NASA Technical Reports Server (NTRS)
Anglin, A. E., Jr.
1979-01-01
The transverse and longitudinal tensile properties of the oxide dispersion strengthened nickel-base alloys were determined at 760 C. The alloys with small amounts of gamma prime have strength levels suitable for turbine vane applications, while other highly alloyed, gamma prime strengthened superalloys have strengths typical of turbine blade materials. These alloys were produced by mechanical alloying and extrusion and the turbine blade alloys were also directionally recrystallized. Resultant grain aspect ratios varied from 1:1 to over 20:1. Longitudinal tensile strengths ranged from 285 to 1175 MPa, while longitudinal elongations were in excess of 4 percent for all alloys. Transverse tensile strengths were comparable to longitudinal strengths, but transverse ductility levels were generally less than 2 percent elongation. Tensile and yield strengths increased with increasing strain rate over the range 0.001 to 0.05 per second. Ductility in both orientations was not strain rate sensitive but could be related to grain size and grain aspect ratio.
Ultimate Longitudinal Strength of Composite Ship Hulls
NASA Astrophysics Data System (ADS)
Zhang, Xiangming; Huang, Lingkai; Zhu, Libao; Tang, Yuhang; Wang, Anwen
2017-01-01
A simple analytical model to estimate the longitudinal strength of ship hulls in composite materials under buckling, material failure and ultimate collapse is presented in this paper. Ship hulls are regarded as assemblies of stiffened panels which idealized as group of plate-stiffener combinations. Ultimate strain of the plate-stiffener combination is predicted under buckling or material failure with composite beam-column theory. The effects of initial imperfection of ship hull and eccentricity of load are included. Corresponding longitudinal strengths of ship hull are derived in a straightforward method. A longitudinally framed ship hull made of symmetrically stacked unidirectional plies under sagging is analyzed. The results indicate that present analytical results have a good agreement with FEM method. The initial deflection of ship hull and eccentricity of load can dramatically reduce the bending capacity of ship hull. The proposed formulations provide a simple but useful tool for the longitudinal strength estimation in practical design.
Zammit, Andrea R; Robitaille, Annie; Piccinin, Andrea; Muniz-Terrera, Graciela; Hofer, Scott M
2018-03-08
Grip strength and cognitive function reflect upper body muscle strength and mental capacities. Cross-sectional research has suggested that in old age these two processes are moderately to highly associated, and that an underlying common cause drives this association. Our aim was to synthesize and evaluate longitudinal research addressing whether changes in grip strength are associated with changes in cognitive function in healthy older adults. We systematically reviewed English-language research investigating the longitudinal association between repeated measures of grip strength and of cognitive function in community-dwelling older adults to evaluate the extent to which the two indices decline concurrently. We used four search engines: Embase, PsychINFO, PubMed, and Web of Science. Of 459 unique citations, 6 met our full criteria: 4 studies reported a longitudinal association between rates of change in grip strength and cognitive function in older adults, 2 of which reported the magnitudes of these associations as ranging from low to moderate; 2 studies reported significant cross-sectional but not longitudinal associations among rates of change. All studies concluded that cognitive function and grip strength declined, on average, with increasing age, although with little to no evidence for longitudinal associations among rates of change. Future research is urged to expand the study of physical and cognitive associations in old age using a within-person and multi-study integrative approach to evaluate the reliability of longitudinal results with greater emphasis on the magnitude of this association.
Effects of water during cure on the properties of a carbon/phenolic system
NASA Technical Reports Server (NTRS)
Penn, B. G.; Clemons, J. M.; Ledbetter, F. E., III; Daniels, J. G.; Thompson, L. M.
1984-01-01
The effects of prepreg water contamination on interlaminar shear strength, tranverse compressive strength, and longitudinal compressive strength were determined. Decreases in these properties due to water contamination were sugstantial: 28 percent for the interlaminar shear strength, 21 percent for the transverse compressive strength and 31 percent for the longitudinal compressive strength. Since voids were not detected by X-ray analysis, the most likely cause for these results is fiber-matrix debounding in the laminate.
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.
1999-01-01
The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.
1998-01-01
The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.
Peterson, Mark D; Zhang, Peng; Duchowny, Kate A; Markides, Kyriakos S; Ottenbacher, Kenneth J; Snih, Soham Al
2016-12-01
Grip strength is a noninvasive method of risk stratification; however, the association between changes in strength and mortality is unknown. The purposes of this study were to examine the association between grip strength and mortality among older Mexican Americans and to determine the ability of changes in strength to predict mortality. Longitudinal data were included from 3,050 participants in the Hispanic Established Population for the Epidemiological Study of the Elderly. Strength was assessed using a hand-held dynamometer and normalized to body mass. Conditional inference tree analyses were used to identify sex- and age-specific weakness thresholds, and the Kaplan-Meier estimator was used to determine survival estimates across various strata. We also evaluated survival with traditional Cox proportional hazard regression for baseline strength, as well as with joint modeling of survival and longitudinal strength change trajectories. Survival estimates were lower among women who were weak at baseline for only 65- to 74-year-olds (11.93 vs 16.69 years). Survival estimates were also lower among men who were weak at baseline for only ≥75-year-olds (5.80 vs 7.39 years). Lower strength at baseline (per 0.1 decrement) was significantly associated with mortality (hazard ratio [HR]: 1.10; 95% confidence interval [CI]: 1.01-1.19) for women only. There was a strong independent, longitudinal association between strength decline and early mortality, such that each 0.10 decrease in strength, within participants over time, resulted in a HR of 1.12 (95% CI: 1.00-1.25) for women and a HR of 1.15 (95% CI: 1.04-1.28) for men. Longitudinal declines in strength are significantly associated with all-cause mortality in older Mexican Americans. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Nurul Misbah, Mohammad; Setyawan, Dony; Murti Dananjaya, Wisnu
2018-03-01
This research aims to determine the longitudinal strength of passenger ship which was converted from Landing Craft Tank with 54 m of length as stated by BKI (Biro Klasifikasi Indonesia / Indonesian Classification Bureau). Verification of strength value is done to 4 (four) loading conditions which are (1) empty load condition during sagging wave, (2) empty load condition during hogging wave, (3) full load condition during sagging wave and (4) full load condition during hogging wave. Analysis is done using Finite Element Analysis (FEA) software by modeling the entire part of passenger ship and its loading condition. The back and upfront part of ship centerline were used as the boundary condition. From that analysis it can be concluded that the maximum stress for load condition (1) is 72,393 MPa, 74,792 MPa for load condition (2), 129,92 MPa for load condition (3), and 132,4 MPa for load condition (4). Longitudinal strength of passenger ship fulfilled the criteria of empty load condition having smaller stress value than allowable stress which is 90 MPa, and during full load condition with smaller stress value than allowable stress which is 150 MPa. Analysis on longitudinal strength comparison with entire ship plate thickness variation of ± 2 mm from initial plate was also done during this research. From this research it can be concluded that plate thickness reduction causes the value of longitudinal strength to decrease, while plate thickness addition causes the value of longitudinal strength to increase.
Sensory and motor peripheral nerve function and longitudinal changes in quadriceps strength.
Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Newman, Anne B; Strotmeyer, Elsa S
2015-04-01
Poor peripheral nerve function is common in older adults and may be a risk factor for strength decline, although this has not been assessed longitudinally. We assessed whether sensorimotor peripheral nerve function predicts strength longitudinally in 1,830 participants (age = 76.3 ± 2.8, body mass index = 27.2 ± 4.6kg/m(2), strength = 96.3 ± 34.7 Nm, 51.0% female, 34.8% black) from the Health ABC study. Isokinetic quadriceps strength was measured semiannually over 6 years. Peroneal motor nerve conduction amplitude and velocity were recorded. Sensory nerve function was assessed with 10-g and 1.4-g monofilaments and average vibration detection threshold at the toe. Lower-extremity neuropathy symptoms were self-reported. Worse vibration detection threshold predicted 2.4% lower strength in men and worse motor amplitude and two symptoms predicted 2.5% and 8.1% lower strength, respectively, in women. Initial 10-g monofilament insensitivity predicted 14.2% lower strength and faster strength decline in women and 6.6% lower strength in men (all p < .05). Poor nerve function predicted lower strength and faster strength decline. Future work should examine interventions aimed at preventing declines in strength in older adults with impaired nerve function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Nguyen, Anh-Dung; Zuk, Emma F; Baellow, Andrea L; Pfile, Kate R; DiStefano, Lindsay J; Boling, Michelle C
2017-09-01
Risk of anterior cruciate ligament (ACL) injuries in young female athletes increases with age, appearing to peak during maturation. Changes in hip muscle strength and range of motion (ROM) during this time may contribute to altered dynamic movement patterns that are known to increase risk of ACL injuries. Understanding the longitudinal changes in hip strength and ROM is needed to develop appropriate interventions to reduce the risk of ACL injuries. To examine the longitudinal changes in hip strength and ROM in female youth soccer players. Longitudinal descriptive study. Field setting. 14 female youth soccer athletes (14.1 ± 1.1 y, 165.8 ± 5.3 cm, 57.5 ± 9.9 kg) volunteered as part of a multiyear risk factor screening project. Clinical measures of hip strength and ROM were collected annually over 3 consecutive years. Passive hip internal rotation (IR), external rotation (ER), abduction (ABD), and adduction (ADD) ROM were measured with a digital inclinometer. Isometric hip ABD and extension (EXT) strength were evaluated using a hand-held dynamometer. Separate repeated-measures ANOVAs compared hip strength and ROM values across 3 consecutive years (P < .05). As youth female soccer players increased in age, there were no changes in normalized hip ABD (P = .830) or EXT strength (P = .062) across 3 consecutive years. Longitudinal changes in hip ROM were observed with increases in hip IR (P = .001) and ABD (P < .001), while hip ADD (P = .009) and ER (P < .001) decreased. Anatomical changes at the hip occur as youth female soccer players increase in age. While there are no changes in hip strength, there is an increase in hip IR and ABD ROM with a concomitant decrease in hip ER and ADD ROM. The resulting asymmetries in hip ROM may decrease the activation and force producing capabilities of the hip muscles during dynamic activities, contributing to altered lower extremity mechanics known to increase the risk of ACL injuries.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Yavari, R.; Ramaswami, S.; Snipes, J. S.; Yen, C.-F.; Cheeseman, B. A.
2013-11-01
A comprehensive all-atom molecular-level computational investigation is carried out in order to identify and quantify: (i) the effect of prior longitudinal-compressive or axial-torsional loading on the longitudinal-tensile behavior of p-phenylene terephthalamide (PPTA) fibrils/fibers; and (ii) the role various microstructural/topological defects play in affecting this behavior. Experimental and computational results available in the relevant open literature were utilized to construct various defects within the molecular-level model and to assign the concentration to these defects consistent with the values generally encountered under "prototypical" PPTA-polymer synthesis and fiber fabrication conditions. When quantifying the effect of the prior longitudinal-compressive/axial-torsional loading on the longitudinal-tensile behavior of PPTA fibrils, the stochastic nature of the size/potency of these defects was taken into account. The results obtained revealed that: (a) due to the stochastic nature of the defect type, concentration/number density and size/potency, the PPTA fibril/fiber longitudinal-tensile strength is a statistical quantity possessing a characteristic probability density function; (b) application of the prior axial compression or axial torsion to the PPTA imperfect single-crystalline fibrils degrades their longitudinal-tensile strength and only slightly modifies the associated probability density function; and (c) introduction of the fibril/fiber interfaces into the computational analyses showed that prior axial torsion can induce major changes in the material microstructure, causing significant reductions in the PPTA-fiber longitudinal-tensile strength and appreciable changes in the associated probability density function.
The Shock Behaviour of a SiO2-Li2O Transparent Glass-Ceramic Armour Material
NASA Astrophysics Data System (ADS)
Pickup, I. M.; Millett, J. C. F.; Bourne, N. K.
2004-07-01
The dynamic behaviour of a transparent glass-ceramic material, Transarm, developed by Alstom UK for the UK MoD has been studied. Plate impact experiments have been used to measure the materials Hugoniot characteristics and failure behaviour. Longitudinal stresses have been measured using embedded and back surface mounted Manganin gauges. Above a threshold stress of ca. 4 GPa, the longitudinal stress histories exhibit a significant secondary rise, prior to attaining their Hugoniot stress. Lateral stresses were also measured by embedding Manganin gauges in longitudinal cuts. Significant secondary rises in stress were observed when the applied longitudinal stress exceeded the 4 GPa threshold, indicating the presence of a failure front. The dynamic shear strength of the glass has been measured using the longitudinal and lateral data. Even though significant strength drops have been measured before and behind the failure front, the material has a high post-failure strength compared to non- crystalline glasses.
Duan, Wenjie
2016-11-01
This study used a two-wave longitudinal research design to explore the role of individual strengths, including interpersonal strength, intellectual strength, and temperance strength, in affecting the mental health of stressed college students. A total of 404 stressed Chinese college students were screened to participate in this 12-month longitudinal study. At the beginning of the study (Time 1), students who had not experienced stressful events within the last 12 months were invited to assess their strengths, psychological well-being, and psychological symptoms. After 12 months (Time 2), 404 students who reported stressful experiences completed the scales again and were retained for the final analyses. Academics-related stressors were the most endorsed life events among college students, whose states of mental health showed downward trends from Time 1 to Time 2. Three strengths had weak to modest correlations to mental health at both Time 1 and Time 2. Although the additional variances of mental health explained by the three strengths were very modest, the mediational roles of the strengths were identified. The perceived stress completely mediated the relationship between the strengths and the psychological symptoms and partly mediated the relationship between the strengths and psychological well-being. Individual strengths may function as a defense against perceived stress and are protective factors of mental health. These strengths maintain mental health by enhancing the psychological well-being and reducing the psychological symptoms of individuals.
NASA Technical Reports Server (NTRS)
Montano, J. W.
1986-01-01
Presented are the mechanical properties and the stress corrosion resistance of triple melted vacuum induction melted (VIM), electro-slag remelted (ESR), and vacuum arc remelted (VAR), solution treated, work strengthened and direct double aged Inconel 718 alloy bars 4.00 in. (10.16) and 5.75 in. (14.60 cm) diameter. Tensile, charpy v-notched impact, and compact tension specimens were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 220 ksi (1516.85 MPa) and 200 ksi (1378.00 MPa) respectively, were realized at ambient temperature. Additional charpy impact and compact tension tests were performed at -100 F (-73 C). Longitudinal charpy impact strength equalled or exceeded 12.0 ft-lbs (16.3 Joules) at ambient and at -100 F(-73 C) while longitudinal compact (LC) tension fracture toughness strength remained above 79 ksi (86.80 MPa) at ambient and at -100 F(-73 C) temperatures. No failures occurred in the longitudinal or transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test indicated no mechanical property degradation.
Molenaar, H M Ties; Selles, Ruud W; de Kraker, Marjolein; Stam, Henk J; Hovius, Steven E R
2013-10-01
When interventions to the hand are aimed at improving function of specific fingers or the thumb, the RIHM (Rotterdam Intrinsic Hand Myometer) is a validated tool and offers more detailed information to assess strength of the involved joints besides grip and pinch measurements. In this study, strength was measured in 65 thumbs in 40 patients diagnosed with thumb hypoplasia. These 65 thumbs were classified according to Blauth. Longitudinal radial deficiencies were also classified. The strength measurements comprised of grip, tip, tripod and key pinch. Furthermore palmar abduction and opposition of the thumb as well as abduction of the index and little finger were measured with the RIHM. For all longitudinal radial deficiency patients, grip and pinch strength as well as palmar abduction and thumb opposition were significantly lower than reference values (P<0.001). However, strength in the index finger abduction and the little finger abduction was maintained or decreased to a lesser extent according to the degree of longitudinal radial deficiency. All strength values decreased with increasing Blauth-type. Blauth-type II hands (n=15) with flexor digitorum superficialis 4 opposition transfer including stabilization of the metacarpophalangeal joint showed a trend toward a higher opposition strength without reaching statistical significance (P=0.094),however compared to non-operated Blauth-type II hands (n=6) they showed a lower grip strength (P=0.019). The RIHM is comparable in accuracy to other strength dynamometers. Using the RIHM, we were able to illustrate strength patterns on finger-specific level, showing added value when evaluating outcome in patients with hand related problems. © 2013.
FE Analysis of Buckling Behavior Caused by Welding in Thin Plates of High Tensile Strength Steel
NASA Astrophysics Data System (ADS)
Wang, Jiangchao; Rashed, Sherif; Murakawa, Hidekazu
2014-12-01
The target of this study was to investigate buckling behavior during the entire welding process which consists of the heating and the cooling processes. For thin plate structures made of high tensile strength steel, not only residual buckling during or after cooling down but also transient buckling during heating may occur. The thermal elastic plastic FE analysis to investigate welding-induced buckling during the entire welding process is presented. Because of the high yield stress of high tensile strength steel, larger longitudinal compressive thermal stress is produced near the welding line compared with that in the case of carbon steel. Therefore, the plate may buckle due to thermal expansion, before the material nears yielding. During cooling down, the longitudinal compressive thermal stress close to the welding line disappears, and longitudinal tensile residual stress is produced due to contraction. Meanwhile, longitudinal compressive residual stress occurs far from the welding line to balance the tensile stress close to the welding line. This distribution of longitudinal residual stress would change the deformed dish shape of transient buckling into a saddle buckling type when the stress exceeds the critical buckling condition.
Evaluation of the tensile strength of the human ureter - Preliminary results.
Shilo, Yaniv; Pichamuthu, Joseph E; Averch, Timothy D; Vorp, David A
2014-09-15
Introduction: Ureteral injuries such as avulsion are directly related to mechanical damage of the ureter. Understanding the tensile strength of this tissue may assist in prevention of iatrogenic injuries. Few published studies have looked at the mechanical properties of the animal ureter, and of those none have determined the tensile strength of the human ureter. Therefore, the purpose of this work was to determine the tensile strength of the human ureter. Materials and Methods: We harvested 11 human proximal ureters from patients who were undergoing nephrectomy for either kidney tumors or non-functioning kidney. The specimens were then cut into multiple circumferentially and longitudinally-oriented tissue strips for tensile testing. Strips were uniaxially stretched to failure in a tensile testing machine. The corresponding force and displacement were recorded. Finally, stress at failure was noted as the tensile strength of the sample. Circumferential tensile strength was also compared in the proximal and distal regions of the specimens. Results: The tensile strength of the ureter in circumferential and longitudinal orientations was found to be 457.52±33.74 Ncm-2 and 902.43±122.08 Ncm-2, respectively (p<0.001). The circumferential strength in the proximal portion of the ureter was 409.89±35.13 Ncm-2 in comparison to 502.89±55.85 Ncm-2 in the distal portion (p=0.08). Conclusions: The circumferential tensile strength of the ureter was found to be significantly lower than the longitudinal strength. Circumferential tensile strength was also lower with more proximal parts of the ureter. This information may be important for the design of "intelligent" devices and simulators in order to prevent complications.
Evaluation of the tensile strength of the human ureter--preliminary results.
Shilo, Yaniv; Pichamuthu, Joseph E; Averch, Timothy D; Vorp, David A
2014-12-01
Ureteral injuries such as avulsion are directly related to mechanical damage of the ureter. Understanding the tensile strength of this tissue may assist in prevention of iatrogenic injuries. Few published studies have looked at the mechanical properties of the animal ureter and, of those, none has determined the tensile strength of the human ureter. Therefore, the purpose of this work was to determine the tensile strength of the human ureter. We harvested 11 human proximal ureters from patients who were undergoing nephrectomy for either kidney tumors or nonfunctioning kidney. The specimens were then cut into multiple circumferentially and longitudinally oriented tissue strips for tensile testing. Strips were uniaxially stretched to failure in a tensile testing machine. The corresponding force and displacement were recorded. Finally, stress at failure was noted as the tensile strength of the sample. Circumferential tensile strength was also compared in the proximal and distal regions of the specimens. The tensile strength of the ureter in circumferential and longitudinal orientations was found to be 457.52±33.74 Ncm(-2) and 902.43±122.08 Ncm(-2), respectively (P<0.001). The circumferential strength in the proximal portion of the ureter was 409.89±35.13 Ncm(-2) in comparison with 502.89±55.85 Ncm(-2) in the distal portion (P=0.08). The circumferential tensile strength of the ureter was found to be significantly lower than the longitudinal strength. Circumferential tensile strength was also lower with more proximal parts of the ureter. This information may be important for the design of "intelligent" devices and simulators to prevent complications.
Strain rate effects on mechanical properties of fiber composites, part 3
NASA Technical Reports Server (NTRS)
Daniel, I. M.; Liber, T.
1976-01-01
An experimental investigation was conducted to determine the strain rate effects in fiber composites. Unidirectional composite specimens of boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar/epoxy were tested to determine longitudinal, transverse and intralaminar (in-plane) shear properties. In the Longitudinal direction the Kevlar/epoxy shows a definite increase in both modulus and strength with strain rate. In the transverse direction, a general trend toward higher strength with strain rate is noticed. The intralaminar shear moduli and strengths of boron/epoxy and graphite/epoxy show a definite rise with strain rate.
Eckstein, F; Hitzl, W; Duryea, J; Kent Kwoh, C; Wirth, W
2013-05-01
To test whether cross-sectional or longitudinal measures of thigh muscle isometric strength differ between knees with and without subsequent radiographic progression of knee osteoarthritis (KOA), with particular focus on pre-osteoarthritic female knees (knees with risk factors but without definite radiographic KOA). Of 4,796 Osteoarthritis Initiative participants, 2,835 knees with Kellgren Lawrence grade (KLG) 0-3 had central X-ray readings, annual quantitative joint space width (JSW) and isometric muscle strength measurements (Good strength chair). Separate slope analysis of covariance (ANCOVA) models were used to determine differences in strength between "progressor" and "non-progressor" knees, after adjusting for age, body mass index, and pain. 466 participant knees exceeded the smallest detectable JSW change during each of two observation intervals (year 2→4 and year 1→3) and were classified as progressors (213 women, 253 men; 128 KLG0/1, 330 KLG2/3); 946 participant knees did not exceed this threshold in either interval and were classified as non-progressors (588 women, 358 from men; 288KLG0/1, 658KLG2/3). Female progressor knees, including those with KLG0/1, tended to have lower extensor and flexor strength at year 2 and at baseline than those without progression, but the difference was not significant after adjusting for confounders. No significant difference was observed in longitudinal change of muscle strength (baseline→year 2) prior to radiographic progression. No significant differences were found for muscle strength in men, and none for change in strength concomitant with progression. This study provides no strong evidence that (changes in) isometric muscle strength precedes or is associated with structural (radiographic) progression of KOA. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Eckstein, Felix; Hitzl, Wolfgang; Duryea, Jeff; Kwoh, C. Kent; Wirth, Wolfgang
2013-01-01
OBJECTIVE To test whether cross-sectional or longitudinal measures of thigh muscle isometric strength differ between knees with and without subsequent radiographic progression of knee osteoarthritis (KOA), with particular focus on pre-osteoarthritic female knees (knees with risk factors but without definite radiographic KOA). METHODS Of 4796 Osteoarthritis Initiative participants, 2835 knees with Kellgren Lawrence grade (KLG) 0–3 had central X-ray readings, annual quantitative joint space width (JSW) and isometric muscle strength measurements (Good strength chair). Separate slope ANCOVA models were used to determine differences in strength between “progressor” and “non- progressor” knees, after adjusting for age, body mass index, and pain. RESULTS 466 participant knees exceeded the smallest detectable JSW change during each of two observation intervals (year 2→4 and year 1→3) and were classified as progressors (213 women, 253 men; 128 KLG0/1, 330 KLG2/3); 946 participant knees did not exceed this threshold in either interval and were classified as non-progressors (588 women, 358 from men; 288KLG0/1, 658KLG2/3). Female progressor knees, including those with KLG0/1, tended to have lower extensor and flexor strength at year2 and at baseline than those without progression, but the difference was not significant after adjusting for confounders. No significant difference was observed in longitudinal change of muscle strength (baseline→year2) prior to radiographic progression. No significant differences were found for muscle strength in men, and none for change in strength concomitant with progression. CONCLUSION This study provides no strong evidence that (changes in) isometric muscle strength precedes or is associated with structural (radiographic) progression of KOA. PMID:23473978
Fracture and crack growth in orthotropic laminates
NASA Technical Reports Server (NTRS)
Goree, James G.; Kaw, Autar K.
1985-01-01
A mathematical model based on the classical shear-lag assumptions is used to study the residual strength and fracture behavior of composite laminates with symmetrically placed buffer strips. The laminate is loaded by a uniform remote longitudinal tensile strain and has initial damage in the form of a transverse crack in the parent laminate between buffer strips. The crack growth behavior as a function of material properties, number of buffer-strip plies, spacing, width of buffer strips, longitudinal matrix splitting, and debonding at the interface is studied. Buffer-strip laminates are shown to arrest fracture and increase the residual strengths significantly over those of one material laminates, with S-glass being a more effective buffer strip material than Kevlar in increasing the damage tolerance of graphite/epoxy panels. For a typical graphite/epoxy laminate with S-glass buffer-strips, the residual strength is about 2.4 times the residual strength of an all graphite/epoxy panel with the same crack length. Approximately 50% of this increase is due to the S-glass/epoxy buffer-strips, 40% due to longitudinal splitting of the buffer strip interface and 10% due to bonding.
SU-E-T-155: Calibration of Variable Longitudinal Strength 103Pd Brachytherapy Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, J; Radtke, J; Micka, J
Purpose: Brachytherapy sources with variable longitudinal strength (VLS) allow for a customized intensity along the length of the source. These have applications in focal brachytherapy treatments of prostate cancer where dose boosting can be achieved through modulation of intra-source strengths. This work focused on development of a calibration methodology for VLS sources based on measurements and Monte Carlo (MC) simulations of five 1 cm {sup 10} {sup 3}Pd sources each containing four regions of variable {sup 103}Pd strength. Methods: The air-kerma strengths of the sources were measured with a variable-aperture free-air chamber (VAFAC). Source strengths were also measured using amore » well chamber. The in-air azimuthal and polar anisotropy of the sources were measured by rotating them in front of a NaI scintillation detector and were calculated with MC simulations. Azimuthal anisotropy results were normalized to their mean intensity values. Polar anisotropy results were normalized to their average transverse axis intensity values. The relative longitudinal strengths of the sources were measured via on-contact irradiations with radiochromic film, and were calculated with MC simulations. Results: The variable {sup 103}Pd loading of the sources was validated by VAFAC and well chamber measurements. Ratios of VAFAC air-kerma strengths and well chamber responses were within ±1.3% for all sources. Azimuthal anisotropy results indicated that ≥95% of the normalized values for all sources were within ±1.7% of the mean values. Polar anisotropy results indicated variations within ±0.3% for a ±7.6° angular region with respect to the source transverse axis. Locations and intensities of the {sup 103}Pd regions were validated by radiochromic film measurements and MC simulations. Conclusion: The calibration methodology developed in this work confirms that the VLS sources investigated have a high level of polar uniformity, and that the strength and longitudinal intensity can be verified experimentally and through MC simulations. {sup 103}Pd sources were provided by CivaTech Oncology, Inc.« less
Roy, Tracey Ann; Blackman, Marc R; Harman, S Mitchell; Tobin, Jordan D; Schrager, Matthew; Metter, E Jeffery
2002-08-01
Muscle mass and strength losses during aging may be associated with declining levels of serum testosterone (T) in men. Few studies have shown a direct relationship between T and muscle mass and strength. Subjects were 262 men, aged 24-90 yr, from the Baltimore Longitudinal Study of Aging, who had T and sex hormone-binding globulin sex hormone-binding globulin (SHBG) measurements, from which the free T index (FTI) was calculated (T/SHBG) from serum samples collected longitudinally since 1963, total body fat mass and arm and leg fat-free mass (FFM) by dual-energy X-ray absorptiometry and arm and leg strength by dynanomometry. Mixed-effects models estimated T and FTI at the time of mass and strength measurements. Age, total body fat, arm and leg FFM, T, and FTI were significantly associated with concentric and eccentric strength. FTI, not T, was modestly, but directly, related to arm and leg strength after fat, arm and leg FFM, height, and age were accounted for and indirectly through body mass. FTI is a better predictor of arm and leg strength than T in aging men.
Composite impact strength improvement through a fiber/matrix interphase
NASA Technical Reports Server (NTRS)
Cavano, P. J.; Winters, W. E.
1975-01-01
Research was conducted to improve the impact strength and toughness of fiber/resin composites by means of a fiber coating interphase. Graphite fiber/epoxy resin composites were fabricated with four different fiber coating systems introduced in a matrix-fiber interphase. Two graphite fibers, a high strength and a high modulus type, were studied with the following coating systems: chemical vapor deposited boron, electroless nickel, a polyamide-imide resin and a thermoplastic polysulfone resin. Evaluation methods included the following tests: Izod, flexure, shear fracture toughness, longitudinal and transverse tensile, and transverse and longitudinal compression. No desirable changes could be effected with the high strength fiber, but significant improvements in impact performance were observed with the polyamide-imide resin coated high modulus fiber with no loss in composite modulus.
Study on axial strength of a channel-shaped pultruded GFRP member
NASA Astrophysics Data System (ADS)
Matsumoto, Yukihiro; Satake, Chito; Nisida, Kenji
2017-10-01
Fiber reinforced polymers (FRP) are widely used in vehicle and aerospace applications because of their lightweight and high-strength characteristics. Additionally, FRPs are increasingly applied to building structures. However, the elastic modulus of glass fiber reinforced polymers (GFRPs) is lower than that of steel. Hence, the evaluating the buckling strength of GFRP members for design purpose is necessary. The buckling strength is determined by Euler buckling mode as well as local buckling. In this study investigated the compressive strength of GFRP members subjected to axial compression through experiments and theoretical calculations. The adopted GFRP member was a channel-shaped GFRP, which was molded via pultrusion, at various lengths. Although, the mechanical properties as longitudinal elastic modulus and fiber volume fraction and strength of GFRP members subjected, to axial can be easily evaluated, evaluating transverse elastic modulus and shear modulus in typical material tests is difficult in standard section. Therefore the composite law was used in this study. As a result, we confirmed that the axial strength of a GFRP member could be calculated by a theoretical evaluation method utilizing longitudinal elastic modulus and fiber volume fraction.
Dannhauer, Torben; Sattler, Martina; Wirth, Wolfgang; Hunter, David J; Kwoh, C Kent; Eckstein, Felix
2014-08-01
Biomechanical measurement of muscle strength represents established technology in evaluating limb function. Yet, analysis of longitudinal change suffers from relatively large between-measurement variability. Here, we determine the sensitivity to change of magnetic resonance imaging (MRI)-based measurement of thigh muscle anatomical cross sectional areas (ACSAs) versus isometric strength in limbs with and without structural progressive knee osteoarthritis (KOA), with focus on the quadriceps. Of 625 "Osteoarthritis Initiative" participants with radiographic KOA, 20 had MRI cartilage and radiographic joint space width loss in the right knee isometric muscle strength measurement and axial T1-weighted spin-echo acquisitions of the thigh. Muscle ACSAs were determined from manual segmentation at 33% femoral length (distal to proximal). In progressor knees, the reduction in quadriceps ACSA between baseline and 2-year follow-up was -2.8 ± 7.9 % (standardized response mean [SRM] = -0.35), and it was -1.8 ± 6.8% (SRM = -0.26) in matched, non-progressive KOA controls. The decline in extensor strength was more variable than that in ACSAs, both in progressors (-3.9 ± 20%; SRM = -0.20) and in non-progressive controls (-4.5 ± 28%; SRM = -0.16). MRI-based analysis of quadriceps muscles ACSAs appears to be more sensitive to longitudinal change than isometric extensor strength and is suggestive of greater loss in limbs with structurally progressive KOA than in non-progressive controls.
Strain rate, temperature, and humidity on strength and moduli of a graphite/epoxy composite
NASA Technical Reports Server (NTRS)
Lifshitz, J. M.
1981-01-01
Results of an experimental study of the influence of strain rate, temperature and humidity on the mechanical behavior of a graphite/epoxy fiber composite are presented. Three principal strengths (longitudinal, transverse and shear) and four basic moduli (E1, E2, G12 and U12) of a unidirectional graphite/epoxy composite were followed as a function of strain rate, temperature and humidity. Each test was performed at a constant tensile strain rate in an environmental chamber providing simultaneous temperature and humidity control. Prior to testing, specimens were given a moisture preconditioning treatment at 60 C. Values for the matrix dominated moduli and strength were significantly influenced by both environmental and rate parameters, whereas the fiber dominated moduli were not. However, the longitudinal strength was significantly influenced by temperature and moisture content. A qualitative explanation for these observations is presented.
NASA Astrophysics Data System (ADS)
Ta, Hang T.; Li, Zhen; Wu, Yuao; Cowin, Gary; Zhang, Shaohua; Yago, Anya; Whittaker, Andrew K.; Xu, Zhi Ping
2017-11-01
This study aims to compare the relaxivities of ultra-small dual positive and negative contrast iron oxide nanoparticles (DCION) at different magnetic field strengths ranging from 4.7 to 16.4 T at physiological temperatures; and to investigate the effect of particle aggregation on relaxivities. Relaxivities of DCIONs were determined by magnetic resonance imaging scanners at 4.7, 7, 9.4, and 16.4 T. Both longitudinal (T 1) and transverse relaxation times (T 2) were measured by appropriate spin-echo sequences. It has been found that both longitudinal and transverse relaxivities are significantly dependent on the magnetic field strength. Particle aggregation also strongly affects the relaxivities. Awareness of the field strength and particle colloid stability is crucial for the comparison and evaluation of relaxivity values of these ultra-small iron oxide nanoparticles, and also for their medical applications as contrast agents.
Jameson, John; Smith, Peter; Harris, Gerald
2015-01-01
Osteogenesis Imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64–68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3–42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (p≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight towards understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. PMID:24928496
Albert, Carolyne; Jameson, John; Smith, Peter; Harris, Gerald
2014-09-01
Osteogenesis imperfecta is a genetic disorder resulting in bone fragility. The mechanisms behind this fragility are not well understood. In addition to characteristic bone mass deficiencies, research suggests that bone material properties are compromised in individuals with this disorder. However, little data exists regarding bone properties beyond the microstructural scale in individuals with this disorder. Specimens were obtained from long bone diaphyses of nine children with osteogenesis imperfecta during routine osteotomy procedures. Small rectangular beams, oriented longitudinally and transversely to the diaphyseal axis, were machined from these specimens and elastic modulus, yield strength, and maximum strength were measured in three-point bending. Intracortical vascular porosity, bone volume fraction, osteocyte lacuna density, and volumetric tissue mineral density were determined by synchrotron micro-computed tomography, and relationships among these mechanical properties and structural parameters were explored. Modulus and strength were on average 64-68% lower in the transverse vs. longitudinal beams (P<0.001, linear mixed model). Vascular porosity ranged between 3 and 42% of total bone volume. Longitudinal properties were associated negatively with porosity (P≤0.006, linear regressions). Mechanical properties, however, were not associated with osteocyte lacuna density or volumetric tissue mineral density (P≥0.167). Bone properties and structural parameters were not associated significantly with donor age (P≥0.225, linear mixed models). This study presents novel data regarding bone material strength in children with osteogenesis imperfecta. Results confirm that these properties are anisotropic. Elevated vascular porosity was observed in most specimens, and this parameter was associated with reduced bone material strength. These results offer insight toward understanding bone fragility and the role of intracortical porosity on the strength of bone tissue in children with osteogenesis imperfecta. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Anglin, Colin; Gaskin, David; Patrick, Mike
1995-01-01
The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to triaxial braided textile composite materials. Four fiber architectures were considered with different combinations of braid angle, longitudinal and braider yam size, and percentage of longitudinal yarns. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yams cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Longitudinal yarn splitting occurred in three of four architectures that were longitudinally fiber dominated. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch stress between measured and predicted stress were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.
Stent longitudinal integrity bench insights into a clinical problem.
Ormiston, John A; Webber, Bruce; Webster, Mark W I
2011-12-01
Standardized bench-top compression and elongation testing was undertaken to assess the longitudinal strength of contemporary stents. Insights gained may improve clinical stent choice and deployment techniques, and facilitate future stent design improvements. The hoops of coronary stents provide radial support, and connectors hold hoops together. Strut material, shape, and thickness, along with connector number and configuration, provide the balance between stent flexibility and longitudinal integrity. Longitudinal distortion manifests as length change, strut overlap, strut separation, malapposition, and luminal obstruction. These may predispose to restenosis and stent thrombosis, obstruct passage of devices, be misinterpreted as strut fracture, and require additional stenting. The force required to compress and to elongate 7 contemporary stents was measured with an Instron universal testing machine (Norwood, Massachusetts). Stents deployed in a silicone phantom damaged by a balloon or guide catheter were imaged by microcomputed tomography to understand better the appearances and effects of longitudinal distortion. Stents with 2 connectors (Boston Scientific [Natick, Massachusetts] Omega and Medtronic [Santa Rosa, California] Driver) required significantly less force to be compressed up to 5 mm and elongated by 1 mm than designs with more connectors. The 6-connector Cypher Select required significantly more force to be elongated 5 mm than other designs. Stents with 2 connectors between hoops have less longitudinal strength when exposed to compressing or elongating forces than those with more connectors. This independent, standardized study may assist stent selection in clinical situations where longitudinal integrity is important, and may aid future design improvements. Stent longitudinal strength, the resistance to shortening or elongation, appears related to the number of connectors between hoops. Using a standardized testing protocol, designs with 2 connectors were more likely to shorten or elongate than those with more connectors. Distortion may be recognized clinically as bunching or separation of struts, and may be confused with strut fracture. Without post-dilation or further stent deployment, the patient may be at increased risk for adverse clinical events. A stent design change ensuring 3 connectors, especially at the proximal end of a stent, should increase longitudinal integrity, but perhaps at the expense of stent flexibility. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Sock Shaped Internal Strength Member for Towed Arrays
hose -shaped sheath. The member has a plurality of longitudinally extending high strength cords formed of braids or strands of high tensile strength...interfering with the sensors’ acoustic sensing capabilities. The hose -shaped sheath contains the tubular-shaped strength member in a non-compressive...relationship to reduce the problems normally associated with flow noise. The cords are braided together in an eye-splice where they are wrapped about
NASA Astrophysics Data System (ADS)
Domnisoru, L.; Modiga, A.; Gasparotti, C.
2016-08-01
At the ship's design, the first step of the hull structural assessment is based on the longitudinal strength analysis, with head wave equivalent loads by the ships' classification societies’ rules. This paper presents an enhancement of the longitudinal strength analysis, considering the general case of the oblique quasi-static equivalent waves, based on the own non-linear iterative procedure and in-house program. The numerical approach is developed for the mono-hull ships, without restrictions on 3D-hull offset lines non-linearities, and involves three interlinked iterative cycles on floating, pitch and roll trim equilibrium conditions. Besides the ship-wave equilibrium parameters, the ship's girder wave induced loads are obtained. As numerical study case we have considered a large LPG liquefied petroleum gas carrier. The numerical results of the large LPG are compared with the statistical design values from several ships' classification societies’ rules. This study makes possible to obtain the oblique wave conditions that are inducing the maximum loads into the large LPG ship's girder. The numerical results of this study are pointing out that the non-linear iterative approach is necessary for the computation of the extreme loads induced by the oblique waves, ensuring better accuracy of the large LPG ship's longitudinal strength assessment.
NASA Astrophysics Data System (ADS)
Gholamhoseini, Alireza
2018-03-01
Composite one-way concrete slabs with profiled steel decking as permanent formwork are commonly used in the construction industry. The steel decking supports the wet concrete of a cast in situ reinforced or post-tensioned concrete slab and, after the concrete sets, acts as external reinforcement. In this type of slab, longitudinal shear failure between the concrete and the steel decking is the most common type of failure at the ultimate load stage. Design codes require the experimental evaluation of the ultimate load capacity and longitudinal shear strength of each type of steel decking using full-scale tests on simple-span slabs. There is also no procedure in current design codes to evaluate the ultimate load capacity and longitudinal shear strength of continuous composite slabs and this is often assessed experimentally by full-scale tests. This paper presents the results of three full-scale tests up to failure on continuous composite concrete slabs cast with trapezoidal steel decking profile (KF70) that is widely used in Australia. Slab specimens were tested in four-point bending at each span with shear spans of span/4. The longitudinal shear failure of each slab is evaluated and the measured mid-span deflection, the end slip and the mid-span steel and concrete strains are also presented and discussed. Redistribution of bending moment in each slab is presented and discussed. A finite element model is proposed and verified by experimental data using interface element to model the bond properties between steel decking and concrete slab and investigate the ultimate strength of continuous composite concrete slabs.
Longitudinal Profiles of Adaptive Behavior in Fragile X Syndrome
Quintin, Eve-Marie; Jo, Booil; Lightbody, Amy A.; Hazlett, Heather Cody; Piven, Joseph; Hall, Scott S.; Reiss, Allan L.
2014-01-01
OBJECTIVE: To examine longitudinally the adaptive behavior patterns in fragile X syndrome. METHOD: Caregivers of 275 children and adolescents with fragile X syndrome and 225 typically developing children and adolescents (2–18 years) were interviewed with the Vineland Adaptive Behavior Scales every 2 to 4 years as part of a prospective longitudinal study. RESULTS: Standard scores of adaptive behavior in people with fragile X syndrome are marked by a significant decline over time in all domains for males and in communication for females. Socialization skills are a relative strength as compared with the other domains for males with fragile X syndrome. Females with fragile X syndrome did not show a discernible pattern of developmental strengths and weaknesses. CONCLUSIONS: This is the first large-scale longitudinal study to show that the acquisition of adaptive behavior slows as individuals with fragile X syndrome age. It is imperative to ensure that assessments of adaptive behavior skills are part of intervention programs focusing on childhood and adolescence in this condition. PMID:25070318
NASA Astrophysics Data System (ADS)
Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.
2015-01-01
Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.
NASA Astrophysics Data System (ADS)
Zhang, Mi; Guan, Zhidong; Wang, Xiaodong; Du, Shanyi
2017-10-01
Kink band is a typical phenomenon for composites under longitudinal compression. In this paper, theoretical analysis and finite element simulation were conducted to analyze kink angle as well as compressive strength of composites. Kink angle was considered to be an important character throughout longitudinal compression process. Three factors including plastic matrix, initial fiber misalignment and rotation due to loading were considered for theoretical analysis. Besides, the relationship between kink angle and fiber volume fraction was improved and optimized by theoretical derivation. In addition, finite element models considering fiber stochastic strength and Drucker-Prager constitutive model for matrix were conducted in ABAQUS to analyze kink band formation process, which corresponded with the experimental results. Through simulation, the loading and failure procedure can be evidently divided into three stages: elastic stage, softening stage, and fiber break stage. It also shows that kink band is a result of fiber misalignment and plastic matrix. Different values of initial fiber misalignment angle, wavelength and fiber volume fraction were considered to explore the effects on compressive strength and kink angle. Results show that compressive strength increases with the decreasing of initial fiber misalignment angle, the decreasing of initial fiber misalignment wavelength and the increasing of fiber volume fraction, while kink angle decreases in these situations. Orthogonal array in statistics was also built to distinguish the effect degree of these factors. It indicates that initial fiber misalignment angle has the largest impact on compressive strength and kink angle.
Fibre-matrix bond strength studies of glass, ceramic, and metal matrix composites
NASA Technical Reports Server (NTRS)
Grande, D. H.; Mandell, J. F.; Hong, K. C. C.
1988-01-01
An indentation test technique for compressively loading the ends of individual fibers to produce debonding has been applied to metal, glass, and glass-ceramic matrix composites; bond strength values at debond initiation are calculated using a finite-element model. Results are correlated with composite longitudinal and interlaminar shear behavior for carbon and Nicalon fiber-reinforced glasses and glass-ceramics including the effects of matrix modifications, processing conditions, and high-temperature oxidation embrittlement. The data indicate that significant bonding to improve off-axis and shear properties can be tolerated before the longitudinal behavior becomes brittle. Residual stress and other mechanical bonding effects are important, but improved analyses and multiaxial interfacial failure criteria are needed to adequately interpret bond strength data in terms of composite performance.
ERIC Educational Resources Information Center
Couzens, Donna; Haynes, Michele; Cuskelly, Monica
2012-01-01
Background: Associations among cognitive development and intrapersonal and environmental characteristics were investigated for 89 longitudinal study participants with Down syndrome to understand developmental patterns associated with cognitive strengths and weaknesses. Materials and Methods: Subtest scores of the Stanford-Binet IV collected…
Study of fatigue behavior of longitudinal welded pipes
NASA Astrophysics Data System (ADS)
Simion, P.; Dia, V.; Istrate, B.; Hrituleac, G.; Hrituleac, I.; Munteanu, C.
2016-08-01
During transport and storage of the various fluids, welded pipes are subjected to cyclic loading due to pressure fluctuations that often exceed the prescribed values for normal operation. These cyclic loading can significantly reduce the life of the pipes; as a result the design should be based on the fatigue strength not only on static resistance. In general the fatigue strength of pipes is dependent by strength, pipe geometry and surface quality. In case of the electric longitudinal welded pipes, the fatigue strength is significantly limited by concentration of residual stress and the size of existing defects in the weld seam. This paper presents the fatigue behaviour of the electric welded pipes by high frequency, under conditions that simulate real operating conditions pipes. Fatigue testing was performed on welded pipes made of micro alloyed carbon steels. Some of these pipes were previously subjected to a heat treatment of normalization, in order to also determine the influence of heat treatment on the fatigue strength of welded pipes. To determine and correlate the different factors affecting the fatigue strength, welded pipes were also subjected to various tests: tensile tests, impact tests, measurement of micro hardness, microstructural analysis by optical microscopy and scanning electron microscopy.
Lewis, Gemma; Jones, Peter B; Goodyer, Ian M
2016-02-01
The purpose of this study is to review longitudinal findings on adolescent mental health from the 'ROOTS study', and provide directions and recommendations for future longitudinal research. To do this, we discuss relevant findings from the ROOTS study, and review its strengths and limitations. We examined all publications from the ROOTS study up to July 2015, selected those examining adolescent mental health, and classified them as investigating (a) childhood risk factors for adolescent depression, (b) genetic and cognitive vulnerability to depression in adolescence, (c) genetic markers, childhood adversities, and neuroendophenotypes, (d) morning cortisol and depression, (e) physical activity and depression symptoms, and (f) the underlying structure of mental health in adolescence. We reviewed the strengths and limitations of the ROOTS study, and how they feed into recommendations for future longitudinal research. There was evidence supporting a putative hormonal biomarker for the emergence of depression in boys. Environmental pathways from child adversity to adolescent depression were confirmed in girls, partly accounted for by negative life events in early adolescence. The preceding role of automatic cognitive biases assessed using behavioural tasks was substantiated, with evidence for genetic susceptibility. Novel latent statistical models of child adversity, depression, anxiety, and psychotic experiences were produced, with concurrent and prospective validity. Our experiences conducting the ROOTS study resulted in a set of strengths, limitations, and recommendations for future longitudinal studies. The ROOTS study has advanced knowledge on the aetiology of adolescent depression by investigating environmental, genetic, hormonal, and neural risk factors. Findings provide a foundation for future research integrating cognitive neuroscience with epidemiology.
Santos, Kelli Maria Souza; de Cerqueira Neto, Manoel Luiz; Carvalho, Vitor Oliveira; de Santana Filho, Valter Joviniano; da Silva Junior, Walderi Monteiro; Araújo Filho, Amaro Afrânio; Cerqueira, Telma Cristina Fontes; Cacau, Lucas de Assis Pereira
2014-01-01
Introduction Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. Objective To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. Methods This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M3). Participants received physiotherapy pre and postoperatively during the days of hospitalization during the morning and afternoon. Results Twenty-two patients were evaluated. The values of peripheral muscle strength of knee extensors preoperative found were about 50% lower than those predicted for the healthy population. When comparing muscle strength prior (M1), with the remaining evaluation, found himself in a fall of 29% for the movement of knee extension and 25% for knee flexion in M2 and a decrease of 10% movement for knee extension and 13% for knee flexion in M3 when comparing with M1. Conclusion The values of peripheral muscle strength prior of the study patients were lower than predicted for the healthy population of the same age. After the surgical event this reduction is even more remarkable, being reestablished until the time of discharge, to values close to baseline. PMID:25372909
Santos, Kelli Maria Souza; Cerqueira Neto, Manoel Luiz de; Carvalho, Vitor Oliveira; Santana Filho, Valter Joviniano de; Silva Junior, Walderi Monteiro da; Araújo Filho, Amaro Afrânio; Cerqueira, Telma Cristina Fontes; Cacau, Lucas de Assis Pereira
2014-01-01
Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M3). Participants received physiotherapy pre and postoperatively during the days of hospitalization during the morning and afternoon. Twenty-two patients were evaluated. The values of peripheral muscle strength of knee extensors preoperative found were about 50% lower than those predicted for the healthy population. When comparing muscle strength prior (M1), with the remaining evaluation, found himself in a fall of 29% for the movement of knee extension and 25% for knee flexion in M2 and a decrease of 10% movement for knee extension and 13% for knee flexion in M3 when comparing with M1. The values of peripheral muscle strength prior of the study patients were lower than predicted for the healthy population of the same age. After the surgical event this reduction is even more remarkable, being reestablished until the time of discharge, to values close to baseline.
Kierkegaard, Marie; Petitclerc, Émilie; Hébert, Luc J; Mathieu, Jean; Gagnon, Cynthia
2018-02-28
To assess changes and responsiveness in outcome measures of mobility, balance, muscle strength and manual dexterity in adults with myotonic dystrophy type 1. A 9-year longitudinal study conducted with 113 patients. The responsiveness of the Timed Up and Go test, Berg Balance Scale, quantitative muscle testing, grip and pinch-grip strength, and Purdue Pegboard Test was assessed using criterion and construct approaches. Patient-reported perceived changes (worse/stable) in balance, walking, lower-limb weakness, stair-climbing and hand weakness were used as criteria. Predefined hypotheses about expected area under the receiver operating characteristic curves (criterion approach) and correlations between relative changes (construct approach) were explored. The direction and magnitude of median changes in outcome measures corresponded with patient-reported changes. Median changes in the Timed Up and Go test, grip strength, pinch-grip strength and Purdue Pegboard Test did not, in general, exceed known measurement errors. Most criterion (72%) and construct (70%) approach hypotheses were supported. Promising responsiveness was found for outcome measures of mobility, balance and muscle strength. Grip strength and manual dexterity measures showed poorer responsiveness. The performance-based outcome measures captured changes over the 9-year period and responsiveness was promising. Knowledge of measurement errors is needed to interpret the meaning of these longitudinal changes.
Sanyal, Arnav; Keaveny, Tony M.
2013-01-01
The biaxial failure behavior of the human trabecular bone, which has potential relevance both for fall and gait loading conditions, is not well understood, particularly for low-density bone, which can display considerable mechanical anisotropy. Addressing this issue, we investigated the biaxial normal strength behavior and the underlying failure mechanisms for human trabecular bone displaying a wide range of bone volume fraction (0.06–0.34) and elastic anisotropy. Micro-computer tomography (CT)-based nonlinear finite element analysis was used to simulate biaxial failure in 15 specimens (5 mm cubes), spanning the complete biaxial normal stress failure space in the axial-transverse plane. The specimens, treated as approximately transversely isotropic, were loaded in the principal material orientation. We found that the biaxial stress yield surface was well characterized by the superposition of two ellipses—one each for yield failure in the longitudinal and transverse loading directions—and the size, shape, and orientation of which depended on bone volume fraction and elastic anisotropy. However, when normalized by the uniaxial tensile and compressive strengths in the longitudinal and transverse directions, all of which depended on bone volume fraction, microarchitecture, and mechanical anisotropy, the resulting normalized biaxial strength behavior was well described by a single pair of (longitudinal and transverse) ellipses, with little interspecimen variation. Taken together, these results indicate that the role of bone volume fraction, microarchitecture, and mechanical anisotropy is mostly accounted for in determining the uniaxial strength behavior and the effect of these parameters on the axial-transverse biaxial normal strength behavior per se is minor. PMID:24121715
The Tension and Puncture Properties of HDPE Geomembrane under the Corrosion of Leachate.
Xue, Qiang; Zhang, Qian; Li, Zhen-Ze; Xiao, Kai
2013-09-17
To investigate the gradual failure of high-density polyethylene (HDPE) geomembrane as a result of long-term corrosion, four dynamic corrosion tests were conducted at different temperatures and durations. By combining tension and puncture tests, we systematically studied the variation law of tension and puncture properties of the HDPE geomembrane under different corrosion conditions. Results showed that tension and puncture failure of the HDPE geomembrane was progressive, and tensile strength in the longitudinal grain direction was evidently better than that in the transverse direction. Punctures appeared shortly after puncture force reached the puncture strength. The tensile strength of geomembrane was in inversely proportional to the corrosion time, and the impact of corrosion was more obvious in the longitudinal direction than transverse direction. As corrosion time increased, puncture strength decreased and corresponding deformation increased. As with corrosion time, the increase of corrosion temperature induced the decrease of geomembrane tensile strength. Tensile and puncture strength were extremely sensitive to temperature. Overall, residual strength had a negative correlation with corrosion time or temperature. Elongation variation increased initially and then decreased with the increase in temperature. However, it did not show significant law with corrosion time. The reduction in puncture strength and the increase in puncture deformation had positive correlations with corrosion time or temperature. The geomembrane softened under corrosion condition. The conclusion may be applicable to the proper designing of the HDPE geomembrane in landfill barrier system.
NASA Astrophysics Data System (ADS)
Lu, Yaqing; Hui, Hu; Gong, Jianguo
2018-05-01
Austenitic stainless steel is widely used in pressure vessels for the storage and transportation of liquid gases such as liquid nitrogen, liquid oxygen, and liquid hydrogen. Cryogenic pressure vessel manufacturing uses cold stretching technology, which relies heavily on welding joint performance, to construct lightweight and thin-walled vessels. Residual stress from welding is a primary factor in cases of austenitic stainless steel pressure vessel failure. In this paper, on the basis of Visual Environment 10.0 finite element simulation technology, the residual stress resulting from different welding strength matching coefficients (0.8, 1, 1.2, 1.4) for two S30408 plates welded with three-pass butt welds is calculated according to thermal elastoplastic theory. In addition, the stress field was calculated under a loading as high as 410 MPa and after the load was released. Path 1 was set to analyze stress along the welding line, and path 2 was set to analyze stress normal to the welding line. The welding strength matching coefficient strongly affected both the longitudinal residual stress (center of path 1) and the transverse residual stress (both ends of path 1) after the welding was completed. However, the coefficient had little effect on the longitudinal and transverse residual stress of path 2. Under the loading of 410 MPa, the longitudinal and transverse stress decreased and the stress distribution, with different welding strength matching coefficients, was less diverse. After the load was released, longitudinal and transverse stress distribution for both path 1 and path 2 decreased to a low level. Cold stretching could reduce the effect of residual stress to various degrees. Transverse strain along the stretching direction was also taken into consideration. The experimental results validated the reliability of the partial simulation.
Transverse stresses and modes of failure in tree branches and other beams.
Ennos, A R; van Casteren, A
2010-04-22
The longitudinal stresses in beams subjected to bending also set up transverse stresses within them; they compress the cross section when the beam's curvature is being increased and stretch it when its curvature is being reduced. Analysis shows that transverse stresses rise to a maximum at the neutral axis and increase with both the bending moment applied and the curvature of the beam. These stresses can qualitatively explain the fracture behaviour of tree branches. Curved 'hazard beams' that are being straightened split down the middle because of the low transverse tensile strength of wood. By contrast, straight branches of light wood buckle when they are bent because of its low transverse compressive strength. Branches of denser wood break, but the low transverse tensile strength diverts the crack longitudinally when the fracture has only run half-way across the beam, to produce their characteristic 'greenstick fracture'. The bones of young mammals and uniaxially reinforced composite beams may also be prone to greenstick fracture because of their lower transverse tensile strength.
NASA Technical Reports Server (NTRS)
Montano, J. W. L.
1977-01-01
The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion properties of hot rolled and centerless ground Nitronic 32 stainless steel bar material are presented. The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing smooth tensile strength with decreasing temperature to liquid hydrogen temperature. However, below -200 F (-129.0 C) the notched tensile strength decreased slightly and below -320 F (-196.0 C) the decrease was significant. The elongation and reduction of area decreased drastically at temperatures below -200 F (-129.0 C). The Charpy V-notched impact energy decreased steadily with decreasing test temperature. Stress corrosion tests were performed on longitudinal tensile specimens stressed to 0, 75, and 90 percent of the 0.2 percent yield strength and on transverse 'C'-ring specimens stressed to 75 and 90 percent of the yield strength and exposed to: alternate immersion in a 3.5 percent NaCl bath, humidity cabinet environment, and a 5 percent salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack; however, the 'C'-rings exposed to the alternate immersion and to the salt spray experienced some shallow etching and pitting, respectively. Small cracks appeared in two of the 'C'-rings after one month exposure to the salt spray.
Gabel, Leigh; Macdonald, Heather M.; McKay, Heather A.
2016-01-01
Sex differences in bone strength and fracture risk are well-documented. However, we know little about bone strength accrual during growth and adaptations in bone microstructure, density and geometry that accompany gains in bone strength. Thus, our objectives are to 1) describe growth related adaptations in bone microarchitecture, geometry, density and strength at the distal tibia and radius in boys and girls; 2) compare differences in adaptations in bone microarchitecture, geometry, density and strength between boys and girls. We used HR-pQCT at the distal tibia (8% site) and radius (7% site) in 184 boys and 209 girls (9–20y at baseline). We aligned boys and girls on a common maturational landmark (age at peak height velocity; APHV) and fit a mixed effects model to these longitudinal data. Importantly, boys demonstrated 28–63% greater estimated bone strength across 12 years of longitudinal growth. Boys demonstrated 28–80% more porous cortices compared with girls at both sites across all biological ages, except at the radius at 9 years post-APHV. However, cortical density was similar between boys and girls at all ages at both sites, except at 9 years post-APHV at the tibia when girls’ values were 2% greater than boys’. Boys demonstrated 13–48% greater cortical and total bone area across growth. Load-to-strength ratio was 26–27% lower in boys at all ages, indicating lower risk of distal forearm fracture compared with girls. Contrary to previous HR-pQCT studies that did not align boys and girls at the same biological age, we did not observe sex differences in Ct.BMD. Boys’ superior bone size and strength compared with girls may confer them a protective advantage. However, boys’ consistently more porous cortices may contribute to boys’ higher fracture incidence during adolescence. Large prospective studies using HR-pQCT that target boys and girls who have sustained a fracture are needed to verify this. PMID:27556581
NASA Technical Reports Server (NTRS)
Montano, J. W.
1987-01-01
This report presents a preliminary mechanical property and stress corrosion evaluation of double melted (vacuum induction melted (VIM), and vacuum arc remelted (VAR)), solution treated, work strengthened and direct aged Inconel 718 alloy bar (5.50 in. (13.97 cm) diameter). Two sets of tensile specimens, one direct single aged and the other direct double aged, were tested at ambient temperature in both the longitudinal and transverse directions. Longitudinal tensile and yield strengths in excess of 200 ksi (1378.96 MPa) and 168 ksi (1158.33 MPa), respectively, were realized at ambient temperature, for the direct double aged specimen. No failures occurred in the single or double edged longitudinal and transverse tensile specimens stressed to 75 and 100 percent of their respective yield strengths and exposed to a salt fog environment for 180 days. Tensile tests performed after the stress corrosion test showed no mechanical property degradation.
ERIC Educational Resources Information Center
Marmorstein, Naomi R.; von Ranson, Kristin M.; Iacono, William G.; Succop, Paul A.
2007-01-01
This study investigated longitudinal associations between externalizing behavior and dysfunctional eating attitudes and behaviors. Participants were girls drawn from the community-based Minnesota Twin Family Study and assessed at ages 11, 14, and 17. Cross-sectional correlations indicated that the strength of the associations between externalizing…
The Importance of Longitudinal Pretest-Posttest Designs in Estimating College Impact
ERIC Educational Resources Information Center
Seifert, Tricia A.; Pascarella, Ernest T.; Erkel, Sherri I.; Goodman, Kathleen M.
2010-01-01
In this chapter, the authors discuss the issue of research design in conducting inquiry on college impact and demonstrate the importance of longitudinal pretest-posttest designs in maximizing the internal validity of findings. They begin by discussing the strengths and weaknesses of different types of research design in the college impact…
Ruhdorfer, Anja; Wirth, Wolfgang; Dannhauer, Torben; Eckstein, Felix
2015-01-01
Objective To evaluate 4-year longitudinal change in thigh muscle and adipose tissue content in chronically painful versus painless knees. Methods Knees from Osteoarthritis Initiative participants with non-acceptable symptom status (numerical rating scale ≥4) and frequent pain (≥6 months at baseline, year 2 and year 4 follow-up) were studied. These were matched with painless controls (bilateral NRS pain intensity≤1 and ≤infrequent pain at all 3 timepoints). 4-year longitudinal changes in thigh muscle anatomical cross-sectional areas (CSAs), isometric muscle strength, and in subcutaneous (SCF) and intermuscular fat (IMF) CSAs were obtained from magnetic resonance images (MRI) and were compared between groups (paired t-tests). Results 43 participants fulfilled the inclusion criteria of chronic pain, had complete thigh muscle MRI acquisitions and strength measurements, and a matched control. Quadriceps CSAs, but not extensor strength, showed a significant longitudinal decrease in chronically painful knees (-3.9%; 95%confidence interval [95 CI] -6.3%,-1.5%) and in painless controls (-2.4%; 95% CI -4.1%, -0.7%); the difference in change was not statistically significant (p=0.33). There was a significant 4-year gain in SCF in painful knees (8.1%; 95% CI 3.1%, 13%) but not in controls (0.0%; 95%CI -4.4%, +4.4%) with the difference in change being significant (p=0.03). The gain in IMF (∼5.2%) was similar between painful and painless knees. Conclusion This is the first paper to show a significant impact of (chronic) knee pain on longitudinal change in local subcutaneous adipose tissue. The effect of pain on subcutaneous fat appeared stronger than that on intermuscular adipose tissue and on muscle status. PMID:25887367
NASA Technical Reports Server (NTRS)
Nairn, John A.
1992-01-01
A combined analytical and experimental study was conducted to analyze microcracking, microcrack-induced delamination, and longitudinal splitting in polymer matrix composites. Strain energy release rates, calculated by a variational analysis, were used in a failure criterion to predict microcracking. Predictions and test results were compared for static, fatigue, and cyclic thermal loading. The longitudinal splitting analysis accounted for the effects of fiber bridging. Test data are analyzed and compared for longitudinal splitting and delamination under mixed-mode loading. This study emphasizes the importance of using fracture mechanics analyses to understand the complex failure processes that govern composite strength and life.
ERIC Educational Resources Information Center
Sointu, Erkko T.; Savolainen, Hannu; Lappalainen, Kristiina; Lambert, Matthew C.
2017-01-01
Positive student-teacher relationships are related to students' academic achievement and behavioural and emotional adjustment. How a student's behavioural and emotional strengths are associated with these relationships and how the relationships influence students' academic performance remains unknown. We examined this framework using a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crabtree, D.J.
Three types of boron/epoxy prepreg tape were prestressed to fracture weak sites along the fiber by winding over 0.3- to 0.6-inch diameter rollers prior to lamination. The prestressed prepreg was then laminated, and design allowable testing was conducted to determine if mechanical strength properties are increased and data scatter is reduced by prestressing. The types of prepreg studied were standard 'Rigidite' 5505/4 prepreg, carbon substrate boron fiber prepreg, and a prepreg made from 'defect' tungsten substrate boron that was manufactured in a high-speed, low-cost, production process. The strength of angleply composites of both 'Rigidite' 5505/4 and carbon substrate boron compositesmore » were unaffected by prestressing. A study was made to determine if prepreg costs could be reduced by manufacturing low-cost 'defect' boron fiber and prestressing it to improve its properties. The results of this study were inconclusive. The test results show prestressing marginally improved some composite properties while others were reduced. On 'Rigidite' 5505/4 unidirectional composites, fatigue strength was significantly improved by prestressing, while longitudinal tensile strength was reduced at room temperature and 350 F. On unidirectional carbon substrate boron composites, the longitudinal tensile strength at room temperature and 350F was increased with attendant variability, while fatigue strength at high stress levels was reduced but not affected at low stress levels.« less
Polyimide Composites from 'Salt-Like' Solution Precursors
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Hou, Tan H.; Weiser, Erik S.; SaintClair, Terry L.
2001-01-01
Four NASA Langley-developed polyimide matrix resins, LaRC(TM)-IA, LaRC(TM)-IAX, LaRC(TM)-8515 and LaRC(TM)-PETI-5, were produced via a 'saltlike' process developed by Unitika Ltd. The salt-like solutions (65% solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC multipurpose tape machine. Process parameters were determined and composite panels fabricated. The temperature dependent volatile depletion rates, the thermal crystallization behavior and the resin rheology were characterized. Composite molding cycles were developed which consistently yielded well consolidated, void-free laminated parts. Composite mechanical properties such as the short beam shear strength; the longitudinal and transverse flexural strength and flexural modulus; the longitudinal compression strength and modulus; and the open hole compression strength and compression after impact strength were measured at room temperature and elevated temperatures. The processing characteristics and the composite mechanical properties of the four intermediate modulus carbon fiber/polyimide matrix composites were compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (30-35% solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of the polyimide composites.
Magnetic field of longitudinal gradient bend
NASA Astrophysics Data System (ADS)
Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas
2018-06-01
The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.
Probabilistic simulation of uncertainties in composite uniaxial strengths
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Stock, T. A.
1990-01-01
Probabilistic composite micromechanics methods are developed that simulate uncertainties in unidirectional fiber composite strengths. These methods are in the form of computational procedures using composite mechanics with Monte Carlo simulation. The variables for which uncertainties are accounted include constituent strengths and their respective scatter. A graphite/epoxy unidirectional composite (ply) is studied to illustrate the procedure and its effectiveness to formally estimate the probable scatter in the composite uniaxial strengths. The results show that ply longitudinal tensile and compressive, transverse compressive and intralaminar shear strengths are not sensitive to single fiber anomalies (breaks, intergacial disbonds, matrix microcracks); however, the ply transverse tensile strength is.
