemented. Hence, the Clements band dynamics may be difficult to disentangle from higher order processes when ultrashort laser pulses and less-differential probe techniques are implemented.
Changing Times: Findings from the First Longitudinal Study of Later High School Start Times
ERIC Educational Resources Information Center
Wahlstrom, Kyla
2002-01-01
In the early 1990s, medical research found that teenagers have biologically different sleep and wake patterns than the preadolescent or adult population. On the basis of that information, in 1997 the seven comprehensive high schools in the Minneapolis Public School District shifted the school start time from 7:15 a.m. to 8:40 a.m. This article…
NASA Astrophysics Data System (ADS)
Hajlaoui, K.; Yousfi, M. A.; Ouelhazi, I.; Georgarakis, K.; Tourki, Z.; Vaughan, G.; Yavari, A. R.
2011-02-01
Quantitative measurements of the excess free volume in Pd40Cu30Ni10P20 and Cu55Zr30Ti10Pd5 metallic glasses during in situ isothermal annealing at various temperatures are used to identify physical parameters of structural relaxation in metallic glasses and to discuss proposed models describing this process. The free-volume model is found to provide a simple and predictive description for structural relaxation phenomena. We show that structural relaxation kinetics follows a second-order law in a satisfactory manner. The activation energy for relaxation is found to depend on annealing temperature and the extent of structural relaxation.
Adversity, time, and well-being: A longitudinal analysis of time perspective in adulthood.
Holman, E Alison; Silver, Roxane Cohen; Mogle, Jacqueline A; Scott, Stacey B
2016-09-01
Despite the prominence of time in influential aging theories and the ubiquity of stress across the life span, research addressing how time perspective (TP) and adversity are associated with well-being across adulthood is rare. Examining the role of TP in coping with life events over the life span would be best accomplished after large-scale population-based exposure to a specific event, with repeated assessments to examine within- and between-person differences over time. A national sample aged 18-91 years (N = 722, M = 49.4 years) was followed for 3 years after the September 11, 2001 (9/11) terrorist attacks. Respondents completed assessments of 9/11-related television (TV) exposure 9-21 days after the attacks, temporal disintegration 2 months post-9/11, and TP, ongoing stress, and well-being at 12, 24, and 36 months post-9/11. Results provided support for measurement invariance of TP across time and across age. Early 9/11-related TV exposure was significantly associated with greater temporal disintegration. Temporal disintegration and ongoing stress, in turn, were associated with between- and within-person variation in past TP. This effect was qualified by an age interaction that indicated a stronger relationship between ongoing stress and past TP for younger compared with older adults. Past and future TP were significantly and independently related to individual differences and within-person variation in psychological well-being, regardless of age. Future work should incorporate adversity as an important correlate of TP across adulthood. (PsycINFO Database Record PMID:27599020
NASA Astrophysics Data System (ADS)
Higemoto, Wataru; Aoki, Yuji; MacLaughlin, Douglas E.
2016-09-01
Unconventional superconductivity based on the strong correlation of electrons is one of the central issues of solid-state physics. Although many experimental techniques are appropriate for investigating unconventional superconductivity, a complete perspective has not been established yet. The symmetries of electron pairs are crucial properties for understanding the essential state of unconventional superconductivity. In this review, we discuss the investigation of the time-reversal and spin symmetries of superconducting electron pairs using the muon spin rotation and relaxation technique. By detecting a spontaneous magnetic field under zero field and/or the temperature dependence of the muon Knight shift in the superconducting phase, the time-reversal symmetry and spin parity of electron pairs have been determined for several unconventional superconductors.
NASA Astrophysics Data System (ADS)
Scully, C. N.; Cregg, P. J.; Crothers, D. S. F.
1992-01-01
It is known that the direction of the magnetization vector of very fine single-domain ferromagnetic particles fluctuates under the influence of thermal agitation. Perturbation theory is applied rigorously to a singular integral equation to derive an asymptotic formula for the relaxation time of the magnetization, for the case of uniaxial anisotropy and an applied magnetic field. The result agrees with that of Brown [Phys. Rev. 130, 1677 (1963)] as described succinctly by Aharoni [Phys. Rev. 177, 793 (1969)]. It should be emphasized that both Gilbert's equation and the earlier Landau-Lifshitz equation are merely phenomenological equations, which are used to explain the time decay of the average magnetization. Brown suggested that the Gilbert equation should be augmented by a white-noise driving term in order to explain the effect of thermal fluctuations of the surroundings on the magnetization.
Oliveira, Patrícia D.; Michel, Ricardo C.; McBride, Alan J. A.; Moreira, Angelita S.; Lomba, Rosana F. T.; Vendruscolo, Claire T.
2013-01-01
The aim of this work was to evaluate the utilization of analysis of the distribution of relaxation time (DRT) using a dynamic light back-scattering technique as alternative method for the determination of the concentration regimes in aqueous solutions of biopolymers (xanthan, clairana and tara gums) by an analysis of the overlap (c*) and aggregation (c**) concentrations. The diffusion coefficients were obtained over a range of concentrations for each biopolymer using two methods. The first method analysed the behaviour of the diffusion coefficient as a function of the concentration of the gum solution. This method is based on the analysis of the diffusion coefficient versus the concentration curve. Using the slope of the curves, it was possible to determine the c* and c** for xanthan and tara gum. However, it was not possible to determine the concentration regimes for clairana using this method. The second method was based on an analysis of the DRTs, which showed different numbers of relaxation modes. It was observed that the concentrations at which the number of modes changed corresponded to the c* and c**. Thus, the DRT technique provided an alternative method for the determination of the critical concentrations of biopolymers. PMID:23671627
Climate change relaxes the time constraints for late-born offspring in a long-distance migrant.
Tomotani, Barbara M; Gienapp, Phillip; Beersma, Domien G M; Visser, Marcel E
2016-09-28
Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds.
Acoustic Longitudinal Field NIF Optic Feature Detection Map Using Time-Reversal & MUSIC
Lehman, S K
2006-02-09
We developed an ultrasonic longitudinal field time-reversal and MUltiple SIgnal Classification (MUSIC) based detection algorithm for identifying and mapping flaws in fused silica NIF optics. The algorithm requires a fully multistatic data set, that is one with multiple, independently operated, spatially diverse transducers, each transmitter of which, in succession, launches a pulse into the optic and the scattered signal measured and recorded at every receiver. We have successfully localized engineered ''defects'' larger than 1 mm in an optic. We confirmed detection and localization of 3 mm and 5 mm features in experimental data, and a 0.5 mm in simulated data with sufficiently high signal-to-noise ratio. We present the theory, experimental results, and simulated results.
Chen, Jiaqing; Huang, Yangxin
2015-09-10
In longitudinal studies, it is of interest to investigate how repeatedly measured markers in time are associated with a time to an event of interest, and in the mean time, the repeated measurements are often observed with the features of a heterogeneous population, non-normality, and covariate measured with error because of longitudinal nature. Statistical analysis may complicate dramatically when one analyzes longitudinal-survival data with these features together. Recently, a mixture of skewed distributions has received increasing attention in the treatment of heterogeneous data involving asymmetric behaviors across subclasses, but there are relatively few studies accommodating heterogeneity, non-normality, and measurement error in covariate simultaneously arose in longitudinal-survival data setting. Under the umbrella of Bayesian inference, this article explores a finite mixture of semiparametric mixed-effects joint models with skewed distributions for longitudinal measures with an attempt to mediate homogeneous characteristics, adjust departures from normality, and tailor accuracy from measurement error in covariate as well as overcome shortages of confidence in specifying a time-to-event model. The Bayesian mixture of joint modeling offers an appropriate avenue to estimate not only all parameters of mixture joint models but also probabilities of class membership. Simulation studies are conducted to assess the performance of the proposed method, and a real example is analyzed to demonstrate the methodology. The results are reported by comparing potential models with various scenarios.
The longitudinal course of sleep timing and circadian preferences in adults with bipolar disorder
Seleem, Mohammad; Merranko, John; Goldstein, Tina R; Goldstein, Benjamin I; Axelson, David A; Brent, David A; Nimgaonkar, Vishwajit L; Diler, Rasim S; Sakolsky, Dara; Kupfer, David J; Birmaher, Boris
2014-01-01
Objectives To study the longitudinal course of sleep timing and circadian preferences in individuals with bipolar disorder (BP) compared to individuals with non-BP psychopathology and healthy controls. Methods Individuals with bipolar I and bipolar II disorder (n = 257), non-BP psychopathology (n = 105), and healthy controls (n = 55) (mean age 40.2 years, 21.3% male, 85.1% Caucasian) were followed on average every 27 months for a mean of four years. Sleep timing parameters and circadian preference were reported using the Sleep Timing Questionnaire and The Composite Scale for Morningness. Group comparisons were adjusted for multiple comparisons and between-group differences in demographic variables and psychopharmacological treatment. Results Regardless of their current mood state, individuals with BP showed more sleep onset latency (SOL), awakening after sleep onset (WASO), and evening preference in comparison to both individuals with non-BP psychopathology and healthy controls. Individuals with BP also showed less stability of bed and awakening times in comparison to the other two groups, though these results were dependent on mood state. Non-BP individuals only showed more WASO and less stability in bed and awakening times before work/school days than healthy controls. Adjusting for comorbid disorders yielded similar results. Within-group analyses found little to no effect of time and BP subtype on sleep timing and circadian preference. Conclusions Disturbances of sleep timing are prominent in individuals with BP. These disturbances are worse during mood episodes, but still apparent during euthymic periods. Evening preference was not associated with polarity type, or mood state in BP, suggesting that this characteristic may be a trait marker. PMID:25524085
NASA Astrophysics Data System (ADS)
Pazzaglia, Frank J.; Gardner, Thomas W.; Merritts, Dorothy J.
Fluvial terraces preserve the history of river incision into bedrock over geologic time scales. In this paper we use terraces and a comparison of terrace longitudinal profiles to stream longitudinal profiles to develop a conceptual model of bedrock fluvial incision in diverse geologic, tectonic, and climatic settings. The conceptual model highlights a distinction between bedrock stream behavior in settings of relatively high versus relatively low tectonic activity. This distinction arises from the fundamentally different ways in which runoff is generated in these respective tectonic settings and the positive feedbacks that exist between topography and climate. The model allows for qualitative predictions of long profile shape that can be directly compared to the longitudinal profiles predicted by the stream power law. Our approach has the advantage of helping understand the geologic (and climatic) constraints on the wide variations in k, m, and n revealed in recent applications of the stream power law. We reconcile diverse longitudinal profile shapes and long-term rates of bedrock fluvial incision by considering how a drainage basin generates fluvial discharge and whether that discharge can produce the necessary stream power distributed across a valley bottom such that the long profile can rapidly accommodate changes in base level, climate, and/or rates of rock uplift. We propose that in tectonically active settings (Type I basins), the entire drainage basin experiences uplift which, in turn, builds steep slopes and concomitant increases in orographic precipitation that effectively generate the high peak discharges and fluvial-system wide stream power necessary to create and maintain concave-up long profiles and rates of incision equal and opposite to rates of rock uplift. Measured stream power for one of these basins is highly correlated to the width of the channel and valley bottom which argues for a conservation of energy along the profile and the apportionment
ERIC Educational Resources Information Center
Dante, Angelo; Fabris, Stefano; Palese, Alvisa
2013-01-01
Empirical studies and conceptual frameworks presented in the extant literature offer a static imagining of academic failure. Time-to-event analysis, which captures the dynamism of individual factors, as when they determine the failure to properly tailor timely strategies, impose longitudinal studies which are still lacking within the field. The…
ERIC Educational Resources Information Center
Abele, Andrea E.; Spurk, Daniel
2011-01-01
This study investigated the impact of gender, the gender-related self-concept (agency and communion), and the timing of parenthood on objective career success of 1,015 highly educated professionals. Hypotheses derived from a dual-impact model of gender and career-related processes were tested in a 5-wave longitudinal study over a time span of 10…
Measurement of solute proton spin-lattice relaxation times in water using the 1,3,3,1 sequence
Sankar, S.S.; Mole, P.A.; Coulson, R.L.
1986-12-01
/sup 1/H NMR spin-lattice relaxation times (T1) of the N-CH3 proton resonances of phosphocreatine (PCr) and creatine (Cr) in water solutions were obtained using the 1,3,3,1 pulse sequence. These T1 values were equivalent to those obtained in D/sub 2/O and water using either the conventional inversion-recovery experiment or the 1,3,3,1 pulse sequence. Thus, the 1,3,3,1 sequence of proton NMR can provide an independent means along with phosphorous NMR for assess PCr and for the study of the creatine kinase reaction (PCr + ADP in equilibrium ATP + Cr) in aqueous solutions and perhaps in biological preparations.
Larionov, A. V.; Il’in, A. I.
2013-12-15
The coherent spin dynamics of electrons localized in a plane of GaAs quantum wells is studied experimentally by the application of an electrically controlled potential. The localizing potential is produced with the use of a metal gate with submicrometer windows deposited onto the sample surface. The photoinduced spin Kerr effect is used to study the electron spin lifetime as a function of the temperature, applied bias, and magnetic field for gates with different sets of windows. It is shown that, with an electrically controlled laterally localizing potential, it is possible to gradually change the electron spin lifetime from several hundreds of picoseconds to several tens of nanoseconds. The dependence of the electron spin relaxation time on the sizes of the lateral localization region is in good qualitative agreement with theoretical prediction.
Straubinger, K; Jung, W I; Bunse, M; Lutz, O; Küper, K; Dietze, G
1994-01-01
31P magnetic resonance spectroscopy (MRS) examinations of the calf muscles of healthy volunteers were performed to determine T2 of the coupled ATP signals by use of the Hahn spin-echo and the frequency-selective spin-echo method. Additional measurements with the J-coupling refocused double echo are presented. The most reliable determination of T2 relaxation times is possible with the frequency-selective spin echo. The other methods yield substantially wrong results. Theoretical explanations are given how J-coupling and pulse-angle deviations affect the signals and therefore the T2 determinations. The calculations for a weakly coupled homonuclear AX spin system are shown because they demonstrate most of the relevant facts. In addition, some important results for a homonuclear AMX spin system, which the ATP is considered to be, are given.
An Adaptive Fourier Filter for Relaxing Time Stepping Constraints for Explicit Solvers
Gelb, Anne; Archibald, Richard K
2015-01-01
Filtering is necessary to stabilize piecewise smooth solutions. The resulting diffusion stabilizes the method, but may fail to resolve the solution near discontinuities. Moreover, high order filtering still requires cost prohibitive time stepping. This paper introduces an adaptive filter that controls spurious modes of the solution, but is not unnecessarily diffusive. Consequently we are able to stabilize the solution with larger time steps, but also take advantage of the accuracy of a high order filter.
Macías-Hernández, Salvador Israel; Miranda-Duarte, Antonio; Ramírez-Mora, Isabel; Cortés-González, Socorro; Morones-Alba, Juan Daniel; Olascoaga-Gómez, Andrea; Coronado-Zarco, Roberto; Soria-Bastida, María de Los Angeles; Nava-Bringas, Tania Inés; Cruz-Medina, Eva
2016-08-01
The objective of this study is to correlate T2 relaxation time (T2RT), measured by magnetic resonance imaging (MRI) with quadriceps and hamstring strength in young participants with risk factors for knee osteoarthritis (OA). A descriptive cross-sectional study was conducted with participants between 20 and 40 years of age, without diagnosis of knee OA. Their T2 relaxation time was measured through MRI, and their muscle strength (MS) was measured with an isokinetic dynamometer. Seventy-one participants were recruited, with an average age of 28.3 ± 5.5 years; 39 (55 %) were females. Negative correlations were found between T2RT and quadriceps peak torque (QPT) in males in the femur r = -0.46 (p = 0.01), tibia r = -0.49 (p = 0.02), and patella r = -0.44 (p = 0.01). In women, correlations were found among the femur r = -0.43 (p = 0.01), tibia r = -0.61 (p = 0.01), and patella r = -0.32 (p = 0.05) and among hamstring peak torque (HPT), in the femur r = -0.46 (p = 0.01), hamstring total work (HTW) r = -0.42 (p = 0.03), and tibia r = -0.33 (p = 0.04). Linear regression models showed good capacity to predict T2RT through QPT in both genders. The present study shows that early changes in femoral, tibial, and patellar cartilage are significantly correlated with MS, mainly QPT, and that these early changes might be explained by MS, which could play an important role in pre-clinical phases of the disease.
Time-Course Gene Set Analysis for Longitudinal Gene Expression Data.
Hejblum, Boris P; Skinner, Jason; Thiébaut, Rodolphe
2015-06-01
Gene set analysis methods, which consider predefined groups of genes in the analysis of genomic data, have been successfully applied for analyzing gene expression data in cross-sectional studies. The time-course gene set analysis (TcGSA) introduced here is an extension of gene set analysis to longitudinal data. The proposed method relies on random effects modeling with maximum likelihood estimates. It allows to use all available repeated measurements while dealing with unbalanced data due to missing at random (MAR) measurements. TcGSA is a hypothesis driven method that identifies a priori defined gene sets with significant expression variations over time, taking into account the potential heterogeneity of expression within gene sets. When biological conditions are compared, the method indicates if the time patterns of gene sets significantly differ according to these conditions. The interest of the method is illustrated by its application to two real life datasets: an HIV therapeutic vaccine trial (DALIA-1 trial), and data from a recent study on influenza and pneumococcal vaccines. In the DALIA-1 trial TcGSA revealed a significant change in gene expression over time within 69 gene sets during vaccination, while a standard univariate individual gene analysis corrected for multiple testing as well as a standard a Gene Set Enrichment Analysis (GSEA) for time series both failed to detect any significant pattern change over time. When applied to the second illustrative data set, TcGSA allowed the identification of 4 gene sets finally found to be linked with the influenza vaccine too although they were found to be associated to the pneumococcal vaccine only in previous analyses. In our simulation study TcGSA exhibits good statistical properties, and an increased power compared to other approaches for analyzing time-course expression patterns of gene sets. The method is made available for the community through an R package.
TIME-DEPENDENT PHASE SPACE MEASUREMENTS OF THE LONGITUDINALLY COMPRESSING BEAM IN NDCX-I
LBNL; Lidia, S.M.; Bazouin, G.; Seidl, P.A.
2011-03-15
The Neutralized Drift Compression Experiment (NDCXI) generates high intensity ion beams to explore Warm Dense Matter physics. A {approx}150 kV, {approx}500 ns modulating voltage pulse is applied to a {approx}300 kV, 5-10 {mu}s, 25 mA K+ ion beam across a single induction gap. The velocity modulated beam compresses longitudinally during ballistic transport along a space charge neutralizing plasma transport line, resulting in {approx}3A peak current with {approx}2-3 ns pulse durations (FWHM) at the target plane. Transverse final focusing is accomplished with a {approx}8 T, 10 cm long pulsed solenoid magnet. Time-dependent electrostatic focusing in the induction gap, and chromatic aberrations in the final focus optics limit the peak fluenceat the target plane for the compressed beam pulse. We report on time-dependent phase space measurements of the compressed pulse in the ballistic transport beamline, and measurement of the time-dependent radial impulses derived from the interaction of the beam and the induction gap voltage. We present results of start-to-end simulations to benchmark the experiments. Fast correction strategies are discussed with application to both NDCX-I and the soon to be commissioned NDCX-II accelerators.
Holden, Mark D; Buck, Era; Luk, John; Ambriz, Frank; Boisaubin, Eugene V; Clark, Mark A; Mihalic, Angela P; Sadler, John Z; Sapire, Kenneth J; Spike, Jeffrey P; Vince, Alan; Dalrymple, John L
2015-06-01
The University of Texas System established the Transformation in Medical Education (TIME) initiative to reconfigure and shorten medical education from college matriculation through medical school graduation. One of the key changes proposed as part of the TIME initiative was to begin emphasizing professional identity formation (PIF) at the premedical level. The TIME Steering Committee appointed an interdisciplinary task force to explore the fundamentals of PIF and to formulate strategies that would help students develop their professional identity as they transform into physicians. In this article, the authors describe the task force's process for defining PIF and developing a framework, which includes 10 key aspects, 6 domains, and 30 subdomains to characterize the complexity of physician identity. The task force mapped this framework onto three developmental phases of medical education typified by the undergraduate student, the clerkship-level medical student, and the graduating medical student. The task force provided strategies for the promotion and assessment of PIF for each subdomain at each of the three phases, in addition to references and resources. Assessments were suggested for student feedback, curriculum evaluation, and theoretical development. The authors emphasize the importance of longitudinal, formative assessment using a combination of existing assessment methods. Though not unique to the medical profession, PIF is critical to the practice of exemplary medicine and the well-being of patients and physicians.
NASA Astrophysics Data System (ADS)
Borodin, E. N.; Selyutina, N. S.; Petrov, Yu. V.
2016-03-01
Based on the concept of the incubation time of plastic deformation, an integral yield criterion is introduced and time effects of irreversible deformation are considered. The efficiency of the approach is demonstrated using micro and nanocrystalline nickel as an example. The parameters of the phenomenological model are treated physically from the viewpoint of the behavior of the defect structure of the material, which is controlled by the dislocation sliding and grain-boundary slip mechanisms in a wide range of the rate of deformation.
NASA Astrophysics Data System (ADS)
Mahmoud, Sami; Trochet, Mickaël; Restrepo, Oscar; Mousseau, Normand
The microscopic mechanisms associated with the evolution of metallic materials are still a matter of debate as both experimental and numerical approaches fail to provide a detailed atomic picture of their time evolution. Here, we use the kinetic activation-relaxation technique (k-ART), an unbiased off-lattice kinetic Monte Carlo method with on-the-fly catalog building to overcome these limitations and follow the atomistic evolution of a 10.000-atom grain boundary Ni system over macroscopic time scales. We first characterize the kinetic properties of four different empirical potentials, the embedded atom method (EAM), the first and second modified embedded atom method (MEAM1NN and MEAM2NN respectively) and the Reax force field (ReaxFF) potentials. Comparing the energetics, the elastic effects and the diffusion mechanisms for systems with one to three vacancies and one to three self-interstitials in nickel simulated over second time scale, we conclude that ReaxFF and EAM potentials are closest to experimental values. We then proceed to study the long-time evolution of a grain boundary with the Reax forcefield and to offer a detailed description of its energy landscape, including the exact description of short and long-range effects on self-diffusion along the interface
Vďačný, Peter
2015-08-01
The class Litostomatea comprises a diverse assemblage of free-living and endosymbiotic ciliates. To understand diversification dynamic of litostomateans, divergence times of their main groups were estimated with the Bayesian molecular dating, a technique allowing relaxation of molecular clock and incorporation of flexible calibration points. The class Litostomatea very likely emerged during the Cryogenian around 680 Mya. The origin of the subclass Rhynchostomatia is dated to about 415 Mya, while that of the subclass Haptoria to about 654 Mya. The order Pleurostomatida, emerging about 556 Mya, was recognized as the oldest group within the subclass Haptoria. The order Spathidiida appeared in the Paleozoic about 442 Mya. The three remaining haptorian orders evolved in the Paleozoic/Mesozoic periods: Didiniida about 419 Mya, Lacrymariida about 269 Mya, and Haptorida about 194 Mya. The subclass Trichostomatia originated from a spathidiid ancestor in the Mesozoic about 260 Mya. A further goal of this study was to investigate the impact of various settings on posterior divergence time estimates. The root placement and tree topology as well as the priors of the rate-drift model, birth-death process and nucleotide substitution rate, had no significant effect on calculation of posterior divergence time estimates. However, removal of calibration points could significantly change time estimates at some nodes.
Climate change relaxes the time constraints for late-born offspring in a long-distance migrant.
Tomotani, Barbara M; Gienapp, Phillip; Beersma, Domien G M; Visser, Marcel E
2016-09-28
Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds. PMID:27655765
Longitudinal uniformity, time performances and irradiation test of pure CsI crystals
NASA Astrophysics Data System (ADS)
Angelucci, M.; Atanova, O.; Baccaro, S.; Cemmi, A.; Cordelli, M.; Donghia, R.; Giovannella, S.; Happacher, F.; Miscetti, S.; Sarra, I.; Soleti, S. R.