The Tension and Puncture Properties of HDPE Geomembrane under the Corrosion of Leachate
Xue, Qiang; Zhang, Qian; Li, Zhen-Ze; Xiao, Kai
2013-01-01
To investigate the gradual failure of high-density polyethylene (HDPE) geomembrane as a result of long-term corrosion, four dynamic corrosion tests were conducted at different temperatures and durations. By combining tension and puncture tests, we systematically studied the variation law of tension and puncture properties of the HDPE geomembrane under different corrosion conditions. Results showed that tension and puncture failure of the HDPE geomembrane was progressive, and tensile strength in the longitudinal grain direction was evidently better than that in the transverse direction. Punctures appeared shortly after puncture force reached the puncture strength. The tensile strength of geomembrane was in inversely proportional to the corrosion time, and the impact of corrosion was more obvious in the longitudinal direction than transverse direction. As corrosion time increased, puncture strength decreased and corresponding deformation increased. As with corrosion time, the increase of corrosion temperature induced the decrease of geomembrane tensile strength. Tensile and puncture strength were extremely sensitive to temperature. Overall, residual strength had a negative correlation with corrosion time or temperature. Elongation variation increased initially and then decreased with the increase in temperature. However, it did not show significant law with corrosion time. The reduction in puncture strength and the increase in puncture deformation had positive correlations with corrosion time or temperature. The geomembrane softened under corrosion condition. The conclusion may be applicable to the proper designing of the HDPE geomembrane in landfill barrier system. PMID:28788321
Yang, Eun Joo; Lim, Soo; Lim, Jae-Young; Kim, Ki Woong; Jang, Hak Chul; Paik, Nam-Jong
2012-03-01
The objective of the study was to investigate the association between metabolic syndrome (MS) and muscle strength in community-dwelling older men and women in Korea. Korean men and women 65 years and older living in a single, typical South Korean city (n = 647) were enrolled in the Korean Longitudinal Study on Health and Aging study. The diagnosis of MS was evaluated according to the definition of the National Cholesterol Education Program Adult Treatment Panel III. Isokinetic muscle strength of the knee extensors, as determined by peak torque per body weight (newton meter per kilogram) and hand-grip strength per body weight (newton per kilogram), was measured. Participants without MS had greater leg muscle strength and grip strength per weight. The effect of MS on muscle strength was more prominent in men than in women in our study population. Only men showed a significant interaction between MS and age for muscle strength (P = .014), and the effect was greater in men aged 65 to 74 years compared with those older than 75 years (119.2 ± 31.2 vs 134.5 ± 24.3 N m/kg). Participants with MS had weaker knee extensor strength after controlling the covariates (β = -90.80, P = .003), and the interaction term (age × MS × male sex) was significant (β = 1.00, P = .017). Metabolic syndrome is associated with muscle weakness, and this relationship is particularly pronounced in men. Age can modify the impact of MS on muscle strength. Men aged 65 to 74 years with MS need a thorough assessment of muscle strength to prevent disability. Copyright © 2012 Elsevier Inc. All rights reserved.
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2012 CFR
2012-10-01
... crash refuge for crewmembers occupying the cab of a power car, the underframe of the cab of a power car... volumes of a power car or a trailer car designed to crush as part of the crash energy management design...) The underframe of the occupied volume of each trailer car shall resist a minimum longitudinal static...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2014 CFR
2014-10-01
... crash refuge for crewmembers occupying the cab of a power car, the underframe of the cab of a power car... volumes of a power car or a trailer car designed to crush as part of the crash energy management design...) The underframe of the occupied volume of each trailer car shall resist a minimum longitudinal static...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2013 CFR
2013-10-01
... crash refuge for crewmembers occupying the cab of a power car, the underframe of the cab of a power car... volumes of a power car or a trailer car designed to crush as part of the crash energy management design...) The underframe of the occupied volume of each trailer car shall resist a minimum longitudinal static...
ERIC Educational Resources Information Center
Data Quality Campaign, 2014
2014-01-01
Teachers need longitudinal student-level data, such as attendance history, course-taking patterns, grades, and test scores, to tailor instruction to individual students' strengths and weaknesses.This factsheet uses the findings from the Data for Action 2013 analysis to discuss how states can provide teachers with student-level longitudinal data,…
Muscle Fiber Size and Function in Elderly Humans: A Longitudinal Study
USDA-ARS?s Scientific Manuscript database
Cross-sectional studies are likely to underestimate age-related changes in skeletal muscle strength and mass. The purpose of this longitudinal study was to assess whole muscle and single muscle fiber alterations in the same cohort of 12 older (mean age: start of study=71.1+/-5.4 yrs and end of study...
Factors associated with grip strength decline in older adults.
Sternäng, Ola; Reynolds, Chandra A; Finkel, Deborah; Ernsth-Bravell, Marie; Pedersen, Nancy L; Dahl Aslan, Anna K
2015-03-01
Few studies have examined associations of multi-faceted demographic, health and lifestyle factors with long-term change in grip strength performance across the adult lifespan. The aim of this study was to examine the associations of risk factors in specific parts of the adult lifespan (e.g. in early midlife, in late midlife and in old adulthood) separately for women and men. Data came from the longitudinal Swedish Adoption/Twin Study of Aging (SATSA). Grip strength performance was followed in 849 participants who were 50-88 years of age at baseline. The follow-up period with seven waves of data of grip strength was 22 years, and the risk factors were measured up to 20 years before the assessment of grip strength. Latent growth modelling was used for the longitudinal analyses. A gender difference in the type of factors associated with grip strength performance and development across the adult lifespan was found. Significant factors for the age slopes for women were stress, smoking and dementia. For men, marital status, mean arterial pressure, physical activity at work and having a chronic disorder were of importance. These factors varied in their associations with grip strength across the adult lifespan. Factors measured earlier in adulthood were associated with grip strength decline in late midlife and old adulthood. Gender-specific patterns of risk factors suggest that it may be worthwhile to conduct research on grip and muscle strength (and biological vitality) separately for men and women. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
USDA-ARS?s Scientific Manuscript database
SUMMARY: This 3 year longitudinal study among older adults showed that declining muscle mass, strength, power, and physical performance are independent contributing factors to increased fear of falling, while declines of muscle mass and physical performance contribute to deterioration of quality of ...
Transverse stresses and modes of failure in tree branches and other beams
Ennos, A. R.; van Casteren, A.
2010-01-01
The longitudinal stresses in beams subjected to bending also set up transverse stresses within them; they compress the cross section when the beam's curvature is being increased and stretch it when its curvature is being reduced. Analysis shows that transverse stresses rise to a maximum at the neutral axis and increase with both the bending moment applied and the curvature of the beam. These stresses can qualitatively explain the fracture behaviour of tree branches. Curved ‘hazard beams’ that are being straightened split down the middle because of the low transverse tensile strength of wood. By contrast, straight branches of light wood buckle when they are bent because of its low transverse compressive strength. Branches of denser wood break, but the low transverse tensile strength diverts the crack longitudinally when the fracture has only run half-way across the beam, to produce their characteristic ‘greenstick fracture’. The bones of young mammals and uniaxially reinforced composite beams may also be prone to greenstick fracture because of their lower transverse tensile strength. PMID:20018786
NASA Astrophysics Data System (ADS)
Sunda, Surendra; Vyas, B. M.
2013-10-01
global wave number 4 structure in the Indian longitudinal region spanning from ~70 to 95°E forming the upward slope of the peak in the total electron content (TEC) are reported along the crest of equatorial ionization anomaly (EIA). The continuous and simultaneous measurements from five GPS stations of GPS Aided Geo Augmented Navigation (GAGAN) network are used in this study. The long-term database (2004-2012) is utilized for examining the local time, seasonal, and solar cycle dependency on the longitudinal variations of TEC. Our results confirm the existence of longitudinal variations of TEC in accordance with wave number 4 longitudinal structure including its strength. The results suggest that these variations, in general, start to develop at ~09 LT, achieve maximum strength at 12-15 LT, and decay thereafter, the decay rate depending on the season. They are more pronounced in equinoctial season followed by summer and winter. The longitudinal variations persist beyond midnight in equinox seasons, whereas in winter, they are conspicuously absent. Interestingly, they also exhibit significant solar cycle dependence in the solstices, whereas in the equinoxes, they are independent of solar activity. The comparison of crest-to-trough ratio (CTR) in the eastern (92°E) and western (72°E) extreme longitudes reveals higher CTR on the eastern side than over the western extreme, suggesting the role of nonmigrating tides in modulating the ExB vertical drift and the consequential EIA crest formation.
Ruhdorfer, AS; Dannhauer, T; Wirth, W; Cotofana, S; Roemer, F; Nevitt, M; Eckstein, F
2014-01-01
Objective To compare cross-sectional and longitudinal side-differences in thigh muscle anatomical cross-sectional areas (ACSAs), muscle strength, and specific strength (strength/ACSA), between knees with early radiographic change vs. knees without radiographic knee osteoarthritis (RKOA), in the same person. Design 55 (of 4796) Osteoarthritis Initiative participants fulfilled the inclusion criteria of early RKOA in one limb (definite tibiofemoral osteophytes; no radiographic joint space narrowing [JSN]) vs. no RKOA (no osteophyte; no JSN) in the contralateral limb. ACSAs of the thigh muscles and quadriceps heads were determined using axial MRIs at 33%/30% femoral length (distal to proximal). Isometric extensor and flexor muscle strength were measured (Good Strength Chair). Baseline quadriceps ACSA and extensor (specific) strength represented the primary analytic focus, and two-year changes of quadriceps ACSAs the secondary focus. Results No statistically significant side-differences in quadriceps (or other thigh muscle) ACSAs, muscle strength, or specific strength were observed between early RKOA vs. contralateral limbs without RKOA (p≥0.44), neither in men nor in women. The two-year reduction in quadriceps ACSA in limbs with early RKOA was −0.9±6% (mean ± standard deviation) vs. −0.5±6% in limbs without RKOA (statistical difference p=0.85). Conclusion Our results do not provide evidence that early unilateral radiographic changes, i.e. presence of osteophytes, are associated with cross-sectional or longitudinal differences in quadriceps muscle status compared with contralateral knees without RKOA. At the stage of early unilateral RKOA there thus appears to be no clinical need for countervailing a potential dys-balance in quadriceps ACSAs and strength between both knees. PMID:25278072
ERIC Educational Resources Information Center
Eivers, Areana R.; Brendgen, Mara; Vitaro, Frank; Borge, Anne I. H.
2012-01-01
Concurrent and longitudinal links between children's own and their nominated best friends' antisocial and prosocial behavior were studied in a normative sample of 3-5-year-olds (N = 203). Moderating effects of age and gender were also explored. Subscales of the Strength and Difficulties Questionnaire (SDQ) were used to obtain teacher ratings of…
Instability of Longitudinal Wave in Magnetized Strongly Coupled Dusty Plasma
NASA Astrophysics Data System (ADS)
Xie, Bai-Song
2003-12-01
Instability of longitudinal wave in magnetized strongly coupled dusty plasmas is investigated. The dust charging relaxation is taken into account. It is found that there exists threshold of interdust distance for the instability of wave, which is determined significantly by the dust charging relaxation, the coupling parameter of high correlation of dust as well the strength of magnetic field.
Kou, Seisyou; Suzuki, Kengo; Akashi, Yoshihiro J; Mizukoshi, Kei; Takai, Manabu; Izumo, Masaki; Shimozato, Takashi; Hayashi, Akio; Ohtaki, Eiji; Osada, Naohiko; Omiya, Kazuto; Nobuoka, Sachihiko; Miyake, Fumihiko
2011-06-01
Left ventricular ejection fraction (LVEF) predicts mortality in patients with chronic heart failure (CHF). However, a weak correlation was found between LVEF and peak oxygen uptake ([Formula: see text]) in CHF patients. Global longitudinal strain measured by two-dimensional (2D) strain is regarded as a more useful predictor of cardiac events than LVEF. We investigated whether 2D strain obtained at rest could predict peak [Formula: see text] in patients with CHF. Fifty-one patients (mean age of 54.0 ± 12.0 years, 14 females, LVEF 46.0 ± 15.0%) with stable CHF underwent resting echocardiography and cardiopulmonary exercise testing. Leg muscle strength was measured for the evaluation of peripheral factors. Global longitudinal strain (GLS) in the apical 4-, 3-, and 2-chamber views and global circumferential strain (GCS) in the parasternal mid short-axis view were measured. In all patients, peak [Formula: see text] correlated with leg muscle strength (r = 0.55, p < 0.0001), LVEF (r = 0.46, p < 0.001), GLS (r = -0.45, p < 0.001), and GCS (r = -0.41, p = 0.005), respectively. No significant correlation was found between the ratio of early transmitral velocity to peak early diastolic mitral annulus velocity (E/E') and peak [Formula: see text]. In the patients with heart failure and reduced LVEF, a multiple stepwise linear regression analysis based on leg muscle strength, LVEF, E/E', GLS, and GCS was performed to identify independent predictors of peak [Formula: see text], resulting in leg muscle strength and GLS (R (2) = 0.888) as independent predictors of peak [Formula: see text]. Global longitudinal strain at rest could possibly predict exercise capacity, which appeared to be more useful than LVEF, E/E', and GCS in CHF patients with reduced LVEF.
Interaction of a shock with a longitudinal vortex
NASA Technical Reports Server (NTRS)
Erlebacher, Gordon; Hussaini, M. Y.; Shu, Chi-Wang
1996-01-01
In this paper we study the shock/longitudinal vortex interaction problem in axisymmetric geometry. Linearized analysis for small vortex strength is performed, and compared with results from a high order axisymmetric shock-fitted Euler solution obtained for this purpose. It is confirmed that for weak vortices, predictions from linear theory agree well with results from nonlinear numerical simulations at the shock location. To handle very strong longitudinal vortices, which may ultimately break the shock, we use an axisymmetric high order essentially non-oscillatory (ENO) shock capturing scheme. Comparison of shock-captured and shock-fitted results are performed in their regions of common validity. We also study the vortex breakdown as a function of Mach number ranging from 1.3 to 10, thus extending the range of existing results. For vortex strengths above a critical value. a triple point forms on the shock and a secondary shock forms to provide the necessary deceleration so that the fluid velocity can adjust to downstream conditions at the shock.
Analysis of the vector magnetic fields of complex sunspots
NASA Technical Reports Server (NTRS)
Patty, S. R.
1981-01-01
An analysis of the vector magnetic field in the delta-configurations of two complex sunspot groups is presented, noting several characteristics identified in the delta-configurations. The observations of regions 2469 (S12E80) and 2470 (S21E83) took place in May, 1980 with a vector magnetograph, verified by optical viewing. Longitudinal magnetic field plots located the delta-configurations in relation to the transverse field neutral line. It is shown that data on the polarization yields qualitative information on the magnetic field strengths, while the azimuth of the transverse field can be obtained from the relative intensities of linear polarization measurements aligned with respect to the magnetograph analyses axis at 0 and 90 deg, and at the plus and minus 45 deg positions. Details of the longitudinal fields are discussed. A strong, sheared transverse field component is found to be a signature of strong delta. A weak delta is accompanied by a weak longitudinal gradient with an unsheared transverse component of variable strength.
NASA Technical Reports Server (NTRS)
Ryan, J. C.; Lawandy, N. M.
1986-01-01
The susceptibilities for a three-level system with arbitrary pump and signal field strengths are derived for arbitrary longitudinal and transverse relaxation rates. The results are of interest in connection with the calculation of the Raman gain in systems where resonance enhancement plays a dominant role.
ERIC Educational Resources Information Center
Stadelmann, Stephanie; Perren, Sonja; von Wyl, Agnes; von Klitzing, Kai
2007-01-01
Background: The quality of the family relationships plays an important role in the development of children's psychopathology and in their socio-emotional development. This longitudinal study aims to investigate whether family relationships are related to children's symptoms/strengths at kindergarten, and whether family relationships are predictors…
Tzavidis, Nikos; Salvati, Nicola; Schmid, Timo; Flouri, Eirini; Midouhas, Emily
2016-02-01
Multilevel modelling is a popular approach for longitudinal data analysis. Statistical models conventionally target a parameter at the centre of a distribution. However, when the distribution of the data is asymmetric, modelling other location parameters, e.g. percentiles, may be more informative. We present a new approach, M -quantile random-effects regression, for modelling multilevel data. The proposed method is used for modelling location parameters of the distribution of the strengths and difficulties questionnaire scores of children in England who participate in the Millennium Cohort Study. Quantile mixed models are also considered. The analyses offer insights to child psychologists about the differential effects of risk factors on children's outcomes.
Optimized design and structural mechanics of a single-piece composite helicopter driveshaft
NASA Astrophysics Data System (ADS)
Henry, Todd C.
In rotorcraft driveline design, single-piece composite driveshafts have much potential for reducing driveline mass and complexity over multi-segmented metallic driveshafts. The singlepiece shaft concept is enabled by the relatively high fatigue strain capacity of fiber reinforced polymer composites over metals. Challenges for single-piece driveshaft design lie in addressing the self-heating behavior of the composite due to the material damping, as well as, whirling stability, torsional buckling stability, and composite strength. Increased composite temperature due to self-heating reduces the composite strength and is accounted for in this research. The laminate longitudinal stiffness ( Ex) and strength (Fx) are known to be heavily degraded by fiber undulation, however, both are not well understood in compression. The whirling stability (a function of longitudinal stiffness) and the composite strength are strongly influential in driveshaft optimization, and thus are investigated further through the testing of flat and filament wound composite specimens. The design of single-piece composite driveshafts, however, needs to consider many failure criteria, including hysteresis-induced overheating, whirl stability, torsional buckling stability, and material failure by overstress. The present investigation uses multi-objective optimization to investigate the design space which visually highlights design trades. Design variables included stacking sequence, number of laminas, and number of hanger bearings. The design goals were to minimize weight and maximize the lowest factor of safety by adaptively generating solutions to the multi-objective problem. Several design spaces were investigated by examining the effect of misalignment, ambient temperature, and constant power transmission on the optimized solution. Several materials of interest were modeled using experimentally determined elastic properties and novel temperature-dependent composite strength. Compared to the baseline multi-segmented metallic driveline, weight reductions of 43% and 48% were obtained for single-piece flexible and rigid matrix composite shafts. The rigid matrix weight reduction was slightly lower than that seen in the literature due to consideration of shaft misalignment. In filament wound composites, the existence of fiber undulation introduces unique challenges in the prediction of compressive modulus and strength using traditional laminated composite theories. In the current investigation, novel full field strain measurements of compressively loaded specimens were used to evaluate local strain distributions in the region of a 0-deg. undulated lamina in a [0n/90n] s laminate (n=2,4,6) and a 30-deg. undulated lamina in a [30n/-60n] s laminate (n=2,4). Unique to this research, specimens were fabricated with carbon fibers, various amplitudes of undulation, and matrix materials with three different moduli of elasticity. Full-field strains were measured on the free edge and across the width of the compressively loaded specimens using two-dimensional digital image correlation (DIC). The observed strains were highly influenced by the undulation geometry. The longitudinal modulus of a [0n/90n] s laminate was more sensitive to reinforcement undulation when the matrix was flexible rather than rigid. An undulation with an amplitude/length ratio of 0.1 (low for a filament wound cylinder) reduces the average longitudinal modulus of elasticity in the undulation region by approximately 43% and 3% in laminates with flexible and rigid matrices, respectively, relative to a similar material without undulation. Observations of strain on the free edge revealed that fiber undulation caused elevated out-of-plane shear (gamma xz) and through-thickness normal (epsilonzz) strains in regions eventually involved in the fiber microbuckling failure process. A new three dimensional method was derived for the homogenization of a heterogeneous composite laminate consisting of individual anisotropic lamina for which structural coupling (Bij) may occur due to in- and out-of-plane (undulation) fiber reinforcement orientation. Threedimensional elastic constants were calculated by considering a representative volume element taken from the heterogeneous laminate. Three-dimensional elastic constant predictions were validated through comparison with established methods, both two- and three- dimensional. When the new derived three dimensional theory was applied to experimental results, the modulus and strength predictions compared favorably. A series of [+/-theta/89/+/-theta] cylinders with multiple helical fiber angles, winding patterns, and matrix materials were fabricated and tested in compression. Digital image correlation was used for the first time to measure outside surface displacements and strains. Longitudinal and hoop direction strain fluctuations between the undulated and non-undulated regions were found to be of the order of 20-30% of the mean values throughout the cylinders. Qualitatively, these fluctuations can be related to non-classical elastic couplings (Bij) in the anti-symmetric regions of the filament winding pattern. Failure of the cylinder occurred by fiber microbuckling, which initiated near the crossing of circumferential and helical cross-over bands. Based on a statistical analysis of surface strains in the local fiber coordinate system, it was determined that longitudinal compressive and in-plane longitudinal shear strains at incipient microbuckling were two to four times greater than their respective global counterparts. These results indicate the magnitude of strain concentration existing in the cylinders immediately before final failure (possibly during local failure) and highlight the importance of longitudinal compressive (epsilon11) and in-plane longitudinal shear strains (gamma12) in the failure process. A novel local-global approach was used in predicting the longitudinal modulus and strength of filament wound cylinders. Several representative volume elements were chosen to represent the filament winding rhombus, and were used as a basis for homogenization. Strength predictions were augmented with empirical critical distance factors. The average Ex and nu xy prediction error for Conathane DPRN 30917 was 6.8 % and 21 % and the average error for EPON 862 was 9.7 % and 14 % respectively. The strength prediction error was approximately 7.7 % and 24 % for 30917 and EPON 862 with failure location typically at the circumferential undulation by mode sigma 6 (tau12). The failure mode prediction was consistent with experimental observations from filament wound cylinders and flat-undulated specimens of similar lamination arrangement. Additional comparison with previous Adiprene LF750 filament wound cylinder testing produced prediction error of 11.8 % and 8.9 % for longitudinal modulus and strength respectively. The average absolute value of the error, considering every material, for modulus, strength, and Poisson's ratio was 14 %. Application of critical distance factors to flat undulated specimens was deemed unadvisable due to considerably higher strain intensity at failure compared to filament wound cylinders.
NASA Astrophysics Data System (ADS)
Ciniņa, I.; Zīle, O.; Andersons, J.
2013-01-01
The principal aim of the present research was to predict the strength of UD basalt fiber/epoxy matrix composites in tension along the reinforcement direction. Tension tests on single basalt fibers were performed to determine the functional form of their strength distribution and to evaluate the parameters of the distribution. Also, microbond tests were carried out to assess the interfacial shear strength of the fibers and polymer matrix. UD composite specimens were produced and tested for the longitudinal tensile strength. The predicted strength of the composite was found to exceed the experimental values by ca. 20%, which can be explained by imperfections in the fiber alignment, impregnation, and adhesion in the composite specimens.
ERIC Educational Resources Information Center
Sosu, Edward M.; Schmidt, Peter
2017-01-01
R. Goodman's Strength and Difficulties Questionnaire (SDQ) is widely used to measure emotional and behavioral difficulties in childhood and adolescence. In the present study, we examined whether the SDQ measures the same construct across time, when used for longitudinal research. A nationally representative sample of parents (N = 3,375) provided…
NASA Technical Reports Server (NTRS)
Hou, Tan-Hung
1995-01-01
A phenylethynyl terminated imide oligomer formed from the reaction of benzophenone tetracarboxylic acid dianhydride, an 75:25 molar ratio of 4,4'-oxydianiline and meta-phenylenediamine and 4-phenylethynylphthalic anhydride as the endcapper at a theoretical number average molecular weight (Mn) of approximately 3,700 g/mol was evaluated as a composite resin matrix. A glass transition temperature (Tg) of 315 deg C was reached after 250 deg C/1 hr annealing of the matrix resin. Unidirectional prepreg was made by coating an N-methylpyrrolidinone solution of the amide acid oligomer onto unsized IM7 graphite fibers. The thermal and rheological properties and the solvent/volatile depletion rates of the amide acid/NMP system were determined. This information was used to successfully design a molding cycle for composite fabrication. Composites molded under 800 Psi at 371 C consistently yielded good consolidation as measured by C-scan and optical photomicrography. The composite's short beam shear strength (SBS), longitudinal and transverse flexural strengths and moduli were measured at various temperatures. These composites exhibited excellent room temperature (RT) longitudinal flexural strength and modulus and RT SBS strength retention at 177 C.
Tensile strength/yield strength (TS/YS) ratios of high-strength steel (HSS) reinforcing bars
NASA Astrophysics Data System (ADS)
Tavio, Anggraini, Retno; Raka, I. Gede Putu; Agustiar
2018-05-01
The building codes such as American Concrete Institute (ACI) 318M-14 and Standard National Indonesia (SNI) 2847:2013 require that the ratio of tensile strength (TS) and yield strength (YS) should not less than 1.25. The requirement is based on the assumption that a capability of a structural member to develop inelastic rotation capacity is a function of the length of the yield region. This paper reports an investigation on various steel grades, namely Grades 420, 550, 650, and 700 MPa, to examine the impact of different TS/YS ratios if it is less or greater than the required value. Grades 550, 650, and 700 MPa were purposely selected with the intention to examine if these higher grades are still promising to be implemented in special structural systems since they are prohibited by the building codes for longitudinal reinforcement, whereas Grade 420 MPa bars are the maximum limit of yield strength of reinforcing bars that is allowable for longitudinal reinforcement of special structural systems. Tensile tests of these steel samples were conducted under displacement controlled mode to capture the complete stress-strain curves and particularly the post-yield response of the steel bars. From the study, it can be concluded that Grade 420 performed higher TS/YS ratios and they were able to reach up to more than 1.25. However, the High Strength Still (HSS) bars (Grades 550, 600, and 700 MPa) resulted in lower TS/YS ratios (less than 1.25) compared with those of Grade 420 MPa.
Parametric Study of Shear Strength of Concrete Beams Reinforced with FRP Bars
NASA Astrophysics Data System (ADS)
Thomas, Job; Ramadass, S.
2016-09-01
Fibre Reinforced Polymer (FRP) bars are being widely used as internal reinforcement in structural elements in the last decade. The corrosion resistance of FRP bars qualifies its use in severe and marine exposure conditions in structures. A total of eight concrete beams longitudinally reinforced with FRP bars were cast and tested over shear span to depth ratio of 0.5 and 1.75. The shear strength test data of 188 beams published in various literatures were also used. The model originally proposed by Indian Standard Code of practice for the prediction of shear strength of concrete beams reinforced with steel bars IS:456 (Plain and reinforced concrete, code of practice, fourth revision. Bureau of Indian Standards, New Delhi, 2000) is considered and a modification to account for the influence of the FRP bars is proposed based on regression analysis. Out of the 196 test data, 110 test data is used for the regression analysis and 86 test data is used for the validation of the model. In addition, the shear strength of 86 test data accounted for the validation is assessed using eleven models proposed by various researchers. The proposed model accounts for compressive strength of concrete ( f ck ), modulus of elasticity of FRP rebar ( E f ), longitudinal reinforcement ratio ( ρ f ), shear span to depth ratio ( a/ d) and size effect of beams. The predicted shear strength of beams using the proposed model and 11 models proposed by other researchers is compared with the corresponding experimental results. The mean of predicted shear strength to the experimental shear strength for the 86 beams accounted for the validation of the proposed model is found to be 0.93. The result of the statistical analysis indicates that the prediction based on the proposed model corroborates with the corresponding experimental data.
Handgrip strength and its prognostic value for mortality in Moscow, Denmark, and England
Demakakos, Panayotes; Shkolnikova, Maria; Thinggaard, Mikael; Vaupel, James W.; Christensen, Kaare; Shkolnikov, Vladimir M.
2017-01-01
Background This study compares handgrip strength and its association with mortality across studies conducted in Moscow, Denmark, and England. Materials The data collected by the Study of Stress, Aging, and Health in Russia, the Study of Middle-Aged Danish Twins and the Longitudinal Study of Aging Danish Twins, and the English Longitudinal Study of Ageing was utilized. Results Among the male participants, the age-standardized grip strength was 2 kg and 1 kg lower in Russia than in Denmark and in England, respectively. The age-standardized grip strength among the female participants was 1.9 kg and 1.6 kg lower in Russia than in Denmark and in England, respectively. In Moscow, a one-kilogram increase in grip strength was associated with a 4% (hazard ratio [HR] = 0.96, 95% confidence interval [CI]: 0.94, 0.99) reduction in mortality among men and a 10% (HR = 0.90, 95%CI: 0.86, 0.94) among women. Meanwhile, a one-kilogram increase in grip strength was associated with a 6% (HR = 0.94, 95%CI: 0.93, 0.95) and an 8% (HR = 0.92, 95%CI: 0.90, 0.94) decrease in mortality among Danish men and women, respectively, and with a 2% (HR = 0.98, 95%CI: 0.97, 0.99) and a 3% (HR = 0.97, 95%CI: 0.95, 0.98) reduction in mortality among the English men and women, respectively. Conclusion The study suggests that, although absolute grip strength values appear to vary across the Muscovite, Danish, and English samples, the degree to which grip strength is predictive of mortality is comparable across national populations with diverse socioeconomic and health profiles and life expectancy levels. PMID:28863174
Yu, Xi; Raney, Talia; Perdue, Meaghan V; Zuk, Jennifer; Ozernov-Palchik, Ola; Becker, Bryce L C; Raschle, Nora M; Gaab, Nadine
2018-05-01
Numerous studies have shown that phonological skills are critical for successful reading acquisition. However, how the brain network supporting phonological processing evolves and how it supports the initial course of learning to read is largely unknown. Here, for the first time, we characterized the emergence of the phonological network in 28 children over three stages (prereading, beginning reading, and emergent reading) longitudinally. Across these three time points, decreases in neural activation in the left inferior parietal cortex (LIPC) were observed during an audiovisual phonological processing task, suggesting a specialization process in response to reading instruction/experience. Furthermore, using the LIPC as the seed, a functional network consisting of the left inferior frontal, left posterior occipitotemporal, and right angular gyri was identified. The connection strength in this network co-developed with the growth of phonological skills. Moreover, children with above-average gains in phonological processing showed a significant developmental increase in connection strength in this network longitudinally, while children with below-average gains in phonological processing exhibited the opposite trajectory. Finally, the connection strength between the LIPC and the left posterior occipitotemporal cortex at the prereading level significantly predicted reading performance at the emergent reading stage. Our findings highlight the importance of the early emerging phonological network for reading development, providing direct evidence for the Interactive Specialization Theory and neurodevelopmental models of reading. © 2018 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
This longitudinal study examined the major physiological mechanisms that determine the age related loss of lower extremity muscle power in two distinct groups of older humans. We hypothesized that after ~3 years of follow-up, mobility-limited older adults (mean age: 77.2 +/- 4, n = 22, 12 females) w...
Longitudinal in vivo muscle function analysis of the DMSXL mouse model of myotonic dystrophy type 1.
Decostre, Valérie; Vignaud, Alban; Matot, Béatrice; Huguet, Aline; Ledoux, Isabelle; Bertil, Emilie; Gjata, Bernard; Carlier, Pierre G; Gourdon, Geneviève; Hogrel, Jean-Yves
2013-12-01
Myotonic dystrophy is the most common adult muscle dystrophy. In view of emerging therapies, which use animal models as a proof of principle, the development of reliable outcome measures for in vivo longitudinal study of mouse skeletal muscle function is becoming crucial. To satisfy this need, we have developed a device to measure ankle dorsi- and plantarflexion torque in rodents. We present an in vivo 8-month longitudinal study of the contractile properties of the skeletal muscles of the DMSXL mouse model of myotonic dystrophy type 1. Between 4 and 12 months of age, we observed a reduction in muscle strength in the ankle dorsi- and plantarflexors of DMSXL compared to control mice although the strength per muscle cross-section was normal. Mild steady myotonia but no abnormal muscle fatigue was also observed in the DMSXL mice. Magnetic resonance imaging and histological analysis performed at the end of the study showed respectively reduced muscle cross-section area and smaller muscle fibre diameter in DMSXL mice. In conclusion, our study demonstrates the feasibility of carrying out longitudinal in vivo studies of muscle function over several months in a mouse model of myotonic dystrophy confirming the feasibility of this method to test preclinical therapeutics. Copyright © 2013 Elsevier B.V. All rights reserved.
Chan, Alan H S; Hoffmann, Errol R
2012-01-01
Stereotype strength and reversibility were determined for displays that were in the Front, Right and Left orientations relative to the operator, along with rotary, horizontally and vertically-moving controls located in the overhead, left-sagittal and right-sagittal planes. In each case, responses were made using the left and right hands. The arrangements used were (i) rotary control with a circular display (ii) horizontal/transverse control moving forward/rearward in the left and right-sagittal planes or transversely in the overhead plane and (iii) vertical/longitudinal control moving vertically in the left and right-sagittal planes and longitudinally in the overhead plane. These are all combinations not previously researched. Stereotype strength varied with display plane, type of control and plane of control. Models for the stereotype strength are developed, showing the contribution of various components to the overall stereotype strength. The major component for horizontally-moving controls comes from the "visual field" model of Worringham and Beringer (1998); for the rotary control important factors are "clockwise-for-clockwise" and the hand/control location effect (Hoffmann, 2009a). Vertically-moving controls are governed by a simple 'up-for-up' relationship between displays and controls. Overall stereotype strength is a maximum when all components add positively. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
High-Tensile Strength Tape Versus High-Tensile Strength Suture: A Biomechanical Study.
Gnandt, Ryan J; Smith, Jennifer L; Nguyen-Ta, Kim; McDonald, Lucas; LeClere, Lance E
2016-02-01
To determine which suture design, high-tensile strength tape or high-tensile strength suture, performed better at securing human tissue across 4 selected suture techniques commonly used in tendinous repair, by comparing the total load at failure measured during a fixed-rate longitudinal single load to failure using a biomechanical testing machine. Matched sets of tendon specimens with bony attachments were dissected from 15 human cadaveric lower extremities in a manner allowing for direct comparison testing. With the use of selected techniques (simple Mason-Allen in the patellar tendon specimens, whip stitch in the quadriceps tendon specimens, and Krackow stitch in the Achilles tendon specimens), 1 sample of each set was sutured with a 2-mm braided, nonabsorbable, high-tensile strength tape and the other with a No. 2 braided, nonabsorbable, high-tensile strength suture. A total of 120 specimens were tested. Each model was loaded to failure at a fixed longitudinal traction rate of 100 mm/min. The maximum load and failure method were recorded. In the whip stitch and the Krackow-stitch models, the high-tensile strength tape had a significantly greater mean load at failure with a difference of 181 N (P = .001) and 94 N (P = .015) respectively. No significant difference was found in the Mason-Allen and simple stitch models. Pull-through remained the most common method of failure at an overall rate of 56.7% (suture = 55%; tape = 58.3%). In biomechanical testing during a single load to failure, high-tensile strength tape performs more favorably than high-tensile strength suture, with a greater mean load to failure, in both the whip- and Krackow-stitch models. Although suture pull-through remains the most common method of failure, high-tensile strength tape requires a significantly greater load to pull-through in a whip-stitch and Krakow-stitch model. The biomechanical data obtained in the current study indicates that high-tensile strength tape may provide better repair strength compared with high-tensile strength suture at time-zero simulated testing. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Zhao, Jihong; Ren, Ling; Lovrich, Nicholas P.
2012-01-01
A variety of theories have emerged that offer plausible explanations, one from the political institutional perspective and others from sociological perspective. There has been renewed interest in the effect of local political structure on police strength in the policing literature. The purpose of this study, therefore, is to assess the two main…
Estimation of strength parameters of small-bore metal-polymer pipes
NASA Astrophysics Data System (ADS)
Shaydakov, V. V.; Chernova, K. V.; Penzin, A. V.
2018-03-01
The paper presents results from a set of laboratory studies of strength parameters of small-bore metal-polymer pipes of type TG-5/15. A wave method was used to estimate the provisional modulus of elasticity of the metal-polymer material of the pipes. Longitudinal deformation, transverse deformation and leak-off pressure were determined experimentally, with considerations for mechanical damage and pipe bend.
Spherical powder for retaining thermosetting acrylic resin veneers.
Tanaka, T; Atsuta, M; Uchiyama, Y; Nakabayashi, N; Masuhara, E
1978-03-01
1. Nine different sizes of spherical powder were prepared, and their effectiveness as retentive devices was evaluated against those available commercially. 2. Smaller-diameter spherical powder (No. 5) gave the best results of all retaining devices tested. 3. The physical properties of the resins play an important role in the retentive strength with No. 5 retention beads. The retentive strength was reduced when brittle resin was used. 4. The retentive strength of the resin veneer was greatly affected by the angle of stress at the incisal resin. The retentive strength increased as the angle between the longitudinal axis of the specimen and the direction of stress decreased.
Developmental Changes in Isometric Strength: Longitudinal Study in Adolescent Soccer Players.
Duarte, Joao P; Valente-Dos-Santos, João; Coelho-E-Silva, Manuel J; Malina, R M; Deprez, Dieter; Philippaerts, Renaat; Lenoir, Matthieu; Vaeyens, Roel
2018-06-20
This study aimed to examine longitudinal changes in isometric strength of the knee extensors (ImKE) and knee flexors (ImKF) at 30° and 60°. The sample was composed of 67 players aged 11.0-13.9 years at baseline over five years. Stature, body mass, skinfolds, and isometric strength (ImKE30°, ImKF30°, ImKE60° and ImKF60°) were measured. Fat mass and fat-free mass (FFM) were derived from skinfolds. Skeletal age was obtained using TW2 RUS. Multilevel random effects regression analyses extracted developmental polynomial models. An annual increment on chronological age (CA) corresponded to 5.6 N (ImKE30°: ), 2.7 N (ImKF30°: ), 4.6 N (ImKE60°: ) and 1.5 N (ImKF60°). An increment of 1 kg in FFM predicted isometric strength as follows: 1.2 N (ImKE30°), 2.1 N (ImKF30°), 3.1 N (ImKE60°) and 2.0 N (ImKF60°). The following equations were obtained: ImKE30°=5.759×CA+1.163×FFM; ImKF30°=-19.369+2.691×CA+0.693×CA 2 +2.108×FFM; ImKE60°=4.553×CA+3.134×FFM; and, ImKF60°=-19.669+1.544×CA+2.033×FFM. Although skeletal maturity had a negligible effect on dependent variables, age and body size, based on FFM, were relevant longitudinal predictors. During adolescence, systematic assessment of knee extensors and knee flexors are strongly recommended to prevent impairment of knee muscle groups. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Technical Reports Server (NTRS)
Atchison, C S; Miller, James A
1942-01-01
Tensile and compressive stress-strain curves, stress-deviation curves, and secant modulus-stress curves are given for longitudinal and transverse specimens of 17S-T, 24S-T, and 24S-RT aluminum-alloy sheet in thicknesses from 0.032 to 0.081 inch, 1025 carbon steel sheet in thicknesses of 0.054 and 0.120 inch, and chromium-nickel steel sheet in thicknesses form 0.020 to 0.0275 inch. Significant differences were found between the tensile and the compressive stress-strain curves, and also the corresponding corollary curves; similarly, differences were found between the curves for the longitudinal and transverse directions. These differences are of particular importance in considering the compressive strength of aircraft structures made of thin sheet. They are explored further for the case of compression by giving tangent modulus-stress curves in longitudinal and transverse compression and dimensionless curves of the ratio of tangent modulus to Young's modulus and of the ratio of reduced modulus for a rectangular section to Young's modulus, both plotted against the ratio of stress to secant yield strength.
Train crashworthiness design for occupant survivability
DOT National Transportation Integrated Search
1995-11-01
Studies were conducted evaluating the effectiveness of alternative strategies for providing crashworthiness of the vehicle structures. Conventional practice results in cars of essentially uniform : longitudinal strength. The crash energy management a...
Muscular strength is associated with self-esteem in college men but not women.
Ciccolo, Joseph T; SantaBarbara, Nicholas J; Dunsiger, Shira I; Busch, Andrew M; Bartholomew, John B
2016-12-01
Muscular strength is a well-known predictor of morbidity and mortality. Similarly, self-esteem is a predictor of health and well-being. The relationship between these two variables, however, is currently unknown. This study examined the cross-sectional relationship between maximal muscular strength (i.e. handgrip and one-repetition-maximum (1-RM) squat) and global self-esteem in 126 college students. Significant correlations were found between both measures of muscular strength and self-esteem. Further analyses revealed that these relationships were only significant for men. Based on these results, additional research is needed to further explore the relationship between muscular strength and self-esteem, especially in other demographic groups and longitudinally. © The Author(s) 2015.
Biomechanical and clinical factors related to stage I posterior tibial tendon dysfunction.
Rabbito, Melissa; Pohl, Michael B; Humble, Neil; Ferber, Reed
2011-10-01
Case control. To investigate differences in arch height, ankle muscle strength, and biomechanical factors in individuals with stage I posterior tibial tendon dysfunction (PTTD) in comparison to healthy individuals. PTTD is a progressive condition, so early recognition and treatment are essential to help delay or reverse the progression. However, no previous studies have investigated stage I PTTD, and no single study has measured static anatomical structure, muscle strength, and gait mechanics in this population. Twelve individuals with stage I PTTD and 12 healthy, age- and gender-matched control subjects, who were engaged in running-related activities, participated in this study. Measurements of arch height index, maximum voluntary ankle invertor muscle strength, and 3-dimensional rearfoot and medial longitudinal arch kinematics during walking were obtained. The runners with PTTD demonstrated significantly lower seated arch height index (P = .02) and greater (P = .03) and prolonged (P = .05) peak rearfoot eversion angle during gait, compared to the healthy runners. No differences were found in standing arch height index values (P = .28), arch rigidity index (P = .06), ankle invertor strength (P = .49), or peak medial longitudinal arch values (P = .49) between groups. The increased foot pronation is hypothesized to place greater strain on the posterior tibialis muscle, which may partially explain the progressive nature of this condition.
Long-term thermal degradation and alloying constituent effects on five boron/aluminum composites
NASA Technical Reports Server (NTRS)
Olsen, G. C.
1982-01-01
Thermal exposure effects on the properties of five boron/aluminum composite systems were experimentally investigated. The composite systems were 49 volume percent boron fibers (203 micron diameter) in aluminum-alloy matrices 1100 Al, 2024 Al, 3003 Al, 5052 Al, and 6061 Al. Specimens were thermally exposed up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 2000 thermal cycles between 200 K and 590 K. Composite longitudinal and transverse tensile strengths, longitudinal compression strength, and in-plane shear strength were determined. None of the systems was severely degraded by exposure at 590 K. The best performing system was B-2024 Al. Effects of matrix alloys on degradation mechanisms were experimentally investigated. Composite specimens and individual fibers were metallurgically analyzed with a scanning electron microscope and an electron microprobe to determine failure characteristics, chemical element distribution, and reaction layer morphology. Alloying constituents were found to be affect the composite degradation mechanisms as follows: alloys containing iron, but without manganese as a stabilizer, caused increased low-temperature degradation; alloys containing magnesium, iron, or manganese caused increased degradation; and alloys containing copper caused increased fiber strength.
NASA Astrophysics Data System (ADS)
Alrasyid, Harun; Safi, Fahrudin; Iranata, Data; Chen-Ou, Yu
2017-11-01
This research shows the prediction of shear behavior of High-Strength Reinforced Concrete Columns using Finite-Element Method. The experimental data of nine half scale high-strength reinforced concrete were selected. These columns using specified concrete compressive strength of 70 MPa, specified yield strength of longitudinal and transverse reinforcement of 685 and 785 MPa, respectively. The VecTor2 finite element software was used to simulate the shear critical behavior of these columns. The combination axial compression load and monotonic loading were applied at this prediction. It is demonstrated that VecTor2 finite element software provides accurate prediction of load-deflection up to peak at applied load, but provide similar behavior at post peak load. The shear strength prediction provide by VecTor 2 are slightly conservative compare to test result.
Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor
NASA Technical Reports Server (NTRS)
Vary, A.; Lark, R. F.
1978-01-01
An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A stress wave factor was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), 0 deg + or - 45 deg/0 deg symmetrical, and + or - 45 deg] symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.
NASA Technical Reports Server (NTRS)
Montano, J. W. L.
1977-01-01
Ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion properties of annealed, straightened, and centerless ground Nitronic 60 stainless steel alloy bar material are presented. The mechanical properties of longitudinal specimens were evaluated at test temperatures from ambient to liquid hydrogen. The tensile test data indicated increasing strength with decreasing temperature to -196 C. Below liquid nitrogen temperature the smooth tensile and notched tensile strengths decreased slightly while the elongation and reduction of area decreased drastically. The Charpy V-notched impact energy decreased steadily with decreasing test temperature. Stress corrosion tests were performed on longitudinal tensile specimens and transverse C-ring specimens exposed to: alternate immersion in a 3.5% NaCl bath; humidity cabinet; and a 5% salt spray atmosphere. The longitudinal tensile specimens experienced no corrosive attack. Approximately 3/4 of the transverse C-rings exposed to alternate immersion and to salt spray experienced a pitting attack on the top and bottom ends. Additional stress corrosion tests were performed on transverse tensile specimens. No failures occurred in the 90% stressed specimens exposed for 90 days in the alternate immersion and salt spray environments
Structure-property relationships in oxide-dispersed iron-beryllia alloys
NASA Technical Reports Server (NTRS)
Wolf, S.; Grant, N. J.
1977-01-01
Two BeO dispersed iron alloys containing about 2.5 and 5.5 v/o dispersoid were produced by attritting, internally oxidizing, and extruding dilute, prealloyed Fe-Be powders. As-extruded alloys were given various thermomechanical treatments involving room temperature swaging and annealing above and below the allotropic transformation temperature. The elevated temperature rupture strengths were measured and correlated with changes in structure; strengthening trends were examined in the light of proposed models for such strengthening. The results obtained showed that the elevated temperature strength was determined by the oxide interparticle spacing (IPS) in recrystallized material and IPS as well as prior deformation in swaged specimens. In fact, a parametric correlation was found between rupture strength values in the longitudinal direction with prestrain during swaging. The overall pattern in strength and microstructural observations were more consistent with a strength-stored energy (substructure) dependence than a strength-grain shape (grain aspect ratio) relation.
NASA Astrophysics Data System (ADS)
Ducousso, M.; Bardy, S.; Rouchausse, Y.; Bergara, T.; Jenson, F.; Berthe, L.; Videau, L.; Cuvillier, N.
2018-03-01
Intense acoustic shock waves were applied to evaluate the mechanical strength of structural epoxy bonds between a TA6V4 titanium alloy and a 3D woven carbon/epoxy composite material. Two bond types with different mechanical strengths were obtained from two different adhesive reticulations, at 50% and 90% of conversion, resulting in longitudinal static strengths of 10 and 39 MPa and transverse strengths of 15 and 35 MPa, respectively. The GPa shock waves were generated using ns-scale intense laser pulses and reaction principles to a confined plasma expansion. Simulations taking into account the laser-matter interaction, plasma relaxation, and non-linear shock wave propagation were conducted to aid interpretation of the experiments. Good correlations were obtained between the experiments and the simulation and between different measurement methods of the mechanical strength (normalized tests vs laser-generated shock waves). Such results open the door toward certification of structural bonding.
The dynamic behavior of mortar under impact-loading
NASA Astrophysics Data System (ADS)
Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner
2007-06-01
Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.
Load rating of Bibb Graves Concrete Arch Bridge.
DOT National Transportation Integrated Search
2014-07-01
To assess the strength of the Bibb Graves Concrete Arch Bridge, the Alabama Department of Transportation sponsored an : investigation by Auburn University. In one of the spans, the arches are experiencing severe longitudinal cracking from Alkali-Sili...
Structural Evaluation of Exo-Skeletal Engine Fan Blades
NASA Technical Reports Server (NTRS)
Kuguoglu, Latife; Abumeri, Galib; Chamis, Christos C.
2003-01-01
The available computational simulation capability is used to demonstrate the structural viability of composite fan blades of innovative Exo-Skeletal Engine (ESE) developed at NASA Glenn Research Center for a subsonic mission. Full structural analysis and progressive damage evaluation of ESE composite fan blade is conducted through the NASA in-house computational simulation software system EST/BEST. The results of structural assessment indicate that longitudinal stresses acting on the blade are in compression. At a design speed of 2000 rpm, pressure and suction surface outer most ply stresses in longitudinal, transverse and shear direction are much lower than the corresponding composite ply strengths. Damage is initiated at 4870 rpm and blade fracture takes place at rotor speed of 7735 rpm. Damage volume is 51 percent. The progressive damage, buckling, stress and strength results indicate that the design at hand is very sound because of the factor of safety, damage tolerance, and buckling load of 6811 rpm.
Venkatraman, Vijay K; Gonzalez, Christopher E.; Landman, Bennett; Goh, Joshua; Reiter, David A.; An, Yang; Resnick, Susan M.
2017-01-01
Diffusion tensor imaging (DTI) measures are commonly used as imaging markers to investigate individual differences in relation to behavioral and health-related characteristics. However, the ability to detect reliable associations in cross-sectional or longitudinal studies is limited by the reliability of the diffusion measures. Several studies have examined reliability of diffusion measures within (i.e. intra-site) and across (i.e. inter-site) scanners with mixed results. Our study compares the test-retest reliability of diffusion measures within and across scanners and field strengths in cognitively normal older adults with a follow-up interval less than 2.25 years. Intra-class correlation (ICC) and coefficient of variation (CoV) of fractional anisotropy (FA) and mean diffusivity (MD) were evaluated in sixteen white matter and twenty-six gray matter bilateral regions. The ICC for intra-site reliability (0.32 to 0.96 for FA and 0.18 to 0.95 for MD in white matter regions; 0.27 to 0.89 for MD and 0.03 to 0.79 for FA in gray matter regions) and inter-site reliability (0.28 to 0.95 for FA in white matter regions, 0.02 to 0.86 for MD in gray matter regions) with longer follow-up intervals were similar to earlier studies using shorter follow-up intervals. The reliability of across field strengths comparisons was lower than intra- and inter-site reliability. Within and across scanner comparisons showed that diffusion measures were more stable in larger white matter regions (> 1500 mm3). For gray matter regions, the MD measure showed stability in specific regions and was not dependent on region size. Linear correction factor estimated from cross-sectional or longitudinal data improved the reliability across field strengths. Our findings indicate that investigations relating diffusion measures to external variables must consider variable reliability across the distinct regions of interest and that correction factors can be used to improve consistency of measurement across field strengths. An important result of this work is that inter-scanner and field strength effects can be partially mitigated with linear correction factors specific to regions of interest. These data-driven linear correction techniques can be applied in cross-sectional or longitudinal studies. PMID:26146196
Werner, Jessie L.; Albayda, Jemyma; Paik, Julie; Danoff, Sonye K.; Casciola-Rosen, Livia; Christopher-Stine, Lisa; Mammen, Andrew L.
2016-01-01
Objective Patients with immune-mediated necrotizing myopathy (IMNM) often have autoantibodies recognizing the signal recognition particle (SRP) or HMG-CoA reductase (HMGCR). Here, we studied a cohort of anti-SRP patients to identify factors associated with disease severity and clinical improvement; we also compared the severity of weakness in those with anti-SRP versus anti-HMGCR autoantibodies. Methods All anti-SRP patients in the Johns Hopkins Myositis Cohort from 2002 to 2015 were included. Longitudinal information regarding proximal muscle strength, creatine kinase (CK) levels, and immunosuppressive therapy were recorded at each visit. Univariate and multivariate multilevel regression models were used to assess prognostic factors influencing recovery. Strength in the anti-SRP patients was compared to strength in 49 previously described anti-HMGCR subjects. Results Data from 37 anti-SRP patients and 380 total clinic visits was analyzed. Younger age at onset was associated with more severe weakness at the first visit (p=0.02) and all subsequent visits (p=0.002). Only 50% of patients reached near-full or full strength after 4 years of treatment and most of these continued to have elevated CK levels. Rituximab appeared to be effective in 13 of 17 anti-SRP patients. Anti-SRP patients were significantly weaker than those with anti-HMGCR autoantibodies (−1.3 strength points, p=0.001). Conclusions Younger age at onset is associated with more severe weakness in anti-SRP myositis. Furthermore, even among anti-SRP patients whose strength improved with immunosuppression, most had ongoing disease activity as demonstrated by elevated CK levels. Finally, anti-SRP patients were significantly weaker than anti-HMGCR patients, providing evidence that these autoantibodies are associated with distinct forms of IMNM. PMID:27111848
Porcelain monolayers and porcelain/alumina bilayers reinforced by Al2O3/GdAlO3 fibers.
Sgura, Ricardo; Medeiros, Igor Studart; Cesar, Paulo Francisco; Campos, Adeliani Almeida; Hernandes, Antonio Carlos
2012-01-01
This work tested the effect of the addition of Al(2)O(3)/GdAlO(3) longitudinal fibers in different contents to veneering porcelain of two dental all ceramic systems. Fibers (0.5 mm diameter) obtained by the Laser Heated Pedestal Growth (LHPG) method were added to bar-shaped specimens made by veneer porcelain (monolayers) or both the veneer and the core ceramic (bilayers) of two all-ceramic systems: In-Ceram Alumina-glass infiltrated alumina composite (GIA) and In-Ceram 2000 AL Cubes-alumina polycrystal (AP) (VITA Zahnfabrik). The longitudinal fibers were added to veneering porcelain (VM7) in two different proportions: 10 or 17 vol%. The bars were divided into nine experimental conditions (n=10) according to material used: VM7 porcelain monolayers, VM7/GIA, VM7/AP; and according to the amount of fibers within the porcelain layer: no fibers, 10 vol% or 17 vol%. After grinding and polishing the specimens were submitted to a three point bending test (crosshead speed = 0.5 mm/min) with porcelain positioned at tensile side. Data were analyzed by means of one-way ANOVA and a Tukey's test (α=5%). Scanning electronic microscopy (SEM) was conducted for fractographic analysis. Regarding the groups without fiber addition, VM7/AP showed the highest flexural strength (MPa), followed by VM7/GIA and VM7 monolayers. The addition of fibers led to a numerical increase in flexural strength for all groups. For VM7/GIA bilayers the addition of 17 vol% of fibers resulted in a significant 48% increase in the flexural strength compared to the control group. Fractographic analysis revealed that the crack initiation site was in porcelain at the tensile surface. Cracks also propagated between fibers before heading for the alumina core. The addition of 17 vol% of Al(2)O(3)/GdAlO(3) longitudinal fibers to porcelain/glass infiltrated alumina bilayers significantly improved its flexural strength. 10 vol% or 17 vol% of fibers inclusion increased the flexural strength for all groups. Copyright © 2011 Elsevier Ltd. All rights reserved.
Scerpella, Tamara A; Bernardoni, Brittney; Wang, Sijian; Rathouz, Paul J; Li, Quefeng; Dowthwaite, Jodi N
2016-04-01
We examined site-specific bone development in relation to childhood and adolescent artistic gymnastics exposure, comparing up to 10years of prospectively acquired longitudinal data in 44 subjects, including 31 non-gymnasts (NON) and 13 gymnasts (GYM) who participated in gymnastics from pre-menarche to ≥1.9years post-menarche. Subjects underwent annual regional and whole-body DXA scans; indices of bone geometry and strength were calculated. Anthropometrics, physical activity, and maturity were assessed annually, coincident with DXA scans. Non-linear mixed effect models centered growth in bone outcomes at menarche and adjusted for menarcheal age, height, and non-bone fat-free mass to evaluate GYM-NON differences. A POST-QUIT variable assessed the withdrawal effect of quitting gymnastics. Curves for bone area, mass (BMC), and strength indices were higher in GYM than NON at both distal radius metaphysis and diaphysis (p<0.0001). At the femoral neck, greater GYM BMC (p<0.01), narrower GYM endosteal diameter (p<0.02), and similar periosteal width (p=0.09) yielded GYM advantages in narrow neck cortical thickness and buckling ratio (both p<0.001; lower BR indicates lower fracture risk). Lumbar spine and sub-head BMC were greater in GYM than NON (p<0.036). Following gymnastics cessation, GYM slopes increased for distal radius diaphysis parameters (p≤0.01) and for narrow neck BR (p=0.02). At the distal radius metaphysis, GYM BMC and compressive strength slopes decreased, as did slopes for lumbar spine BMC, femoral neck BMC, and narrow neck cortical thickness (p<0.02). In conclusion, advantages in bone mass, geometry, and strength at multiple skeletal sites were noted across growth and into young adulthood in girls who participated in gymnastics loading to at least 1.9years post-menarche. Following gymnastics cessation, advantages at cortical bone sites improved or stabilized, while advantages at corticocancellous sites stabilized or diminished. Additional longitudinal observation is necessary to determine whether residual loading benefits enhance lifelong skeletal strength. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Norman, Timothy L.; Anglin, Colin
1995-01-01
The unnotched and notched (open hole) tensile strength and failure mechanisms of two-dimensional (2D) triaxial braided composites were examined. The effect of notch size and notch position were investigated. Damage initiation and propagation in notched and unnotched coupons were also examined. Theory developed to predict the normal stress distribution near an open hole and failure for tape laminated composites was evaluated for its applicability to 2D triaxial braided textile composite materials. Four different fiber architectures were considered; braid angle, yarn and braider size, percentage of longitudinal yarns and braider angle varied. Tape laminates equivalent to textile composites were also constructed for comparison. Unnotched tape equivalents were stronger than braided textiles but exhibited greater notch sensitivity. Notched textiles and tape equivalents have roughly the same strength at large notch sizes. Two common damage mechanisms were found: braider yarn cracking and near notch longitudinal yarn splitting. Cracking was found to initiate in braider yarns in unnotched and notched coupons, and propagate in the direction of the braider yarns until failure. Damage initiation stress decreased with increasing braid angle. No significant differences in prediction of near notch strain between textile and tape equivalents could be detected for small braid angle, but the correlations were weak for textiles with large braid angle. Notch strength could not be predicted using existing anisotropic theory for braided textiles due to their insensitivity to notch.
Griswold, Todd; Bullock, Christopher; Gaufberg, Elizabeth; Albanese, Mark; Bonilla, Pedro; Dvorak, Ramona; Epelbaum, Claudia; Givon, Lior; Kueppenbender, Karsten; Joseph, Robert; Boyd, J Wesley; Shtasel, Derri
2012-09-01
The authors present what is to their knowledge the first description of a model for longitudinal third-year medical student psychiatry education. A longitudinal, integrated psychiatric curriculum was developed, implemented, and sustained within the Harvard Medical School-Cambridge Integrated Clerkship. Curriculum elements include longitudinal mentoring by attending physicians in an outpatient psychiatry clinic, exposure to the major psychotherapies, psychopharmacology training, acute psychiatry "immersion" experiences, and a variety of clinical and didactic teaching sessions. The longitudinal psychiatry curriculum has been sustained for 8 years to-date, providing effective learning as demonstrated by OSCE scores, NBME shelf exam scores, written work, and observed clinical work. The percentage of students in this clerkship choosing psychiatry as a residency specialty is significantly greater than those in traditional clerkships at Harvard Medical School and greater than the U.S. average. Longitudinal integrated clerkship experiences are effective and sustainable; they offer particular strengths and opportunities for psychiatry education, and may influence student choice of specialty.
Kalsi-Ryan, Sukhvinder; Beaton, Dorcas; Ahn, Henry; Askes, Heather; Drew, Brian; Curt, Armin; Popovic, Milos R; Wang, Justin; Verrier, Mary C; Fehlings, Michael G
2016-02-01
As spinal cord injury (SCI) trials begin to involve subjects with acute cervical SCI, establishing the property of an upper limb outcome measure to detect change over time is critical for its usefulness in clinical trials. The objectives of this study were to define responsiveness, sensitivity, and minimally detectable difference (MDD) of the Graded Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP). An observational, longitudinal study was conducted. International Standards of Neurological Classification of SCI (ISNCSCI), GRASSP, Capabilities of Upper Extremity Questionnaire (CUE-Q), and Spinal Cord Independence Measure (SCIM) were administered 0-10 days, 1, 3, 6, and 12 months post-injury. Standardized Response Means (SRM) for GRASSP and ISNCSCI measures were calculated. Longitudinal construct validity was calculated using Pearson correlation coefficients. Smallest real difference for all subtests was calculated to define the MDD values for all GRASSP subtests. Longitudinal construct validity demonstrated GRASSP and all external measures to be responsive to neurological change for 1 year post-injury. SRM values for the GRASSP subtests ranged from 0.25 to 0.85 units greater than that for ISNCSCI strength and sensation, SCIM-SS, and CUE-Q. MDD values for GRASSP subtests ranged from 2-5 points. GRASSP demonstrates good responsiveness and excellent sensitivity that is superior to ISNCSCI and SCIM III. MDD values are useful in the evaluation of interventions in both clinical and research settings. The responsiveness and sensitivity of GRASSP make it a valuable condition-specific measure in tetraplegia, where changes in upper limb neurological and functional outcomes are essential for evaluating the efficacy of interventions.
Estimates of the effective compressive strength
NASA Astrophysics Data System (ADS)
Goldstein, R. V.; Osipenko, N. M.
2017-07-01
One problem encountered when determining the effective mechanical properties of large-scale objects, which requires calculating their strength in processes of mechanical interaction with other objects, is related to the possible variability in their local properties including those due to the action of external physical factors. Such problems comprise the determination of the effective strength of bodies one of whose dimensions (thickness) is significantly less than the others and whose properties and/or composition can vary with the thickness. A method for estimating the effective strength of such bodies is proposed and illustrated with example of ice cover strength under longitudinal compression with regard to a partial loss of the ice bearing capacity in deformation. The role of failure localization processes is shown. It is demonstrated that the proposed approach can be used in other problems of fracture mechanics.
Travers, Brittany G; Bigler, Erin D; Duffield, Tyler C; Prigge, Molly D B; Froehlich, Alyson L; Lange, Nicholas; Alexander, Andrew L; Lainhart, Janet E
2017-07-01
Many individuals with autism spectrum disorder (ASD) exhibit motor difficulties, but it is unknown whether manual motor skills improve, plateau, or decline in ASD in the transition from childhood into adulthood. Atypical development of manual motor skills could impact the ability to learn and perform daily activities across the life span. This study examined longitudinal grip strength and finger tapping development in individuals with ASD (n = 90) compared to individuals with typical development (n = 56), ages 5 to 40 years old. We further examined manual motor performance as a possible correlate of current and future daily living skills. The group with ASD demonstrated atypical motor development, characterized by similar performance during childhood but increasingly poorer performance from adolescence into adulthood. Grip strength was correlated with current adaptive daily living skills, and Time 1 grip strength predicted daily living skills eight years into the future. These results suggest that individuals with ASD may experience increasingly more pronounced motor difficulties from adolescence into adulthood and that manual motor performance in ASD is related to adaptive daily living skills. © 2016 John Wiley & Sons Ltd.
Parametric Analysis and Safety Concepts of CWR Track Buckling.
DOT National Transportation Integrated Search
1993-12-01
The report presents a comprehensive study of continuous welded rail (CWR) track buckling strength as influenced by the range of all key parameters such as the lateral, torsional and longitudinal resistance, vehicle loads, etc. The parametric study pr...
Hamer, Mark; Stamatakis, Emmanuel
2013-01-01
Background Sarcopenia is associated with loss of independence and ill-health in the elderly although the causes remain poorly understood. We examined the association between two screen-based leisure time sedentary activities (daily TV viewing time and internet use) and muscle strength. Methods and Results We studied 6228 men and women (aged 64.9±9.1 yrs) from wave 4 (2008-09) of the English Longitudinal Study of Ageing, a prospective study of community dwelling older adults. Muscle strength was assessed by a hand grip test and the time required to complete five chair rises. TV viewing and internet usage were inversely associated with one another. Participants viewing TV ≥6hrs/d had lower grip strength (Men, B = −1.20 kg, 95% CI, −2.26, −0.14; Women, −0.75 kg, 95% CI, −1.48, −0.03) in comparison to <2hrs/d TV, after adjustment for age, physical activity, smoking, alcohol, chronic disease, disability, depressive symptoms, social status, and body mass index. In contrast, internet use was associated with higher grip strength (Men, B = 2.43 kg, 95% CI, 1.74, 3.12; Women, 0.76 kg, 95% CI, 0.32, 1.20). These associations persisted after mutual adjustment for both types of sedentary behaviour. Conclusions In older adults, the association between sedentary activities and physical function is context specific (TV viewing vs. computer use). Adverse effects of TV viewing might reflect the prolonged sedentary nature of this behavior. PMID:23755302
Yokoyama, Y; Nishi, M; Murayama, H; Amano, H; Taniguchi, Y; Nofuji, Y; Narita, M; Matsuo, E; Seino, S; Kawano, Y; Shinkai, S
2017-01-01
To examine associations of dietary variety with changes in lean mass and physical performance during a 4-year period in an elderly Japanese population. Four-year prospective study. The Hatoyama Cohort Study and Kusatsu Longitudinal Study, Japan. 935 community-dwelling Japanese aged 65 years or older. Dietary variety was assessed using a 10-item food frequency questionnaire. Body composition was determined by multifrequency bioelectrical impedance analysis, and physical performance (grip strength and usual gait speed) was measured in surveys at baseline and 4 years later. Longitudinal analysis included only participants who were originally in the upper three quartiles of lean body mass, appendicular lean mass, grip strength, and usual gait speed. The outcome measures were decline in lean body mass, appendicular lean mass, grip strength, and usual gait speed, defined as a decrease to the lowest baseline quartile level at the 4-year follow-up survey. Associations of dietary variety with the outcome measures were examined by logistic regression analysis adjusted for potential confounders. In the fully adjusted model, the odds ratios for decline in grip strength and usual gait speed were 0.43 (95% confidence interval, 0.19-0.99) and 0.43 (confidence interval, 0.19-0.99), respectively, for participants in the highest category of dietary variety score as compared with those in the lowest category. Dietary variety was not significantly associated with changes in lean body mass or appendicular lean mass. Among older adults, greater dietary variety may help maintain physical performance, such as grip strength and usual gait speed, but not lean mass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewellen, J. W.; Noonan, J.; Accelerator Systems Division
2005-01-01
Conventional {pi}-mode rf photoinjectors typically use magnetic solenoids for emittance compensation. This provides independent focusing strength but can complicate rf power feed placement, introduce asymmetries (due to coil crossovers), and greatly increase the cost of the photoinjector. Cathode-region focusing can also provide for a form of emittance compensation. Typically this method strongly couples focusing strength to the field gradient on the cathode, however, and usually requires altering the longitudinal position of the cathode to change the focusing. We propose a new method for achieving cathode-region variable-strength focusing for emittance compensation. The new method reduces the coupling to the gradient onmore » the cathode and does not require a change in the longitudinal position of the cathode. Expected performance for an S-band system is similar to conventional solenoid-based designs. This paper presents the results of rf cavity and beam dynamics simulations of the new design. We have proposed a method for performing emittance compensation using a cathode-region focusing scheme. This technique allows the focusing strength to be adjusted somewhat independently of the on-axis field strength. Beam dynamics calculations indicate performance should be comparable to presently in-use emittance compensation schemes, with a simpler configuration and fewer possibilities for emittance degradation due to the focusing optics. There are several potential difficulties with this approach, including cathode material selection, cathode heating, and peak fields in the gun. We hope to begin experimenting with a cathode of this type in the near future, and several possibilities exist for reducing the peak gradients to more acceptable levels.« less
Data-driven regions of interest for longitudinal change in frontotemporal lobar degeneration.
Pankov, Aleksandr; Binney, Richard J; Staffaroni, Adam M; Kornak, John; Attygalle, Suneth; Schuff, Norbert; Weiner, Michael W; Kramer, Joel H; Dickerson, Bradford C; Miller, Bruce L; Rosen, Howard J
2016-01-01
Current research is investigating the potential utility of longitudinal measurement of brain structure as a marker of drug effect in clinical trials for neurodegenerative disease. Recent studies in Alzheimer's disease (AD) have shown that measurement of change in empirically derived regions of interest (ROIs) allows more reliable measurement of change over time compared with regions chosen a-priori based on known effects of AD on brain anatomy. Frontotemporal lobar degeneration (FTLD) is a devastating neurodegenerative disorder for which there are no approved treatments. The goal of this study was to identify an empirical ROI that maximizes the effect size for the annual rate of brain atrophy in FTLD compared with healthy age matched controls, and to estimate the effect size and associated power estimates for a theoretical study that would use change within this ROI as an outcome measure. Eighty six patients with FTLD were studied, including 43 who were imaged twice at 1.5 T and 43 at 3 T, along with 105 controls (37 imaged at 1.5 T and 67 at 3 T). Empirically-derived maps of change were generated separately for each field strength and included the bilateral insula, dorsolateral, medial and orbital frontal, basal ganglia and lateral and inferior temporal regions. The extent of regions included in the 3 T map was larger than that in the 1.5 T map. At both field strengths, the effect sizes for imaging were larger than for any clinical measures. At 3 T, the effect size for longitudinal change measured within the empirically derived ROI was larger than the effect sizes derived from frontal lobe, temporal lobe or whole brain ROIs. The effect size derived from the data-driven 1.5 T map was smaller than at 3 T, and was not larger than the effect size derived from a-priori ROIs. It was estimated that measurement of longitudinal change using 1.5 T MR systems requires approximately a 3-fold increase in sample size to obtain effect sizes equivalent to those seen at 3 T. While the results should be confirmed in additional datasets, these results indicate that empirically derived ROIs can reduce the number of subjects needed for a longitudinal study of drug effects in FTLD compared with a-priori ROIs. Field strength may have a significant impact on the utility of imaging for measuring longitudinal change.