2016-07-01
To study an alternative to BaF2, as the crystal choice for the Mu2e calorimeter, 13 pure CsI crystals from Opto Materials and ISMA producers have been characterized by determining their light yield (LY) and longitudinal response uniformity (LRU), when read with a UV extended PMT. The crystals show a LY of ~100 p.e./MeV (~150 p.e./MeV) when wrapped with Tyvek and coupled to the PMT without (with) optical grease. The LRU is well represented by a linear slope that is on average δ~ -0.6%/cm. The timing performances of the Opto Materials crystal, read with a UV extended MPPC, have been evaluated with minimum ionizing particles. A timing resolution of ~330 ps (~ 440 ps) is achieved when connecting the photosensor to the MPPC with (without) optical grease. The crystal radiation hardness to a ionization dose has also been studied for one pure CsI crystal from SICCAS. After exposing it to a dose of 900 Gy, a decrease of 33% in the LY is observed while the LRU remains unchanged.
Lap time variation and executive function in older adults: the Baltimore Longitudinal Study of Aging
Tian, Qu; Simonsick, Eleanor M.; Resnick, Susan M.; Shardell, Michelle D.; Ferrucci, Luigi; Studenski, Stephanie A.
2015-01-01
Background: poor cognitive and motor performance predicts neurological dysfunction. Variable performance may be a subclinical indicator of emerging neurological problems. Objective: examine the cross-sectional association between a clinically accessible measure of variable walking and executive function. Methods: older adults aged 60 or older from the Baltimore Longitudinal Study of Aging (n = 811) with data on the 400-m walk test and cognition. Based on ten 40-m laps, we calculated mean lap time (MLT) and variation in time across ten 40-m laps (lap time variation, LTV). Executive function tests assessed attention and short-term memory (digit span forward and backward), psychomotor speed [Trail Making Test (TMT) part A] and multicomponent tasks requiring cognitive flexibility [TMT part B, part B-A (Delta TMT) and digit symbol substitution test (DSST)]. Multivariate linear regression analysis examined the cross-sectional association between LTV and executive function, adjusted for MLT, age, sex and education, as well as the LTV × MLT interaction. Results: the LTV was univariately associated with all executive function tests except digit span (P < 0.001); after adjustment, the association with TMT part A remained (standardised β = 0.142, P = 0.002). There was an interaction between MLT and LTV; among fast walkers, greater LTV was associated with a greater Delta TMT (β for LTV × MLT = −1.121, P = 0.016) after adjustment. Conclusion: at any walking speed, greater LTV is associated with psychomotor slowing. Among persons with faster walking speed, variation is associated with worse performance on a complex measure of cognitive flexibility. A simple measure of variability in walking time is independently associated with psychomotor slowing. PMID:26082177
NASA Astrophysics Data System (ADS)
Bauer, S. H.; Lazaar, K. I.
1983-09-01
The usually quoted expression for the second order rate constant, for a unimolecular reaction at the low pressure limit, is valid only for strictly irreversible processes. Its application to isomerization reactions (which are to some extent reversible) is demonstrably in error; corrected expressions have been published. Attention is directed to intramolecular conversions over low barriers, for which the inappropriateness of the unidirectional expression becomes obvious. For such isomerizations we propose a model which incorporates only operationally observable states, so that an essential conceptual ambiguity is avoided. Use of this model is illustrated for the syn⇄anti conversions of methyl nitrite, derived from a gas phase NMR coalescence curve (Mc:Tc). The present data suggest that during isomerization the alkyl nitrites may not be completely ergodic on a time scale of 10-9 s. A regional phase-space model is proposed which has the appropriate formalism to account for this behavior.
NASA Astrophysics Data System (ADS)
Fantazzini, Paola; Galassi, Francesca; Bortolotti, Villiam; Brown, Robert J. S.; Vittur, Franco
2011-06-01
When inverting nuclear magnetic resonance relaxation data in order to obtain quasi-continuous distributions of relaxation times for fluids in porous media, it is common practice to impose a non-negative (NN) constraint on the distributions. While this approach can be useful in reducing the effects of data distortion and/or preventing wild oscillations in the distributions, it may give misleading results in the presence of real negative amplitude components. Here, some examples of valid negative components for articular cartilage and hydrated collagen are given. Articular cartilage is a connective tissue, consisting mainly of collagen, proteoglycans and water, which can be considered, in many aspects, as a porous medium. Separate T1 relaxation data are obtained for low-mobility ('solid') macromolecular 1H and for higher-mobility ('liquid') 1H by the separation of these components in free induction decays, with α denoting the solid/liquid 1H ratio. When quasi-continuous distributions of relaxation times (T1) of the solid and liquid signal components of cartilage or collagen are computed from experimental relaxation data without imposing the usual NN constraint, valid negative peaks may appear. The features of the distributions, in particular negative peaks, and the fact that peaks at longer times for macromolecular and water protons are at essentially the same T1, are interpreted as the result of a magnetization exchange between these two spin pools. For the only-slightly-hydrated collagen samples, with α>1, the exchange leads to small negative peaks at short T1 times for the macromolecular component. However, for the cartilage, with substantial hydration or for a strongly hydrated collagen sample, both with αLt1, the behavior is reversed, with a negative peak for water at short times. The validity of a negative peak may be accepted (dismissed) by a high (low) cost of NN in error of fit. Computed distributions for simulated data using observed signal
Azuma, Yasu-Taka; Samezawa, Nanako; Nishiyama, Kazuhiro; Nakajima, Hidemitsu; Takeuchi, Tadayoshi
2016-01-01
The muscular layer in the GI tract consists of an inner circular muscular layer and an outer longitudinal muscular layer. Acetylcholine (ACh) is the representative neurotransmitter that causes contractions in the gastrointestinal tracts of most animal species. There are many reports of muscarinic receptor-mediated contraction of longitudinal muscles, but few studies discuss circular muscles. The present study detailed the contractile response in the circular smooth muscles of the mouse ileum. We used small muscle strips (0.2 mm × 1 mm) and large muscle strips (4 × 4 mm) isolated from the circular and longitudinal muscle layers of the mouse ileum to compare contraction responses in circular and longitudinal smooth muscles. The time to peak contractile responses to carbamylcholine (CCh) were later in the small muscle strips (0.2 × 1 mm) of circular muscle (5.7 min) than longitudinal muscles (0.4 min). The time to peak contractile responses to CCh in the large muscle strips (4 × 4 mm) were also later in the circular muscle (3.1 min) than the longitudinal muscle (1.4 min). Furthermore, a muscarinic M2 receptor antagonist and gap junction inhibitor significantly delayed the time to peak contraction of the large muscle strips (4 × 4 mm) from the circular muscular layer. Our findings indicate that muscarinic M2 receptors in the circular muscular layer of mouse ileum exert a previously undocumented function in gut motility via the regulation of gap junctions.
Hendriksen, Ingrid J.M.; Bernaards, Claire M.; Steijn, Wouter M.P.; Hildebrandt, Vincent H.
2016-01-01
Objective: The aim of this study was to explore the longitudinal relationship between sitting time on a working day and vitality, work performance, presenteeism, and sickness absence. Methods: At the start and end of a five-month intervention program at the workplace, as well as 10 months after the intervention, sitting time and work-related outcomes were measured using a standardized self-administered questionnaire and company records. Generalized linear mixed models were used to estimate the longitudinal relationship between sitting time and work-related outcomes, and possible interaction effects over time. Results: A significant and sustainable decrease in sitting time on a working day was observed. Sitting less was significantly related to higher vitality scores, but this effect was marginal (b = −0.0006, P = 0.000). Conclusions: Our finding of significant though marginal associations between sitting time and important work-related outcomes justifies further research. PMID:27299213
Spatially resolved measurements of mean spin-spin relaxation time constants.
Nechifor, Ruben Emanuel; Romanenko, Konstantin; Marica, Florea; Balcom, Bruce J
2014-02-01
Magnetic Resonance measurements of the T2 distribution have become very common and they are a powerful way to probe microporous fluid bearing solids. While the structure of the T2 distribution, and changes in the structure, are often very informative, it is common to reduce the T2 distribution to a mean numeric quantity in order to provide a quantitative interpretation of the distribution. Magnetic Resonance Imaging measurements of the T2 distribution have recently been introduced, but they are time consuming, especially for 2 and 3 spatial dimensions. In this paper we explore a direct MRI measurement of the arithmetic mean of 1/T2, characterizing the distribution by using the initial slope of the spatially resolved T2 decay in a CPMG prepared Centric Scan SPRITE experiment. The methodology is explored with a test phantom sample and realistic petroleum reservoir core plug samples. The arithmetic mean of 1/T2 is related to the harmonic mean of T2. The mean obtained from the early decay is explored through measurements of uniform saturated core plug samples and by comparison to other means determined from the complete T2 distribution. Complementary data were obtained using SE-SPI T2 distribution MRI measurements. The utility of the arithmetic mean 1/T2 is explored through measurements of centrifuged core plug samples where the T2 distribution varies spatially. The harmonic mean T2 obtained from the early decay was employed to estimate the irreducible water saturation for core plug samples. PMID:24361482
Spatially resolved measurements of mean spin-spin relaxation time constants
NASA Astrophysics Data System (ADS)
Nechifor, Ruben Emanuel; Romanenko, Konstantin; Marica, Florea; Balcom, Bruce J.
2014-02-01
Magnetic Resonance measurements of the T2 distribution have become very common and they are a powerful way to probe microporous fluid bearing solids. While the structure of the T2 distribution, and changes in the structure, are often very informative, it is common to reduce the T2 distribution to a mean numeric quantity in order to provide a quantitative interpretation of the distribution. Magnetic Resonance Imaging measurements of the T2 distribution have recently been introduced, but they are time consuming, especially for 2 and 3 spatial dimensions. In this paper we explore a direct MRI measurement of the arithmetic mean of 1/T2, characterizing the distribution by using the initial slope of the spatially resolved T2 decay in a CPMG prepared Centric Scan SPRITE experiment. The methodology is explored with a test phantom sample and realistic petroleum reservoir core plug samples. The arithmetic mean of 1/T2 is related to the harmonic mean of T2. The mean obtained from the early decay is explored through measurements of uniform saturated core plug samples and by comparison to other means determined from the complete T2 distribution. Complementary data were obtained using SE-SPI T2 distribution MRI measurements. The utility of the arithmetic mean 1/T2 is explored through measurements of centrifuged core plug samples where the T2 distribution varies spatially. The harmonic mean T2 obtained from the early decay was employed to estimate the irreducible water saturation for core plug samples.
Wheatley, D N; Rimmington, J E; Foster, M A
1990-01-01
Pellets of HeLa from suspension cultured cells in isotonic medium (300 mosmolar) were introduced into a Bruker CXP100 NMR spectrophotometer at 80 mHz within 5 min of the start of centrifugation. T1 and T2 times were measured within a total elapsed time of 20-25 min at 80 mHz and 37 degrees C, and averaged 1430 msec and 120 msec, respectively. Extrapolation to zero extracellular space gave a corrected T1 of 1370 msec. For cells collected after 10 min in hypotonic medium (down to 30 mosmolar) increased proton density correlated well with increased cell water content, but relaxation times did not rise in proportion to that predicted for the entry of "bulk" water (T1 of 4700 msec), except when swelling approached lysis point. Cells partially dehydrated by 10 min in hypertonic medium of up to 1500 mosmolar have also been analyzed, but once again the shortening of T1 was not proportional to the loss of "free" (bulk phase) water. At the upper limit of hypertonic treatment, lacunae or vacuoles of a watery nature separated within the cytomatrix, preventing maximum dehydration. The relationship of cell water to T1 is complex over the whole range of tonicity that HeLa S-3 cells tolerate. The data indicate, however, that hypotonically induced water probably has an average T1 time considerably lower than bulk phase water. In contrast, raising the total extracellular volume with medium had precisely the predicted effect on T1 time, further strengthening the case that water taken up by cell acquires a shorter T1 time. Cells adapting to hypotonic conditions oscillated in size and water content over 2-3 hr before returning to near their initial volume. Under these circumstances, T1 oscillated in the same way but with a reduced amplitude, consistent with the above findings.
ERIC Educational Resources Information Center
Shelton, Katherine H.; Van Den Bree, Marianne B. M.
2010-01-01
This prospective, longitudinal study investigated the moderating role of pubertal timing on reciprocal links between adolescent appraisals of parent-child relationship quality and girls' (N = 1,335) and boys' (N = 1,203) cigarette and alcohol use across a 12-month period. Reciprocal effects were found between parent-child relations and on-time…
ERIC Educational Resources Information Center
Vogt Yuan, Anastasia S.
2010-01-01
This study used the National Longitudinal Study of Adolescent Health to explore gender differences in the relationship between body perceptions and behavior and changes in adolescents' psychological well-being over a one-year time period. The sample included 12,814 adolescents (51% girls) aged 11-20 comprised of 68% Non-Hispanic White, 15% African…
Nasuti, Gabriella; Blanchard, Chris; Naylor, Patti-Jean; Levy-Milne, Ryna; Warburton, Darren E R; Benoit, Cecilia; Symons Downs, Danielle; Rhodes, Ryan E
2014-03-01
The objective of this study was to examine the dietary intake profiles of first-time parents, second-time parents, and couples without children; once during pregnancy, then at 6- and 12-months postpartum. This was an observational, longitudinal, cohort study. Participants were a community-based sample of 153 couples aged 25 to 40 years. Data were collected between 2007 and 2011. Dietary intake was recorded using 3-day dietary recall. Hierarchical linear modeling was used to compare the dietary intakes of groups (ie, parent, sex, and couple days) over time. Percentage of participants per group meeting recommended daily dietary guidelines was also analyzed, as were variables that influenced meeting overall recommended guidelines using a multivariate analysis of variance. First-time mothers had higher overall energy, fat, sugar, fruit, and milk intake compared with women without children, and longitudinally first-time mothers decreased their fruit intake. Second-time mothers had higher overall energy, fat, sugar, and fruit intake compared with nonparent women, and longitudinally second-time mothers increased their meat intake. First-time fathers had overall higher bread intake compared with second-time fathers and men without children, and first-time fathers consumed less sugar than second-time fathers. Longitudinally, first-time fathers increased their fiber intake. At any stage of data collection, from pregnancy to 12-months postpartum, only 2% to 16% of all mothers met recommended overall daily dietary guidelines. The only variable investigated that influenced meeting overall daily dietary guidelines at baseline was parent status.
Simulations of Bingham plastic flows with the multiple-relaxation-time lattice Boltzmann model
NASA Astrophysics Data System (ADS)
Chen, SongGui; Sun, QiCheng; Jin, Feng; Liu, JianGuo
2014-03-01
Fresh cement mortar is a type of workable paste, which can be well approximated as a Bingham plastic and whose flow behavior is of major concern in engineering. In this paper, Papanastasiou's model for Bingham fluids is solved by using the multiplerelaxation-time lattice Boltzmann model (MRT-LB). Analysis of the stress growth exponent m in Bingham fluid flow simulations shows that Papanastasiou's model provides a good approximation of realistic Bingham plastics for values of m > 108. For lower values of m, Papanastasiou's model is valid for fluids between Bingham and Newtonian fluids. The MRT-LB model is validated by two benchmark problems: 2D steady Poiseuille flows and lid-driven cavity flows. Comparing the numerical results of the velocity distributions with corresponding analytical solutions shows that the MRT-LB model is appropriate for studying Bingham fluids while also providing better numerical stability. We further apply the MRT-LB model to simulate flow through a sudden expansion channel and the flow surrounding a round particle. Besides the rich flow structures obtained in this work, the dynamics fluid force on the round particle is calculated. Results show that both the Reynolds number Re and the Bingham number Bn affect the drag coefficients C D , and a drag coefficient with Re and Bn being taken into account is proposed. The relationship of Bn and the ratio of unyielded zone thickness to particle diameter is also analyzed. Finally, the Bingham fluid flowing around a set of randomly dispersed particles is simulated to obtain the apparent viscosity and velocity fields. These results help simulation of fresh concrete flowing in porous media.
Gourna, Elli G; Laurie, Graeme; Shoush, Osama; Wright, Jessica
2015-01-01
Abstract Re‐consent in research, the asking for a new consent if there is a change in protocol or to confirm the expectations of participants in case of change, is an under‐explored issue. There is little clarity as to what changes should trigger re‐consent and what impact a re‐consent exercise has on participants and the research project. This article examines applicable policy statements and literature for the prevailing arguments for and against re‐consent in relation to longitudinal cohort studies, tissue banks and biobanks. Examples of re‐consent exercises are presented, triggers and non‐triggers for re‐consent discussed and the conflicting attitudes of commentators, participants and researchers highlighted. We acknowledge current practice and argue for a greater emphasis on ‘responsive autonomy,’ that goes beyond a one‐time consent and encourages greater communication between the parties involved. A balance is needed between respecting participants' wishes on how they want their data and samples used and enabling effective research to proceed. PMID:25960157
Kang, Nam Lyong
2014-12-07
The electron spin relaxation times in a system of electrons interacting with piezoelectric phonons mediated through spin-orbit interactions were calculated using the formula derived from the projection-reduction method. The results showed that the temperature and magnetic field dependence of the relaxation times in InSb and InAs were similar. The piezoelectric material constants obtained by a comparison with the reported experimental result were P{sub pe}=4.0×10{sup 22} eV/m for InSb and P{sub pe}=1.2×10{sup 23} eV/m for InAs. The result also showed that the relaxation of the electron spin by the Elliot-Yafet process is more relevant for InSb than InAs at a low density.
Relaxation of AB Spin Systems in Stimulated-Echo Spectroscopy
NASA Astrophysics Data System (ADS)
Straubinger, Klaus; Schick, Fritz; Lutz, Otto
1995-12-01
The behavior of the strongly coupled AB spin system during the STEAM (stimulated echo acquisition mode) sequence was calculated analytically. Relaxation during the TM interval, in which longitudinal magnetization and zero-quantum coherences (ZQCs) occur, was accounted for by following the course of the different density-matrix terms. The result allows one to determine sequence timings to provide high signal intensities or signals resulting from certain coherences. Theoretically calculated spectra can be generated, using an analytical function. Series of proton spectra were recorded from a 0.1maqueous solution of citrate on a 1.5 T whole-body imager at 22°C. Spectra series with constant echo time TE were used to evaluate the longitudinal relaxation timeT1as well as the zero-quantum relaxation timeTZQby fitting the theoretically predicted curve to the experimental data. The evaluated proton relaxation timesT1andTZQin citrate differ strongly:T1= 770 ms,TZQ= 1300 ms.
Negriff, Sonya; Ji, Juye; Trickett, Penelope K
2011-02-01
This study examined exposure to peer delinquency as a mediator between pubertal timing and self-reported delinquency longitudinally and whether this mediational model was moderated by either gender or maltreatment experience. Data were obtained from Time 1, 2, and 3 of a longitudinal study of maltreatment and development. At Time 1 the sample comprised 454 children aged 9-13 years. Analyses via structural equation modeling supported full mediation. Gender did not moderate this mediational relationship, but maltreatment experience did. The results show that early maturing males and females are both at risk for being exposed to peers that may draw them into delinquent behavior. In addition, the mechanism linking early pubertal timing to delinquency differs depending on maltreatment experience. PMID:21262055
Negriff, Sonya; Ji, Juye; Trickett, Penelope K.
2013-01-01
This study examined exposure to peer delinquency as a mediator between pubertal timing and self-reported delinquency longitudinally and whether this mediational model was moderated by either gender or maltreatment experience. Data were obtained from Time 1, 2, and 3 of a longitudinal study of maltreatment and development. At Time 1 the sample comprised 454 children aged 9–13 years. Analyses via structural equation modeling supported full mediation. Gender did not moderate this mediational relationship, but maltreatment experience did. The results show that early maturing males and females are both at risk for being exposed to peers that may draw them into delinquent behavior. Additionally, the mechanism linking early pubertal timing to delinquency differs depending on maltreatment experience. PMID:21262055
Song, Kyu-Ho; Baek, Hyeon-Man; Lee, Do-Wan; Choe, Bo-Young
2015-10-01
The aim of this study was to evaluate the transverse relaxation time of methylene resonance as compared to other lipid resonances. The examinations were performed using a 3.0 T scanner with a point-resolved spectroscopy (PRESS) sequence. Lipid relaxation time in a lipid phantom filled with canola oil was estimated with a repetition time (TR) of 6000ms and echo time (TE) of 40-550ms. For in vivo proton magnetic resonance spectroscopy ((1)H-MRS), eight male Sprague-Dawley rats were given free access to a normal-chow (NC) and another eight male Sprague-Dawley rats were given free access to a high-fat (HF) diet. Both groups drank water ad libitum. T2 measurements in the rats' livers were conducted at a fixed TR of 6000ms and TE of 40-220ms. Exponential curve fitting quality was calculated through the coefficients of determination (R(2)). Chemical analyses of the phantom and livers were not performed, but T2 decay curves were acquired. The T2 relaxation time of methylene resonance was estimated as follows: NC rats, 37.1±4.3ms; HF rats, 31.4±1.8ms (p<0.05). The extrapolated M0 values were higher in HF rats than in NC rats (p<0.005). This study of (1)H MRS led to sufficient spectral resolution and signal-to-noise ratio differences to characterize the T2 relaxation times of methylene resonance. (1)H MRS relaxation times may be useful for quantitative characterization of various liver diseases, including fatty liver disease.
Baranowski, M; Woźniak-Braszak, A; Jurga, K
2011-01-01
This paper reports on design and construction of a double coil high-homogeneity ensuring Nuclear Magnetic Resonance Probe for off-resonance relaxation time measurements. NMR off-resonance experiments pose unique technical problems. Long irradiation can overheat the sample, dephase the spins because of B(1) field inhomogeneity and degrade the signal received by requiring the receiver bandwidth to be broader than that needed for normal experiment. The probe proposed solves these problems by introducing a separate off-resonance irradiation coil which is larger than the receiver coil and is wound up on the dewar tube that separates it from the receiver coil thus also thermally protects the sample from overheating. Large size of the irradiation coil also improves the field homogeneity because as a ratio of the sample diameter to the magnet (coil) diameter increases, the field inhomogeneity also increases (Blümich et al., 2008) [1]. The small receiver coil offers maximization of the filling factor and a high signal to the noise ratio.
NASA Astrophysics Data System (ADS)
Carpenter, B. M.; Ikari, M. J.; Marone, C.
2016-02-01
Interseismic recovery of fault strength (healing) following earthquake failure is a fundamental requirement of the seismic cycle and likely plays a key role in determining the stability and slip behavior of tectonic faults. We report on laboratory measurements of time- and slip-dependent frictional strengthening for natural and synthetic gouges to evaluate the role of mineralogy in frictional strengthening. We performed slide-hold-slide (SHS) shearing experiments on nine natural fault gouges and eight synthetic gouges at conditions of 20 MPa normal stress, 100% relative humidity (RH), large shear strain (~15), and room temperature. Phyllosilicate-rich rocks show the lowest rates of frictional strengthening. Samples rich in quartz and feldspar exhibit intermediate rates of frictional strengthening, and calcite-rich gouges show the largest values. Our results show that (1) the rates of frictional strengthening and creep relaxation scale with frictional strength, (2) phyllosilicate-rich fault gouges have low strength and healing characteristics that promote stable, aseismic creep, (3) most natural fault gouges exhibit intermediate rates of frictional strengthening, consistent with a broad range of fault slip behaviors, and (4) calcite-rich fault rocks show the highest rates of frictional strengthening, low values of dilation upon reshear, and high frictional strengths, all of which would promote seismogenic behavior.
Nuclear spin relaxation times in hydrogen-helium and methane-helium slush at 4 MHz using pulsed NMR
NASA Astrophysics Data System (ADS)
Hamida, J. A.
2005-03-01
We compare the nuclear spin-lattice and nuclear spin-spin relaxation times observed for small grains of hydrogen suspended in liquid helium (hydrogen-helium ``slush'') with that of methane-helium ``slush.'' The transport properties of these ``slush'' materials are critical to NASA's goal of realizing atomic propellant designs for future spacecraft. Atoms of active propellants are stored cryogenically in a host matrix such as hydrogen (H2) or methane (CH4) to prevent recombination while liquid helium is ideal for holding the host matrix and for easy transportation. The host matrix must therefore be stable in liquid helium. We find that for hydrogen ``slush,'' NMR rate is consistent with scattering at grain boundaries due to the large electric quadrupole moment of hydrogen; on the other hand the ``slush'' rate for methane is consistent with internal diffusion as opposed to surface scattering. We conclude that for atomic propellants, methane is a better host than hydrogen because grains of methane are better isolated from the helium bath.
Relaxation rates of low-field gas-phase ^129Xe storage cells
NASA Astrophysics Data System (ADS)
Limes, Mark; Saam, Brian
2010-10-01
A study of longitudinal nuclear relaxation rates T1 of ^129Xe and Xe-N2 mixtures in a magnetic field of 3.8 mT is presented. In this regime, intrinsic spin relaxation is dominated by the intramolecular spin-rotation interaction due to persistent xenon dimers, a mechanism that can be quelled by introducing large amounts of N2 into the storage cell. Extrinsic spin relaxation is dominated by the wall-relaxation rate, which is the primary quantity of interest for the various low-field storage cells and coatings that we have tested. Previous group work has shown that extremely long gas-phase relaxation times T1 can be obtained, but only at large magnetic fields and low xenon densities. The current work is motivated by the practical benefits of retaining hyperpolarized ^129Xe for extended periods of time in a small magnetic field.
Effect of Paramagnetic Ions on NMR Relaxation of Fluids at Solid Surfaces
Foley; Farooqui; Kleinberg
1996-11-01
Proton NMR longitudinal and transverse relaxation times of water-saturated powder packs have been measured. The powders were a series of synthetic calcium silicates with known concentrations of iron or manganese paramagnetic ions. The rate of water proton relaxation has been found to be linearly proportional to the concentration of paramagnetic ion. The constant of proportionality is used to determine the electron relaxation time of ions at the fluid-solid interface. A substantial relaxivity is found in the absence of paramagnetic ions. Thus the oxide surface itself is an unexpectedly good relaxer of fluid-borne nuclear spins. The results answer some long-standing questions connected with the NMR properties of fluid-saturated sedimentary rocks.
Relaxation phenomena in disordered systems
NASA Astrophysics Data System (ADS)
Sciortino, F.; Tartaglia, P.
1997-02-01
In this article we discuss how the assumptions of self-similarity imposed on the distribution of independently relaxing modes, as well as on their amplitude and characteristic times, manifest in the global relaxation phenomena. We also review recent applications of such approach to the description of relaxation phenomena in microemulsions and molecular glasses.
Han, Lu; Liang, WanZhen; Zhao, Yi; Zhong, Xinxin
2014-06-07
The time-dependent wavepacket diffusive method [X. Zhong and Y. Zhao, J. Chem. Phys. 138, 014111 (2013)] is extended to investigate the energy relaxation and separation of a hot electron-hole pair in organic aggregates with incorporation of Coulomb interaction and electron-phonon coupling. The pair initial condition generated by laser pulse is represented by a Gaussian wavepacket with a central momentum. The results reveal that the hot electron energy relaxation is very well described by two rate processes with the fast rate much larger than the slow one, consistent with experimental observations, and an efficient electron-hole separation is accomplished accompanying the fast energy relaxation. Furthermore, although the extra energy indeed helps the separation by overcoming the Coulomb interaction, the width of initial wavepacket is much sensitive to the separation efficiency and the narrower wavepacket generates the more separated charges. This behavior may be useful to understand the experimental controversy of the hot carrier effect on charge separation.
Pressure dependence of wall relaxation in polarized {sup 3}He gaseous cells
Zheng, W.; Gao, H.; Ye, Q.; Zhang, Y.
2011-06-15
We have observed a linear pressure dependence of longitudinal relaxation time T{sub 1} at 4.2 and 295 K in gaseous {sup 3}He cells made of either bare Pyrex glass or Cs- or Rb-coated Pyrex due to paramagnetic sites in the cell wall. The paramagnetic wall relaxation is previously thought to be independent of {sup 3}He pressure. We develop a model to interpret the observed wall relaxation by taking into account the diffusion process, and our model gives a good description of the data.
NASA Astrophysics Data System (ADS)
Souza Filho, N. E.; Nogueira, A. C.; Rohling, J. H.; Baesso, M. L.; Medina, A. N.; Siqueira, A. P. L.; Sampaio, J. A.; Vargas, H.; Bento, A. C.
2009-11-01
This paper discusses the use of photoacoustic models to obtain the nonradiative relaxation time (τ) and characteristic diffusion time (τβ) for a sample showing visible absorption bands from fluorescent ion-doped low-silica calcium aluminosilicate glass. Two models allowing phase shift analyses, the thermal-expansion and thermal-diffusion models, are briefly reviewed. These models have limitations when the photoacoustic signal depends on both factors, in a coupling mechanism. An alternative model is proposed to take both thermal expansion and thermal diffusion into account with a single temperature solution for the heat-coupled differential equation. This model is simulated for absorbing samples near the thermally thick region. The model is applied to Eu-V codoped glass showing intermediate signal dependence from ω-1.0 to ω-3/2. The nonradiative time and characteristic diffusion time are derived with 33<τ(ms)<39, and τβ(ms)˜70 ms for the Eu-ion and 340<τβ(ms)<710 for the V-ion. Four absorption bands were analyzed (280, 350, 420, and 600 nm), which showed a signal dependence from ω-1.1 to ω-1.52. Absorption coefficients were derived from τβ in the range of 15<β(cm-1)<51, which agreed fairly well with spectrophotometer data for the same ions.
Wirth, W.; Maschek, S.; W. Roemer, F.; Eckstein, F.
2016-01-01
Magnetic resonance imaging (MRI)-based spin-spin relaxation time (T2) mapping has been shown to be associated with cartilage matrix composition (hydration, collagen content & orientation). To determine the impact of early radiographic knee osteoarthritis (ROA) and ROA risk factors on femorotibial cartilage composition, we studied baseline values and one-year change in superficial and deep cartilage T2 layers in 60 subjects (age 60.6 ± 9.6 y; BMI 27.8 ± 4.8) with definite osteophytes in one knee (earlyROA, n = 32) and with ROA risk factors in the contralateral knee (riskROA, n = 28), and 89 healthy subjects (age 55.0 ± 7.5 y; BMI 24.4 ± 3.1) without signs or risk factors of ROA. Baseline T2 did not differ significantly between earlyROA and riskROA knees in the superficial (48.0 ± 3.5 ms vs. 48.1 ± 3.1 ms) or the deep layer (37.3 ± 2.5 ms vs. 37.3 ± 1.8 ms). However, healthy knees showed significantly lower superficial layer T2 (45.4 ± 2.3 ms) than earlyROA or riskROA knees (p ≤ 0.001) and significantly lower deep layer T2 (35.8 ± 1.8 ms) than riskROA knees (p = 0.006). Significant longitudinal change in T2 (superficial: 0.5 ± 1.4 ms; deep: 0.8 ± 1.3 ms) was only detected in healthy knees. These results do not suggest an association of early ROA (osteophytes) with cartilage composition, as assessed by T2 mapping, whereas cartilage composition was observed to differ between knees with and without ROA risk factors. PMID:27670272
Mainali, Laxman; Feix, Jimmy B.; Hyde, James S.; Subczynski, Witold K.
2011-01-01
There are no easily obtainable EPR spectral parameters for lipid spin labels that describe profiles of membrane fluidity. The order parameter, which is most often used as a measure of membrane fluidity, describes the amplitude of wobbling motion of alkyl chains relative to the membrane normal and does not contain explicitly time or velocity. Thus, this parameter can be considered as nondynamic. The spin-lattice relaxation rate (T−11) obtained from saturation-recovery EPR measurements of lipid spin labels in deoxygenated samples depends primarily on the rotational correlation time of the nitroxide moiety within the lipid bilayer. Thus, T−11 can be used as a convenient quantitative measure of membrane fluidity that reflects local membrane dynamics. T−11 profiles obtained for 1-palmitoyl-2-(n-doxylstearoyl)phosphatidylcholine (n-PC) spin labels in dimyristoylphosphatidylcholine (DMPC) membranes with and without 50 mol% cholesterol are presented in parallel with profiles of the rotational diffusion coefficient, R⊥, obtained from simulation of EPR spectra using Freed's model. These profiles are compared with profiles of the order parameter obtained directly from EPR spectra and with profiles of the order parameter obtained from simulation of EPR spectra. It is shown that T−11 and R⊥ profiles reveal changes in membrane fluidity that depend on the motional properties of the lipid alkyl chain. We find that cholesterol has a rigidifying effect only to the depth occupied by the rigid steroid ring structure and a fluidizing effect at deeper locations. These effects cannot be differentiated by profiles of the order parameter. All profiles in this study were obtained at X-band (9.5 GHz). PMID:21868272
Carballido-Gamio, Julio; Stahl, Robert; Blumenkrantz, Gabrielle; Romero, Adan; Majumdar, Sharmila; Link, Thomas M.
2009-01-01
Purpose: Studies have shown that functional analysis of knee cartilage based on magnetic resonance (MR) relaxation times is a valuable tool in the understanding of osteoarthritis (OA). In this work, the regional spatial distribution of knee cartilage T1ρ and T2 relaxation times based on texture and laminar analyses was studied to investigate if they provide additional insight compared to global mean values in the study of OA. Methods: Knee cartilage of 36 subjects, 19 healthy controls and 17 with mild OA, was divided into 16 compartments. T1ρ and T2 relaxation times were studied with first order statistics, eight texture parameters with four different orientations using gray-level co-occurrence matrices and by subdividing each compartment into two different layers: Deep and superficial. Receiver operating characteristic curve analysis was performed to evaluate the potential of each technique to correctly classify the populations. Results: Although the deep and superficial cartilage layers had in general significantly different T1ρ and T2 relaxation times, they performed similarly in terms of subject discrimination. The subdivision of lateral and medial femoral compartments into weight-bearing and non-weight-bearing regions did not improve discrimination. Also it was found that the most sensitive region was the patella and that T1ρ discriminated better than T2. The most important finding was that with respect to global mean values, laminar and texture analyses improved subject discrimination. Conclusions: Results of this study suggest that spatially assessing MR images of the knee cartilage relaxation times using laminar and texture analyses could lead to better and probably earlier identification of cartilage matrix abnormalities in subjects with OA. PMID:19810478
ERIC Educational Resources Information Center
McCabe, Marita P.; Ricciardelli, Lina A.
2004-01-01
Recent studies have examined the prevalence of disordered eating and other health risk behaviors among adolescent boys and girls. However, these studies generally have not examined predictors of these behaviors, and have not embedded the investigations within a theoretical framework. This study employed a longitudinal design to evaluate the…
ERIC Educational Resources Information Center
McCarthy, Kathleen M.; Mahon, Merle; Rosen, Stuart; Evans, Bronwen G.
2014-01-01
The majority of bilingual speech research has focused on simultaneous bilinguals. Yet, in immigrant communities, children are often initially exposed to their family language (L1), before becoming gradually immersed in the host country's language (L2). This is typically referred to as sequential bilingualism. Using a longitudinal design, this…
NASA Astrophysics Data System (ADS)
Valente, Pedro C.; da Silva, Carlos B.; Pinho, Fernando T.
2013-11-01
We report a numerical study of statistically steady and decaying turbulence of FENE-P fluids for varying polymer relaxation times ranging from the Kolmogorov dissipation time-scale to the eddy turnover time. The total turbulent kinetic energy dissipation is shown to increase with the polymer relaxation time in both steady and decaying turbulence, implying a ``drag increase.'' If the total power input in the statistically steady case is kept equal in the Newtonian and the viscoelastic simulations the increase in the turbulence-polymer energy transfer naturally lead to the previously reported depletion of the Newtonian, but not the overall, kinetic energy dissipation. The modifications to the nonlinear energy cascade with varying Deborah/Weissenberg numbers are quantified and their origins investigated. The authors acknowledge the financial support from Fundação para a Ciência e a Tecnologia under grant PTDC/EME-MFE/113589/2009.
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs.
Cui, Shuqi; Hong, Ning; Shi, Baochang; Chai, Zhenhua
2016-04-01
In this paper, we will focus on the multiple-relaxation-time (MRT) lattice Boltzmann model for two-dimensional convection-diffusion equations (CDEs), and analyze the discrete effect on the halfway bounce-back (HBB) boundary condition (or sometimes called bounce-back boundary condition) of the MRT model where three different discrete velocity models are considered. We first present a theoretical analysis on the discrete effect of the HBB boundary condition for the simple problems with a parabolic distribution in the x or y direction, and a numerical slip proportional to the second-order of lattice spacing is observed at the boundary, which means that the MRT model has a second-order convergence rate in space. The theoretical analysis also shows that the numerical slip can be eliminated in the MRT model through tuning the free relaxation parameter corresponding to the second-order moment, while it cannot be removed in the single-relaxation-time model or the Bhatnagar-Gross-Krook model unless the relaxation parameter related to the diffusion coefficient is set to be a special value. We then perform some simulations to confirm our theoretical results, and find that the numerical results are consistent with our theoretical analysis. Finally, we would also like to point out the present analysis can be extended to other boundary conditions of lattice Boltzmann models for CDEs. PMID:27176432
Xanthakis, Vanessa; Sullivan, Lisa M; Vasan, Ramachandran S
2013-12-10
Correlated data are obtained in longitudinal epidemiological studies, where repeated measurements are taken on individuals or groups over time. Such longitudinal data are ideally analyzed using multilevel modeling approaches, which appropriately account for the correlations in repeated responses in the same individual. Commonly used regression models are inappropriate as they assume that measurements are independent. In this tutorial, we use multilevel modeling to demonstrate its use for analysis of correlated data obtained from serial examinations on individuals. We focus on cardiovascular epidemiological research where investigators are often interested in quantifying the relations between clinical risk factors and outcome measures (X and Y, respectively), where X and Y are measured repeatedly over time, for example, using serial observations on participants attending multiple examinations in a longitudinal cohort study. For instance, it may be of interest to evaluate the relations between serial measures of left ventricular mass (outcome) and of its potential determinants (i.e., body mass index and blood pressure), both of which are measured over time. In this tutorial, we describe the application of multilevel modeling to cardiovascular risk factors and outcome data (using serial echocardiographic data as an example of an outcome). We suggest an analytical approach that can be implemented to evaluate relations between any potential outcome of interest and risk factors, including assessment of random effects and nonlinear relations. We illustrate these steps using echocardiographic data from the Framingham Heart Study with SAS PROC MIXED.
Law, Ngayee J; Taylor, Jeremy M G; Sandler, Howard
2002-12-01
In this paper we present an extension of cure models: to incorporate a longitudinal disease progression marker. The model is motivated by studies of patients with prostate cancer undergoing radiation therapy. The patients are followed until recurrence of the prostate cancer or censoring, with the PSA marker measured intermittently. Some patients are cured by the treatment and are immune from recurrence. A joint-cure model is developed for this type of data, in which the longitudinal marker and the failure time process are modeled jointly, with a fraction of patients assumed to be immune from the endpoint. A hierarchical nonlinear mixed-effects model is assumed for the marker and a time-dependent Cox proportional hazards model is used to model the time to endpoint. The probability of cure is modeled by a logistic link. The parameters are estimated using a Monte Carlo EM algorithm. Importance sampling with an adaptively chosen t-distribution and variable Monte Carlo sample size is used. We apply the method to data from prostate cancer and perform a simulation study. We show that by incorporating the longitudinal disease progression marker into the cure model, we obtain parameter estimates with better statistical properties. The classification of the censored patients into the cure group and the susceptible group based on the estimated conditional recurrence probability from the joint-cure model has a higher sensitivity and specificity, and a lower misclassification probability compared with the standard cure model. The addition of the longitudinal data has the effect of reducing the impact of the identifiability problems in a standard cure model and can help overcome biases due to informative censoring.
Toptygin, Dmitri; Gronenborn, Angela M; Brand, Ludwig
2006-12-28
The B1 domain of Streptococcal protein G (GB1) is a small, thermostable protein containing a single tryptophan residue. We recorded time-resolved fluorescence of the wild-type GB1 and its 5-fluorotryptophan (5FTrp) variant at more than 30 emission wavelengths between 300 and 470 nm. The time-resolved emission spectra reveal no signs of heterogeneity, but show a time-dependent red shift characteristic of microscopic dielectric relaxation. This is true for both 5FTrp and unmodified Trp in GB1. The time-dependent red shifts in the fluorescence of 5FTrp and unmodified Trp are essentially identical, confirming that the shift is caused by the relaxation of the protein matrix rather than by the fluorophore itself. The total amplitude (but not the rate) of the time-dependent red shift depends on the fluorophore, specifically, on the magnitude of the vector difference between its excited state and ground state electric dipole moments; for 5FTrp this is estimated to be about 88% of that for the unmodified Trp. The decay of the excited state fluorophore population is not monoexponential for either fluorophore; however, the deviation from the monoexponential decay law is larger in the case of unmodified Trp. The relaxation dynamics of GB1 was found to be considerably faster than that of other proteins studied previously, consistent with the small size, tightly packed core, and high thermodynamic stability of GB1.
NASA Astrophysics Data System (ADS)
Miyazaki, Yasunori; Inokuchi, Yoshiya; Ebata, Takayuki; Petković, Milena
2013-06-01
A comparative study of vibrational energy relaxation (VER) between the monohydrated complexes of phenol-d0 and phenol-d1 is investigated in a supersonic molecular beam. The direct time-resolved measurement of energy redistribution from the phenolic OH/OD stretching mode of the phenol-d0-H2O/phenol-d1-D2O is performed by picosecond IR-UV pump-probe spectroscopy. Two complexes follow the same relaxation process that begins with the intramolecular vibrational energy redistribution (IVR) and the intermolecular vibrational energy redistribution (IVR), which is followed by the vibrational predissociation (VP). The difference in the relaxation lifetimes between them is discussed by anharmonic force field and RRKM calculations. Anharmonic analysis implies that intra- (IVR) and intermolecular (IVR) relaxations occur in parallel in the complexes. The RRKM-predicted dissociation (VP) lifetimes show qualitative agreement with the observed results, suggesting that VP takes place after the statistical energy distribution in the complexes.
Hoppmann, Christiane A; Gerstorf, Denis; Willis, Sherry L; Schaie, K Warner
2011-01-01
Development does not take place in isolation and is often interrelated with close others such as marital partners. To examine interrelations in spousal happiness across midlife and old age, we used 35-year longitudinal data from both members of 178 married couples in the Seattle Longitudinal Study. Latent growth curve models revealed sizeable spousal similarities not only in levels of happiness but also in how happiness changed over time. These spousal interrelations were considerably larger in size than those found among random pairs of women and men from the same sample. Results are in line with life-span theories emphasizing an interactive minds perspective by showing that adult happiness waxes and wanes in close association with the respective spouse. Our findings also complement previous individual-level work on age-related changes in well-being by pointing to the importance of using the couple as the unit of analysis.
Generalized extended Navier-Stokes theory: multiscale spin relaxation in molecular fluids.
Hansen, J S
2013-09-01
This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent on the state point. PMID:24125208
Relaxation selective pulses in fast relaxing systems.
Lopez, Christopher J; Lu, Wei; Walls, Jamie D
2014-05-01
In this work, the selectivity or sharpness of the saturation profiles for relaxation selective pulses (R^rsps) that suppress magnetization possessing relaxation times of T2=T2(rsp) and T1=αT2 for α∈12,∞ was optimized. Along with sharpening the selectivity of the R^rsps, the selective saturation of these pulses was also optimized to be robust to both B0 and B1 inhomogeneities. Frequency-swept hyperbolic secant and adiabatic time-optimal saturation pulse inputs were found to work best in the optimizations, and the pulse lengths required to selectivity saturate the magnetization were always found to be less than the inversion recovery delay, T1ln(2). The selectivity of the optimized relaxation selective pulses was experimentally demonstrated in aqueous solutions with varying concentrations of the paramagnetic species, [Mn(+2)], and for use in solvent suppression. Finally, the "rotational" properties of spin relaxation were explored along with an analytical derivation of adiabatic time-optimal saturation pulses. PMID:24631803
NASA Astrophysics Data System (ADS)
Vigouroux, C.; Bardet, M.; Belorizky, E.; Fries, P. H.; Guillermo, A.
1998-04-01
The longitudinal relaxation rate and self-diffusion coefficient of the tetramethylammonium protons are investigated at 400 MHz in D 2O solutions of hydrated Gd 3+ paramagnetic impurities, without and with complexing NO 3- ions. The results are interpreted using the hypernetted chain approximation of the potential of mean force between the repulsive ions, approximated as charged hard spheres in discrete polar and polarizable water. The standard dipolar relaxation formalism of Solomon is valid for the Gd 3+ lanthanide, i.e. its electron relaxation time is much longer than the translational correlation time of the interionic Brownian diffusion. The coordination effect by NO 3- is analyzed.
NASA Technical Reports Server (NTRS)
1987-01-01
Environ Corporation's relaxation system is built around a body lounge, a kind of super easy chair that incorporates sensory devices. Computer controlled enclosure provides filtered ionized air to create a feeling of invigoration, enhanced by mood changing aromas. Occupant is also surrounded by multidimensional audio and the lighting is programmed to change colors, patterns, and intensity periodically. These and other sensory stimulators are designed to provide an environment in which the learning process is stimulated, because research has proven that while an individual is in a deep state of relaxation, the mind is more receptive to new information.
Cieszanowski, Andrzej; Podgórska, Joanna; Rosiak, Grzegorz; Maj, Edyta; Grudziński, Ireneusz P.; Kaczyński, Bartosz; Szeszkowski, Wojciech; Milczarek, Krzysztof; Rowiński, Olgierd
2016-01-01
Summary Background To investigate the effect of gadoxetic acid disodium (Gd-EOB-DTPA) on T2 relaxation times and apparent diffusion coefficient (ADC) values of the liver and focal liver lesions on a 1.5-T system. Material/Methods Magnetic resonance (MR) studies of 50 patients with 35 liver lesions were retrospectively analyzed. All examinations were performed at 1.5T and included T2-weighted turbo spin-echo (TSE) and diffusion-weighted (DW) images acquired before and after intravenous administration of Gd-EOB-DTPA. To assess the effect of this hepatobiliary contrast agent on T2-weighted TSE images and DW images T2 relaxation times and ADC values of the liver and FLLs were calculated and compared pre- and post-injection. Results The mean T2 relaxation times of the liver and focal hepatic lesions were lower on enhanced than on unenhanced T2-weighted TSE images (decrease of 2.7% and 3.6% respectively), although these differences were not statistically significant. The mean ADC values of the liver showed statistically significant decrease (of 4.6%) on contrast-enhanced DW images, compared to unenhanced images (P>0.05). The mean ADC value of liver lesions was lower on enhanced than on unenhanced DW images, but this difference (of 2.9%) did not reach statistical significance. Conclusions The mean T2 relaxation times of the liver and focal liver lesions as well as the mean ADC values of liver lesions were not significantly different before and after administration of Gd-EOB-DTPA. Therefore, acquisition of T2-weighted and DW images between the dynamic contrast-enhanced examination and hepatobiliary phase is feasible and time-saving. PMID:27026795
Dardzinski, BJ; Schneider, E
2013-01-01
Introduction T2 (spin-spin) relaxation time is frequently used for compositional assessment of articular cartilage. However little is known about the influence of MR system components on these measurements. The reproducibility and range of cartilage T2 values were evaluated using different extremity radiofrequency (RF) coils with potential differences in flip angle uniformity and SNR. Method Ten knees underwent 3 Tesla MR exams using RF coils with different signal-to-noise (SNR): quadrature transmit/receive (QTR); quadrature transmit/eight-channel phased-array receive (QT8PAR). Each knee was scanned twice per coil (4 exams total). T2 values were calculated for the central medial and lateral femoral (cMF, cLF) and medial and lateral tibial (MT, LT) cartilage. Results The flip angle varied across a central 40mm diameter region-of-interest of each coil by <1.5%. However SNR was significantly higher using QT8PAR than QTR (p<0.001). T2 values for cMF (50.7msec/45.9msec) and MT (48.2msec/41.6msec) were significantly longer with QT8PAR than QTR (p<0.05). T2 reproducibility was improved using QT8PAR for cMF and cLF (4.8%/5.8% and 4.1%/6.5%; p<0.001), similar for LT (3.8%/3.6%; p=1.0), and worse for MT (3.7%/3.3%; p<0.001). T2 varied spatially, with cLF having the longest (52.0msec) and the LT having the shortest (40.6msec) values. All deep cartilage had significantly longer, and less variable, T2 values using QT8PAR (higher SNR; p<0.03). Conclusions SNR varied spatially depending upon coil, but refocusing flip angle did not. With higher SNR, significantly longer T2 values were measured for deep (all plates) and global (MT, cMF) cartilage. T2 values varied by depth and plate, in agreement with prior studies. PMID:23376528
Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model
NASA Astrophysics Data System (ADS)
Landry, C. J.; Prodanovic, M.; Eichhubl, P.