Mitchell, W Kyle; Williams, John; Atherton, Philip; Larvin, Mike; Lund, John; Narici, Marco
2012-01-01
Changing demographics make it ever more important to understand the modifiable risk factors for disability and loss of independence with advancing age. For more than two decades there has been increasing interest in the role of sarcopenia, the age-related loss of muscle or lean mass, in curtailing active and healthy aging. There is now evidence to suggest that lack of strength, or dynapenia, is a more constant factor in compromised wellbeing in old age and it is apparent that the decline in muscle mass and the decline in strength can take quite different trajectories. This demands recognition of the concept of muscle quality; that is the force generating per capacity per unit cross-sectional area (CSA). An understanding of the impact of aging on skeletal muscle will require attention to both the changes in muscle size and the changes in muscle quality. The aim of this review is to present current knowledge of the decline in human muscle mass and strength with advancing age and the associated risk to health and survival and to review the underlying changes in muscle characteristics and the etiology of sarcopenia. Cross-sectional studies comparing young (18-45 years) and old (>65 years) samples show dramatic variation based on the technique used and population studied. The median of values of rate of loss reported across studies is 0.47% per year in men and 0.37% per year in women. Longitudinal studies show that in people aged 75 years, muscle mass is lost at a rate of 0.64-0.70% per year in women and 0.80-00.98% per year in men. Strength is lost more rapidly. Longitudinal studies show that at age 75 years, strength is lost at a rate of 3-4% per year in men and 2.5-3% per year in women. Studies that assessed changes in mass and strength in the same sample report a loss of strength 2-5 times faster than loss of mass. Loss of strength is a more consistent risk for disability and death than is loss of muscle mass.
Ellis, Sam; Reader, Andrew J
2018-04-26
Many clinical contexts require the acquisition of multiple positron emission tomography (PET) scans of a single subject, for example, to observe and quantitate changes in functional behaviour in tumors after treatment in oncology. Typically, the datasets from each of these scans are reconstructed individually, without exploiting the similarities between them. We have recently shown that sharing information between longitudinal PET datasets by penalizing voxel-wise differences during image reconstruction can improve reconstructed images by reducing background noise and increasing the contrast-to-noise ratio of high-activity lesions. Here, we present two additional novel longitudinal difference-image priors and evaluate their performance using two-dimesional (2D) simulation studies and a three-dimensional (3D) real dataset case study. We have previously proposed a simultaneous difference-image-based penalized maximum likelihood (PML) longitudinal image reconstruction method that encourages sparse difference images (DS-PML), and in this work we propose two further novel prior terms. The priors are designed to encourage longitudinal images with corresponding differences which have (a) low entropy (DE-PML), and (b) high sparsity in their spatial gradients (DTV-PML). These two new priors and the originally proposed longitudinal prior were applied to 2D-simulated treatment response [ 18 F]fluorodeoxyglucose (FDG) brain tumor datasets and compared to standard maximum likelihood expectation-maximization (MLEM) reconstructions. These 2D simulation studies explored the effects of penalty strengths, tumor behaviour, and interscan coupling on reconstructed images. Finally, a real two-scan longitudinal data series acquired from a head and neck cancer patient was reconstructed with the proposed methods and the results compared to standard reconstruction methods. Using any of the three priors with an appropriate penalty strength produced images with noise levels equivalent to those seen when using standard reconstructions with increased counts levels. In tumor regions, each method produces subtly different results in terms of preservation of tumor quantitation and reconstruction root mean-squared error (RMSE). In particular, in the two-scan simulations, the DE-PML method produced tumor means in close agreement with MLEM reconstructions, while the DTV-PML method produced the lowest errors due to noise reduction within the tumor. Across a range of tumor responses and different numbers of scans, similar results were observed, with DTV-PML producing the lowest errors of the three priors and DE-PML producing the lowest bias. Similar improvements were observed in the reconstructions of the real longitudinal datasets, although imperfect alignment of the two PET images resulted in additional changes in the difference image that affected the performance of the proposed methods. Reconstruction of longitudinal datasets by penalizing difference images between pairs of scans from a data series allows for noise reduction in all reconstructed images. An appropriate choice of penalty term and penalty strength allows for this noise reduction to be achieved while maintaining reconstruction performance in regions of change, either in terms of quantitation of mean intensity via DE-PML, or in terms of tumor RMSE via DTV-PML. Overall, improving the image quality of longitudinal datasets via simultaneous reconstruction has the potential to improve upon currently used methods, allow dose reduction, or reduce scan time while maintaining image quality at current levels. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
ERIC Educational Resources Information Center
Mander, David J.; Lester, Leanne
2017-01-01
This study examined indicators of mental health, as well as strengths and difficulties, as reported by same-age boarding and non-boarding students spanning four time points over a 2-year period as they transitioned from primary to boarding school in Western Australia (i.e., at the end of Grade 7, beginning of Grade 8, end of Grade 8, and end of…
NASA Astrophysics Data System (ADS)
Eichler, C.; Petta, J. R.
2018-06-01
We realize a superconducting circuit analog of the generic cavity-optomechanical Hamiltonian by longitudinally coupling two superconducting resonators, which are an order of magnitude different in frequency. We achieve longitudinal coupling by embedding a superconducting quantum interference device into a high frequency resonator, making its resonance frequency depend on the zero point current fluctuations of a nearby low frequency L C resonator. By applying sideband drive fields we enhance the intrinsic coupling strength of about 15 kHz up to 280 kHz by controlling the amplitude of the drive field. Our results pave the way towards the exploration of optomechanical effects in a fully superconducting platform and could enable quantum optics experiments with photons in the yet unexplored radio frequency band.
NASA Technical Reports Server (NTRS)
Atanasiu, N.; Dragan, O.; Atanasiu, Z.
1974-01-01
A study was made of the influence of ultrasounds on the mechanical properties of OLT 35 carbon steel tubes cold-drawn on a plug ultrasonically activated by longitudinal waves. Experimental results indicate that: 1. The reduction in the values of the flow limit and tensile strength is proportional to the increase in acoustic energy introduced into the material subjected to deformation. 2. The diminution in influence of ultrasounds on tensile strength and flow rate that is due to an increased degree of deformation is explained by a reduction in specific density of the acoustic energy at the focus of deformation. 3. The relations calculated on the basis of the variation in the flow limit and tensile strength as a function of acoustic energy intensity was verified experimentally.
Design loads and uncertainties for the transverse strength of ships
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pittaluga, A.
1995-12-31
Rational design of ship structures is becoming a reality, and a reliability based approach for the longitudinal strength assessment of ship hulls is close to implementation. Transverse strength of ships is a step behind, mainly due to the complexity of the collapse modes associated with transverse strength. Nevertheless, some investigations are being made and the importance of an acceptable stochastic model for the environmental demand on the transverse structures is widely recognized. In the paper, the problem of the determination of the sea loads on a transverse section of a ship is discussed. The problem of extrapolating the calculated results,more » which are relevant to the submerged portion of the hull, to areas which are only occasionally wet in extreme conditions is also addressed.« less
Simulated Data for High Temperature Composite Design
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2006-01-01
The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.
NASA Technical Reports Server (NTRS)
Luna, M.; Diaz, A. J.; Oliver, R.; Terradas, J.; Karpen, J.
2016-01-01
Solar prominences are subject to both field-aligned (longitudinal) and transverse oscillatory motions, as evidenced by an increasing number of observations. Large-amplitude longitudinal motions provide valuable information on the geometry of the filament channel magnetic structure that supports the cool prominence plasma against gravity. Our pendulum model, in which the restoring force is the gravity projected along the dipped field lines of the magnetic structure, best explains these oscillations. However, several factors can influence the longitudinal oscillations, potentially invalidating the pendulum model. Aims. The aim of this work is to study the influence of large-scale variations in the magnetic field strength along the field lines, i.e., variations of the cross-sectional area along the flux tubes supporting prominence threads. Methods. We studied the normal modes of several flux tube configurations, using linear perturbation analysis, to assess the influence of different geometrical parameters on the oscillation properties. Results. We found that the influence of the symmetric and asymmetric expansion factors on longitudinal oscillations is small.Conclusions. We conclude that the longitudinal oscillations are not significantly influenced by variations of the cross-section of the flux tubes, validating the pendulum model in this context.
Zaqout, M; Michels, N; Bammann, K; Ahrens, W; Sprengeler, O; Molnar, D; Hadjigeorgiou, C; Eiben, G; Konstabel, K; Russo, P; Jiménez-Pavón, D; Moreno, L A; De Henauw, S
2016-07-01
The aim of the study was to assess the associations of individual and combined physical fitness components with single and clustering of cardio-metabolic risk factors in children. This 2-year longitudinal study included a total of 1635 European children aged 6-11 years. The test battery included cardio-respiratory fitness (20-m shuttle run test), upper-limb strength (handgrip test), lower-limb strength (standing long jump test), balance (flamingo test), flexibility (back-saver sit-and-reach) and speed (40-m sprint test). Metabolic risk was assessed through z-score standardization using four components: waist circumference, blood pressure (systolic and diastolic), blood lipids (triglycerides and high-density lipoprotein) and insulin resistance (homeostasis model assessment). Mixed model regression analyses were adjusted for sex, age, parental education, sugar and fat intake, and body mass index. Physical fitness was inversely associated with clustered metabolic risk (P<0.001). All coefficients showed a higher clustered metabolic risk with lower physical fitness, except for upper-limb strength (β=0.057; P=0.002) where the opposite association was found. Cardio-respiratory fitness (β=-0.124; P<0.001) and lower-limb strength (β=-0.076; P=0.002) were the most important longitudinal determinants. The effects of cardio-respiratory fitness were even independent of the amount of vigorous-to-moderate activity (β=-0.059; P=0.029). Among all the metabolic risk components, blood pressure seemed not well predicted by physical fitness, while waist circumference, blood lipids and insulin resistance all seemed significantly predicted by physical fitness. Poor physical fitness in children is associated with the development of cardio-metabolic risk factors. Based on our results, this risk might be modified by improving mainly cardio-respiratory fitness and lower-limb muscular strength.
Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.
Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald
2017-11-07
Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Structural connectivity of right frontal hyperactive areas scales with stuttering severity
Neef, Nicole E; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin
2018-01-01
Abstract A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain–behaviour and structure–function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI–diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering. PMID:29228195
Structural connectivity of right frontal hyperactive areas scales with stuttering severity.
Neef, Nicole E; Anwander, Alfred; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin
2018-01-01
A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain-behaviour and structure-function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI-diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Eichler, C; Petta, J R
2018-06-01
We realize a superconducting circuit analog of the generic cavity-optomechanical Hamiltonian by longitudinally coupling two superconducting resonators, which are an order of magnitude different in frequency. We achieve longitudinal coupling by embedding a superconducting quantum interference device into a high frequency resonator, making its resonance frequency depend on the zero point current fluctuations of a nearby low frequency LC resonator. By applying sideband drive fields we enhance the intrinsic coupling strength of about 15 kHz up to 280 kHz by controlling the amplitude of the drive field. Our results pave the way towards the exploration of optomechanical effects in a fully superconducting platform and could enable quantum optics experiments with photons in the yet unexplored radio frequency band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tcherni, V.P.
1996-12-31
The technique is given which permits determination of stress and strain state (SSS) and estimation of actual strength of a section of a buried main gas pipeline (GP) in the case of its deformation in a landslide action zone. The technique is based on the use of three-dimensional coordinates of axial points of the deformed GP section. These coordinates are received by a full-scale survey. The deformed axis of the surveyed GP section is described by the polynomial. The unknown coefficients of the polynomial can be determined from the boundary conditions at points of connection with contiguous undeformed sections asmore » well as by use of minimization methods in mathematical processing of full-scale survey results. The resulting form of GP section`s axis allows one to determine curvatures and, accordingly, bending moments along all the length of the considered section. The influence of soil resistance to longitudinal displacements of a pipeline is used to determine longitudinal forces. Resulting values of bending moments and axial forces as well as the known value of internal pressure are used to analyze all necessary components of an actual SSS of pipeline section and to estimate its strength by elastic analysis.« less
Mild thyroid hormone excess is associated with a decreased physical function in elderly men.
Ceresini, Graziano; Ceda, Gian Paolo; Lauretani, Fulvio; Maggio, Marcello; Bandinelli, Stefania; Guralnik, Jack M; Cappola, Anne R; Usberti, Elisa; Morganti, Simonetta; Valenti, Giorgio; Ferrucci, Luigi
2011-12-01
In the adult, subclinical hyperthyroidism (Shyper) may alter skeletal muscle mass and strength. However, whether these effects are present in elderly subjects is not known. We explored the relationship between mild hyperthyroidism and physical function in a population-based sample of older persons. In a cross-sectional analysis, calf muscle cross-sectional area (CMA), handgrip strength, nerve conduction velocity (NCV), and Short Physical Performance Battery (SPPB) scores were compared between 364 euthyroid (Eut) and 28 Shyper men as well as between 502 Eut and 39 Shyper women. In a longitudinal analysis, we evaluated the relationship between baseline plasma TSH, FT3 and FT4 and the 3-year change in SPPB score in 304 men and 409 women who were euthyroid at enrolment. At the cross-sectional analysis, Shyper men, but not women, had a significantly (p = 0.02) lower SPPB score than Eut controls, although with comparable CMA, grip strength and NCV, and were more likely to have poor physical performance (odds ratio = 2.97, p < 0.05). Longitudinal analysis showed that in Eut men higher baseline FT4 was significantly (p = 0.02) predictive of a lower SPPB score at the 3-year follow-up. Even a modest thyroid hormone excess is associated with a reduced physical function in elderly men.
Fatigue of notched fiber composite laminates. Part 2: Analytical and experimental evaluation
NASA Technical Reports Server (NTRS)
Kulkarni, S. V.; Mclaughlin, P. V., Jr.; Pipes, R. B.
1976-01-01
The analytical/experimental correlation study was performed to develop an understanding of the behavior of notched Boron/epoxy laminates subjected to tension/tension fatigue loading. It is postulated that the fatigue induced property changes (stiffness as well as strength) of the laminate can be obtained from the lamina fatigue properties. To that end, the Boron/epoxy lamina static and fatigue data (lifetime, residual stiffness and strength) were obtained initially. The longitudinal and transverse tension data were determined from the (0) and (90) laminate tests while the in-plane shear data were obtained from the (+ or - 45) sub s laminates. The static tests obtained the notched strength and mode of failure while the fatigue tests determined lifetime, damage propagation and residual strength. The failure in static tension occurred in a transverse crack propagation mode.
Tensile properties of SiC/aluminum filamentary composites - Thermal degradation effects
NASA Technical Reports Server (NTRS)
Skinner, A.; Koczak, M. J.; Lawley, A.
1982-01-01
Aluminium metal matrix composites with a low cost fiber, e.g. SiC, provide for an attractive combination of high elastic modulus and longitudinal strengths coupled with a low density. SiC (volume fraction 0.55)-aluminum (6061) systems have been studied in order to optimize fiber composite strength and processing parameters. A comparison of two SiC/aluminum composites produced by AVCO and DWA is provided. Fiber properties are shown to alter composite tensile properties and fracture morphology. The room temperature tensile strengths appear to be insensitive to thermal exposures at 500 C up to 150 h. The elastic modulus of the composites also appears to be stable up to 400 C, however variations in the loss modulus are apparent. The fracture morphology reflects the quality of the interfacial bond, fiber strengths and fiber processing.
Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites
NASA Technical Reports Server (NTRS)
Ha, Jong-Bae; Nairn, John A.
1992-01-01
A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.
VARIABLE AREA CONTROL ROD FOR NUCLEAR REACTOR
Huston, N.E.
1960-05-01
A control rod is described which permits continual variation of its absorbing strength uniformly along the length of the rod. The rod is fail safe and is fully inserted into the core but changes in its absorbing strength do not produce axial flux distortion. The control device comprises a sheet containing a material having a high thermal-neutron absorption cross section. A pair of shafts engage the sheet along the longitudinal axis of the shafts and gears associated with the shafts permit winding and unwinding of the sheet around the shafts.
Strength Behaviour of Fatigue Cracked Lugs (Festigkeitsverhalten von Rissbehafteten Augenstaeben),
1981-01-01
either surface cracks or corner cracks at holes. NASA TN 1)-8244 64 A.F. Grandt Stress intensity factors for some through fracked fastener holes...with Hydropuise L~ngszylinder longitudinal cylinder Druckblversorgung =pressure oil Supply Hydraulikaggregat = hydraulic control unit Fig 7.5 Plan of
The magnetic variability of the β cep star ξ1 CMa
NASA Astrophysics Data System (ADS)
Järvinen, S. P.; Hubrig, S.; Schöller, M.; Ilyin, I.
2018-07-01
ξ1 CMa is a known magnetic star showing rotationally modulated magnetic variability with a period of 2.17937 d. However, recent work based on high-resolution spectropolarimetry suggests that the rotation period is longer than 30 years. We compare our new spectropolarimetric measurements with FORS 2 at the VLT acquired on three consecutive nights in 2017 to previous FORS 1/2 measurements of the longitudinal magnetic field strength. The new longitudinal magnetic field values are in the range from 115 to 240 G and do not support the presence of a long period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovato, A.; Gandolfi, S.; Carlson, J.
Here, the longitudinal and transverse electromagnetic response functions ofmore » $$^{12}$$C are computed in a ``first-principles'' Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of measured versus calculated longitudinal response. This is further corroborated by a re-analysis of the Coulomb sum rule, in which the contributions from the low-lying $$J^\\pi\\,$$=$$\\, 2^+$$, $0^+$ (Hoyle), and $4^+$ states in $$^{12}$$C are accounted for explicitly in evaluating the total inelastic strength.« less
Mitchell, W. Kyle; Williams, John; Atherton, Philip; Larvin, Mike; Lund, John; Narici, Marco
2012-01-01
Changing demographics make it ever more important to understand the modifiable risk factors for disability and loss of independence with advancing age. For more than two decades there has been increasing interest in the role of sarcopenia, the age-related loss of muscle or lean mass, in curtailing active and healthy aging. There is now evidence to suggest that lack of strength, or dynapenia, is a more constant factor in compromised wellbeing in old age and it is apparent that the decline in muscle mass and the decline in strength can take quite different trajectories. This demands recognition of the concept of muscle quality; that is the force generating per capacity per unit cross-sectional area (CSA). An understanding of the impact of aging on skeletal muscle will require attention to both the changes in muscle size and the changes in muscle quality. The aim of this review is to present current knowledge of the decline in human muscle mass and strength with advancing age and the associated risk to health and survival and to review the underlying changes in muscle characteristics and the etiology of sarcopenia. Cross-sectional studies comparing young (18–45 years) and old (>65 years) samples show dramatic variation based on the technique used and population studied. The median of values of rate of loss reported across studies is 0.47% per year in men and 0.37% per year in women. Longitudinal studies show that in people aged 75 years, muscle mass is lost at a rate of 0.64–0.70% per year in women and 0.80–00.98% per year in men. Strength is lost more rapidly. Longitudinal studies show that at age 75 years, strength is lost at a rate of 3–4% per year in men and 2.5–3% per year in women. Studies that assessed changes in mass and strength in the same sample report a loss of strength 2–5 times faster than loss of mass. Loss of strength is a more consistent risk for disability and death than is loss of muscle mass. PMID:22934016
Regional and directional compliance of the healthy aorta: an ex vivo study in a porcine model.
Krüger, Tobias; Veseli, Kujtim; Lausberg, Henning; Vöhringer, Luise; Schneider, Wilke; Schlensak, Christian
2016-07-01
To gain differential knowledge about the physiological compliance and wall strength of the different regions of the aorta, including the ascending aorta, arch and descending aorta in both the circumferential and longitudinal directions, and to generate a hypothesis on the pathophysiological mechanisms that lead to Type A aortic dissection. Fresh tissue specimens from 22 ex vivo porcine aortas were analysed on a tensile tester. Regional and directional compliance, failure stress and failure strain were recorded. Aortic compliance appeared as a linear function of the natural logarithm (ln) of wall stress. Compliance significantly decreased along the length of the aorta. In the ascending aorta, longitudinal compliance significantly (P = 0.003) exceeded circumferential compliance, and the outer curvature was more compliant than the inner curvature (P = 0.03). In the descending aorta, this relationship is reversed: the circumferential compliance exceeded the longitudinal compliance, and the outer aspect was more compliant (P = 0.003). The median circumferential failure stress of all aortic segments was in the range of 2000-2750 kPa, whereas the longitudinal failure stress in the ascending aorta and the arch had values of 750-1000 kPa, which were significantly lower (P < 0.05). Surprisingly, the longitudinal failure stress of the inner aspect of the descending aorta was extraordinarily high (2000 kPa). Failure strain, similar to compliance, was highest in the ascending aorta and decreased along the aorta. The aorta appears to be a complex organ with distinct regional and directional differences in compliance and wall strength that is designed to effectively absorb the kinetic energy of cardiac systole and to cushion the momentum of systolic impact. Under normotensive conditions and a preconditioned physiological morphology, the aortic wall works in the steep part of the logarithmic strain-stress function; under hypertensive conditions and pathological morphology, the wall reacts in an non-compliant manner. The high longitudinal compliance and low failure stress of the ascending aorta and subsequent pathological changes may be the main determinants of the recurrent patho-anatomy of Type A aortic dissection. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Regional and directional compliance of the healthy aorta: an ex vivo study in a porcine model†
Krüger, Tobias; Veseli, Kujtim; Lausberg, Henning; Vöhringer, Luise; Schneider, Wilke; Schlensak, Christian
2016-01-01
OBJECTIVES To gain differential knowledge about the physiological compliance and wall strength of the different regions of the aorta, including the ascending aorta, arch and descending aorta in both the circumferential and longitudinal directions, and to generate a hypothesis on the pathophysiological mechanisms that lead to Type A aortic dissection. METHODS Fresh tissue specimens from 22 ex vivo porcine aortas were analysed on a tensile tester. Regional and directional compliance, failure stress and failure strain were recorded. RESULTS Aortic compliance appeared as a linear function of the natural logarithm (ln) of wall stress. Compliance significantly decreased along the length of the aorta. In the ascending aorta, longitudinal compliance significantly (P = 0.003) exceeded circumferential compliance, and the outer curvature was more compliant than the inner curvature (P = 0.03). In the descending aorta, this relationship is reversed: the circumferential compliance exceeded the longitudinal compliance, and the outer aspect was more compliant (P = 0.003). The median circumferential failure stress of all aortic segments was in the range of 2000–2750 kPa, whereas the longitudinal failure stress in the ascending aorta and the arch had values of 750–1000 kPa, which were significantly lower (P < 0.05). Surprisingly, the longitudinal failure stress of the inner aspect of the descending aorta was extraordinarily high (2000 kPa). Failure strain, similar to compliance, was highest in the ascending aorta and decreased along the aorta. CONCLUSION The aorta appears to be a complex organ with distinct regional and directional differences in compliance and wall strength that is designed to effectively absorb the kinetic energy of cardiac systole and to cushion the momentum of systolic impact. Under normotensive conditions and a preconditioned physiological morphology, the aortic wall works in the steep part of the logarithmic strain–stress function; under hypertensive conditions and pathological morphology, the wall reacts in an non-compliant manner. The high longitudinal compliance and low failure stress of the ascending aorta and subsequent pathological changes may be the main determinants of the recurrent patho-anatomy of Type A aortic dissection. PMID:26993474
Accounting for the dead in the longitudinal analysis of income-related health inequalities
Petrie, Dennis; Allanson, Paul; Gerdtham, Ulf-G.
2011-01-01
This paper develops an accounting framework to consider the effect of deaths on the longitudinal analysis of income-related health inequalities. Ignoring deaths or using Inverse Probability Weights (IPWs) to re-weight the sample for mortality-related attrition can produce misleading results. Incorporating deaths into the longitudinal analysis of income-related health inequalities provides a more complete picture in terms of the evaluation of health changes in respect to socioeconomic status. We illustrate our work by investigating health mobility from 1999 till 2004 using the British Household Panel Survey (BHPS). We show that for Scottish males explicitly accounting for the dead rather than using IPWs to account for mortality-related attrition changes the direction of the relationship between relative health changes and initial income position, from negative to positive, while for other groups it significantly increases the strength of the positive relationship. Incorporating the dead may be vital in the longitudinal analysis of health inequalities. PMID:21820193
Qin, Guoyou; Zhang, Jiajia; Zhu, Zhongyi; Fung, Wing
2016-12-20
Outliers, measurement error, and missing data are commonly seen in longitudinal data because of its data collection process. However, no method can address all three of these issues simultaneously. This paper focuses on the robust estimation of partially linear models for longitudinal data with dropouts and measurement error. A new robust estimating equation, simultaneously tackling outliers, measurement error, and missingness, is proposed. The asymptotic properties of the proposed estimator are established under some regularity conditions. The proposed method is easy to implement in practice by utilizing the existing standard generalized estimating equations algorithms. The comprehensive simulation studies show the strength of the proposed method in dealing with longitudinal data with all three features. Finally, the proposed method is applied to data from the Lifestyle Education for Activity and Nutrition study and confirms the effectiveness of the intervention in producing weight loss at month 9. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Accounting for the dead in the longitudinal analysis of income-related health inequalities.
Petrie, Dennis; Allanson, Paul; Gerdtham, Ulf G
2011-09-01
This paper develops an accounting framework to consider the effect of deaths on the longitudinal analysis of income-related health inequalities. Ignoring deaths or using Inverse Probability Weights (IPWs) to re-weight the sample for mortality-related attrition can produce misleading results. Incorporating deaths into the longitudinal analysis of income-related health inequalities provides a more complete picture in terms of the evaluation of health changes in respect to socioeconomic status. We illustrate our work by investigating health mobility from 1999 till 2004 using the British Household Panel Survey (BHPS). We show that for Scottish males explicitly accounting for the dead rather than using IPWs to account for mortality-related attrition changes the direction of the relationship between relative health changes and initial income position, from negative to positive, while for other groups it significantly increases the strength of the positive relationship. Incorporating the dead may be vital in the longitudinal analysis of health inequalities. Copyright © 2011 Elsevier B.V. All rights reserved.
Farr, Joshua N.; Laudermilk, Monica J.; Lee, Vinson R.; Blew, Robert M.; Stump, Craig; Houtkooper, Linda; Lohman, Timothy G.; Going, Scott B.
2015-01-01
Summary Longitudinal relationships between adiposity (total body and central) and bone development were assessed in young girls. Total body and android fat masses were positively associated with bone strength and density parameters of the femur and tibia. These results suggest adiposity may have site-specific stimulating effects on the developing bone. Introduction Childhood obesity may impair bone development, but the relationships between adiposity and bone remain unclear. Failure to account for fat pattern may explain the conflicting results. Purpose Longitudinal associations of total body fat mass (TBFM) and android fat mass (AFM) with 2-year changes in weight-bearing bone parameters were examined in 260 girls aged 8–13 years at baseline. Peripheral quantitative computed tomography was used to measure bone strength index (BSI, square milligrams per quartic millimeter), strength–strain index (SSI, cubic millimeters), and volumetric bone mineral density (vBMD, milligrams per cubic centimeter) at distal metaphyseal and diaphyseal regions of the femur and tibia. TBFM and AFM were assessed by dual-energy x-ray absorptiometry. Results Baseline TBFM and AFM were positively associated with the change in femur BSI (r =0.20, r =0.17, respectively) and femur trabecular vBMD (r =0.19, r =0.19, respectively). Similarly, positive associations were found between TBFM and change in tibia BSI and SSI (r =0.16, r =0.15, respectively), and femur total and trabecular vBMD (r =0.12, r =0.14, respectively). Analysis of covariance showed that girls in the middle thirds of AFM had significantly lower femur trabecular vBMD and significantly higher tibia cortical vBMD than girls in the highest thirds of AFM. All results were significant at p <0.05. Conclusions Whereas baseline levels of TBFM and AFM are positive predictors of bone strength and density at the femur and tibia, higher levels of AFM above a certain level may impair cortical vBMD growth at weight-bearing sites. Future studies in obese children will be needed to test this possibility. NIH/NICHD #HD-050775. PMID:24113839
24th Annual National Test and Evaluation Conference
2008-02-28
LSL USL μ2 μ1 μ2 LSL USL μ1 Robust Design Page 38©2008 Air Academy Associates, LLC. Do Not Reproduce. Simplify, Perfect, Innovate Why Robust Design? x...Vehicle performance Simulated Terrain Physics Soil strength Vegetation density Longitudinal force Lateral force Traction Resistance Local vehicle
Code of Federal Regulations, 2010 CFR
2010-01-01
... STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Flight Loads § 27.321 General. (a) The flight load factor must be assumed to act normal to the longitudinal axis of the rotorcraft, and to be equal... from the design minimum weight to the design maximum weight; and (2) With any practical distribution of...
What Good Predictors of Marijuana Use Are Good For: A Synthesis of Research.
ERIC Educational Resources Information Center
Derzon, James H.; Lipsey, Mark W.
1999-01-01
Analyzes correlates of marijuana use based on 3,690 effect sizes coded from 86 prospective longitudinal studies. Summarizes findings on strength of relationships for categorizing predictor variables, and implications of these relationships. Findings are relevant for intervention programmers and policymakers since they identify characteristics of…
Mechanical pulping with a sequential velocity refiner- a new concept
C.W. McMillin
1978-01-01
In previous research with refiner mechanical pulps, a theoretical stress analysis indicated that longitudinal tracheids of Pinus taeda L. fail while under torsional stress and unwind into ribbonlike elements that provide the coherence necessary for strength development. When macerated tracheids of loblolly pine were individually stressed in torsion...
Tensile stress-strain behavior of hybrid composite laminates
NASA Technical Reports Server (NTRS)
Kennedy, J. M.
1983-01-01
A study was made of the stress-strain response of several hybrid laminates, and the damage was correlated with nonlinear stress-strain response and ultimate strength. The fibers used in the laminates were graphite, S-glass, and Kevlar. Some laminates with graphite fibers had perforated Mylar film between plies, which lowered the interlaminar bond strength. The laminate configurations were chosen to be like those of buffer strips in large panels and fracture coupons. Longitudinal and transverse specimens were loaded in tension to failure. Some specimens were radiographed to reveal damage due to edge effects. Stress-strain response is discussed in terms of damage shown by the radiographs. Ultimate strengths are compared with simple failure criteria, one of which account for damage.
NASA Technical Reports Server (NTRS)
Lemkey, F. D.; Mccarthy, G. P.
1975-01-01
By means of a compositional and heat treatment optimization program based on the quaternary gamma/gamma prime-delta, a tantalum modified gamma/gamma prime-delta alloy with improved shear and creep strength combined with better cyclic oxidation resistance was identified. Quinary additions, quaternary adjustments, and heat treatment were investigated. The tantalum modified gamma/gamma prime-delta alloy possessed a slightly higher liquidus temperature and exhibited rupture strength exceeding NASA VIA by approximately three and one-half Larson-Miller parameters (C = 20) above 1000 C. Although improvements in longitudinal mechanical properties were achieved, the shear and transverse strength property goals of the program were not met and present a continuing challenge to the alloy metallurgist.
Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel
NASA Astrophysics Data System (ADS)
Sharma, Gaurav; Dwivedi, Dheerendra Kumar; Jain, Pramod Kumar
2017-12-01
In this study, friction stir-welded joint of 3-mm-thick plates of 409 ferritic stainless steel (FSS) was characterized in light of microstructure, x-ray diffraction analysis, hardness, tensile strength, ductility, corrosion and work hardening properties. The FSW joint made of ferritic stainless steel comprises of three distinct regions including the base metal. In stir zone highly refined ferrite grains with martensite and some carbide precipitates at the grain boundaries were observed. X-ray diffraction analysis also revealed precipitation of Cr23C6 and martensite formation in heat-affected zone and stir zone. In tensile testing of the transverse weld samples, the failure eventuated within the gauge length of the specimen from the base metal region having tensile properties overmatched to the as-received base metal. The tensile strength and elongation of the longitudinal (all weld) sample were found to be 1014 MPa and 9.47%, respectively. However, in potentiodynamic polarization test, the corrosion current density of the stir zone was highest among all the three zones. The strain-hardening exponent for base metal, transverse and longitudinal (all weld) weld samples was calculated using various equations. Both the transverse and longitudinal weld samples exhibited higher strain-hardening exponents as compared to the as-received base metal. In Kocks-Mecking plots for the base metal and weld samples at least two stages of strain hardening were observed.
Macione, J; Depaula, C A; Guzelsu, N; Kotha, S P
2010-07-01
Previous studies indicate that changes in the longitudinal elastic properties of bone due to changes in mineral content are related to the longitudinal strength of bone tissue. Changes in mineral content are expected to affect bone tissue mechanical properties along all directions, albeit to different extents. However, changes in tissue mechanical properties along the different directions are expected to be correlated to one another. In this study, we investigate if radial, circumferential, and longitudinal moduli are related in bone tissue with varying mineral content. Plexiform bovine femoral bone samples were treated in fluoride ion solutions for a period of 3 and 12 days to obtain bones with 20% and 32% lower effective mineral contents. Transmission ultrasound velocities were obtained in the radial, circumferential, and longitudinal axes of bone and combined with measured densities to obtain corresponding tensorial moduli. Results indicate that moduli decreased with fluoride ion treatments and were significantly correlated to one another (r(2) radial vs. longitudinal = 0.80, r(2) circumferential vs. longitudinal = 0.90, r(2) radial vs. circumferential = 0.85). Densities calculated from using ultrasound parameters, acoustic impedance and transmission velocities, were moderately correlated to those measured by the Archimedes principle (r(2)=0.54, p<0.01). These results suggest that radial and circumferential ultrasound measurements could be used to determine the longitudinal properties of bone and that ultrasound may not be able to predict in vitro densities of bones containing unbonded mineral. Published by Elsevier Ltd.
Aggressive-antisocial boys develop into physically strong young men.
Isen, Joshua D; McGue, Matthew K; Iacono, William G
2015-04-01
Young men with superior upper-body strength typically show a greater proclivity for physical aggression than their weaker male counterparts. The traditional interpretation of this phenomenon is that young men calibrate their attitudes and behaviors to their physical formidability. Physical strength is thus viewed as a causal antecedent of aggressive behavior. The present study is the first to examine this phenomenon within a developmental framework. We capitalized on the fact that physical strength is a male secondary sex characteristic. In two longitudinal cohorts of children, we estimated adolescent change in upper-body strength using the slope parameter from a latent growth model. We found that males' antisocial tendencies temporally precede their physical formidability. Boys, but not girls, with greater antisocial tendencies in childhood attained larger increases in physical strength between the ages of 11 and 17. These results support sexual selection theory, indicating an adaptive congruence between male-typical behavioral dispositions and subsequent physical masculinization during puberty. © The Author(s) 2015.
Simultaneous maximum a posteriori longitudinal PET image reconstruction
NASA Astrophysics Data System (ADS)
Ellis, Sam; Reader, Andrew J.
2017-09-01
Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.
Shek, D T
1999-02-01
In this longitudinal study, the relationships between perceived parenting characteristics and adolescent psychological well-being were examined in a sample of Hong Kong Chinese adolescents (N = 378). The results indicated that global parenting styles and specific parenting behaviors are concurrently related to hopelessness, life satisfaction, self-esteem, purpose in life, and general psychiatric morbidity at Time 1 and Time 2. Longitudinal and prospective analyses (Time 1 predictors of Time 2 criterion variables) suggested that the relations between parenting characteristics and adolescent psychological well-being are bidirectional in nature. The results indicated that the strengths of association between perceived parenting characteristics and adolescent psychological well-being are stronger in female than in male adolescents. Relative to maternal parenting characteristics, paternal parenting was found to exert a stronger influence on adolescent psychological well-being.
Valente-Dos-Santos, J; Coelho-E-Silva, M J; Vaz, V; Figueiredo, A J; Capranica, L; Sherar, L B; Elferink-Gemser, M T; Malina, R M
2014-06-01
The purpose of the current study was to assess the developmental changes in change of direction and dribbling speed in youth soccer players taking into account skeletal age (SA), maturity status, body size, estimated fat mass, aerobic endurance, lower limb explosive strength and annual volume of training. Eighty-three male soccer players aged 10-15 years (SA) at baseline were annually followed over 5 years, resulting in an average 4.4 observations per player. After testing for multicollinearity, multi-level regression modeling was used to examine the longitudinal developmental changes on change of direction and dribbling speed. Maturity-associated variability was significant in change of direction and also dribbling speed among young soccer players aged 12-14 years with better scores being performed by late maturers. Moreover, the predicted longitudinal scores for change of direction and dribbling speed improved with SA (P<0.01), SA2 (P<0.01) and skeletal maturity status entered as an additional developmental predictor (P<0.05). Estimated fat-free mass (P<0.01), aerobic endurance (P<0.01) and lower limb strength (P<0.01) were additional predictors in both models. The soccer-specific skill, dibbling speed, was also explained by annual volume of training (P<0.05). Skeletal maturity status explains inter-individual variability on maximal short-term run performances with and without the ball possession at early ages of participation in competitive soccer. The effects tend to persist across ages combined with longitudinal changes in body composition and functional fitness. In the particular case of the ball test, annual volume of training was also a longitudinal performance predictor.
Impact damage resistance and residual property assessment of (0/+/-45/90)s SCS-6/Timetal 21S
NASA Technical Reports Server (NTRS)
Miller, Jennifer L.; Portanova, Marc A.; Johnson, W. Steven
1995-01-01
The impact damage resistance and residual mechanical properties of (0/ +/- 45/90)s SCS-6/Timetal 21S composites were evaluated. Both quasi-static indentation and drop-weight impact tests were used to investigate the impact behavior at two nominal energy levels (5.5 and 8.4 J) and determine the onset of internal damage. Through x-ray inspection, the extent of internal damage was characterized non-destructively. The composite strength and constant amplitude fatigue response were evaluated to assess the effects of the sustained damage. Scanning electron microscopy was used to characterize internal damage from impact in comparison to damage that occurs during mechanical loading alone. The effect of stacking sequence was examined by using specimens with the long dimension of the specimen both parallel (longitudinal) and perpendicular (transverse) to the 0 deg fiber direction. Damage in the form of longitudinal and transverse cracking occurred in all longitudinal specimens tested at energies greater than 6.3 J. Similar results occurred in the transverse specimens tested above 5.4 J. Initial load drop, characteristic of the onset of damage, occurred on average at 6.3 J in longitudinal specimens and at 5.0 J in transverse specimens. X-ray analysis showed broken fibers in the impacted region in specimens tested at the higher impact energies. At low impact energies, visible matrix cracking may occur, but broken fibers may not. Matrix cracking was noted along fiber swims and it appeared to depend on the surface quality of composite. At low impact energies, little damage has been incurred by the composite and the residual strength and residual life is not greatly reduced as compared to an undamaged composite. At higher impact energies, more damage occurred and a greater effect of the impact damage was observed.
Pua, Yong-Hao
2015-07-01
This study examines the time course of knee swelling post total knee arthroplasty (TKA) and its associations with quadriceps strength and gait speed. Eighty-five patients with unilateral TKA participated. Preoperatively and on post-operative days (PODs) 1, 4, 14, and 90, knee swelling was measured using bioimpedance spectrometry. Preoperatively and on PODs 14 and 90, quadriceps strength was measured using isokinetic dynamometry while fast gait speed was measured using the timed 10-meter walk. On POD1, knee swelling increased ~35% from preoperative levels after which, knee swelling reduced but remained at ~11% above preoperative levels on POD90. In longitudinal, multivariable analyses, knee swelling was associated with quadriceps weakness (P<0.01) and slower gait speed (P=0.03). Interventions to reduce post-TKA knee swelling may be indicated to improve quadriceps strength and gait speed. Copyright © 2015 Elsevier Inc. All rights reserved.
Replica Resummation of the Baker-Campbell-Hausdorff Series
NASA Astrophysics Data System (ADS)
Vajna, Szabolcs; Klobas, Katja; Prosen, Tomaž; Polkovnikov, Anatoli
2018-05-01
We developed a novel perturbative expansion based on the replica trick for the Floquet Hamiltonian governing the dynamics of periodically kicked systems where the kick strength is the small parameter. The expansion is formally equivalent to an infinite resummation of the Baker-Campbell-Hausdorff series in the undriven (nonperturbed) Hamiltonian, while considering terms up to a finite order in the kick strength. As an application of the replica expansion, we analyze an Ising spin 1 /2 chain periodically kicked with a magnetic field with a strength h , which has both longitudinal and transverse components. We demonstrate that even away from the regime of high frequency driving, if there is heating, its rate is nonperturbative in the kick strength, bounded from above by a stretched exponential: e-const h-1 /2 . This guarantees the existence of a very long prethermal regime, where the dynamics is governed by the Floquet Hamiltonian obtained from the replica expansion.
Bond strengths evaluation of laser ceramic bracket debonding
NASA Astrophysics Data System (ADS)
Dostalová, T.; Jelinková, H.; Šulc, J.; Němec, M.; Fibrich, M.; Jelínek, M.; Michalík, P.; Bučková, M.
2012-09-01
Ceramic brackets often used for an orthodontic treatment can lead to problems such as enamel tear outs because of their low fracture resistance and high bond strengths. Therefore the aim of our study was to investigate the positive laser radiation effect on bracket debonding. Moreover, the influence of the enamel shape surface under the bracket and laser radiation power on the debonding strength was investigated. The source of the radiation was the longitudinally diode-pumped Tm:YAP laser operating at 1997 nm. To eliminate the tooth surface roughness the flat enamel surface was prepared artificially and the bracket was bonded on it. The debonding was accomplished by Tm:YAP laser radiation with different the power value while recording the temperature rise in the pulp. To simulate the debonding process in vivo the actual bond strength was measured by the digital force gauge. The results were analyzed by scanning electron microscope.
Longitudinal shear behavior of several oxide dispersion strengthened alloys
NASA Technical Reports Server (NTRS)
Glasgow, T. K.
1978-01-01
Two commercial oxide dispersion strengthened (ODS) alloys, MA-753 and MA-754, and three experimental ODS alloys, MA-757E, MA-755E, and MA-6000E, were tested in shear at 760 C. Comparisons were made with other turbine blade and vane alloys. All of the ODS alloys exhibited less shear strength than directionally solidified Mar-M 200 = Hf or then conventionally cast B-1900. The strongest ODS alloy tested, MA-755E, was comparable in both shear and tensile strength to the lamellar directionally solidified eutectic alloy gamma/gamma prime - delta. Substantial improvements in shear resistance were found for all alloys tested when the geometry of the specimen was changed from one generating a transverse tensile stress in the shear area to one generating a transverse compressive stress. Finally, 760 C shear strength as a fraction of tensile strength was found to increase linearly with the log of the transverse tensile ductility.
Mandelli, Maria Luisa; Vilaplana, Eduard; Brown, Jesse A; Hubbard, H Isabel; Binney, Richard J; Attygalle, Suneth; Santos-Santos, Miguel A; Miller, Zachary A; Pakvasa, Mikhail; Henry, Maya L; Rosen, Howard J; Henry, Roland G; Rabinovici, Gil D; Miller, Bruce L; Seeley, William W; Gorno-Tempini, Maria Luisa
2016-10-01
Neurodegeneration has been hypothesized to follow predetermined large-scale networks through the trans-synaptic spread of toxic proteins from a syndrome-specific epicentre. To date, no longitudinal neuroimaging study has tested this hypothesis in vivo in frontotemporal dementia spectrum disorders. The aim of this study was to demonstrate that longitudinal progression of atrophy in non-fluent/agrammatic variant primary progressive aphasia spreads over time from a syndrome-specific epicentre to additional regions, based on their connectivity to the epicentre in healthy control subjects. The syndrome-specific epicentre of the non-fluent/agrammatic variant of primary progressive aphasia was derived in a group of 10 mildly affected patients (clinical dementia rating equal to 0) using voxel-based morphometry. From this region, the inferior frontal gyrus (pars opercularis), we derived functional and structural connectivity maps in healthy controls (n = 30) using functional magnetic resonance imaging at rest and diffusion-weighted imaging tractography. Graph theory analysis was applied to derive functional network features. Atrophy progression was calculated using voxel-based morphometry longitudinal analysis on 34 non-fluent/agrammatic patients. Correlation analyses were performed to compare volume changes in patients with connectivity measures of the healthy functional and structural speech/language network. The default mode network was used as a control network. From the epicentre, the healthy functional connectivity network included the left supplementary motor area and the prefrontal, inferior parietal and temporal regions, which were connected through the aslant, superior longitudinal and arcuate fasciculi. Longitudinal grey and white matter changes were found in the left language-related regions and in the right inferior frontal gyrus. Functional connectivity strength in the healthy speech/language network, but not in the default network, correlated with longitudinal grey matter changes in the non-fluent/agrammatic variant of primary progressive aphasia. Graph theoretical analysis of the speech/language network showed that regions with shorter functional paths to the epicentre exhibited greater longitudinal atrophy. The network contained three modules, including a left inferior frontal gyrus/supplementary motor area, which was most strongly connected with the epicentre. The aslant tract was the white matter pathway connecting these two regions and showed the most significant correlation between fractional anisotropy and white matter longitudinal atrophy changes. This study showed that the pattern of longitudinal atrophy progression in the non-fluent/agrammatic variant of primary progressive aphasia relates to the strength of connectivity in pre-determined functional and structural large-scale speech production networks. These findings support the hypothesis that the spread of neurodegeneration occurs by following specific anatomical and functional neuronal network architectures. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Semba, Richard D.; Cappola, Anne R.; Sun, Kai; Bandinelli, Stefania; Dalal, Mansi; Crasto, Candace; Guralnik, Jack M.; Ferrucci, Luigi
2012-01-01
Handgrip strength is a strong indicator of total body muscle strength and is a predictor of poor outcomes in older adults. The aging suppressor gene klotho encodes a single-pass transmembrane protein that is secreted as a circulating hormone. In mice, disruption of klotho expression results in a syndrome that includes sarcopenia, atherosclerosis, osteoporosis, and shortened lifespan, and conversely, overexpression of klotho leads to a greater longevity. The objective was to determine whether plasma klotho levels are related to skeletal muscle strength in humans. We measured plasma klotho in 804 adults, ≥65 years, in the InCHIANTI study, a longitudinal population-based study of aging in Tuscany, Italy. Grip strength was positively correlated with plasma klotho at threshold <681 pg/mL. After adjusting for age, sex, education, smoking, physical activity, cognition, and chronic diseases, plasma klotho (per 1 standard deviation increase) was associated with grip strength (beta = 1.20, standard error = 0.35, P = 0.0009) in adults with plasma klotho <681 pg/mL. These results suggest that older adults with lower plasma klotho have poor skeletal muscle strength. PMID:21769735
Mild thyroid hormone excess is associated with a decreased physical function in elderly men
Ceresini, Graziano; Ceda, Gian Paolo; Lauretani, Fulvio; Maggio, Marcello; Bandinelli, Stefania; Guralnik, Jack M.; Cappola, Anne R.; Usberti, Elisa; Morganti, Simonetta; Valenti, Giorgio; Ferrucci, Luigi
2015-01-01
Introduction In the adult, subclinical hyperthyroidism (Shyper) may alter skeletal muscle mass and strength. However, whether these effects are present in elderly subjects is not known. We explored the relationship between mild hyperthyroidism and physical function in a population-based sample of older persons. Methods In a cross-sectional analysis, calf muscle cross-sectional area (CMA), handgrip strength, nerve conduction velocity (NCV), and Short Physical Performance Battery (SPPB) scores were compared between 364 euthyroid (Eut) and 28 Shyper men as well as between 502 Eut and 39 Shyper women. In a longitudinal analysis, we evaluated the relationship between baseline plasma TSH, FT3 and FT4 and the 3-year change in SPPB score in 304 men and 409 women who were euthyroid at enrolment. Results At the cross-sectional analysis, Shyper men, but not women, had a significantly (p = 0.02) lower SPPB score than Eut controls, although with comparable CMA, grip strength and NCV, and were more likely to have poor physical performance (odds ratio = 2.97, p< 0.05). Longitudinal analysis showed that in Eut men higher baseline FT4 was significantly (p=0.02) predictive of a lower SPPB score at the 3-year follow-up. Conclusion Even a modest thyroid hormone excess is associated with a reduced physical function in elderly men. PMID:21875391
Deviatoric response of the aluminium alloy, 5083
NASA Astrophysics Data System (ADS)
Appleby-Thomas, Gareth; Hazell, Paul; Millett, Jeremy; Bourne, Neil
2009-06-01
Aluminium alloys such as 5083 are established light weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.
Deviatoric Response of AN Armour-Grade Aluminium Alloy
NASA Astrophysics Data System (ADS)
Appleby-Thomas, G. J.; Hazell, P. J.; Millett, J.; Bourne, N. K.
2009-12-01
Aluminium alloys such as 5083 H32 are established light-weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate-impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.
Electromagnetic response of C 12 : A first-principles calculation
Lovato, A.; Gandolfi, S.; Carlson, J.; ...
2016-08-15
Here, the longitudinal and transverse electromagnetic response functions ofmore » $$^{12}$$C are computed in a ``first-principles'' Green's function Monte Carlo calculation, based on realistic two- and three-nucleon interactions and associated one- and two-body currents. We find excellent agreement between theory and experiment and, in particular, no evidence for the quenching of measured versus calculated longitudinal response. This is further corroborated by a re-analysis of the Coulomb sum rule, in which the contributions from the low-lying $$J^\\pi\\,$$=$$\\, 2^+$$, $0^+$ (Hoyle), and $4^+$ states in $$^{12}$$C are accounted for explicitly in evaluating the total inelastic strength.« less
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2010 CFR
2010-10-01
... volumes of a power car or a trailer car designed to crush as part of the crash energy management design... deformation to the cab, unless equivalent protection to crewmembers is provided under an alternate design approach, validated through analysis and testing, and approved by FRA under the provisions of § 238.21. (b...
49 CFR 238.405 - Longitudinal static compressive strength.
Code of Federal Regulations, 2011 CFR
2011-10-01
... volumes of a power car or a trailer car designed to crush as part of the crash energy management design... deformation to the cab, unless equivalent protection to crewmembers is provided under an alternate design approach, validated through analysis and testing, and approved by FRA under the provisions of § 238.21. (b...
ERIC Educational Resources Information Center
Paalman, Carmen; van Domburgh, Lieke; Stevens, Gonneke; Vermeiren, Robert; van de Ven, Peter; Branje, Susan; Frijns, Tom; Meeus, Wim; Koot, Hans; van Lier, Pol; Jansen, Lucres; Doreleijers, Theo
2015-01-01
This longitudinal study explores differences between native Dutch and immigrant Moroccan adolescents in the relationship between internalizing and externalizing problems across time. By using generalized estimating equations (GEE), the strength and stability of associations between internalizing and externalizing problems in 159 Moroccan and 159…
NASA Technical Reports Server (NTRS)
Montano, J. W.
1976-01-01
The ambient and cryogenic temperature mechanical properties and the ambient temperature stress corrosion results of 18-3 Mn (Nitronic 33)stainless steel, longitudinal and transverse, as received and as welded (TIG) material specimens manufactured from 0.063 inch thick sheet material, were described. The tensile test results indicate an increase in ultimate tensile and yield strengths with decreasing temperature. The elongation remained fairly constant to -200 F, but below that temperature the elongation decreased to less than 6.0% at liquid hydrogen temperature. The notched tensile strength (NTS) for the parent metal increased with decreasing temperature to liquid nitrogen temperature. Below -320 F the NTS decreased rapidly. The notched/unnotched (N/U) tensile ratio of the parent material specimens remained above 0.9 from ambient to -200 F, and decreased to approximately 0.65 and 0.62, respectively, for the longitudinal and transverse directions at liquid hydrogen temperature. After 180 days of testing, only those specimens exposed to the salt spray indicated pitting and some degradation of mechanical properties.
Snakes, rotators, serpents and the octahedral group
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fieguth, T.
1986-04-01
Specific configurations of horizontal and vertical bending magnets are given that, when acting on the spin polarization vector of a particle beam, generate a group of 24 operators isomorphic to the group of rotational symmetries of a cube, known as the octahedral group. Some of these configurations have the feature of converting transversely polarized beams to longitudinally polarized beams (or vice versa) at the midpoint of the configuration for, in principle, all beam energies. Since the first order optical transfer matrix for each half of these configurations is nearly that of a drift region, the external geometry remains unchanged andmore » midpoint dispersion is not introduced. Changing field strengths and/or polarities allows a configuration to serve as either a Snake(1/sup st/ or 2/sup nd/ kind) or a Rotator, where in both cases the spin polarization is longitudinal at the midpoint. In this conceptualization, emphasis has been placed on electron beams and, indeed, for these beams some practical applications can be envisioned. However, due to the relatively high integrated field strengths required, application of these concepts to proton beams may be more promising.« less
NASA Technical Reports Server (NTRS)
Kim, Y. G.; Merrick, H. F.
1979-01-01
Alloy MA 6000E was developed by the mechanical alloying process for turbine blade applications. The nominal composition of the experimental alloy is Ni-15CR-2Mo-4W-4.5Al- 2.5Ti-2Ta- .15Zr-.05C-.01B-1.1Y2O3. The 1000 hour rupture strength in the longitudinal direction is about 145 MPa at 1093 C and about 483 MPa at 760 C. The alloy displays normal three-stage creep behavior. Typically the creep elongation is 3.5% at 760 C and 2% at 1093 C. The alloy is notch ductile (K sub 1 = 3.5). The rupture properties of the alloy are not significantly degraded by thermal cycling or prior stress isothermal exposure. The alloy also has excellent longitudinal high and low cycle fatigue resistance. Limited testing indicates that MA 6000E posesses good off-axis mechanical properties. The transverse tensile elongation at 760 C is about 3%. The 100 hour transverse rupture strength is 331 MPa at 760 C and about 55 MPa at 1093 C.
Error Correction for the JLEIC Ion Collider Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei
2016-05-01
The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, andmore » chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.« less
Nonlinear, anisotropic, and giant photoconductivity in intrinsic and doped graphene
NASA Astrophysics Data System (ADS)
Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit
2018-01-01
We present a framework to calculate the anisotropic and nonlinear photoconductivity for two band systems with application to graphene. In contrast to the usual perturbative (second order in the optical field strength) techniques, we calculate photoconductivity to all orders in the optical field strength. In particular, for graphene, we find the photoresponse to be giant (at large optical field strengths) and anisotropic. The anisotropic photoresponse in graphene is correlated with polarization of the incident field, with the response being similar to that of a half-wave plate. We predict that the anisotropy in the simultaneous measurement of longitudinal (σx x) and transverse (σy x) photoconductivity, with four probes, offers a unique experimental signature of the photovoltaic response, distinguishing it from the thermal-Seebeck and bolometric effects in photoresponse.
Shi, Yuyan; Sears, Lindsay E; Coberley, Carter R; Pope, James E
2013-04-01
To examine the longitudinal relationship between modifiable well-being risks and productivity. A total of 19,121 employees from five employers participated in baseline and follow-up well-being assessment surveys. Multivariate regressions assessed whether changes in absenteeism, presenteeism, and job performance were associated with changes in 19 modifiable well-being risks. Over time, a 5% reduction in total count of well-being risks was significantly associated with 0.74% decrease in absenteeism, 2.38% decrease in presenteeism, and 0.24% increase in performance. High blood pressure, recurring pain, unhealthy diet, inadequate exercise, poor emotional health, poor supervisor relationship, not utilizing strengths doing job, and organization unsupportive of well-being had greater independent contributions in explaining productivity impairment. The often-ignored well-being risks such as work-related and financial health risks provided incremental explanation of longitudinal productivity variations beyond traditional measures of health-related risks.
NASA Astrophysics Data System (ADS)
Zhang, D. P.; Lei, Y.; Shen, Z. B.
2017-12-01
The effect of longitudinal magnetic field on vibration response of a sing-walled carbon nanotube (SWCNT) embedded in viscoelastic medium is investigated. Based on nonlocal Euler-Bernoulli beam theory, Maxwell's relations, and Kelvin viscoelastic foundation model, the governing equations of motion for vibration analysis are established. The complex natural frequencies and corresponding mode shapes in closed form for the embedded SWCNT with arbitrary boundary conditions are obtained using transfer function method (TFM). The new analytical expressions for the complex natural frequencies are also derived for certain typical boundary conditions and Kelvin-Voigt model. Numerical results from the model are presented to show the effects of nonlocal parameter, viscoelastic parameter, boundary conditions, aspect ratio, and strength of the magnetic field on vibration characteristics for the embedded SWCNT in longitudinal magnetic field. The results demonstrate the efficiency of the proposed methods for vibration analysis of embedded SWCNTs under magnetic field.
Peterson, Candida C; Wellman, Henry M
2018-04-16
Longitudinal tracking of 107 three- to-thirteen-year-olds in a cross-sequential design showed a 6-step theory of mind (ToM) sequence identified by a few past cross-sectional studies validly depicted longitudinal ToM development from early to middle childhood for typically developing (TD) children and those with ToM delays owing to deafness or autism. Substantively, all groups showed ToM progress throughout middle childhood. Atypical development was more extended and began and ended at lower levels than for TD children. Yet most children in all groups progressed over the study's mean 1.5 years. Findings help resolve theoretical debates about ToM development for children with and without delay and gain strength and weight via their applicability to three disparate groups varying in ToM timing and sequencing. © 2018 Society for Research in Child Development.
Estimating correlation between multivariate longitudinal data in the presence of heterogeneity.
Gao, Feng; Philip Miller, J; Xiong, Chengjie; Luo, Jingqin; Beiser, Julia A; Chen, Ling; Gordon, Mae O
2017-08-17
Estimating correlation coefficients among outcomes is one of the most important analytical tasks in epidemiological and clinical research. Availability of multivariate longitudinal data presents a unique opportunity to assess joint evolution of outcomes over time. Bivariate linear mixed model (BLMM) provides a versatile tool with regard to assessing correlation. However, BLMMs often assume that all individuals are drawn from a single homogenous population where the individual trajectories are distributed smoothly around population average. Using longitudinal mean deviation (MD) and visual acuity (VA) from the Ocular Hypertension Treatment Study (OHTS), we demonstrated strategies to better understand the correlation between multivariate longitudinal data in the presence of potential heterogeneity. Conditional correlation (i.e., marginal correlation given random effects) was calculated to describe how the association between longitudinal outcomes evolved over time within specific subpopulation. The impact of heterogeneity on correlation was also assessed by simulated data. There was a significant positive correlation in both random intercepts (ρ = 0.278, 95% CI: 0.121-0.420) and random slopes (ρ = 0.579, 95% CI: 0.349-0.810) between longitudinal MD and VA, and the strength of correlation constantly increased over time. However, conditional correlation and simulation studies revealed that the correlation was induced primarily by participants with rapid deteriorating MD who only accounted for a small fraction of total samples. Conditional correlation given random effects provides a robust estimate to describe the correlation between multivariate longitudinal data in the presence of unobserved heterogeneity (NCT00000125).
Ayoub, Ahmed T; Craddock, Travis J A; Klobukowski, Mariusz; Tuszynski, Jack
2014-08-05
Microtubules are key structural elements that, among numerous biological functions, maintain the cytoskeleton of the cell and have a major role in cell division, which makes them important cancer chemotherapy targets. Understanding the energy balance that brings tubulin dimers, the building blocks of microtubules, together to form a microtubule is especially important for revealing the mechanism of their dynamic instability. Several studies have been conducted to estimate various contributions to the free energy of microtubule formation. However, the hydrogen-bond contribution was not studied before as a separate component. In this work, we use concepts such as the quantum theory of atoms in molecules to estimate the per-residue strength of hydrogen bonds contributing to the overall stability that brings subunits together in pair of tubulin heterodimers, across both the longitudinal and lateral interfaces. Our study shows that hydrogen bonding plays a major role in the stability of tubulin systems. Several residues that are crucial to the binding of vinca alkaloids are shown to be strongly involved in longitudinal microtubule stabilization. This indicates a direct relation between the binding of these agents and the effect on the interfacial hydrogen-bonding network, and explains the mechanism of their action. Lateral contacts showed much higher stability than longitudinal ones (-462 ± 70 vs. -392 ± 59 kJ/mol), which suggests a dramatic lateral stabilization effect of the GTP cap in the β-subunit. The role of the M-loop in lateral stability in absence of taxol was shown to be minor. The B-lattice lateral hydrogen bonds are shown to be comparable in strength to the A-lattice ones (-462 ± 70 vs. -472 ± 46 kJ/mol). These findings establish the importance of hydrogen bonds to the stability of tubulin systems. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Strain-Based Design Methodology of Large Diameter Grade X80 Linepipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lower, Mark D.
2014-04-01
Continuous growth in energy demand is driving oil and natural gas production to areas that are often located far from major markets where the terrain is prone to earthquakes, landslides, and other types of ground motion. Transmission pipelines that cross this type of terrain can experience large longitudinal strains and plastic circumferential elongation as the pipeline experiences alignment changes resulting from differential ground movement. Such displacements can potentially impact pipeline safety by adversely affecting structural capacity and leak tight integrity of the linepipe steel. Planning for new long-distance transmission pipelines usually involves consideration of higher strength linepipe steels because theirmore » use allows pipeline operators to reduce the overall cost of pipeline construction and increase pipeline throughput by increasing the operating pressure. The design trend for new pipelines in areas prone to ground movement has evolved over the last 10 years from a stress-based design approach to a strain-based design (SBD) approach to further realize the cost benefits from using higher strength linepipe steels. This report presents an overview of SBD for pipelines subjected to large longitudinal strain and high internal pressure with emphasis on the tensile strain capacity of high-strength microalloyed linepipe steel. The technical basis for this report involved engineering analysis and examination of the mechanical behavior of Grade X80 linepipe steel in both the longitudinal and circumferential directions. Testing was conducted to assess effects on material processing including as-rolled, expanded, and heat treatment processing intended to simulate coating application. Elastic-plastic and low-cycle fatigue analyses were also performed with varying internal pressures. Proposed SBD models discussed in this report are based on classical plasticity theory and account for material anisotropy, triaxial strain, and microstructural damage effects developed from test data. The results are intended to enhance SBD and analysis methods for producing safe and cost effective pipelines capable of accommodating large plastic strains in seismically active arctic areas.« less
Longitudinal variability of complexities associated with equatorial electrojet
NASA Astrophysics Data System (ADS)
Rabiu, A. B.; Ogunjo, S. T.; Fuwape, I. A.
2017-12-01
Equatorial electrojet indices obtained from ground based magnetometers at 6 representative stations across the magnetic equatorial belt for the year 2009 (mean annual sunspot number Rz = 3.1) were treated to nonlinear time series analysis technique to ascertain the longitudinal dependence of the chaos/complexities associated with the phenomena. The selected stations were along the magnetic equator in the South American (Huancayo, dip latitude -1.80°), African (Ilorin, dip latitude -1.82°; Addis Ababa, dip latitude - 0.18°), and Philippine (Langkawi, dip latitude -2.32°; Davao, dip latitude -1.02°; Yap, dip latitude -1.49°) sectors. The non-linear quantifiers engaged in this work include: Recurrence rate, determinism, diagonal line length, entropy, laminarity, Tsallis entropy, Lyapunov exponent and correlation dimension. Ordinarily the EEJ was found to undergo variability from one longitudinal representative station to another, with the strongest EEJ of about 192.5 nT at the South American axis at Huancayo. The degree of complexity in the EEJ was found to vary qualitatively from one sector to another. Probable physical mechanisms responsible for longitudinal variability of EEJ strength and its complexities were highlighted.
Morgan, Perri; Humeniuk, Katherine M; Everett, Christine M
2015-09-01
As physician assistant (PA) roles expand and diversify in the United States and around the world, there is a pressing need for research that illuminates how PAs may best be selected, educated, and used in health systems to maximize their potential contributions to health. Physician assistant education programs are well positioned to advance this research by collecting and organizing data on applicants, students, and graduates. Our PA program is creating a permanent longitudinal education database for research that contains extensive student-level data. This database will allow us to conduct research on all phases of PA education, from admission processes through the professional practice of our graduates. In this article, we describe our approach to constructing a longitudinal student-level research database and discuss the strengths and limitations of longitudinal databases for research on education and the practice of PAs. We hope to encourage other PA programs to initiate similar projects so that, in the future, data can be combined for use in multi-institutional research that can contribute to improved education for PA students across programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyawaki, Shun; Nozawa, Satoshi; Iwai, Kazumasa
2016-02-10
We estimated the accuracy of coronal magnetic fields derived from radio observations by comparing them to potential field calculations and the differential emission measure measurements using EUV observations. We derived line-of-sight components of the coronal magnetic field from polarization observations of the thermal bremsstrahlung in the NOAA active region 11150, observed around 3:00 UT on 2011 February 3 using the Nobeyama Radioheliograph at 17 GHz. Because the thermal bremsstrahlung intensity at 17 GHz includes both chromospheric and coronal components, we extracted only the coronal component by measuring the coronal emission measure in EUV observations. In addition, we derived only themore » radio polarization component of the corona by selecting the region of coronal loops and weak magnetic field strength in the chromosphere along the line of sight. The upper limits of the coronal longitudinal magnetic fields were determined as 100–210 G. We also calculated the coronal longitudinal magnetic fields from the potential field extrapolation using the photospheric magnetic field obtained from the Helioseismic and Magnetic Imager. However, the calculated potential fields were certainly smaller than the observed coronal longitudinal magnetic field. This discrepancy between the potential and the observed magnetic field strengths can be explained consistently by two reasons: (1) the underestimation of the coronal emission measure resulting from the limitation of the temperature range of the EUV observations, and (2) the underestimation of the coronal magnetic field resulting from the potential field assumption.« less
Mangion, Kenneth; Clerfond, Guillaume; McComb, Christie; Carrick, David; Rauhalammi, Samuli M; McClure, John; Corcoran, David S; Woodward, Rosemary; Orchard, Vanessa; Radjenovic, Aleksandra; Zhong, Xiaodong; Berry, Colin
2016-11-01
To assess myocardial strain using cine displacement encoding with stimulated echoes (DENSE) using 1.5T and 3.0T MRI in healthy adults. Healthy adults without any history of cardiovascular disease underwent magnetic resonance imaging (MRI) at 1.5T and 3.0T within 2 days. The MRI protocol included balanced steady-state free-precession (b-SSFP), 2D cine-echo planar imaging (EPI)-DENSE, and late gadolinium enhancement in subjects >45 years. Acquisitions were divided into six segments; global and segmental peak longitudinal and circumferential strain were derived and analyzed by field strength, age, and gender. In all, 89 volunteers (mean age 44.8 ± 18.0 years, range: 18-87 years) underwent MRI at 1.5T, and 88 of these subjects underwent MRI at 3.0T (1.4 ± 1.4 days between the scans). Compared with 3.0T, the magnitudes of global circumferential (-19.5 ± 2.6% vs. -18.47 ± 2.6%; P = 0.001) and longitudinal (-12.47 ± 3.2% vs. -10.53 ± 3.1%; P = 0.004) strain were greater at 1.5T. At 1.5T, longitudinal strain was greater in females than in males: -10.17 ± 3.4% vs. -13.67 ± 2.4%; P = 0.001. Similar observations occurred for circumferential strain at 1.5T (-18.72 ± 2.2% vs. -20.10 ± 2.7%; P = 0.014) and at 3.0T (-17.92 ± 1.8% vs. -19.1 ± 3.1%; P = 0.047). At 1.5T, longitudinal and circumferential strain were not associated with age after accounting for sex (longitudinal strain P = 0.178, circumferential strain P = 0.733). At 3.0T, longitudinal and circumferential strain were associated with age (P < 0.05). Longitudinal strain values were greater in the apico-septal, basal-lateral, and mid-lateral segments and circumferential strain in the inferior, infero-lateral, and antero-lateral LV segments. Myocardial strain parameters as revealed by cine-DENSE at different MRI field strengths were associated with myocardial region, age, and sex. J. Magn. Reson. Imaging 2016;44:1197-1205. © 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Maffulli, N; King, J B; Helms, P
1994-01-01
Using a mixed longitudinal design, the incidence of injuries, and the development of flexibility and isometric strength of the upper and lower limbs were studied for 2 years in 453 élite young athletes (aged between 9 and 18 years) practising football, gymnastics, swimming or tennis. The children suffered from a low incidence of injuries. Strength and flexibility did not exert a significant role in determining injuries. The rate of injury was not significantly different between the 2 years of the study. Young swimmers showed a greater generalized flexibility. Girls were more flexible than boys between the ages of 13 to 16 years. Athletic children are able to exert greater isometric strength than normal schoolchildren. Boys diverged from the normal population at 14 years, while athletic girls were stronger at all ages. Girls were stronger than boys up to age 12, who were still increasing their muscle strength at 19 years. The average maximal isometric strength exerted in both upper and lower limbs in the four sports was not significantly different. Male gymnasts over 11 years old were significantly stronger than all other athletes. PMID:7921912
The effect of thermal exposure on the mechanical properties of aluminum-graphite composites
NASA Technical Reports Server (NTRS)
Khan, I. H.