2014-12-01
The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 < Kn < 0.5). Currently, the study of slip-flows is for the most part limited to simple tube and channel geometries, however, the geometry of mudrock pores is often sponge-like (organic matter) and/or platy (clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion
Gao, Ying; Erokwu, Bernadette O; DeSantis, David A; Croniger, Colleen M; Schur, Rebecca M; Lu, Lan; Mariappuram, Jose; Dell, Katherine M; Flask, Chris A
2016-01-01
Autosomal recessive polycystic kidney disease (ARPKD) is a potentially lethal multi-organ disease affecting both the kidneys and the liver. Unfortunately, there are currently no non-invasive methods to monitor liver disease progression in ARPKD patients, limiting the study of potential therapeutic interventions. Herein, we perform an initial investigation of T1 relaxation time as a potential imaging biomarker to quantitatively assess the two primary pathologic hallmarks of ARPKD liver disease: biliary dilatation and periportal fibrosis in the PCK rat model of ARPKD. T1 relaxation time results were obtained for five PCK rats at 3 months of age using a Look-Locker acquisition on a Bruker BioSpec 7.0 T MRI scanner. Six three-month-old Sprague-Dawley (SD) rats were also scanned as controls. All animals were euthanized after the three-month scans for histological and biochemical assessments of bile duct dilatation and hepatic fibrosis for comparison. PCK rats exhibited significantly increased liver T1 values (mean ± standard deviation = 935 ± 39 ms) compared with age-matched SD control rats (847 ± 26 ms, p = 0.01). One PCK rat exhibited severe cholangitis (mean T1 = 1413 ms), which occurs periodically in ARPKD patients. The observed increase in the in vivo liver T1 relaxation time correlated significantly with three histological and biochemical indicators of biliary dilatation and fibrosis: bile duct area percent (R = 0.85, p = 0.002), periportal fibrosis area percent (R = 0.82, p = 0.004), and hydroxyproline content (R = 0.76, p = 0.01). These results suggest that hepatic T1 relaxation time may provide a sensitive and non-invasive imaging biomarker to monitor ARPKD liver disease.
FEATURE SCREENING FOR TIME-VARYING COEFFICIENT MODELS WITH ULTRAHIGH DIMENSIONAL LONGITUDINAL DATA
Chu, Wanghuan; Li, Runze; Reimherr, Matthew
2016-01-01
Motivated by an empirical analysis of the Childhood Asthma Management Project, CAMP, we introduce a new screening procedure for varying coefficient models with ultrahigh dimensional longitudinal predictor variables. The performance of the proposed procedure is investigated via Monte Carlo simulation. Numerical comparisons indicate that it outperforms existing ones substantially, resulting in significant improvements in explained variability and prediction error. Applying these methods to CAMP, we are able to find a number of potentially important genetic mutations related to lung function, several of which exhibit interesting nonlinear patterns around puberty.
FEATURE SCREENING FOR TIME-VARYING COEFFICIENT MODELS WITH ULTRAHIGH DIMENSIONAL LONGITUDINAL DATA
Chu, Wanghuan; Li, Runze; Reimherr, Matthew
2016-01-01
Motivated by an empirical analysis of the Childhood Asthma Management Project, CAMP, we introduce a new screening procedure for varying coefficient models with ultrahigh dimensional longitudinal predictor variables. The performance of the proposed procedure is investigated via Monte Carlo simulation. Numerical comparisons indicate that it outperforms existing ones substantially, resulting in significant improvements in explained variability and prediction error. Applying these methods to CAMP, we are able to find a number of potentially important genetic mutations related to lung function, several of which exhibit interesting nonlinear patterns around puberty. PMID:27630755
Cohort Profile: Footprints in Time, the Australian Longitudinal Study of Indigenous Children
Thurber, Katherine A; Banks, Emily; Banwell, Cathy
2015-01-01
Indigenous Australians experience profound levels of disadvantage in health, living standards, life expectancy, education and employment, particularly in comparison with non-Indigenous Australians. Very little information is available about the healthy development of Australian Indigenous children; the Longitudinal Study of Indigenous Children (LSIC) is designed to fill this knowledge gap. This dataset provides an opportunity to follow the development of up to 1759 Indigenous children. LSIC conducts annual face-to-face interviews with children (aged 0.5–2 and 3.5–5 years at baseline in 2008) and their caregivers. This represents between 5% and 10% of the total population of Indigenous children in these age groups, including families of varied socioeconomic and cultural backgrounds. Study topics include: the physical, social and emotional well-being of children and their caregivers; language; culture; parenting; and early childhood education. LSIC is a shared resource, formed in partnership with communities; its data are readily accessible through the Australian Government Department of Social Services (see http://dss.gov.au/lsic for data and access arrangements). As one of very few longitudinal studies of Indigenous children, and the only national one, LSIC will enable an understanding of Indigenous children from a wide range of environments and cultures. Findings from LSIC form part of a growing infrastructure from which to understand Indigenous child health. PMID:25011454
Cohort Profile: Footprints in Time, the Australian Longitudinal Study of Indigenous Children.
Thurber, Katherine A; Banks, Emily; Banwell, Cathy
2015-06-01
Indigenous Australians experience profound levels of disadvantage in health, living standards, life expectancy, education and employment, particularly in comparison with non-Indigenous Australians. Very little information is available about the healthy development of Australian Indigenous children; the Longitudinal Study of Indigenous Children (LSIC) is designed to fill this knowledge gap.This dataset provides an opportunity to follow the development of up to 1759 Indigenous children. LSIC conducts annual face-to-face interviews with children (aged 0.5-2 and 3.5-5 years at baseline in 2008) and their caregivers. This represents between 5% and 10% of the total population of Indigenous children in these age groups, including families of varied socioeconomic and cultural backgrounds. Study topics include: the physical, social and emotional well-being of children and their caregivers; language; culture; parenting; and early childhood education.LSIC is a shared resource, formed in partnership with communities; its data are readily accessible through the Australian Government Department of Social Services (see http://dss.gov.au/lsic for data and access arrangements). As one of very few longitudinal studies of Indigenous children, and the only national one, LSIC will enable an understanding of Indigenous children from a wide range of environments and cultures. Findings from LSIC form part of a growing infrastructure from which to understand Indigenous child health. PMID:25011454
Nelson, David A; Coyne, Sarah M; Swanson, Savannah M; Hart, Craig H; Olsen, Joseph A
2014-08-01
Crick, Murray-Close, and Woods (2005) encouraged the study of relational aggression as a developmental precursor to borderline personality features in children and adolescents. A longitudinal study is needed to more fully explore this association, to contrast potential associations with physical aggression, and to assess generalizability across various cultural contexts. In addition, parenting is of particular interest in the prediction of aggression or borderline personality disorder. Early aggression and parenting experiences may differ in their long-term prediction of aggression or borderline features, which may have important implications for early intervention. The currrent study incorporated a longitudinal sample of preschool children (84 boys, 84 girls) living in intact, two-parent biological households in Voronezh, Russia. Teachers provided ratings of children's relational and physical aggression in preschool. Mothers and fathers also self-reported their engagement in authoritative, authoritarian, permissive, and psychological controlling forms of parenting with their preschooler. A decade later, 70.8% of the original child participants consented to a follow-up study in which they completed self-reports of relational and physical aggression and borderline personality features. The multivariate results of this study showed that preschool relational aggression in girls predicted adolescent relational aggression. Preschool aversive parenting (i.e., authoritarian, permissive, and psychologically controlling forms) significantly predicted aggression and borderline features in adolescent females. For adolescent males, preschool authoritative parenting served as a protective factor against aggression and borderline features, whereas authoritarian parenting was a risk factor for later aggression. PMID:25047298
Nelson, David A; Coyne, Sarah M; Swanson, Savannah M; Hart, Craig H; Olsen, Joseph A
2014-08-01
Crick, Murray-Close, and Woods (2005) encouraged the study of relational aggression as a developmental precursor to borderline personality features in children and adolescents. A longitudinal study is needed to more fully explore this association, to contrast potential associations with physical aggression, and to assess generalizability across various cultural contexts. In addition, parenting is of particular interest in the prediction of aggression or borderline personality disorder. Early aggression and parenting experiences may differ in their long-term prediction of aggression or borderline features, which may have important implications for early intervention. The currrent study incorporated a longitudinal sample of preschool children (84 boys, 84 girls) living in intact, two-parent biological households in Voronezh, Russia. Teachers provided ratings of children's relational and physical aggression in preschool. Mothers and fathers also self-reported their engagement in authoritative, authoritarian, permissive, and psychological controlling forms of parenting with their preschooler. A decade later, 70.8% of the original child participants consented to a follow-up study in which they completed self-reports of relational and physical aggression and borderline personality features. The multivariate results of this study showed that preschool relational aggression in girls predicted adolescent relational aggression. Preschool aversive parenting (i.e., authoritarian, permissive, and psychologically controlling forms) significantly predicted aggression and borderline features in adolescent females. For adolescent males, preschool authoritative parenting served as a protective factor against aggression and borderline features, whereas authoritarian parenting was a risk factor for later aggression.
Cohort Profile: Footprints in Time, the Australian Longitudinal Study of Indigenous Children.
Thurber, Katherine A; Banks, Emily; Banwell, Cathy
2015-06-01
Indigenous Australians experience profound levels of disadvantage in health, living standards, life expectancy, education and employment, particularly in comparison with non-Indigenous Australians. Very little information is available about the healthy development of Australian Indigenous children; the Longitudinal Study of Indigenous Children (LSIC) is designed to fill this knowledge gap.This dataset provides an opportunity to follow the development of up to 1759 Indigenous children. LSIC conducts annual face-to-face interviews with children (aged 0.5-2 and 3.5-5 years at baseline in 2008) and their caregivers. This represents between 5% and 10% of the total population of Indigenous children in these age groups, including families of varied socioeconomic and cultural backgrounds. Study topics include: the physical, social and emotional well-being of children and their caregivers; language; culture; parenting; and early childhood education.LSIC is a shared resource, formed in partnership with communities; its data are readily accessible through the Australian Government Department of Social Services (see http://dss.gov.au/lsic for data and access arrangements). As one of very few longitudinal studies of Indigenous children, and the only national one, LSIC will enable an understanding of Indigenous children from a wide range of environments and cultures. Findings from LSIC form part of a growing infrastructure from which to understand Indigenous child health.
Chang, Zhiwei; Halle, Bertil
2016-02-28
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters
NASA Astrophysics Data System (ADS)
Fries, Pascal H.; Belorizky, Elie
2012-02-01
In a reference frame rigidly bound to the complex, we consider two Hamiltonians possibly at the origin of the very fast electronic relaxation of the paramagnetic lanthanide Ln3+ ions (Ln = Ce to Nd, Tb to Yb), namely the mean (static) ligand-field Hamiltonian and the transient ligand-field Hamiltonian. In the laboratory frame, the bombardment of the complex by solvent molecules causes its Brownian rotation and its vibration-distorsion dynamics governing the fluctuations of the static and transient terms, respectively. These fluctuations are at the origin of electronic relaxation. The electronic relaxation of a Ln3+ ion is defined by the decays of the time correlation functions (TCFs) of the longitudinal and transverse components of the total angular momentum J of its ground multiplet. The Brownian rotation of the complex and its vibration-distorsion dynamics are simulated by random walks, which enable us to compute the TCFs from first principles. It is shown that the electronic relaxation is governed mainly by the magnitude of the transient ligand-field, and not by its particular expression. The range of expected values of this ligand-field together with the lower limit of relaxation time enforced by the values of the vibration-distortion correlation time in liquids give rise to effective electronic relaxation times which are in satisfactory overall agreement with the experimental data. In particular, these considerations explain why the electronic relaxation times vary little with the coordinating ligand and are practically independent of the external field magnitude.
Abramowitch, Steven D; Woo, Savio L
2004-02-01
The quasi-linear viscoelastic (QLV) theory proposed by Fung (1972) has been frequently used to model the nonlinear time- and history-dependent viscoelastic behavior of many soft tissues. It is common to use five constants to describe the instantaneous elastic response (constants A and B) and reduced relaxation function (constants C, tau 1, and tau 2) on experiments with finite ramp times followed by stress relaxation to equilibrium. However, a limitation is that the theory is based on a step change in strain which is not possible to perform experimentally. Accounting for this limitation may result in regression algorithms that converge poorly and yield nonunique solutions with highly variable constants, especially for long ramp times (Kwan et al. 1993). The goal of the present study was to introduce an improved approach to obtain the constants for QLV theory that converges to a unique solution with minimal variability. Six goat femur-medial collateral ligament-tibia complexes were subjected to a uniaxial tension test (ramp time of 18.4 s) followed by one hour of stress relaxation. The convoluted QLV constitutive equation was simultaneously curve-fit to the ramping and relaxation portions of the data (r2 > 0.99). Confidence intervals of the constants were generated from a bootstrapping analysis and revealed that constants were distributed within 1% of their median values. For validation, the determined constants were used to predict peak stresses from a separate cyclic stress relaxation test with averaged errors across all specimens measuring less than 6.3 +/- 6.0% of the experimental values. For comparison, an analysis that assumed an instantaneous ramp time was also performed and the constants obtained for the two approaches were compared. Significant differences were observed for constants B, C, tau 1, and tau 2, with tau 1 differing by an order of magnitude. By taking into account the ramping phase of the experiment, the approach allows for viscoelastic
Lee, Hyojin; Yang, Seungbin; Lee, Ji-Hoon; Soo Park, Young
2014-05-12
We examined the electrooptical properties of a nematic liquid crystal (LC) sample whose substrates were coated with a mixture of carbon nanotube (CNT) and polyimide (PI). The relaxation time of the sample coated with 1.5 wt. % CNT mixture was about 35% reduced compared to the pure polyimide sample. The elastic constant and the order parameter of the CNT-mixture sample were increased and the fast relaxation of LC could be approximated to the mean-field theory. We found the CNT-mixed polyimide formed more smooth surface than the pure PI from atomic force microscopy images, indicating the increased order parameter is related to the smooth surface topology of the CNT-polyimide mixture.
McCarthy, Kathleen M; Mahon, Merle; Rosen, Stuart; Evans, Bronwen G
2014-01-01
The majority of bilingual speech research has focused on simultaneous bilinguals. Yet, in immigrant communities, children are often initially exposed to their family language (L1), before becoming gradually immersed in the host country's language (L2). This is typically referred to as sequential bilingualism. Using a longitudinal design, this study explored the perception and production of the English voicing contrast in 55 children (40 Sylheti-English sequential bilinguals and 15 English monolinguals). Children were tested twice: when they were in nursery (52-month-olds) and 1 year later. Sequential bilinguals' perception and production of English plosives were initially driven by their experience with their L1, but after starting school, changed to match that of their monolingual peers. PMID:25123987
NASA Astrophysics Data System (ADS)
Wang, Nian; Xia, Yang
2013-10-01
A number of experimental issues in the measurement of multi-component T2 and T1ρ relaxations in native and enzymatically digested articular cartilage were investigated by microscopic MRI (μMRI). The issues included the bath solutions (physiological saline and phosphate buffered saline (PBS)), the imaging resolution (35-140 μm), the specimen orientations (0° and 55°), and the strength of spin-lock frequencies (0.5-2 kHz) in the T1ρ experiments. In addition to cartilage, the samples of agar gel and doped water solution were also used in the investigation. Two imaging sequences were used: CPMG-SE and MSME. All raw data were analyzed by the non-negative least square (NNLS) method. The MSME sequence was shown to result in the observation of multi-component T2, even in the gel and liquid samples, demonstrating the artificial uncleanness of this sequence in the multi-component measurements. The soaking of cartilage in PBS reduced the observable T2 components to one at both 0° and 55°, suggesting the effect of phosphate ions on proton exchange between different pools of water molecules. The cartilage orientation with respect to the external magnetic field and the spin-lock strengths in the T1ρ experiment both affected the quantification of the multi-component relaxation. The transitions between a mono-component and multi-components in cartilage under various experimental conditions call for the extra caution in interpreting the relaxation results.
Wilson, Margaret; Pavlowich, Tyler; Cox, Michael
2016-03-01
Like many small-scale fishing communities around the world, the community of Buen Hombre in the Dominican Republic is dealing with a set of challenges to reconcile its fishing activities with the ecology on which it depends. Also like many such communities, this case has been examined at a particular period in time by a group of social scientists, but not over substantial lengths of time in order to examine the longitudinal validity of the conclusions made during this period. In this paper we combine data from previous anthropological work with our own primary social and ecological data to conduct a longitudinal case study of the Buen Hombre fishery. Our over-time comparison focuses on a suite of mostly social and institutional variables to explain what we find to be a continued degradation of the fishery, and we conclude the analysis by presenting a causal-loop diagram, summarizing our inferences regarding the complex interactions among these variables. We find that a mix of factors, notably changes in gear and fishing sites used, the number of fishermen and their livelihood diversity, as well as an increased connectivity between Buen Hombre and its external environment, have contributed to the decline of the condition of Buen Hombre coral reef fishery. We conclude with a discussion of what may lie ahead for this particular case and others like it.
Li, Ning; Elashoff, Robert M.; Li, Gang; Saver, Jeffrey
2009-01-01
SUMMARY Existing joint models for longitudinal and survival data are not applicable for longitudinal ordinal outcomes with possible non-ignorable missing values caused by multiple reasons. We propose a joint model for longitudinal ordinal measurements and competing risks failure time data, in which a partial proportional odds model for the longitudinal ordinal outcome is linked to the event times by latent random variables. At the survival endpoint, our model adopts the competing risks framework to model multiple failure types at the same time. The partial proportional odds model, as an extension of the popular proportional odds model for ordinal outcomes, is more flexible and at the same time provides a tool to test the proportional odds assumption. We use a likelihood approach and derive an EM algorithm to obtain the maximum likelihood estimates of the parameters. We further show that all the parameters at the survival endpoint are identifiable from the data. Our joint model enables one to make inference for both the longitudinal ordinal outcome and the failure times simultaneously. In addition, the inference at the longitudinal endpoint is adjusted for possible non-ignorable missing data caused by the failure times. We apply the method to the NINDS rt-PA stroke trial. Our study considers the modified Rankin Scale only. Other ordinal outcomes in the trial, such as the Barthel and Glasgow scales can be treated in the same way. PMID:19943331
Lagona, Francesco; Jdanov, Dmitri; Shkolnikova, Maria
2014-01-01
Longitudinal data are often segmented by unobserved time-varying factors, which introduce latent heterogeneity at the observation level, in addition to heterogeneity across subjects. We account for this latent structure by a linear mixed hidden Markov model. It integrates subject-specific random effects and Markovian sequences of time-varying effects in the linear predictor. We propose an expectation—maximization algorithm for maximum likelihood estimation, based on data augmentation. It reduces to the iterative maximization of the expected value of a complete likelihood function, derived from an augmented dataset with case weights, alternated with weights updating. In a case study of the Survey on Stress Aging and Health in Russia, the model is exploited to estimate the influence of the observed covariates under unobserved time-varying factors, which affect the cardiovascular activity of each subject during the observation period. PMID:24889355
NASA Astrophysics Data System (ADS)
de Jong, Saskia; van Vliet, Ton; de Jongh, Harmen H. J.
2015-11-01
The recoverable energy (RE), defined as the ratio of the work exerted on a test specimen during compression and recovered upon subsequent decompression, has been shown to correlate to sensory profiling of protein-based food products. Understanding the mechanism determining the time-dependency of RE is primordial. This work aims to identify the protein-specific impact on the recoverable energy by stress dissipation via relaxation of (micro)structural rearrangements within protein gels. To this end, caseinate and gelatin gels are studied for their response to time-dependent mechanical deformation as they are known to develop structurally distinct network morphologies. This work shows that in gelatin gels no significant stress relaxation occurs on the seconds timescale, and consequently no time-dependency of the amount of energy stored in this material is observed. In caseinate gels, however, the energy dissipation via relaxation processes does contribute significantly to the time-dependency of reversible stored energy in the network. This can explain the obtained RE as a function of applied deformation at slow deformation rates. At faster deformation, an additional contribution to the dissipated energy is apparent, that increases with the deformation rate, which might point to the role of energy dissipation related to friction of the serum entrapped by the protein-network. This work shows that engineering strategies focused on controlling viscous flow in protein gels could be more effective to dictate the ability to elastically store energy in protein gels than routes that direct protein-specific aggregation and/or network-assembly.
Abdolmohammadi, Jamil; Shafiee, Mohsen; Faeghi, Fariborz; Arefan, Douman; Zali, Alireza; Motiei-Langroudi, Rouzbeh; Farshidfar, Zahra; Nazarlou, Ali Kiani; Tavakkoli, Ali; Yarham, Mohammad
2016-01-01
Introduction Timely diagnosis of brain tumors could considerably affect the process of patient treatment. To do so, para-clinical methods, particularly MRI, cannot be ignored. MRI has so far answered significant questions regarding tumor characteristics, as well as helping neurosurgeons. In order to detect the tumor cellularity, neuro-surgeons currently have to sample specimens by biopsy and then send them to the pathology unit. The aim of this study is to determine the tumor cellularity in the brain. Methods In this cross-sectional study, 32 patients (18 males and 14 females from 18–77 y/o) were admitted to the neurosurgery department of Shohada-E Tajrish Hospital in Tehran, Iran from April 2012 to February 2014. In addition to routine pulse sequences, T2W Multi echo pulse sequences were taken and the images were analyzed using the MATLAB software to determine the brain tumor cellularity, compared with the biopsy Results These findings illustrate the need for more T2 relaxation time decreases, the higher classes of tumors will stand out in the designed table. In this study, the results show T2 relaxation time with a 85% diagnostic weight, compared with the biopsy, to determine the brain tumor cellularity (p<0.05). Conclusion Our results indicate that the T2 relaxation time feature is the best method to distinguish and present the degree of intra-axial brain tumors cellularity (85% accuracy compared to biopsy). The use of more data is recommended in order to increase the percent accuracy of this techniques. PMID:27757181
Mechanisms of Gadographene-Mediated Proton Spin Relaxation
Hung, Andy H.; Duch, Matthew C.; Parigi, Giacomo; Rotz, Matthew W.; Manus, Lisa M.; Mastarone, Daniel J.; Dam, Kevin T.; Gits, Colton C.; MacRenaris, Keith W.; Luchinat, Claudio; Hersam, Mark C.; Meade, Thomas J.