1975-01-01
The mechanical properties of aluminum-graphite composites were measured at room temperature in the as-received condition, after elevated temperature exposure and after thermal cycling. The composites were fabricated by solid-state diffusion bonding of liquid-phase Al-infiltrated Thornel 50 fibers. The results showed that the maximum longitudinal tensile strength of the as-received material was 80,000 psi, which corresponds well with the rule of mixture value. The composite strength was observed to vary widely, depending on the extent of wetting of the fibers by the aluminum. The strength of the composites in the transverse direction was generally very low, due to poor interfacial bonding. Aluminum carbide (Al4C3) formed at the surface of the fibers at temperatures greater than 500 C. Development of the carbide was shown to be diffusion-controlled and was dependent on the time and temperature used. It was shown that the tensile strength was virtually unaffected by heat-treatment up to 500 C; beyond that temperature a drastic degradation of tensile strength occurred. Thermal cycling of the composites below 500 C resulted in an observable degradation of the composite strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony, R.W.; Bodig, J.; Phillips, G.E.
This report describes the development of a nondestructive evaluation (NDE) methodology for assessing the bending strength of new wood utility poles. Fundamental concepts of stress wave propagation are presented. The development of a longitudinal stress wave methodology for predicting pole strength and the results of destructive tests on full-size poles are described. Mathematical correlations between stress wave parameters, geometric characteristics, and individual pole bending strengths form the basis of strength prediction models for western redcedar, Douglas-fir and southern pine poles. Models were developed for NDE in the whitewood stage and after preservative treatment of poles. For each species the twomore » most commonly used preservative types were evaluated. Excellent correlations were obtained for western redcedar and Douglas-fir poles, but high moisture content in the southern pine poles resulted in lower prediction accuracies for this species. Verification of the developed mathematical models demonstrates that improvement in classifying poles into the ANSI 05.1 tip-load capacities is technically feasible. The development and field trial of the prototype equipment for strength grading of new poles is also described. Research results can be used to benefit utilities by enabling the supply of strength graded poles with a higher accuracy than previously possible.« less
Temperature-dependent tensile and shear response of graphite/aluminum
NASA Technical Reports Server (NTRS)
Fujita, T.; Pindera, M. J.; Herakovich, C. T.
1987-01-01
The thermo-mechanical response of unidirectional P100 graphite fiber/6061 aluminum matrix composites was investigated at four temperatures:-150, +75, +250, and +500 F. Two types of tests, off-axis tension and losipescu shear, were used to obtain the desired properties. Good experimental-theoretical correlation was obtained for Exx, vxy, and G12. It is shown that E11 is temperature independent, but E22, v12, and G12 generally decrease with increasing temperature. Compared with rather high longitudinal strength, very low transverse strength was obtained for the graphite/aluminum. The poor transverse strength is believed to be due to the low interfacial bond strength in this material. The strength decrease significantly with increasing temperature. The tensile response at various temperatures is greatly affected by the residual stresses caused by the mismatch in the coefficients of thermal expansion of fibers and matrix. The degradation of the aluminum matrix properties at higher temperatures has a deleterious effect on composite properties. The composite has a very low coefficient of thermal expansion in the fiber direction.
A Theoretical Model for Estimation of Yield Strength of Fiber Metal Laminate
NASA Astrophysics Data System (ADS)
Bhat, Sunil; Nagesh, Suresh; Umesh, C. K.; Narayanan, S.
2017-08-01
The paper presents a theoretical model for estimation of yield strength of fiber metal laminate. Principles of elasticity and formulation of residual stress are employed to determine the stress state in metal layer of the laminate that is found to be higher than the stress applied over the laminate resulting in reduced yield strength of the laminate in comparison with that of the metal layer. The model is tested over 4A-3/2 Glare laminate comprising three thin aerospace 2014-T6 aluminum alloy layers alternately bonded adhesively with two prepregs, each prepreg built up of three uni-directional glass fiber layers laid in longitudinal and transverse directions. Laminates with prepregs of E-Glass and S-Glass fibers are investigated separately under uni-axial tension. Yield strengths of both the Glare variants are found to be less than that of aluminum alloy with use of S-Glass fiber resulting in higher laminate yield strength than with the use of E-Glass fiber. Results from finite element analysis and tensile tests conducted over the laminates substantiate the theoretical model.
ERIC Educational Resources Information Center
Halim, May Ling; Ruble, Diane; Tamis-LeMonda, Catherine; Shrout, Patrick E.
2013-01-01
A key prediction of cognitive theories of gender development concerns developmental trajectories in the relative strength or rigidity of gender typing. To examine these trajectories in early childhood, 229 children (African American, Mexican American, and Dominican American) were followed annually from age 3 to 5 years, and gender-stereotypical…
ERIC Educational Resources Information Center
Booker, Cara L.; Skew, Alexandra J.; Sacker, Amanda; Kelly, Yvonne J.
2014-01-01
The objective of this study was to investigate the demographic distribution of selected health-related behaviors and their relationship with different indicators of well-being. The data come from Wave 1 of the youth panel of "Understanding Society" household panel study. The Strengths and Difficulties Questionnaire (SDQ) measured…
ERIC Educational Resources Information Center
Jones, Earl; Jones, Eleanor
The Redwood City School District Elementary Secondary Education Act (ESEA) Title VII Bilingual Education Program offered instruction in English and Spanish through an integrated approach, to take advantage of students' strengths and help them progress as rapidly as possible in concept development while they acquire English proficiency. The limited…
Impact of Father Absence: III. Problems of Family Reintegrating Following Prolonged Father Absence.
ERIC Educational Resources Information Center
Baker, Stewart L.; and others
A three-phase, longitudinal study at Walter Reed Hospital in Washington, D.C., of family problems with prolonged father absence indicates that there is (1) continuing family growth beyond the situational crisis, (2) active re-examination of roles and values, and (3) heightened awareness of family strength and resourcefulness during the…
Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.
Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P
2015-08-01
Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.
Li, Mian; Yao, Wenguo; Sundahl, Cynthia
2018-03-26
It remains unclear if Gulf War (GW) veterans have a higher risk of developing motor neuron disorder. We intended to establish baseline neurophysiological values, including thenar motor unit number estimate (MUNE) and isometric hand grip (IHG) strength, to compare future follow-ups of deployed GW veterans with or without muscular complaints. We evaluated 19 GW veterans with self-reported weakness, cramps, or excessive muscle fatigue (Ill-19) and compared them with 18 controls without such muscular complaints (C-18). We performed MUNE on hand thenar muscles using adapted multipoint stimulation method for Ill-19 and 15 controls (C-15). We measured IHG strength (maximum force, endurance, and fatigue level) on Ill-19 and C-18 with a hand dynamometer. We performed nerve conduction studies on all study participants to determine which subjects had mild carpal tunnel syndrome (CTS). We compared the MUNE and IHG strength measures between Ill group and controls and between those with CTS and those without CTS. We obtained thenar MUNE of Ill-19 (95% CI of mean: 143-215; mean age: 46 yr) and compared it with that of C-15 (95% CI of mean: 161-230; mean age: 45 yr), and 95% of CI of mean among IHG strength variables (maximum force: 324-381 Newton; endurance: 32-42 s; fatigue level: 24%-33%) compared with C-18 (maximum force: 349-408 Newton; endurance: 35-46 s; fatigue level: 21%-27%). There was no significant difference in either MUNE or IHG strength between Ill-19 group and controls. The MUNE and IHG maximum forces were significantly lower in those with CTS compared with those without CTS. As a surrogate of mild CTS, the median versus ulnar distal sensory latency on nerve conduction study was only weakly associated with MUNE, maximum force, and fatigue level, respectively. To our knowledge, no published study on MUNE reference values of military veteran population has been available. The quantifiable values of both thenar MUNE and IHG strength of military veterans serve as baselines for our longitudinal follow-up of motor neuron function of deployed troops. These reference values are also useful for other laboratories to study veterans' motor system with or without mild CTS.
Cut points of muscle strength associated with metabolic syndrome in men.
Sénéchal, Martin; McGavock, Jonathan M; Church, Timothy S; Lee, Duck-Chul; Earnest, Conrad P; Sui, Xuemei; Blair, Steven N
2014-08-01
The loss of muscle strength with age increases the likelihood of chronic conditions, including metabolic syndrome (MetS). However, the minimal threshold of muscle strength at which the risk for MetS increases has never been established. This study aimed to identify a threshold of muscle strength associated with MetS in men. We created receiver operating curves for muscle strength and the risk of MetS from a cross-sectional sample of 5685 men age <50 yr and 1541 men age ≥50 yr enrolled in the Aerobics Center Longitudinal Study. The primary outcome measure, the MetS, was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Upper and lower body muscle strength was treated as a composite measure of one-repetition maximum tests on bench and leg press and scaled to body weight. Low muscle strength was defined as the lowest age-specific 20th percentile, whereas high muscle strength was defined as composite muscle strength above the 20th percentile. In men aged <50 yr, the odds of MetS were 2.20-fold (95% confidence interval = 1.89-2.54) higher in those with low muscle strength, independent of age, smoking, and alcohol intake. The strength of this association was similar for men age ≥50 yr (odds ratio = 2.11, 95% confidence interval = 1.62-2.74). In men age < 50 yr, the composite strength threshold associated with MetS was 2.57 kg·kg body weight, whereas in men age ≥ 50 yr the threshold was 2.35 kg·kg body weight. This study is the first to identify a threshold of muscle strength associated with an increased likelihood of MetS in men. Measures of muscle strength may help identify men at risk of chronic disease.
A free-electron laser in a uniform magnetic field
NASA Technical Reports Server (NTRS)
Ride, S. K.; Colson, W. B.
1979-01-01
The study shows that a free-electron laser can operate in a uniform, longitudinal magnetic field. The fully relativistic Lorentz force equations are examined and solved order by order in a radiation field strength to obtain analytic expressions for the electron trajectory and energy as functions of initial electron position within a wavelength of light. Analytic expressions for the longitudinal and transverse bunching and for laser gain are found. The bunching of this laser process is compared to the bunching processes involved in (1) a Stanford free-electron laser and (2) a cyclotron maser. The results received can be useful in exploring light amplification in astrophysical magnetic fields, the magnetosphere, and in laboratory devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saprykin, E G; Sorokin, V A; Shalagin, A M
Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applicationsmore » and other topics in quantum electronics)« less
Why is Cancer More Depressing for Men than Women among Older White Adults?
Pudrovska, Tetyana
2010-12-01
Using data from two waves of the Wisconsin Longitudinal Study ( N = 8,054), I examine gender differences in psychological adjustment to cancer among older White adults. Results from different types of longitudinal models reveal that cancer has more adverse psychological implications for men than women. Men's higher levels of depression are reduced after adjustment for adherence to masculinity ideals of strength, independence, and invincibility. Cancer poses a threat to the masculine identity because it entails lack of control over one's body and other consequences incompatible with traditional masculinity. This study contributes to sociological knowledge of the ways in which gender shapes psychological resilience and vulnerability to cancer through meanings people attach to gender roles.
Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending
NASA Astrophysics Data System (ADS)
Filatov, V. B.
2017-11-01
The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.
Optical sensor of magnetic fields
Butler, M.A.; Martin, S.J.
1986-03-25
An optical magnetic field strength sensor for measuring the field strength of a magnetic field comprising a dilute magnetic semi-conductor probe having first and second ends, longitudinally positioned in the magnetic field for providing Faraday polarization rotation of light passing therethrough relative to the strength of the magnetic field. Light provided by a remote light source is propagated through an optical fiber coupler and a single optical fiber strand between the probe and the light source for providing a light path therebetween. A polarizer and an apparatus for rotating the polarization of the light is provided in the light path and a reflector is carried by the second end of the probe for reflecting the light back through the probe and thence through the polarizer to the optical coupler. A photo detector apparatus is operably connected to the optical coupler for detecting and measuring the intensity of the reflected light and comparing same to the light source intensity whereby the magnetic field strength may be calculated.
Influence of Exercise and Training on Critical Stages of Bone Growth and Development.
Klentrou, Panagiota
2016-05-01
Although osteoporosis is considered a geriatric disease, factors affecting bone strength are most influential during child growth and development. This article reviews what is known and still unclear in terms of bone growth, development and adaptation relative to physical activity before and during puberty. Bone is responsive to certain exercise protocols early in puberty and less so in postpubertal years, where bone strength, rather than bone mass, being the outcome of interest. Mechanical loading and high impact exercise promote bone strength. Intense training before and during puberty, however, may negatively affect bone development. Future research should focus on increasing our mechanistic understanding of the manner by which diverse physical stressors alter the integrity of bone. Longitudinal studies that examine the extent to which muscle and bone are comodulated by growth in children are also recommended.
Advanced Main Combustion Chamber structural jacket strength analysis
NASA Astrophysics Data System (ADS)
Johnston, L. M.; Perkins, L. A.; Denniston, C. L.; Price, J. M.
1993-04-01
The structural analysis of the Advanced Main Combustion Chamber (AMCC) is presented. The AMCC is an advanced fabrication concept of the Space Shuttle Main Engine main combustion chamber (MCC). Reduced cost and fabrication time of up to 75 percent were the goals of the AMCC with cast jacket with vacuum plasma sprayed or platelet liner. Since the cast material for the AMCC is much weaker than the wrought material for the MCC, the AMCC is heavier and strength margins much lower in some areas. Proven hand solutions were used to size the manifolds cutout tee areas for combined pressure and applied loads. Detailed finite element strength analyses were used to size the manifolds, longitudinal ribs, and jacket for combined pressure and applied local loads. The design of the gimbal actuator strut attachment lugs were determined by finite element analyses and hand solutions.
A longitudinal model for functional connectivity networks using resting-state fMRI.
Hart, Brian; Cribben, Ivor; Fiecas, Mark
2018-06-04
Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. However, the current fMRI literature lacks a general framework for analyzing functional connectivity (FC) networks in fMRI data obtained from a longitudinal study. In this work, we build a novel longitudinal FC model using a variance components approach. First, for all subjects' visits, we account for the autocorrelation inherent in the fMRI time series data using a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject variance component shared across the population, 2) the baseline FC strength, and 3) the FC's longitudinal trend. Our novel method for longitudinal FC networks seeks to account for the within-subject dependence across multiple visits, the variability due to the subjects being sampled from a population, and the autocorrelation present in fMRI time series data, while restricting the number of parameters in order to make the method computationally feasible and stable. We develop a permutation testing procedure to draw valid inference on group differences in the baseline FC network and change in FC over longitudinal time between a set of patients and a comparable set of controls. To examine performance, we run a series of simulations and apply the model to longitudinal fMRI data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Overall, we found no difference in the global FC network between Alzheimer's disease patients and healthy controls, but did find differing local aging patterns in the FC between the left hippocampus and the posterior cingulate cortex. Copyright © 2018 Elsevier Inc. All rights reserved.
Hall, William; Smith, Neale; Mitton, Craig; Urquhart, Bonnie; Bryan, Stirling
2018-01-01
Background: In order to meet the challenges presented by increasing demand and scarcity of resources, healthcare organizations are faced with difficult decisions related to resource allocation. Tools to facilitate evaluation and improvement of these processes could enable greater transparency and more optimal distribution of resources. Methods: The Resource Allocation Performance Assessment Tool (RAPAT) was implemented in a healthcare organization in British Columbia, Canada. Recommendations for improvement were delivered, and a follow up evaluation exercise was conducted to assess the trajectory of the organization’s priority setting and resource allocation (PSRA) process 2 years post the original evaluation. Results: Implementation of RAPAT in the pilot organization identified strengths and weaknesses of the organization’s PSRA process at the time of the original evaluation. Strengths included the use of criteria and evidence, an ability to reallocate resources, and the involvement of frontline staff in the process. Weaknesses included training, communication, and lack of program budgeting. Although the follow up revealed a regression from a more formal PSRA process, a legacy of explicit resource allocation was reported to be providing ongoing benefit for the organization. Conclusion: While past studies have taken a cross-sectional approach, this paper introduces the first longitudinal evaluation of PSRA in a healthcare organization. By including the strengths, weaknesses, and evolution of one organization’s journey, the authors’ intend that this paper will assist other healthcare leaders in meeting the challenges of allocating scarce resources. PMID:29626400
NASA Astrophysics Data System (ADS)
Lee, Juhwa; Hwang, Jeongho; Bae, Dongho
2018-03-01
In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.
Fisher information of a single qubit interacts with a spin-qubit in the presence of a magnetic field
NASA Astrophysics Data System (ADS)
Metwally, N.
2018-06-01
In this contribution, quantum Fisher information is utilized to estimate the parameters of a central qubit interacting with a single-spin qubit. The effect of the longitudinal, transverse and the rotating strengths of the magnetic field on the estimation degree is discussed. It is shown that, in the resonance case, the number of peaks and consequently the size of the estimation regions increase as the rotating magnetic field strength increases. The precision estimation of the central qubit parameters depends on the initial state settings of the central and the spin-qubit, either encode classical or quantum information. It is displayed that, the upper bounds of the estimation degree are large if the two qubits encode classical information. In the non-resonance case, the estimation degree depends on which of the longitudinal/transverse strength is larger. The coupling constant between the central qubit and the spin-qubit has a different effect on the estimation degree of the weight and the phase parameters, where the possibility of estimating the weight parameter decreases as the coupling constant increases, while it increases for the phase parameter. For large number of spin-particles, namely, we have a spin-bath particles, the upper bounds of the Fisher information with respect to the weight parameter of the central qubit decreases as the number of the spin particle increases. As the interaction time increases, the upper bounds appear at different initial values of the weight parameter.
NASA Astrophysics Data System (ADS)
Lee, Juhwa; Hwang, Jeongho; Bae, Dongho
2018-07-01
In this paper, welding residual stress analysis and fatigue strength assessment were performed at elevated temperature for multi-pass dissimilar material weld between Alloy 617 and P92 steel, which are used in thermal power plant. Multi-pass welding between Alloy 617 and P92 steel was performed under optimized welding condition determined from repeated pre-test welding. In particular, for improving dissimilar material weld-ability, the buttering welding technique was applied on the P92 steel side before multi-pass welding. Welding residual stress distribution at the dissimilar material weld joint was numerically analyzed by using the finite element method, and compared with experimental results which were obtained by the hole-drilling method. Additionally, fatigue strength of dissimilar material weld joint was assessed at the room temperature (R.T), 300, 500, and 700 °C. In finite element analysis results, numerical peak values; longitudinal (410 MPa), transverse (345 MPa) were higher than those of experiments; longitudinal (298 MPa), transverse (245 MPa). There are quantitatively big differences between numerical and experimental results, due to some assumption about the thermal conductivity, specific heat, effects of enforced convection of the molten pool, dilution, and volume change during phase transformation caused by actual shield gas. The low fatigue limit at R.T, 300 °C, 500 °C and 700 °C was assessed to be 368, 276, 173 and 137 MPa respectively.
Positive psychology in rehabilitation medicine: a brief report.
Bertisch, Hilary; Rath, Joseph; Long, Coralynn; Ashman, Teresa; Rashid, Tayyab
2014-01-01
The field of positive psychology has grown exponentially within the last decade. To date, however, there have been few empirical initiatives to clarify the constructs within positive psychology as they relate to rehabilitation medicine. Character strengths, and in particular resilience, following neurological trauma are clinically observable within rehabilitation settings, and greater knowledge of the way in which these factors relate to treatment variables may allow for enhanced treatment conceptualization and planning. The goal of this study was to explore the relationships between positive psychology constructs (character strengths, resilience, and positive mood) and rehabilitation-related variables (perceptions of functional ability post-injury and beliefs about treatment) within a baseline data set, a six-month follow-up data set, and longitudinally across time points. Pearson correlations and supplementary multiple regression analyses were conducted within and across these time points from a starting sample of thirty-nine individuals with acquired brain injury (ABI) in an outpatient rehabilitation program. Positive psychology constructs were related to rehabilitation-related variables within the baseline data set, within the follow-up data set, and longitudinally between baseline positive psychology variables and follow-up rehabilitation-related data. These preliminary findings support relationships between character strengths, resilience, and positive mood states with perceptions of functional ability and expectations of treatment, respectively, which are primary factors in treatment success and quality of life outcomes in rehabilitation medicine settings. The results suggest the need for more research in this area, with an ultimate goal of incorporating positive psychology constructs into rehabilitation conceptualization and treatment planning.
2014-01-01
Background Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. Methods One-hundred and seventy-two children (age: 9–12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Results Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Conclusions Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas. PMID:24886425
Golle, Kathleen; Granacher, Urs; Hoffmann, Martin; Wick, Ditmar; Muehlbauer, Thomas
2014-05-23
Cross-sectional studies detected associations between physical fitness, living area, and sports participation in children. Yet, their scientific value is limited because the identification of cause-and-effect relationships is not possible. In a longitudinal approach, we examined the effects of living area and sports club participation on physical fitness development in primary school children from classes 3 to 6. One-hundred and seventy-two children (age: 9-12 years; sex: 69 girls, 103 boys) were tested for their physical fitness (i.e., endurance [9-min run], speed [50-m sprint], lower- [triple hop] and upper-extremity muscle strength [1-kg ball push], flexibility [stand-and-reach], and coordination [star coordination run]). Living area (i.e., urban or rural) and sports club participation were assessed using parent questionnaire. Over the 4 year study period, urban compared to rural children showed significantly better performance development for upper- (p = 0.009, ES = 0.16) and lower-extremity strength (p < 0.001, ES = 0.22). Further, significantly better performance development were found for endurance (p = 0.08, ES = 0.19) and lower-extremity strength (p = 0.024, ES = 0.23) for children continuously participating in sports clubs compared to their non-participating peers. Our findings suggest that sport club programs with appealing arrangements appear to represent a good means to promote physical fitness in children living in rural areas.
Sayre, Cindy A; Belza, Basia; Shannon Dorcy, Kathleen; Phelan, Elizabeth; Whitney, JoAnne D
2017-09-01
To determine the feasibility of measuring hand grip strength (HGS) daily in a population of recipients of bone marrow transplantation (BMT), to describe changes in strength measured by HGS, and to describe relationships between laboratory values (hematocrit, hemoglobin, and absolute neutrophil count) and HGS. . Prospective, longitudinal, repeated measures, within subject. . Inpatient units at the University of Washington Medical Center in Seattle. . 33 patients admitted in preparation for BMT or for complications from BMT. . HGS measured on admission and daily. . HGS, absolute neutrophil count, hemoglobin, and hematocrit. . Participants found HGS testing to be relatively easy. Average time to complete testing was 7.2 minutes (SD = 1.95). Nineteen experienced 20% or greater decline in HGS during hospitalization, with nine experiencing decline during the conditioning phase. Age, gender, and hemoglobin correlated with HGS. Strength loss was more likely in those undergoing allogeneic compared to autologous BMT. . A majority of patients experienced strength decline during BMT, with a subgroup declining during conditioning. A positive relationship existed between HGS and hemoglobin and hematocrit in participants admitted for conditioning for BMT. . Weakness increases risk for falls. Patients may experience as much as 50% strength loss during the course of hospitalization for BMT. Strength loss occurs in the conditioning phase for some patients.
Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders
Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.
2009-01-01
Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353
A biomechanical comparison of three sternotomy closure techniques.
Cohen, David J; Griffin, Lanny V
2002-02-01
A biomechanical study of three sternotomy closure techniques (figure-of-eight stainless-steel wires, Pectofix Dynamic Sternal Fixation [DSF] stainless-steel plates, and figure-of-eight stainless-steel cables) was conducted to compare strength and stiffness variables in three clinically relevant loading modes (anterior-posterior shear, longitudinal shear, and lateral distraction). All tests were conducted on polyurethane foam sternal models that simulate the properties of cancellous bone. Each model was divided longitudinally and reconstructed using one of the sternotomy closure repair techniques. Tests were performed using a materials testing system that applies a continuously increasing amount of force in one direction to the model until it catastrophically breaks. A total of six trials of each fixation type in each of three test groups were prepared and tested, for a total of 54 tests. Strength and stiffness variables as well as a post-yield analysis of failure were evaluated. Sternums repaired using the DSF plate system are a more rigid construct than sternums repaired using the stainless-steel wires or cables in the distraction and transverse shear modes and they are not significantly different from sternums repaired with wires or cables in the longitudinal shear mode. The DSF plate system offers a 25% improvement in resistance to failure (yield) compared to wires when a transverse shear force is applied to the model. The cable system had a higher resistance to failure than the wires in all modes although the differences were not statistically significant. Additionally, the DSF plate system provides substantial reduction of the implant's cutting into the sternal model under loading as evidenced by the post-yield displacement when compared with either cables or wires for the distraction and longitudinal shear modes. For the transverse shear mode, the cables or wires would completely fail at the load for which cutting begins for the DSF. Both the DSF plate system and the stainless-steel cable system offer important advantages over figure-of-eight wire for sternal closure.
Sources of Life Strengths as Predictors of Late-Life Mortality and Survivorship
ERIC Educational Resources Information Center
Fry, Prem S.; Debats, Dominique L.
2006-01-01
The aim of the research was to determine within a single study the extent to which demographic factors, self-rated-health and psychosocial factors present the strongest risks or benefits to older adults' mortality in the course of a 5.9-year longitudinal follow-up. The initial sample of 732 individuals was drawn randomly from the registry listings…
Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion
ERIC Educational Resources Information Center
Lee, Scott
2015-01-01
In our first article on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find…
Stress-wave velocity of wood-based panels: effect of moisture, product type, and material direction
Guangping Han; Qinglin Wu; Xiping Wang
2006-01-01
The effect of moisture on longitudinal stress-wave velocity (SWV), bending stiffness. and bending strength of commercial oriented strandboard, plywood. particleboard. and southern pine lumber was evaluated. It was shown that the stress-wave verocity decreased in general with increases in panel moisture content (MC). At a given MC level. SWV varied with panel type and...
Work Redesign and the Job Characteristics Model: A Longitudinal Field Study.
1982-01-01
prior to and following work redesign. Their general job satisfaction , internal work motivation, job performance , conduct, and absenteeism, as well as...increase employee job satisfaction and internal work motivation and improve conduct and job performance , (2) the diagnostic phase is the most essential part...Strength on the Job Performance -Job Satisfaction Relationship . ....... . 117 Summary ....... .................. 119 4. RESEARCH METHODS
The Protective Role of Group Identity: Sectarian Antisocial Behavior and Adolescent Emotion Problems
ERIC Educational Resources Information Center
Merrilees, Christine E.; Taylor, Laura K.; Goeke-Morey, Marcie C.; Shirlow, Peter; Cummings, E. Mark; Cairns, Ed
2014-01-01
The protective role of strength of group identity was examined for youth in a context of protracted political conflict. Participants included 814 adolescents (M[subscript age] = 13.61, SD = 1.99 at Time 1) participating in a longitudinal study in Belfast, Northern Ireland. Utilizing hierarchical linear modeling, the results show that the effect of…
Predictors of Susceptibility to Peer Influence regarding Substance Use in Adolescence
ERIC Educational Resources Information Center
Allen, Joseph P.; Chango, Joanna; Szwedo, David; Schad, Megan; Marston, Emily
2012-01-01
The extent to which peer influences on substance use in adolescence systematically vary in strength based on qualities of the adolescent and his or her close friend was assessed in a study of 157 adolescents (age: M = 13.35, SD = 0.64), their close friends, and their parents assessed longitudinally with a combination of observational, analogue,…
Arnautovska, Urska; Fleig, Lena; O'Callaghan, Frances; Hamilton, Kyra
2017-02-01
To assess the effects of conscious and non-conscious processes for prediction of older adults' physical activity (PA), we tested a dual-process model that integrated motivational (behavioural intention) and volitional (action planning and coping planning) processes with non-conscious, automatic processes (habit). Participants (N = 215) comprised community-dwelling older adults (M = 73.8 years). A longitudinal design was adopted to investigate direct and indirect effects of intentions, habit strength (Time 1), and action planning and coping planning (Time 2) on PA behaviour (Time 3). Structural equation modelling was used to evaluate the model. The model provided a good fit to the data, accounting for 44% of the variance in PA behaviour at Time 3. PA was predicted by intentions, action planning, and habit strength, with action planning mediating the intention-behaviour relationship. An effect of sex was also found where males used fewer planning strategies and engaged in more PA than females. By investigating an integration of conscious and non-conscious processes, this study provides a novel understanding of older adults' PA. Interventions aiming to promote PA behaviour of older adults should target the combination of psychological processes.
Adatoms in graphene nanoribbons: spintronic properties and the quantum spin Hall phase
NASA Astrophysics Data System (ADS)
Ganguly, Sudin; Basu, Saurabh
2017-11-01
We study the charge and spin transport in a two terminal graphene nanoribbon (GNR) decorated with random distribution of Gold (Au) adatoms using a Kane-Mele model. The presence of the quantum spin Hall (QSH) phase is found to crucially depend on the strength of the intrinsic spin-orbit term, while the plateau in the longitudinal conductance at a 2e^2/h value is not the smoking gun for the QSH phase. Thus the Au adatoms which manage to induce only a small intrinsic spin-orbit coupling cannot guarantee a QSH phase, albeit yielding a 2e^2/h plateau in the longitudinal conductance around the zero of the Fermi energy. If other adatoms can induce larger spin-orbit strengths (we call them hypothetical adatoms), they would ensure both the plateau and the QSH phase as is evident from the presence of the conducting edge states. Motivated by these results, the spintronic applications are explored via computing the spin polarized conductance for both Au and hypothetical adatoms. The y-component of the spin polarized conductance renders the dominant contribution owing to the finite width of the GNR in the y-direction and is found to possess strikingly similar features with that of the longitudinal conductance. The other two components, namely x and z are small but finite and hence have relevance in spintronic applications. Moreover, via computing the local current distribution, we show the clear emergence of edge states in the case of hypothetical adatoms, which are conspicuously absent for Au decorated GNRs.
Three-dimensional envelope instability in periodic focusing channels
NASA Astrophysics Data System (ADS)
Qiang, Ji
2018-03-01
The space-charge driven envelope instability can be of great danger in high intensity accelerators and was studied using a two-dimensional (2D) envelope model and three-dimensional (3D) macroparticle simulations before. In this paper, we study the instability for a bunched beam using a three-dimensional envelope model in a periodic solenoid and radio-frequency (rf) focusing channel and a periodic quadrupole and rf focusing channel. This study shows that when the transverse zero current phase advance is below 90 ° , the beam envelope can still become unstable if the longitudinal zero current phase advance is beyond 90 ° . For the transverse zero current phase advance beyond 90 ° , the instability stopband width becomes larger with the increase of the longitudinal focusing strength and even shows different structure from the 2D case when the longitudinal zero current phase advance is beyond 90 ° . Breaking the symmetry of two longitudinal focusing rf cavities and the symmetry between the horizontal focusing and the vertical focusing in the transverse plane in the periodic quadrupole and rf channel makes the instability stopband broader. This suggests that a more symmetric accelerator lattice design might help reduce the range of the envelope instability in parameter space.
Longitudinal trajectories of mental health in Australian children aged 4-5 to 14-15 years.
Christensen, Daniel; Fahey, Michael T; Giallo, Rebecca; Hancock, Kirsten J
2017-01-01
Mental health can affect young people's sense of wellbeing and life satisfaction, their ability to participate in employment and education, and their onward opportunities in life. This paper offers a rare opportunity to longitudinally examine mental health in a population-representative study of children aged 4-5 years to 14-15 years. Using data from the Longitudinal Study of Australian Children (LSAC), this study examined maternally-reported child mental health over a 10 year period, in order to understand their initial mental health status early in life and its change over time, as measured by the Strengths and Difficulties Questionnaire. Longitudinal models were fitted from ages 4-5 to 14-15 years. Results showed that child sex, maternal mental health, socio-economic status (family income, maternal education, neighbourhood disadvantage), maternal hostility, and child temperament (persistence, sociability, reactivity) are all independent contributors to child mental health at age 4. These effects largely persist over time, with the effects of maternal mental health increasing slightly over time. Persistence of these effects suggests the need for early intervention and supports. The independent contribution of these factors to child mental health suggests that multi-faceted approaches to child and maternal mental health are needed.
The relation between pathological worrying and fatigue in a working population.
Andrea, H; Beurskens, A J H M; Kant, Ij; Davey, G C L; Field, A P; van Schayck, C P
2004-10-01
This study aimed to explore cross-sectional and longitudinal associations between pathological worry and fatigue in a working population. In employees with very low or very high fatigue levels, psychometrics of the Penn State Worry Questionnaire (PSWQ; measuring pathological worry) and the Checklist Individual Strength (CIS; measuring fatigue) were examined and their cross-sectional and longitudinal associations were explored. Pathological worry and fatigue can be measured as different constructs. However, pathological worry and fatigue were also associated on a cross-sectional level. Pathological worry predicted fatigue level 10 months later, but this association disappeared after adjustment for the cross-sectional association between pathological worry and fatigue. Although they can be measured as different constructs, pathological worry and fatigue seem to be associated. When studying longitudinal relations between pathological worry and fatigue, their cross-sectional association should be taken into account. Pathological worry might not be a risk factor for fatigue per se, but might act more like a mediating factor.
Two ply tubular scaffolds comprised of proteins/poliglecaprone/polycaprolactone fibers.
Zhang, Xing; Thomas, Vinoy; Vohra, Yogesh K
2010-02-01
Electrospun bi-layer tubular hybrid scaffolds composed of poliglecaprone (PGC), polycaprolactone (PCL), elastin (E), and gelatin (G) were prepared and thereafter crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC). Scanning electron microscopic (SEM) images revealed a highly porous micro-structure comprising randomly distributed non-woven fibers with the majority of fibers in submicron diameters. The EDC-crosslinking yielded an average crosslinking degree of 40%. Uni-axial tensile test of hydrated scaffolds in both longitudinal and circumferential directions revealed tensile properties, comparable to those of native arteries. The graft (PGC:PCL = 1:3) did not demonstrate significant difference before and after EDC-crosslinking in tensile strength or % strain in either longitudinal or circumferential directions. However, crosslinking increased the Young's modulus of the graft along the longitudinal direction (from 5.84 to 8.67 MPa). On the contrary, the graft (3:1) demonstrated a significant decrease in maximum strain in both directions. Cyto-assay using human umbilical vein endothelial cells (HUVECs) showed excellent cell viability.
NASA Astrophysics Data System (ADS)
Qin, Yanlin; Qiu, Xueqing; Zhu, J. Y.
2016-10-01
Here we used dilute oxalic acid to pretreat a kraft bleached Eucalyptus pulp (BEP) fibers to facilitate mechanical fibrillation in producing cellulose nanofibrils using disk milling with substantial mechanical energy savings. We successfully applied a reaction kinetics based combined hydrolysis factor (CHFX) as a severity factor to quantitatively control xylan dissolution and BEP fibril deploymerization. More importantly, we were able to accurately predict the degree of polymerization (DP) of disk-milled fibrils using CHFX and milling time or milling energy consumption. Experimentally determined ratio of fibril DP and number mean fibril height (diameter d), DP/d, an aspect ratio measurer, were independent of the processing conditions. Therefore, we hypothesize that cellulose have a longitudinal hierarchical structure as in the lateral direction. Acid hydrolysis and milling did not substantially cut the “natural” chain length of cellulose fibrils. This cellulose longitudinal hierarchical model provides support for using weak acid hydrolysis in the production of cellulose nanofibrils with substantially reduced energy input without negatively affecting fibril mechanical strength.
Christ, Oliver; Hewstone, Miles; Tausch, Nicole; Wagner, Ulrich; Voci, Alberto; Hughes, Joanne; Cairns, Ed
2010-12-01
Cross-group friendships (the most effective form of direct contact) and extended contact (i.e., knowing ingroup members who have outgroup friends) constitute two of the most important means of improving outgroup attitudes. Using cross-sectional and longitudinal samples from different intergroup contexts, this research demonstrates that extended contact is most effective when individuals live in segregated neighborhoods having only few, or no, direct friendships with outgroup members. Moreover, by including measures of attitudes and behavioral intentions the authors showed the broader impact of these forms of contact, and, by assessing attitude certainty as one dimension of attitude strength, they tested whether extended contact can lead not only to more positive but also to stronger outgroup orientations. Cross-sectional data showed that direct contact was more strongly related to attitude certainty than was extended contact, but longitudinal data showed both forms of contact affected attitude certainty in the long run.
Alloy and structural optimization of a directionally solidified lamellar eutectic alloy
NASA Technical Reports Server (NTRS)
Sheffler, K. D.
1976-01-01
Mechanical property characterization tests of a directionally solidified Ni-20 percent Cb-2.5 percent Al-6 percent Cr cellular eutectic turbine blade alloy demonstrated excellent long time creep stability and indicated intermediate temperature transverse tensile ductility and shear strength to be somewhat low for turbine blade applications. Alloy and structural optimization significantly improves these off-axis properties with no loss of longitudinal creep strength or stability. The optimized alloy-structure combination is a carbon modified Ni-20.1 percent Cb-2.5 percent Al-6.0 percent Cr-0.06 percent C composition processed under conditions producing plane front solidification and a fully-lamellar microstructure. With current processing technology, this alloy exhibits a creep-rupture advantage of 39 C over the best available nickel base superalloy, directionally solidified MAR M200+ Hf. While improved by about 20 percent, shear strength of the optimized alloy remains well below typical superalloy values.
A study on the strength of an armour-grade aluminum under high strain-rate loading
NASA Astrophysics Data System (ADS)
Appleby-Thomas, G. J.; Hazell, P. J.
2010-06-01
The aluminum alloy 5083 in tempers such as H32 and H131 is an established light-weight armour material. While its dynamic response under high strain-rates has been investigated elsewhere, little account of the effect of material orientation has been made. In addition, little information on its strength under such loadings is available in the literature. Here, both the longitudinal and lateral components of stress have been measured using embedded manganin stress gauges during plate-impact experiments on samples with the rolling direction aligned both orthogonal and parallel to the impact axis. The Hugoniot elastic limit, spall, and shear strengths were investigated for incident pressures in the range 1-8 GPa, providing an insight into the response of this alloy under shock loading. Further, the time dependence of lateral stress behind the shock front was investigated to give an indication of material response.
Lätsch, Alexander
2018-04-01
More and more students report high level of perceived stress during childhood and adolescence, which is associated with socioemotional and behavioural strengths and difficulties. This study aims-based on the cognitive vulnerability-transactional stress theory-to examine perceived stress in early adolescence as a potential moderator in the association between depressive symptoms and socioemotional and behavioural strengths and difficulties from early to middle adolescence. Results of latent moderated structural equations with questionnaire data from a longitudinal study with 1,088 German students (Time 1: M age = 13.70, SD = 0.53; Time 2: N = 845, M age = 15.32, SD = 0.49) indicate that perceived stress functions as a moderator in the above-mentioned association and dominates the interaction if perceived strongly. Copyright © 2017 John Wiley & Sons, Ltd.
Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk
NASA Astrophysics Data System (ADS)
Oukerroum, A.; El-Yadri, M.; El Aouami, A.; Feddi, E.; Dujardin, F.; Duque, C. A.; Sadoqi, M.; Long, G.
2018-01-01
In this paper, we report a study of the effect of a lateral electric field on a quantum-confined exciton in a thin PbS quantum disk. Our approach was performed in the framework of the effective mass theory and adiabatic approximation. The ground state energy and the stark shift were determined by using a variational method with an adequate trial wavefunction, by investigating a 2D oscillator strength under simultaneous consideration of the geometrical confinement and the electric field strength. Our results showed a strong dependence of the exciton binding and the Stark shift on the disk dimensions in both axial and longitudinal directions. On the other hand, our results also showed that the Stark shift’s dependence on the electric field is not purely quadratic but the linear contribution is also important and cannot be neglected, especially when the confinement gets weaker.
Fracture resistance and fatigue crack growth characteristics of two Al-Cu-Mg-Zr alloys
NASA Technical Reports Server (NTRS)
Sarkar, Bhaskar; Lisagor, W. B.
1992-01-01
The dependence of strength, fracture resistance, and fatigue crack growth rate on the aging conditions of two alloy compositions based on Al-3.7Cu-1.85Mg-0.2Mn is investigated. Mechanical properties were evaluated in two heat treatment conditions and in two orientations (longitudinal and transverse). Compact tension specimens were used to determine fatigue crack growth characteristics and fracture resistance. The aging response was monitored on coupons using hardness measurements determined with a standard Rockwell hardness tester. Fracture resistance is found to increase with increasing yield strength during artificial aging of age-hardenable 2124-Zr alloys processed by powder metallurgy techniques. Fatigue crack growth rate increases with increasing strength. It is argued that these changes are related to deformation modes of the alloys; a homogeneous deformation mode tends to increase fracture resistance and to decrease the resistance to the fatigue crack propagation rate.
Statistical aspects of the failure of organic-fiber-reinforced plastics
NASA Astrophysics Data System (ADS)
Bazhenov, S. L.; Kuperman, A. M.; Puchkov, L. V.; Zelenskii, É. S.; Berlin, Al. Al.; Kharchenko, E. F.; Kul'kov, A. A.
1985-11-01
Dispersion of the strength of filaments and of the Weibull coefficient β leads to a drop in strength of a strand compared with the strength of the components when the adhesion by gluing together does not amount to 2-5%. The drop in strength is determined by the dispersion of strength which depends on the length of the tested specimens. Gluing together of the fibers in filaments changes the nature of the load diagrams σ-ɛ of a filament when its length exceeds δ0. A consequence is that the mechanism of rupture of the strand changes, and this leads to an additional drop of its strength. When specimens are 500 mm long, the drop in strength of the strand compared with the mean strength of the filaments amounts to 10%. Because of the dispersion of the Weibull coefficient β, the strength of filaments does not correspond exactly to the strength of the microplastic obtained from these filaments. When there is dispersion of the strength of the filaments, failure of the plastic proceeds by failure of the microplastics as a whole. Gluing together of fibers has a double effect on the strength of the material: increased degree of gluing together of the fibers reduces the "noneffective length" from δ0 to 0.4-0.5 mm, and this leads to an increase of approximately 50% of the strength of the microplastic; increased gluing together leads to a change in the mechanism of failure of the strand and of the organic-fiber-plastic made from it if there is dispersion of the strength of the component filaments, and this reduces the strength of the material in accordance with (3) (by 12-14% in our case). The longitudinal instability of the properties of the filament leads to an additional drop in strength of the material by 4.5%.
Geologic control of knickpoints in eastern part of Korea
NASA Astrophysics Data System (ADS)
Kim, Jong Yeon
2010-05-01
A knickpoint (KP) is a steepened reach in the fluvial longitudinal profile, often coinciding with the sharply defined descents of waterfalls or cascades that separate graded reaches. Despite the overall simplicity of this concept, there is confusion in definitions of a KP due to differences in the scales of research. For basin-scale research, KPs are generally steepened reaches sometimes described as ‘knickzones'(e.g., Zaprowski et al., 2001; Wolkowinski and Granger, 2004), whereas at the reach scale, KPs coincide with waterfalls and bedrock steps, regardless of their spatial dimensions. Here, the term is used in former, basin-scale sense. Bedrock KPs may originate from relative base-level fall (e.g., sea-level fall [Mosley, 1984; Yodis and Kesel, 1993] and/or surface uplift [Seeber and Gornitz, 1983; Humphrey and Konrad, 2000], lithological and structural controls (Pohn, 1983; Miller, 1991; Alexandrowicz, 1994), and changes in tributary inputs and discharge and sediment supply (Penck, 1925; von Engeln, 1940; Hasbargen and Paola, 2000). Recent work has also proposed that bedrock river KPs can initiated with base-level fall and migrate headward follow the tributaries (Crosby and Whipple, 2006). The origins of KPs can be different by the geomorphic setting of the drainage basin area. Especially the role of lithologic boundaries and faulting can be regarded as primary cause of KP formation. To find the role of lithologic control of KP distribution in Korea, longitudinal profiles of 12 streams, higher than 4th order in Horton-Strahler system, are analyzed. Longitudinal profiles are extracted from 1:25,000 Map Series (Korea National Geographic Institute) and the lithologic boundaries and fault lines are drawn based on the information from KIGAM's 1:50,000 Geological map series. Most of KPs are found near of lithologic boundaries or fault lines, however there are some KPs found upstream of large tributary input. However, physical strength of each lithologies have not been studied in the field. So we visited some KPs and measured the rock strength using concrete test hammer (Schmidt hammer), where bedrock is exposed to the surfaces. Compressive strength(kg per sq. cm) of the rocks are measured and channel gradient changes are plotted against the strength changes. To find the role of sedimentary input, drainage basin sizes of tributary are compared. The study area also experienced tectonic uplift last 47Ma. Overall uplift rate of the study area is about 40m/Ma but three different period of different uplift rate were recognized. 47~37Ma, uplift was very slow (20m/Ma) and accelerated to 170m/Ma from 37~35Ma and decreased to 40m/Ma ever since. This change in uplift rate can affects the formation and headward retreat of KP along the channel. Using physically based abrasion model, effect of uplift rate change to longitudinal profile is investigated.
NASA Astrophysics Data System (ADS)
Ding, Jow; Alexander, C. Scott; Asay, James
2015-06-01
MAPS (Magnetically Applied Pressure Shear) is a new technique that has the potential to study material strength under mega-bar pressures. By applying a mixed-mode pressure-shear loading and measuring the resultant material responses, the technique provides explicit and direct information on material strength under high pressure. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. In this work, the mechanical behavior of molybdenum under MAPS loading was studied. To understand the experimental data, a viscoplasticity model with tension-compression asymmetry was also developed. Through a combination of experimental characterization, model development, and numerical simulation, many unique insights were gained on the inelastic behavior of molybdenum such as the effects of strength on the interplay between longitudinal and shear stresses, potential interaction between the magnetic field and molybdenum strength, and the possible tension-compression asymmetry of the inelastic material response. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Longitudinal Gradient Dipole Magnet Prototype for APS at ANL
Kashikhin, V. S.; Borland, M.; Chlachidze, G.; ...
2016-01-26
We planned an upgrade of the Advanced Photon Source at Argonne National Laboratory (ANL). The main goal of the upgrade is to improve the storage ring performance based on more advanced optics. One of the key magnet system elements is bending dipole magnets having a field strength change along the electron beam path. Moreover, a prototype of one such longitudinal gradient dipole magnet has been designed, built, and measured in a collaborative effort of ANL and Fermilab. Our paper discusses various magnetic design options, the selected magnet design, and the fabrication technology. The prototype magnet has been measured by rotationalmore » coils, a stretched wire, and a Hall probe. Measurement results are discussed and compared with simulations.« less
Intrinsic optical conductivity of a {{\\rm{C}}}_{2v} symmetric topological insulator
NASA Astrophysics Data System (ADS)
Sengupta, Parijat; Matsubara, Masahiko; Bellotti, Enrico; Shi, Junxia
2017-07-01
In this work we analytically investigate the longitudinal optical conductivity of the {{{C}}}2v symmetric topological insulator. The conductivity expressions at T = 0 are derived using the Kubo formula and expressed as a function of the ratio of the Dresselhaus and Rashba parameters that characterize the low-energy Hamiltonian. We find that the longitudinal inter-band conductivity vanishes when Dresselhaus and Rashba parameters are equal in strength, also called the persistent spin helix state. The calculations are extended to obtain the frequency-dependent real and imaginary components of the optical conductivity for the topological Kondo insulator SmB6 which exhibits {{{C}}}2v symmetric and anisotropic Dirac cones hosting topological states at \\overline{X} point on the surface Brillouin zone.
Atay, Emrah; Başalan Iz, Fatma
2015-01-01
The aim of this study is the investigation of the effect of changes in muscle strength in gestational age upon fear of falling and quality of life. This longitudinal, descriptive study included a sample of 37 pregnant women who volunteered to participate. The research data were collected at 20 and 32 weeks of gestation. Data collection instruments included a newly developed questionnaire form, the Tinetti Falls Efficacy Scale, a visual analog scale, and the Turkish language version of the WHO Quality of Life Scale. Upper body flexibility was measured by the back scratch test, while muscle strength was measured by a handgrip dynamometer and balance by the unipedal stance test. It was found that, as pregnancy advanced, pregnant women had an increased fear of falling, as well as elevated systolic and diastolic blood pressure levels. Participants suffered significant impairments in their balance, handgrip strength, and quality of life within the physical, psychological, and environmental domains. As pregnancy advances, muscle strength decreases and the fear of falling experienced by pregnant women increases, which significantly impairs the quality of life in the domains of environment, physical, and mental health.
NASA Astrophysics Data System (ADS)
Kamiya, Mamoru
1988-02-01
The fundamental features of the optical activity induced in dye-DNA intercalation complexes are studied by application of the trap potential model which is useful to evaluate the induced rotational strength without reference to detailed geometrical information about the intercalation complexes. The specific effect of the potential depth upon the induced optical activity is explained in terms of the relative magnitudes of the wave-phase and helix-phase variations in the path of an electron moving on a restricted helical segment just like an exciton trapped around the dye intercalation site. The parallel and perpendicular components of the induced rotational strength well reflect basic properties of the helicity effects about the longitudinal and tangential axes of the DNA helical cylinder. The trap potential model is applied to optimize the potential parameters so as to reproduce the ionic strength effect upon the optical activity induced to proflavine-DNA intercalation complexes. From relationships between the optimized potential parameters and ionic strengths, it is inferred that increase in the ionic strength contributes to the optical activity induced by the nearest-neighbour interaction between intercalated proflavine and DNA base pairs.
NASA Astrophysics Data System (ADS)
Sinthaworn, S.; Puengpaiboon, U.; Warasetrattana, N.; Wanapaisarn, S.
2018-01-01
Endodontically treated teeth were simulated by finite element analysis in order to estimate ultimate tensile strength of dentin. Structures of the endodontically treated tooth cases are flared root canal, restored with different number of fiber posts {i.e. resin composite core without fiber post (group 1), fiber post No.3 with resin composite core (group 2) and fiber post No.3 accessory 2 fiber posts No.0 with resin composite core (group 3)}. Elastic modulus and Poisson’s ratio of materials were selected from literatures. The models were loaded by the average fracture resistances load of each groups (group 1: 361.80 N, group 2: 559.46 N, group 3: 468.48 N) at 135 degree angulation in respect to the longitudinal axis of the teeth. The stress analysis and experimental confirm that fracture zone is at dentin area. To estimate ultimate tensile strength of dentin, trial and error of ultimate tensile strength were tested to obtain factor of safety (FOS) equal to 1.00. The result reveals that ultimate tensile strength of dentin of group 1, 2, 3 are 38.89, 30.96, 37.19 MPa, respectively.
A cross-shear deformation for optimizing the strength and ductility of AZ31 magnesium alloys
Hamad, Kotiba; Ko, Young Gun
2016-01-01
Magnesium alloys have recently attracted great interest due their lightweight and high specific strength. However, because of their hexagonal close-packed structure, they have few active slip systems, resulting in poor ductility and high mechanical anisotropy at room temperature. In the present work, we used a cross-shear deformation imposed by a differential speed rolling (DSR) technique to improve the room temperature strength and ductility of AZ31 magnesium alloy sheets. To introduce the cross-shear deformation, the sheets were rotated 180° around their longitudinal axis between the adjacent passes of DSR. The sheets of the AZ31 alloy subjected to the cross-shear deformation showed a uniform fine microstructure (1.2 ± 0.1 μm) with weak basal textures. The fabricated sheets showed a simultaneous high ultimate tensile strength and elongation-to-failure, i.e., ~333 MPa and ~21%, respectively. These were explained based on the structural features evolved due to the cross-shear deformation by DSR. The high strength was attributed to the uniform fine microstructure, whereas the high ductility was explained based on the basal texture weakening. PMID:27406685
Muscular strength and incident hypertension in normotensive and prehypertensive men.
Maslow, Andréa L; Sui, Xuemei; Colabianchi, Natalie; Hussey, Jim; Blair, Steven N
2010-02-01
The protective effects of cardiorespiratory fitness (CRF) on hypertension (HTN) are well known; however, the association between muscular strength and incidence of HTN has yet to be examined. This study evaluated the strength-HTN association with and without accounting for CRF. Participants were 4147 men (age = 20-82 yr) in the Aerobics Center Longitudinal Study for whom an age-specific composite muscular strength score was computed from measures of a one-repetition maximal leg and a one-repetition maximal bench press. CRF was quantified by maximal treadmill exercise test time in minutes. Cox proportional hazards regression analysis was used to estimate hazard ratios (HR) and 95% confidence intervals of incident HTN events according to exposure categories. During a mean follow-up of 19 yr, there were 503 incident HTN cases. Multivariable-adjusted (excluding CRF) HR of HTN in normotensive men comparing middle- and high-strength thirds to the lowest third were not significant at 1.17 and 0.84, respectively. Multivariable-adjusted (excluding CRF) HR of HTN in baseline prehypertensive men comparing middle- and high-strength thirds to the lowest third were significant at 0.73 and 0.72 (P = 0.01 each), respectively. The association between muscular strength and incidence of HTN in baseline prehypertensive men was no longer significant after control for CRF (P = 0.26). The study indicated that middle and high levels of muscular strength were associated with a reduced risk of HTN in prehypertensive men only. However, this relationship was no longer significant after controlling for CRF.
Hirani, Vasant; Naganathan, Vasi; Blyth, Fiona; Le Couteur, David G; Seibel, Markus J; Waite, Louise M; Handelsman, David J; Hsu, Ben; Cumming, Robert G
2016-12-01
The objective of this study is to examine associations between Hb levels and sarcopenia, low muscle strength, functional measures, and activities of daily living (ADL) and instrumental ADL (IADL) disabilities in older Australian men. Men aged 70 years and older (2005-2007) from the Concord Health and Ageing in Men Project were assessed at baseline (n = 1,705), 2 years (n = 1,367), and 5 years (n = 958). The main outcome measurements were walking speed, muscle strength, ADL and IADL disabilities, and sarcopenia using the Foundation for the National Institutes of Health criteria (low appendicular lean mass adjusted for body mass index < 0.789 and poor grip strength < 26kg). Analysis was performed using Hb levels as a continuous measure, unadjusted and adjusted by age, income, body mass index, measures of health, estimated glomerular function, inflammatory markers, and medication use. Receiver operating characteristic curve analysis was performed to determine a threshold of Hb for each outcome. In cross-sectional and longitudinal analysis, for every 1g/dL increase in Hb, there was a significant reduction in risk of sarcopenia, slow walking speed, poor grip strength, inability to perform chair stands, and ADL and IADL disabilities in unadjusted, age-adjusted, and multivariate-adjusted analysis. The highest value of the Youden Index for Hb was 14.2g/dL for sarcopenia and grip strength, 14.5g/dL for walking speed, and 14.4g/dL for all other outcomes. Declines in Hb levels over time are associated with poor functional outcomes. The risks and benefits of interventions to increase Hb among older men warrant further investigation to differentiate whether this is an active contributor to age-related debility or a passive biomarker of it. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
[Influence of sterilization treatments on continuous carbon-fiber reinforced polyolefin composite].
Guan, Shi-bing; Hou, Chun-lin; Chen, Ai-min; Zhang, Wei; Wang, Ji-e
2007-08-21
To evaluate the influence of sterilization treatment on continuous carbon-fiber reinforced polyolefin composite (CFRP) so as to provide experimental reference for selection of sterilization method for CFRP. Seventy bars of CFRP were divided into 7 equal groups to undergo sterilization by autoclave, 2% glutaraldehyde soaking, 75% alcohol soaking, ethylene oxide sterilization, and Co-60 gamma ray irradiation of the dosages 11 kGy, 25 kGy, and 18 kGy respectively, and another 10 bars were used as blank controls. Then the bars underwent three-point bending test and longitudinal compression test so as to measure the biomechanical changes after sterilization treatment, including the maximum load, ultimate strength, and elastic modulus. Three-point bending test showed that the levels of maximum load of the all experimental groups were lower than that of the control group, however, only those of the 3 Co-60 irradiation groups were significantly lower than that of the control group and that Co-60 radiation lowered the level of maximum load dose-dependently; and that the levels of ultimate strength of all the all experimental groups were lower than that of the control group, however, only those of the 3 Co-60 groups were significantly lower than that of the control group and that the higher the dosage of Co-60 radiation the lower the level of ultimate strength, however, not dose-dependently. The elastic modulus of the Co-60 25 KGy group was significantly higher than that of the control group, and there was no significant difference in the level of ultimate strength among the other groups. Longitudinal compression test showed that the levels of maximum load and ultimate strength of the 3 Co-60 irradiation groups, autoclave group, and circular ethylene groups were significantly lower than that of the control group, and there was no significant difference in elastic modulus among different groups. During sterilized package of CFRP products produced in quantity autoclave sterilization and Co-60 gamma ray irradiation sterilization should be avoided. Ethylene oxide is proposed as the best sterilization method. If gamma ray irradiation is to be used further technology improvement is necessary.
Vos, Rimke C; Becher, Jules G; Voorman, Jeanine M; Gorter, Jan Willem; van Eck, Mirjam; van Meeteren, Jetty; Smits, Dirk-Wouter; Twisk, Jos W; Dallmeijer, Annet J
2016-08-01
To examine associations over longitudinal measurements between neuromusculoskeletal function and gross motor capacity in children and youth with cerebral palsy (CP). A prospective cohort study. Rehabilitation departments of university medical centers and rehabilitations centers. A sample (N=327) consisting of 148 children (aged 5-9y) and 179 youth (aged 11-20y) with CP, Gross Motor Function Classification System level I (n=180), level II (n=44), level III (n=36), level IV (n=34), and level V (n=33). Not applicable. Gross motor capacity was assessed with the Gross Motor Function Measure-66 over a period of 2 to 4 years in different age cohorts. Neuromusculoskeletal function included selective motor control (SMC), muscle strength, spasticity, and range of motion (ROM) of the lower extremities. Multilevel analyses showed that SMC was significantly associated with gross motor capacity in children and youth with CP, showing higher values and a more favorable course of gross motor capacity in those with better SMC. Strength was only associated with gross motor capacity in youth. Reduced ROM of hip (children) and knee extension (youth) and spasticity of the hip adductors (youth) were additionally-but more weakly-associated with lower values and a less favorable course of gross motor capacity. Results indicate that children and youth with more severely impaired SMC and youth with reduced muscle strength have a less favorable course of gross motor capacity, while spasticity and reduced ROM are less determinative. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Longitudinal effects of a collegiate strength and conditioning program in American football.
Stodden, David F; Galitski, Hayes M
2010-09-01
The purpose of this study was to examine the longitudinal effects of a strength and conditioning program on selected body composition and performance data over 4 consecutive years of training. Body mass, percent body fat, lean body mass, proagility (18.3 m shuttle), 36.6-m (40-yd) sprint, bench press, chin-ups, vertical jump, and power index data for 84 National Collegiate Athletic Association division IA collegiate football players were examined. In addition to examining data on all athletes, data were analyzed on specific groups categorized by position. Groups were categorized as (a) skill (wide receivers, defensive backs, and running backs), (b) big skill (linebackers, kickers, tight ends, quarterbacks, and specialists), and (c) line (offensive and defensive linemen). Data on each individual performance criteria were analyzed using pairwise t-tests to indicate changes from year to year. Results for all participants showed that the greatest number of significant improvements among test parameters occurred during the first year of training. Years 2-4 of training demonstrated inconsistent improvement among the test parameters. Bench press performance significantly improved throughout 4 years of training among all participants. Data analysis from specific position groups also revealed the greatest number of significant improvements occurred during the first year of training. Overall, the results of this study clearly demonstrate that the greatest rate of improvement in the selected performance parameters occurred during the initial year of the strength and conditioning program. This study provides valuable information for coaches to establish appropriate progression and program variation guidelines for athletes over consecutive years of training.
Action potential amplitude as a noninvasive indicator of motor unit-specific hypertrophy.
Pope, Zachary K; Hester, Garrett M; Benik, Franklin M; DeFreitas, Jason M
2016-05-01
Skeletal muscle fibers hypertrophy in response to strength training, with type II fibers generally demonstrating the greatest plasticity in regards to cross-sectional area (CSA). However, assessing fiber type-specific CSA in humans requires invasive muscle biopsies. With advancements in the decomposition of surface electromyographic (sEMG) signals recorded using multichannel electrode arrays, the firing properties of individual motor units (MUs) can now be detected noninvasively. Since action potential amplitude (APSIZE) has a documented relationship with muscle fiber size, as well as with its parent MU's recruitment threshold (RT) force, our purpose was to examine if MU APSIZE, as a function of its RT (i.e., the size principle), could potentially be used as a longitudinal indicator of MU-specific hypertrophy. By decomposing the sEMG signals from the vastus lateralis muscle of 10 subjects during maximal voluntary knee extensions, we noninvasively assessed the relationship between MU APSIZE and RT before and immediately after an 8-wk strength training intervention. In addition to significant increases in muscle size and strength (P < 0.02), our data show that training elicited an increase in MU APSIZE of high-threshold MUs. Additionally, a large portion of the variance (83.6%) in the change in each individual's relationship between MU APSIZE and RT was explained by training-induced changes in whole muscle CSA (obtained via ultrasonography). Our findings suggest that the noninvasive, electrophysiological assessment of longitudinal changes to MU APSIZE appears to reflect hypertrophy specific to MUs across the RT continuum. Copyright © 2016 the American Physiological Society.
Jankowska, Malgorzata A; Bartkowiak-Jowsa, Magdalena; Bedzinski, Romuald
2015-10-01
The study concerns the determination of mechanical properties of human coronary arterial walls with both experimental and constitutive modeling approaches. The research material was harvested from 18 patients (range 50-84 years). On the basis of hospital records and visual observation, each tissue sample was classified according to the stage (0, I, II, III) of atherosclerosis development (SAD). Then, strip samples considered as a membrane with the shape of rectangular parallelepiped were preconditioned and subjected to uniaxial tensile tests in longitudinal (n=27) and circumferential (n=4) direction. With experimental data obtained, the stress-strain characteristics were prepared. Furthermore, tensile strengths and related strains, stiffness coefficients and tangent modules of elasticity were computed. For a constitutive model of passive mechanical behavior of coronary arteries, values of material parameters were computed. The studies led to the following conclusions. Most importantly, the atherosclerotic changes affect all the mechanical properties of arterial walls. A progress of arteriosclerosis contributes to an increase of vascular stiffness. The highest values of the stiffness coefficients are obtained for the tissues in the advanced stage of the disease. We were also able to observe that gradual calcification, progression of atherosclerosis and degradation of collagen in the tissue caused a decrease of tensile strengths and related strains. Finally, a comparison made for the tissues with the advanced SAD showed that the tensile strengths and strains were much higher in the case of the samples with the circumferential orientation rather than those with the longitudinal one. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.
1992-01-01
To date, the effect of thermo-oxidative aging on unidirectional composite mechanical properties has been monitored by the measurement of interlaminar shear strength (ILSS) and either three or four point longitudinal flexural strength (LFS) of the composites being tested. Both results are affected by the fiber-to-matrix bonding, the former being dependent on the shear resistance of the interface and the latter on the degree of load sharing by the fibers through the fiber/matrix interface. Recently, fiber/matrix interfacial bond strengths have been monitored using a transverse flexural strength (TFS) test method. This test method was used to evaluate the effect of fiber surface treatment on the fiber/matrix bond. The interface bonding was varied in these tests using Hercules A-fibers with three-types of surfaces that produce bonds of poor, better, and good quality. The TFS was found not only to be sensitive to the bonding, but also to the aging time of unidirectional A-fiber/PMR-15 composites. This relationship reflects the mechanism by which the PMR-15 degrades during thermal aging.
Loyd, Brian J; Jennings, Jason M; Judd, Dana L; Kim, Raymond H; Wolfe, Pamela; Dennis, Douglas A; Stevens-Lapsley, Jennifer E
2017-09-01
Total knee arthroplasty (TKA) is associated with declines in hip abductor (HA) muscle strength; however, a longitudinal analysis demonstrating the influence of TKA on trajectories of HA strength change has not been conducted. The purpose of this study was to quantify changes in HA strength from pre-TKA through 3 months post-TKA and to characterize the relationship between HA strength changes and physical performance. This study is a post hoc analysis of a randomized controlled trial. Data from 162 participants (89 women, mean age = 63 y) were used for analysis. Data were collected by masked assessors preoperatively and at 1 and 3 months following surgery. Outcomes included: Timed "Up and Go" test (TUG), Stair Climbing Test (SCT), Six-Minute Walk Test (6MWT), and walking speed. Paired t tests were used for between- and within-limb comparisons of HA strength. Multivariable regression was used to determine contributions of independent variables, HA and knee extensor strength, to the dependent variables of TUG, SCT, 6MWT, and walking speed at each time point. Hip abductor strength was significantly lower in the surgical limb pre-TKA (mean = 0.015; 95% CI = 0.010-0.020), 1 month post-TKA (0.028; 0.023-0.034), and 3 months post-TKA (0.02; 0.014-0.025) compared with the nonsurgical limb. Hip abductor strength declined from pre-TKA to 1 month post-TKA (18%), but not at the 3-month time point (0%). Hip abductor strength independently contributed to performance-based outcomes pre-TKA; however, this contribution was not observed post-TKA. The post hoc analysis prevents examining all outcomes likely to be influenced by HA strength. Surgical limb HA strength is impaired prior to TKA, and worsens following surgery. Furthermore, HA strength contributes to performance-based outcomes, supporting the hypothesis that HA strength influences functional recovery. © 2017 American Physical Therapy Association
Longitudinal Physical Activity, Body Composition, and Physical Fitness in Preschoolers.