2013-01-01
Gd(III) associated with carbon nanomaterials relaxes water proton spins at an effectiveness that approaches or exceeds the theoretical limit for a single bound water molecule. These Gd(III)-labeled materials represent a potential breakthrough in sensitivity for Gd(III)-based contrast agents used for magnetic resonance imaging (MRI). However, their mechanism of action remains unclear. A gadographene library encompassing GdCl3, two different Gd(III)-complexes, graphene oxide (GO), and graphene suspended by two different surfactants and subjected to varying degrees of sonication was prepared and characterized for their relaxometric properties. Gadographene was found to perform comparably to other Gd(III)-carbon nanomaterials; its longitudinal (r1) and transverse (r2) relaxivity is modulated between 12–85 mM−1s−1 and 24–115 mM−1s−1, respectively, depending on the Gd(III)-carbon backbone combination. The unusually large relaxivity and its variance can be understood under the modified Florence model incorporating the Lipari-Szabo approach. Changes in hydration number (q), water residence time (τM), molecular tumbling rate (τR), and local motion (τfast) sufficiently explain most of the measured relaxivities. Furthermore, results implicated the coupling between graphene and Gd(III) as a minor contributor to proton spin relaxation. PMID:24298299
A Longitudinal Study of Visual Expectation and Reaction Time in the First Year of Life.
ERIC Educational Resources Information Center
Rose, Susan A.; Feldman, Judith F.; Jankowski, Jeffery J.; Caro, Donna M.
2002-01-01
Examined developmental change and stability of visual expectation and reaction times among 5-, 7-, and 12-month-old term and preterm infants. Found that reaction times declined with age while anticipations increased. Infants with faster reaction times were more likely to anticipate upcoming events; this effect disappeared when time between stimuli…
Pinney, Susan M.; Voss, Robert W.; Sjödin, Andreas; Biro, Frank M.; Greenspan, Louise C.; Stewart, Susan; Hiatt, Robert A.; Kushi, Lawrence H.
2015-01-01
Background Exposure to hormonally active chemicals could plausibly affect pubertal timing, so we are investigating this in the Breast Cancer and the Environment Research Program. Objectives Our goal was to examine persistent organic pollutants (POPs) in relation to pubertal onset. Methods Ethnically diverse cohorts of 6- to 8-year-old girls (n = 645) provided serum for measure of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and lipids. Tanner stages [breast (B) and pubic hair (PH)], and body mass index (BMI) were measured at up to seven annual clinic visits. Using accelerated failure time models, we calculated time ratios (TRs) for age at Tanner stages 2 or higher (2+) and POPs quartiles (Q1–4), adjusting for confounders (race/ethnicity, site, caregiver education, and income). We also calculated prevalence ratios (PRs) of Tanner stages 2+ at time of blood sampling. Results Cross-sectionally, the prevalence of B2+ and PH2+ was inversely related to chemical serum concentrations; but after adjustment for confounders, only the associations with B2+, not PH2+, were statistically significant. Longitudinally, the age at pubertal transition was consistently older with greater chemical concentrations; for example: adjusted TR for B2+ and Q4 for ΣPBDE = 1.05; 95% CI: 1.02, 1.08, for ΣPCB = 1.05; 95% CI: 1.01, 1.08, and for ΣOCP = 1.10; 95% CI: 1.06, 1.14, indicating median ages of about 6 and 11 months older than least exposed, and with similar effect estimates for PH2+. Adjusting for BMI attenuated associations for PCBs and OCPs but not for PBDEs. Conclusions This first longitudinal study of puberty in girls with serum POPs measurements (to our knowledge) reveals a delay in onset with higher concentrations. Citation Windham GC, Pinney SM, Voss RW, SjÖdin A, Biro FM, Greenspan LC, Stewart S, Hiatt RA, Kushi LH. 2015. Brominated flame retardants and other persistent organohalogenated compounds in relation to
Leone, Nancy; Villari, Valentina; Micali, Norberto
2012-08-15
We present a simple, compact, and versatile experimental setup working in the heterodyne detection mode with modulation of the reference beam. The system is implemented with a collection optics based on a unimodal optical fiber coupler. This choice allows the heterodyne to be used in a wide range of scattering angles, even for very small ones, without losing the optical beating. The apparatus can be successfully used to study translational diffusive dynamics of dispersed particles at scattering angles smaller than 5 Degree-Sign and it is suitable for exploring slow relaxation processes in sub-Hertz frequency domain, for example, in glass-forming systems. It is also possible to measure the electrophoretic mobility by applying an electric field into a charged particles solution.
Huopaniemi, Ilkka; Nadkarni, Girish; Nadukuru, Rajiv; Lotay, Vaneet; Ellis, Steve; Gottesman, Omri; Bottinger, Erwin P
2014-01-01
Electronic medical records (EMR) contain a longitudinal collection of laboratory data that contains valuable phenotypic information on disease progression of a large collection of patients. These data can be potentially used in medical research or patient care; finding disease progression subtypes is a particularly important application. There are, however, two significant difficulties in utilizing this data for statistical analysis: (a) a large proportion of data is missing and (b) patients are in very different stages of disease progression and there are no well-defined start points of the time series. We present a Bayesian machine learning model that overcomes these difficulties. The method can use highly incomplete time-series measurement of varying lengths, it aligns together similar trajectories in different phases and is capable of finding consistent disease progression subtypes. We demonstrate the method on finding chronic kidney disease progression subtypes.
Das, Anuradha; Das, Suman; Biswas, Ranjit
2015-01-21
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.
NASA Astrophysics Data System (ADS)
Das, Anuradha; Das, Suman; Biswas, Ranjit
2015-01-01
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ˜120-145 K above the measured glass transition temperatures (˜207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (˜70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.
Das, Anuradha; Das, Suman; Biswas, Ranjit
2015-01-21
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH{sub 3}CONH{sub 2}) and urea (NH{sub 2}CONH{sub 2}) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH{sub 3}CONH{sub 2} + (1 − f)NH{sub 2}CONH{sub 2}] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α{sub 2}) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems.
Das, Anuradha; Das, Suman; Biswas, Ranjit
2015-01-21
Temperature dependent relaxation dynamics, particle motion characteristics, and heterogeneity aspects of deep eutectic solvents (DESs) made of acetamide (CH3CONH2) and urea (NH2CONH2) have been investigated by employing time-resolved fluorescence measurements and all-atom molecular dynamics simulations. Three different compositions (f) for the mixture [fCH3CONH2 + (1 - f)NH2CONH2] have been studied in a temperature range of 328-353 K which is ∼120-145 K above the measured glass transition temperatures (∼207 K) of these DESs but much lower than the individual melting temperature of either of the constituents. Steady state fluorescence emission measurements using probe solutes with sharply different lifetimes do not indicate any dependence on excitation wavelength in these metastable molten systems. Time-resolved fluorescence anisotropy measurements reveal near-hydrodynamic coupling between medium viscosity and rotation of a dissolved dipolar solute. Stokes shift dynamics have been found to be too fast to be detected by the time-resolution (∼70 ps) employed, suggesting extremely rapid medium polarization relaxation. All-atom simulations reveal Gaussian distribution for particle displacements and van Hove correlations, and significant overlap between non-Gaussian (α2) and new non-Gaussian (γ) heterogeneity parameters. In addition, no stretched exponential relaxations have been detected in the simulated wavenumber dependent acetamide dynamic structure factors. All these results are in sharp contrast to earlier observations for ionic deep eutectics with acetamide [Guchhait et al., J. Chem. Phys. 140, 104514 (2014)] and suggest a fundamental difference in interaction and dynamics between ionic and non-ionic deep eutectic solvent systems. PMID:25612718
NASA Astrophysics Data System (ADS)
Meng, Xuhui; Guo, Zhaoli
2015-10-01
A lattice Boltzmann model with a multiple-relaxation-time (MRT) collision operator is proposed for incompressible miscible flow with a large viscosity ratio as well as a high Péclet number in this paper. The equilibria in the present model are motivated by the lattice kinetic scheme previously developed by Inamuro et al. [Philos. Trans. R. Soc. London, Ser. A 360, 477 (2002), 10.1098/rsta.2001.0942]. The fluid viscosity and diffusion coefficient depend on both the corresponding relaxation times and additional adjustable parameters in this model. As a result, the corresponding relaxation times can be adjusted in proper ranges to enhance the performance of the model. Numerical validations of the Poiseuille flow and a diffusion-reaction problem demonstrate that the proposed model has second-order accuracy in space. Thereafter, the model is used to simulate flow through a porous medium, and the results show that the proposed model has the advantage to obtain a viscosity-independent permeability, which makes it a robust method for simulating flow in porous media. Finally, a set of simulations are conducted on the viscous miscible displacement between two parallel plates. The results reveal that the present model can be used to simulate, to a high level of accuracy, flows with large viscosity ratios and/or high Péclet numbers. Moreover, the present model is shown to provide superior stability in the limit of high kinematic viscosity. In summary, the numerical results indicate that the present lattice Boltzmann model is an ideal numerical tool for simulating flow with a large viscosity ratio and/or a high Péclet number.
ERIC Educational Resources Information Center
Lujan, Heidi L.; DiCarlo, Stephen E.
2015-01-01
Peristalis is a propulsive activity that involves both circular and longitudinal muscle layers of the esophagus, distal stomach, and small and large intestines. During peristalsis, the circular smooth muscle contracts behind (on the orad side) the bolus and relaxes in front (on the aborad side) of the bolus. At the same time, the longitudinal…
NASA Astrophysics Data System (ADS)
Barker, J. A. T.; Singh, D.; Thamizhavel, A.; Hillier, A. D.; Lees, M. R.; Balakrishnan, G.; Paul, D. McK.; Singh, R. P.
2015-12-01
The superconductivity of the noncentrosymmetric compound La7 Ir3 is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature Tc=2.25 K —a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La7 Ir3 may be unconventional and paves the way for further studies of this family of materials.
Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; Coppari, F.; Fratanduono, D.; Huntington, C. M.; Maddox, B. R.; Park, H. -S.; Plechaty, C.; Prisbrey, S. T.; Remington, B. A.; Rudd, R. E.
2015-09-29
We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa. The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.
Petersen, Johanna
2015-01-01
Background Time out-of-home has been linked with numerous health outcomes, including cognitive decline, poor physical ability and low emotional state. Comprehensive characterization of this important health metric would potentially enable objective monitoring of key health outcomes. The objective of this study is to determine the relationship between time out-of-home and cognitive status, physical ability and emotional state. Methods and Findings Participants included 85 independent older adults, age 65–96 years (M = 86.36; SD = 6.79) who lived alone, from the Intelligent Systems for Assessing Aging Changes (ISAAC) and the ORCATECH Life Laboratory cohorts. Factors hypothesized to affect time out-of-home were assessed on three different temporal levels: yearly (cognitive status, loneliness, clinical walking speed), weekly (pain and mood) or daily (time out-of-home, in-home walking speed, weather, and season). Subject characteristics including age, race, and gender were assessed at baseline. Total daily time out-of-home in hours was assessed objectively and unobtrusively for up to one year using an in-home activity sensor platform. A longitudinal tobit mixed effects regression model was used to relate daily time out-of-home to cognitive status, physical ability and emotional state. More hours spend outside the home was associated with better cognitive function as assessed using the Clinical Dementia Rating (CDR) Scale, where higher scores indicate lower cognitive function (βCDR = -1.69, p<0.001). More hours outside the home was also associated with superior physical ability (βPain = -0.123, p<0.001) and improved emotional state (βLonely = -0.046, p<0.001; βLow mood = -0.520, p<0.001). Weather, season, and weekday also affected the daily time out-of-home. Conclusions These results suggest that objective longitudinal monitoring of time out-of-home may enable unobtrusive assessment of cognitive, physical and emotional state. In addition, these results indicate
Perko, Janez; Patel, Ravi A
2014-05-01
The paper presents an approach that extends the flexibility of the standard lattice Boltzmann single relaxation time scheme in terms of spatial variation of dissipative terms (e.g., diffusion coefficient) and stability for high Péclet mass transfer problems. Spatial variability of diffusion coefficient in SRT is typically accommodated through the variation of relaxation time during the collision step. This method is effective but cannot deal with large diffusion coefficient variations, which can span over several orders of magnitude in some natural systems. The approach explores an alternative way of dealing with large diffusion coefficient variations in advection-diffusion transport systems by introducing so-called diffusion velocity. The diffusion velocity is essentially an additional convective term that replaces variations in diffusion coefficients vis-à-vis a chosen reference diffusion coefficient which defines the simulation time step. Special attention is paid to the main idea behind the diffusion velocity formulation and its implementation into the lattice Boltzmann framework. Finally, the performance, stability, and accuracy of the diffusion velocity formulation are discussed via several advection-diffusion transport benchmark examples. These examples demonstrate improved stability and flexibility of the proposed scheme with marginal consequences on the numerical performance.
Mohamad, N B; Lee, Khuan Y; Mansor, W; Mahmoodin, Z; Fadzal, C W N F C W; Amirin, S
2015-01-01
Symptoms of dyslexia such as difficulties with accurate and/or fluent word recognition, and/or poor spelling as well as decoding abilities, are easily misinterpreted as laziness and defiance amongst school children. Indeed, 37.9% of 699 school dropouts and failures are diagnosed as dyslexic. Currently, Screening for dyslexia relies heavily on therapists, whom are few and subjective, yet objective methods are still unavailable. EEG has long been a popular method to study the cognitive processes in human such as language processing and motor activity. However, its interpretation is limited to time and frequency domain, without visual information, which is still useful. Here, our research intends to illustrate an EEG-based time and spatial interpretation of activated brain areas for the poor and capable dyslexic during the state of relaxation and words writing, being the first attempt ever reported. From the 2D distribution of EEG spectral at the activation areas and its progress with time, it is observed that capable dyslexics are able to relax compared to poor dyslexics. During the state of words writing, neural activities are found higher on the right hemisphere than the left hemisphere of the capable dyslexics, which suggests a neurobiological compensation pathway in the right hemisphere, during reading and writing, which is not observed in the poor dyslexics.
Ren, Jimin; Sherry, A Dean; Malloy, Craig R
2015-11-01
The conventional method for measuring brain ATP synthesis is (31)P saturation transfer (ST), a technique typically dependent on prolonged pre-saturation with γ-ATP. In this study, ATP synthesis rate in resting human brain is evaluated using EBIT (exchange kinetics by band inversion transfer), a technique based on slow recovery of γ-ATP magnetization in the absence of B1 field following co-inversion of PCr and ATP resonances with a short adiabatic pulse. The unidirectional rate constant for the Pi → γ-ATP reaction is 0.21 ± 0.04 s(-1) and the ATP synthesis rate is 9.9 ± 2.1 mmol min(-1) kg(-1) in human brain (n = 12 subjects), consistent with the results by ST. Therefore, EBIT could be a useful alternative to ST in studying brain energy metabolism in normal physiology and under pathological conditions. In addition to ATP synthesis, all detectable (31)P signals are analyzed to determine the brain concentration of phosphorus metabolites, including UDPG at around 10 ppm, a previously reported resonance in liver tissues and now confirmed in human brain. Inversion recovery measurements indicate that UDPG, like its diphosphate analogue NAD, has apparent T1 shorter than that of monophosphates (Pi, PMEs, and PDEs) but longer than that of triphosphate ATP, highlighting the significance of the (31)P-(31)P dipolar mechanism in T1 relaxation of polyphosphates. Another interesting finding is the observation of approximately 40% shorter T1 for intracellular Pi relative to extracellular Pi, attributed to the modulation by the intracellular phosphoryl exchange reaction Pi ↔ γ-ATP. The sufficiently separated intra- and extracellular Pi signals also permit the distinction of pH between intra- and extracellular environments (pH 7.0 versus pH 7.4). In summary, quantitative (31)P MRS in combination with ATP synthesis, pH, and T1 relaxation measurements may offer a promising tool to detect biochemical alterations at early stages of brain dysfunctions and diseases
Ren, Jimin; Sherry, A Dean; Malloy, Craig R
2015-11-01
The conventional method for measuring brain ATP synthesis is (31)P saturation transfer (ST), a technique typically dependent on prolonged pre-saturation with γ-ATP. In this study, ATP synthesis rate in resting human brain is evaluated using EBIT (exchange kinetics by band inversion transfer), a technique based on slow recovery of γ-ATP magnetization in the absence of B1 field following co-inversion of PCr and ATP resonances with a short adiabatic pulse. The unidirectional rate constant for the Pi → γ-ATP reaction is 0.21 ± 0.04 s(-1) and the ATP synthesis rate is 9.9 ± 2.1 mmol min(-1) kg(-1) in human brain (n = 12 subjects), consistent with the results by ST. Therefore, EBIT could be a useful alternative to ST in studying brain energy metabolism in normal physiology and under pathological conditions. In addition to ATP synthesis, all detectable (31)P signals are analyzed to determine the brain concentration of phosphorus metabolites, including UDPG at around 10 ppm, a previously reported resonance in liver tissues and now confirmed in human brain. Inversion recovery measurements indicate that UDPG, like its diphosphate analogue NAD, has apparent T1 shorter than that of monophosphates (Pi, PMEs, and PDEs) but longer than that of triphosphate ATP, highlighting the significance of the (31)P-(31)P dipolar mechanism in T1 relaxation of polyphosphates. Another interesting finding is the observation of approximately 40% shorter T1 for intracellular Pi relative to extracellular Pi, attributed to the modulation by the intracellular phosphoryl exchange reaction Pi ↔ γ-ATP. The sufficiently separated intra- and extracellular Pi signals also permit the distinction of pH between intra- and extracellular environments (pH 7.0 versus pH 7.4). In summary, quantitative (31)P MRS in combination with ATP synthesis, pH, and T1 relaxation measurements may offer a promising tool to detect biochemical alterations at early stages of brain dysfunctions and diseases.
ERIC Educational Resources Information Center
Sharp, Erin Hiley; Caldwell, Linda L.; Graham, John W.; Ridenour, Ty A.
2006-01-01
Time spent in freely chosen leisure activities offers a distinct developmental context that can support positive youth development; however this potential for growth depends in part on adolescent interest and engagement in their free time activities. Research indicates that many adolescents report experiencing boredom, instead of interest, in…
Hilbrink, Elma E.; Gattis, Merideth; Levinson, Stephen C.
2015-01-01
To accomplish a smooth transition in conversation from one speaker to the next, a tight coordination of interaction between speakers is required. Recent studies of adult conversation suggest that this close timing of interaction may well be a universal feature of conversation. In the present paper, we set out to assess the development of this close timing of turns in infancy in vocal exchanges between mothers and infants. Previous research has demonstrated an early sensitivity to timing in interactions (e.g., Murray and Trevarthen, 1985). In contrast, less is known about infants’ abilities to produce turns in a timely manner and existing findings are rather patchy. We conducted a longitudinal study of 12 mother–infant dyads in free-play interactions at the ages of 3, 4, 5, 9, 12, and 18 months. Based on existing work and the predictions made by the Interaction Engine Hypothesis (Levinson, 2006), we expected that infants would begin to develop the temporal properties of turn-taking early in infancy but that their timing of turns would slow down at 12 months, which is around the time when infants start to produce their first words. Findings were consistent with our predictions: infants were relatively fast at timing their turn early in infancy but slowed down toward the end of the first year. Furthermore, the changes observed in infants’ turn-timing skills were not caused by changes in maternal timing, which remained stable across the 3–18 months period. However, the slowing down of turn-timing started somewhat earlier than predicted: at 9 months. PMID:26483741
Tomiha, Sadanori; Iita, Nachiko; Okada, Fumi; Handa, Shinya; Kose, Katsumi
2008-08-01
Relaxation times (T(1) and T(2)) of the bone marrow protons and trabecular bone volume fraction (TBVF) in the calcaneus were measured for 100 female volunteers using a compact MRI system at 0.2 T field strength. The speed of sound (SOS) through the calcaneus was measured also for the same subjects using a quantitative ultrasound system. Both relaxation times were found to have positive correlations with age (R = 0.40; P < 0.0001 and R = 0.31; P < 0.002, respectively) and negative correlations with SOS (R = -0.38; P < 0.0001 and R = -0.38; P < 0.0001, respectively). Although TBVF had a fairly high positive correlation with the SOS (R = 0.67), neither T(1) nor T(2) were correlated with TBVF (R = -0.062 and -0.024, respectively). These results suggest that the age dependence of both T(1) and T(2) is caused by the microdynamic properties of the lipid molecules in bone marrow observed using acoustic or elastic modalities. PMID:18666107
de Guzman, Natalie S; Nishina, Adrienne
2014-01-01
In a 7-year study, adolescents' body dissatisfaction (N=1370) was examined across four high school years as a function of pubertal development (perceived timing relative to peers and self-reported physical changes measured during Grades 6-10) in the context of the high school transition. Boys and girls who, during early high school, perceived themselves to be late relative to peers were at risk for body dissatisfaction across the high school years. Boys who were late in pubertal development reported more body dissatisfaction in early high school than on-time boys, but then decreased over time. African-American girls reported less body dissatisfaction across the high school years relative to other girls. Asian girls reported more dissatisfaction in early high school than African-American, Latina, and Multiethnic girls, and increased over time. Results highlight the importance of considering late development within context as a risk factor in body dissatisfaction research. PMID:24331829
Hochberg, Uri; Herrera, Jose Carlos; Cochard, Hervé; Badel, Eric
2016-06-01
In recent years, the validity of embolism quantification methods has been questioned, especially for long-vesseled plants. Some studies have suggested that cutting xylem while under tension, even under water, might generate artificial cavitation. Accordingly, a rehydration procedure prior to hydraulic measurements has been recommended to avoid this artefact. On the other hand, concerns have been raised that xylem refilling might occur when samples are rehydrated. Here, we explore the potential biases affecting embolism quantification for grapevine (Vitis vinifera L.) petioles harvested under tension or after xylem relaxation. We employ direct visualization of embolism through X-ray micro-computed tomography (microCT) to test for the occurrence of fast refilling (artifactually low per cent loss of conductivity (PLC) due to rehydration prior to sample harvest) as well as excision-induced embolism (artifactually high embolism due to air introduction during harvest). Additionally, we compared the response functions of both stomatal regulation and xylem embolism to xylem pressure (Ψx). Short-time (20 min) xylem tension relaxation prior to the hydraulic measurement resulted in a lower degree of embolism than found in samples harvested under native tensions, and yielded xylem vulnerability curves similar to the ones obtained using direct microCT visualization. Much longer periods of hydration (overnight) were required before xylem refilling was observed to occur. In field-grown vines, over 85% of stomatal closure occurred at less negative Ψx than that required to induce 12% PLC. Our results demonstrate that relaxation of xylem tension prior to hydraulic measurement allows for the reliable quantification of native embolism in grapevine petioles. Furthermore, we find that stomatal regulation is sufficiently conservative to avoid transpiration-induced cavitation. These results suggest that grapevines have evolved a strategy of cavitation resistance, rather than one of
Hochberg, Uri; Herrera, Jose Carlos; Cochard, Hervé; Badel, Eric
2016-06-01
In recent years, the validity of embolism quantification methods has been questioned, especially for long-vesseled plants. Some studies have suggested that cutting xylem while under tension, even under water, might generate artificial cavitation. Accordingly, a rehydration procedure prior to hydraulic measurements has been recommended to avoid this artefact. On the other hand, concerns have been raised that xylem refilling might occur when samples are rehydrated. Here, we explore the potential biases affecting embolism quantification for grapevine (Vitis vinifera L.) petioles harvested under tension or after xylem relaxation. We employ direct visualization of embolism through X-ray micro-computed tomography (microCT) to test for the occurrence of fast refilling (artifactually low per cent loss of conductivity (PLC) due to rehydration prior to sample harvest) as well as excision-induced embolism (artifactually high embolism due to air introduction during harvest). Additionally, we compared the response functions of both stomatal regulation and xylem embolism to xylem pressure (Ψx). Short-time (20 min) xylem tension relaxation prior to the hydraulic measurement resulted in a lower degree of embolism than found in samples harvested under native tensions, and yielded xylem vulnerability curves similar to the ones obtained using direct microCT visualization. Much longer periods of hydration (overnight) were required before xylem refilling was observed to occur. In field-grown vines, over 85% of stomatal closure occurred at less negative Ψx than that required to induce 12% PLC. Our results demonstrate that relaxation of xylem tension prior to hydraulic measurement allows for the reliable quantification of native embolism in grapevine petioles. Furthermore, we find that stomatal regulation is sufficiently conservative to avoid transpiration-induced cavitation. These results suggest that grapevines have evolved a strategy of cavitation resistance, rather than one of
Asano, Michiko; Taki, Yasuyuki; Hashizume, Hiroshi; Takeuchi, Hikaru; Thyreau, Benjamin; Sassa, Yuko; Asano, Kohei; Kawashima, Ryuta
2014-01-01
Introduction Like sleeping and eating habits, the study habits adopted by children when they are at home are important contributors to lifestyle and they affect cognitive ability. It has recently been reported that sleeping and eating habits change the brain structure of children. However, no research on the effect of study habits at home on the brain structure of children has been conducted thus far. We investigated the effects of study habits at home on the brain structures of healthy children by examining correlations between study time at home and changes in brain structure over the course of 3 years. Methods We used the brain magnetic resonance images of 229 healthy children aged 5.6–18.4 years and computed the changes (time 2–time 1) in regional gray matter and white matter volume (rWMV) using voxel-based morphometry. Whole-brain multiple regression analysis revealed a significant positive correlation between study time at home and changes in rWMV in the right superior frontal gyrus (SFG). Behaviorally, we found a significant positive correlation between study time at home and change in the verbal comprehension index (VCI), one of the subscales of the Wechsler Intelligence Scale for Children–third edition (WISC–III). Results and Conclusions Given that the SFG is involved in memory control and that the VCI measures abilities related to vocabulary, our results indicate that greater SFG involvement in the memorization component of longer study times may result in greater increases in the number of axons and more axon branching and myelination, causing plastic changes in the neural network involved in memory processes. PMID:25365804
NASA Astrophysics Data System (ADS)
Baumgartner, Stephan; Wolf, Martin; Skrabal, Peter; Bangerter, Felix; Heusser, Peter; Thurneysen, André; Wolf, Ursula
2009-09-01
Quantitative meta-analyses of randomized clinical trials investigating the specific therapeutic efficacy of homeopathic remedies yielded statistically significant differences compared to placebo. Since the remedies used contained mostly only very low concentrations of pharmacologically active compounds, these effects cannot be accounted for within the framework of current pharmacology. Theories to explain clinical effects of homeopathic remedies are partially based upon changes in diluent structure. To investigate the latter, we measured for the first time high-field (600/500 MHz) 1H T1 and T2 nuclear magnetic resonance relaxation times of H2O in homeopathic preparations with concurrent contamination control by inductively coupled plasma mass spectrometry (ICP-MS). Homeopathic preparations of quartz (10 c-30 c, n = 21, corresponding to iterative dilutions of 100-10-100-30), sulfur (13 x-30 x, n = 18, 10-13-10-30), and copper sulfate (11 c-30 c, n = 20, 100-11-100-30) were compared to n = 10 independent controls each (analogously agitated dilution medium) in randomized and blinded experiments. In none of the samples, the concentration of any element analyzed by ICP-MS exceeded 10 ppb. In the first measurement series (600 MHz), there was a significant increase in T1 for all samples as a function of time, and there were no significant differences between homeopathic potencies and controls. In the second measurement series (500 MHz) 1 year after preparation, we observed statistically significant increased T1 relaxation times for homeopathic sulfur preparations compared to controls. Fifteen out of 18 correlations between sample triplicates were higher for controls than for homeopathic preparations. No conclusive explanation for these phenomena can be given at present. Possible hypotheses involve differential leaching from the measurement vessel walls or a change in water molecule dynamics, i.e., in rotational correlation time and/or diffusion. Homeopathic preparations
Modeling Time-Dependent Association in Longitudinal Data: A Lag as Moderator Approach
ERIC Educational Resources Information Center
Selig, James P.; Preacher, Kristopher J.; Little, Todd D.