Leppänen, Marja H; Henriksson, Pontus; Delisle Nyström, Christine; Henriksson, Hanna; Ortega, Francisco B; Pomeroy, Jeremy; Ruiz, Jonatan R; Cadenas-Sanchez, Cristina; Löf, Marie
2017-10-01
This study aimed to investigate longitudinal associations of objectively measured physical activity (PA) and sedentary behavior (SB) with body composition and physical fitness at a 12-month follow-up in healthy Swedish 4-yr-old children. The data from the population-based MINISTOP trial were collected between 2014 and 2016, and this study included the 138 children who were in the control group. PA and SB were assessed using the wrist-worn ActiGraph (wGT3x-BT) accelerometer during seven 24-h periods and, subsequently, defined as SB, light-intensity PA, moderate-intensity PA, vigorous-intensity PA (VPA), and moderate-to-vigorous PA (MVPA). Body composition was measured using air-displacement plethysmography and physical fitness (cardiorespiratory fitness, lower and upper muscular strength as well as motor fitness) by the PREFIT fitness battery. Linear regression and isotemporal substitution models were applied. Greater VPA and MVPA at the age of 4.5 yr were associated with higher fat-free mass index (FFMI) at 5.5 yr (P < 0.001 and P = 0.044, respectively). Furthermore, greater VPA and MVPA at the age of 4.5 yr were associated with higher scores for cardiorespiratory fitness, lower body muscular strength, and motor fitness at 12-month follow-up (P = 0.001 to P = 0.031). Substituting 5 min·d of SB, light-intensity PA, or moderate-intensity PA for VPA at the age of 4.5 yr were associated with higher FFMI, and with greater upper and lower muscular strength at 12-month follow-up (P < 0.001 to P = 0.046). Higher VPA and MVPA at the age of 4.5 yr were significantly associated with higher FFMI and better physical fitness at 12-month follow-up. Our results indicate that promoting high-intensity PA at young ages may have long-term beneficial effects on childhood body composition and physical fitness, in particular muscular strength.
Dogramaci, Yunus; Kalaci, Aydiner; Sevinç, Teoman Toni; Esen, Erdinc; Komurcu, Mahmut; Yanat, Ahmet Nedim
2008-09-01
This study compares the mechanical properties of modified Kessler and double-modified Kessler flexor tendon repair techniques and evaluates simple modifications on both methods. Forty fresh sheep flexor tendons were divided equally into four groups. A transverse sharp cut was done in the middle of each tendon and then repaired with modified Kessler technique, modified Kessler with additional purchase point in the midpoint of each longitudinal strand, double-modified Kessler technique, or a combination of outer Kessler and inner cruciate configuration based on double-modified Kessler technique. The tendons were tested in a tensile testing machine to assess the mechanical performance of the repairs. Outcome measures included gap formation and ultimate forces. The gap strengths of the double-modified Kessler technique (30.85 N, SD 1.90) and double-modified Kessler technique with inner cruciate configuration (33.60 N, SD 4.64) were statistically significantly greater than that of the two-strand modified Kessler (22.56 N, SD 3.44) and modified Kessler with additional purchase configuration (21.75 N, SD 4.03; Tukey honestly significant difference test, P < 0.000). There were statistically significant differences in failure strengths of the all groups (analysis of variance, P < 0.000). With an identical number of strands, the gap formation and ultimate forces of the repairs were not changed by additional locking purchase point in modified Kessler repair or changing the inner strand configuration in double-modified Kessler repair. The results of this study show that the number of strands across the repair site together with the number of locking loops clearly affects the strength of the repair; meanwhile, the longitudinal strand orientation and number of purchase points in a single loop did not affect its strength.
Janke, H P; Bohlin, J; Lomme, R M L M; Mihaila, S M; Hilborn, J; Feitz, W F J; Oosterwijk, E
2017-09-01
The design of constructs for tubular tissue engineering is challenging. Most biomaterials need to be reinforced with supporting structures such as knittings, meshes or electrospun material to comply with the mechanical demands of native tissues. In this study, coupled helical coils (CHCs) were manufactured to mimic collagen fiber orientation as found in nature. Monofilaments of different commercially available biodegradable polymers were wound and subsequently fused, resulting in right-handed and left-handed polymer helices fused together in joints where the filaments cross. CHCs of different polymer composition were tested to determine the tensile strength, strain recovery, hysteresis, compressive strength and degradation of CHCs of different composition. Subsequently, seamless and stable hybrid constructs consisting of PDSII® USP 2-0 CHCs embedded in porous collagen type I were produced. Compared to collagen alone, this hybrid showed superior strain recovery (93.5±0.9% vs 71.1±12.6% in longitudinal direction; 87.1±6.6% vs 57.2±4.6% in circumferential direction) and hysteresis (18.9±2.7% vs 51.1±12.0% in longitudinal direction; 11.5±4.6% vs 46.3±6.3% in circumferential direction). Furthermore, this hybrid construct showed an improved Young's modulus in both longitudinal (0.5±0.1MPavs 0.2±0.1MPa; 2.5-fold) and circumferential (1.65±0.07MPavs (2.9±0.3)×10 -2 MPa; 57-fold) direction, respectively, compared to templates created from collagen alone. Moreover, hybrid template characteristics could be modified by changing the CHC composition and CHCs were produced showing a mechanical behavior similar to the native ureter. CHC-enforced templates, which are easily tunable to meet different demands may be promising for tubular tissue engineering. Most tubular constructs lack sufficient strength and tunability to comply with the mechanical demands of native tissues. Therefore, we embedded coupled helical coils (CHCs) produced from biodegradable polymers - to mimic collagen fiber orientation as found in nature - in collagen type I sponges. We show that the mechanical behavior of CHCs is very similar to native tissue and strengths structurally weak tubular constructs. The production procedure is relatively easy, reproducible and mechanical features can be controlled to meet different mechanical demands. This is promising in template manufacture, hence offering new opportunities in tissue engineering of tubular organs and preventing graft failure. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
γ Pegasi: testing Vega-like magnetic fields in B stars
NASA Astrophysics Data System (ADS)
Neiner, C.; Monin, D.; Leroy, B.; Mathis, S.; Bohlender, D.
2014-02-01
Context. The bright B pulsator γ Peg shows both p and g modes of β Cep and SPB types. It has also been claimed that it is a magnetic star, while others do not detect any magnetic field. Aims: We check for the presence of a magnetic field, with the aim to characterise it if it exists, or else provide a firm upper limit of its strength if it is not detected. If γ Peg is magnetic as claimed, it would make an ideal asteroseismic target for testing various theoretical scenarios. If it is very weakly magnetic, it would be the first observation of an extension of Vega-like fields to early B stars. Finally, if it is not magnetic and we can provide a very low upper limit on its non-detected field, it would make an important result for stellar evolution models. Methods: We acquired high resolution, high signal-to-noise spectropolarimetric Narval data at Telescope Bernard Lyot (TBL). We also gathered existing dimaPol spectropolarimetric data from the Dominion Astrophysical Observatory (DAO) and Musicos spectropolarimetric data from TBL. We analysed the Narval and Musicos observations using the least-squares deconvolution (LSD) technique to derive the longitudinal magnetic field and Zeeman signatures in lines. The longitudinal field strength was also extracted from the Hβ line observed with the DAO. With a Monte Carlo simulation we derived the maximum strength of the field possibly hosted by γ Peg. Results: We find that no magnetic signatures are visible in the very high quality spectropolarimetric data. The average longitudinal field measured in the Narval data is Bl = -0.1 ± 0.4 G. We derive a very strict upper limit of the dipolar field strength of Bpol ~ 40 G. Conclusions: We conclude that γ Peg is not magnetic: it hosts neither a strong stable fossil field as observed in a fraction of massive stars nor a very weak Vega-like field. There is therefore no evidence that Vega-like fields exist in B stars, contrary to the predictions by fossil field dichotomy scenarios. These scenarios should thus be revised. Our results also provide strong constraints for stellar evolution models. Based on observations obtained at the Telescope Bernard Lyot (USR5026) operated by the Observatoire Midi-Pyrénées, Université de Toulouse (Paul Sabatier), Centre National de la Recherche Scientifique of France, and at the Dominion Astrophysical Observatory.Tables 1-3 are available in electronic form at http://www.aanda.org
Xue, Qian-Li; Beamer, Brock A.; Chaves, Paulo H.M.; Guralnik, Jack M.; Fried, Linda P.
2010-01-01
OBJECTIVES To assess the relationship between rate of change in muscle strength and all-cause mortality. DESIGN A prospective observational study of the causes and course of physical disability. SETTING Twelve contiguous ZIP code areas in Baltimore, Maryland. PARTICIPANTS Three hundred and seven community-dwelling women aged 70–79 years at study baseline. MEASUREMENTS The outcome is all-cause mortality (1994–2009); predictors include up to seven repeated measurements of handgrip, knee extension, and hip flexion strength, with a median follow-up time of 9 years. Demographic factors, body mass index, smoking status, number of chronic diseases, depressive symptoms, physical activity, Interlukin-6, and albumin were assessed at baseline and included as confounders. The associations between declining muscle strength and mortality were assessed using a joint longitudinal and survival model.. RESULTS Grip and hip strength declined an average of 1.10 and 1.31 kg per year between age 70 and 75and 0.50 and 0.39 kg/year thereafter, respectively; knee strength declined at a constant rate of 0.57 kg/year. Faster rates of decline in grip and hip strength, but not knee strength, independently predicted of mortality after accounting for their baseline levels and potential confounders (Hazard Ratio (HR)=1.33 (95% confidence interval (CI)=1.06–1.67), 1.14 (CI=0.91–1.41), and 2.62 (CI=1.43–4.78) for every 0.5 standard deviation increase in rate of decline in grip, knee, and hip strength, respectively. CONCLUSION Monitoring the rate of decline in grip and hip flexion strength in addition to the absolute levels may greatly improve the identification of women most at risk of dying. PMID:21054287
Boman, Erika; Lundman, Berit; Nygren, Björn; Årestedt, Kristofer; Santamäki Fischer, Regina
2017-11-01
To explore the relationship between inner strength and health threats among community-dwelling older women. Inner strength is described as a resource that promotes experiences of health, despite adversities. Inner strength and its dimensions (i.e. connectedness, creativity, firmness and flexibility) can be assessed using the Inner Strength Scale (ISS). Exploring attributes of weaker inner strength may yield valuable information about areas to focus on in enhancing a person's inner strength and may ultimately lead to the perception of better health. Cross-sectional questionnaire survey. The study is based on responses from 1270 community-dwelling older women aged 65 years and older; these were collected in the year 2010 and describe the situation that still exists today for older women. The questionnaire included the ISS, background characteristics and explanatory variables known to be health threats in ageing. Data were analysed using descriptive and inferential statistics. Poorer mental health was related to weaker inner strength in total and in all the dimensions. Symptoms of depressive disorders and feeling lonely were related to three of the dimensions, except firmness and creativity respectively. Furthermore, poor physical health was associated with the dimensions firmness and flexibility. Other health threats were significantly related to only one of the dimensions, or not associated at all. Mental ill health has overall the strongest association with weaker inner strength. Longitudinal studies are recommended to confirm the results. However, the ISS does not only estimate inner strength but can also be a tool for discovering where (i.e. dimension) interventions may be most profitable. © 2017 John Wiley & Sons Ltd.
Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L
2017-02-01
This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.
Lindgren, Martin; Åberg, Maria; Schaufelberger, Maria; Åberg, David; Schiöler, Linus; Torén, Kjell; Rosengren, Annika
2017-05-01
Aims To investigate the association between cardiorespiratory fitness (CRF) and muscle strength in late adolescence and the long-term risk of heart failure (HF). Methods A cohort was created of Swedish men enrolled in compulsory military service between 1968 and 2005 with measurements for CRF and muscle strength ( n = 1,226,623; mean age 18.3 years). They were followed until 31 December 2014 for HF hospitalization as recorded in the Swedish national inpatient registry. Results During the follow-up period (median (interquartile range) 28.4 (22.0-37.0) years), 7656 cases of first HF hospitalization were observed (mean ± SD age at diagnosis 50.1 ± 7.9 years). CRF and muscle strength were estimated by maximum capacity cycle ergometer testing and strength exercises (knee extension, elbow flexion and hand grip). Inverse dose-response relationships were found between CRF and muscle strength with HF as a primary or contributory diagnosis with an adjusted hazards ratio (95% confidence interval) of 1.60 (1.44-1.77) for low CRF and 1.45 (1.32-1.58) for low muscle strength categories. The associations of incident HF with CRF and muscle strength persisted, regardless of adjustments for the other potential confounders. The highest risk was observed for HF associated with coronary heart disease, diabetes or hypertension. Conclusions In this longitudinal study of young men, we found inverse and mutually independent associations between CRF and muscle strength with risk of hospitalization for HF. If causal, these results may emphasize the importance of the promotion of CRF and muscle strength in younger populations.
Varga-Szemes, Akos; Kiss, Pal; Rab, Andras; Suranyi, Pal; Lenkey, Zsofia; Simor, Tamas; Bryant, Robert G.; Elgavish, Gabriel A.
2016-01-01
Purpose MRI contrast agents (CA) whose contrast enhancement remains relatively high even at the higher end of the magnetic field strength range would be desirable. The purpose of this work was to demonstrate such a desired magnetic field dependency of the longitudinal relaxivity for an experimental MRI CA, Gd(ABE-DTTA). Materials and Methods The relaxivity of 0.5mM and 1mM Gd(ABE-DTTA) was measured by Nuclear Magnetic Relaxation Dispersion (NMRD) in the range of 0.0002 to 1T. Two MRI and five NMR instruments were used to cover the range between 1.5 to 20T. Parallel measurement of a Gd-DTPA sample was performed throughout as reference. All measurements were carried out at 37°C and pH 7.4. Results The relaxivity values of 0.5mM and 1mM Gd(ABE-DTTA) measured at 1.5, 3, and 7T, within the presently clinically relevant magnetic field range, were 15.3, 11.8, 12.4 s-1mM-1 and 18.1, 16.7, and 13.5 s-1mM-1, respectively. The control 4 mM Gd-DTPA relaxivities at the same magnetic fields were 3.6, 3.3, and 3.0 s-1mM-1, respectively. Conclusions The longitudinal relaxivity of Gd(ABE-DTTA) measured within the presently clinically relevant field range is three to five times higher than that of most commercially available agents. Thus, Gd(ABE-DTTA) could be a practical choice at any field strength currently used in clinical imaging including those at the higher end. PMID:26872055
ERIC Educational Resources Information Center
Painter, Kirstin
2012-01-01
Background: Systems of care is a family centered, strengths-based service delivery model for treating youth experiencing a serious emotional disturbance. Wraparound is the most common method of service delivery adopted by states and communities as a way to adhere to systems of care philosophy. Objective: The purpose of this study was to evaluate…
Laterally Loaded Partially Prestressed Concrete Piles
1989-09-01
of an extensive test program onl laterali y ioadeu. partially pr- estressed concrete fender piles. The study Included service load range as well ats...12,000-psi design strength). Configura- tion G utilized 14 r:- estress strand, in an unsymmetric pattern. To provide a uniform concrete prestress of 540...sudden loss in load carrying capacity directly related to the loss of concrete area. The compression concrete fractured longitudinally and along the
Resistance welding graphite-fiber composites
NASA Technical Reports Server (NTRS)
Lamoureux, R. T.
1980-01-01
High-strength joints are welded in seconds in carbon-reinfored thermoplastic beams. Resistance-welding electrode applies heat and pressure to joint and is spring-loaded to follow softening material to maintain contact; it also holds parts together for cooling and hardening. Both transverse and longitudinal configurations can be welded. Adhesive bonding and encapsulation are more time consuming methods and introduce additional material into joint, while ultrasonic heating can damage graphite fibers in composite.
2009-10-01
PHQ*) Caffeine and fast food intake (2 questions) Strength and duration of physical activity (1 question with 3 items; NHIS *) Daily physical activity...Complementary and Alternative Medicine; NHIS , National Health Interview Survey; NHANES, National Health and Nutrition Examination Survey; SF36-V, Short...USAMRMC) Military Operational Medicine Research Pro- gram (MOMRP). The Millennium Cohort Study requires considerable financial and logistical support that
Recognition of student names past: a longitudinal study with N = 1.
Huang, I N
1997-01-01
Recognition of names of former students taught at different times by a middle-aged college professor was tested, to investigate recognition memory over a time span ranging from 6 months to 26.5 years. The relationship between the d', a measure of strength of memory, and the retention interval can be best described by a logarithmic function characterized by a rapid initial drop followed by a slow forgetting rate. The correct responses (hits and rejections) had higher confidence and shorter response time than did the incorrect responses (false alarms and misses). The results show that an ecologically realistic longitudinal study with N = 1 can provide a valuable means in the study of human memory with very long retention intervals, which have not yet been investigated in the laboratory.
NUCLEAR REACTOR FUEL ELEMENT ASSEMBLY
Stengel, F.G.
1963-12-24
A method of fabricating nuclear reactor fuel element assemblies having a plurality of longitudinally extending flat fuel elements in spaced parallel relation to each other to form channels is presented. One side of a flat side plate is held contiguous to the ends of the elements and a welding means is passed along the other side of the platertransverse to the direction of the longitudinal extension of the elements. The setting and speed of travel of the welding means is set to cause penetration of the side plate with welds at bridge the gap in each channel between adjacent fuel elements with a weld-through bubble of predetermined size. The fabrication of a high strength, dependable fuel element is provided, and the reduction of distortion and high production costs are facilitated by this method. (AEC)
Houkes, Inge; Janssen, Peter P M; de Jonge, Jan; Bakker, Arnold B
2003-01-01
This study tested the longitudinal influence of personality (measured by the characteristics growth need strength, negative affectivity [NA], and upward striving) on 3 psychological outcomes (intrinsic work motivation, emotional exhaustion, and turnover intention), using a pattern of specific relationships between work characteristics and these outcomes as a framework. The study hypotheses were tested in a multioccupational sample consisting of bank employees and teachers, using a 2-wave panel design with a 1-year time interval and structural equation modeling. NA had a cross-lagged direct and additive relationship with emotional exhaustion and also moderated the relationship between Time 1 workload and Time 2 emotional exhaustion. The authors concluded that NA may have multiple effects on emotional exhaustion that persist over time.
Analysis of FORTE data to extract ionospheric parameters
NASA Astrophysics Data System (ADS)
Roussel-Dupré, Robert A.; Jacobson, Abram R.; Triplett, Laurie A.
2001-01-01
The ionospheric transfer function is derived for a spherically symmetric ionosphere with an arbitrary radial electron density profile in the limit where the radio frequencies of interest ω are much larger than the plasma frequency ωpe. An expansion of the transfer function to second order in the parameter X (= ω2pe/ω2) is carried out. In this limit the dispersive properties of the ionosphere are manifested as a frequency-dependent time of arrival that includes quadratic, cubic, and quartic terms in 1/ω. The coefficients of these terms are related to the total electron content (TEC) along the slant path from transmitter to receiver, the product of TEC and the longitudinal magnetic field strength along the slant path, and refractive bending and higher-order electron density profile effects, respectively. By fitting the time of arrival versus frequency of a transionospheric signal to a polynomial in 1/ω it is possible to extract the TEC, the longitudinal magnetic field strength, the peak electron density, and an effective thickness for the ionosphere. This exercise was carried out for a number of transionospheric pulses measured in the VHF by the FORTE satellite receiver and generated by the Los Alamos Portable Pulser. The results are compared with predictions derived from the International Reference Ionosphere and the United States Geological Survey geomagnetic field model.
The Dynamic Relationship Between Physical Function and Cognition in Longitudinal Aging Cohorts
Clouston, Sean A. P.; Brewster, Paul; Kuh, Diana; Richards, Marcus; Cooper, Rachel; Hardy, Rebecca; Rubin, Marcie S.; Hofer, Scott M.
2013-01-01
On average, older people remember less and walk more slowly than do younger persons. Some researchers argue that this is due in part to a common biologic process underlying age-related declines in both physical and cognitive functioning. Only recently have longitudinal data become available for analyzing this claim. We conducted a systematic review of English-language research published between 2000 and 2011 to evaluate the relations between rates of change in physical and cognitive functioning in older cohorts. Physical functioning was assessed using objective measures: walking speed, grip strength, chair rise time, flamingo stand time, and summary measures of physical functioning. Cognition was measured using mental state examinations, fluid cognition, and diagnosis of impairment. Results depended on measurement type: Change in grip strength was more strongly correlated with mental state, while change in walking speed was more strongly correlated with change in fluid cognition. Examining physical and cognitive functioning can help clinicians and researchers to better identify individuals and groups that are aging differently and at different rates. In future research, investigators should consider the importance of identifying different patterns and rates of decline, examine relations between more diverse types of measures, and analyze the order in which age-related declines occur. PMID:23349427
Low-field one-dimensional and direction-dependent relaxation imaging of bovine articular cartilage
NASA Astrophysics Data System (ADS)
Rössler, Erik; Mattea, Carlos; Mollova, Ayret; Stapf, Siegfried
2011-12-01
The structure of articular cartilage is separated into three layers of differently oriented collagen fibers, which is accompanied by a gradient of increasing glycosaminoglycan (GAG) and decreasing water concentration from the top layer towards the bone interface. The combined effect of these structural variations results in a change of the longitudinal and transverse relaxation times as a function of the distance from the cartilage surface. In this paper, this dependence is investigated at a magnetic field strength of 0.27 T with a one-dimensional depth resolution of 50 μm on bovine hip and stifle joint articular cartilage. By employing this method, advantage is taken of the increasing contrast of the longitudinal relaxation rate found at lower magnetic field strengths. Furthermore, evidence for an orientational dependence of relaxation times with respect to an axis normal to the surface plane is given, an observation that has recently been reported using high-field MRI and that was explained by preferential orientations of collagen bundles in each of the three cartilage zones. In order to quantify the extent of a further contrast mechanism and to estimate spatially dependent glycosaminoglycan concentrations, the data are supplemented by proton relaxation times that were acquired in bovine articular cartilage that was soaked in a 0.8 mM aqueous Gd ++ solution.
A laboratory means to produce tough aluminum sheet from powder
NASA Technical Reports Server (NTRS)
Singleton, O. R.; Royster, D. M.; Thomas, J. R.
1990-01-01
The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.
NASA Technical Reports Server (NTRS)
Munroe, J.; Wilkins, K.; Gruber, M.; Domack, Marcia S. (Technical Monitor)
2000-01-01
The Integral Airframe Structures (IAS) program investigated the feasibility of using "integrally stiffened" construction for commercial transport fuselage structure. The objective of the program was to demonstrate structural performance and weight equal to current "built-up" structure with lower manufacturing cost. Testing evaluated mechanical properties, structural details, joint performance, repair, static compression, and two-bay crack residual strength panels. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511x extrusion, and 7475-T7351 plate. Structural performance was evaluated with a large 7475-T7351 pressure test that included the arrest of a two-bay longitudinal crack, and a measure of residual strength for a two-bay crack centered on a broken frame. Analysis predictions for the two-bay longitudinal crack panel correlated well with the test results. Analysis activity conducted by the IAS team strongly indicates that current analysis tools predict integral structural behavior as accurately as built-up structure. The cost study results indicated that, compared to built-up fabrication methods, high-speed machining structure from aluminum plate would yield a recurring cost savings of 61%. Part count dropped from 78 individual parts on a baseline panel to just 7 parts for machined IAS structure.
Day, M.A.; Dowthwaite, J.N.; Rosenbaum, P.F.; Roedel, G.G.; Brocker, A.A.; Scerpella, T.A.
2015-01-01
Objectives: Youth exercise is associated with improved body composition, but details regarding timing and persistence are limited. We examined pre- and circum-menarcheal organized physical activity exposure (PA) as a factor in development of early post-menarcheal lean mass, fat mass and muscle strength. Methods: Participants in a longitudinal study of musculoskeletal growth using dual energy X-ray absorptiometry (DXA) were included based on: 1) Whole body DXA scans: 0.5-1.5 years pre-menarche, 0.5-1.5 years post-menarche; 2) PA records for ≥6 months preceding the first DXA (PREPA) and for the inter-DXA interval (CIRCUMPA). Dominant arm grip strength and sit-ups tests coincided with DXA scans; PA, height and maturity were recorded semi-annually. Regressions correlated PA with lean mass/fat mass/strength, accounting for maturity, body size, and baseline values. Results Seventy girls [baseline: 11.8 yrs (sd 1.0), follow-up: 13.9 years (sd 1.0)] demonstrated circum-menarcheal gains of 25-29% for lean and fat mass and 33% for grip strength. PREPA correlated with pre- and post-menarcheal lean mass, sit-ups and pre-menarcheal fat mass (p<0.05), but not grip strength. CIRCUMPA correlated with only post-menarcheal sub-head lean mass (p=0.03). Conclusions: Lean mass and core strength at 1-year post-menarche were more strongly predicted by pre-menarcheal organized PA than by recent circum-menarcheal PA. PMID:26636280
Anticevic, Alan; Hu, Xinyu; Xiao, Yuan; Hu, Junmei; Li, Fei; Bi, Feng; Cole, Michael W.; Savic, Aleksandar; Yang, Genevieve J.; Repovs, Grega; Murray, John D.; Wang, Xiao-Jing; Huang, Xiaoqi; Lui, Su; Krystal, John H.
2015-01-01
Strong evidence implicates prefrontal cortex (PFC) as a major source of functional impairment in severe mental illness such as schizophrenia. Numerous schizophrenia studies report deficits in PFC structure, activation, and functional connectivity in patients with chronic illness, suggesting that deficient PFC functional connectivity occurs in this disorder. However, the PFC functional connectivity patterns during illness onset and its longitudinal progression remain uncharacterized. Emerging evidence suggests that early-course schizophrenia involves increased PFC glutamate, which might elevate PFC functional connectivity. To test this hypothesis, we examined 129 non-medicated, human subjects diagnosed with early-course schizophrenia and 106 matched healthy human subjects using both whole-brain data-driven and hypothesis-driven PFC analyses of resting-state fMRI. We identified increased PFC connectivity in early-course patients, predictive of symptoms and diagnostic classification, but less evidence for “hypoconnectivity.” At the whole-brain level, we observed “hyperconnectivity” around areas centered on the default system, with modest overlap with PFC-specific effects. The PFC hyperconnectivity normalized for a subset of the sample followed longitudinally (n = 25), which also predicted immediate symptom improvement. Biologically informed computational modeling implicates altered overall connection strength in schizophrenia. The initial hyperconnectivity, which may decrease longitudinally, could have prognostic and therapeutic implications. PMID:25568120
Sigurdardottir, S; Andelic, N; Roe, C; Schanke, A K
2014-01-01
To evaluate longitudinal trajectories of emotional distress symptoms after traumatic brain injury (TBI). Longitudinal study. Patients with mild-to-severe TBI, 118 patients participated at 3 months, 109 attended at 1-year and 89 attended the 5-year follow-up. Emotional distress was measured with the Impact of Event Scale-Revised. Patients were also assessed for coping style, anxiety, depression, substance abuse and trauma severity. Based on growth mixture modelling, four trajectories of emotional distress symptoms were identified: 73.5% of patients were characterized by a pattern of resilience, 6.8% by a pattern of delayed distress, 14.6% by recovery and 5.1% by chronic distress. Relative to the resilience trajectory, avoidant-coping style and psychiatric problems were related to recovery and chronic trajectories. The delayed trajectory was similar to the resilience trajectory, except for elevated depressive and anxiety symptoms at 1- and 5-years. Demographics and injury-related variables were not significantly associated with emotional distress trajectories. Resilience was the most common trajectory following TBI. Patients characterized by recovery and chronic trajectories required attention and long-term clinical monitoring of their symptoms. Future research would benefit from longitudinal studies to analyse emotional distress symptoms and the strength of resilience over time.
Anticevic, Alan; Hu, Xinyu; Xiao, Yuan; Hu, Junmei; Li, Fei; Bi, Feng; Cole, Michael W; Savic, Aleksandar; Yang, Genevieve J; Repovs, Grega; Murray, John D; Wang, Xiao-Jing; Huang, Xiaoqi; Lui, Su; Krystal, John H; Gong, Qiyong
2015-01-07
Strong evidence implicates prefrontal cortex (PFC) as a major source of functional impairment in severe mental illness such as schizophrenia. Numerous schizophrenia studies report deficits in PFC structure, activation, and functional connectivity in patients with chronic illness, suggesting that deficient PFC functional connectivity occurs in this disorder. However, the PFC functional connectivity patterns during illness onset and its longitudinal progression remain uncharacterized. Emerging evidence suggests that early-course schizophrenia involves increased PFC glutamate, which might elevate PFC functional connectivity. To test this hypothesis, we examined 129 non-medicated, human subjects diagnosed with early-course schizophrenia and 106 matched healthy human subjects using both whole-brain data-driven and hypothesis-driven PFC analyses of resting-state fMRI. We identified increased PFC connectivity in early-course patients, predictive of symptoms and diagnostic classification, but less evidence for "hypoconnectivity." At the whole-brain level, we observed "hyperconnectivity" around areas centered on the default system, with modest overlap with PFC-specific effects. The PFC hyperconnectivity normalized for a subset of the sample followed longitudinally (n = 25), which also predicted immediate symptom improvement. Biologically informed computational modeling implicates altered overall connection strength in schizophrenia. The initial hyperconnectivity, which may decrease longitudinally, could have prognostic and therapeutic implications. Copyright © 2015 the authors 0270-6474/15/350267-20$15.00/0.
Elevated temperature properties of boron/aluminum composites
NASA Technical Reports Server (NTRS)
Sullivan, P. G.
1978-01-01
The high temperature properties of boron/aluminum composites, fabricated by an air diffusion bonding technique utilizing vacuum-bonded monolayer tape are reported. Seventeen different combinations of matrix alloy, reinforcement diameter, reinforcement volume percent, angle-ply and matrix enhancement (i.e. titanium cladding and interleaves) were fabricated, inspected, and tested. It is shown that good to excellent mechanical properties could be obtained for air-bonded boron/aluminum composites and that these properties did not decrease significantly up to a test temperature of at least 260 C. Composites made with 8 mil B/W fiber show a much greater longitudinal strength dependence on volume percent fiber than composites made with 5.6 mil fiber. The addition of titanium caused difficulties in composite bonding and yielded composites with reduced strength.
Properties of splat-quenched 7075 aluminum type alloys
NASA Technical Reports Server (NTRS)
Durand, J. P. H. A.; Pelloux, R. M.; Grant, N. J.
1976-01-01
The 7075 alloy belonging to the Al-Zn-Mg-Cu system, prepared by powder metallurgy techniques, was used in a study of alloys prepared from splat-quenched foils consolidated into bar material by hot extrusion. Ni and Fe were included in one alloy specimen, producing a fine dispersion of FeAl3 type particles which added to the strength of the aged alloy but did not coarsen upon heat treatment. Fine oxide films showing up on air-splatted foils induce finely dispersed oxide stringers (if the foils are not hot-worked subsequently) which in turn promote axial cracking (but longitudinal tensile strength is not seriously impaired). Splatting in a protective atmosphere, or thermomechanical processing, is recommended to compensate for this.
The Protective Role of Group Identity: Sectarian Antisocial Behavior and Adolescent Emotion Problems
Merrilees, Christine E.; Taylor, Laura K.; Goeke-Morey, Marcie C.; Shirlow, Peter; Cummings, E. Mark; Cairns, Ed
2013-01-01
The protective role of strength of group identity was examined for youth in a context of protracted political conflict. Participants included 814 adolescents (M age = 13.61, SD = 1.99 at Time 1) participating in a longitudinal study in Belfast, Northern Ireland. Utilizing hierarchical linear modeling, the results show that the effect of exposure to sectarian antisocial behaviors has a stronger effect on youth emotion problems for older adolescents. The results also show that youth with higher strength of group identity reported fewer emotion problems in the face of sectarian antisocial behavior, but that this buffering effect is stronger for Protestants compared to Catholics. Implications are discussed for understanding the role of social identity in post-accord societies. PMID:23682959
Muscular Strength and Incident Hypertension in Normotensive and Prehypertensive Men
Maslow, Andréa L.; Sui, Xuemei; Colabianchi, Natalie; Hussey, Jim; Blair, Steven N.
2009-01-01
The protective effects of cardiorespiratory fitness (CRF) on hypertension (HTN) are well known; however, the association between muscular strength and incidence of HTN has yet to be examined. Purpose This study evaluated the strength-HTN association with and without accounting for CRF. Methods Participants were 4147 men (20–82 years) in the Aerobics Center Longitudinal Study for whom an age-specific composite muscular strength score was computed from measures of a 1-repetition maximal leg and a 1-repetition maximal bench press. CRF was quantified by maximal treadmill exercise test time in minutes. Cox proportional hazards regression analysis was used to estimate hazard ratios (HRs) and 95% confidence intervals of incident HTN events according to exposure categories. Results During a mean follow-up of 19 years, there were 503 incident HTN cases. Multivariable-adjusted (excluding CRF) HRs of hypertension in normotensive men comparing middle and high strength thirds to the lowest third were not significant at 1.17 and 0.84, respectively. Multivariable-adjusted (excluding CRF) HRs of hypertension in baseline prehypertensive men comparing middle and high strength thirds to the lowest third were significant at 0.73 and 0.72 (p=.01 each), respectively. The association between muscular strength and incidence of HTN in baseline prehypertensive men was no longer significant after control for CRF (p=.26). Conclusions The study indicated that middle and high levels of muscular strength were associated with a reduced risk of HTN in prehypertensive men only. However, this relationship was no longer significant after controlling for CRF. PMID:19927030
Personality Typology in Relation to Muscle Strength
Terracciano, Antonio; Milaneschi, Yuri; Metter, E. Jeffrey; Ferrucci, Luigi
2011-01-01
Background Physical inactivity plays a central role in the age-related decline in muscle strength, an important component in the process leading to disability. Personality, a significant determinant of health behaviors including physical activity, could therefore impact muscle strength throughout adulthood and affect the rate of muscle strength decline with aging. Personality typologies combining “high neuroticism” (N≥55), “low extraversion” (E<45), and “low conscientiousness” (C<45) have been associated with multiple risky health behaviors but have not been investigated with regards to muscle strength. Purpose The purpose of this study is to investigate associations between individual and combined typologies consisting of high N, low E, and low C and muscle strength, and whether physical activity and body mass index act as mediators. Method This cross-sectional study includes 1,220 participants from the Baltimore Longitudinal Study of Aging. Results High N was found among 18%, low E among 31%, and low C among 26% of the sample. High levels of N, particularly when combined with either low E or low C, were associated with lower muscle strength compared with having only one or none of these personality types. Facet analyses suggest an important role for the N components of depression and hostility. Physical activity level appears to partly explain some of these associations. Conclusion Findings provide support for the notion that the typological approach to personality may be useful in identifying specific personality types at risk of low muscle strength and offer the possibility for more targeted prevention and intervention programs. PMID:21614452
Stenholm, Sari; Rantanen, Taina; Heliövaara, Markku; Koskinen, Seppo
2008-03-01
To study the association between different obesity indicators and walking limitation and to examine the role of C-reactive protein (CRP) and handgrip strength in that association. A cross-sectional, population-based study. The Health 2000 Survey with a representative sample of the Finnish population. Subjects aged 55 and older with complete data on body composition, CRP, handgrip strength, and walking limitation (N=2,208). Body composition, anthropometrics, CRP, medical conditions, handgrip strength, and maximal walking speed were measured in the health examination. Walking limitation was defined as maximal walking speed less than 1.2 m/s or difficulty walking half a kilometer. The two highest quartiles of body fat percentage and CRP and the two lowest quartiles of handgrip strength were all significantly associated with greater risk of walking limitation when chronic diseases and other covariates were taken into account. In addition, high CRP and low handgrip strength partially explained the association between high body fat percentage and walking limitation, but the risk of walking limitation remained significantly greater in persons in the two highest quartiles than in those in the lowest quartile of body fat percentage (odds ratio (OR)=1.75, 95% confidence interval (CI)=1.19-2.57 and OR=2.80, 95% CI 1.89-4.16). The prevalence of walking limitation was much higher in persons who simultaneously had high body fat percentage and low handgrip strength (61%) than in those with a combination of low body fat percentage and high handgrip strength (7%). Using body mass index and waist circumference as indicators of obesity yielded similar results as body fat percentage. Low-grade inflammation and muscle strength may partially mediate the association between obesity and walking limitation. Longitudinal studies and intervention trials are needed to verify this pathway.
Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix
2014-01-01
Objective To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower limb function. Methods Isometric knee extensor and flexor strength of 4553 Osteoarthritis Initiative participants (2651 women/1902 men) was related to Western Ontario McMasters Universities (WOMAC) physical function scores by linear regression. Further, groups of Male and female participant strata with minimal clinically important differences (MCIDs) in WOMAC function scores (6/68) were compared across the full range of observed values, and to participants without functional deficits (WOMAC=0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Results Per regression equations, a 3.7% reduction in extensor and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and a 3.6%/4.8% reduction in men. For strength divided by body weight, reductions were 5.2%/6.7% in women and 5.8%/6.7% in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest non-linear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Conclusion Reductions of approximately 4% in isometric muscle strength and of 6% in strength/weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower limb function. PMID:25303012
Strotmeyer, Elsa S; de Rekeneire, Nathalie; Schwartz, Ann V; Resnick, Helaine E; Goodpaster, Bret H; Faulkner, Kimberly A; Shorr, Ronald I; Vinik, Aaron I; Harris, Tamara B; Newman, Anne B
2009-11-01
To determine whether sensory and motor nerve function is associated cross-sectionally with quadriceps or ankle dorsiflexion strength in an older community-based population. Cross-sectional analyses within a longitudinal cohort study. Two U.S. clinical sites. Two thousand fifty-nine Health, Aging and Body Composition Study (Health ABC) participants (49.5% male, 36.7% black, aged 73-82) in 2000/01. Quadriceps and ankle strength were measured using an isokinetic dynamometer. Sensory and motor peripheral nerve function in the legs and feet was assessed using 10-g and 1.4-g monofilaments, vibration threshold, and peroneal motor nerve conduction amplitude and velocity. Monofilament insensitivity, poorest vibration threshold quartile (>60 mu), and poorest motor nerve conduction amplitude quartile (<1.7 mV) were associated with 11%, 7%, and 8% lower quadriceps strength (all P<.01), respectively, than in the best peripheral nerve function categories in adjusted linear regression models. Monofilament insensitivity and lowest amplitude quartile were both associated with 17% lower ankle strength (P<.01). Multivariate analyses were adjusted for demographic characteristics, diabetes mellitus, body composition, lifestyle factors, and chronic health conditions and included all peripheral nerve measures in the same model. Monofilament insensitivity (beta=-7.19), vibration threshold (beta=-0.097), and motor nerve conduction amplitude (beta=2.01) each contributed independently to lower quadriceps strength (all P<.01). Monofilament insensitivity (beta=-5.29) and amplitude (beta=1.17) each contributed independently to lower ankle strength (all P<.01). Neither diabetes mellitus status nor lean mass explained the associations between peripheral nerve function and strength. Reduced sensory and motor peripheral nerve function is related to poorer lower extremity strength in older adults, suggesting a mechanism for the relationship with lower extremity disability.
Monleon, Sandra; Ferrer, Montse; Tejero, Marta; Pont, Angels; Piqueras, Merce; Belmonte, Roser
2016-06-01
To assess the changes in shoulder strength of patients with breast cancer during the first year after surgery; and to compare the effect of sentinel lymph node biopsy (SLNB) and axillary lymph node dissection (ALND) on shoulder strength. Prospective longitudinal observational study from presurgery to 1 year after. Tertiary hospital. Of 129 consecutive patients examined for eligibility, a sample of women (N=112) with breast cancer were included (44 underwent ALND, and 68 underwent SLNB). Not applicable. Difference between the affected and unaffected arm in strength of shoulder external rotators, internal rotators, abductors, and serratus anterior, measured by dynamometry. Evaluations were performed prior to surgery and at 1, 6, and 12 months after surgery. After breast cancer ALND surgery, strength decreased significantly at the first month for internal rotators, without having recovered presurgery values after 1 year of follow-up, with a mean difference of 2.26kg (P=.011). There was no significant loss of strength for patients treated with SLNB. The loss of shoulder range of motion was only significant the first month for the ALND group. The factors identified as associated with strength loss in the general estimating equation models were the ALND surgery and having received physical/occupational therapy during follow-up. One year after breast cancer surgery, patients treated with ALND had not recovered their previous shoulder internal rotators strength, whereas those who underwent SLNB presented no significant loss of strength. This provides important information for designing rehabilitation programs targeted specifically at the affected muscle group after nodal surgical approach. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Booker, Cara L.; Skew, Alexandra J.; Kelly, Yvonne J.; Sacker, Amanda
2015-01-01
Objectives. We investigated the relationship between selected types of screen-based media (SBM) use, total SBM use, sports participation, and markers of well-being. Methods. Data came from the youth panel (n = 4899) of Understanding Society, the UK Household Longitudinal Study, conducted in 2009. Well-being was measured by the Strengths and Difficulties Questionnaire and markers of happiness in different life domains. Results. The majority of young people used multiple types of SBM for at least 1 hour per day; only 30% participated in sports every day. Overall, young people with heavy SBM use were less happy than moderate users and more likely to have socioemotional difficulties. Chatting on social networking Web sites and game console use were associated with higher odds of socioemotional problems. Higher total SBM use was associated with lower odds of happiness and higher odds of socioemotional difficulties. Greater participation in sports was associated with higher odds of happiness and lower odds of socioemotional difficulties. Conclusions. Further longitudinal research could inform future interventions to reduce sedentary behavior and encourage healthy lifestyles among young people. PMID:25494209
McDonald, Craig M.; Henricson, Erik K.; Abresch, R. Ted; Han, Jay J.; Escolar, Diana M.; Florence, Julaine M.; Duong, Tina; Arrieta, Adrienne; Clemens, Paula R.; Hoffman, Eric P.; Cnaan, Avital
2014-01-01
Contemporary natural history data in Duchenne muscular dystrophy (DMD) is needed to assess care recommendations and aid in planning future trials. Methods The Cooperative International Neuromuscular Research Group (CINRG) DMD Natural History Study (DMD-NHS) enrolled 340 individuals, aged 2–28 years, with DMD in a longitudinal, observational study at 20 centers. Assessments obtained every 3 months for 1 year, at 18 months, and annually thereafter included: clinical history; anthropometrics; goniometry; manual muscle testing; quantitative muscle strength; timed function tests; pulmonary function; and patient-reported outcomes/ health-related quality-of-life instruments. Results Glucocorticoid (GC) use at baseline was 62% present, 14% past, and 24% GC-naive. In those ≥6 years of age, 16% lost ambulation over the first 12 months (mean age 10.8 years). Conclusions Detailed information on the study methodology of the CINRG DMD-NHS lays the groundwork for future analyses of prospective longitudinal natural history data. These data will assist investigators in designing clinical trials of novel therapeutics. PMID:23677550
Factors associated with gait speed recovery after total knee arthroplasty: A longitudinal study.
Pua, Yong-Hao; Seah, Felicia Jie-Ting; Clark, Ross Allan; Lian-Li Poon, Cheryl; Tan, John Wei-Ming; Chong, Hwei-Chi
2017-04-01
Gait speed limitations can remain significant issues after a total knee arthroplasty (TKA) but their associated factors are not well understood. This study aimed to identify the factors associated with acute gait speed recovery post-TKA. We performed a prospective longitudinal study of 1765 patients who underwent primary TKA between July 2013 and July 2015. At 4, 8, 12, and 16 weeks postsurgery, fast gait speed was measured. The factors associated with gait speed over time since TKA were identified using multivariable generalized least squares modeling. Lower postoperative quadriceps strength and knee flexion range of motion were closely associated with lower gait speed over time (0.084m/s, 0.064m/s, and 0.055m/s change in gait speed per interquartile range change in ipsilateral quadriceps strength, contralateral quadriceps strength, and knee flexion range of motion, respectively). Additional strong predictors of lower gait speed included older age (0.11m/s), lower levels of preoperative Short Form 36 physical function (0.066m/s), greater body mass (0.046m/s), and the preoperative use of a walking aid (overall P < 0.001). Patients who reported that they limited their daily activities due to a fear of falling also had poorer gait speed (0.033m/s and 0.054m/s slower gait speed for "Occasional" and "Often" categories, respectively, vs. "None"). Gait speed recovery post-TKA is driven by both physical and psychological factors, suggesting that identifying and treating the underlying physical and cognitive causes of gait speed limitations may be crucial to optimize functional recovery. Copyright © 2017 Elsevier Inc. All rights reserved.
Hall, William; Smith, Neale; Mitton, Craig; Urquhart, Bonnie; Bryan, Stirling
2017-08-22
In order to meet the challenges presented by increasing demand and scarcity of resources, healthcare organizations are faced with difficult decisions related to resource allocation. Tools to facilitate evaluation and improvement of these processes could enable greater transparency and more optimal distribution of resources. The Resource Allocation Performance Assessment Tool (RAPAT) was implemented in a healthcare organization in British Columbia, Canada. Recommendations for improvement were delivered, and a follow up evaluation exercise was conducted to assess the trajectory of the organization's priority setting and resource allocation (PSRA) process 2 years post the original evaluation. Implementation of RAPAT in the pilot organization identified strengths and weaknesses of the organization's PSRA process at the time of the original evaluation. Strengths included the use of criteria and evidence, an ability to reallocate resources, and the involvement of frontline staff in the process. Weaknesses included training, communication, and lack of program budgeting. Although the follow up revealed a regression from a more formal PSRA process, a legacy of explicit resource allocation was reported to be providing ongoing benefit for the organization. While past studies have taken a cross-sectional approach, this paper introduces the first longitudinal evaluation of PSRA in a healthcare organization. By including the strengths, weaknesses, and evolution of one organization's journey, the authors' intend that this paper will assist other healthcare leaders in meeting the challenges of allocating scarce resources. © 2018 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander
2017-01-01
The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11–17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity. PMID:28045914
van Eijk, Ruben P A; Eijkemans, Marinus J C; Ferguson, Toby A; Nikolakopoulos, Stavros; Veldink, Jan H; van den Berg, Leonard H
2018-01-01
Objectives Plasma creatinine is a predictor of survival in amyotrophic lateral sclerosis (ALS). It remains, however, to be established whether it can monitor disease progression and serve as surrogate endpoint in clinical trials. Methods We used clinical trial data from three cohorts of clinical trial participants in the LITRA, EMPOWER and PROACT studies. Longitudinal associations between functional decline, muscle strength and survival with plasma creatinine were assessed. Results were translated to trial design in terms of sample size and power. Results A total of 13 564 measurements were obtained for 1241 patients. The variability between patients in rate of decline was lower in plasma creatinine than in ALS functional rating scale–Revised (ALSFRS-R; p<0.001). The average rate of decline was faster in the ALSFRS-R, with less between-patient variability at baseline (p<0.001). Plasma creatinine had strong longitudinal correlations with the ALSFRS-R (0.43 (0.39–0.46), p<0.001), muscle strength (0.55 (0.51–0.58), p<0.001) and overall mortality (HR 0.88 (0.86–0.91, p<0.001)). Using plasma creatinine as outcome could reduce the sample size in trials by 21.5% at 18 months. For trials up to 10 months, the ALSFRS-R required a lower sample size. Conclusions Plasma creatinine is an inexpensive and easily accessible biomarker that exhibits less variability between patients with ALS over time and is predictive for the patient’s functional status, muscle strength and mortality risk. Plasma creatinine may, therefore, increase the power to detect treatment effects and could be incorporated in future ALS clinical trials as potential surrogate outcome. PMID:29084868
Jekauc, Darko; Wagner, Matthias Oliver; Herrmann, Christian; Hegazy, Khaled; Woll, Alexander
2017-01-01
The purpose of this study is to examine the reciprocal relationship between motor abilities and physical activity and the mediation effects of physical self-concept in this relationship using longitudinal data. We expect that the effects of motor abilities on physical activity are rather indirect via physical self-concept and that the effects of physical activity on motor abilities are rather direct without involvement of the motor ability self-concept. Data was obtained from the Motorik-Modul (MoMo) Longitudinal Study in which 335 boys and 363 girls aged 11-17 years old at Baseline were examined twice in a period of six years. Physical activity was assessed by the MoMo Physical Activity Questionnaire for adolescents, physical self-concept by Physical Self-Description Questionnaire and motor abilities by MoMo Motor Test which comprised of the dimensions strength, endurance, coordination and flexibility. Multiple regression analyses were used to analyse the direct and indirect effects. The results of the multiple regression analyses show that the effects of motor abilities on physical activity were only indirect for the dimensions strength, coordination, and flexibility. For the dimension endurance, neither direct nor indirect effects were significant. In the opposite direction, the effects of physical activity on motor abilities were partially mediated by the self-concept of strength. For the dimensions endurance, coordination and flexibility, only indirect were significant. The results of this study support the assumption that the relationship between motor abilities and physical activity is mediated by physical self-concept in both directions. Physical self-concept seems to be an important determinant of adolescents´ physical activity.
Yilmaz, Ezgi D; Jelitto, Hans; Schneider, Gerold A
2015-04-01
In this work, the compressive elastic modulus and failure strength values of bovine enamel at the first hierarchical level formed by hydroxyapatite (HA) nanofibers and organic matter are identified in longitudinal, transverse and oblique direction with the uniaxial micro-compression method. The elastic modulus values (∼70 GPa) measured here are within the range of results reported in the literature but these values were found surprisingly uniform in all orientations as opposed to the previous nanoindentation findings revealing anisotropic elastic properties in enamel. Failure strengths were recorded up to ∼1.7 GPa and different failure modes (such as shear, microbuckling, fiber fracture) governed by the orientation of the HA nanofibers were visualized. Structural irregularities leading to mineral contacts between the nanofibers are postulated as the main reason for the high compressive strength and direction-independent elastic behavior on enamels first hierarchical level. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Characterization of Mechanical Properties and Residual Stress in API 5L X80 Steel Welded Joints
NASA Astrophysics Data System (ADS)
de Sousa Lins, Amilton; de Souza, Luís Felipe Guimarães; Fonseca, Maria Cindra
2018-01-01
The use of high-strength and low-alloy steels, high design factors and increasingly stringent safety requirements have increased the operating pressure levels and, consequently, the need for further studies to avoid and prevent premature pipe failure. To evaluate the possibility of improving productivity in manual arc welding of this type of steel, this work characterizes the mechanical properties and residual stresses in API 5L X80 steel welded joints using the SMAW and FCAW processes. The residual stresses were analyzed using x-ray diffraction with the sin2 ψ method at the top and root of the welded joints in the longitudinal and transverse directions of the weld bead. The mechanical properties of the welded joints by both processes were characterized in terms of tensile strength, impact toughness and Vickers microhardness in the welded and shot peening conditions. A predominantly compressive residual stress was found, and shot peening increased the tensile strength and impact toughness in both welded joints.
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Sound Velocity and Strength of Beryllium along the Principal Hugoniot using Quartz Windows
NASA Astrophysics Data System (ADS)
McCoy, Chad; Knudson, Marcus; Desjarlais, Michael
2017-06-01
The measurement of the interface wave profile is a traditional method to determine the strength of a shocked material. A novel technique was developed to enable wave profile measurements with quartz windows, extending the range of pressures where wave profile measurements are possible beyond lithium fluoride windows. The technique uses the quartz sound velocity to map Lagrangian characteristics from the shock front back to the material interface and determine the particle velocity profile in a sample. This technique was applied to experiments conducted on beryllium at the Sandia Z Accelerator. We present measurements of the longitudinal and bulk sound velocity across the beryllium shock-melt transition and the strength of solid beryllium for pressures from 130 to 200 GPa. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Room temperature mechanical properties of electron beam welded zircaloy-4 sheet
Parga, C. J.; Rooyen, I. J.; Coryell, B. D.; ...
2017-11-04
Room temperature mechanical properties of electron beam welded and plain Zircaloy-4 sheet (1.6mm thick) have been measured and compared. Various welding parameters were utilized to join sheet material. Electron beam welded specimens and as-received sheet specimens show comparable mechanical properties. Zr-4 sheet displays anisotropy; tensile properties measured for transverse display higher elastic modulus, yield strength, reduction of area and slightly lower ductility than for the longitudinal (rolling direction). Higher welding power increases the alloy’s hardness, elastic modulus and yield strength, with a corresponding decrease in tensile strength and ductility. The hardness measured at weld is comparable to the parent metalmore » hardness. Hardness at heat-affected-zone is slightly higher. Electron microscopic examination shows distinct microstructure morphology and grain size at the weld zone, HAZ and parent metal. A correlation between welding parameters, mechanical properties and microstructural features was established for electron beam welded Zircaloy-4 sheet material.« less
Phase composition, texture, and anisotropy of the properties of Al-Cu-Li-Mg alloy sheets
NASA Astrophysics Data System (ADS)
Betsofen, S. Ya.; Antipov, V. V.; Serebrennikova, N. Yu.; Dolgova, M. I.; Kabanova, Yu. A.
2017-10-01
The formation of the anisotropy of the mechanical properties, the texture, and the phase composition of thin-sheet Al-4.3Cu-1.4Li-0.4Mg and Al-1.8Li-1.8Cu-0.9 Mg alloys have been studied by X-ray diffraction and tensile tests. Various types of anisotropy of the strength properties of the alloys have been revealed: normal anisotropy (strength in the longitudinal direction is higher than that in the transverse direction) in the Al-4.3Cu-1.4Li-0.4Mg alloy and inverse anisotropy in the Al-1.8Li-1.8Cu-0.9Mg alloy. It is shown that the anisotropy of the strength properties is dependent not only on the texture of a solid solution, but also on the content and the texture of the δ' (Al3Li) and T1 (Al2CuLi) phases and their coherency and compatibility of deformation with the matrix.
NASA Astrophysics Data System (ADS)
Volosukhin, V. A.; Bandurin, M. A.; Vanzha, V. V.; Mikheev, A. V.; Volosukhin, Y. V.
2018-05-01
The results of finite element state simulation of stressed and strained changes under different damages of hydraulic structures are presented. As a result of the experiment, a solidstate model of bearing elements was built. Stressed and strained state of reinforced concrete bearing elements under different load combinations is considered. Intensive threshold of danger to form longitudinal cracks and defects in reinforced concrete elements is determined.
Haslach, Henry W; Siddiqui, Ahmed; Weerasooriya, Amanda; Nguyen, Ryan; Roshgadol, Jacob; Monforte, Noel; McMahon, Eileen
2018-03-01
This experimental study adopts a fracture mechanics strategy to investigate the mechanical cause of aortic dissection. Inflation of excised healthy bovine aortic rings with a cut longitudinal notch that extends into the media from the intima suggests that an intimal tear may propagate a nearly circumferential-longitudinal rupture surface that is similar to the delamination that occurs in aortic dissection. Radial and 45°-from-radial cut notch orientations, as seen in the thickness surface, produce similar circumferential crack propagation morphologies. Partial cut notches, whose longitudinal length is half the width of the ring, measure the influence of longitudinal material on crack propagation. Such specimens also produce circumferential cracks from the notch root that are visible in the thickness circumferential-radial plane, and often propagate a secondary crack from the base of the notch, visible in the intimal circumferential-longitudinal plane. Inflation of rings with pairs of cut notches demonstrates that a second notch modifies the propagation created in a specimen with a single notch. The circumferential crack propagation is likely a consequence of the laminar medial structure. These fracture surfaces are probably due to non-uniform circumferential shear deformation in the heterogeneous media as the aortic wall expands. The qualitative deformation morphology around the root of the cut notch during inflation is evidence for such shear deformation. The shear apparently results from relative slip in the circumferential direction of collagen fibers. The slip may produce shear in the longitudinal-circumferential plane between medial layers or in the radial-circumferential plane within a medial lamina in an idealized model. Circumferential crack propagation in the media is then a shear mechanical process that might be facilitated by disease of the tissue. An intimal tear of an apparently healthy aortic wall near the aortic arch is life-threatening because it may lead to full rupture or to wall dissection in which delamination of the medial layer extends around most of the aortic circumference. The mechanical events underlying dissection are not definitively established. This experimental fracture mechanics study provides evidence that shear rupture is the main mechanical process underlying aortic dissection. The commonly performed tensile strength tests of aortic tissue are not clinically useful to predict or describe aortic dissection. One implication of the study is that shear tests might produce more fruitful simple assessments of the aortic wall strength. A clinical implication is that when presented with an intimal tear, those who guide care might recommend steps to reduce the shear load on the aorta. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Wollin, Martin; Thorborg, Kristian; Welvaert, Marijke; Pizzari, Tania
2018-03-14
The primary purpose of this study was to describe an early detection and management strategy when monitoring in-season hip and groin strength, health and function in soccer. Secondly to compare pre-season to in-season test results. Longitudinal cohort study. Twenty-seven elite male youth soccer players (age: 15.07±0.73years) volunteered to participate in the study. Monitoring tests included: adductor strength, adductor/abductor strength ratio and hip and groin outcome scores (HAGOS). Data were recorded at pre-season and at 22 monthly intervals in-season. Thresholds for alerts to initiate further investigations were defined as any of the following: adductor strength reductions >15%, adductor/abductor strength ratio <0.90, and HAGOS subscale scores <75 out of 100 in any of the six subscales. Overall, 105 alerts were detected involving 70% of players. Strength related alerts comprised 40% and remaining 60% of alerts were related to HAGOS. Hip adductor strength and adductor/abductor strength ratio were lowest at pre-season testing and had increased significantly by month two (p<0.01, mean difference 0.26, CI95%: 0.12, 0.41N/kg and p<0.01, mean difference 0.09, CI95%: 0.04, 0.13 respectively). HAGOS subscale scores were lowest at baseline with all, except Physical Activity, showing significant improvements at time-point one (p<0.01). Most (87%) time-loss were classified minimal or mild. In-season monitoring aimed at early detection and management of hip and groin strength, health and function appears promising. Hip and groin strength, health and function improved quickly from pre-season to in-season in a high-risk population for ongoing hip and groin problems. Copyright © 2018 Sports Medicine Australia. All rights reserved.
Koutras, Georgios; Bernard, Manfred; Terzidis, Ioannis P; Papadopoulos, Pericles; Georgoulis, Anastasios; Pappas, Evangelos
2016-07-01
Hamstrings grafts are commonly used in ACL reconstruction, however, the effect of graft harvesting on knee flexion strength has not been longitudinally evaluated in functional positions. We hypothesized that greater deficits in knee flexion strength exist in the prone compared to the seated position and these deficits remain as rehabilitation progresses. Case series. Forty-two consecutive patients who underwent ACL reconstruction with a hamstrings graft were followed prospectively for 9 months. Isokinetic knee flexion strength at a slow and a fast speed were collected at 3, 4, 6, and 9 months in two different positions: conventional (seated) and functional (0° of hip flexion). Peak torque knee flexion deficits were higher in the prone position compared to the seated position by an average of 6.5% at 60°/s and 9.1% at 180°/s (p<0.001). Measuring knee flexion strength in prone demonstrates higher deficits than in the conventional seated position. Most athletes would not be cleared to return to sports even at 9 months after surgery with this method. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
A mechanical property and stress corrosion evaluation of Custom 455 stainless steel alloy
NASA Technical Reports Server (NTRS)
Montano, J. W.
1972-01-01
The mechanical and stress corrosion properties are presented of vacuum melted Custom 455 stainless steel alloy bar (1.0-inch diameter) and sheet (0.083-inch thick) material aged at 950 F, 1000 F, and 1050 F. Low temperature mechanical properties were determined at temperatures of 80 F, 0 F, -100 F, and -200 F. For all three aging treatments, the ultimate tensile and 0.2 percent offset yield strengths increased with decreasing test temperatures while the elongation held fairly constant down to -100 F and decreased at -200 F. Reduction in Area decreased moderately with decreasing temperature for the longitudinal round (0.250-inch diameter) specimens. Notched tensile strength and charpy V-notched impact strength decreased with decreasing test temperature. For all three aging treatments, no failures were observed in the unstressed specimens or the specimens stressed to 50, 75, and 100 percent of their yield strengths for 180 days of alternate immersion testing in a 3.5 percent NaCl solution. As indicated by the results of tensile tests performed after alternate immersion testing, the mechanical properties of Custom 455 alloy were not affected by stress or exposure under the conditions of the evaluation.
Vigotsky, Andrew D.; Halperin, Israel; Lehman, Gregory J.; Trajano, Gabriel S.; Vieira, Taian M.
2018-01-01
Surface electromyography (sEMG) is a popular research tool in sport and rehabilitation sciences. Common study designs include the comparison of sEMG amplitudes collected from different muscles as participants perform various exercises and techniques under different loads. Based on such comparisons, researchers attempt to draw conclusions concerning the neuro- and electrophysiological underpinning of force production and hypothesize about possible longitudinal adaptations, such as strength and hypertrophy. However, such conclusions are frequently unsubstantiated and unwarranted. Hence, the goal of this review is to discuss what can and cannot be inferred from comparative research designs as it pertains to both the acute and longitudinal outcomes. General methodological recommendations are made, gaps in the literature are identified, and lines for future research to help improve the applicability of sEMG are suggested. PMID:29354060
Petit, Moira A; Beck, Thomas J; Hughes, Julie M; Lin, Hung-Mo; Bentley, Christy; Lloyd, Tom
2008-01-01
The effect of weight gain in late adolescence on bone is not clear. Young women who consistently gained weight (n = 23) from 17 to 22 yr of age had increased BMD but a lack of subperiosteal expansion compared with stable weight peers (n = 48). Bone strength increased appropriately for lean mass in both groups but decreased relative to body weight in weight gainers, suggesting increased bone fragility in weight gainers. Introduction Weight gain leading to obesity often starts in adolescence, yet little is known about its effects on bone. We used longitudinal data to examine the effects of weight gain in late adolescence (from 17 to 22 yr of age) on proximal femur BMD, geometry, and estimates of bending strength. Materials and Methods Participants were classified as either weight gainers (WG, n = 23) or stable weight (SW, n = 48) using a random coefficients model. Weight gainers had positive increases in weight (p < 0.05) at each clinic visit from age 17 onward. Proximal femur DXA scans (Hologic QDR 2000) taken annually from 17 to 22 yr of age were analyzed for areal BMD (g/cm2), subperiosteal width (cm), and bone cross-sectional area (CSA) at the proximal femoral shaft. Cortical thickness was measured, and section modulus (Z, cm3) was calculated as a measure of bone bending strength. Total body lean (g) and fat (g) mass were measured from DXA total body scans. Results Over ages 17–22, height remained stable in both groups. Weight remained static in the SW group but increased 14% on average in the WG group (p < 0.05). After controlling for age 17 baseline values, WG had higher BMD (+2.6%), thicker cortices (+3.6%), and greater bone CSA (+2.3%). Increased BMD did not translate to greater increases in bone bending strength (Z). The SW group achieved similar gains in Z by greater subperiosteal expansion. Bone strength index (SI = Z/height) normalized for body weight remained constant in the SW group but decreased significantly in the WG group. In contrast, SI normalized to lean mass did not change over time in either group. Other variables including physical activity, nutrition, and hormone levels (estradiol, testosterone, cortisol) did not differ significantly between groups. Conclusions These data suggest that weight gain in late adolescence may inhibit the periosteal expansion known to normally occur throughout life in long bones, resulting in decreased bone strength relative to body weight. PMID:17937533
Zwikker, Hanneke E; van den Bemt, Bart J; Vriezekolk, Johanna E; van den Ende, Cornelia H; van Dulmen, Sandra
2014-01-01
Objectives Several cross-sectional studies suggest that psychosocial factors are associated with non-adherence to chronic preventive maintenance medication (CPMM); however, results from longitudinal associations have not yet been systematically summarized. Therefore, the objective of this study was to systematically synthesize evidence of longitudinal associations between psychosocial predictors and CPMM non-adherence. Materials and methods PUBMED, EMBASE, CINAHL, and PsychINFO databases were searched for studies meeting our inclusion criteria. The reference lists and the ISI Web of Knowledge of the included studies were checked. Studies were included if they had an English abstract, involved adult populations using CPMM living in Western countries, and if they investigated associations between psychosocial predictors and medication non-adherence using longitudinal designs. Data were extracted according to a literature-based extraction form. Study quality was independently judged by two researchers using a framework comprising six bias domains. Studies were considered to be of high quality if ≥four domains were free of bias. Psychosocial predictors for non-adherence were categorized into five pre-defined categories: beliefs/cognitions; coping styles; social influences and social support; personality traits; and psychosocial well-being. A qualitative best evidence synthesis was performed to synthesize evidence of longitudinal associations between psychosocial predictors and CPMM non-adherence. Results Of 4,732 initially-identified studies, 30 (low-quality) studies were included in the systematic review. The qualitative best evidence synthesis demonstrated limited evidence for absence of a longitudinal association between CPMM non-adherence and the psychosocial categories. The strength of evidence for the review’s findings is limited by the low quality of included studies. Conclusion The results do not provide psychosocial targets for the development of new interventions in clinical practice. This review clearly demonstrates the need for high-quality, longitudinal research to identify psychosocial predictors of medication non-adherence. PMID:24851043
Posterino, G S; Lamb, G D; Stephenson, D G
2000-01-01
Transverse electrical field stimulation (50 V cm−1, 2 ms duration) of mechanically skinned skeletal muscle fibres of the rat elicited twitch and tetanic force responses (36 ± 4 and 83 ± 4 % of maximum Ca2+-activated force, respectively; n = 23) closely resembling those in intact fibres. The responses were steeply dependent on the field strength and were eliminated by inclusion of 10 μm tetrodotoxin (TTX) in the (sealed) transverse tubular (T-) system of the skinned fibres and by chronic depolarisation of the T-system. Spontaneous twitch-like activity occurred sporadically in many fibres, producing near maximal force in some instances (mean time to peak: 190 ± 40 ms; n = 4). Such responses propagated as a wave of contraction longitudinally along the fibre at a velocity of 13 ± 3 mm s−1 (n = 7). These spontaneous contractions were also inhibited by inclusion of TTX in the T-system and by chronic depolarisation. We examined whether the T-tubular network was interconnected longitudinally using fibre segments that were skinned for only ∼2/3 of their length, leaving the remainder of each segment intact with its T-system open to the bathing solution. After such fibres were exposed to TTX (60 μm), the adjacent skinned region (with its T-system not open to the solution) became unresponsive to subsequent electrical stimulation in ∼50 % of cases (7/15), indicating that TTX was able to diffuse longitudinally inside the fibre via the tubular network over hundreds of sarcomeres. These experiments show that excitation–contraction coupling in mammalian muscle fibres involves action potential propagation both transversally and longitudinally within the tubular system. Longitudinal propagation of action potentials inside skeletal muscle fibres is likely to be an important safety mechanism for reducing conduction failure during fatigue and explains why, in developing skeletal muscle, the T-system first develops as an internal longitudinal network. PMID:10944176
Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z
2011-01-01
Purpose: To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Subjects and methods: Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by ‘timed up and go’ (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Results: Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Conclusion: Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted. PMID:21472094
Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z
2011-01-01
To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by 'timed up and go' (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted.
Mechanical properties of glass fiber-reinforced endodontic posts.
Cheleux, Nicolas; Sharrock, Patrick J
2009-10-01
Five types of posts from three different manufacturers (RTD, France, Carbotech, France and Ivoclar-Vivadent, Liechenstein) were subjected to three-point bending tests in order to obtain fatigue results, flexural strength and modulus. Transverse and longitudinal polished sections were examined by scanning electron microscopy and evaluated by computer-assisted image analysis. Physical parameters, including volume % of fibers, their dispersion index and coordination number, were calculated and correlated with mechanical properties. The weaker posts showed more fiber dispersion, higher resin contents, larger numbers of visible defects and reduced fatigue resistance. The flexural strength was inversely correlated with fiber diameter and the flexural modulus was weakly related to coordination number, volume % of fibers and dispersion index. The interfacial adhesion between the silica fibers and the resin matrix was observed to be of paramount importance.
Field dependent magnetic anisotropy of Fe1-xZnx thin films
NASA Astrophysics Data System (ADS)
Resnick, Damon A.; McClure, A.; Kuster, C. M.; Rugheimer, P.; Idzerda, Y. U.
2013-05-01
Using longitudinal magneto-optical Kerr effect in combination with a variable strength rotating magnetic field, called the Rotational Magneto-Optic Kerr Effect (ROTMOKE) method, we show that the magnetic anisotropy for thin Fe82Zn18 single crystal films, grown on MgO(001) substrates, depends linearly on the strength of the applied magnetic field at low fields but is constant (saturates) at fields greater than 350 Oe. The torque moment curves generated using ROTMOKE are well fit with a model that accounts for the uniaxial and cubic anisotropy with the addition of a cubic anisotropy that depends linearly on the applied magnetic field. The field dependent term is evidence of a large effect on the effective magnetic anisotropy in Fe1-xZnx thin films by the magnetostriction.
Seismic Behavior and Retrofit of Concrete Columns of Old R.C. Buildings Reinforced With Plain Bars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marefat, M. S.; Arani, K. Karbasi; Shirazi, S. M. Hassanzadeh
2008-07-08
Seismic rehabilitation of old buildings has been a major challenge in recent years. The first step in seismic rehabilitation is evaluation of the existing capacity and the seismic behaviour. For investigation of the seismic behaviour of RC members of a real old building in Iran which has been designed and constructed by European engineers in 1940, three half-scale column specimens reinforced with plain bars have been tested. The tests indicate significant differences between the responses of specimens reinforced by plain bars relative to those reinforced by deformed bars. A regular pattern of cracking and a relatively brittle behaviour was observedmore » while a relatively large residual strength appeared after sudden drop of initial strength and stiffness due to slip of longitudinal bars.« less
The influence of anthropological features on ball flight speed in handball.
Srhoj, Vatromir; Rogulj, Nenad; Papić, Vladan; Foretić, Nikola; Cavala, Marijana
2012-09-01
The purpose of this study, done on the sample of 41 students of Faculty of Kinesiologyi in Split was to determinate the differences in anthropological characteristics between students who achieved above average and students who achieved under average ball flight speed after jump shoot in handball. Anthropological characteristics were defined by 16 variables, 6 of them were used for the estimation of morphological characteristics, 7 variables for evaluation of motor characteristics and one variable each for evaluation of kinetic, kinematics and technical parameters of shooting. The significant differences were determined in variables for evaluation of longitudinal dimensionality of dominant arm, explosive strength of pull-out agility, strength of the hand grip, hand flexion ability for the ball throw-out and finally, correct and sound technique of the throw-out movement.
Trombetti, A; Reid, K F; Hars, M; Herrmann, F R; Pasha, E; Phillips, E M; Fielding, R A
2016-02-01
This 3-year longitudinal study among older adults showed that declining muscle mass, strength, power, and physical performance are independent contributing factors to increased fear of falling, while declines of muscle mass and physical performance contribute to deterioration of quality of life. Our findings reinforce the importance of preserving muscle health with advancing age. The age-associated loss of skeletal muscle quantity and function are critical determinants of independent physical functioning in later life. Longitudinal studies investigating how decrements in muscle components of sarcopenia impact fear of falling (FoF) and quality of life (QoL) in older adults are lacking. Twenty-six healthy older subjects (age, 74.1 ± 3.7; Short Physical Performance Battery (SPPB) score ≥10) and 22 mobility-limited older subjects (age, 77.2 ± 4.4; SPPB score ≤9) underwent evaluations of lower extremity muscle size and composition by computed tomography, strength and power, and physical performance at baseline and after 3-year follow-up. The Falls Efficacy Scale (FES) and Short Form-36 questionnaire (SF-36) were also administered at both timepoints to assess FoF and QoL, respectively. At 3-year follow-up, muscle cross-sectional area (CSA) (p < 0.013) and power decreased (p < 0.001), while intermuscular fat infiltration increased (p < 0.001). These decrements were accompanied with a longer time to complete 400 m by 22 ± 46 s (p < 0.002). Using linear mixed-effects regression models, declines of muscle CSA, strength and power, and SPPB score were associated with increased FES score (p < 0.05 for each model). Reduced physical component summary score of SF-36 over follow-up was independently associated with decreased SPPB score (p < 0.020), muscle CSA (p < 0.046), and increased 400 m walk time (p < 0.003). In older adults with and without mobility limitations, declining muscle mass, strength, power, and physical performance contribute independently to increase FoF, while declines of muscle mass and physical performance contribute to deterioration of QoL. These findings provide further rationale for developing interventions to improve aging muscle health.
Longitudinal assessment of grip strength using bulb dynamometer in Duchenne Muscular Dystrophy
Pizzato, Tatiana M.; Baptista, Cyntia R. J. A.; Souza, Mariana A.; Benedicto, Michelle M. B.; Martinez, Edson Z.; Mattiello-Sverzut, Ana C.
2014-01-01
BACKGROUND: Grip strength is used to infer functional status in several pathological conditions, and the hand dynamometer has been used to estimate performance in other areas. However, this relationship is controversial in neuromuscular diseases and studies with the bulb dynamometer comparing healthy children and children with Duchenne Muscular Dystrophy (DMD) are limited. OBJECTIVE: The evolution of grip strength and the magnitude of weakness were examined in boys with DMD compared to healthy boys. The functional data of the DMD boys were correlated with grip strength. METHOD: Grip strength was recorded in 18 ambulant boys with DMD (Duchenne Group, DG) aged 4 to 13 years (mean 7.4±2.1) and 150 healthy volunteers (Control Group, CG) age-matched using a bulb dynamometer (North Coast- NC70154). The follow-up of the DG was 6 to 33 months (3-12 sessions), and functional performance was verified using the Vignos scale. RESULTS: There was no difference between grip strength obtained by the dominant and non-dominant side for both groups. Grip strength increased in the CG with chronological age while the DG remained stable or decreased. The comparison between groups showed significant difference in grip strength, with CG values higher than DG values (confidence interval of 95%). In summary, there was an increment in the differences between the groups with increasing age. Participants with 24 months or more of follow-up showed a progression of weakness as well as maintained Vignos scores. CONCLUSIONS: The amplitude of weakness increased with age in the DG. The bulb dynamometer detected the progression of muscular weakness. Functional performance remained virtually unchanged in spite of the increase in weakness. PMID:25003277
Shahabi, Sima; Chiniforush, Nasim; Bahramian, Hoda; Monzavi, Abbas; Baghalian, Ali; Kharazifard, Mohammad Javad
2013-01-01
The purpose of this study was to evaluate the effect of Er:YAG and Er,Cr:YSGG laser on tensile bond strength of composite resin to dentine in comparison with bur-prepared cavities. Fifteen extracted caries-free human third molars were selected. The teeth were cut at a level below the occlusal pit and fissure plan and randomly divided into three groups. Five cavities were prepared by diamond bur, five cavities prepared by Er:YAG laser, and the other group prepared by Er,Cr:YSGG laser. Then, all the cavities were restored by composite resin. The teeth were sectioned longitudinally with Isomet and the specimens prepared in dumbbelled shape (n = 36). The samples were attached to special jigs, and the tensile bond strength of the three groups was measured by universal testing machine at a speed of 0.5 mm/min. The results of the three groups were analyzed with one-way ANOVA and Tamhane test. The means and standard deviations of tensile bond strength of bur-cut, Er:YAG laser-ablated, and Er,Cr:YSGG laser-ablated dentine were 5.04 ± 0.93, 13.37 ± 3.87, and 4.85 ± 0.93 MPa, respectively. There is little difference in tensile bond strength of composite resin in Er,Cr:YSGG lased-prepared cavities in comparison with bur-prepared cavities, but the Er:YAG laser group showed higher bond strength than the other groups.
Van Laethem, Michelle; Beckers, Debby G J; Kompier, Michiel A J; Dijksterhuis, Ap; Geurts, Sabine A E
2013-11-01
The objective of this study was to review longitudinal and intervention studies examining the association between psychosocial work characteristics (eg, job demands, job control, and social support) and sleep quality. Our main research aims were to examine whether (i) psychosocial work characteristics are a predictor of sleep quality, and (ii) sleep quality, in turn, is a predictor of psychosocial work characteristics. A systematic literature search resulted in 20 relevant papers, of which 16 were longitudinal studies and 3 were intervention studies (1 study was discussed in separate papers). To quantify results, we assessed the strength of evidence of all examined associations and subsequently evaluated the studies' research quality based on predefined quality criteria. One intervention and three longitudinal studies studies were categorized as being of high-quality. In longitudinal studies, we found consistent and strong evidence for a negative relation between job demands and sleep quality as well as evidence for a positive relation between job control and sleep quality. Other psychosocial work characteristics were examined in an insufficient number of (high-quality) studies. Moreover, both intervention studies as well as studies investigating reversed and reciprocal relations are rare, which further limits the possibility of drawing conclusions on causality. Based on the current literature, it can be concluded that high job demands and low job control are predictors of poor sleep quality. More high-quality research is needed to examine the possible causal relationship between these and other psychosocial work characteristics with sleep quality, in addition to research focusing on reversed and reciprocal relations.
Systematic review of the association between physical activity and burnout.
Naczenski, Lea M; Vries, Juriena D de; Hooff, Madelon L M van; Kompier, Michiel A J
2017-11-25
Burnout constitutes a health risk, and interventions are needed to reduce it. The aim of this study was to synthesize evidence regarding the relationship between physical activity and burnout by conducting a systematic review of longitudinal and intervention studies. A literature search resulted in the identification of a final set of ten studies: four longitudinal and six intervention studies. In separate analyses for each category, evidence was synthesized by extracting the study characteristics and assessing the methodological quality of each study. The strength of evidence was calculated with the standardized index of convergence (SIC). In longitudinal studies, we found moderately strong evidence (SIC (4) = -1) for a negative relationship between physical activity and the key component of burnout, i.e., exhaustion. We found strong evidence (SIC (6) = -0.86) for the effect of physical activity on reducing exhaustion in intervention studies. As only one study could be classified as a high quality study, these results of previous studies need to be interpreted with some caution. This systematic review suggests that physical activity constitutes an effective medium for the reduction of burnout. Although consistent evidence was found, there is a lack of high quality longitudinal and intervention studies considering the influence of physical activity on burnout. Therefore, future research should be conducted with the aim to produce high quality studies, to develop a full picture of physical activity as a strategy to reduce burnout.
Structure and Correlates of Cognitive Aging in a Narrow Age Cohort
2014-01-01
Aging-related changes occur for multiple domains of cognitive functioning. An accumulating body of research indicates that, rather than representing statistically independent phenomena, aging-related cognitive changes are moderately to strongly correlated across domains. However, previous studies have typically been conducted in age-heterogeneous samples over longitudinal time lags of 6 or more years, and have failed to consider whether results are robust to a comprehensive set of controls. Capitalizing on 3-year longitudinal data from the Lothian Birth Cohort of 1936, we took a longitudinal narrow age cohort approach to examine cross-domain cognitive change interrelations from ages 70 to 73 years. We fit multivariate latent difference score models to factors representing visuospatial ability, processing speed, memory, and crystallized ability. Changes were moderately interrelated, with a general factor of change accounting for 47% of the variance in changes across domains. Change interrelations persisted at close to full strength after controlling for a comprehensive set of demographic, physical, and medical factors including educational attainment, childhood intelligence, physical function, APOE genotype, smoking status, diagnosis of hypertension, diagnosis of cardiovascular disease, and diagnosis of diabetes. Thus, the positive manifold of aging-related cognitive changes is highly robust in that it can be detected in a narrow age cohort followed over a relatively brief longitudinal period, and persists even after controlling for many potential confounders. PMID:24955992
Structure and correlates of cognitive aging in a narrow age cohort.
Tucker-Drob, Elliot M; Briley, Daniel A; Starr, John M; Deary, Ian J
2014-06-01
Aging-related changes occur for multiple domains of cognitive functioning. An accumulating body of research indicates that, rather than representing statistically independent phenomena, aging-related cognitive changes are moderately to strongly correlated across domains. However, previous studies have typically been conducted in age-heterogeneous samples over longitudinal time lags of 6 or more years, and have failed to consider whether results are robust to a comprehensive set of controls. Capitalizing on 3-year longitudinal data from the Lothian Birth Cohort of 1936, we took a longitudinal narrow age cohort approach to examine cross-domain cognitive change interrelations from ages 70 to 73 years. We fit multivariate latent difference score models to factors representing visuospatial ability, processing speed, memory, and crystallized ability. Changes were moderately interrelated, with a general factor of change accounting for 47% of the variance in changes across domains. Change interrelations persisted at close to full strength after controlling for a comprehensive set of demographic, physical, and medical factors including educational attainment, childhood intelligence, physical function, APOE genotype, smoking status, diagnosis of hypertension, diagnosis of cardiovascular disease, and diagnosis of diabetes. Thus, the positive manifold of aging-related cognitive changes is highly robust in that it can be detected in a narrow age cohort followed over a relatively brief longitudinal period, and persists even after controlling for many potential confounders. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Lübs, Lena; Peplies, Jenny; Drell, Carina; Bammann, Karin
2018-04-16
The promotion of physical activity (PA) plays a major role for healthy ageing even in older age. There is a lack of cross-sectional and longitudinal studies explicitly dealing with barriers and drivers to PA in older adults. Therefore the aims of this study are a) to determine the prevalence of insufficient physical activity (IPA) in 65 to 75-year-olds in Europe and to identify factors associated with IPA in cross-section and b) to identify longitudinal risk factors for IPA in prior active persons. This study is using data of the Survey of Health, Ageing and Retirement in Europe (SHARE). SHARE is a cross-national panel database including individual data of the non-institutionalised population aged 50+ from 27 European countries. For the present paper, we included a cohort that participated in all first four waves of SHARE (2004-2011) aged 65-to-75-years at wave four (male n = 1761, female n = 2085) from 10 European countries. To identify cross-sectional and longitudinal associations, we calculated prevalence odds ratios and hazard ratios with 95% confidence intervals. The prevalence of IPA in 65-75-year-olds varied widely between countries, ranging from 55.4% to 83.3% in women and from 46.6% to 73.7% in men. IPA was associated with several intrapersonal factors and strength of association was similar for men and women for almost all investigated factors. Statistically significant associated with IPA were socioeconomic factors as low educational level (own and parental) and financial difficulties (male: POR: 1.60: 95%-CI: 1.26-2.03; female: POR: 1.58; 95%-CI: 1.26-1.97) and health-related factors as e.g. number of chronic diseases (male: POR: 1.34: 95%-CI: 1.23-1.45; female: POR: 1.31; 95%-CI: 1.21-1.42). Interpersonal only the size of social network was associated with IPA (male and female: POR: 0.88, 95%-CI: 0.81-0.95). Longitudinally in a fully adjusted model, only grip strength (HR: 0.99; CI-95%: 0.98-0.99) and BMI (HR: 1.02; CI-95%: 1.00-1.04) were statistically significant risk factors for IPA. PA promotion programs for older adults should incorporate the heterogeneity of health status and physical condition that can typically occur in this age group.
Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix
2015-04-01
To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower leg function. Isometric knee extensor and flexor strength of 4,553 Osteoarthritis Initiative participants (2,651 women and 1,902 men) was related to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function scores by linear regression. Further, groups of male and female participant strata with minimum clinically important differences (MCIDs) in WOMAC function scores (6 of 68 units) were compared across the full range of observed values and to participants without functional deficits (WOMAC score 0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Per regression equations, a 3.7% reduction in extensor strength and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and, respectively, a 3.6% and 4.8% reduction in men. For strength divided by body weight, reductions were 5.2% and 6.7%, respectively, in women and 5.8% and 6.7%, respectively, in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest nonlinear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Reductions of approximately 4% in isometric muscle strength and of 6% in strength per body weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower leg function. Copyright © 2015 by the American College of Rheumatology.
1988-10-12
white light sunspots (black dotsl but these regions are associated with intense radiation at 20 cm wave- material would, however, be invisible in X...spots. The intense , million degree radiation at 6 cm lies above sunspot umbrae in coronal regions where the longitudinal magnetic field strength Hi...capable of measuring the radio intensity and polarization with high angular and time resolution, thereby providing information about the preburst heating
High performance thermoplastics - A review of neat resin and composite properties
NASA Technical Reports Server (NTRS)
Johnston, Norman J.; Hergenrother, Paul M.
1987-01-01
A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness.
Skin, Stringer, and Fastener Loads in Buckled Fuselage Panels
NASA Technical Reports Server (NTRS)
Young, Richard D.; Rose, Cheryl A.; Starnes, James H., Jr.
2001-01-01
The results of a numerical study to assess the effect of skin buckling on the internal load distribution in a stiffened fuselage panel, with and without longitudinal cracks, are presented. In addition, the impact of changes in the internal loads on the fatigue life and residual strength of a fuselage panel is assessed. A generic narrow-body fuselage panel is considered. The entire panel is modeled using shell elements and considerable detail is included to represent the geometric-nonlinear response of the buckled skin, cross section deformation of the stiffening components, and details of the skin-string attachment with discrete fasteners. Results are presented for a fixed internal pressure and various combinations of axial tension or compression loads. Results illustrating the effect of skin buckling on the stress distribution in the skin and stringer, and fastener loads are presented. Results are presented for the pristine structure, and for cases where damage is introduced in the form of a longitudinal crack adjacent to the stringer, or failed fastener elements. The results indicate that axial compression loads and skin buckling can have a significant effect on the circumferential stress in the skin, and fastener loads, which will influence damage initiation, and a comparable effect on stress intensity factors for cases with cracks. The effects on stress intensity factors will influence damage propagation rates and the residual strength of the panel.
Predicting fruit consumption: the role of habits, previous behavior and mediation effects
2014-01-01
Background This study assessed the role of habits and previous behavior in predicting fruit consumption as well as their additional predictive contribution besides socio-demographic and motivational factors. In the literature, habits are proposed as a stable construct that needs to be controlled for in longitudinal analyses that predict behavior. The aim of this study is to provide empirical evidence for the inclusion of either previous behavior or habits. Methods A random sample of 806 Dutch adults (>18 years) was invited by an online survey panel of a private research company to participate in an online study on fruit consumption. A longitudinal design (N = 574) was used with assessments at baseline and after one (T2) and two months (T3). Multivariate linear regression analysis was used to assess the differential value of habit and previous behavior in the prediction of fruit consumption. Results Eighty percent of habit strength could be explained by habit strength one month earlier, and 64% of fruit consumption could be explained by fruit consumption one month earlier. Regression analyses revealed that the model with motivational constructs explained 41% of the behavioral variance at T2 and 38% at T3. The addition of previous behavior and habit increased the explained variance up to 66% at T2 and to 59% at T3. Inclusion of these factors resulted in non-significant contributions of the motivational constructs. Furthermore, our findings showed that the effect of habit strength on future behavior was to a large extent mediated by previous behavior. Conclusions Both habit and previous behavior are important as predictors of future behavior, and as educational objectives for behavior change programs. Our results revealed less stability for the constructs over time than expected. Habit strength was to a large extent mediated by previous behavior and our results do not strongly suggest a need for the inclusion of both constructs. Future research needs to assess the conditions that determine direct influences of both previous behavior and habit, since these influences may differ per type of health behavior, per context stability in which the behavior is performed, and per time frame used for predicting future behavior. PMID:25037859
Microstructure, Texture, and Mechanical Behavior of As-cast Ni-Fe-W Matrix Alloy
NASA Astrophysics Data System (ADS)
Rao, A. Sambasiva; Manda, Premkumar; Mohan, M. K.; Nandy, T. K.; Singh, A. K.
2018-04-01
This article describes the tensile properties, flow, and work-hardening behavior of an experimental alloy 53Ni-29Fe-18W in as-cast condition. The microstructure of the alloy 53Ni-29Fe-18W displays single phase (fcc) in as-cast condition along with typical dendritic features. The bulk texture of the as-cast alloy reveals the triclinic sample symmetry and characteristic nature of coarse-grained materials. The alloy exhibits maximum strength ( σ YS and σ UTS) values along the transverse direction. The elongation values are maximum and minimum along the transverse and longitudinal directions, respectively. Tensile fracture surfaces of both the longitudinal and transverse samples display complete ductile fracture features. Two types of slip lines, namely, planar and intersecting, are observed in deformed specimens and the density of slip lines increases with increasing the amount of deformation. The alloy displays moderate in-plane anisotropy ( A IP) and reasonably low anisotropic index ( δ) values, respectively. The instantaneous or work-hardening rate curves portray three typical stages (I through III) along both the longitudinal and transverse directions. The alloy exhibits dislocation-controlled strain hardening during tensile testing, and slip is the predominant deformation mechanism.
An ``Openable,'' High-Strength Gradient Set for Orthopedic MRI
NASA Astrophysics Data System (ADS)
Crozier, Stuart; Roffmann, Wolfgang U.; Luescher, Kurt; Snape-Jenkinson, Christopher; Forbes, Lawrence K.; Doddrell, David M.
1999-07-01
A novel three-axis gradient set and RF resonator for orthopedic MRI has been designed and constructed. The set is openable and may be wrapped around injured joints. The design methodology used was the minimization of magnetic field spherical harmonics by simulated annealing. Splitting of the longitudinal coil presents the major design challenge to a fully openable gradient set and in order to efficiently design such coils, we have developed a new fast algorithm for determining the magnetic field spherical harmonics generated by an arc of multiturn wire. The algorithm allows a realistic impression of the effect of split longitudinal designs. A prototype set was constructed based on the new designs and tested in a 2-T clinical research system. The set generated 12 mT/m/A with a linear region of 12 cm and a switching time of 100 μs, conforming closely with theoretical predictions. Preliminary images from the set are presented.
Spirituality: a cultural strength for African American mothers with HIV.
Polzer Casarez, Rebecca L; Miles, Margaret Shandor
2008-05-01
The purpose of this study was to describe how spirituality affected the lives of African American mothers with Human Immunodeficiency Virus (HIV) in the context of coping. This qualitative descriptive study used secondary data of interviews from a larger longitudinal study of parental caregiving of infants seropositive for HIV. Participants were 38 African American mothers with HIV. Data from longitudinal semi-structured interviews were analyzed using content analysis. The women dealt with the stresses of HIV through a relationship with God. Two domains explain this relationship: God in control and God requires participation. The benefits of their relationship with God were a decrease in stress and worry about their own health and that of their infants. It is important for nurses working with mothers with HIV to acknowledge their spirituality and assess how spirituality helps them cope with and manage their illness.
Vanbinst, Kiran; Ansari, Daniel; Ghesquière, Pol; De Smedt, Bert
2016-01-01
In this article, we tested, using a 1-year longitudinal design, whether symbolic numerical magnitude processing or children’s numerical representation of Arabic digits, is as important to arithmetic as phonological awareness is to reading. Children completed measures of symbolic comparison, phonological awareness, arithmetic, reading at the start of third grade and the latter two were retested at the start of fourth grade. Cross-sectional and longitudinal correlations indicated that symbolic comparison was a powerful domain-specific predictor of arithmetic and that phonological awareness was a unique predictor of reading. Crucially, the strength of these independent associations was not significantly different. This indicates that symbolic numerical magnitude processing is as important to arithmetic development as phonological awareness is to reading and suggests that symbolic numerical magnitude processing is a good candidate for screening children at risk for developing mathematical difficulties. PMID:26942935
Income and Social Rank Influence UK Children's Behavioral Problems: A Longitudinal Analysis.
Garratt, Elisabeth A; Chandola, Tarani; Purdam, Kingsley; Wood, Alex M
2017-07-01
Children living in low-income households face elevated risks of behavioral problems, but the impact of absolute and relative income to this risk remains unexplored. Using the U.K. Millennium Cohort Study data, longitudinal associations between Strengths and Difficulties Questionnaire scores and absolute household income, distance from the regional median and mean income, and regional income rank were examined in 3- to 12-year-olds (n = 16,532). Higher absolute household incomes were associated with lower behavioral problems, while higher income rank was associated with lower behavioral problems only at the highest absolute incomes. Higher absolute household incomes were associated with lower behavioral problems among children in working households, indicating compounding effects of income and socioeconomic advantages. Both absolute and relative incomes therefore appear to influence behavioral problems. © 2016 The Authors. Child Development © 2016 Society for Research in Child Development, Inc.
NASA Astrophysics Data System (ADS)
Maier, Galina; Astafurova, Elena; Melnikov, Eugene; Moskvina, Valentina; Galchenko, Nina
2017-12-01
The effect of grain orientation relative to tensile load on the strain hardening behavior and fracture mechanism of directionally solidified high-nitrogen steel Fe-20Cr-22Mn-1.5V-0.2C-0.6N (in wt %) was studied. The tensile samples oriented along the longitudinal direction of columnar grains demonstrated the improved mechanical properties compared to specimens with the transversal directions of columnar grains: the values of tensile strength and strain-to-fracture were as high as 1080 MPa and 22%, respectively, for tension along the columnar grains and 870 MPa and 11%, respectively, for the tension transversal to the columnar grains. The change in the grain orientation relative to the tensile load varies a fracture mode of the steel. The fraction of the transgranular fracture was higher in the samples with longitudinal directions of the columnar grains compared to the transversal ones.
Van Nieuwpoort, Caroline; Vlot, Mariska; Schaap, Laura; Lips, Paul; Drent, Madeleine
2018-05-22
Human aging is accompanied by a decrease in growth hormone secretion and serum IGF-1 levels. Also, loss of muscle mass, strength and impairment of physical performance, ending in a state of frailty, are seen in elderly. We aimed to investigate whether handgrip strength, physical performance and recurrent falls are related to serum IGF-1 levels in community dwelling elderly. Observational cohort study (cross-sectional and prospective). We studied the association between IGF-1 and handgrip strength, physical performance and falls in participants of the Longitudinal Aging Study Amsterdam. 1292 participants were included (633 men, 659 women). Serum IGF-1 levels were divided into quartiles (IGF-1-Q1 to IGF-1-Q4). Data on falls were collected prospectively for a period of three years. All analyses were stratified for age and physical activity and adjusted for relevant confounders. Men with a low physical activity score in IGF-1-Q1 and IGF-1-Q2 of the younger age group had a lower handgrip strength compared to IGF-1-Q4. In younger more active males in IGF-1-Q2 physical performance was worse. Recurrent fallers were less prevalent in older, low active males with low IGF-1 levels. In females, recurrent fallers were more prevalent in older, more active females in IGF-1-Q2. IGF-1 quartile may predict changes in handgrip strength and physical performance in men and women. Our results indicate that lower IGF-1 levels are associated with lower handgrip strength and worse physical performance, but less recurrent fallers especially in men. Associations were often more robust in IGF-1-Q2. Future studies on this topic are desirable.
Culvenor, Adam G; Ruhdorfer, Anja; Juhl, Carsten; Eckstein, Felix; Øiestad, Britt Elin
2017-05-01
To perform a systematic review and meta-analysis on the association between knee extensor strength and the risk of structural, symptomatic, or functional deterioration in individuals with or at risk of knee osteoarthritis (KOA). We systematically identified and methodologically appraised all longitudinal studies (≥1-year followup) reporting an association between knee extensor strength and structural (tibiofemoral, patellofemoral), symptomatic (self-reported, knee replacement), or functional (subjective, objective) decline in individuals with or at risk of radiographic or symptomatic KOA. Results were pooled for each of the above associations using meta-analysis, or if necessary, summarized according to a best-evidence synthesis. Fifteen studies were included, evaluating >8,000 participants (51% female), with a followup time between 1.5 and 8 years. Meta-analysis revealed that lower knee extensor strength was associated with an increased risk of symptomatic (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC] pain: odds ratio [OR] 1.35, 95% confidence interval [95% CI] 1.10-1.67) and functional decline (WOMAC function: OR 1.38, 95% CI 1.00-1.89, and chair-stand task: OR 1.03, 95% CI 1.03-1.04), but not increased risk of radiographic tibiofemoral joint space narrowing (JSN) (OR 1.15, 95% CI 0.84-1.56). No trend in risk was observed for KOA status (present versus absent). Best-evidence synthesis showed inconclusive evidence for lower knee extensor strength being associated with increased risk of patellofemoral deterioration. Meta-analysis showed that lower knee extensor strength is associated with an increased risk of symptomatic and functional deterioration, but not tibiofemoral JSN. The risk of patellofemoral deterioration in the presence of knee extensor strength deficits is inconclusive. © 2016, American College of Rheumatology.
Childhood cardiorespiratory fitness, muscular fitness and adult measures of glucose homeostasis.
Fraser, Brooklyn J; Blizzard, Leigh; Schmidt, Michael D; Juonala, Markus; Dwyer, Terence; Venn, Alison J; Magnussen, Costan G
2018-02-14
To assess whether childhood cardiorespiratory fitness (CRF) and muscular fitness phenotypes (strength, power, endurance) predict adult glucose homeostasis measures. Prospective longitudinal study. Study examining participants who had physical fitness measured in childhood (aged 7-15 years) and who attended follow-up clinics approximately 20 years later and provided a fasting blood sample which was tested for glucose and insulin. Physical fitness measurements included muscular strength (right and left grip, shoulder flexion, shoulder and leg extension), power (standing long jump distance) and endurance (number of push-ups in 30s), and CRF (1.6km run duration). In adulthood, fasting glucose and insulin levels were used to derive glucose homeostasis measures of insulin resistance (HOMA2-IR) and beta cell function (HOMA2-β). A standard deviation increase in childhood CRF or muscular strength (males) was associated with fasting glucose (CRF: β=-0.06mmol/L), fasting insulin (CRF: β=-0.73mU/L; strength: β=-0.40mU/L), HOMA2-IR (CRF: β=-0.06; strength: β=-0.05) and HOMA2-β (CRF: β=-3.06%; strength: β=-2.62%) in adulthood, independent of the alternative fitness phenotype (all p<0.01). Adjustment for childhood waist circumference reduced the effect by 17-35% for CRF and 0-15% for muscular strength (males) and statistical significance remained for all associations expect between CRF, fasting glucose and HOMA2-β (p>0.06). CRF and muscular fitness in childhood were inversely associated with measures of fasting insulin, insulin resistance and beta cell function in adulthood. Childhood CRF and muscular fitness could both be potential independent targets for strategies to help reduce the development of adverse glucose homeostasis. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Buckner, Samuel L; Loenneke, Jeremy P; Loprinzi, Paul D
2015-10-01
No study has applied the "fat-but-fit" paradigm with respect to muscular strength as an index of fitness, despite muscular strength being independently associated with functional ability and mortality. To examine the relationship between lower extremity muscular strength, C-reactive protein (CRP), and all-cause mortality among normal weight, overweight and obese individuals. Data from the 1999-2002 NHANES were used (N=2740 adults; ≥ 50 years). CRP values were obtained from a blood sample. Lower body isokinetic knee extensor strength (IKES) was assessed using a Kin Kom MP isokinetic dynamometer. Participant data was linked to death certificate data from the National Death Index to ascertain all-cause mortality status. Participants were classified, based on body mass index (BMI) and strength as: normal weight and unfit (<75th IKES percentile); overweight and unfit; obese and unfit: normal weight and fit (≥ 75th IKES percentile); overweight and fit; and obese and fit. Independent of physical activity and other confounders, compared to those who were normal weight and unfit, unfit overweight (β=.14, p=0.009), unfit obese (β=.33, p<0.001), and obese and fit (β=.17, p=0.008) participants, had higher CRP levels. However, there was no difference in CRP levels between normal weight and unfit participants and overweight and fit participants (β=0.04, p=0.35). Compared to normal weight unfit adults, overweight fit (HR=0.28; 95% CI: 0.11-0.70; p=0.008) adults had a lower hazard rate for all-cause mortality. These finding suggest that increased lower body strength, independent of physical activity, may reduce premature all-cause mortality and attenuate systemic inflammation among overweight adults. Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanical properties of composite materials
NASA Technical Reports Server (NTRS)
Thornton, H. Richard; Cornwell, L. R.
1993-01-01
A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).
Tensile behavior of glass/ceramic composite materials at elevated temperatures
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.; Jacobs, J.
1987-01-01
This paper describes the tensile behavior of high-temperature composite materials containing continuous Nicalon ceramic fiber reinforcement and glass and glass/ceramic matrices. The longitudinal properties of these materials can approach theoretical expectations for brittle matrix composites, failing at a strength and ultimate strain level consistent with those of the fibers. The brittle, high-modulus matrices result in a nonlinear stress-strain curve due to the onset of stable matrix cracking at 10 to 30 percent of the fiber strain to failure, and at strains below this range in off-axis plies. Current fibers and matrices can provide attractive properties well above 1000 C, but composites experience embrittlement in oxidizing atmospheres at 800 to 1000 C due to oxidation of a carbon interface reaction layer.The oxidation effect greatly increases the interface bond strength, causing composite embrittlement.
Dynamics of a Landau-Zener transitions in a two-level system driven by a dissipative environment
NASA Astrophysics Data System (ADS)
Ateuafack, M. E.; Diffo, J. T.; Fai, L. C.
2016-02-01
The paper investigates the effects of a two-level quantum system coupled to transversal and longitudinal dissipative environment. The time-dependent phase accumulation, LZ transition probability and entropy in the presence of fast-ohmic, sub-ohmic and super-ohmic quantum noise are derived. Analytical results are obtained in terms of temperature, dissipation strength, LZ parameter and bath cutoff frequency. The bath is observed to modify the standard occupation difference by a decaying random phase factor and also produces dephasing during the transfer of population. The dephasing characteristics or the initial non-zero decoherence rate are observed to increase in time with the bath temperature and depend on the system-bath coupling strength and cutoff frequency. These parameters are found to strongly affect the memory and thus tailor the coherence process of the system.
Tensile stress-strain behavior of boron/aluminum laminates
NASA Technical Reports Server (NTRS)
Sova, J. A.; Poe, C. C., Jr.
1978-01-01
The tensile stress-strain behavior of five types of boron/aluminum laminates was investigated. Longitudinal and transverse stress-strain curves were obtained for monotonic loading to failure and for three cycles of loading to successively higher load levels. The laminate strengths predicted by assuming that the zero deg plies failed first correlated well with the experimental results. The stress-strain curves for all the boron/aluminum laminates were nonlinear except at very small strains. Within the small linear regions, elastic constants calculated from laminate theory corresponded to those obtained experimentally to within 10 to 20 percent. A limited amount of cyclic loading did not affect the ultimate strength and strain for the boron/aluminum laminates. The laminates, however, exhibited a permanent strain on unloading. The Ramberg-Osgood equation was fitted to the stress-strain curves to obtain average curves for the various laminates.
Influences of temperature on asymmetric quantum dot qubit in Coulombic impunity potential
NASA Astrophysics Data System (ADS)
Chen, Y.-J.; Song, H.-T.; Xiao, J.-L.
2018-05-01
Using the variational method of the Pekar-type, we study the influences of the temperature on the asymmetric quantum dot (QD) qubit in the Coulombic impunity potential. Then we derive the numerical results and formulate the derivative relationships of the electron probability density and the electron oscillation period in the superposition state of the ground state and the first-excited state with the electron-phonon coupling constant, the Coulombic impurity potential, the transverse and longitudinal confinement strengths at different temperatures, respectively.
Shear damage mechanisms in a woven, Nicalon-reinforced ceramic-matrix composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keith, W.P.; Kedward, K.T.
The shear response of a Nicalon-reinforced ceramic-matrix composite was investigated using Iosipescu tests. Damage was characterized by X-ray, optical, and SEM techniques. The large inelastic strains which were observed were attributed to rigid body sliding of longitudinal blocks of material. These blocks are created by the development and extension of intralaminar cracks and ply delaminations. This research reveals that the debonding and sliding characteristics of the fiber-matrix interface control the shear strength, strain softening, and cyclic degradation of the material.
Probabilistic Structural Analysis of Ship Hull Longitudinal Strength.
1980-12-01
EXRPLATION CTA DATAI .0251, ESSO 1:.qT H U %IB R FA .1: *fREVISED POS-%.ATRNT .010 oaIGINL ,.ESSO MALAYSIA .0o5.j LOG OF NUMBER OF CYCLES, LOG N FIG. 1...108 0.000961 i f Nញ a -’ 0. 0625" 5/8 0.01172 flange , x + Wf O0.156 +w breadth 8 -L,_ 0.0625 F6 0.156 + wf For Wf = 6" ,= 0. 0625 z o0 o. ,- .0. 0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjbar, V. H.; Méot, F.; Bai, M.
Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. Particularly, we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. Furthermore, these results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. We then consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Novel composites for wing and fuselage applications
NASA Technical Reports Server (NTRS)
Sobel, L. H.; Buttitta, C.; Suarez, J. A.
1995-01-01
Probabilistic predictions based on the IPACS code are presented for the material and structural response of unnotched and notched, IM6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is judged poor because IPACS did not have a progressive failure capability at the time this work was performed. The report also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.
NASA Technical Reports Server (NTRS)
Sobel, Larry; Buttitta, Claudio; Suarez, James
1993-01-01
Probabilistic predictions based on the Integrated Probabilistic Assessment of Composite Structures (IPACS) code are presented for the material and structural response of unnotched and notched, 1M6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply, and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is deficient because IPACS did not yet have a progressive failure capability. The paper also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.
Bučar Pajek, Maja; Leskošek, Bojan; Vivoda, Tjaša; Svilan, Katarina; Čuk, Ivan; Pajek, Jernej
2016-06-01
To reduce the need for a large number of executed physical function tests we examined inter-relations and determined predictive power for daily physical activity of the following tests: 6-min walk, 10 repetition sit-to-stand, time up-and-go, Storke balance, handgrip strength, upper limb tapping and sitting forward bend tests. In 90 dialysis and 140 healthy control subjects we found high correlations between all tests, especially those engaging lower extremities. Sit-to-stand, forward bend and handgrip strength were selected for the test battery and composite motor performance score. Sit-to-stand test was superior in terms of sensitivity to uremia effects and association with daily physical function in adjusted analyses. There was no incremental value in calculating the composite performance score. We propose to standardize the physical function assessment of dialysis patients for cross-sectional and longitudinal observations with three simple, cheap, well-accessible and easily performed test tools: sit-to-stand test, handgrip strength and Human Activity Profile questionnaire. © 2016 International Society for Apheresis, Japanese Society for Apheresis, and Japanese Society for Dialysis Therapy.
Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de
2016-01-01
Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391
Does endodontic post space irrigation affect smear layer removal and bonding effectiveness?
Gu, Xin-Hua; Mao, Cai-Yun; Liang, Cong; Wang, Hui-Ming; Kern, Matthias
2009-10-01
The effect of different post space irrigants on smear layer removal and dentin bond strength was evaluated. Sixty-six extracted sound maxillary central incisors were endodontically treated. After post space preparation, the teeth were assigned to three groups of 22 teeth each. The teeth of these three groups were irrigated for 1 min with 17% ethylenediaminetetracetic acid (EDTA) (group 1), 5.25% sodium hypochlorite (NaOCl) (group 2), or 0.9% sodium chloride (NaCl) (group 3). In each group, eight specimens were split longitudinally for smear layer evaluation, and the other fourteen specimens were filled with a self-etching adhesive system (Panavia F). Four of 14 specimens of each group were prepared for evaluation of the resin-dentin interdiffusion zone (RDIZ) and resin tags, and the other 10 specimens were serially sectioned for push-out test analysis. Smear layer removal and bond strength were affected by different post space irrigants. EDTA removed the smear layer extremely effectively and, as a result, improved the bond strength at each region (apical, middle, and coronal) of the roots. Resin tag formation and the RDIZ were also affected by different irrigants and in accordance with bond strength. Therefore, removal of the smear layer use a self-etching luting system plays an important role in bonding effectiveness.
Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E
2014-05-01
The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Ai, Amy L; Aisenberg, Eugene; Weiss, Saskia I; Salazar, Dulny
2014-03-01
Social Identity Theory indicates that ethnic identity could benefit minority members in a society because of its promotion of a sense of belonging, or of its buffering of the damage of discrimination. Despite growing investigation about Latinos' overall health, few studies have simultaneously examined the influence of multiple cultural strength factors, especially racial/ethnic identity, social support, and religious attendance, on these outcomes. Using the National Latino and Asian American Study, we examine the potential predictive value of these cultural strength factors on Latinos' Self-Rated Mental and Physical Health (SRMH and SRPH). Two separate two-step regression models revealed significant positive effects of racial/ethnic identity on both mental and physical health of Latinos, above and beyond the effect of known demographic and acculturation factors, such as discrimination. Religious attendance had a positive effect on SRMH but not on SRPH. The deteriorating roles of discrimination, in mental health only, and that of Length in the US in both outcomes, however, was primarily not altered by entry of these cultural strength factors. The independent direct effect of racial/ethnic identity among Latinos nationwide may suggest that this cultural strength is an internalized protective asset. Longitudinal data is needed to explore its underlying mechanism and long-term impact.
Isokinetic Assessment and Musculoskeletal Complaints in Paralympic Athletes: A Longitudinal Study.
Silva, Andressa; Zanca, Gisele; Alves, Eduardo Silva; Lemos, Valdir de Aquino; Gávea, Sebastião Augusto; Winckler, Ciro; Mattiello, Stela Márcia; Peterson, Ronnie; Vital, Roberto; Tufik, Sergio; De Mello, Marco Túlio
2015-10-01
The aim of this study was to assess and monitor the peak torque of the knee extensor and flexor muscles in flexion and extension and the reports of musculoskeletal complaints in members of the main Brazilian Paralympic athletics team through 1 yr. Fourteen healthy athletes from both sexes were assessed three times in 1 yr. The volunteers were assessed for the presence of musculoskeletal complaints and muscle strength at three time points: (1) at the onset of the preparatory phase on December 2009, (2) at a follow-up assessment on June 2010, and (3) before actual competition on December 2010. The athletes' self-reported musculoskeletal complaints were assessed in structured interviews, and the muscle strength was assessed by means of isokinetic dynamometry. The knee flexor and extensor muscle strength exhibited significant increase in both the right and left lower limbs at the second and third assessments compared with the first one (P < 0.05). Muscle imbalance was associated with knee and thigh complaints at all three assessments (P < 0.05). The knee flexor and extensor muscle strength exhibited a gradual increase in both lower limbs during the course of the three assessments. In parallel, muscle imbalance was associated with the occurrence of knee and thigh complaints.
Modeling of Stiffness and Strength of Bone at Nanoscale.
Abueidda, Diab W; Sabet, Fereshteh A; Jasiuk, Iwona M
2017-05-01
Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen-mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.
Effect of DHEAS on skeletal muscle over the life span: the InCHIANTI study.
Valenti, Giorgio; Denti, Licia; Maggio, Marcello; Ceda, GianPaolo; Volpato, Stefano; Bandinelli, Stefania; Ceresini, Graziano; Cappola, Anne; Guralnik, Jack M; Ferrucci, Luigi
2004-05-01
It has been suggested that the reduced production of dehydroepiandrosterone sulfate (DHEAS) may be partially responsible for the decline of muscle strength and mass that often occurs with aging. However, this hypothesis has been only tested in small series of normal volunteers, with little consideration for potential confounders. Using data from a representative sample of 558 men (20-95 years) we tested the hypothesis that circulating DHEAS is independently associated with muscle strength and mass. Data are from InCHIANTI, an epidemiological study conducted in the Chianti geographic area (Tuscany, Italy). DHEAS serum levels were related to lower extremity muscle strength assessed by hand-held dynamometry and calf muscle area estimated from quantitative computerized tomography. Confounders included age, anthropometrics, physical activity, smoking, energy and alcohol intake, albumin, lipids, interleukin-6, comorbidity, depressive symptoms, and disability in activities of daily living. In fully adjusted models predicting lower extremity muscle strength and calf muscle area, we found significant age*log DHEAS interactions, suggesting that the relationship between DHEAS levels and muscle parameters differs across the life span. In age-stratified models adjusted for confounders, serum DHEAS was an independent predictor of muscle strength (p <.02) and mass (p <.01), but only for men between 60 and 79 years of age. After adjusting these models for serum-free or bioavailable testosterone, results were unchanged. In men aged 60-79 years, circulating DHEAS is an independent correlate of muscle strength and calf muscle area. The possible causal role of declining DHEAS in age-related sarcopenia should be further explored in longitudinal studies.
Mucha, Matthew D; Caldwell, Wade; Schlueter, Emily L; Walters, Carly; Hassen, Amy
2017-04-01
Determine the association between hip abduction strength and lower extremity running related injury in distance runners. Systematic review. Prospective longitudinal and cross sectional studies that quantified hip abduction strength and provided diagnosis of running related injury in distance runners were included and assessed for quality. Effect size was calculated for between group differences in hip abduction strength. Of the 1841 articles returned in the initial search, 11 studies matched all inclusion criteria. Studies were grouped according to injury: iliotibial band syndrome, patellofemoral pain syndrome, medial tibial stress syndrome, tibial stress fracture, and Achilles tendinopathy, and examined for strength differences between injured and non-injured groups. Meaningful differences were found in the studies examining iliotibial band syndrome. Three of five iliotibial band syndrome articles found weakness in runners with iliotibial band syndrome; two were of strong methodological rigor and both of those found a relationship between weakness and injury. Other results did not form associative or predictive relationships between weakness and injury in distance runners. Hip abduction weakness evaluated by hand held dynamometer may be associated with iliotibial band syndrome in distance runners as suggested by several cross sectional studies but is unclear as a significant factor for the development of patellofemoral pain syndrome, medial tibial stress syndrome, tibial stress fracture or Achilles tendinopathy according to the current literature. Future studies are needed with consistent methodology and inclusion of all distance running populations to determine the significance of hip abduction strength in relationship to lower extremity injury. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Blakeley, Caitlin E; Van Rompay, Maria I; Schultz, Nicole S; Sacheck, Jennifer M
2018-02-02
The relationship between muscle strength and cardiometabolic risk factors in youth, and the potential influence of vitamin D status on this relationship, is not well understood. This study examined associations between muscle strength and dyslipidemia, serum 25-hydroxyvitamin D [25(OH)D], and weight status in diverse schoolchildren. Measures of hand-grip strength (standardized for sex and body weight), anthropometrics (height and weight converted to BMI z-score [BMIz]), sociodemographics, and fasting blood concentrations of plasma HDL-C and triglycerides and serum 25(OH)D were collected from 350 4th-8th grade schoolchildren (11.2 ± 1.3 y, 49.4% female, 56.3% non-white/Caucasian). Logistic regression was used to measure associations between standardized tertiles of grip strength and blood lipids, 25(OH)D, and weight status along with associations between 25(OH)D and dyslipidemia and weight status. Children with higher grip strength had lower odds of overweight/obesity (OR: 0.03, 95% CI: 0.01-0.06, in the highest tertile of grip strength vs. lowest, p for trend< 0.0001), borderline/low HDL-C (OR: 0.28, 95% CI: 0.16-0.50, p for trend< 0.0001), and borderline/high triglycerides (OR: 0.48, 95% CI: 0.25-0.92, p for trend< 0.05), adjusting for covariates. Associations between blood lipids and grip strength became non-significant after further adjustment for BMIz. No association was observed between grip strength and 25(OH)D, nor between 25(OH)D and borderline/low HDL-C or weight status; however, vitamin D sufficiency was associated with lower odds of borderline/high triglycerides compared with vitamin D deficiency (OR: 0.26, 95% CI: 0.09-0.74, p for trend< 0.05) before BMIz adjustment. Among racially/ethnically diverse children, muscle strength was associated with lower dyslipidemia. Longitudinal studies are needed to explore whether changes in muscle strength impact this relationship in children, independent of weight status. This study was registered at www.clinicaltrials.gov (No. NCT01537809 ) on February 17, 2012.
Fatigue Life of Bovine Meniscus under Longitudinal and Transverse Tensile Loading
Creechley, Jaremy J.; Krentz, Madison E.; Lujan, Trevor J.
2017-01-01
The knee meniscus is composed of a fibrous matrix that is subjected to large and repeated loads. Consequently, the meniscus is frequently torn, and a potential mechanism for failure is fatigue. The objective of this study was to measure the fatigue life of bovine meniscus when applying cyclic tensile loads either longitudinal or transverse to the principal fiber direction. Fatigue experiments consisted of cyclic loads to 60, 70, 80 or 90% of the predicted ultimate tensile strength until failure occurred or 20,000 cycles was reached. The fatigue data in each group was fit with a Weibull distribution to generate plots of stress level vs. cycles to failure (S-N curve). Results showed that loading transverse to the principal fiber direction gave a two-fold increase in failure strain, a three-fold increase in creep, and a nearly four-fold increase in cycles to failure (not significant), compared to loading longitudinal to the principal fiber direction. The S-N curves had strong negative correlations between the stress level and the mean cycles to failure for both loading directions, where the slope of the transverse S-N curve was 11% less than the longitudinal S-N curve (longitudinal: S=108–5.9ln(N); transverse: S=112–5.2ln(N)). Collectively, these results suggest that the non-fibrillar matrix is more resistant to fatigue failure than the collagen fibers. Results from this study are relevant to understanding the etiology of atraumatic radial and horizontal meniscal tears, and can be utilized by research groups that are working to develop meniscus implants with fatigue properties that mimic healthy tissue. PMID:28088070
Relationship Between Urban Sprawl and Weight of United States Youth
Ewing, Reid; Brownson, Ross C.; Berrigan, David
2007-01-01
Background Among United States youth there is an obesity epidemic with potential lifelong health implications. To date, relationships between the built environment and body mass index (BMI) have not been evaluated for youth, and have not been evaluated longitudinally. Objective To determine if urban sprawl is associated with BMI for U.S. youth. Method Using data from the 1997 National Longitudinal Survey of Youth (NLSY97), both cross-sectional and longitudinal analyses were conducted. Hierarchical modeling was used to relate characteristics of individuals, households, and places to BMI. Individual and household data were extracted from the NLSY97. The independent variable of interest was the county sprawl index, which was derived with principal components analyses from census and other data. Results In a cross-sectional analysis, the likelihood of U.S. adolescents (aged 12–17 years) being overweight or at risk of overweight (≥85th percentile relative to the Centers for Disease Control [CDC] growth charts) was associated with county sprawl (p=0.022). In another cross-sectional analysis, after controlling for sociodemographic and behavioral covariates, the likelihood of young adults (aged 18–23 years) being obese was also associated with county sprawl (p=0.048). By contrast, in longitudinal analyses, BMI growth curves for individual youth over the 7 years of NLSY97, and BMI changes for individual youth who moved between counties, were not related to county sprawl (although coefficient signs were as expected). Conclusions Cross-sectional analyses suggest that urban form is associated with overweight among U.S. youth. The strength of these relationships proved comparable to those previously reported for adults. Longitudinal analyses show no such relationship. It is unclear why these approaches give different results, but sample sizes, latent effects, and confounders may contribute. PMID:17169708
Relationship between urban sprawl and weight of United States youth.
Ewing, Reid; Brownson, Ross C; Berrigan, David
2006-12-01
Among United States youth there is an obesity epidemic with potential life-long health implications. To date, relationships between the built environment and body mass index (BMI) have not been evaluated for youth, and have not been evaluated longitudinally. To determine if urban sprawl is associated with BMI for U.S. youth. Using data from the 1997 National Longitudinal Survey of Youth (NLSY97), both cross-sectional and longitudinal analyses were conducted. Hierarchical modeling was used to relate characteristics of individuals, households, and places to BMI. Individual and household data were extracted from the NLSY97. The independent variable of interest was the county sprawl index, which was derived with principal components analyses from census and other data. In a cross-sectional analysis, the likelihood of U.S. adolescents (aged 12-17 years) being overweight or at risk of overweight (> or =85th percentile relative to the Centers for Disease Control growth charts) was associated with county sprawl (p=0.022). In another cross-sectional analysis, after controlling for sociodemographic and behavioral covariates, the likelihood of young adults (aged 18-23 years) being obese was also associated with county sprawl (p=0.048). By contrast, in longitudinal analyses, BMI growth curves for individual youth over the 7 years of NLSY97, and BMI changes for individual youth who moved between counties, were not related to county sprawl (although coefficient signs were as expected). Cross-sectional analyses suggest that urban form is associated with being overweight among U.S. youth. The strength of these relationships proved comparable to those previously reported for adults. Longitudinal analyses show no such relationship. It is unclear why these approaches give different results, but sample sizes, latent effects, and confounders may contribute.
Systematic review of the association between physical activity and burnout
Naczenski, Lea M.; de Vries, Juriena D.; van Hooff, Madelon L. M.; Kompier, Michiel A. J.
2017-01-01
Objective: Burnout constitutes a health risk, and interventions are needed to reduce it. The aim of this study was to synthesize evidence regarding the relationship between physical activity and burnout by conducting a systematic review of longitudinal and intervention studies. Methods: A literature search resulted in the identification of a final set of ten studies: four longitudinal and six intervention studies. In separate analyses for each category, evidence was synthesized by extracting the study characteristics and assessing the methodological quality of each study. The strength of evidence was calculated with the standardized index of convergence (SIC). Results: In longitudinal studies, we found moderately strong evidence (SIC (4) = -1) for a negative relationship between physical activity and the key component of burnout, i.e., exhaustion. We found strong evidence (SIC (6) = -0.86) for the effect of physical activity on reducing exhaustion in intervention studies. As only one study could be classified as a high quality study, these results of previous studies need to be interpreted with some caution. Conclusions: This systematic review suggests that physical activity constitutes an effective medium for the reduction of burnout. Although consistent evidence was found, there is a lack of high quality longitudinal and intervention studies considering the influence of physical activity on burnout. Therefore, future research should be conducted with the aim to produce high quality studies, to develop a full picture of physical activity as a strategy to reduce burnout. PMID:28993574
Cosco, T D; Kaushal, A; Hardy, R; Richards, M; Kuh, D; Stafford, M
2017-01-01
Over the life course, we are invariably faced with some form of adversity. The process of positively adapting to adverse events is known as 'resilience'. Despite the acknowledgement of 2 common components of resilience, that is, adversity and positive adaptation, no consensus operational definition has been agreed. Resilience operationalisations have been reviewed in a cross-sectional context; however, a review of longitudinal methods of operationalising resilience has not been conducted. The present study conducts a systematic review across Scopus and Web of Science capturing studies of ageing that posited operational definitions of resilience in longitudinal studies of ageing. Thirty-six studies met inclusion criteria. Non-acute events, for example, cancer, were the most common form of adversity identified and psychological components, for example, the absence of depression, the most common forms of positive adaptation. Of the included studies, 4 used psychometrically driven methods, that is, repeated administration of established resilience metrics, 9 used definition-driven methods, that is, a priori establishment of resilience components and criteria, and 23 used data-driven methods, that is, techniques that identify resilient individuals using latent variable models. Acknowledging the strengths and limitations of each operationalisation is integral to the appropriate application of these methods to life course and longitudinal resilience research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Magnus-induced dynamics of driven skyrmions on a quasi-one-dimensional periodic substrate
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Reichhardt, C. J. Olson
2016-09-01
We numerically examine driven skyrmions interacting with a periodic quasi-one-dimensional substrate where the driving force is applied either parallel or perpendicular to the substrate periodicity direction. For perpendicular driving, the particles in a purely overdamped system simply slide along the substrate minima; however, for skyrmions where the Magnus force is relevant, we find that a rich variety of dynamics can arise. In the single skyrmion limit, the skyrmion motion is locked along the driving or longitudinal direction for low drives, while at higher drives a transition occurs to a state in which the skyrmion moves both transverse and longitudinal to the driving direction. Within the longitudinally locked phase we find a pronounced speedup effect that occurs when the Magnus force aligns with the external driving force, while at the transition to transverse and longitudinal motion, the skyrmion velocity drops, producing negative differential conductivity. For collectively interacting skyrmion assemblies, the speedup effect is still present and we observe a number of distinct dynamical phases, including a sliding smectic phase, a disordered or moving liquid phase, a moving hexatic phase, and a moving crystal phase. The transitions between the dynamic phases produce distinct features in the structure of the skyrmion lattice and in the velocity-force curves. We map these different phases as a function of the ratio of the Magnus term to the dissipative term, the substrate strength, the commensurability ratio, and the magnitude of the driving force.
Infurna, Frank J.; Mayer, Axel
2015-01-01
Perceived control and health are closely interrelated in adulthood and old age. However, less is known regarding the differential implications of two facets of perceived control, constraints and mastery, for mental and physical health. Furthermore, a limitation of previous research testing the pathways linking perceived control to mental and physical health is that mediation was tested with cross-sectional designs and not in a longitudinal mediation design that accounts for temporal ordering and prior confounds. Using data from the Health and Retirement Study (HRS; n = 7,612, M age = 68, SD = 10.66; 59% women) we examined the effect of constraints and mastery on 4-year changes in mental and physical health and whether physical activity mediated such effects in a longitudinal mediation design. Using confirmatory factor analysis, we modeled the two-factor structure of perceived control that consisted of constraints and mastery. In our longitudinal mediation model, where we accounted for possible confounders (e.g., age, gender, education, neuroticism, conscientiousness, memory, and health conditions), constraints showed a stronger total effect on mental and physical health, than mastery, such that more constraints were associated with 4-year declines in mental and physical health. Physical activity did not mediate the effect of constraints and mastery on mental and physical health (indirect effect). In order to demonstrate the importance of a longitudinal mediation model that accounts for confounders, we also estimated the mediated effect using two models commonly used in the literature: cross-sectional mediation model and longitudinal mediation model without accounting for confounders. These mediation models indicated a spurious indirect effect that cannot be causally interpreted. Our results showcase that constraints and mastery have differential implications for mental and physical health, as well as how a longitudinal mediation design can illustrate (or not) pathways in developmental processes. Our discussion focuses on the conceptual and methodological implications of a two facet model of perceived control and the strengths of longitudinal mediation designs for testing conceptual models of human development. PMID:25938243
Infurna, Frank J; Mayer, Axel
2015-06-01
Perceived control and health are closely interrelated in adulthood and old age. However, less is known regarding the differential implications of 2 facets of perceived control, constraints and mastery, for mental and physical health. Furthermore, a limitation of previous research testing the pathways linking perceived control to mental and physical health is that mediation was tested with cross-sectional designs and not in a longitudinal mediation design that accounts for temporal ordering and prior confounds. Using data from the Health and Retirement Study (HRS; n = 7,612, M age = 68, SD = 10.66; 59% women) we examined the effect of constraints and mastery on 4-year changes in mental and physical health and whether physical activity mediated such effects in a longitudinal mediation design. Using confirmatory factor analysis, we modeled the 2-factor structure of perceived control that consisted of constraints and mastery. In our longitudinal mediation model, where we accounted for possible confounders (e.g., age, gender, education, neuroticism, conscientiousness, memory, and health conditions), constraints showed a stronger total effect on mental and physical health, than mastery, such that more constraints were associated with 4-year declines in mental and physical health. Physical activity did not mediate the effect of constraints and mastery on mental and physical health (indirect effect). To demonstrate the importance of a longitudinal mediation model that accounts for confounders, we also estimated the mediated effect using 2 models commonly used in the literature: cross-sectional mediation model and longitudinal mediation model without accounting for confounders. These mediation models indicated a spurious indirect effect that cannot be causally interpreted. Our results showcase that constraints and mastery have differential implications for mental and physical health, as well as how a longitudinal mediation design can illustrate (or not) pathways in developmental processes. Our discussion focuses on the conceptual and methodological implications of a 2 facet model of perceived control and the strengths of longitudinal mediation designs for testing conceptual models of human development. (c) 2015 APA, all rights reserved.
Vaapio, Sari; Salminen, Marika; Vahlberg, Tero; Kivelä, Sirkka-Liisa
2011-02-01
The aim of this longitudinal study was to describe whether an increase in knee extension strength is associated with improvements in managing in activities of daily living (ADL) and in self-perceived physical condition in fall-prone community-dwelling older women. Subjects (n=417) aged ≥ 65 years belonged either to intervention or control groups in a 12-month randomized controlled fall prevention trial. Isometric muscle strength of knee extension was measured with an adjustable dynamometer chair. Managing in activities of daily living was measured with structured questions about abilities to climb stairs, walk at least 400 meters, toilet, bath, go to the sauna, do light or heavy housework, and carry heavy loads. A question of self-perceived physical condition was also asked. Positive associations were found between increased knee extension strength and an increase in walking at least 400 meters (p<0.001), carrying heavy loads (p=0.004), and climbing stairs (p=0.007), and in self perceived physical condition (p=0.005) over a 12- month follow-up. In addition, low age, non-use of a walking aid, low number of prescribed medications, and good functional balance at baseline were associated with an increase in performance of these ADL functions. An increase in knee extension strength during the 12-month follow-up was associated with improvement in some ADL functions and improvement in self-perceived physical condition during the same period in fall-prone community-dwelling women.
Failure strength of the bovine caudal disc under internal hydrostatic pressure.
Schechtman, Helio; Robertson, Peter A; Broom, Neil D
2006-01-01
The structure of the disc is both complex and inhomogeneous, and it functions as a successful load-bearing organ by virtue of the integration of its various structural regions. These same features also render it impossible to assess the failure strength of the disc from isolated tissue samples, which at best can only yield material properties. This study investigated the intrinsic failure strength of the intact bovine caudal disc under a simple mode of internal hydrostatic pressure. Using a hydraulic actuator, coloured hydrogel was injected under monitored pressure into the nucleus through a hollow screw insert which passed longitudinally through one of the attached vertebrae. Failure did not involve vertebra/endplate structures. Rather, failure of the disc annulus was indicated by the simultaneous manifestation of a sudden loss of gel pressure, a flood of gel colouration appearing in the outer annulus and audible fibrous tearing. A mean hydrostatic failure pressure of 18+/-3 MPa was observed which was approximated as a thick-wall hoop stress of 45+/-7 MPa. The experiment provides a measurement of the intrinsic strength of the disc using a method of internal hydrostatic loading which avoids any disruption of the complex architecture of the annular wall. Although the disc in vivo is subjected to a much more complex pattern of loading than is achieved using simple hydrostatic pressurization, this latter mode provides a useful tool for investigating alterations in intrinsic disc strength associated with prior loading history or degeneration.
NASA Astrophysics Data System (ADS)
Manigandan, K.; Srivatsan, T. S.; Tammana, Deepthi; Poorgangi, Behrang; Vasudevan, Vijay K.
2014-05-01
The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.
A materials perspective of Martyniaceae fruits: Exploring structural and micromechanical properties.
Horbens, Melanie; Eder, Michaela; Neinhuis, Christoph
2015-12-01
Several species of the plant family Martyniaceae are characterised by unique lignified capsules with hook-shaped extensions that interlock with hooves and ankles of large mammals to disperse the seeds. The arrangement of fruit endocarp fibre tissues is exceptional and intriguing among plants. Structure-function-relationships of these slender, curved, but mechanically highly stressed fruit extensions are of particular interest that may inspire advanced biomimetic composite materials. In the present study, we analyse mechanical properties and fracture behaviour of the hook-shaped fruit extensions under different load conditions. The results are correlated with calculated stress distributions, the specific cell wall structure, and chemical composition, providing a detailed interpretation of the complex fruit tissue microstructure. At the cell wall level, both a large microfibril angle and greater strain rates resulted in Young's moduli of 4-9 GPa, leading to structural plasticity. Longitudinally arranged fibre bundles contribute to a great tensile strength. At the tissue level, transversely oriented fibres absorb radial stresses upon bending, whereas cells encompass and pervade longitudinal fibre bundles, thus, stabilise them against buckling. During bending and torsion, microcracks between axial fibre bundles are probably spanned analogous to a circular anchor. Our study fathoms a highly specialized plant structure, substantiating former assumptions about epizoochory as dispersal mode. While the increased flexibility allows for proper attachment of fruits during dynamical locomotion, the high strength and stability prevent a premature failure due to heavy loads exerted by the animal. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Agreement and Predictive Validity Using Less Conservative FNIH Sarcopenia Project Weakness Cutpoints
Shaffer, Nancy Chiles; Ferrucci, Luigi; Shardell, Michelle; Simonsick, Eleanor M.; Studenski, Stephanie
2016-01-01
OBJECTIVES The FNIH Sarcopenia Project derived conservative definitions for weakness and low lean mass, resulting in low prevalence and low agreement with prior definitions. The FNIH Project also estimated a less conservative cutpoint for low grip strength, potentially yielding a cutpoint for low lean mass more consistent with the European Working Group on Sarcopenia in Older People (EWGSOP). We derived lean mass cutpoints based on the less conservative cutpoint for grip strength (WeakI), and assessed agreement with EWGSOP and prediction of incident slow walking and mortality. DESIGN, SETTING, PARTICIPANTS, MEASUREMENTS Longitudinal analysis of 287 men and 258 women from the Baltimore Longitudinal Study of Aging aged >65 years, with 2–10 years followup. Weakness was determined via hand dynamometer, appendicular lean mass (ALM) via DEXA, and slow walking by 6m usual pace walk <0.8m/s. Analyses used classification and regression tree analysis, Cohen’s Kappa, and Cox models. RESULTS Cutpoints derived from WeakI for ALM (ALMI) and ALM adjusted for body mass index (ALM/BMII) were (ALMI) <21.4kg (men) and <14.1kg (women); and (ALM/BMII) <0.725 (men) and <0.591 (women). Kappas with EWGSOP were (ALMI); 0.65 (men) and 0.75 (women) and ALM/BMII; 0.34 (men) and 0.47 (women). In men, the hazard ratio for incident slow walking by WeakI + ALMI was 2.44 (95% CI:1.02–5.82) versus 2.91 (95% CI:1.11–7.62) by EWGSOP. Neither approach predicted incident slow walking in women. CONCLUSION The ALMI cutpoints agree with EWGSOP and predict slow walking in men. Future studies should explore sex differences in the relationship between body composition and physical function and the impact of change in muscle mass on muscle strength and physical function. PMID:28024092
NASA Astrophysics Data System (ADS)
Norton, A. A.; Ulrich, R. K.