2012-01-01
We describe a straightforward, yet novel, approach to examine time-dependent association between variables. The approach relies on a measurement-lag research design in conjunction with statistical interaction models. We base arguments in favor of this approach on the potential for better understanding the associations between variables by…
Dating Violence, Bullying, and Sexual Harassment: Longitudinal Profiles and Transitions over Time
ERIC Educational Resources Information Center
Miller, Shari; Williams, Jason; Cutbush, Stacey; Gibbs, Deborah; Clinton-Sherrod, Monique; Jones, Sarah
2013-01-01
Although there is growing recognition of the problem of dating violence, little is known about how it unfolds among young adolescents who are just beginning to date. This study examined classes (subgroups) and transitions between classes over three time points based on dating violence, bullying, and sexual harassment perpetration and victimization…
Schildcrout, Jonathan S; Mumford, Sunni L; Chen, Zhen; Heagerty, Patrick J; Rathouz, Paul J
2012-09-28
Outcome-dependent sampling (ODS) study designs are commonly implemented with rare diseases or when prospective studies are infeasible. In longitudinal data settings, when a repeatedly measured binary response is rare, an ODS design can be highly efficient for maximizing statistical information subject to resource limitations that prohibit covariate ascertainment of all observations. This manuscript details an ODS design where individual observations are sampled with probabilities determined by an inexpensive, time-varying auxiliary variable that is related but is not equal to the response. With the goal of validly estimating marginal model parameters based on the resulting biased sample, we propose a semi-parametric, sequential offsetted logistic regressions (SOLR) approach. The SOLR strategy first estimates the relationship between the auxiliary variable and the response and covariate data by using an offsetted logistic regression analysis where the offset is used to adjust for the biased design. Results from the auxiliary variable model are then combined with the known or estimated sampling probabilities to formulate a second offset that is used to correct for the biased design in the ultimate target model relating the longitudinal binary response to covariates. Because the target model offset is estimated with SOLR, we detail asymptotic standard error estimates that account for uncertainty associated with the auxiliary variable model. Motivated by an analysis of the BioCycle Study (Gaskins et al., Effect of daily fiber intake on reproductive function: the BioCycle Study. American Journal of Clinical Nutrition 2009; 90(4): 1061-1069) that aims to describe the relationship between reproductive health (determined by luteinizing hormone levels) and fiber consumption, we examine properties of SOLR estimators and compare them with other common approaches.
Schildcrout, Jonathan S.; Mumford, Sunni L.; Chen, Zhen; Heagerty, Patrick J.; Rathouz, Paul J.
2012-01-01
Outcome-dependent sampling (ODS) study designs are commonly implemented with rare diseases or when prospective studies are infeasible. In longitudinal data settings, when a repeatedly measured binary response is rare, an ODS design can be highly efficient for maximizing statistical information subject to resource limitations that prohibit covariate ascertainment of all observations. This manuscript details an ODS design where individual observations are sampled with probabilities determined by an inexpensive, time-varying auxiliary variable that is related but is not equal to the response. With the goal of validly estimating marginal model parameters based on the resulting biased sample, we propose a semi-parametric, sequential offsetted logistic regressions (SOLR) approach. The SOLR strategy first estimates the relationship between the auxiliary variable and the response and covariate data by using an offsetted logistic regression analysis where the offset is used to adjust for the biased design. Results from the auxiliary variable model are then combined with the known or estimated sampling probabilities to formulate a second offset that is used to correct for the biased design in the ultimate target model relating the longitudinal binary response to covariates. Because the target model offset is estimated with SOLR, we detail asymptotic standard error estimates that account for uncertainty associated with the auxiliary variable model. Motivated by an analysis of the BioCycle Study (Gaskins et al., Effect of daily fiber intake on reproductive function: the BioCycle Study. American Journal of Clinical Nutrition 2009; 90(4): 1061–1069) that aims to describe the relationship between reproductive health (determined by luteinizing hormone levels) and fiber consumption, we examine properties of SOLR estimators and compare them with other common approaches. PMID:22086716
NASA Astrophysics Data System (ADS)
Lee, Byoung Wan; Ko, Jae-Hyeon; Park, Jaehoon; Shin, Dong-Myeong; Hwang, Yoon-Hwae
2016-04-01
The temperature dependences of the acoustic properties and the dielectric relaxation times of polydimethylsiloxane were investigated by using high-resolution Brillouin and broadband dielectric spectroscopies. The longitudinal sound velocity showed a large increase upon approaching the glass transition temperature while the acoustic absorption coefficient exhibited a maximum at ~263 K. Comparison of these results with previous ultrasonic data revealed a substantial frequency dispersion of the acoustic properties of this silicone-based elastomer. The relaxation times derived from the acoustic absorption peaks were consistent with the temperature dependence of the dielectric relaxation time of the structural a process, indicating a strong coupling between the acoustic waves and the segmental motions of the main chains.
Hansen, Christian Lyndgaard; Rinnan, Asmund; Engelsen, Søren Balling; Janhøj, Thomas; Micklander, Elisabeth; Andersen, Ulf; van den Berg, Frans
2010-01-13
The objective of this study was to monitor rennet-induced milk gel formation and mechanically induced gel syneresis in situ by low-field NMR. pH, temperature, and gel firmness at cutting time were varied in a factorial design. The new curve-fitting method Doubleslicing revealed that during coagulation two proton populations with distinct transverse relaxation times (T2,1=181, T2,2=465 ms) were present in fractions (f1=98.9%, f2=1.1%). Mechanical cutting of the gel in the NMR tube induced macrosyneresis, which led to the appearance of an additional proton population (T2,3=1500-2200 ms) identified as whey. On the basis of NMR quantification of whey water the syneresis rate was calculated and found to be significantly dependent on pH and temperature.
NASA Technical Reports Server (NTRS)
Halthore, Rangasayi N.; Caldwell, John J.; Allen, John E., Jr.; Burt, Jim A.; Yang, Kuanghua; Delaney, Paul
1990-01-01
The 7.8 micrometer emission from the nu(sub 4) band of methane (CH4) is a regularly observed feature in the stratosphere of all the giant planets and Titan. On Jupiter, enhancements in this emission are associated with the infrared hot spots in the auroral zone. Attempts to model this phenomenon in particular, and to understand the role of methane in general, have been hampered in part by a lack of adequate laboratory measurements of the collisional relaxation times for the nu(sub 3) and nu(sub 4) levels over the appropriate temperature range. To provide this needed data, a series of laboratory experiments were initiated. In the experimental arrangement the nu(sub3) band of methane is pumped at 3.3 micrometers using a pulsed infrared source (Nd:YAG/dye laser system equipped with a wave-length extender). The radiative lifetime of the nu(sub 3) level (approximately 37 ms) is much shorter than the nu(sub 4) lifetime (approximately 390 ms); however, a rapid V-V energy transfer rate ensures that the nu(sub 4) level is substantially populated. The photoacoustic technique is used to acquire relaxation rate information. The experiments are performed using a low-temperature, low-pressure cell. Experimental apparatus and technique are described. In addition some of the experimental difficulties associated with making these measurements are discussed and some preliminary results are presented.
Choi, Yun-Young; Choi, Yuri; Kim, Jisook; Choi, Hyeonhae; Shin, Jiwon; Roh, Jaesook
2016-01-01
This study investigated the dose- and time-dependent effects of caffeine consumption throughout puberty in peripubertal rats. A total of 85 male SD rats were randomly divided into four groups: control and caffeine-fed groups with 20, 60, or 120 mg/kg/day through oral gavage for 10, 20, 30, or 40 days. Caffeine decreased body weight gain and food consumption in a dose- and time-dependent manner, accompanied by a reduction in muscle and body fat. In addition, it caused a shortening and lightening of leg bones and spinal column. The total height of the growth plate decreased sharply at 40 days in the controls, but not in the caffeine-fed groups, and the height of hypertrophic zone in the caffeine-fed groups was lower than in the control. Caffeine increased the height of the secondary spongiosa, whereas parameters related to bone formation, such as bone area ratio, thickness and number of trabeculae, and bone perimeter, were significantly reduced. Furthermore, serum levels of IGF-1, estradiol, and testosterone were also reduced by the dose of caffeine exposure. Our results demonstrate that caffeine consumption can dose- and time-dependently inhibit longitudinal bone growth in immature male rats, possibly by blocking the physiologic changes in body composition and hormones relevant to bone growth.
Choi, Yun-Young; Choi, Yuri; Kim, Jisook; Choi, Hyeonhae; Shin, Jiwon; Roh, Jaesook
2016-01-01
This study investigated the dose- and time-dependent effects of caffeine consumption throughout puberty in peripubertal rats. A total of 85 male SD rats were randomly divided into four groups: control and caffeine-fed groups with 20, 60, or 120 mg/kg/day through oral gavage for 10, 20, 30, or 40 days. Caffeine decreased body weight gain and food consumption in a dose- and time-dependent manner, accompanied by a reduction in muscle and body fat. In addition, it caused a shortening and lightening of leg bones and spinal column. The total height of the growth plate decreased sharply at 40 days in the controls, but not in the caffeine-fed groups, and the height of hypertrophic zone in the caffeine-fed groups was lower than in the control. Caffeine increased the height of the secondary spongiosa, whereas parameters related to bone formation, such as bone area ratio, thickness and number of trabeculae, and bone perimeter, were significantly reduced. Furthermore, serum levels of IGF-1, estradiol, and testosterone were also reduced by the dose of caffeine exposure. Our results demonstrate that caffeine consumption can dose- and time-dependently inhibit longitudinal bone growth in immature male rats, possibly by blocking the physiologic changes in body composition and hormones relevant to bone growth. PMID:26495862
ERIC Educational Resources Information Center
Hoppmann, Christiane A.; Gerstorf, Denis; Willis, Sherry L.; Schaie, K. Warner
2011-01-01
Development does not take place in isolation and is often interrelated with close others such as marital partners. To examine interrelations in spousal happiness across midlife and old age, we used 35-year longitudinal data from both members of 178 married couples in the Seattle Longitudinal Study. Latent growth curve models revealed sizeable…
Magnetic phases and relaxation effects in fullerite C60
NASA Astrophysics Data System (ADS)
Chigvinadze, J. G.; Buntar, V.; Ashimov, S. M.; Dolbin, A. V.
2016-02-01
A highly sensitive torsional vibration technique is used to study the magnetic properties of fullerite C60 (99.98%) at temperatures of 77-300 K in dynamic and static experiments. Vibrational energy absorption peaks associated with phase transitions and realignment of the magnetic structure of the fullerite are detected at T = 152, 195, 230, and 260 K. Relaxation magnetic processes in fullerite C60 at room temperature are studied. "Spontaneous" rotation of a motionless sample of fullerite freely suspended on an elastic filament is observed when external longitudinal or transverse magnetic fields are switched on. The direction of the "spontaneous" rotation changes with time. It is proposed that these phenomena are related to relaxation processes in the rotational subsystem of C60 molecular rotators, as well as to magnetic flux trapped in the fullerite and weakly damped eddy currents induced in the sample by the applied field.
Werz, Karin; Braun, Hans; Vitha, Dominik; Bruno, Graziano; Martirosian, Petros; Steidle, Günter; Schick, Fritz
2011-09-01
The aim of the project was a systematic assessment of relaxation times of different fruits and vegetables and a comparison to values of human tissues. Results provide an improved basis for selection of plant phantoms for development of new MR techniques and sequences. Vessels filled with agar gel are mostly used for this purpose, preparation of which is effortful and time-consuming. In the presented study apples, (malus, 8 species), pears, (pyrus, 2 species), citrus fruits (citrus, 5 species) and uncooked potatoes (solanum tuberosum, 8 species) from the supermarket were examined which are easily available nearly all-the-year. T1, T2 and T2* relaxation times of these nature products were measured on a 1.5 Tesla MR system with adapted examination protocols and mono-exponential fitting, and compared to literature data of human parenchyma tissues, fatty tissue and body fluid (cerebrospinal fluid). Resulting values were as follows: apples: T1: 1486-1874 ms, T2: 163-281 ms, T2*: 2.3-3.2 ms; pears: T1: 1631-1969 ms, T2: 119-133 ms, T2* : 10.1-10.6 ms, citrus fruits (pulp) T1: 2055-2632 ms, T2: 497-998 ms, T2* : 151-182 ms; citrus fruits (skin) T1: 561-1669 ms, T2: 93-119 ms; potatoes: T1: 1011-1459 ms, T2: 166 - 210 ms, T2* : 20 - 30 ms. All T1-values of the examined objects (except for potatoes and skins of citrus fruits) were longer than T1 values of human tissues. Also T2 values (except for pears and skins of citrus fruits) of the fruits and the potatoes tended to be longer. T2* values of apples, pears and potatoes were shorter than in healthy human tissue. Results show relaxation values of many fruits to be not exactly fitting to human tissue, but with suitable selection of the fruits and optionally with an adaption of measurement parameters one can achieve suitable contrast and signal characteristics for some purposes.
Plasmon-mediated energy relaxation in graphene
NASA Astrophysics Data System (ADS)
Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.
2015-12-01
Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.
Plasmon-mediated energy relaxation in graphene
Ferry, D. K.; Somphonsane, R.; Ramamoorthy, H.; Bird, J. P.
2015-12-28
Energy relaxation of hot carriers in graphene is studied at low temperatures, where the loss rate may differ significantly from that predicted for electron-phonon interactions. We show here that plasmons, important in the relaxation of energetic carriers in bulk semiconductors, can also provide a pathway for energy relaxation in transport experiments in graphene. We obtain a total loss rate to plasmons that results in energy relaxation times whose dependence on temperature and density closely matches that found experimentally.
2013-01-01
Background There currently exists a vast amount of literature concerning chronic illness self-management, however the developmental patterns and sustainability of self-management over time remain largely unknown. This paper aims to describe the patterns by which different chronic illness self-management behaviors develop and are maintained over time. Method Twenty-one individuals newly diagnosed with chronic illnesses (e.g., diabetes, rheumatism, ischemic heart disease, multiple sclerosis, chronic renal disease, inflammatory bowel disease) were repeatedly interviewed over two-and-a-half years. The interviews were conducted in Sweden from 2006 to 2008. A total of 81 narrative interviews were analyzed with an interpretive description approach. Results The participants’ self-management behaviors could be described in four different developmental patterns: consistent, episodic, on demand, and transitional. The developmental patterns were related to specific self-management behaviors. Most participants took long-term medications in a consistent pattern, whereas exercise was often performed according to an episodic pattern. Participants managed health crises (e.g., angina, pain episodes) according to an on demand pattern and everyday changes due to illness (e.g., adaptation of work and household activities) according to a transitional pattern. All of the participants used more than one self-management pattern. Conclusion The findings show that self-management does not develop as one uniform pattern. Instead different self-management behaviors are enacted in different patterns. Therefore, it is likely that self-management activities require support strategies tailored to each behavior’s developmental pattern. PMID:23647658
... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...
Brilleman, Samuel L; Crowther, Michael J; May, Margaret T; Gompels, Mark; Abrams, Keith R
2016-09-10
Shared parameter joint models provide a framework under which a longitudinal response and a time to event can be modelled simultaneously. A common assumption in shared parameter joint models has been to assume that the longitudinal response is normally distributed. In this paper, we instead propose a joint model that incorporates a two-part 'hurdle' model for the longitudinal response, motivated in part by longitudinal response data that is subject to a detection limit. The first part of the hurdle model estimates the probability that the longitudinal response is observed above the detection limit, whilst the second part of the hurdle model estimates the mean of the response conditional on having exceeded the detection limit. The time-to-event outcome is modelled using a parametric proportional hazards model, assuming a Weibull baseline hazard. We propose a novel association structure whereby the current hazard of the event is assumed to be associated with the current combined (expected) outcome from the two parts of the hurdle model. We estimate our joint model under a Bayesian framework and provide code for fitting the model using the Bayesian software Stan. We use our model to estimate the association between HIV RNA viral load, which is subject to a lower detection limit, and the hazard of stopping or modifying treatment in patients with HIV initiating antiretroviral therapy. Copyright © 2016 John Wiley & Sons, Ltd.
Relaxation Assessment with Varied Structured Milieu (RELAX).
ERIC Educational Resources Information Center
Cassel, Russell N.; Cassel, Susie L.
1983-01-01
Describes Relaxation Assessment with Varied Structured Milieu (RELAX), a clinical program designed to assess the degree to which an individual is able to demonstrate self-control for overall general relaxation. The program is designed for use with the Cassel Biosensors biofeedback equipment. (JAC)
Sreeharan, Vaishnavee; Madden, Hugo; Lee, John Tayu; Millett, Christopher; Majeed, Azeem
2013-01-01
Background Antidepressant prescribing rates in England have been increasing since the 1970s. The impact of the Improving Access to Psychological Therapies (IAPT) initiative on antidepressant prescribing rates is unknown. Aim To investigate the impact of the establishment of IAPT services on antidepressant prescribing rates in primary care trusts (PCTs) in England. Design and setting A longitudinal time-series analysis, using PCT-level data from 2008 to 2011 set in England. Method A time-series analysis was conducted using PCT-level prescription data, dates of establishment of IAPT services, and covariate data for age, sex, and socioeconomic status. Statistical analysis was carried out using analysis of variance and a random-effect negative binomial model. Results Antidepressant prescribing rates in England increased by 10% per year during the study period (adjusted rate ratio = 1.10, 95% CI = 1.09 to 1.10). The implementation of IAPT services had no significant effect on antidepressant prescribing (adjusted rate ratio = 0.99, 95% CI = 0.99 to 1.00). Conclusion Introduction of a large-scale initiative to increase provision of psychological therapies has not curbed the long-term increased prescribing of antidepressants in England. PMID:23998846
West, Niclas A; Winner, Joshua D; Bowersox, Rodney D W; North, Simon W
2016-07-01
The relaxation of highly vibrationally excited benzene, generated by 193 nm laser excitation, was studied using the transient rotational-translational temperature rise of the N2 bath, which was measured by proxy using two-line laser induced fluorescence of seeded NO. The resulting experimentally measured time-dependent N2 temperature rises were modeled with MultiWell based simulations of Collisional Energy Transfer (CET) from benzene vibration to N2 rotation-translation. We find that the average energy transferred in benzene deactivating collisions depends linearly on the internal energy of the excited benzene molecules and depends approximately linearly on the N2 bath temperature between 300 K and 600 K. The results are consistent with experimental studies and classical trajectory calculations of CET in similar systems. PMID:27394109
NASA Astrophysics Data System (ADS)
West, Niclas A.; Winner, Joshua D.; Bowersox, Rodney D. W.; North, Simon W.
2016-07-01
The relaxation of highly vibrationally excited benzene, generated by 193 nm laser excitation, was studied using the transient rotational-translational temperature rise of the N2 bath, which was measured by proxy using two-line laser induced fluorescence of seeded NO. The resulting experimentally measured time-dependent N2 temperature rises were modeled with MultiWell based simulations of Collisional Energy Transfer (CET) from benzene vibration to N2 rotation-translation. We find that the average energy transferred in benzene deactivating collisions depends linearly on the internal energy of the excited benzene molecules and depends approximately linearly on the N2 bath temperature between 300 K and 600 K. The results are consistent with experimental studies and classical trajectory calculations of CET in similar systems.
Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P
2015-12-31
The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25 K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials. PMID:26765016
Barker, J A T; Singh, D; Thamizhavel, A; Hillier, A D; Lees, M R; Balakrishnan, G; Paul, D McK; Singh, R P
2015-12-31
The superconductivity of the noncentrosymmetric compound La(7)Ir(3) is investigated using muon spin rotation and relaxation. Zero-field measurements reveal the presence of spontaneous static or quasistatic magnetic fields below the superconducting transition temperature T(c)=2.25 K-a clear indication that the superconducting state breaks time-reversal symmetry. Furthermore, transverse-field rotation measurements suggest that the superconducting gap is isotropic and that the pairing symmetry of the superconducting electrons is predominantly s wave with an enhanced binding strength. The results indicate that the superconductivity in La(7)Ir(3) may be unconventional and paves the way for further studies of this family of materials.
Hales, Patrick W; Kirkham, Fenella J; Clark, Christopher A
2016-02-01
Many MRI techniques require prior knowledge of the T1-relaxation time of blood (T1bl). An assumed/fixed value is often used; however, T1bl is sensitive to magnetic field (B0), haematocrit (Hct), and oxygen saturation (Y). We aimed to combine data from previous in vitro measurements into a mathematical model, to estimate T1bl as a function of B0, Hct, and Y. The model was shown to predict T1bl from in vivo studies with a good accuracy (± 87 ms). This model allows for improved estimation of T1bl between 1.5-7.0 T while accounting for variations in Hct and Y, leading to improved accuracy of MRI-derived perfusion measurements.