2000-03-01
A comprehensive observing effort was undertaken to simultaneously obtain full Stokes profiles as well as longitudinal magnetogram maps of a positive plage region on 8 December, 1998 with the Michelson Doppler Imager, the Advanced Stokes Polarimeter and Mt. Wilson Observatory magnetograph. We compare 1.2'' spatially-averaged signals of velocities as well as filter magnetograph longitudinal flux signals with Stokes determined fluctuations in filling factor, field inclination, magnetic flux and field strength. The velocity signals are in excellent agreement. Michelson Doppler Imager magnetic flux correlates best with fluctuations in the Advanced Stokes Polarimeter filling factor, not inclination angle or field strength. A correlated flux and filling factor change in the absence of a field strength fluctuation can be understood in terms of internally unperturbed flux tubes being buffeted by external pressure fluctuations. The 12.5'' square aperture spatially averaged Mt. Wilson magnetograph signals are compared with Michelson Doppler Imager signals from the corresponding observing area. Velocity signals are in superb agreement. Magnetic signals exhibit similar oscillatory behavior. Lack of Advanced Stokes Polarimeter data for this time excludes interpretation of magnetic fluctuations as due to filling factor or field inclination angle. Mt. Wilson Observatory simultaneous sampling of the nickel and sodium spectral line profiles with several wing pairs allowed inter-comparison of signals from different heights of formation. Slight phase shifts and large propagation speeds for the velocity signals are indicative of modified standing waves. Phase speeds associated with magnetic signals are characteristic of photospheric Alfvén speeds for plage fields. The phase speed increase with height agrees with the altitude dependence of the Alfvén speed. The observed fluctuations and phases are interpreted as a superposition of signatures from the horizontal component of the driving mechanism sweeping the field lines in/out of the resolution area and the magnetic response of the flux tube to this buffeting.
Woods, Cindy; Carlisle, Karen; Larkins, Sarah; Thompson, Sandra Claire; Tsey, Komla; Matthews, Veronica; Bailie, Ross
2017-01-01
Continuous Quality Improvement is a process for raising the quality of primary health care (PHC) across Indigenous PHC services. In addition to clinical auditing using plan, do, study, and act cycles, engaging staff in a process of reflecting on systems to support quality care is vital. The One21seventy Systems Assessment Tool (SAT) supports staff to assess systems performance in terms of five key components. This study examines quantitative and qualitative SAT data from five high-improving Indigenous PHC services in northern Australia to understand the systems used to support quality care. High-improving services selected for the study were determined by calculating quality of care indices for Indigenous health services participating in the Audit and Best Practice in Chronic Disease National Research Partnership. Services that reported continuing high improvement in quality of care delivered across two or more audit tools in three or more audits were selected for the study. Precollected SAT data (from annual team SAT meetings) are presented longitudinally using radar plots for quantitative scores for each component, and content analysis is used to describe strengths and weaknesses of performance in each systems' component. High-improving services were able to demonstrate strong processes for assessing system performance and consistent improvement in systems to support quality care across components. Key strengths in the quality support systems included adequate and orientated workforce, appropriate health system supports, and engagement with other organizations and community, while the weaknesses included lack of service infrastructure, recruitment, retention, and support for staff and additional costs. Qualitative data revealed clear voices from health service staff expressing concerns with performance, and subsequent SAT data provided evidence of changes made to address concerns. Learning from the processes and strengths of high-improving services may be useful as we work with services striving to improve the quality of care provided in other areas.
NASA Astrophysics Data System (ADS)
Schimeczek, C.; Engel, D.; Wunner, G.
2012-07-01
Our previously published code for calculating energies and bound-bound transitions of medium-Z elements at neutron star magnetic field strengths [D. Engel, M. Klews, G. Wunner, Comput. Phys. Comm. 180 (2009) 302-311] was based on the adiabatic approximation. It assumes a complete decoupling of the (fast) gyration of the electrons under the action of the magnetic field and the (slow) bound motion along the field under the action of the Coulomb forces. For the single-particle orbitals this implied that each is a product of a Landau state and an (unknown) longitudinal wave function whose B-spline coefficients were determined self-consistently by solving the Hartree-Fock equations for the many-electron problem on a finite-element grid. In the present code we go beyond the adiabatic approximation, by allowing the transverse part of each orbital to be a superposition of Landau states, while assuming that the longitudinal part can be approximated by the same wave function in each Landau level. Inserting this ansatz into the energy variational principle leads to a system of coupled equations in which the B-spline coefficients depend on the weights of the individual Landau states, and vice versa, and which therefore has to be solved in a doubly self-consistent manner. The extended ansatz takes into account the back-reaction of the Coulomb motion of the electrons along the field direction on their motion in the plane perpendicular to the field, an effect which cannot be captured by the adiabatic approximation. The new code allows for the inclusion of up to 8 Landau levels. This reduces the relative error of energy values as compared to the adiabatic approximation results by typically a factor of three (1/3 of the original error), and yields accurate results also in regions of lower neutron star magnetic field strengths where the adiabatic approximation fails. Further improvements in the code are a more sophisticated choice of the initial wave functions, which takes into account the shielding of the core potential for outer electrons by inner electrons, and an optimal finite-element decomposition of each individual longitudinal wave function. These measures largely enhance the convergence properties compared to the previous code, and lead to speed-ups by factors up to two orders of magnitude compared with the implementation of the Hartree-Fock-Roothaan method used by Engel and Wunner in [D. Engel, G. Wunner, Phys. Rev. A 78 (2008) 032515]. New version program summaryProgram title: HFFER II Catalogue identifier: AECC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: v 55 130 No. of bytes in distributed program, including test data, etc.: 293 700 Distribution format: tar.gz Programming language: Fortran 95 Computer: Cluster of 1-13 HP Compaq dc5750 Operating system: Linux Has the code been vectorized or parallelized?: Yes, parallelized using MPI directives. RAM: 1 GByte per node Classification: 2.1 External routines: MPI/GFortran, LAPACK, BLAS, FMlib (included in the package) Catalogue identifier of previous version: AECC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 302 Does the new version supersede the previous version?: Yes Nature of problem: Quantitative modellings of features observed in the X-ray spectra of isolated magnetic neutron stars are hampered by the lack of sufficiently large and accurate databases for atoms and ions up to the last fusion product, iron, at strong magnetic field strengths. Our code is intended to provide a powerful tool for calculating energies and oscillator strengths of medium-Z atoms and ions at neutron star magnetic field strengths with sufficient accuracy in a routine way to create such databases. Solution method: The Slater determinants of the atomic wave functions are constructed from single-particle orbitals ψi which are products of a wave function in the z direction (the direction of the magnetic field) and an expansion of the wave function perpendicular to the direction of the magnetic field in terms of Landau states, ψi(ρ,φ,z)=Pi(z)∑n=0NLtinϕni(ρ,φ). The tin are expansion coefficients, and the expansion is cut off at some maximum Landau level quantum number n=NL. In the previous version of the code only the lowest Landau level was included (NL=0), in the new version NL can take values of up to 7. As in the previous version of the code, the longitudinal wave functions are expanded in terms of sixth-order B-splines on finite elements on the z axis, with a combination of equidistant and quadratically widening element borders. Both the B-spline expansion coefficients and the Landau weights tin of all orbitals have to be determined in a doubly self-consistent way: For a given set of Landau weights tin, the system of linear equations for the B-spline expansion coefficients, which is equivalent to the Hartree-Fock equations for the longitudinal wave functions, is solved numerically. In the second step, for frozen B-spline coefficients new Landau weights are determined by minimizing the total energy with respect to the Landau expansion coefficients. Both steps require solving non-linear eigenvalue problems of Roothaan type. The procedure is repeated until convergence of both the B-spline coefficients and the Landau weights is achieved. Reasons for new version: The former version of the code was restricted to the adiabatic approximation, which assumes the quantum dynamics of the electrons in the plane perpendicular to the magnetic field to be fixed in the lowest Landau level, n=0. This approximation is valid only if the magnetic field strengths are large compared to the reference magnetic field BZ, for a nuclear charge Z,BZ=Z24.70108×105 T. Summary of revisions: In the new version, the transverse parts of the orbitals are expanded in terms of Landau states up to n=7, and the expansion coefficients are determined, together with the longitudinal wave functions, in a doubly self-consistent way. Thus the back-reaction of the quantum dynamics along the magnetic field direction on the quantum dynamics in the plane perpendicular to it is taken into account. The new ansatz not only increases the accuracy of the results for energy values and transition strengths obtained so far, but also allows their calculation for magnetic field strengths down to B≳BZ, where the adiabatic approximation fails. Restrictions: Intense magnetic field strengths are required, since the expansion of the transverse single-particle wave functions using 8 Landau levels will no longer produce accurate results if the scaled magnetic field strength parameter βZ=B/BZ becomes much smaller than unity. Unusual features: A huge program speed-up is achieved by making use of pre-calculated binary files. These can be calculated with additional programs provided with this package. Running time: 1-30 min.
Permanent-magnet multipole with adjustable strength
Halbach, K.
1982-09-20
Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.
Permanent magnet multipole with adjustable strength
Halbach, Klaus
1985-01-01
Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.
Field dependent magnetic anisotropy of Ga0.2Fe0.8 thin films
NASA Astrophysics Data System (ADS)
Resnick, Damon A.; McClure, A.; Kuster, C. M.; Rugheimer, P.; Idzerda, Y. U.
2011-04-01
Using longitudinal MOKE in combination with a variable strength rotating magnetic field, called the rotational MOKE (ROTMOKE) method, we show that the magnetic anisotropy for a Ga0.2Fe0.8 single crystal film with a thickness of 17 nm, grown on GaAs (001) with a thick ZnSe buffer layer, depends linearly on the strength of the applied magnetic field. The torque moment curves generated using ROTMOKE are well fit with a model that accounts for the uniaxial, cubic, or fourfold anisotropy, as well as additional terms with a linear dependence on the applied magnetic field. The uniaxial and cubic anisotropy fields, taken from both the hard and the easy axis scans, are seen to remain field independent. The field dependent terms are evidence of a large affect of the magnetostriction and its contribution to the effective magnetic anisotropy in GaxFe1-x thin films.
Anomalous Hall effect in ion-beam sputtered Co2FeAl full Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Husain, Sajid; Kumar, Ankit; Akansel, Serkan; Svedlindh, Peter; Chaudhary, Sujeet
2017-11-01
Investigations of temperature dependent anomalous Hall effect and longitudinal resistivity in Co2FeAl (CFA) thin films grown on Si(1 0 0) at different substrate temperature Ts are reported. The scaling of the anomalous Hall conductivity (AHC) and the associated phenomenological mechanisms (intrinsic and extrinsic) are analyzed vis-à-vis influence of Ts. The intrinsic contribution to AHC is found to be dominating over the extrinsic one. The appearance of a resistivity minimum at low temperature necessitates the inclusion of quantum corrections on account of weak localization and electron-electron scattering effects whose strength reduces with increase in Ts. The study establishes that the optimization of Ts plays an important role in the improvement of atomic ordering which indicates the higher strength of spin-orbit coupling and leads to the dominant intrinsic contribution to AHC in these CFA full Heusler alloy thin films.
Ward, Rachel E; Beauchamp, Marla K; Latham, Nancy K; Leveille, Suzanne G; Percac-Lima, Sanja; Kurlinski, Laura; Ni, Pengsheng; Goldstein, Richard; Jette, Alan M; Bean, Jonathan F
2016-08-01
To identify neuromuscular impairments most predictive of unfavorable mobility outcomes in late life. Longitudinal cohort study. Research clinic. Community-dwelling primary care patients aged ≥65 years (N=391) with self-reported mobility modifications, randomly selected from a research registry. Not applicable. Categories of decline in and persistently poor mobility across baseline, 1 and 2 years of follow-up in the Lower-Extremity Function scales of the Late-Life Function and Disability Instrument. The following categories of impairment were assessed as potential predictors of mobility change: strength (leg strength), speed of movement (leg velocity, reaction time, rapid leg coordination), range of motion (ROM) (knee flexion/knee extension/ankle ROM), asymmetry (asymmetry of leg strength and knee flexion/extension ROM measures), and trunk stability (trunk extensor endurance, kyphosis). The largest effect sizes were found for baseline weaker leg strength (odds ratio [95% confidence interval]: 3.45 [1.72-6.95]), trunk extensor endurance (2.98 [1.56-5.70]), and slower leg velocity (2.35 [1.21-4.58]) predicting a greater likelihood of persistently poor function over 2 years. Baseline weaker leg strength, trunk extensor endurance, and restricted knee flexion motion also predicted a greater likelihood of decline in function (1.72 [1.10-2.70], 1.83 [1.13-2.95], and 2.03 [1.24-3.35], respectively). Older adults exhibiting poor mobility may be prime candidates for rehabilitation focused on improving these impairments. These findings lay the groundwork for developing interventions aimed at optimizing rehabilitative care and disability prevention, and highlight the importance of both well-recognized (leg strength) and novel impairments (leg velocity, trunk extensor muscle endurance). Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Srinivasulu, S; Vidhya, S; Sujatha, M; Mahalaxmi, S
2012-01-01
This in vitro study evaluated the shear bond strength of composite resin to deep dentin using a total etch adhesive after treatment with two collagen cross-linking agents at varying time intervals. Thirty freshly extracted human maxillary central incisors were sectioned longitudinally into equal mesial and distal halves (n=60). The proximal deep dentin was exposed, maintaining a remaining dentin thickness (RDT) of approximately 1 mm. The specimens were randomly divided into three groups based on the surface treatment of dentin prior to bonding as follows: group I (n=12, control): no prior dentin surface treatment; group II (n=24): dentin surface pretreated with 10% sodium ascorbate; and group III (n=24): dentin surface pretreated with 6.5% proanthocyanidin. Groups II and III were further subdivided into two subgroups of 12 specimens each, based on the pretreatment time of five minutes (subgroup A) and 10 minutes (subgroup B). Shear bond strength of the specimens was tested with a universal testing machine, and the data were statistically analyzed. Significantly higher shear bond strength to deep dentin was observed in teeth treated with 10% sodium ascorbate (group II) and 6.5% proanthocyanidin (group III) compared to the control group (group I). Among the collagen cross-linkers used, specimens treated with proanthocyanidin showed significantly higher shear bond strength values than those treated with sodium ascorbate. No significant difference was observed between the five-minute and 10-minute pretreatment times in groups II and III. It can be concluded that dentin surface pretreatment with both 10% sodium ascorbate and 6.5% proanthocyanidin resulted in significant improvement in bond strength of resin composite to deep dentin.
Nimphius, Sophia; McGuigan, Michael R; Newton, Robert U
2010-04-01
The purpose of this study was to investigate (a) the cross-sectional relationship of strength, power, and performance variables in trained female athletes and (b) determine if the relationship between these variables changes over the course of a season. Ten female softball players (age = 18.1 +/- 1.6 years, height = 166.5 +/- 8.9 cm, and weight = 72.4 +/- 10.8 kg) from a state Australian Institute of Sport softball team were tested for maximal lower body strength (one repetition maximum [1RM]), peak force (PF), peak velocity (PV), and peak power (PP) during jump squats unloaded and loaded, unloaded countermovement vertical jump height (VJH) 1 base and 2 base sprint performance and change of direction performance on dominant and nondominant sides. The testing sessions occurred pre, mid, and post a 20-week training period. Relationship between body weight (BW), relative strength (1RM/BW), VJH, relative PP, relative PF, PV, speed, and change of direction variables were assessed by Pearson product-moment correlation coefficient at each testing session. Significant relationships were found across all time points with BW, speed, and change of direction measures (r = 0.70-0.93) and relative strength and measures of speed and change of direction ability (r = -0.73-0.85). There were no significant relationships between VJH and any measure of performance at any time point. In conclusion, BW and relative strength have strong to very strong correlations with speed and change of direction ability, and these correlations remain consistent over the course of the season. However, it seems as if many relationships vary with time, and their relationships should therefore be investigated longitudinally to better determine if these cross-sectional relationships truly reflect a deterministic relationship.
Biomotor structures in elite female handball players.
Katić, Ratko; Cavala, Marijana; Srhoj, Vatromir
2007-09-01
In order to identify biomotor structures in elite female handball players, factor structures of morphological characteristics and basic motor abilities of elite female handball players (N = 53) were determined first, followed by determination of relations between the morphological-motor space factors obtained and the set of criterion variables evaluating situation motor abilities in handball. Factor analysis of 14 morphological measures produced three morphological factors, i.e. factor of absolute voluminosity (mesoendomorph), factor of longitudinal skeleton dimensionality, and factor of transverse hand dimensionality. Factor analysis of 15 motor variables yielded five basic motor dimensions, i.e. factor of agility, factor of jumping explosive strength, factor of throwing explosive strength, factor of movement frequency rate, and factor of running explosive strength (sprint). Four significant canonic correlations, i.e. linear combinations, explained the correlation between the set of eight latent variables of the morphological and basic motor space and five variables of situation motoricity. First canonic linear combination is based on the positive effect of the factors of agility/coordination on the ability of fast movement without ball. Second linear combination is based on the effect of jumping explosive strength and transverse hand dimensionality on ball manipulation, throw precision, and speed of movement with ball. Third linear combination is based on the running explosive strength determination by the speed of movement with ball, whereas fourth combination is determined by throwing and jumping explosive strength, and agility on ball pass. The results obtained were consistent with the model of selection in female handball proposed (Srhoj et al., 2006), showing the speed of movement without ball and the ability of ball manipulation to be the predominant specific abilities, as indicated by the first and second linear combination.
Knoop, J; Steultjens, M P M; Roorda, L D; Lems, W F; van der Esch, M; Thorstensson, C A; Twisk, J W R; Bierma-Zeinstra, S M A; van der Leeden, M; Dekker, J
2015-06-01
Although exercise therapy is effective for reducing pain and activity limitations in patients with knee osteoarthritis (OA), the underlying mechanisms are unclear. This study aimed to evaluate if improvements in neuromuscular factors (i.e. upper leg muscle strength and knee proprioception) underlie the beneficial effects of exercise therapy in patients with knee OA. Secondary analyses from a randomised controlled trial, with measurements at baseline, 6 weeks, 12 weeks and 38 weeks. Rehabilitation centre. One hundred and fifty-nine patients diagnosed with knee OA. Exercise therapy. Changes in pain [numeric rating scale (NRS)] and activity limitations [Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and get-up-and-go test] during the study period. Independent variables were changes in upper leg muscle strength and knee joint proprioception (i.e. motion sense) during the study period. Longitudinal regression analyses (generalised estimating equation) were performed to analyse associations between changes in upper leg muscle strength and knee proprioception with changes in pain and activity limitations. Improved muscle strength was significantly associated with reductions in NRS pain {B coefficient -2.5 [95% confidence interval (CI) -3.7 to -1.4], meaning that every change of 1 unit of strength was linked to a change of -2.5 units of pain}, WOMAC physical function (-8.8, 95% CI -13.4 to -4.2) and get-up-and-go test (-1.7, 95% CI -2.4 to -1.0). Improved proprioception was not significantly associated with better outcomes of exercise therapy (P>0.05). Upper leg muscle strengthening is one of the mechanisms underlying the beneficial effects of exercise therapy in patients with knee OA. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.
Study of mean- and turbulent-velocity fields in a large-scale turbine-vane passage
NASA Technical Reports Server (NTRS)
Bailey, D. A.
1979-01-01
Laser-Doppler velocimetry, and to a lesser extent hot-wire anemometry, were employed to measure three components of the mean velocity and the six turbulent stresses at four planes within the turbine inlet-guide-vane passage. One variation in the turbulent inlet boundary layer thickness and one variation in the blade aspect ratio (span/axial chord) were studied. A longitudinal vortex (passage vortex) was clearly identified in the exit plane of the passage for the three test cases. The maximum turbulence intensities within the longitudinal vortex were found to be on the order of 2 to 4 percent, with large regions appearing nonturbulent. Because a turbulent wall boundary layer was the source of vorticity that produced the passage vortex, these low turbulence levels were not anticipated. For the three test cases studied, the lateral velocity field extended significantly beyond the region of the longitudinal velocity defect. Changing the inlet boundary layer thickness produced a difference in the location, the strength, and the extent of the passage vortex. Changing the aspect ratio of the blade passage had a measurable but less significant effect. The experiment was performed in a 210 mm pitch, 272 mm axial chord model in low speed wind tunnel at an inlet Mach number of 0.07.
Analysis strategies for longitudinal attachment loss data.
Beck, J D; Elter, J R
2000-02-01
The purpose of this invited review is to describe and discuss methods currently in use to quantify the progression of attachment loss in epidemiological studies of periodontal disease, and to make recommendations for specific analytic methods based upon the particular design of the study and structure of the data. The review concentrates on the definition of incident attachment loss (ALOSS) and its component parts; measurement issues including thresholds and regression to the mean; methods of accounting for longitudinal change, including changes in means, changes in proportions of affected sites, incidence density, the effect of tooth loss and reversals, and repeated events; statistical models of longitudinal change, including the incorporation of the time element, use of linear, logistic or Poisson regression or survival analysis, and statistical tests; site vs person level of analysis, including statistical adjustment for correlated data; the strengths and limitations of ALOSS data. Examples from the Piedmont 65+ Dental Study are used to illustrate specific concepts. We conclude that incidence density is the preferred methodology to use for periodontal studies with more than one period of follow-up and that the use of studies not employing methods for dealing with complex samples, correlated data, and repeated measures does not take advantage of our current understanding of the site- and person-level variables important in periodontal disease and may generate biased results.
Laska, Melissa N.; Murray, David M.; Lytle, Leslie A.; Harnack, Lisa J.
2012-01-01
Previous studies have yielded inconsistent results in documenting the association between key dietary factors and adolescent weight change over time. The purpose of this study was to examine the extent to which changes in adolescent sugar-sweetened beverage, diet soda, breakfast and fast food consumption were associated with changes in BMI and percent body fat (PBF), both cross-sectionally and longitudinally. Our sample included 693 Minnesota adolescents followed over two years. Adjusting for physical activity, puberty, race, socio-economic status, age, and total energy intake, cross-sectional findings indicated that for both males and females, diet soda consumption was significantly and positively associated with BMI and PBF, and breakfast intake was significantly and negatively associated with BMI and PBF among girls. In longitudinal analyses, however, there were no significant associations after adjusting for the number of tests performed. This study adds to previous research through its methodological strengths, including adjustment for physical activity and energy intake assessed using state-of-the-art methods (i.e., accelerometers and 24-hour dietary recalls), as well as its evaluation of both BMI and PBF. Additional research is needed to better understand the complex constellation of factors that contribute to adolescent weight gain over time. PMID:21701567
NASA Astrophysics Data System (ADS)
Belov, V. K.; Zheleznov, L. P.; Ognyanova, T. S.
2018-03-01
A previously developed technique is used to solve problems of strength and stability of discretely reinforced noncircular cylindrical shells made of a composite material with allowance for the moments and nonlinearity of their subcritical stress-strain state. Stability of a reinforced bay of the aircraft fuselage made of a composite material under combined loading with bending and twisting moments is studied. The effects of straining nonlinearity, stiffness of longitudinal ribs, and shell thickness on the critical loads that induce shell buckling are analyzed.
MISTY CASTLE Series. MILL RACE Event. Sanitized.1
1981-12-18
Answer Yes or No) _o b. If 13a is Yes, is the use of the materials governed by NASC procedures? C. If 13b is Yes, the quantity of meterial is. In...pitch is defined as the angle between a plane normal to the 510c 5O,?/5O0k gravity vector and a line through the longitudinal axis of the aircraft...strength which is greater than that resistance which arises from the combined effects of friction and gravity . It would be very conse;vative to assume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samoilov, A.V.
The author extends the model of the flux-flow thermomagnetic transport coefficients of superconductors [A.V. Samoilov, A.A. Yurgens, and N.V. Zavaritsky] to the pinning region. Using a method due to Vinokur, Geshkenbein, Feigel'man, and Blatter, it is shown that if the vortex dynamics in disorder-dominated, N/[rho][sub xx] and S/[rho][sub xx] (where N is the Nernst coefficient, S is the thermopower, and [rho][sub xx] is the longitudinal resistivity) do not depend on the pinning strength. The theoretical consideration is illustrated by experimental results on the high-temperature superconductors.
Off-diagonal series expansion for quantum partition functions
NASA Astrophysics Data System (ADS)
Hen, Itay
2018-05-01
We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.
Vortex sheet modeling with higher order curved panels. Ph.D Thesis Final Technical Report
NASA Technical Reports Server (NTRS)
Nagati, M. G.
1985-01-01
A numerical technique is presented for modeling the vortex sheet with a deformable surface definition, along which a continuous vortex strength distribution in the spanwise direction is applied, so that by repeatedly modifying its shape, its true configuration is approached, in the proximity of its generating wing. Design problems requiring the inclusion of a realistic configuration of the vortex sheet are numerous. Examples discussed include: control effectiveness and stability derivatives, longitudinal stability, lateral stability, canards, propellers and helicopter rotors, and trailing vortex hazards.
Metal- matrix composite processing technologies for aircraft engine applications
NASA Astrophysics Data System (ADS)
Pank, D. R.; Jackson, J. J.
1993-06-01
Titanium metal-matrix composites (MMC) are prime candidate materials for aerospace applications be-cause of their excellent high-temperature longitudinal strength and stiffness and low density compared with nickel- and steel-base materials. This article examines the steps GE Aircraft Engines (GEAE) has taken to develop an induction plasma deposition (IPD) processing method for the fabrication of Ti6242/SiC MMC material. Information regarding process methodology, microstructures, and mechani-cal properties of consolidated MMC structures will be presented. The work presented was funded under the GE-Aircraft Engine IR & D program.
Polarization response of RHIC electron lens lattices
Ranjbar, V. H.; Méot, F.; Bai, M.; ...
2016-10-10
Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. Particularly, we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. Furthermore, these results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. We then consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Energy density and energy flow of surface waves in a strongly magnetized graphene
NASA Astrophysics Data System (ADS)
Moradi, Afshin
2018-01-01
General expressions for the energy density and energy flow of plasmonic waves in a two-dimensional massless electron gas (as a simple model of graphene) are obtained by means of the linearized magneto-hydrodynamic model and classical electromagnetic theory when a strong external magnetic field perpendicular to the system is present. Also, analytical expressions for the energy velocity, wave polarization, wave impedance, transverse and longitudinal field strength functions, and attenuation length of surface magneto-plasmon-polariton waves are derived, and numerical results are prepared.
High performance thermoplastics: A review of neat resin and composite properties
NASA Technical Reports Server (NTRS)
Johnston, Norman J.; Hergenrother, Paul M.
1987-01-01
A review was made of the principal thermoplastics used to fabricate high performance composites. Neat resin tensile and fracture toughness properties, glass transition temperatures (Tg), crystalline melt temperatures (Tm) and approximate processing conditions are presented. Mechanical properties of carbon fiber composites made from many of these thermoplastics are given, including flexural, longitudinal tensile, transverse tensile and in-plane shear properties as well as short beam shear and compressive strengths and interlaminar fracture toughness. Attractive features and problems involved in the use of thermo-plastics as matrices for high performance composites are discussed.
Design and implementation of observational studies to measure disease burden with a focus on stroke.
Howard, George; Howard, Virginia J
2018-02-01
Observational epidemiological studies have the dual goals of measuring disease burden and assessing the association between exposures and outcomes. This report focuses on the first of these goals and provides an overview of design considerations of commonly used approaches, specifically community surveillance studies, cross-sectional studies, and longitudinal cohort studies. Each of these designs has strengths and weaknesses, with no study design being superior in all cases. Rather, these designs are complementary to achieve a better understanding of the burden of stroke.
1992-04-01
material in the hole where for the reaction. Further study of this the degradation process is concentrated. factor will ’e carried out iL fatare The...Consultant and Exchange Programme and the Aerospace Applications Studies Programme. The results of AGARD work are reported to the member nations and...are the longitudinal testing. The objective is to study the behavior of compression strength, matrix shear modulus, and composite components under
Scaling in Theropod Dinosaurs: Femoral Bone Strength and Locomotion
NASA Astrophysics Data System (ADS)
Lee, Scott
2015-02-01
In our first article1 on scaling in theropod dinosaurs, the longitudinal stress in the leg bones due to supporting the weight of the animal was studied and found not to control the dimensions of the femur. As a continuation of our study of elasticity in dinosaur bones, we now examine the transverse stress in the femur due to locomotion and find that this effect is important for the geometry of the bone. We find that larger theropods (including Tyrannosaurus rex) were less athletic than smaller theropods.
Thermal stress effects in intermetallic matrix composites
NASA Technical Reports Server (NTRS)
Wright, P. K.; Sensmeier, M. D.; Kupperman, D. S.; Wadley, H. N. G.
1993-01-01
Intermetallic matrix composites develop residual stresses from the large thermal expansion mismatch (delta-alpha) between the fibers and matrix. This work was undertaken to: establish improved techniques to measure these thermal stresses in IMC's; determine residual stresses in a variety of IMC systems by experiments and modeling; and, determine the effect of residual stresses on selected mechanical properties of an IMC. X ray diffraction (XRD), neutron diffraction (ND), synchrotron XRD (SXRD), and ultrasonics (US) techniques for measuring thermal stresses in IMC were examined and ND was selected as the most promising technique. ND was demonstrated on a variety of IMC systems encompassing Ti- and Ni-base matrices, SiC, W, and Al2O3 fibers, and different fiber fractions (Vf). Experimental results on these systems agreed with predictions of a concentric cylinder model. In SiC/Ti-base systems, little yielding was found and stresses were controlled primarily by delta-alpha and Vf. In Ni-base matrix systems, yield strength of the matrix and Vf controlled stress levels. The longitudinal residual stresses in SCS-6/Ti-24Al-llNb composite were modified by thermomechanical processing. Increasing residual stress decreased ultimate tensile strength in agreement with model predictions. Fiber pushout strength showed an unexpected inverse correlation with residual stress. In-plane shear yield strength showed no dependence on residual stress. Higher levels of residual tension led to higher fatigue crack growth rates, as suggested by matrix mean stress effects.
National Databases for Neurosurgical Outcomes Research: Options, Strengths, and Limitations.
Karhade, Aditya V; Larsen, Alexandra M G; Cote, David J; Dubois, Heloise M; Smith, Timothy R
2017-08-05
Quality improvement, value-based care delivery, and personalized patient care depend on robust clinical, financial, and demographic data streams of neurosurgical outcomes. The neurosurgical literature lacks a comprehensive review of large national databases. To assess the strengths and limitations of various resources for outcomes research in neurosurgery. A review of the literature was conducted to identify surgical outcomes studies using national data sets. The databases were assessed for the availability of patient demographics and clinical variables, longitudinal follow-up of patients, strengths, and limitations. The number of unique patients contained within each data set ranged from thousands (Quality Outcomes Database [QOD]) to hundreds of millions (MarketScan). Databases with both clinical and financial data included PearlDiver, Premier Healthcare Database, Vizient Clinical Data Base and Resource Manager, and the National Inpatient Sample. Outcomes collected by databases included patient-reported outcomes (QOD); 30-day morbidity, readmissions, and reoperations (National Surgical Quality Improvement Program); and disease incidence and disease-specific survival (Surveillance, Epidemiology, and End Results-Medicare). The strengths of large databases included large numbers of rare pathologies and multi-institutional nationally representative sampling; the limitations of these databases included variable data veracity, variable data completeness, and missing disease-specific variables. The improvement of existing large national databases and the establishment of new registries will be crucial to the future of neurosurgical outcomes research. Copyright © 2017 by the Congress of Neurological Surgeons
NASA Astrophysics Data System (ADS)
Meng, Q. Y.; Svendsgaard, D.; Kotchmar, D. J.; Pinto, J. P.
2012-09-01
Although positive associations between ambient NO2 concentrations and personal exposures have generally been found by exposure studies, the strength of the associations varied among studies. Differences in results could be related to differences in study design and in exposure factors. However, the effects of study design, exposure factors, and sampling and measurement errors on the strength of the personal-ambient associations have not been evaluated quantitatively in a systematic manner. A quantitative research synthesis was conducted to examine these issues based on peer-reviewed publications in the past 30 years. Factors affecting the strength of the personal-ambient associations across the studies were also examined with meta-regression. Ambient NO2 was found to be significantly associated with personal NO2 exposures, with estimates of 0.42, 0.16, and 0.72 for overall pooled, longitudinal and daily average correlation coefficients based on random-effects meta-analysis. This conclusion was robust after correction for publication bias with correlation coefficients of 0.37, 0.16 and 0.45. We found that season and some population characteristics, such as pre-existing disease, were significant factors affecting the strength of the personal-ambient associations. More meaningful and rigorous comparisons would be possible if greater detail were published on the study design (e.g. local and indoor sources, housing characteristics, etc.) and data quality (e.g., detection limits and percent of data above detection limits).
Axisymmetric Flow Properties for Magnetic Elements of Differing Strength
NASA Technical Reports Server (NTRS)
Rightmire-Upton, Lisa; Hathaway, David H.
2012-01-01
Aspects of the structure and dynamics of the flows in the Sun's surface shear layer remain uncertain and yet are critically important for understanding the observed magnetic behavior. In our previous studies of the axisymmetric transport of magnetic elements we found systematic changes in both the differential rotation and the meridional flow over the course of Solar Cycle 23. Here we examine how those flows depend upon the strength (and presumably anchoring depth) of the magnetic elements. Line of sight magnetograms obtained by the HMI instrument aboard SDO over the course of Carrington Rotation 2097 were mapped to heliographic coordinates and averaged over 12 minutes to remove the 5-min oscillations. Data masks were constructed based on the field strength of each mapped pixel to isolate magnetic elements of differing field strength. We used Local Correlation Tracking of the unmasked data (separated in time by 1- to 8-hours) to determine the longitudinal and latitudinal motions of the magnetic elements. We then calculated average flow velocities as functions of latitude and longitude from the central meridian for approx 600 image pairs over the 27-day rotation. Variations with longitude indicate and characterize systematic errors in the flow measurements associated with changes in the signal from disk center to limb. Removing these systematic errors reveals changes in the axisymmetric flow properties that reflect changes in flow properties with depth in the surface shear layer.
Ultimate strength performance of tankers associated with industry corrosion addition practices
NASA Astrophysics Data System (ADS)
Kim, Do Kyun; Kim, Han Byul; Zhang, Xiaoming; Li, Chen Guang; Paik, Jeom Kee
2014-09-01
In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSRH) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures
Improvement of Reusable Surface Insulation (RSI) materials
NASA Technical Reports Server (NTRS)
Blome, J. C.
1972-01-01
The mullite fiber based hardened compacted fibers (HCF) type of reusable surface insulation was further developed for use in the Space Shuttle Program. Two hundred fifty formulations of fiber mixtures, fillers, binders, and organic processing aids were made using mullite fibers as the basic ingredient. Most of the work was accomplished on 15-lb/cu ft material. It was established that higher density materials are stronger with strength values as high as 250 lb/sq in. in tension. New measurement techniques and equipment were developed for accurate determination of strength and strain to failure. Room temperature to 2300 F stress-strain relationships were made. The room temperature tensile modulus of elasticity is 61,700 lb/sq in. and the strain at failure is 0.165 percent, typically, when measured longitudinally parallel to the long axes of the fibers. Thermal insulating effectiveness was increased 20 percent by reducing the diameter of some of the fibers in the material. Improvements were made in density uniformity and strength uniformity in a block of HCF by mixing improvements and by the use of organic additives. Specifications were established on the materials and processes used in making the insulation.
Wensveen, Maaike; Palmen, Hanneke; Blokland, Arjan; Meeus, Wim
2016-01-01
Social control theory links being employed with reduced criminal behaviour. In particular, the indirect social control generated by the perceived benefits of the current job are expected to underlie the work–crime association. Features specific to the emerging adult period, however, call into question the strength of the work–crime association during this new life stage. This study uses data from the Utrecht Study of Adolescent Development (USAD), a longitudinal self-report study among 669 men and women aged 18 to 24 at the start of the study to examine the extent to which working a paid job is associated with reduced levels of delinquency and crime, and the extent to which this association is conditional on individual job perceptions. We also test for gender differences in these associations. Results indicate that for men – but not for women – paid work is associated with lower levels of delinquency and crime, but only from age 24 onwards. PMID:28781582
Microbunching-instability-induced sidebands in a seeded free-electron laser
Zhang, Zhen; Lindberg, Ryan; Fawley, William M.; ...
2016-05-02
Measurements of the multishot-averaged, soft x-ray, self-seeding spectrum at the LCLS free-electron laser often have a pedestal-like distribution around the seeded wavelength, which limits the spectral purity and can negatively affect some user applications not employing a post-undulator monochromator. In this paper, we study the origins of such pedestals, focusing on longitudinal phase space modulations produced by the microbunching instability upstream of the free-electron laser (FEL) undulator. Furthermore, we show from theory and numerical simulation that both energy and density modulations can induce sidebands in a high-gain, seeded FEL whose fractional strength typically grows as the square of the undulatormore » length. The results place a tight constraint on the longitudinal phase space uniformity of the electron beam for a seeded FEL, possibly requiring the amplitude of long-wavelength modulations to be much smaller than the typical incoherent energy spread if the output sideband power is to remain only a couple percent or less of the amplified seed power.« less
Evaluation of directionally solidified eutectic superalloys for turbine blade applications
NASA Technical Reports Server (NTRS)
Henry, M. E.; Jackson, M. R.; Walter, J. L.
1978-01-01
Alloys from the following systems were selected for property evaluation: (1) gamma/gamma-Mo (Ni-base, rods of Mo); (2) gamma-beta (Ni-base, lamellae or rods of (Ni, Fe/Co Al); and (3) gamma-gamma (Ni-base rods of Ni3Al gamma). The three alloys were subjected to longitudinal and transverse tensile and rupture tests from 750 C to 1100 C, longitudinal shear strength was measured at several temperatures, resistance to thermal cycling to 1150 C was determined, cyclic oxidation resistance was evaluated at 750 C and 1100 C, and each system was directionally solidified in an alumina shell mold turbine shape to evaluate mold/metal reactivity. The gamma/gamma Mo system has good rupture resistance, transverse properties and processability, and is a high potential system for turbine blades. The gamma-beta system has good physical properties and oxidation resistance, and is a potential system for turbine vanes. The gamma-gamma system has good high temperature rupture resistance and requires further exploratory research.
Peng, Chun-Zi; Grant, Julia D; Heath, Andrew C; Reiersen, Angela M; Mulligan, Richard C; Anokhin, Andrey P
2016-05-01
To investigate familial influences on the full range of variability in attention and activity across adolescence, we collected maternal ratings of 339 twin pairs at ages 12, 14, and 16, and estimated the transmitted and new familial influences on attention and activity as measured by the Strengths and Weaknesses of Attention-Deficit/Hyperactivity Disorder Symptoms and Normal Behavior Scale. Familial influences were substantial for both traits across adolescence: genetic influences accounted for 54%-73% (attention) and 31%-73% (activity) of the total variance, and shared environmental influences accounted for 0%-22% of the attention variance and 13%-57% of the activity variance. The longitudinal stability of individual differences in attention and activity was largely accounted for by familial influences transmitted from previous ages. Innovations over adolescence were also partially attributable to familial influences. Studying the full range of variability in attention and activity may facilitate our understanding of attention-deficit/hyperactivity disorder's etiology and intervention.
Usability and acceptability of balance exergames in older adults: A scoping review.
Nawaz, Ather; Skjæret, Nina; Helbostad, Jorunn Lægdheim; Vereijken, Beatrix; Boulton, Elisabeth; Svanaes, Dag
2016-12-01
Serious games (exergames) have the potential to be effective for postural balance and increasing muscle strength. Several games have been developed to increase physical fitness and balance among older adults. However, it is unclear to which degree usability and acceptability of exergames for older adults have been evaluated. The aim of this study was to summarize usability evaluation and acceptability of studies in older adults. We conducted a scoping review on studies focusing on usability of exergames for older adults. The result shows that older adults consider usability and acceptability of exercise video games good. The review shows that longitudinal studies mainly use off-the-shelf exergame and evaluated game effectiveness and acceptability, whereas cross-sectional studies focus on interactional experience. Studies varied in their approaches to measure usability and acceptability of exergames for older adults. There is a need for a systematic developmental approach to involve older adults in development of exergames for longitudinal studies. © The Author(s) 2015.
Assisted and unassisted suicide in men and women: longitudinal study of the Swiss population.
Steck, Nicole; Egger, Matthias; Zwahlen, Marcel
2016-05-01
In Switzerland assisted suicide is legal if no self-interest is involved. To compare the strength and direction of associations with sociodemographic factors between assisted and unassisted suicides. We calculated rates and used Cox and logistic regression models in a longitudinal study of the Swiss population. Analyses were based on 5 004 403 people, 1301 assisted and 5708 unassisted suicides from 2003 to 2008. The rate of unassisted suicides was higher in men than in women, rates of assisted suicides were similar in men and women. Higher education was positively associated with assisted suicide, but negatively with unassisted. Living alone, having no children and no religious affiliation were associated with higher rates of both. Some situations that indicate greater vulnerability such as living alone were associated with both assisted and unassisted suicide. Among the terminally ill, women were more likely to choose assisted suicide, whereas men died more often by unassisted suicide. © The Royal College of Psychiatrists 2016.
Ditching Tests of a 1/18-Scale Model of the Lockheed Constellation Airplane
NASA Technical Reports Server (NTRS)
Fisher, Lloyd J.; Morris, Garland J.
1948-01-01
Tests were made of a 1/18-scale dynamically similar model of the Lockheed Constellation airplane to investigate its ditching characteristics and proper ditching technique. Scale-strength bottoms were used to reproduce probable damage to the fuselage. The model was landed in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds, and fuselage configuration were simulated. The behavior of the model was determined from visual observations, by recording the longitudinal decelerations, and by taking motion pictures of the ditchings. Data are presented in tabular form, sequence photographs, and time-history deceleration curves. It was concluded that the airplane should be ditched at a medium nose-high landing attitude with the landing flaps full down. The airplane will probably make a deep run with heavy spray and may even dive slightly. The fuselage will be damaged and leak substantially but in calm water probably will not flood rapidly. Maximum longitudinal decelerations in a calm-water ditching will be about 4g.
Davies, Patrick T.; Hentges, Rochelle F.; Coe, Jesse L.; Martin, Meredith J.; Sturge-Apple, Melissa L.; Cummings, E. Mark
2016-01-01
This multi-study paper examined the relative strength of mediational pathways involving hostile, disengaged, and uncooperative forms of interparental conflict, children’s emotional insecurity, and their externalizing problems across two longitudinal studies. Participants in Study 1 consisted of 243 preschool children (M age = 4.60 years) and their parents, whereas Study 2 consisted of 263 adolescents (M age = 12.62 years) and their parents. Both studies utilized multi-method, multi-informant assessment batteries within a longitudinal design with three measurement occasions. Across both studies, lagged, autoregressive tests of the mediational paths revealed that interparental hostility was a significantly stronger predictor of the prospective cascade of children’s insecurity and externalizing problems than interparental disengagement and low levels of interparental cooperation. Findings further indicated that interparental disengagement was a stronger predictor of the insecurity pathway than was low interparental cooperation for the sample of adolescents in Study 2. Results are discussed in relation to how they inform and advance developmental models of family risk. PMID:27175983
Gaskins, J T; Daniels, M J
2016-01-02
The estimation of the covariance matrix is a key concern in the analysis of longitudinal data. When data consists of multiple groups, it is often assumed the covariance matrices are either equal across groups or are completely distinct. We seek methodology to allow borrowing of strength across potentially similar groups to improve estimation. To that end, we introduce a covariance partition prior which proposes a partition of the groups at each measurement time. Groups in the same set of the partition share dependence parameters for the distribution of the current measurement given the preceding ones, and the sequence of partitions is modeled as a Markov chain to encourage similar structure at nearby measurement times. This approach additionally encourages a lower-dimensional structure of the covariance matrices by shrinking the parameters of the Cholesky decomposition toward zero. We demonstrate the performance of our model through two simulation studies and the analysis of data from a depression study. This article includes Supplementary Material available online.
Space Shuttle ET Friction Stir Weld Machines
NASA Technical Reports Server (NTRS)
Thompson, Jack M.
2003-01-01
NASA and Lockheed-Martin approached the FSW machine vendor community with a specification for longitudinal barrel production FSW weld machines and a shorter travel process development machine in June of 2000. This specification was based on three years of FSW process development on the Space Shuttle External Tank alloys, AL2 195-T8M4 and AL22 19-T87. The primary motivations for changing the ET longitudinal welds from the existing variable polarity Plasma Arc plasma weld process included: (1) Significantly reduced weld defect rates and related reduction in cycle time and uncertainty; (2) Many fewer process variables to control (5 vs. 17); (3) Fewer manufacturing steps; (4) Lower residual stresses and distortion; (5) Improved weld strengths, particularly at cryogenic temperatures; (6) Fewer hazards to production personnel. General Tool was the successful bidder. The equipment is at this writing installed and welding flight hardware. This paper is a means of sharing with the rest of the FSW community the unique features developed to assure NASA/L-M of successful production welds.
The structure of somatosensory information for human postural control
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Ribeiro, P.; Oie, K.; Lackner, J. R.
1998-01-01
The goal of the present study was to determine the properties of the somatosensory stimulus that alter its temporal coupling to body sway. Six standing subjects were tested while touching a metal plate positioned either directly in front of or lateral to the subject. In each condition, the plate moved 4 mm at 0.2 Hz in either the medial-lateral (ML) or anterior-posterior direction (AP). The results showed that coupling between body sway and touch plate movement was strongest when the touch plate moved in a direction along the longitudinal axis of the arm. Coupling strength was weaker when the touch plate moved perpendicular to the longitudinal axis of the arm. The results consistently show that a radial expansion stimulus was more effective than a lamellar-type stimulus at the fingertip. Moreover, somatosensory information from a surface is interpreted in terms of the orientation of the contact limb and the potential degrees of freedom available through its movement.
Laska, Melissa N; Murray, David M; Lytle, Leslie A; Harnack, Lisa J
2012-01-01
Previous studies have yielded inconsistent results when documenting the association between key dietary factors and adolescent weight change over time. The purpose of this study was to examine the extent to which changes in adolescent sugar-sweetened beverage (SSB), diet soda, breakfast, and fast-food consumption were associated with changes in BMI and percent body fat (PBF). This study analyzed data from a sample of 693 Minnesota adolescents followed over 2 years. Random coefficient models were used to examine the relationship between dietary intake and BMI and PBF and to separate cross-sectional and longitudinal associations. Adjusting for total physical activity, total energy intake, puberty, race, socioeconomic status, and age, cross-sectional findings indicated that for both males and females, breakfast consumption was significantly and inversely associated with BMI and PBF, and diet soda intake was significantly and positively associated with BMI and PBF among females. In longitudinal analyses, however, there were fewer significant associations. Among males there was evidence of a significant longitudinal association between SSB consumption and PBF; after adjustment for energy intake, an increase of one serving of SSB per day was associated with an increase of 0.7 units of PBF among males. This study adds to previous research through its methodological strengths, including adjustment for physical activity and energy intake assessed using state-of-the-art methods (i.e., accelerometers and 24-h dietary recalls), as well as its evaluation of both BMI and PBF. Additional research is needed to better understand the complex constellation of factors that contribute to adolescent weight gain over time.
Matthys, Stijn P J; Vaeyens, Roel; Fransen, Job; Deprez, Dieter; Pion, Johan; Vandendriessche, Joric; Vandorpe, Barbara; Lenoir, Matthieu; Philippaerts, Renaat
2013-01-01
Longitudinal research provides valuable information about change and progress towards elite performance. Unfortunately, there is a lack of longitudinal research in handball. In this study, 94 youth handball players (oldest group: n = 41; age 15-17 and youngest group: n = 53; age 13-15) were followed over a three-year period. Repeated measures ANCOVA was conducted to reveal longitudinal changes in anthropometry and physical performance between elite and non-elite players, controlling for maturation. Maturation effects were found for anthropometry (P < 0.01) and some physical performance measures in strength and speed (P < 0.05). The lack of significant interaction effects revealed that during the three years of the study the elite players did not improve their physical performance more rapidly than the non-elites. Furthermore, they had a similar anthropometric profile to the non-elites. Elite players performed better on the Yo-Yo Intermittent Recovery test (P < 0.01; on average 24.0 in the youngest group and 25.2% in the oldest group over the three years) and on the speed and coordination items (P < 0.05; shuttle run: 3.6 and 5.1%; cross hopping: 11.0 and 14.8%, handball-specific shuttle run: 7.6 and 7.7%; slalom dribble test: 10.7 and 8.9%; sprint 30 m: 4.9 and 3.9%). Additionally, Yo-Yo performance and coordination with and without a ball were the most discriminating factors between the playing levels. In conclusion, youth coaches and scouts within team handball should recognise the importance of good skills and an excellent endurance for talent identification purposes.
The fracture properties and mechanical design of human fingernails.
Farren, L; Shayler, S; Ennos, A R
2004-02-01
Fingernails are a characteristic feature of primates, and are composed of three layers of the fibrous composite keratin. This study examined the structure and fracture properties of human fingernails to determine how they resist bending forces while preventing fractures running longitudinally into the nail bed. Nail clippings were first torn manually to examine the preferred crack direction. Next, scissor cutting tests were carried out to compare the fracture toughness of central and outer areas in both the transverse and longitudinal direction. The fracture toughness of each of the three isolated layers was also measured in this way to determine their relative contributions to the toughness. Finally, the structure was examined by carrying out scanning electron microscopy of free fracture surfaces and polarized light microscopy of nail sections. When nails were torn, cracks were always diverted transversely, parallel to the free edge of the nail. Cutting tests showed that this occurred because the energy to cut nails transversely, at approximately 3 kJ m(-2), was about half that needed (approx. 6 kJ m(-2)) to cut them longitudinally. This anisotropy was imparted by the thick intermediate layer, which comprises long, narrow cells that are oriented transversely; the energy needed to cut this layer transversely was only a quarter of that needed to cut it longitudinally. In contrast the tile-like cells in the thinner dorsal and ventral layers showed isotropic behaviour. They probably act to increase the nail's bending strength, and as they wrap around the edge of the nail, they also help prevent cracks from forming. These results cast light on the mechanical behaviour and care of fingernails.
Abourezk, Matthew N; Ithurburn, Matthew P; McNally, Michael P; Thoma, Louise M; Briggs, Matthew S; Hewett, Timothy E; Spindler, Kurt P; Kaeding, Christopher C; Schmitt, Laura C
2017-01-01
Anterior cruciate ligament reconstruction (ACLR) using a hamstring tendon autograft often results in hamstring muscle strength asymmetry. However, the effect of hamstring muscle strength asymmetry on knee mechanics has not been reported. Participants with hamstring strength asymmetry would demonstrate altered involved limb knee mechanics during walking and jogging compared with those with more symmetric hamstring strength at least 2 years after ACLR with a hamstring tendon autograft. Controlled laboratory study. There were a total of 45 participants at least 2 years after ACLR (22 male, 23 female; mean time after ACLR, 34.6 months). A limb symmetry index (LSI) was calculated for isometric hamstring strength to subdivide the sample into symmetric hamstring (SH) (LSI ≥90%; n = 18) and asymmetric hamstring (AH) (LSI <85%; n = 18) groups. Involved knee kinematic and kinetic data were collected using 3-dimensional motion analysis during gait and jogging. Peak sagittal-, frontal-, and transverse-plane knee angles and sagittal-plane knee moments and knee powers were calculated. Independent-samples t tests and analyses of covariance were used to compare involved knee kinematic and kinetic variables between the groups. There were no differences in sagittal- and frontal-plane knee angles between the groups ( P > .05 for all). The AH group demonstrated decreased tibial internal rotation during weight acceptance during gait ( P = .01) and increased tibial external rotation during jogging at initial contact ( P = .03) and during weight acceptance ( P = .02) compared with the SH group. In addition, the AH group demonstrated decreased peak negative knee power during midstance ( P = .01) during gait compared with the SH group, after controlling for gait speed, which differed between groups. Participants with hamstring strength asymmetry showed altered involved knee mechanics in the sagittal plane during gait and in the transverse plane during gait and jogging compared with those with more symmetric hamstring strength. Hamstring strength asymmetry is common at 3 years after ACLR with a hamstring tendon autograft and affects involved knee mechanics during gait and jogging. Additional research is warranted to further investigate the longitudinal effect of these alterations on knee function and joint health after ACLR.
De Groef, An; Van Kampen, Marijke; Tieto, Elena; Schönweger, Petra; Christiaens, Marie-Rose; Neven, Patrick; Geraerts, Inge; Gebruers, Nick; Devoogdt, Nele
2016-10-01
The aim of this study is (1) to investigate the prevalence rate of arm lymphedema, pain, impaired shoulder range of motion, strength and shoulder function one year after a sentinel lymph node biopsy (SLNB) for breast cancer and (2) to determine predictive factors for these complications. A longitudinal study was performed. One hundred patients with a sentinel-lymph node negative breast cancer were included. All patients were measured before surgery and one year after. Arm lymphedema was measured with the perimeter, pain with the Visual Analogue Scale, shoulder range of motion with an inclinometer, strength with a handheld dynamometer and shoulder function with the Disability of Arm, Shoulder and Hand questionnaire. Patient-, breast cancer- and treatment-related variables were recorded. One year after surgery 8% of sentinel node-negative breast cancer patients had developed arm lymphedema. Fifty percent of patients had pain, 30% had an impaired shoulder range of motion, 8% had a decreased handgrip strength and 49% had an impaired shoulder function. Pain, shoulder range of motion, strength and shoulder dysfunctions changed significantly over one year (p < 0.001). Higher Body Mass Index is a predictive variable for shoulder dysfunctions one year post-SLNB. Prevalence rate of lymphedema and other upper limb impairments may not be underestimated after SLNB. Pain, shoulder range of motion, handgrip strength and shoulder function change significantly up to one year compared to preoperative values in sentinel node-negative breast cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparison of the compressive strength of 3 different implant design systems.
Pedroza, Jose E; Torrealba, Ysidora; Elias, Augusto; Psoter, Walter
2007-01-01
The aims of this study were twofold: to compare the static compressive strength at the implant-abutment interface of 3 design systems and to describe the implant abutment connection failure mode. A stainless steel holding device was designed to align the implants at 30 degrees with respect to the y-axis. Sixty-nine specimens were used, 23 for each system. A computer-controlled universal testing machine (MTS 810) applied static compression loading by a unidirectional vertical piston until failure. Specimens were evaluated macroscopically for longitudinal displacement, abutment looseness, and screw and implant fracture. Data were analyzed by analysis of variance (ANOVA). The mean compressive strength for the Unipost system was 392.5 psi (SD +/-40.9), for the Spline system 342.8 psi (SD+/-25.8), and for the Screw-Vent system 269.1 psi (SD+/-30.7). The Unipost implant-abutment connection demonstrated a statistically significant superior mechanical stability (P < or = .009) compared with the Spline implant system. The Spline implant system showed a statistically significant higher compressive strength than the Screw-Vent implant system (P < or =.009). Regarding failure mode, the Unipost system consistently broke at the same site, while the other systems failed at different points of the connection. The Unipost system demonstrated excellent fracture resistance to compressive forces; this resistance may be attributed primarily to the diameter of the abutment screw and the 2.5 mm counter bore, representing the same and a unique piece of the implant. The Unipost implant system demonstrated a statistically significant superior compressive strength value compared with the Spline and Screw-Vent systems, at a 30 degrees angulation.
Boschman, J S; Noor, A; Lundström, R; Nilsson, T; Sluiter, J K; Hagberg, M
2017-08-01
The purpose was to increase job-specific knowledge about individual and work-related factors and their relationship with current and future work ability (WA). We studied cross-sectional relationships between mental demands, physical exertion during work, grip strength, musculoskeletal pain in the upper extremities and WA and the relationships between these variables and WA 11 years later. We used a dataset of a prospective cohort study (1997-2008) among employees of an engineering plant (n = 157). The cohort was surveyed by means of tests and written questions on work demands, musculoskeletal health, WA score (WAS; 0-10), and mental and physical WA. Spearman correlation coefficients and logistic regression analysis were used. Among manual workers, we found weak correlations between grip strength and current and future physical WA. We did not find predictors for future poor WA among the manual workers. Among the office workers, we found that musculoskeletal pain was moderately and negatively related to current WAS and physical WA. More handgrip strength related to better future WAS and physical WA. Musculoskeletal pain (OR 1.67 p < 0.01) and lower handgrip strength (OR 0.91 p < 0.05) predicted future poor WA among office workers. Our results showed cross-sectional and longitudinal relationships between musculoskeletal health and work ability depending on occupation. However, the present implies that predicting work ability in the far future based on health surveillance data is rather difficult. Testing the musculoskeletal system (grip strength) and asking workers' about their musculoskeletal health seems relevant when monitoring work ability.
Ağır, İsmail; Aytekin, Mahmut Nedim; Başçı, Onur; Çaypınar, Barış; Erol, Bülent
2014-01-01
Background: Two main factors determine the strength of tendon repair; the tensile strength of material and the gripping capacity of a suture configuration. Different repair techniques and suture materials were developed to increase the strength of repairs but none of techniques and suture materials seem to provide enough tensile strength with safety margins for early active mobilization. In order to overcome this problem tendon suturing implants are being developed. We designed two different suturing implants. The aim of this study was to measure tendon-holding capacities of these implants biomechanically and to compare them with frequently used suture techniques Materials and Methods: In this study we used 64 sheep flexor digitorum profundus tendons. Four study groups were formed and each group had 16 tendons. We applied model 1 and model 2 implant to the first 2 groups and Bunnell and locking-loop techniques to the 3rd and 4th groups respectively by using 5 Ticron sutures. Results: In 13 tendons in group 1 and 15 tendons in group 2 and in all tendons in group 3 and 4, implants and sutures pulled out of the tendon in longitudinal axis at the point of maximum load. The mean tensile strengths were the largest in group 1 and smallest in group 3. Conclusion: In conclusion, the new stainless steel tendon suturing implants applied from outside the tendons using steel wires enable a biomechanically stronger repair with less tendon trauma when compared to previously developed tendon repair implants and the traditional suturing techniques. PMID:25067965
Granacher, Urs; Gollhofer, Albert; Hortobágyi, Tibor; Kressig, Reto W; Muehlbauer, Thomas
2013-07-01
The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 %, mean effect size = 0.99; mean balance/functional performance gain = 23 %, mean ES = 0.88) and by PET (mean strength gain = 12 %, mean ES = 0.52; mean balance/functional performance gain = 18 %, mean ES = 0.71). Given that the mean PEDro quality score did not reach the predetermined cut-off of ≥6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises.
Windelinckx, An; De Mars, Gunther; Huygens, Wim; Peeters, Maarten W; Vincent, Barbara; Wijmenga, Cisca; Lambrechts, Diether; Delecluse, Christophe; Roth, Stephen M; Metter, E Jeffrey; Ferrucci, Luigi; Aerssens, Jeroen; Vlietinck, Robert; Beunen, Gaston P; Thomis, Martine A
2011-01-01
Muscle strength is important in functional activities of daily living and the prevention of common pathologies. We describe the two-staged fine mapping of a previously identified linkage peak for knee strength on chr12q12-14. First, 209 tagSNPs in/around 74 prioritized genes were genotyped in 500 Caucasian brothers from the Leuven Genes for Muscular Strength study (LGfMS). Combined linkage and family-based association analyses identified activin receptor 1B (ACVR1B) and inhibin β C (INHBC), part of the transforming growth factor β pathway regulating myostatin – a negative regulator of muscle mass – signaling, for follow-up. Second, 33 SNPs, selected in these genes based on their likelihood to functionally affect gene expression/function, were genotyped in an extended sample of 536 LGfMS siblings. Strong associations between ACVR1B genotypes and knee muscle strength (P-values up to 0.00002) were present. Of particular interest was the association with rs2854464, located in a putative miR-24-binding site, as miR-24 was implicated in the inhibition of skeletal muscle differentiation. Rs2854464 AA individuals were ∼2% stronger than G-allele carriers. The strength increasing effect of the A-allele was also observed in an independent replication sample (n=266) selected from the Baltimore Longitudinal Study of Aging and a Flemish Policy Research Centre Sport, Physical Activity and Health study. However, no genotype-related difference in ACVR1B mRNA expression in quadriceps muscle was observed. In conclusion, we applied a two-stage fine mapping approach, and are the first to identify and partially replicate genetic variants in the ACVR1B gene that account for genetic variation in human muscle strength. PMID:21063444
Macdonald, Heather M; Kontulainen, Saija A; Mackelvie-O'Brien, Kerry J; Petit, Moira A; Janssen, Patricia; Khan, Karim M; McKay, Heather A
2005-06-01
During growth, bone strength is conferred through subtle adaptations in bone mass and geometry in response to muscle forces. Few studies have examined the changes in bone geometry, strength and the bone-muscle strength relationship across maturity in boys and girls. Our aims were to describe (i) 20-month changes in bone geometry and strength at the tibial midshaft across three maturity groups of boys and girls, (ii) differences in these adaptations between sexes at the same approximate level of maturity and (iii) the bone-muscle strength relationship across maturity groups of boys and girls and between sexes. We used peripheral quantitative computed tomography (pQCT, Stratec XCT-2000) to measure change in total bone cross-sectional area (ToA, mm(2)), cortical area (CoA, mm(2)), average cortical thickness (C.Th., mm), section modulus (mm(3)) and muscle cross-sectional area (mm(2)) at the tibial midshaft (50% site) in 128 EARLY-, PERI- and POST-pubertal girls (n = 69, 11.9 +/- 0.6 years) and boys (n = 59, 12.0 +/- 0.6 years) across 20 months. We also calculated two bone-muscle strength indices (BMSI) for compression (CoA/MCSA) and bending [strength index/MCSA; where strength index = Z / (tibial length / 2)]. EARLY boys and girls had smaller ToA at baseline than same sex PERI or POST participants. There were no sex differences in ToA or CoA at baseline; however, boys increased both parameters significantly more than girls in every maturity group (8.5-11.1%, P < 0.01). These changes in bone geometry conferred greater gains in bone strength for boys compared with girls in each maturity group (13.8-15.6%, P < 0.01). Baseline BMSIs did not differ between sexes for EARLY and PERI groups, whereas BMSIs were significantly higher for POST boys compared with POST girls (P < 0.05). BMSIs decreased for EARLY and PERI girls (-7.4-(-1.1%)) whereas the ratios remained stable for EARLY and PERI boys (-0.6-2.5%). This sex difference in BMSI change was due to a relatively greater increase in CoA among EARLY and PERI boys compared with same-maturity girls. BMSIs remained stable in POST girls and decreased in POST boys due to relatively greater gains in MCSA. This study provides novel longitudinal descriptions of the maturity- and sex-specific changes in bone geometry, strength and bone-muscle strength indices.
Technical Note: Enhancing the surface dose using a weak longitudinal magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlone, Marco, E-mail: marco.carlone@rmp.uhn.on.ca; Keller, Harald; Rezaee, Mohammad
2016-06-15
Purpose: The surface dose in radiotherapy is subject to the physical properties of the radiation beam and collimator. The purpose of this work is to investigate the manipulation of surface dose using magnetic fields produced with a resistive magnet. Better understanding of the feasibility and mechanisms of altered surface dose could have important clinical applications where the surface dose must be increased for therapeutic goals, or reduced to enhance the therapeutic benefit. Methods: A resistive magnet capable of generating a peak magnetic field up to 0.24 T was integrated with a cobalt treatment unit. The magnetic fringe field of themore » magnet was small due to the self-shielding built within the magnet. The magnetic field at the beam collimation jaws of the cobalt irradiator was less than 10 G. The surface dose and depth dose were measured for varying magnetic field strengths. Results: The resistive magnet was able to alter the dose in the buildup region of the {sup 60}Co depth dose significantly, and the magnitude of dose enhancement was directly related to the strength of the longitudinal magnetic field. Peak magnetic fields as low as 0.08 T were able to affect the surface dose. At a peak field of 0.24 T, the authors measured a surface dose enhancement of 2.8-fold. Conclusions: Surface dose enhancement using resistive magnets is feasible. Further experimental study is needed to understand the origin of the scattered electrons that contribute to the increase in surface dose.« less
Anderson, Peter; de Bruijn, Avalon; Angus, Kathryn; Gordon, Ross; Hastings, Gerard
2009-01-01
To assess the impact of alcohol advertising and media exposure on future adolescent alcohol use. We searched MEDLINE, the Cochrane Library, Sociological Abstracts, and PsycLIT, from 1990 to September 2008, supplemented with searches of Google scholar, hand searches of key journals and reference lists of identified papers and key publications for more recent publications. We selected longitudinal studies that assessed individuals' exposure to commercial communications and media and alcohol drinking behaviour at baseline, and assessed alcohol drinking behaviour at follow-up. Participants were adolescents aged 18 years or younger or below the legal drinking age of the country of origin of the study, whichever was the higher. Thirteen longitudinal studies that followed up a total of over 38,000 young people met inclusion criteria. The studies measured exposure to advertising and promotion in a variety of ways, including estimates of the volume of media and advertising exposure, ownership of branded merchandise, recall and receptivity, and one study on expenditure on advertisements. Follow-up ranged from 8 to 96 months. One study reported outcomes at multiple time-points, 3, 5, and 8 years. Seven studies provided data on initiation of alcohol use amongst non-drinkers, three studies on maintenance and frequency of drinking amongst baseline drinkers, and seven studies on alcohol use of the total sample of non-drinkers and drinkers at baseline. Twelve of the thirteen studies concluded an impact of exposure on subsequent alcohol use, including initiation of drinking and heavier drinking amongst existing drinkers, with a dose response relationship in all studies that reported such exposure and analysis. There was variation in the strength of association, and the degree to which potential confounders were controlled for. The thirteenth study, which tested the impact of outdoor advertising placed near schools failed to detect an impact on alcohol use, but found an impact on intentions to use. Longitudinal studies consistently suggest that exposure to media and commercial communications on alcohol is associated with the likelihood that adolescents will start to drink alcohol, and with increased drinking amongst baseline drinkers. Based on the strength of this association, the consistency of findings across numerous observational studies, temporality of exposure and drinking behaviours observed, dose-response relationships, as well as the theoretical plausibility regarding the impact of media exposure and commercial communications, we conclude that alcohol advertising and promotion increases the likelihood that adolescents will start to use alcohol, and to drink more if they are already using alcohol.
NASA Astrophysics Data System (ADS)
Agui, Juan H.; Briassulis, George; Andreopoulos, Yiannis
2005-02-01
The unsteady interaction of a moving shock wave with nearly homogeneous and isotropic decaying compressible turbulence has been studied experimentally in a large-scale shock tube facility. Rectangular grids of various mesh sizes were used to generate turbulence with Reynolds numbers based on Taylor's microscale ranging from 260 to 1300. The interaction has been investigated by measuring the three-dimensional velocity and vorticity vectors, the full velocity gradient and rate-of-strain tensors with instrumentation of high temporal and spatial resolution. This allowed estimates of dilatation, compressible dissipation and dilatational stretching to be obtained. The time-dependent signals of enstrophy, vortex stretching/tilting vector and dilatational stretching vector were found to exhibit a rather strong intermittent behaviour which is characterized by high-amplitude bursts with values up to 8 times their r.m.s. within periods of less violent and longer lived events. Several of these bursts are evident in all the signals, suggesting the existence of a dynamical flow phenomenon as a common cause. Fluctuations of all velocity gradients in the longitudinal direction are amplified significantly downstream of the interaction. Fluctuations of the velocity gradients in the lateral directions show no change or a minor reduction through the interaction. Root mean square values of the lateral vorticity components indicate a 25% amplification on average, which appears to be very weakly dependent on the shock strength. The transmission of the longitudinal vorticity fluctuations through the shock appears to be less affected by the interaction than the fluctuations of the lateral components. Non-dissipative vortex tubes and irrotational dissipative motions are more intense in the region downstream of the shock. There is also a significant increase in the number of events with intense rotational and dissipative motions. Integral length scales and Taylor's microscales were reduced after the interaction with the shock in all investigated flow cases. The integral length scales in the lateral direction increase at low Mach numbers and decrease during strong interactions. It appears that in the weakest of the present interactions, turbulent eddies are compressed drastically in the longitudinal direction while their extent in the normal direction remains relatively the same. As the shock strength increases the lateral integral length scales increase while the longitudinal ones decrease. At the strongest interaction of the present flow cases turbulent eddies are compressed in both directions. However, even at the highest Mach number the issue is more complicated since amplification of the lateral scales has been observed in flows with fine grids. Thus the outcome of the interaction strongly depends on the initial conditions.