Shuval, Kerem; Finley, Carrie E; Barlow, Carolyn E; Nguyen, Binh T; Njike, Valentine Y; Pettee Gabriel, Kelley
2015-01-01
Objectives To examine the independent and joint effects of sedentary time and cardiorespiratory fitness (fitness) on all-cause mortality. Design, setting, participants A prospective study of 3141 Cooper Center Longitudinal Study participants. Participants provided information on television (TV) viewing and car time in 1982 and completed a maximal exercise test during a 1-year time frame; they were then followed until mortality or through 2010. TV viewing, car time, total sedentary time and fitness were the primary exposures and all-cause mortality was the outcome. The relationship between the exposures and outcome was examined utilising Cox proportional hazard models. Results A total of 581 deaths occurred over a median follow-up period of 28.7 years (SD=4.4). At baseline, participants’ mean age was 45.0 years (SD=9.6), 86.5% were men and their mean body mass index was 24.6 (SD=3.0). Multivariable analyses revealed a significant linear relationship between increased fitness and lower mortality risk, even while adjusting for total sedentary time and covariates (p=0.02). The effects of total sedentary time on increased mortality risk did not quite reach statistical significance once fitness and covariates were adjusted for (p=0.05). When examining this relationship categorically, in comparison to the reference category (≤10 h/week), being sedentary for ≥23 h weekly increased mortality risk by 29% without controlling for fitness (HR=1.29, 95% CI 1.03 to 1.63); however, once fitness and covariates were taken into account this relationship did not reach statistical significance (HR=1.20, 95% CI 0.95 to 1.51). Moreover, spending >10 h in the car weekly significantly increased mortality risk by 27% in the fully adjusted model. The association between TV viewing and mortality was not significant. Conclusions The relationship between total sedentary time and higher mortality risk is less pronounced when fitness is taken into account. Increased car time, but
Low-field one-dimensional and direction-dependent relaxation imaging of bovine articular cartilage
NASA Astrophysics Data System (ADS)
Rössler, Erik; Mattea, Carlos; Mollova, Ayret; Stapf, Siegfried
2011-12-01
The structure of articular cartilage is separated into three layers of differently oriented collagen fibers, which is accompanied by a gradient of increasing glycosaminoglycan (GAG) and decreasing water concentration from the top layer towards the bone interface. The combined effect of these structural variations results in a change of the longitudinal and transverse relaxation times as a function of the distance from the cartilage surface. In this paper, this dependence is investigated at a magnetic field strength of 0.27 T with a one-dimensional depth resolution of 50 μm on bovine hip and stifle joint articular cartilage. By employing this method, advantage is taken of the increasing contrast of the longitudinal relaxation rate found at lower magnetic field strengths. Furthermore, evidence for an orientational dependence of relaxation times with respect to an axis normal to the surface plane is given, an observation that has recently been reported using high-field MRI and that was explained by preferential orientations of collagen bundles in each of the three cartilage zones. In order to quantify the extent of a further contrast mechanism and to estimate spatially dependent glycosaminoglycan concentrations, the data are supplemented by proton relaxation times that were acquired in bovine articular cartilage that was soaked in a 0.8 mM aqueous Gd ++ solution.
ERIC Educational Resources Information Center
Schelleman-Offermans, Karen; Knibbe, Ronald A.; Kuntsche, Emmanuel
2013-01-01
We investigated whether the link between early pubertal timing and initiation of weekly alcohol use is mediated by changes in perceived parental alcohol-specific rule setting and changes in perceived proportion of drinkers in the peer group. Longitudinal data including 3 annual waves were used to estimate the hazard for adolescents to initiate…
Spin relaxation in disordered media
NASA Astrophysics Data System (ADS)
Dzheparov, F. S.
2011-10-01
A review is given on theoretical grounds and typical experimental appearances of spin dynamics and relaxation in solids containing randomly distributed nuclear and/or electronic spins. Brief content is as follows. Disordered and magnetically diluted systems. General outlines of the spin transport theory. Random walks in disordered systems (RWDS). Observable values in phase spin relaxation, free induction decay (FID). Interrelation of longitudinal and transversal relaxation related to dynamics of occupancies and phases. Occupation number representation for equations of motion. Continuum media approximation and inapplicability of moment expansions. Long-range transitions vs percolation theory. Concentration expansion as a general constructive basis for analytical methods. Scaling properties of propagators. Singular point. Dynamical and kinematical memory in RWDS. Ways of regrouping of concentration expansions. CTRW and semi-phenomenology. Coherent medium approximation for nuclear relaxation via paramagnetic impurities. Combining of memory functions and cumulant expansions for calculation of FID. Path integral representations for RWDS. Numerical simulations of RWDS. Spin dynamics in magnetically diluted systems with low Zeeman and medium low dipole temperatures. Cluster expansions, regularization of dipole interactions and spectral dynamics.
Schaffer, M S; Trippel, D L; Buckles, D S; Young, R H; Dolan, P L; Gillette, P C
1991-03-01
Eleven hundred one healthy neonates in Charleston County, SC, were enrolled in a prospective, serial measurement sudden infant death syndrome/QT surveillance program. Automated computer-enhanced ECGs were recorded at 1 day of age in the hospital nursery and again at 1 week and 1, 2, and 3 months in the participant's home. At 1 year, the families were contacted by phone or mail and questioned as to the health of the child. Validation studies demonstrated the computer-enhanced ECGs to be 96% accurate, whereas traditional ECG recording and measurement was 94% accurate. No systematic differences in the QTc according to race and sex were observed. There were parallel longitudinal time courses for each race and sex group with a significant (P less than .001) shortening of the QTc at 1 week. There was no evidence of tracking of the QTc during the first 3 months of life. In conclusion, (1) automated, enhanced ECG QTc intervals are superior to traditional electrocardiography while retaining the advantages of automation; (2) there is a significant shortening of the QTc during the first month of life; and (3) a home follow-up sudden infant death syndrome surveillance program is feasible and produces accurate, reliable information.
Burke, Russell T; Orth, James D
2016-01-01
The response of single cells to anti-cancer drugs contributes significantly in determining the population response, and therefore is a major contributing factor in the overall outcome. Immunoblotting, flow cytometry and fixed cell experiments are often used to study how cells respond to anti-cancer drugs. These methods are important, but they have several shortcomings. Variability in drug responses between cancer and normal cells, and between cells of different cancer origin, and transient and rare responses are difficult to understand using population averaging assays and without being able to directly track and analyze them longitudinally. The microscope is particularly well suited to image live cells. Advancements in technology enable us to routinely image cells at a resolution that enables not only cell tracking, but also the observation of a variety of cellular responses. We describe an approach in detail that allows for the continuous time-lapse imaging of cells during the drug response for essentially as long as desired, typically up to 96 hr. Using variations of the approach, cells can be monitored for weeks. With the employment of genetically encoded fluorescent biosensors numerous processes, pathways and responses can be followed. We show examples that include tracking and quantification of cell growth and cell cycle progression, chromosome dynamics, DNA damage, and cell death. We also discuss variations of the technique and its flexibility, and highlight some common pitfalls. PMID:27213923
Nakamura, Kunio; Brown, Robert A; Araujo, David; Narayanan, Sridar; Arnold, Douglas L
2014-01-01
Brain volume change measured from magnetic resonance imaging (MRI) provides a widely used and useful in vivo measure of irreversible tissue loss. These measurements, however, can be influenced by reversible factors such as shifts in brain water content. Given the strong effect of water on T2 relaxation, we investigated whether an estimate of T2 relaxation time would correlate with brain volume changes induced by physiologically manipulating hydration status. We used a clinically feasible estimate of T2 ("pseudo-T2") computed from a dual turbo spin-echo MRI sequence and correlated pseudo-T2 changes to percent brain volume changes in 12 healthy subjects after dehydration overnight (16-hour thirsting) and rehydration (drinking 1.5 L of water). We found that the brain volume significantly increased between the dehydrated and rehydrated states (mean brain volume change = 0.36%, p = 0.0001) but did not change significantly during the dehydration interval (mean brain volume change = 0.04%, p = 0.57). The changes in brain volume and pseudo-T2 significantly correlated with each other, with marginal and conditional correlations (R (2)) of 0.44 and 0.65, respectively. Our results show that pseudo-T2 may be used in conjunction with the measures of brain volume to distinguish reversible water fluctuations and irreversible brain tissue loss (atrophy) and to investigate disease mechanisms related to neuro-inflammation, e.g., in multiple sclerosis, where edema-related water fluctuations may occur with disease activity and anti-inflammatory treatment.
Effect of manganese on human placental spin-lattice (T1) and spin-spin (T2) relaxation times
Angtuaco, T.L.; Mattison, D.R.; Thomford, P.J.; Jordan, J.
1986-01-01
Human placentas were obtained immediately following delivery and incubated with manganese chloride (MnCl/sub 2/) in concentrations ranging from 0.002 to 2.0 mM. Proton density, T1 and T2 were measured at times ranging from 5-200 minutes. There was rapid uptake of manganese by the placenta producing a dose-dependent decrease in placental T1 and T2. The major effect of manganese uptake was shortening of T1 suggesting that the contrast between placenta and myometrium will be enhanced predominantly for T1-dependent imaging pulse sequences.
Alteration of electronic relaxation in MR contrast agents through de-novo ligand design.
Shukla, R B; Kumar, K; Weber, R; Zhang, X; Tweedle, M
1997-01-01
The longitudinal electronic state lifetime of the paramagnetic Gd metal within a macrocyclic ligand core can be increased by designing ligand frames that alter the vibronic interactions between the ligating atoms and the metal. We conducted the first pulsed EPR studies that demonstrated the increase in the longitudinal state lifetimes of the electronic subsystem at cryogenic temperatures. We also designed a simple sucrose/ water model that significantly increases the rotational correlation time in solution of the Gd chelate. This model system enables relaxivity studies at ambient temperatures that more readily interrogate exchange and electronic contributions to the inner-sphere relaxivity by effectively removing the rotational correlation time contribution. These results combined with water residence (Q) measurements suggest that rigidification of the macrocyclic core or that of the pendant arms increases the longitudinal electronic state lifetime of the paramagnetic Gd metal. This increased lifetime possibly contributes to the improved relaxivity for the rigid Gd chelates observed in the sucrose/ water model studies. PMID:9240090
Tsai, Shang-Yueh; Posse, Stefan; Lin, Yi-Ru; Ko, Cheng-Wen; Otazo, Ricardo; Chung, Hsiao-Wen; Lin, Fa-Hsuan
2007-05-01
Metabolite T2 is necessary for accurate quantification of the absolute concentration of metabolites using long-echo-time (TE) acquisition schemes. However, lengthy data acquisition times pose a major challenge to mapping metabolite T2. In this study we used proton echo-planar spectroscopic imaging (PEPSI) at 3T to obtain fast T2 maps of three major cerebral metabolites: N-acetyl-aspartate (NAA), creatine (Cre), and choline (Cho). We showed that PEPSI spectra matched T2 values obtained using single-voxel spectroscopy (SVS). Data acquisition for 2D metabolite maps with a voxel volume of 0.95 ml (32 x 32 image matrix) can be completed in 25 min using five TEs and eight averages. A sufficient spectral signal-to-noise ratio (SNR) for T2 estimation was validated by high Pearson's correlation coefficients between logarithmic MR signals and TEs (R2 = 0.98, 0.97, and 0.95 for NAA, Cre, and Cho, respectively). In agreement with previous studies, we found that the T2 values of NAA, but not Cre and Cho, were significantly different between gray matter (GM) and white matter (WM; P < 0.001). The difference between the T2 estimates of the PEPSI and SVS scans was less than 9%. Consistent spatial distributions of T2 were found in six healthy subjects, and disagreement among subjects was less than 10%. In summary, the PEPSI technique is a robust method to obtain fast mapping of metabolite T2.
Tsai, Shang-Yueh; Posse, Stefan; Lin, Yi-Ru; Ko, Cheng-Wen; Otazo, Ricardo; Chung, Hsiao-Wen; Lin, Fa-Hsuan
2007-05-01
Metabolite T2 is necessary for accurate quantification of the absolute concentration of metabolites using long-echo-time (TE) acquisition schemes. However, lengthy data acquisition times pose a major challenge to mapping metabolite T2. In this study we used proton echo-planar spectroscopic imaging (PEPSI) at 3T to obtain fast T2 maps of three major cerebral metabolites: N-acetyl-aspartate (NAA), creatine (Cre), and choline (Cho). We showed that PEPSI spectra matched T2 values obtained using single-voxel spectroscopy (SVS). Data acquisition for 2D metabolite maps with a voxel volume of 0.95 ml (32 x 32 image matrix) can be completed in 25 min using five TEs and eight averages. A sufficient spectral signal-to-noise ratio (SNR) for T2 estimation was validated by high Pearson's correlation coefficients between logarithmic MR signals and TEs (R2 = 0.98, 0.97, and 0.95 for NAA, Cre, and Cho, respectively). In agreement with previous studies, we found that the T2 values of NAA, but not Cre and Cho, were significantly different between gray matter (GM) and white matter (WM; P < 0.001). The difference between the T2 estimates of the PEPSI and SVS scans was less than 9%. Consistent spatial distributions of T2 were found in six healthy subjects, and disagreement among subjects was less than 10%. In summary, the PEPSI technique is a robust method to obtain fast mapping of metabolite T2. PMID:17457864
Water proton spin saturation affects measured protein backbone 15 N spin relaxation rates
NASA Astrophysics Data System (ADS)
Chen, Kang; Tjandra, Nico
2011-12-01
Protein backbone 15N NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measure 15N longitudinal T1 and transversal rotating-frame T1ρ spin relaxation. Unexpectedly the 15N T1 relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDa Escherichiacoli. glutamine binding protein (GlnBP) the T1 values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the two T1ρ data sets are correlated without an apparent offset. The average T1 difference was reduced to 12% when the experimental recycle delay was doubled, while the average T1 values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios ( s/ n) showed the apparent slower 15N relaxation obtained with the water dephasing experiment originated from the differences in 1H N recovery for each relaxation time point. This in turn offset signal reduction from 15N relaxation decay. The artifact becomes noticeable when the measured 15N relaxation time constant is comparable to recycle delay, e.g., the 15N T1 of medium to large proteins. The 15N relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters (< S2> = 0.81) than the non-saturated ones (< S2> = 0.88), indicating such order parameters may be previously underestimated.
Distinguishing spin relaxation mechanisms in organic semiconductors.
Harmon, N J; Flatté, M E
2013-04-26
A theory is introduced for spin relaxation and spin diffusion of hopping carriers in a disordered system. For disorder described by a distribution of waiting times between hops (e.g., from multiple traps, site-energy disorder, and/or positional disorder) the dominant spin relaxation mechanisms in organic semiconductors (hyperfine, hopping-induced spin-orbit, and intrasite spin relaxation) each produce different characteristic spin relaxation and spin diffusion dependences on temperature. The resulting unique experimental signatures predicted by the theory for each mechanism in organic semiconductors provide a prescription for determining the dominant spin relaxation mechanism. PMID:23679752
Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation.
Stupic, K F; Elkins, N D; Pavlovskaya, G E; Repine, J E; Meersmann, T
2011-07-01
The (83)Kr magnetic resonance (MR) relaxation time T(1) of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary (83)Kr T(1) relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) (83)Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp (83)Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured (83)Kr T(1) relaxation times. The longitudinal (83)Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T(1) = 1.3 s and T(1) = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the (83)Kr T(1) relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of (83)Kr as a biomarker for evaluating lung function.
Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation
NASA Astrophysics Data System (ADS)
Stupic, K. F.; Elkins, N. D.; Pavlovskaya, G. E.; Repine, J. E.; Meersmann, T.
2011-07-01
The 83Kr magnetic resonance (MR) relaxation time T1 of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary 83Kr T1 relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) 83Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp 83Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured 83Kr T1 relaxation times. The longitudinal 83Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T1 = 1.3 s and T1 = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the 83Kr T1 relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of 83Kr as a biomarker for evaluating lung function.
NASA Astrophysics Data System (ADS)
Ba, Yan; Liu, Haihu; Li, Qing; Kang, Qinjun; Sun, Jinju
2016-08-01
In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500.
Ba, Yan; Liu, Haihu; Li, Qing; Kang, Qinjun; Sun, Jinju
2016-08-01
In this paper we propose a color-gradient lattice Boltzmann (LB) model for simulating two-phase flows with high density ratio and high Reynolds number. The model applies a multirelaxation-time (MRT) collision operator to enhance the stability of the simulation. A source term, which is derived by the Chapman-Enskog analysis, is added into the MRT LB equation so that the Navier-Stokes equations can be exactly recovered. Also, a form of the equilibrium density distribution function is used to simplify the source term. To validate the proposed model, steady flows of a static droplet and the layered channel flow are first simulated with density ratios up to 1000. Small values of spurious velocities and interfacial tension errors are found in the static droplet test, and improved profiles of velocity are obtained by the present model in simulating channel flows. Then, two cases of unsteady flows, Rayleigh-Taylor instability and droplet splashing on a thin film, are simulated. In the former case, the density ratio of 3 and Reynolds numbers of 256 and 2048 are considered. The interface shapes and spike and bubble positions are in good agreement with the results of previous studies. In the latter case, the droplet spreading radius is found to obey the power law proposed in previous studies for the density ratio of 100 and Reynolds number up to 500. PMID:27627415
Possible spin frustration in Nd2Ti2O7 probed by muon spin relaxation.
Guo, Hanjie; Xing, Hui; Tong, Jun; Tao, Qian; Watanabe, Isao; Xu, Zhu-an
2014-10-29
Muon spin relaxation on Nd2Ti2O7 (NTO) and NdLaTi2O7 (NLTO) compounds are presented. The time spectra for both compounds are as expected for the paramagnetic state at high temperatures, but deviate from the exponential function below around 100 K. Firstly, the muon spin relaxation rate increases with decreasing temperature and then levels off below around 10 K, which is reminiscent of the frustrated systems. An enhancement of the relaxation rate by a longitudinal field in the paramagnetic state is observed for NTO and eliminated by a magnetic dilution for the NLTO sample. This suggests that the spectral density is modified by a magnetic dilution and thus indicates that the spins behave cooperatively rather than individually. The zero-field measurement at 0.3 K indicates that the magnetic ground state for NTO is ferromagnetic.
Hayamizu, Kikuko; Tsuzuki, Seiji; Seki, Shiro
2011-01-01
Temperature-dependent (11)B T(1) values were measured for the BF(4) anion and BF(3) in the CF(3)BF(3) anion in room-temperature ionic liquids (RTILs) composed of the cation N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (DEME). Including the lithium-salt-doped samples, two neat and two binary ionic liquids were studied. Arrhenius plots of the (11)B T(1) showed T(1) minima for BF(4) in the temperature range between 243 (or above freezing) and 373 K. Using the Bloembergen, Pound, and Purcell(BPP) equations for the (11)B quadrupolar and (11)B-(19) F dipolar relaxation mechanisms, the correlation times for motions of BF(4) were calculated. Since the internal rotation of BF(3) is assumed in CF(3)BF(3), T(1) minimum was not observed. The effects of the addition of the lithium salt on the (11)B correlation time and (11)BT(1) for the anions in the ILs are discussed. PMID:21162135
Yang, Hanyu; Cranford, James A; Li, Runze; Buu, Anne
2015-02-20
This study proposes a generalized time-varying effect model that can be used to characterize a discrete longitudinal covariate process and its time-varying effect on a later outcome that may be discrete. The proposed method can be applied to examine two important research questions for daily process data: measurement reactivity and predictive validity. We demonstrate these applications using health risk behavior data collected from alcoholic couples through an interactive voice response system. The statistical analysis results show that the effect of measurement reactivity may only be evident in the first week of interactive voice response assessment. Moreover, the level of urge to drink before measurement reactivity takes effect may be more predictive of a later depression outcome. Our simulation study shows that the performance of the proposed method improves with larger sample sizes, more time points, and smaller proportions of zeros in the binary longitudinal covariate. PMID:25395042
Yang, Hanyu; Cranford, James A.; Li, Runze; Buu, Anne
2014-01-01
This study proposes a generalized time-varying effect model that can be used to characterize a discrete longitudinal covariate process and its time-varying effect on a later outcome that may be discrete. The proposed method can be applied to examine two important research questions for daily process data: measurement reactivity and predictive validity. We demonstrate these applications using health risk behavior data collected from alcoholic couples through an interactive voice response (IVR) system. The statistical analysis results show that the effect of measurement reactivity may only be evident in the first week of IVR assessment. Moreover, the level of urge to drink before measurement reactivity takes effect may be more predictive of a later depression outcome. Our simulation study shows that the performance of the proposed method improves with larger sample sizes, more time points, and smaller proportions of zeros in the binary longitudinal covariate. PMID:25395042
Microviscosity of human erythrocytes studied using hypophosphite two-spin order relaxation.
Price, W S; Perng, B C; Tsai, C L; Hwang, L P
1992-01-01
A new 31P NMR method is used to probe the cytoplasmic viscosity of human erythrocytes. The method is based on observing two-spin order relaxation of the 31P atom of the hypophosphite ion. This method is superior to our previous method, using the longitudinal relaxation time of the ion, because random field effects such as intermolecular dipole-dipole relaxation can be separated from intramolecular relaxation. This allows a more accurate determination of the effective reorientational correlation time from the measured intramolecular relaxation because it is now unaffected by random field effects. The new method also provides a means by which to estimate the random field effects. Both two-spin order and proton-decoupled T1 measurements were conducted on hypophosphite in water solutions at various temperatures, glycerol solutions of various viscosities, and in erythrocyte samples of various cell volumes. The results show that the effective reorientational correlation time of the hypophosphite ion varies from 7.2 to 15.2 ps in the cytoplasm of cells ranging in volume from 102 to 56 fl cells. PMID:1504239
Peeters, Anna; Magliano, Dianna J; Backholer, Kathryn; Zimmet, Paul; Shaw, Jonathan E
2014-01-01
Objective To assess in a single cohort whether annual weight and waist circumference (WC) change has varied over time. Design Longitudinal cohort study with three surveys (1) 1999/2000; (2) 2004/2005 and (3) 2011/2012. Generalised linear mixed models with random effects were used to compare annualised weight and WC change between surveys 1 and 2 (period 1) with that between surveys 2 and 3 (period 2). Models were adjusted for age to analyse changes with time rather than age. Models were additionally adjusted for sex, education status, area-level socioeconomic disadvantage, ethnicity, body mass index, diabetes status and smoking status. Setting The Australian Diabetes, Obesity and Lifestyle study (AusDiab)—a population-based, stratified-cluster survey of 11247 adults aged ≥25 years. Participants 3351 Australian adults who attended each of three surveys and had complete measures of weight, WC and covariates. Primary outcome measures Weight and WC were measured at each survey. Change in weight and WC was annualised for comparison between the two periods. Results Mean weight and WC increased in both periods (0.34 kg/year, 0.43 cm/year period 1; 0.13 kg/year, 0.46 cm/year period 2). Annualised weight gain in period 2 was 0.11 kg/year (95% CI 0.06 to 0.15) less than period 1. Lesser annual weight gain between the two periods was not seen for those with greatest area-level socioeconomic disadvantage, or in men over the age of 55. In contrast, the annualised WC increase in period 2 was greater than period 1 (0.07 cm/year, 95% CI 0.01 to 0.12). The increase was greatest in men aged 55+ years and those with a greater area-level socioeconomic disadvantage. Conclusions Between 2004/2005 and 2011/2012, Australian adults in a national study continued to gain weight, but more slowly than 1999/2000–2004/2005. While weight gain may be slowing, this was not observed for older men or those in more disadvantaged groups, and the same cannot be said for WC. PMID
ERIC Educational Resources Information Center
Larsson, Henrik; Viding, Essi; Rijsdijk, Fruhling V.; Plomin, Robert
2008-01-01
This study examined the direction and etiology underlying the relationships between parental negativity and early childhood antisocial behavior using a bidirectional effects model in a longitudinal genetically informative design. We analyzed parent reports of parental negativity and early childhood antisocial behavior in 6,230 pairs of twins at 4…
Hadj-Hamou, Mehdi; Lorenzi, Marco; Ayache, Nicholas; Pennec, Xavier
2016-01-01
We propose and detail a deformation-based morphometry computational framework, called Longitudinal Log-Demons Framework (LLDF), to estimate the longitudinal brain deformations from image data series, transport them in a common space and perform statistical group-wise analyses. It is based on freely available software and tools, and consists of three main steps: (i) Pre-processing, (ii) Position correction, and (iii) Non-linear deformation analysis. It is based on the LCC log-Demons non-linear symmetric diffeomorphic registration algorithm with an additional modulation of the similarity term using a confidence mask to increase the robustness with respect to brain boundary intensity artifacts. The pipeline is exemplified on the longitudinal Open Access Series of Imaging Studies (OASIS) database and all the parameters values are given so that the study can be reproduced. We investigate the group-wise differences between the patients with Alzheimer's disease and the healthy control group, and show that the proposed pipeline increases the sensitivity with no decrease in the specificity of the statistical study done on the longitudinal deformations. PMID:27375408
Hadj-Hamou, Mehdi; Lorenzi, Marco; Ayache, Nicholas; Pennec, Xavier
2016-01-01
We propose and detail a deformation-based morphometry computational framework, called Longitudinal Log-Demons Framework (LLDF), to estimate the longitudinal brain deformations from image data series, transport them in a common space and perform statistical group-wise analyses. It is based on freely available software and tools, and consists of three main steps: (i) Pre-processing, (ii) Position correction, and (iii) Non-linear deformation analysis. It is based on the LCC log-Demons non-linear symmetric diffeomorphic registration algorithm with an additional modulation of the similarity term using a confidence mask to increase the robustness with respect to brain boundary intensity artifacts. The pipeline is exemplified on the longitudinal Open Access Series of Imaging Studies (OASIS) database and all the parameters values are given so that the study can be reproduced. We investigate the group-wise differences between the patients with Alzheimer's disease and the healthy control group, and show that the proposed pipeline increases the sensitivity with no decrease in the specificity of the statistical study done on the longitudinal deformations. PMID:27375408
NASA Astrophysics Data System (ADS)
Miyachi, Kouichi; Takanishi, Yoichi; Ishikawa, Ken; Takezoe, Hideo; Fukuda, Atsuo
1997-02-01
We have studied the molecular rotational motion about its long axis in ferroelectric chiral smectic-C (Sm-C) and antiferroelectric chiral smectic-Ca (Sm-C*>A) liquid crystals and observed a few tens of picosecond relaxation time. Previously reported results using degenerate four-wave mixing with 25-ps pump pulses [Lalanne et al., Phys. Rev. A 44, 6632 (1991)] claimed to show a critical slowing down in the temperature region more than 0.1 °C above the Sm-A-Sm-C phase transition. Our measurements of the optical Kerr effect with 130-fs pump pulses do not show any critical slowing down in the corresponding temperature region above the phase transition from Sm-A to Sm-C or Sm-C*>A. The result may indicate that the laser-induced molecular reorientation with τ~10-11 s scarcely couples with the tilt angle and the polarization. A possibility has been discussed that a slower rotational motion with τ>~10-10 s plays a primary role for the emergence of ferroelectricity and/or antiferroelectricity.
NASA Astrophysics Data System (ADS)
Popova, V. A.; Surovtsev, N. V.
2014-09-01
The temperature dependences of α relaxation time τα(T) of three glass-forming liquids (salol, o-terphenyl, and α-picoline) were investigated by a depolarized light scattering technique. A detailed description of τα(T) near TA, the temperature of the transition from the Arrhenius law at high temperatures to a non-Arrhenius behavior of τα(T) at lower temperatures, was done. It was found that this transition is quite sharp. If the transition is described as switching from the Arrhenius law to the Vogel-Fulcher-Tammann law, it occurs within the temperature range of about 15 K or less. Most of the known expressions for τα(T) cannot describe this sharp transition. Our analysis revealed that this transition can be described either as a discontinuous transition in the spirit of the frustration-limited domain theory [D. Kivelson, G. Tarjus, X. Zhao, and S. A. Kivelson, Phys. Rev. E 53, 751 (1996), 10.1103/PhysRevE.53.751], implying a phase transition, or by a phenomenological expression recently suggested [B. Schmidtke, N. Petzold, R. Kahlau, M. Hofmann, and E. A. Rössler, Phys. Rev. E 86, 041507 (2012), 10.1103/PhysRevE.86.041507], where the activation energy includes the term depending exponentially on temperature.
Tropp, Linda R; Hawi, Diala R; Van Laar, Colette; Levin, Shana
2012-06-01
This research examines cross-ethnic friendships as a predictor of perceived discrimination and support for ethnic activism over time among African American, Latino American, and Asian American undergraduate participants from a multi-year, longitudinal study conducted in the United States. Our research builds on prior cross-sectional research by testing effects longitudinally and examining how relationships among these variables may differ across ethnic minority groups. Results indicate that, over time, greater friendships with Whites predict both lower perceptions of discrimination and less support for ethnic activism among African Americans and Latino Americans, but not among Asian Americans. Implications of these findings for future research on inter-group contact, minority-majority relations, and ethnic group differences in status are discussed.
NASA Technical Reports Server (NTRS)
Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.
1985-01-01
The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow.
Wei, Hai; Guo, Guang-Can; He, Lixin
2014-11-28
We investigate the electric field tuning of the phonon-assisted hole spin relaxation in single self-assembled In{sub 1−x}Ga{sub x}As/GaAs quantum dots (QDs), using an atomistic empirical pseudopotential method. We find that the electric field along the growth direction can tune the hole spin relaxation time for more than one order of magnitude. The electric field can prolong or shorten the hole spin lifetime and the tuning shows an asymmetry in terms of the field direction. The asymmetry is more pronounced for the taller dot. The results show that the electric field is an effective way to tune the hole spin-relaxation in self-assembled QDs.
ERIC Educational Resources Information Center
Jakoby, Bernhard
2009-01-01
The collision model is frequently introduced to describe electronic conductivity in solids. Depending on the chosen approach, the introduction of the collision time can lead to erroneous results for the average velocity of the electrons, which enters the expression for the electrical conductivity. In other textbooks, correct results are obtained…
Nuclear-spin relaxation of ²º⁷Pb in ferroelectric powders
Bouchard, Louis S.; Sushkov, Alexander O.; Budker, Dmitry; Ford, Joe; Lipton, Andrew S.
2008-02-05
The ²º⁷Pb nuclear system (nuclear spin I = 1/2; magnetic Moment μ ≈0.58 μN; isotopic abundance ≈ 22%) in ferroelectric solids has been proposed for a search for a Schiff moment associated with simultaneous violation of parity (P) and time-reversal invariance (T) in fundamental interactions [1] (see also a discussion of the sensitivity of such search in Ref. [2]). The idea is that, due to the Schiff moment, a ferroelectric sample would acquire a P,T-odd magnetic polarization along the direction of its electric polarization. In conclusion, we have presented the first experimental study of relaxation properties of ²º⁷Pb in PT and PZT below room temperature. We find that above T≈ 50 K, longitudinal relaxation rate follows the T² dependence characteristic of the two-phonon Raman process. On the other hand, as the temperature is decreased below T≈ 50 K, the longitudinal relaxation rates drop slower than ∝T2 (as opposed to ∝T7 expected for the Raman process), and the relaxation is probably due to a direct process associated with paramagnetic impurities and nuclear-spin diffusion. While the longitudinal relaxation times T₁ vary between several seconds and over an hour in the temperature range between 290 and 10 K, the transverse relaxation time T₂ is found to be ≈1.5 ms for all temperatures and all powder samples studied. D: we never discuss the origin of T₂ relaxation. Maybe we should. 1.5 ms is only a bit shorter from what would be expected from nuclear spin-spin interactions. Any comments? At some point Sasha asked Oleg to calculate T₂ exactly for PT and PZT, but I forgot what was the result. If such calculation exists, it would be great to compare with the expt. result. The obtained results provide an important input in the design of the experiments to search for P,T-violating effects in solid ferroelectrics
NASA Astrophysics Data System (ADS)
Mohnke, O.; Nordlund, C. L.; Klitzsch, N.
2013-12-01
Nuclear magnetic resonance (NMR) is a method used over a wide field of geophysical applications to non-destructively determine transport and storage properties of rocks and soils. In NMR relaxometry signal amplitudes correspond directly to the rock's fluid (water, oil) content. On the other hand the NMR relaxation behavior, i.e. the longitudinal (T1) and transverse (T2) NMR relaxation times, can be used to derive pore sizes and permeability as it is linearly linked to the pore's surface-to-volume-ratio and physiochemical properties of the rock-fluid interface by the surface relaxivity ρ_s This parameter, however, is dependent on the type and mineral constituents of the investigated rock sample and thus has to be determined and calibrated prior to estimating pore sizes from NMR relaxometry measurements. Frequently used methods to derive surface relaxivity to calibrate NMR pore sizes comprise mercury injection, pulsed field gradients (PFG-NMR) or grain size analysis. This study introduces an alternative approach to jointly estimate NMR surface relaxivity and pore radii distributions using NMR relaxation data obtained from partially de-saturated rocks. In this, inverse modeling is carried on a linked Young Laplace equation for capillary bundles and the Brownstein and Tarr equations. Subsequently, this approach is used to predict water retention curves of the investigated rocks. The method was tested and validated on simulated and laboratory transverse NMR data. Calculated inverse models are generally in a good agreement with results obtained from mercury injection and drainage measurements. Left: Measured and predicted water retention (pF) curves. Center: NMR relaxometry data, fit and error. Right: Mercury injection data (HgPor, dashed line) and jointly derived pore radii distributions and surface relaxivity by joint inverse modelling
Lundström, Patrik; Akke, Mikael
2004-01-28
Multiple-quantum spin relaxation is a sensitive probe for correlated conformational exchange dynamics on microsecond to millisecond time scales in biomolecules. We measured differential 1H-15N multiple-quantum relaxation rates for the backbone amide groups of the E140Q mutant of the C-terminal domain of calmodulin at three static magnetic field strengths. The differential multiple-quantum relaxation rates range between -88.7 and 92.7 s(-1), and the mean and standard deviation are 7.0 +/- 24 s(-1), at a static magnetic field strength of 14.1 T. Together with values of the 1H and 15N chemical shift anisotropies (CSA) determined separately, the field-dependent data enable separation of the different contributions from dipolar-dipolar, CSA-CSA, and conformational exchange cross-correlated relaxation mechanisms to the differential multiple-quantum relaxation rates. The procedure yields precise quantitative information on the dominant conformational exchange contributions observed in this protein. The field-dependent differences between double- and zero-quantum relaxation rates directly benchmark the rates of conformational exchange, showing that these are fast on the chemical shift time scale for the large majority of residues in the protein. Further analysis of the differential 1H-15N multiple-quantum relaxation rates using previously determined exchange rate constants and populations, obtained from 15N off-resonance rotating-frame relaxation data, enables extraction of the product of the chemical shift differences between the resonance frequencies of the 1H and 15N spins in the exchanging conformations, deltasigma(H)deltasigma(N). Thus, information on the 1H chemical shift differences is obtained, while circumventing complications associated with direct measurements of conformational exchange effects on 1H single-quantum coherences in nondeuterated proteins. The method significantly increases the information content available for structural interpretation of the
A numerical study of vector resonant relaxation
NASA Astrophysics Data System (ADS)
Kocsis, Bence; Tremaine, Scott
2015-04-01
Stars bound to a supermassive black hole interact gravitationally. Persistent torques acting between stellar orbits lead to a rapid resonant relaxation of the orbital orientation vectors (`vector' resonant relaxation) and slower relaxation of the eccentricities (`scalar' resonant relaxation), both at rates much faster than two-body or non-resonant relaxation. We describe a new parallel symplectic integrator, N-RING, which follows the dynamical evolution of a cluster of N stars through vector resonant relaxation, by averaging the pairwise interactions over the orbital period and periapsis precession time-scale. We use N-RING to follow the evolution of clusters containing over 104 stars for tens of relaxation times. Among other results, we find that the evolution is dominated by torques among stars with radially overlapping orbits, and that resonant relaxation can be modelled as a random walk of the orbit normals on the sphere, with angular step size ranging from ˜0.5-1 rad. The relaxation rate in a cluster with a fixed number of stars is proportional to the root mean square (rms) mass of the stars. The rms torque generated by the cluster stars is reduced below the torque between Kepler orbits due to apsidal precession and declines weakly with the eccentricity of the perturbed orbit. However, since the angular momentum of an orbit also decreases with eccentricity, the relaxation rate is approximately eccentricity-independent for e ≲ 0.7 and grows rapidly with eccentricity for e ≳ 0.8. We quantify the relaxation using the autocorrelation function of the spherical multipole moments; this decays exponentially and the e-folding time may be identified with the vector resonant relaxation time-scale.
Ellipsoidal Relaxation of Deformed Vesicles
NASA Astrophysics Data System (ADS)
Yu, Miao; Lira, Rafael B.; Riske, Karin A.; Dimova, Rumiana; Lin, Hao
2015-09-01
Theoretical analysis and experimental quantification on the ellipsoidal relaxation of vesicles are presented. The current work reveals the simplicity and universal aspects of this process. The Helfrich formula is shown to apply to the dynamic relaxation of moderate-to-high tension membranes, and a closed-form solution is derived which predicts the vesicle aspect ratio as a function of time. Scattered data are unified by a time scale, which leads to a similarity behavior, governed by a distinctive solution for each vesicle type. Two separate regimes in the relaxation are identified, namely, the "entropic" and the "constant-tension" regimes. The bending rigidity and the initial membrane tension can be simultaneously extracted from the data analysis, posing the current approach as an effective means for the mechanical analysis of biomembranes.
NASA Astrophysics Data System (ADS)
Vikhansky, Alexander; Ginzburg, Irina
2014-02-01
reconstructed profiles are compared to their predictions from the advection-diffusion equation for averaged concentration, based on the same averaged seepage velocity and Taylor dispersion coefficient. In parallel, we construct Lattice-Boltzmann equation (LBE) two-relaxation-times scheme to simulate transport of a passive scalar directly in heterogeneous media specified by discontinuous porosity distribution. We focus our numerical analysis and assessment on (i) truncation corrections, because of their impact on the moments, (ii) stability, since we show that stable Darcy velocity amplitude reduces with the porosity, and (iii) interface accuracy which is found to play the crucial role. The task is twofold: the LBE supports the EMM predictions, while the EMM provides non-trivial benchmarks for the numerical schemes.
NASA Technical Reports Server (NTRS)
Guglielmi, G.; Selby, K.; Blunt, B. A.; Jergas, M.; Newitt, D. C.; Genant, H. K.; Majumdar, S.
1996-01-01
RATIONALE AND OBJECTIVES: Marrow transverse relaxation time (T2*) in magnetic resonance (MR) imaging may be related to the density and structure of the surrounding trabecular network. We investigated regional variations of T2* in the human calcaneus and compared the findings with bone mineral density (BMD), as measured by dual X-ray absorpiometry (DXA). Short- and long-term precisions were evaluated first to determine whether MR imaging would be useful for the clinical assessment of disease status and progression in osteoporosis. METHODS: Gradient-recalled echo MR images of the calcaneus were acquired at 1.5 T from six volunteers. Measurements of T2* were compared with BMD and (for one volunteer) conventional radiography. RESULTS: T2* values showed significant regional variation; they typically were shortest in the superior region of the calcaneus. There was a linear correlation between MR and DXA measurements (r = .66 for 1/T2* versus BMD). Differences in T2* attributable to variations in analysis region-of-interest placement were not significant for five of the six volunteers. Sagittal MR images had short- and long-term precision errors of 4.2% and 3.3%, respectively. For DXA, the precision was 1.3% (coefficient of variation). CONCLUSION: MR imaging may be useful for trabecular bone assessment in the calcaneus. However, given the large regional variations in bone density and structure, the choice of an ROI is likely to play a major role in the accuracy, precision, and overall clinical efficacy of T2* measurements.
NASA Astrophysics Data System (ADS)
Dufour, Sylvie; Thiaudière, Eric; Vidal, Giovanni; Gallis, Jean-Louis; Rousse, Nicole; Canioni, Paul
1996-11-01
The effect of temperature on31P NMR spectra from isolated perfused rat livers was studied at 9.4 T. Relaxation times (T1andT2) of nucleoside triphosphates (NTP) and inorganic phosphate (Pi) were determined at 37, 25, 15, and 4°C. Under hypothermic conditions, an unexpected apparent line sharpening in the Pi spectral region and a clear emergence of an additional Pi resonance were observed. This additional signal was assigned to mitochondrial Pi.T1values obtained for cytosolic and mitochondrial Pi at 4°C were 1.14 ± 0.24 s (n= 5) and 0.71 ± 0.18 s (n= 5), respectively. No significant mitochondrial contribution to the Pi resonance was observed at 37°C. Quantification of Pi and NTP liver contents at 37 and 4°C was performed by comparing the perfused liver spectrum and the corresponding perchloric acid extract spectrum. Under experimental conditions of low external Pi (0.12 mM), it was concluded that intracellular Pi was completely NMR-visible at 4 and 37°C. The observation of the mitochondrial Pi signal at 4°C was well explained by an increase in the Pi level within the matrix, in response to the mitochondrial swelling induced by hypothermia, as observed by electron microscopy.T2values for the cytosolic Pi at 37 and 4°C were 17 ± 4 ms (n= 8) and 22 ± 4 ms (n= 10), respectively. Comparison with measured linewidths indicated that line broadening for the main phosphorylated metabolites-including matrix Pi-was the result ofB0field inhomogeneity. The additional broadening of the cytosolic Pi resonance at 4 and 37°C was attributed to pH heterogeneity within the liver.
Curtin, N A; Edman, K A
1989-06-01
1. Longitudinal movements of marked segments of single fibres from the anterior tibialis muscle were recorded during tetanus and relaxation under isometric (fixed-end) conditions. 2. During relaxation, shortening and lengthening of different segments occurred simultaneously, starting at about the same time as the end of the linear fall of force (shoulder on the force record). 3. Variations in intracellular pH, measured with pH-sensitive microelectrodes, along the length of fibres were not statistically significant, and are unlikely to be responsible for the non-uniform behaviour of different segments. 4. As expected from earlier studies, both fatigue (produced by increasing tetanus duration or decreasing the time between tetani) and intracellular acidification (produced by raised extracellular CO2), reduced the tetanus force and prolonged the linear phase of force decline in relaxation. Each treatment delayed the start and markedly reduced the amount of segment movement in relaxation. 5. Fatigue and intracellular acidification have a smaller effect on force during stretching than on force produced under isometric conditions. This may contribute to making the segments behave in a more uniform way during relaxation under these conditions. 6. Changes in the Ca2+ uptake mechanisms are also discussed as possible causes for the changes in segment behaviour in relaxation.
NASA Astrophysics Data System (ADS)
Bates, Martin A.; Luckhurst, Geoffrey R.
Molecular dynamics simulations have been performed to investigate the rotational motion in the nematic and isotropic phases of a model mesogenic system in which the interactions between the molecules are represented by the Gay-Berne potential. First-rank end-over-end rotational relaxation times, analogous to those measured using dielectric relaxation spectroscopy for real mesogens with a longitudinal electric dipole, have been determined as a function of temperature and density. The relaxation times at temperatures throughout the nematic region are found to be larger than the values extrapolated from the isotropic phase to the same temperature. The simulation results are compared with the extended Debye theory for dielectric relaxation in the nematic phase. This relates the reduction in the relaxation rate to the retardation factor which depends on the Maier-Saupe strength parameter, and in turn is defined uniquely by the second-rank orientational order parameter. The simulations indicate that the retardation factor at constant strength parameter is density dependent, a feature neglected in the relaxation theory. We compare the simulation results where possible with experiment.
Phase transitions in semidefinite relaxations
Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico
2016-01-01
Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856
Phase transitions in semidefinite relaxations.
Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico
2016-04-19
Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856
A general relaxation theory of simple liquids
NASA Technical Reports Server (NTRS)
Merilo, M.; Morgan, E. J.
1973-01-01
A relatively simple relaxation theory to account for the behavior of liquids under dynamic conditions was proposed. The general dynamical equations are similar in form to the phenomenological relaxation equations used in theories of viscoelasticity, however, they differ in that all the coefficients of the present equations are expressed in terms of thermodynamic and molecular quantities. The theory is based on the concept that flow in a liquid distorts both the radial and the velocity distribution functions, and that relaxation equations describing the return of these functions to their isotropic distributions, characterizing a stationary liquid, can be written. The theory was applied to the problems of steady and oscillatory shear flows and to the propagation of longitudinal waves. In all cases classical results are predicted for strain rates, and an expression for the viscosity of a liquid, simular to the Macedo-Litovitz equation, is obtained.
Anisotropic spin relaxation in graphene.
Tombros, N; Tanabe, S; Veligura, A; Jozsa, C; Popinciuc, M; Jonkman, H T; van Wees, B J
2008-07-25
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular to the graphene layer. Fields above 1.5 T force the magnetization direction of the ferromagnetic contacts to align to the field, allowing injection of spins perpendicular to the graphene plane. A comparison of the spin signals at B=0 and B=2 T shows a 20% decrease in spin relaxation time for spins perpendicular to the graphene layer compared to spins parallel to the layer. We analyze the results in terms of the different strengths of the spin-orbit effective fields in the in-plane and out-of-plane directions and discuss the role of the Elliott-Yafet and Dyakonov-Perel mechanisms for spin relaxation. PMID:18764351
Comet Bursting Through Relaxation
NASA Astrophysics Data System (ADS)
Jacobson, Seth A.; Scheeres, D. J.
2012-10-01
Comets may be excited and occupy non-principal axis (complex) rotation states for a large fraction of their lifetimes. Many comet nuclei have been identified or are suspected to occupy non-principal axis (complex) rotation [Belton 2005, etc.] as well as have evolving rotation rates [Belton 2011, etc.]. Comet orbits drive these rotation states through cycles of excitation due to surface jets and relaxation due to time variable internal stresses that dissipate energy in the anelastic comet interior. Furthermore, relaxation from complex rotation can increase the loads along the symmetry axis of prolate comets. These loads stretch the body along the symmetry axis and may be the cause of the characteristic ``bowling pin’’ shape and eventually may lead to failure. This is an alternative model for comet bursting. Each cycle deposits only a small amount of energy and stress along the axis, but this process is repeated every orbit during which jets are activated. Our model for the evolution of comet nuclei includes torques due to a number of discrete jets located on the surface based on Neishtadt et al. [2002]. The model also includes internal dissipation using an approach developed by Sharma et al. [2005] and Vokrouhlicky et al. [2009]. These equations are averaged over the instantaneous spin state and the heliocentric orbit so the long-term evolution of the comet can be determined. We determine that even after the inclusion of internal dissipation there still exist non-principal axis equilibrium states for certain jet geometries. For ranges of dissipation factors and jet geometries, prolate comets are found to occupy states that have time variable internal loads over long time periods. These periodic loadings along the symmetry axis may lead to ``necking’’ as the body extends along the axis to release the stress and eventually disruption.
Lartillot, Nicolas; Phillips, Matthew J; Ronquist, Fredrik
2016-07-19
Over recent years, several alternative relaxed clock models have been proposed in the context of Bayesian dating. These models fall in two distinct categories: uncorrelated and autocorrelated across branches. The choice between these two classes of relaxed clocks is still an open question. More fundamentally, the true process of rate variation may have both long-term trends and short-term fluctuations, suggesting that more sophisticated clock models unfolding over multiple time scales should ultimately be developed. Here, a mixed relaxed clock model is introduced, which can be mechanistically interpreted as a rate variation process undergoing short-term fluctuations on the top of Brownian long-term trends. Statistically, this mixed clock represents an alternative solution to the problem of choosing between autocorrelated and uncorrelated relaxed clocks, by proposing instead to combine their respective merits. Fitting this model on a dataset of 105 placental mammals, using both node-dating and tip-dating approaches, suggests that the two pure clocks, Brownian and white noise, are rejected in favour of a mixed m