Deepthi, S; Nivedhitha Sundaram, M; Vijayan, Ponni; Nair, Shantikumar V; Jayakumar, R
2018-04-01
Electrospun tri-layered fibrous scaffold incorporating VEGF and Platelet Factor Concentrate (PFC) in multiple layers having different layer architectures was designed to mimic native artery. The scaffold consisted of longitudinally aligned poly(hydroxy butyrate-co-hydroxy valerate) (PHBV) and poly(vinyl alcohol) (PVA) nanofibers (inner layer), radially aligned PHBV-elastin nanofibers (middle layer) to provide the bi-directional alignment and combination of longitudinally aligned PHBV-elastin and random PHBV/PVA multiscale fibers (peripheral layer). Tubular constructs of diameter <6 mm were developed. The developed electrospun fibers were characterised by Scanning Electron Microscope (SEM), Fourier Transform Infrared Spectroscopy and Tensile tests. Further the burst strength, compliance and stiffness index of tri-layered tubular scaffold was evaluated. SEM images of fibrous layers showed the typical longitudinal and radial alignment of fibers in the tubular construct. SEM images showed that the prepared PHBV nanofibers were in the range of 500-800 nm and PHBV microfibers were of 1-2 μm in diameter in the tri-layered electrospun membrane. PVA nanofibers were of size 200-250 nm. The tensile strength, percentage compliance and stiffness index of tri-layered membrane was in accordance with that of native small blood vessels. The developed tri-layered membrane was blood compatible, with hemolysis degree 0.85 ± 0.21% and did not activate platelets. Controlled release of VEGF and PFC was observed from the scaffold. The biocompatibility of the tri-layered scaffold was evaluated using HUVECs, SMCs and MSCs and SMCs infiltration from the outer layer was also evaluated. Specific protein expression for the HUVECs and SMCs was evaluated by flow cytometry and immunocytochemistry. HUVECs and SMCs exhibited good elongation and alignment along the direction of fibers and was found to maintain its CD31, VE-Cadherin and αSMA expression respectively. The results highlight the importance of bi-directional fiber alignment on the tri-layered electrospun scaffold as a suitable architectural prototype for vascular scaffolds to mimic the native arteries. Copyright © 2017 Elsevier B.V. All rights reserved.
Impact of tobacco advertising and promotion on increasing adolescent smoking behaviours.
Lovato, C; Linn, G; Stead, L F; Best, A
2003-01-01
The tobacco industry denies that their marketing is targeted at young nonsmokers, but it seems more probable that tobacco advertising and promotion influences the attitudes of nonsmoking adolescents, and makes them more likely to try smoking. To assess the effects of tobacco advertising and promotion on nonsmoking adolescents' future smoking behaviour. We searched the Cochrane Tobacco Group specialized register, the Cochrane Central Register of Controlled Trials, MEDLINE, the Cochrane Library, Sociological Abstracts, PsycLIT, ERIC, WorldCat, Dissertation Abstracts, ABI Inform and Current Contents to August 2002. We selected longitudinal studies that assessed individuals' smoking behaviour and exposure to advertising, receptivity or attitudes to tobacco advertising, or brand awareness at baseline, and assessed smoking behaviour at follow-ups. Participants were adolescents aged 18 or younger who were not regular smokers at baseline. Studies were prescreened for relevance by one reviewer. Two reviewers independently assessed relevant studies for inclusion. Data were extracted by one reviewer and checked by a second. Nine longitudinal studies that followed up a total of over 12,000 baseline nonsmokers met inclusion criteria. The studies measured exposure or receptivity to advertising and promotion in a variety of ways, including having a favourite advertisement or an index of receptivity based on awareness of advertising and ownership of a promotional item. One study measured the number of tobacco advertisements in magazines read by participants. All studies assessed smoking behaviour change in participants who reported not smoking at baseline. In all studies the nonsmoking adolescents who were more aware of tobacco advertising or receptive to it, were more likely to have experimented with cigarettes or become smokers at follow-up. There was variation in the strength of association, and the degree to which potential confounders were controlled for. Longitudinal studies consistently suggest that exposure to tobacco advertising and promotion is associated with the likelihood that adolescents will start to smoke. Based on the strength of this association, the consistency of findings across numerous observational studies, temporality of exposure and smoking behaviours observed, as well as the theoretical plausibility regarding the impact of advertising, we conclude that tobacco advertising and promotion increases the likelihood that adolescents will start to smoke.
Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnes, P.; et al.
We report the measurement of the longitudinal diffusion constant in liquid argon with the DarkSide-50 dual-phase time projection chamber. The measurement is performed at drift electric fields of 100 V/cm, 150 V/cm, and 200 V/cm using high statisticsmore » $$^{39}$$Ar decays from atmospheric argon. We derive an expression to describe the pulse shape of the electroluminescence signal (S2) in dual-phase TPCs. The derived S2 pulse shape is fit to events from the uppermost portion of the TPC in order to characterize the radial dependence of the signal. The results are provided as inputs to the measurement of the longitudinal diffusion constant DL, which we find to be (4.12 $$\\pm$$ 0.04) cm$^2$/s for a selection of 140keV electron recoil events in 200V/cm drift field and 2.8kV/cm extraction field. To study the systematics of our measurement we examine datasets of varying event energy, field strength, and detector volume yielding a weighted average value for the diffusion constant of (4.09 $$\\pm$$ 0.09) cm$^2$ /s. The measured longitudinal diffusion constant is observed to have an energy dependence, and within the studied energy range the result is systematically lower than other results in the literature.« less
Coertjens, Liesje; Donche, Vincent; De Maeyer, Sven; Vanthournout, Gert; Van Petegem, Peter
2013-01-01
The change in learning strategies during higher education is an important topic of research in the Student Approaches to Learning field. Although the studies on this topic are increasingly longitudinal, analyses have continued to rely primarily on traditional statistical methods. The present research is innovative in the way it uses a multi-indicator latent growth analysis in order to more accurately estimate the general and differential development in learning strategy scales. Moreover, the predictive strength of the latent growth models are estimated. The sample consists of one cohort of Flemish University College students, 245 of whom participated in the three measurement waves by filling out the processing and regulation strategies scales of the Inventory of Learning Styles--Short Versions. Independent-samples t-tests revealed that the longitudinal group is a non-random subset of students starting University College. For each scale, a multi-indicator latent growth model is estimated using Mplus 6.1. Results suggest that, on average, during higher education, students persisting in their studies in a non-delayed manner seem to shift towards high-quality learning and away from undirected and surface-oriented learning. Moreover, students from the longitudinal group are found to vary in their initial levels, while, unexpectedly, not in their change over time. Although the growth models fit the data well, significant residual variances in the latent factors remain.
Separation of electron and hole dynamics in the semimetal LaSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, F.; Xu, J.; Botana, A. S.
We report investigations on the magnetotransport in LaSb, which exhibits extremely large magnetoresistance (XMR). Foremost, we demonstrate that the resistivity plateau can be explained without invoking topological protection. We then determine the Fermi surface from Shubnikov–de Haas (SdH) quantum oscillation measurements and find good agreement with the bulk Fermi pockets derived from first-principles calculations. Using a semiclassical theory and the experimentally determined Fermi pocket anisotropies, we quantitatively describe the orbital magnetoresistance, including its angle dependence.We show that the origin of XMR in LaSb lies in its high mobility with diminishing Hall effect, where the high mobility leads to a strongmore » magnetic-field dependence of the longitudinal magnetoconductance. Unlike a one-band material, when a system has two or more bands (Fermi pockets) with electron and hole carriers, the added conductance arising from the Hall effect is reduced, hence revealing the latent XMR enabled by the longitudinal magnetoconductance. With diminishing Hall effect, the magnetoresistivity is simply the inverse of the longitudinal magnetoconductivity, enabling the differentiation of the electron and hole contributions to the XMR, which varies with the strength and orientation of the magnetic field. This work demonstrates a convenient way to separate the dynamics of the charge carriers and to uncover the origin of XMR in multiband materials with anisotropic Fermi surfaces. Our approach can be readily applied to other XMR materials.« less
Johnson, K. L.; Trim, M. W.; Francis, D. K.; ...
2016-10-01
Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less
Le, Daisy; Holt, Cheryl L.; Hosack, Dominic P.; Huang, Jin; Clark, Eddie M.
2015-01-01
Objective This study reports on the association between religious beliefs and behaviors and the change in both general and religious social support using two waves of data from a national sample of African Americans. Design The Religion and Health in African Americans (RHIAA) study is a longitudinal telephone survey designed to examine relationships between various aspects of religious involvement and psychosocial factors over time. Participants RHIAA participants were 3,173 African American men (1,281) and women (1,892). A total of 1,251 men (456) and women (795) participated in wave 2 of data collection. Results Baseline religious behaviors were associated with increased overall religious social support from baseline to wave 2 (p<.001) and with increased religious social support from baseline to wave 2 in each of the following religious social support subscales: emotional support received (p<.001), emotional support provided (p<.001), negative interaction (p<.001), and anticipated support (p<.001). Religious beliefs did not predict change in any type of support, and neither beliefs nor behaviors predicted change in general social support. Conclusions African Americans who are active in faith communities showed increases in all types of religious social support, even the negative aspects, over a relatively modest longitudinal study period. This illustrates the strength of the church as a social network and the role that it plays in people’s lives. PMID:26493343
Coertjens, Liesje; Donche, Vincent; De Maeyer, Sven; Vanthournout, Gert; Van Petegem, Peter
2013-01-01
The change in learning strategies during higher education is an important topic of research in the Student Approaches to Learning field. Although the studies on this topic are increasingly longitudinal, analyses have continued to rely primarily on traditional statistical methods. The present research is innovative in the way it uses a multi-indicator latent growth analysis in order to more accurately estimate the general and differential development in learning strategy scales. Moreover, the predictive strength of the latent growth models are estimated. The sample consists of one cohort of Flemish University College students, 245 of whom participated in the three measurement waves by filling out the processing and regulation strategies scales of the Inventory of Learning Styles – Short Versions. Independent-samples t-tests revealed that the longitudinal group is a non-random subset of students starting University College. For each scale, a multi-indicator latent growth model is estimated using Mplus 6.1. Results suggest that, on average, during higher education, students persisting in their studies in a non-delayed manner seem to shift towards high-quality learning and away from undirected and surface-oriented learning. Moreover, students from the longitudinal group are found to vary in their initial levels, while, unexpectedly, not in their change over time. Although the growth models fit the data well, significant residual variances in the latent factors remain. PMID:23844112
Samoudi, Amine M; Van Audenhaege, Karen; Vermeeren, Günter; Poole, Michael; Tanghe, Emmeric; Martens, Luc; Van Holen, Roel; Joseph, Wout
2015-12-01
We investigated the temporal variation of the induced magnetic field due to the transverse and the longitudinal gradient coils in tungsten collimators arranged in hexagonal and pentagonal geometries with and without gaps between the collimators. We modeled x-, y-, and z-gradient coils and different arrangements of single-photon emission computed tomography (SPECT) collimators using FEKO, a three-dimensional electromagnetic simulation tool. A time analysis approach was used to generate the pulsed magnetic field gradient. The approach was validated with measurements using a 7T MRI scanner. Simulations showed an induced magnetic field representing 4.66% and 0.87% of the applied gradient field (gradient strength = 500 mT/m) for longitudinal and transverse gradient coils, respectively. These values can be reduced by 75% by adding gaps between the collimators for the pentagonal arrangement, bringing the maximum induced magnetic field to less than 2% of the applied gradient for all of the gradient coils. Characterization of the maximum induced magnetic field shows that by adding gaps between the collimators for an integrated SPECT/MRI system, eddy currents can be corrected by the MRI system to avoid artifact. The numerical model was validated and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, K. L.; Trim, M. W.; Francis, D. K.
Our paper investigates the effects of moisture, anisotropy, stress state, and strain rate on the mechanical properties of the bighorn sheep (Ovis Canadensis) horn keratin. The horns consist of fibrous keratin tubules extending along the length of the horn and are contained within an amorphous keratin matrix. We tested samples in the rehydrated (35 wt.% water) and ambient dry (10 wt.% water) conditions along the longitudinal and radial directions under tension and compression. Increased moisture content was found to increase ductility and decrease strength, as well as alter the stress state dependent nature of the material. Furthermore, the horn keratinmore » demonstrates a significant strain rate dependence in both tension and compression, and also showed increased energy absorption in the hydrated condition at high strain rates when compared to quasi-static data, with increases of 114% in tension and 192% in compression. Compressive failure occurred by lamellar buckling in the longitudinal orientation followed by shear delamination. Tensile failure in the longitudinal orientation occurred by lamellar delamination combined with tubule pullout and fracture. Finally, the structure-property relationships quantified here for bighorn sheep horn keratin can be used to help validate finite element simulations of ram’s impacting each other as well as being useful for other analysis regarding horn keratin on other animals.« less
Le, Daisy; Holt, Cheryl L; Hosack, Dominic P; Huang, Jin; Clark, Eddie M
2016-08-01
This study reports on the association between religious beliefs and behaviors and the change in both general and religious social support using two waves of data from a national sample of African Americans. The Religion and Health in African Americans (RHIAA) study is a longitudinal telephone survey designed to examine relationships between various aspects of religious involvement and psychosocial factors over time. RHIAA participants were 3173 African American men (1281) and women (1892). A total of 1251 men (456) and women (795) participated in wave 2 of data collection. Baseline religious behaviors were associated with increased overall religious social support from baseline to wave 2 (p < .001) and with increased religious social support from baseline to wave 2 in each of the following religious social support subscales: emotional support received (p < .001), emotional support provided (p < .001), negative interaction (p < .001), and anticipated support (p < .001). Religious beliefs did not predict change in any type of support, and neither beliefs nor behaviors predicted change in general social support. African Americans who are active in faith communities showed increases in all types of religious social support, even the negative aspects, over a relatively modest longitudinal study period. This illustrates the strength of the church as a social network and the role that it plays in people's lives.
NASA Technical Reports Server (NTRS)
Sims, William Herbert, III (Inventor); Martin, James Joseph (Inventor); Lewis, Raymond A. (Inventor)
2003-01-01
A containment apparatus for containing a cloud of charged particles comprises a cylindrical vacuum chamber having a longitudinal axis. Within the vacuum chamber is a containment region. A magnetic field is aligned with the longitudinal axis of the vacuum chamber. The magnetic field is time invariant and uniform in strength over the containment region. An electric field is also aligned with the longitudinal axis of the vacuum chamber and the magnetic field. The electric field is time invariant, and forms a potential well over the containment region. One or more means are disposed around the cloud of particles for inducing a rotating electric field internal to the vacuum chamber. The rotating electric field imparts energy to the charged particles within the containment region and compress the cloud of particles. The means disposed around the outer surface of the vacuum chamber for inducing a rotating electric field are four or more segments forming a segmented ring, the segments conforming to the outer surface of the vacuum chamber. Each of the segments is energized by a separate alternating voltage. The sum of the voltages imposed on each segment establishes the rotating field. When four segments form a ring, the rotating field is obtained by a signal generator applying a sinusoidal signal phase delayed by 90,180 and 270 degrees in sequence to the four segments.
Studies of the Coherent Half-Integer Resonance
NASA Astrophysics Data System (ADS)
Cousineau, Sarah; Holmes, Jeff; Galambos, John; Macek, Robert; Fedotov, Alexei; Wei, Jie
2002-12-01
We present studies of space-charge-induced beam profile broadening at high intensities in the Proton Storage Ring (PSR) at Los Alamos National Laboratory. Previous work has associated the observed broadening in the vertical direction with the coherent half integer resonance [1]. Here, we study the effect of the space charge environment on this resonance; specifically, we investigate the strength of the resonance versus beam intensity, longitudinal bunching factor, transverse lattice tune, and two different beam injection scenarios. For each case, detailed particle-in-cell simulations are combined with experimental results to elucidate the behavior and sensitivity of the beam resonance response.
Boron/aluminum graphite/resin advanced fiber composite hybrids
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Lark, R. F.; Sullivan, T. L.
1975-01-01
Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.
NASA Astrophysics Data System (ADS)
Rubtsova, N. N.; Gol'dort, V. G.; Ishchenko, V. N.; Khvorostov, E. B.; Kochubei, S. A.; Borisov, G. M.; Ledovskikh, D. V.; Reshetov, V. A.
2018-04-01
For the first time, the collision induced stimulated photon echo generated at transition 1S0 → 3 P1 of 174Yb (type 0-1) in the mixture of gases Yb + Xe was investigated in the presence of weak longitudinal magnetic field, with experimental parameters corresponding to broad spectral line conditions. Comparison of the experimental echo amplitude versus magnetic field strength dependence with the theoretical curve shows a very good agreement, giving rise to an improved estimate for the difference between alignment and orientation decay rates.
NASA Technical Reports Server (NTRS)
Davis, R. C.; Bales, T. T.; Royster, D. M.; Jackson, L. R. (Inventor)
1984-01-01
The report describes a structure for a strong, lightweight corrugated sheet. The sheet is planar or curved and includes a plurality of corrugation segments, each segment being comprised of a generally U-shaped corrugation with a part-cylindrical crown and cap strip, and straight side walls and with secondary corrugations oriented at right angles to said side walls. The cap strip is bonded to the crown and the longitudinal edge of said cap strip extends beyond edge at the intersection between said crown and said side walls. The high strength relative to weight of the structure makes it desirable for use in aircraft or spacecraft.
Tosun, Ozge Celiker; Solmaz, Ulas; Ekin, Atalay; Tosun, Gokhan; Gezer, Cenk; Ergenoglu, Ahmet Mete; Yeniel, Ahmet Ozgur; Mat, Emre; Malkoc, Mehtap; Askar, Niyazi
2016-01-01
[Purpose] The aim of this study was to evaluate whether the effect of pelvic floor exercises on pelvic floor muscle strength could be detected via ultrasonography in patients with urinary incontinence. [Subjects and Methods] Of 282 incontinent patients, 116 participated in the study and were randomly divided into a pelvic floor muscle training (n=65) group or control group (n=51). The pelvic floor muscle training group was given pelvic floor exercise training for 12 weeks. Both groups were evaluated at the beginning of the study and after 12 weeks. Abdominal ultrasonography measurements in transverse and longitudinal planes, the PERFECT scheme, perineometric evaluation, the stop test, the stress test, and the pad test were used to assess pelvic floor muscle strength in all cases. [Results] After training, the PERFECT, perineometry and transabdominal ultrasonography measurements were found to be significantly improved, and the stop test and pad test results were significantly decreased in the pelvic floor muscle training group, whereas no difference was observed in the control group. There was a positive correlation between the PERFECT force measurement scale and ultrasonography force measurement scale before and after the intervention in the control and pelvic floor muscle training groups (r=0.632 and r=0.642, respectively). [Conclusion] Ultrasonography can be used as a noninvasive method to identify the change in pelvic floor muscle strength with exercise training. PMID:27065519
Malina, R M; Little, B B; Shoup, R F; Buschang, P H
1987-08-01
The postulated superior functional efficiency in association with reduced body size under conditions of chronic protein-energy undernutrition was considered in school children from rural Mexico and coastal Papua New Guinea. Grip strength and three measures of motor performance were measured in cross-sectional samples of children 6-16 years of age from a rural agricultural community in Oaxaca, Mexico, and from the coastal community Pere on Manus Island, Papua New Guinea. The strength and performance of a mixed-longitudinal sample of well nourished children from Philadelphia was used as a reference. The Oaxaca and Pere children are significantly shorter and lighter and are not as strong as the well nourished children. Motor performances of Pere children compare favorably to those of the better-nourished Philadelphia children, whereas those of the Oaxaca children are poorer. Throwing performance is more variable. When expressed relative to body size, strength is similar in the three samples, but the running and jumping performances of Pere children per unit body size are better than the relative performances of Oaxaca and Philadelphia children. Throwing performance per unit body size is better in the undernourished children. The influence of age, stature, and weight on the performance of Oaxaca and Pere children is generally similar to that for well nourished children. These results suggest that the hypothesized adaptive significance of small body size for the functional efficiency of populations living under conditions of chronic undernutrition varies between populations and with performance tasks.
Musculoskeletal phenotype through the life course: the role of nutrition.
Ward, Kate
2012-02-01
This review considers the definition of a healthy bone phenotype through the life course and the modulating effects of muscle function and nutrition. In particular, it will emphasise that optimal bone strength (and how that is regulated) is more important than simple measures of bone mass. The forces imposed on bone by muscle loading are the primary determinants of musculoskeletal health. Any factor that changes muscle loading on the bone, or the response of bone to loading results in alterations of bone strength. Advances in technology have enhanced the understanding of a healthy bone phenotype in different skeletal compartments. Multiple components of muscle strength can also be quantified. The critical evaluation of emerging technologies for assessment of bone and muscle phenotype is vital. Populations with low and moderate/high daily Ca intakes and/or different vitamin D status illustrate the importance of nutrition in determining musculoskeletal phenotype. Changes in mass and architecture maintain strength despite low Ca intake or vitamin D status. There is a complex interaction between body fat and bone which, in addition to protein intake, is emerging as a key area of research. Muscle and bone should be considered as an integrative unit; the role of body fat requires definition. There remains a lack of longitudinal evidence to understand how nutrition and lifestyle define musculoskeletal health. In conclusion, a life-course approach is required to understand the definition of healthy skeletal phenotype in different populations and at different stages of life.
Proof Test Diagrams for a Lithia-Alumina-Silica Glass-Ceramic
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.
2003-01-01
The glass-ceramic (Zerodur, Schott Glaswerke, Mainz, Germany) contains 70% to 78% by weight crystalline phase of high-quartz structure with a mean crystal size of 50-55 nm. The vitreous phase has a positive thermal expansion coefficient which is practically balanced by the negative coefficient of the crystalline phase. This results in a material which can maintain longitudinal stability during thermal cycling. This was one of the reasons for its choice as the material for the grazing incidence mirrors for the Chandra X-Ray Facility. Brittle materials such as glass and glass-ceramics which exhibit slow crack growth and subsequent fast fracture to failure exhibit a time dependence in strength. The decrease in strength for a constant applied load is known as static fatigue. In many cases, environment plays a major role in the material lifetime. It has been shown for silicate glasses that crack velocity will increase as the amount of water vapor in the environment surface finish and rate of loading. A rough surface finish leads to a lower tensile strength than for an optically polished surface. The strength of glass is observed in general to increase with increasing load rate. This phenomena is known as dynamic fatigue. This was observed for Zerodur by Tucker and Gent and Tucker in previous dynamic fatigue studies, in which lifetimes were obtained. All of the above named factors need to be considered when glass is to be used in load bearing applications.
Analytical models for coupling reliability in identical two-magnet systems during slow reversals
NASA Astrophysics Data System (ADS)
Kani, Nickvash; Naeemi, Azad
2017-12-01
This paper follows previous works which investigated the strength of dipolar coupling in two-magnet systems. While those works focused on qualitative analyses, this manuscript elucidates reversal through dipolar coupling culminating in analytical expressions for reversal reliability in identical two-magnet systems. The dipolar field generated by a mono-domain magnetic body can be represented by a tensor containing both longitudinal and perpendicular field components; this field changes orientation and magnitude based on the magnetization of neighboring nanomagnets. While the dipolar field does reduce to its longitudinal component at short time-scales, for slow magnetization reversals, the simple longitudinal field representation greatly underestimates the scope of parameters that ensure reliable coupling. For the first time, analytical models that map the geometric and material parameters required for reliable coupling in two-magnet systems are developed. It is shown that in biaxial nanomagnets, the x ̂ and y ̂ components of the dipolar field contribute to the coupling, while all three dimensions contribute to the coupling between a pair of uniaxial magnets. Additionally, the ratio of the longitudinal and perpendicular components of the dipolar field is also very important. If the perpendicular components in the dipolar tensor are too large, the nanomagnet pair may come to rest in an undesirable meta-stable state away from the free axis. The analytical models formulated in this manuscript map the minimum and maximum parameters for reliable coupling. Using these models, it is shown that there is a very small range of material parameters which can facilitate reliable coupling between perpendicular-magnetic-anisotropy nanomagnets; hence, in-plane nanomagnets are more suitable for coupled systems.
Shawler, Celeste; Edward, Jean; Ling, Jiying; Crawford, Tim N; Rayens, Mary Kay
Although hypertension (HTN) treatment rates are similar across age groups of women, effective control is significantly worse among older women. Only 20% of hypertensive women aged 70 to 79 years have controlled blood pressure. The purpose of this longitudinal study was to test the effects of the quality of mother-daughter relationship, inner strength, and control on HTN self-management and health-related quality of life (HRQOL) for both members of the dyad at 6 months. The Actor-Partner Interdependence Model was used to examine the direct ("actor") and indirect ("partner") effects of 46 dyads. The mothers' perceived relationship quality with daughters directly impacted their own self-management of HTN and HRQOL while also indirectly affecting their daughters' self-management. Similarly, the daughters' perceived strength of their relationship with their mothers directly influenced their self-management and HRQOL and indirectly affected their mothers' self-management and HRQOL.
A longitudinal study of ice hockey in boys aged 8--12.
MacNab, R B
1979-03-01
A group of fifteen boys (experimental or competitive) were studied over a five year period of competitive ice hockey beginning at age 8. The subjects were members of a team which averaged 66 games per year, ranging from 50 at age 8 to 78 at age 12. In addition, they practiced twice a week with heavy stress on skating and individual puck handling skills. A second group of eleven boys (control or less competitive) were studied from age 10 to 12. The latter subjects played an average of 25 games per year and practiced once a week. All subjects were measured each year on skating and puck control skills, fitness-performance tests, grip strength, physical work capacity as well as height and weight. The results demonstrate learning curves for skating and puck control tests which, while typical in nature, show extremely high levels of achievement. Fitness-Performance, grip strength and physical work capacity levels of the competitive group are extremely high in comparison with data from other countries.
Norms as Group-Level Constructs: Investigating School-Level Teen Pregnancy Norms and Behaviors.
Mollborn, Stefanie; Domingue, Benjamin W; Boardman, Jason D
2014-09-01
Social norms are a group-level phenomenon, but past quantitative research has rarely measured them in the aggregate or considered their group-level properties. We used the school-based design of the National Longitudinal Study of Adolescent Health to measure normative climates regarding teen pregnancy across 75 U.S. high schools. We distinguished between the strength of a school's norm against teen pregnancy and the consensus around that norm. School-level norm strength and dissensus were strongly (r = -0.65) and moderately (r = 0.34) associated with pregnancy prevalence within schools, respectively. Normative climate partially accounted for observed racial differences in school pregnancy prevalence, but norms were a stronger predictor than racial composition. As hypothesized, schools with both a stronger average norm against teen pregnancy and greater consensus around the norm had the lowest pregnancy prevalence. Results highlight the importance of group-level normative processes and of considering the local school environment when designing policies to reduce teen pregnancy.
NASA Astrophysics Data System (ADS)
Rosenberg, Z.; Brar, N. S.
1995-11-01
A recent article by Dandekar, Abbate, and Frankel [J. Appl. Phys. 76, 4077 (1994)] reviews existing data on high-pressure properties of aluminum nitride (AlN) in an effort to build an equation of state for this material. A rather large portion of that article is devoted to the shear strength of AlN and, in particular, to our data of 1991 with longitudinal and lateral stress gauges [Z. Rosenberg, N. S. Brar, and S. J. Bless, J. Appl. Phys. 70, 167 (1991)]. Since our highest data point has an error of 1 GPa, much of the discussion and conclusions of Dandekar and co-workers are not relevant once this error in data reduction is corrected. We also discuss the relevance of our shear strength data for various issues, such as the phase transformation of AlN at 20 GPa and the general shape of Hugoniot curves for brittle solids.
Individualized dry-land intervention program for an élite Paralympic swimmer: a case report.
Cavaggioni, Luca; Trecroci, Athos; Tosin, Massimiliano; Iaia, F Marcello; Alberti, Giampietro
2018-03-01
The aim of this retrospective case study is the longitudinal description of the physical and functional parameters of a top-level Paralympic swimmer class S9-SB8-SM9 during four swimming seasons of training, from the Paralympic games in London 2012 to the Paralympic games in Rio 2016. A 22-year-old male swimmer underwent a specific preventive dry-land training based on diaphragmatic breathing, postural alignment, and slow-velocity resistance training aimed to improve his muscle strength. He was tested by using the Functional Movement ScreenTM, photographic postural assessment and vertical jump. The swimmer improved his functional, postural and strength parameters indicating a better functional movement and muscular power. These results shows that a four-year specific dry-land intervention could be capable of enhancing the functional and physical requirements of a top-level Paralympic swimmer. This approach might be a suitable novel alternative for physical therapists and athletic trainers to integrate their training protocols for athletes with similar impairments.
Easterbrook, Matthew J; Vignoles, Vivian L
2015-03-01
Despite its omnipresence, the influence of the built environment on human psychology is not well understood. In a five-wave longitudinal study, we investigated whether physical design features within shared student accommodation predicted the frequency of coincidental meetings between new flatmates, and whether these meetings predicted the strength of their interpersonal bonds and psychological well-being. Multilevel latent growth modelling on responses from 462 new university residents supported our hypotheses: Respondents living in flats with design features that encouraged the use of communal areas--a shared common area and an absence of ensuite toilets--reported unintentionally meeting their flatmates more frequently within their flats. This in turn predicted the initial strength of their interpersonal bonds with their flatmates, which in turn positively predicted their well-being. These effects were maintained throughout the 10-week study. Our findings provide an empirical basis for the development of shared housing designed to foster positive relationships and well-being among residents. © 2014 The British Psychological Society.
Functional connectivity in the developing brain: A longitudinal study from 4 to 9 months of age
Damaraju, E.; Caprihan, A.; Lowe, J.R.; Allen, E.A.; Calhoun, V.D.; Phillips, J.P.
2013-01-01
We characterize the development of intrinsic connectivity networks (ICNs) from 4 to 9 months of age with resting state magnetic resonance imaging performed on sleeping infants without sedative medication. Data is analyzed with independent component analysis (ICA). Using both low (30 components) and high (100 components) ICA model order decompositions, we find that the functional network connectivity (FNC) map is largely similar at both 4 and 9 months. However at 9 months the connectivity strength decreases within local networks and increases between more distant networks. The connectivity within the default-mode network, which contains both local and more distant nodes, also increases in strength with age. The low frequency power spectrum increases with age only in the posterior cingulate cortex and posterior default mode network. These findings are consistent with a general developmental pattern of increasing longer distance functional connectivity over the first year of life and raise questions regarding the developmental importance of the posterior cingulate at this age. PMID:23994454
Clinical Imaging of Bone Microarchitecture with HR-pQCT
Nishiyama, Kyle K.; Shane, Elizabeth
2014-01-01
Osteoporosis, a disease characterized by loss of bone mass and structural deterioration, is currently diagnosed by dual-energy x-ray absorptiometry (DXA). However, DXA does not provide information about bone microstructure, which is a key determinant of bone strength. Recent advances in imaging permit the assessment of bone microstructure in vivo using high-resolution peripheral quantitative computed tomography (HR-pQCT). From these data, novel image processing techniques can be applied to characterize bone quality and strength. To date, most HR-pQCT studies are cross-sectional comparing subjects with and without fracture. These studies have shown that HR-pQCT is capable of discriminating fracture status independent of DXA. Recent longitudinal studies present new challenges in terms of analyzing the same region of interest and multisite calibrations. Careful application of analysis techniques and educated clinical interpretation of HR-pQCT results have improved our understanding of various bone-related diseases and will no doubt continue to do so in the future. PMID:23504496
Jain, Sonia; Cohen, Alison K
2013-12-01
Most studies to date have examined negative effects of exposure to community violence, in line with the deficit-based perspective. However, given that most youth exposed to community violence demonstrate positive adaptation or resilience over time, we suggest a shift in perspective, practices, and policies across systems toward identifying and building individual, family, and community assets and strengths that may more effectively support youth who have been exposed to community violence and related risks into competent, caring, and thriving adults. In this article, we review how resilience has been conceptualized and operationalized within the context of community violence, highlight gaps in literature, and offer directions for future public health research and practice. We illustrate this review with practice-based examples from public health work in the San Francisco Bay Area. Future multidisciplinary longitudinal studies that identify protective processes and successful trajectories and rigorous evaluations of strength-based policies, programs, and protective processes are needed.
Functional connectivity in the developing brain: a longitudinal study from 4 to 9months of age.
Damaraju, E; Caprihan, A; Lowe, J R; Allen, E A; Calhoun, V D; Phillips, J P
2014-01-01
We characterize the development of intrinsic connectivity networks (ICNs) from 4 to 9months of age with resting state magnetic resonance imaging performed on sleeping infants without sedative medication. Data is analyzed with independent component analysis (ICA). Using both low (30 components) and high (100 components) ICA model order decompositions, we find that the functional network connectivity (FNC) map is largely similar at both 4 and 9months. However at 9months the connectivity strength decreases within local networks and increases between more distant networks. The connectivity within the default-mode network, which contains both local and more distant nodes, also increases in strength with age. The low frequency power spectrum increases with age only in the posterior cingulate cortex and posterior default mode network. These findings are consistent with a general developmental pattern of increasing longer distance functional connectivity over the first year of life and raise questions regarding the developmental importance of the posterior cingulate at this age. © 2013.
Estimation of Effective Directional Strength of Single Walled Wavy CNT Reinforced Nanocomposite
NASA Astrophysics Data System (ADS)
Bhowmik, Krishnendu; Kumar, Pranav; Khutia, Niloy; Chowdhury, Amit Roy
2018-03-01
In this present work, single walled wavy carbon nanotube reinforced into composite has been studied to predict the effective directional strength of the nanocomposite. The effect of waviness on the overall Young’s modulus of the composite has been analysed using three dimensional finite element model. Waviness pattern of carbon nanotube is considered as periodic cosine function. Both long (continuous) and short (discontinuous) carbon nanotubes are being idealized as solid annular tube. Short carbon nanotube is modelled with hemispherical cap at its both ends. Representative Volume Element models have been developed with different waviness, height fractions, volume fractions and modulus ratios of carbon nanotubes. Consequently a micromechanics based analytical model has been formulated to derive the effective reinforcing modulus of wavy carbon nanotubes. In these models wavy single walled wavy carbon nanotubes are considered to be aligned along the longitudinal axis of the Representative Volume Element model. Results obtained from finite element analyses are compared with analytical model and they are found in good agreement.
NASA Astrophysics Data System (ADS)
Zhao, Cong; Xiao, Jun; Li, Yong; Chu, Qiyi; Xu, Ting; Wang, Bendong
2017-12-01
As one of the most common process induced defects of automated fiber placement, in-plane fiber waviness and its influences on mechanical properties of fiber reinforced composite lack experimental studies. In this paper, a new approach to prepare the test specimen with in-plane fiber waviness is proposed in consideration of the mismatch between the current test standard and actual fiber trajectory. Based on the generation mechanism of in-plane fiber waviness during automated fiber placement, the magnitude of in-plane fiber waviness is characterized by axial compressive strain of prepreg tow. The elastic constants and tensile strength of unidirectional laminates with in-plane fiber waviness are calculated by off-axis and maximum stress theory. Experimental results show that the tensile properties infade dramatically with increasing magnitude of the waviness, in good agreement with theoretical analyses. When prepreg tow compressive strain reaches 1.2%, the longitudinal tensile modulus and strength of unidirectional laminate decreased by 25.5% and 57.7%, respectively.
Norms as Group-Level Constructs: Investigating School-Level Teen Pregnancy Norms and Behaviors
Mollborn, Stefanie; Domingue, Benjamin W.; Boardman, Jason D.
2015-01-01
Social norms are a group-level phenomenon, but past quantitative research has rarely measured them in the aggregate or considered their group-level properties. We used the school-based design of the National Longitudinal Study of Adolescent Health to measure normative climates regarding teen pregnancy across 75 U.S. high schools. We distinguished between the strength of a school's norm against teen pregnancy and the consensus around that norm. School-level norm strength and dissensus were strongly (r = -0.65) and moderately (r = 0.34) associated with pregnancy prevalence within schools, respectively. Normative climate partially accounted for observed racial differences in school pregnancy prevalence, but norms were a stronger predictor than racial composition. As hypothesized, schools with both a stronger average norm against teen pregnancy and greater consensus around the norm had the lowest pregnancy prevalence. Results highlight the importance of group-level normative processes and of considering the local school environment when designing policies to reduce teen pregnancy. PMID:26074628
Ni, Weihai; Chen, Huanjun; Su, Jing; Sun, Zhenhua; Wang, Jianfang; Wu, Hongkai
2010-04-07
The effects of various factors on the resonance coupling between elongated Au nanocrystals and organic dyes have been systematically investigated through the preparation of hybrid nanostructures between Au nanocrystals and the electrostatically adsorbed dye molecules. A nanocrystal sample is chosen for each dye to match the longitudinal plasmon resonance wavelength with the absorption peak wavelength of the dye as close as possible so that the resonance coupling strength can be maximized. The resonance coupling strength is found to approximately increase as the molecular volume-normalized absorptivity is increased. It is mainly determined by the plasmon resonance energy of the Au nanocrystals instead of their shapes and sizes. Moreover, the resonance coupling can be reversibly controlled if the dye in the hybrid nanostructures is pH-sensitive. The coupling can also be weakened in the presence of metal ions. These results will be highly useful for designing resonance coupling-based sensing devices and for plasmon-enhanced spectroscopy.
Numerical Study on Section Constitutive Relations of Members Reinforced by Steel-BFRP Composite Bars
NASA Astrophysics Data System (ADS)
Xiao, Tongliang; Qiu, Hongxing
2017-06-01
Steel-Basalt FRP Composite Bar (S-BFCB) is a new kind of substitute material for longitudinal reinforcement, with high elastic modulus, stable post-yield stiffness and excellent corrosive resistance. Based on mechanical properties of S-BFCB and the plane cross-section assumption, the moment-curvature curves of beam and column members are simulated. Some parameters such as equivalent rebar ratio, postyeild stiffness, concrete strength and axial compression ratio of column were discussed. Results show that the constitutive relation of the cross section is similar with RC member in elastic and cracking stages, while different in post-yield stage. With the increase of postyeild stiffness ratio of composite bar, the ultimate bearing capacity of component improved observably, member may turn out over-reinforced phenomenon, concrete crushing may appear before the fibersarefractured. The effect of concrete strength increase in lower postyeild stiffness ratio is not obvious than in higher. The increase of axial compression ratio has actively influence on bearing capacity of column, but decreases on the ductility.
Fixed dynamometry is more sensitive than vital capacity or ALS rating scale.
Andres, Patricia L; Allred, Margaret Peggy; Stephens, Helen E; Proffitt Bunnell, Mary; Siener, Catherine; Macklin, Eric A; Haines, Travis; English, Robert A; Fetterman, Katherine A; Kasarskis, Edward J; Florence, Julaine; Simmons, Zachary; Cudkowicz, Merit E
2017-10-01
Improved outcome measures are essential to efficiently screen the growing number of potential amyotrophic lateral sclerosis (ALS) therapies. This longitudinal study of 100 (70 male) participants with ALS compared Accurate Test of Limb Isometric Strength (ATLIS), using a fixed, wireless load cell, with ALS Functional Rating Scale-Revised (ALSFRS-R) and vital capacity (VC). Participants enrolled at 5 U.S. sites. Data were analyzed from 66 participants with complete ATLIS, ALSFRS-R, and VC data over at least 3 visits. Change in ATLIS was less variable both within- and among-person than change in ALSFRS-R or VC. Additionally, participants who had normal ALSFRS-R arm and leg function averaged 12 to 32% below expected strength values measured by ATLIS. ATLIS was more sensitive to change than ALSFRS-R or VC and could decrease sample size requirements by approximately one-third. The ability of ATLIS to detect prefunctional change has potential value in early trials. Muscle Nerve 56: 710-715, 2017. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Roberts, Gary D.; Kamvouris, John E.
1996-01-01
A study was conducted to determine the effects of long-term isothermal thermo-oxidative aging on the compressive properties of T-650-35 fabric reinforced PMR-15 composites. The temperatures that were studied were 204, 260, 288, 316, and 343 C. Specimens of different geometries were evaluated. Cut edge-to-surface ratios of 0.03 to 0.89 were fabricated and aged. Aging times extended to a period in excess of 15,000 hours for the lower temperature runs. The unaged and aged specimens were tested in compression in accordance with ASTM D-695. Both thin and thick (plasma) specimens were tested. Three specimens were tested at each time/temperature/geometry condition. The failure modes appeared to be initiated by fiber kinking with longitudinal, interlaminar splitting. In general, it appears that the thermo-oxidative degradation of the compression strength of the composite material may occur by both thermal (time-dependent) and oxidative (weight-loss) mechanisms. Both mechanisms appear to be specimen-thickness dependent.
Therapists' and Clients' Perceptions of Bonding as Predictors of Outcome in Multisystemic Therapy®.
Glebova, Tatiana; Foster, Sharon L; Cunningham, Phillippe B; Brennan, Patricia A; Whitmore, Elizabeth A
2017-12-08
This longitudinal study examined whether strength of and balance in self-reported caregiver, youth, and therapist emotional bonds in mid- and late treatment predicted outcomes in Multisystemic Therapy of adolescent behavior problems in a sample of 164 caregiver-youth dyads. Strength of and balance in bonds related to outcome in different ways, depending on the source of the report and time. Results showed a limited association between family members' emotional connection with the therapist and treatment outcome, whereas therapists' perceptions of bond with the caregiver showed highly significant associations across time. Caregiver-therapist agreement on emotional connection at both time points predicted therapist evaluation of treatment success and successful termination, but this was largely explained by therapists' level of alliance. Balance in bonds with the therapist between caregiver and youth had no significant associations with any outcome. The study major limitations such as examining only one component of alliance and possible implications are discussed. © 2017 Family Process Institute.
Development of Laser Fabricated Ti-6Al-4V
NASA Technical Reports Server (NTRS)
deGroh, Henry C., III
2006-01-01
Laser Engineered Net Shaping (LENS) depositions with Ti-6Al-4V gas-atomized powder were accomplished at five different temperatures, ranging from 30 to 400 C, imposed on the base plate. These base plate temperatures were employed in an effort to relieve stresses which develop during the deposition. Warpage of the base plate was monitored. Only a slight decline in warpage was observed as the base plate temperature was increased. Results indicate that substrate temperatures closer to the stress relief minimum of 480 C would relieve deposition stresses, though process parameters would likely need to be modified to compensate for the higher base plate temperature. The compositions of the as-received powder and the LENS deposited material were chemically analyzed. The oxygen content of the LENS material was 0.154 wt.% which is less than the maximum impurity limit of 0.2 percent for commercial Ti-6Al-4V alloys, but is over the limit allowed in ELI grade (0.13 percent). The level of oxygen in the commercial base plate used was only 0.0635 percent. Tensile specimens were machined from the LENS deposited material and tested in tension at room temperature. The ultimate and yield tensile stresses of the LENS material were about 1200 and 1150 MPa respectively, which is about 20 percent higher than the strengths of wrought Ti-6Al-4V. The higher strength of the LENS material was due to its fine structure and high oxygen content. The LENS deposits were not fully dense; voids were frequent at the interfaces between deposited layers. These dispersed sheets of voids were parallel to the longitudinal axis of the resulting tensile specimens. Apparently there was sufficient continuous, fully dense material longitudinally to enable the high strengths. Ductility was low in the LENS material. Percent elongation at failure in the LENS material was near 4 percent, which is less than half of what is usually expected from Ti-6Al-4V. The low ductility was caused by high oxygen levels, and the presence of voids. It is likely that the relatively high scan speeds used in our depositions contributed to the lack of full density in our LENS material.
Kulmala, Jenni; Sipilä, Sarianna; Tiainen, Kristina; Pärssinen, Olavi; Koskenvuo, Markku; Kaprio, Jaakko; Rantanen, Taina
2012-10-01
Vision problems are common experiences within the older population. This study aimed to examine the association between vision and lower extremity impairment. 434 women aged 63-75 participated in visual acuity (VA) measurements at baseline and 313 persons at three-year follow-up. Measurements of lower extremity function included maximal isometric knee extension strength, leg extension power, maximal walking speed and standing balance. At baseline, knee extension strength was lower among participants with visual impairment (VI) (273.2±6.4 N) compared to those with good vision (306.5±5.9 N, p<0.001) as well as leg extension power (95.2±2.7 W vs 104.2±2.6 W, p=0.009) and maximal walking speed (1.6±0.02 m/s vs 1.8±0.03 m/s, p<0.001). Higher velocity moment among persons with VI (53.5±2.7 mm²/s vs 42.7±1.4 mm²/s, p<0.001) indicated that persons with VI had poorer balance compared to persons with good vision. Decreased isometric knee extension strength (OR 1.26, 95% CI 1.09-1.45), poorer standing balance (OR 1.16, 95% CI 1.00-1.35) as well as lower maximal walking speed (OR 1.34, 95% CI 1.13-1.59) were associated with VI in the logistic regression models. Additionally, the association between poorer leg extension power and VI (OR 1.14, 95% CI 0.99-1.31) was of borderline statistical significance. In longitudinal analyses, VI did not predict decline in lower extremity function. Lower extremity impairment was associated with VI among relatively healthy older women. However, change in lower extremity function was quite similar between the vision groups. It is possible that decreased VA may be a marker of underlying systemic factors or the aging process, which lead to poorer functional capacity, or there may be shared background factors, which lead to decreased vision and lower extremity impairment.
Large, Matthew; Kaneson, Muthusamy; Myles, Nicholas; Myles, Hannah; Gunaratne, Pramudie; Ryan, Christopher
2016-01-01
Objective It is widely assumed that the clinical care of psychiatric patients can be guided by estimates of suicide risk and by using patient characteristics to define a group of high-risk patients. However, the statistical strength and reliability of suicide risk categorization is unknown. Our objective was to investigate the odds of suicide in high-risk compared to lower-risk categories and the suicide rates in high-risk and lower-risk groups. Method We located longitudinal cohort studies where psychiatric patients or people who had made suicide attempts were stratified into high-risk and lower-risk groups for suicide with suicide mortality as the outcome by searching for peer reviewed publications indexed in PubMed or PsychINFO. Electronic searches were supplemented by hand searching of included studies and relevant review articles. Two authors independently extracted data regarding effect size, study population and study design from 53 samples of risk-assessed patients reported in 37 studies. Results The pooled odds of suicide among high-risk patients compared to lower-risk patients calculated by random effects meta-analysis was of 4.84 (95% Confidence Interval (CI) 3.79–6.20). Between-study heterogeneity was very high (I2 = 93.3). There was no evidence that more recent studies had greater statistical strength than older studies. Over an average follow up period of 63 months the proportion of suicides among the high-risk patients was 5.5% and was 0.9% among lower-risk patients. The meta-analytically derived sensitivity and specificity of a high-risk categorization were 56% and 79% respectively. There was evidence of publication bias in favour of studies that inflated the pooled odds of suicide in high-risk patients. Conclusions The strength of suicide risk categorizations based on the presence of multiple risk factors does not greatly exceed the association between individual suicide risk factors and suicide. A statistically strong and reliable method to usefully distinguish patients with a high-risk of suicide remains elusive. PMID:27285387
NASA Astrophysics Data System (ADS)
Yu, H.; Tor, S. B.; Loh, N. H.
2014-11-01
Thermal compression bonding is a straightforward, inexpensive and widely used method for enclosing open microchannels in thermoplastic microfluidic devices. It is advantageous over adhesive, solvent and grafting bonding methods in retaining material homogeneity. However, the trade-off between high bond strength and low microchannel deformation is always a crucial consideration in thermal compression bonding. In this study, an effective method for improving bond strength while retaining the microchannel integrity with negligible distortion is proposed and analyzed. Longitudinal ultrasonic actuation was applied to the preheated cyclic olefin copolymer (COC) substrates to achieve accelerated and enhanced bonding with an ultrasonic welding system. Intimate contact between the bonding surfaces before the ultrasonic actuation was found to be an important prior condition. With improper contact, several bonding defects would occur, such as voids, localized spot melting and edge melting. Under auxiliary ultrasonic vibration, within 10 s, the bond strength developed at the bonding interface could be dramatically improved compared with those achieved without ultrasonic actuation. The enhanced bond strength obtained at a preheating temperature of 20 °C lower than its Tg could be comparable to the strength for pure thermal compression at 5 °C higher than its Tg. It is believed that the ultrasonic energy introduced could elevate the interfacial temperature and facilitate the interdiffusion of molecular chain segments at the interface, consequently resulting in rapidly enhanced bonding. Also, the microchannel distortion after ultrasonic actuation was found to be satisfactory—another important requirement. From dynamic mechanical analysis, the glass transition temperature of COC was found to increase with increasing frequency, and the temperature of the bulk polymer under ultrasonic actuation was still well under Tg; therefore the deformation is minor under ultrasonic actuation.
Bilsborough, Johann C; Greenway, Kate; Livingston, Steuart; Cordy, Justin; Coutts, Aaron J
2016-04-01
The purpose of this study was to examine the seasonal changes in body composition, nutrition, and upper-body (UB) strength in professional Australian Football (AF) players. The prospective longitudinal study examined changes in anthropometry (body mass, fat-free soft-tissue mass [FFSTM], and fat mass) via dual-energy X-ray absorptiometry 5 times during an AF season (start preseason, midpreseason, start season, midseason, end season) in 45 professional AF players. Dietary intakes and strength (bench press and bench pull) were also assessed at these time points. Players were categorized as experienced (>4 y experience, n = 23) or inexperienced (<4 y experience, n = 22). Fat mass decreased during the preseason but was stable through the in-season for both groups. %FFSTM was increased during the preseason and remained constant thereafter. UB strength increased during the preseason and was maintained during the in-season. Changes in UB FFSTM were related to changes in UB-strength performance (r = .37-.40). Total energy and carbohydrate intakes were similar between the experienced and inexperienced players during the season, but there was a greater ratio of dietary fat intake at the start-preseason point and an increased alcohol, reduced protein, and increased total energy intake at the end of the season. The inexperienced players consumed more fat at the start of season and less total protein during the season than the experienced players. Coaches should also be aware that it can take >1 y to develop the appropriate levels of FFSTM in young players and take a long-term view when developing the physical and performance abilities of inexperienced players.
Fieseler, Georg; Jungermann, Philipp; Koke, Alexander; Irlenbusch, Lars; Delank, Karl-Stefan; Schwesig, Rene
2015-03-01
Our objective was to investigate the influence of workload and consecutive changes on active range of motion and isometric strength of team handball athletes' throwing shoulders (TSs) because the available data are insufficient. In a longitudinal investigation, 31 professional male handball athletes underwent a clinical shoulder examination. Athletes were examined at the beginning (week 0), at the end (week 6) of the preseasonal training, and at the end of the half-season (week 22) on both shoulders to determine isometric rotational strength (hand held dynamometer) and active range of motion (goniometer). This analysis demonstrates the results subsequently from week 6 to week 22 and from week 0 to week 22. The glenohumeral internal rotation (IR) deficit (GIRD), external rotation (ER) gain, and ER at the TS increased significantly (P < .05, η(2) > 0.10, d > 0.30) in the first sequence (week 6 to week 22) but not significantly from week 0 to week 22. The total range of motion remained stable, and IR changed but not significantly. There was no influence on IR, ER, and total range of motion at the non-TS. The isometric strength of the TS and non-TS IR did not change. The isometric strength in ER significantly increased bilaterally during the investigation period. Our data verify changes and influences, such as an increasing GIRD, at the overhead TS joint in accordance with the workload during team handball season. ER gain did improve after the half-season period but did not fully compensate the GIRD at the TS. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
The Effects of Torsional Preloading on the Torsional Resistance of Nickel-titanium Instruments.
Oh, Seung-Hei; Ha, Jung-Hong; Kwak, Sang Won; Ahn, Shin Wook; Lee, WooCheol; Kim, Hyeon-Cheol
2017-01-01
This study evaluated the effect of torsional preloading on the torsional resistance of nickel-titanium (NiTi) endodontic instruments. WaveOne Primary (Dentsply Maillefer, Ballaigues, Switzerland) and ProTaper Universal F2 (Dentsply Maillefer) files were used. The ultimate torsional strength until fracture was determined for each instrument. In the phase 1 experiment, the ProTaper and WaveOne files were loaded to have a maximum load from 2.0 up to 2.7 or 2.8 Ncm, respectively. In the phase 2 experiment, the number of repetitions of preloading for each file was increased from 50 to 200, whereas the preloading torque was fixed at 2.4 Ncm. Using torsionally preloaded specimens from phase 1 and 2, the torsional resistances were calculated to determine the ultimate strength, distortion angle, and toughness. The results were analyzed using 1-way analysis of variance and Duncan post hoc comparison. The fracture surfaces and longitudinal aspect of 5 specimens per group were examined under a scanning electron microscope. All preloaded groups showed significantly higher ultimate strength than the unpreloaded groups (P < .05). There was no significant difference among all groups for distortion angle and toughness. Although WaveOne had no significant difference between the repetition groups for ultimate strength, fracture angle, and toughness, ProTaper had a higher distortion angle and toughness in the 50-repetition group compared with the other repetition groups (P < .05). Scanning electron microscopic examinations of the fractured surface showed typical features of torsional fracture. Torsional preloading within the ultimate values could enhance the torsional strength of NiTi instruments. The total energy until fracture was maintained constantly, regardless of the alloy type. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Giglio, Juliana; Kamimura, Maria Ayako; Lamarca, Fernando; Rodrigues, Juliana; Santin, Fernanda; Avesani, Carla Maria
2018-05-01
This study aimed to assess whether diminished muscle mass, diminished muscle strength, or both conditions (sarcopenia) are associated with worse nutritional status, poor quality of life (QoL), and hard outcomes, such as hospitalization and mortality, in elderly patients on maintenance hemodialysis (MHD). This is a multicenter observational longitudinal study that included 170 patients on MHD (age 70 ± 7 years, 65% male) from 6 dialysis centers. The European Working Group on Sarcopenia in Older People defines sarcopenia as the presence of both low muscle mass by appendicular skeletal + low muscle function by handgrip strength. This study evaluated the clinical and nutritional status (laboratory, anthropometry, dual-energy X-ray absorptiometry, 7-point subjective global assessment) and QoL (Kidney Disease Quality of Life) at baseline. Hospitalization and mortality were recorded during 36 months. Reduced muscle mass was observed in 64% of the patients, reduced muscle strength in 52%, and sarcopenia in 37%. The group with sarcopenia was older, had a higher proportion of men and showed worse clinical and nutritional conditions when compared with patients without sarcopenia. Although reduced muscle mass was strongly associated with poor nutritional status, low muscle strength was associated with worse QoL domains. In the multivariate Cox analyses adjusted by age, gender, dialysis vintage, and diabetes mellitus, low muscle strength alone and sarcopenia were associated with higher hospitalization, and sarcopenia was a predictor of mortality. In conclusion, in this sample, comprised of elderly patients on MHD, sarcopenia was associated with worse nutritional and clinical conditions and was a predictor of hospitalization and mortality. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Smart, Daniel J; Hopkins, Will G; Gill, Nicholas D
2013-11-01
Numerous studies have highlighted differences between playing levels and positions in rugby union; however, few studies have investigated longitudinal progressions of body composition and physical performance. Between-player differences and within-player changes in body composition, strength, power, speed, and repeated sprint ability, from 1,161 New Zealand rugby union players from 2004 to 2007, were estimated using a mixed modeling procedure. Props had the highest mass, percent body fat, strength, and slowest speed times compared with the other positions, whereas outside backs had the fastest speed time and lowest percent body fat. For most measures, there were small-to-moderate differences (range, 1.1-14%) between players selected and not selected for provincial teams and small-to-large differences (range, 1.8-15%) between provincial and Super Rugby (professional) players. The faster 20-m sprint times in international compared with Super Rugby players was small in magnitude for both the forwards (1.9%) and backs (2.2%). The average annual improvements were small to moderate for strength (range, 2.1-15%) and small for repeated sprint ability within the lower playing levels (~1.5%). Small increases occurred in lower body strength (~7.0%) as players moved from Super Rugby to provincial competition. Small decreases in sprint time (~1.6%) and small increases in strength (~6.3%) occurred as players moved from Super Rugby to midyear international competition. The differences between levels in performance provide level-specific characteristics from Super Rugby and below, but international players may be selected because of greater skill and experience. Changes in physical performance between competitions may be a result of reduced training loads because of regular high-intensity matches and greater travel involved in the Super Rugby competition.
Lardon, Arnaud; Leboeuf-Yde, Charlotte; Le Scanff, Christine
2015-01-01
Back pain is a common condition during childhood and adolescence. The causes of back pain are largely unknown but it seems plausible that some physical factors such as back muscle strength, back muscle endurance and aerobic capacity may play a role in its development, in particular in the early years. The objectives of this review were to investigate in childhood and adolescence 1) if muscular strength in trunk extension is associated with back pain, 2) if muscular endurance in trunk extension is associated with back pain and 3) if aerobic capacity is associated with back pain. Three systematic critical literature reviews with one meta-analysis. Systematic searches were made in June 2014 in PubMed, Embase and SportDiscus including longitudinal, retrospective or cross-sectional studies on back pain for subjects <20 years. Articles were accepted if they were written in French or English. The review process followed the AMSTAR recommendations. The possibility of conducting a meta-analysis was assessed for each research question. Four articles were included for the first objective, four for the second and three for the last. None of the included articles found an association between back muscle strength in extension and back pain. For the second objective, a protective association between back muscle endurance in extension and back pain was found, later confirmed in a meta-analysis (OR = 0.75, 95 % CI 0.58-0.98). The association between aerobic capacity and back pain is not clear. High back muscle endurance in extension appears protective of back pain in youngsters, but the roles of high back muscle strength in extension and aerobic capacity are less clear.
NASA Technical Reports Server (NTRS)
Huron, Eric S.
1986-01-01
Directionally solidified (DS) MAR-M246+Hf was tested in tension and fatigue, at temperatures from 20 C to 1093 C. Tests were performed on (001) oriented specimens at strain rates of 50 % and 0.5 % per minute. In tension, the yield strength was constant up to 704 C, above which the strength dropped off rapidly. A strong dependence of strength on strain rate was seen at the higher temperatures. The deformation mode was observed to change from heterogeneous to homogeneous with increasing temperature. Low Cycle Fatigue tests were done using a fully reversed waveform and total strain control. For a given plastic strain range, lives increased with increasing temperature. For a given temperature strain rate had a strong effect on life. At 704 C, decreasing strain rates decreased life, while at the higher temperatures, decreasing strain rates increased life, for a given plastic strain range. These results could be explained through considerations of the deformation modes and stress levels. At the higher temperatures, marked coarsening caused beneficial stress reductions, but oxidation limited the life. The longitudinal grain boundaries were found to influence slip behavior. The degree of secondary slip adjacent to the boundaries was found to be related to the degree of misorientation between the grains.
Mechanical Properties of Shock-Damaged Rocks
NASA Technical Reports Server (NTRS)
He, Hongliang; Ahrens, T. J.
1994-01-01
Stress-strain tests were performed both on shock-damaged gabbro and limestone. The effective Young's modulus decreases with increasing initial damage parameter value, and an apparent work-softening process occurs prior to failure. To further characterize shock-induced microcracks, the longitudinal elastic wave velocity behavior of shock-damaged gabbro in the direction of compression up to failure was measured using an acoustic transmission technique under uniaxial loading. A dramatic increase in velocity was observed for the static compressive stress range of 0-50 MPa. Above that stress range, the velocity behavior of lightly damaged (D(sub 0) less than 0.1) gabbro is almost equal to unshocked gabbro. The failure strength of heavily-damaged (D(sub 0) greater than 0.1) gabbro is approx. 100-150 MPa, much lower than that of lightly damaged and unshocked gabbros (approx. 230-260 MPa). Following Nur's theory, the crack shape distribution was analyzed. The shock-induced cracks in gabbro appear to be largely thin penny-shaped cracks with c/a values below 5 x 10(exp -4). Moreover, the applicability of Ashby and Sammis's theory relating failure strength and damage parameter of shock-damaged rocks was examined and was found to yield a good estimate of the relation of shock-induced deficit in elastic modulus with the deficit in compressive strength.
Physical Exercise as Therapy for Frailty.
Aguirre, Lina E; Villareal, Dennis T
2015-01-01
Longitudinal studies demonstrate that regular physical exercise extends longevity and reduces the risk of physical disability. Decline in physical activity with aging is associated with a decrease in exercise capacity that predisposes to frailty. The frailty syndrome includes a lowered activity level, poor exercise tolerance, and loss of lean body and muscle mass. Poor exercise tolerance is related to aerobic endurance. Aerobic endurance training can significantly improve peak oxygen consumption by ∼10-15%. Resistance training is the best way to increase muscle strength and mass. Although the increase in muscle mass in response to resistance training may be attenuated in frail older adults, resistance training can significantly improve muscle strength, particularly in institutionalized patients, by ∼110%. Because both aerobic and resistance training target specific components of frailty, studies combining aerobic and resistance training provide the most promising evidence with respect to successfully treating frailty. At the molecular level, exercise reduces frailty by decreasing muscle inflammation, increasing anabolism, and increasing muscle protein synthesis. More studies are needed to determine which exercises are best suited, most effective, and safe for this population. Based on the available studies, an individualized multicomponent exercise program that includes aerobic activity, strength exercises, and flexibility is recommended to treat frailty. © 2015 Michael E. DeBakey VA Medical Center (US Government) Published by S. Karger AG, Basel.
Emilio, Emilio J. Martínez-López; Hita-Contreras, Fidel; Jiménez-Lara, Pilar M.; Latorre-Román, Pedro; Martínez-Amat, Antonio
2014-01-01
The purpose of the present study was to determine the effects of a proprioceptive training program on older adults, as well as to analyze the association between flexibility, balance and lumbar strength (physical fitness test) with balance ability and fall risk (functional balance tests). This study was a controlled, longitudinal trial with a 12-week follow-up period. Subjects from a population of older adults were allocated to the intervention group (n = 28) or to the usual care (control) group (n = 26). Subjects performed proprioceptive training twice weekly (6 specific exercises with Swiss ball and BOSU). Each session included 50 minutes (10 minutes of warm-up with slow walk, 10 minutes of mobility and stretching exercises, 30 minutes of proprioceptive exercises). The outcome variables were physical fitness (lower-body flexibility, hip-joint mobility, dynamic balance, static balance, and lumbar strength) and functional balance (Berg scale and Tinetti test). The experimental group obtained significantly higher values than the control group in lower-body flexibility, dynamic balance, and lumbar strength (p = 0.019, p < 0.001, and p = 0.034 respectively). Hip-joint mobility, dynamic balance, and lumbar strength were positively associated with balance ability (p < 0.001, p < 0.001, and p = 0.014, respectively) and the prevention of falls (p = 0.001, p < 0.001, and p = 0.017 respectively). These findings suggest that a 12-week proprioception program intervention (twice a week) significantly improves flexibility, balance, and lumbar strength in older adults. Hip-joint mobility, dynamic balance and lumbar strength are positively associated to balance ability and the risk of falls in older adults. This proprioceptive training does not show a significant improvement in hip-joint mobility or static balance. Key points A 12-week proprioceptive intervention program (two times per week) significantly improves flexibility, balance, and lumbar strength in older adults. The risk of falls and balance ability are significantly improved after a training program with Bosu and Swiss ball in older adults. An improvement in joint mobility, dynamic balance and lumbar strength is positively associated with balance ability and improved fall risk in older adults. A 12-week proprioceptive intervention program (two times per week) does not show a significant improvement in hip-joint mobility and static balance. PMID:24790489
Dutra, Milena C; de Oliveira, Mônica L; Marin, Rosangela V; Kleine, Hellen C R; Silva, Orivaldo L; Lazaretti-Castro, Marise
2016-08-01
In this longitudinal, paired-control study, we developed special vibration platforms to evaluate the effects of low-intensity vibration on neuromuscular function and functional capacity in osteopenic postmenopausal women. Women in the platform group (PG; n = 62) stood still and barefoot on the platform for 20 minutes, 5 times a week for 12 months. Each platform vibrated with a frequency of 60 Hz, intensity of 0.6g, and amplitude of less than 1 mm. Women in the control group (CG; n = 60) were followed up and instructed not to modify their physical activity during the study. Every 3 months all volunteers were invited to a visit to check for any change in their lifestyle. Assessments were performed at baseline and at 12 months, and included isometric muscle strength in the hip flexors and back extensors, right handgrip strength, dynamic upper limb strength (arm curl test), upper trunk flexibility (reach test [RT]), mobility (timed up and go test), and static balance (unipedal stance test). Statistical analyses were performed using the intention-to-treat strategy. Both groups were similar for all variables at baseline. At the end of intervention, the PG was significantly better than CG in all parameters but in the RT. When compared with baseline, after 12 months of vibration the PG presented statistically significant improvements in isometric and dynamic muscle strength in the hip flexors (+36.7%), back extensors (+36.5%), handgrip strength (+4.4%), arm curl test (+22.8%), RT (+9.9%), unipedal stance test (+6.8%), and timed up and go test (-9.2%), whereas the CG showed no significant differences during the same period of time. As such, there were no side effects related to the study procedures during the 12 months of intervention. Low-intensity vibration improved balance, motility, and muscle strength in the upper and lower limbs in postmenopausal women.
Bann, David; Hire, Don; Manini, Todd; Cooper, Rachel; Botoseneanu, Anda; McDermott, Mary M; Pahor, Marco; Glynn, Nancy W; Fielding, Roger; King, Abby C; Church, Timothy; Ambrosius, Walter T; Gill, Thomas M; Gill, Thomas
2015-01-01
Identifying modifiable determinants of fat mass and muscle strength in older adults is important given their impact on physical functioning and health. Light intensity physical activity and sedentary behavior are potential determinants, but their relations to these outcomes are poorly understood. We evaluated associations of light intensity physical activity and sedentary time-assessed both objectively and by self-report-with body mass index (BMI) and grip strength in a large sample of older adults. We used cross-sectional baseline data from 1130 participants of the Lifestyle Interventions and Independence for Elders (LIFE) study, a community-dwelling sample of relatively sedentary older adults (70-89 years) at heightened risk of mobility disability. Time spent sedentary and in light intensity activity were assessed using an accelerometer worn for 3-7 days (Actigraph GT3X) and by self-report. Associations between these exposures and measured BMI and grip strength were evaluated using linear regression. Greater time spent in light intensity activity and lower sedentary times were both associated with lower BMI. This was evident using objective measures of lower-light intensity, and both objective and self-reported measures of higher-light intensity activity. Time spent watching television was positively associated with BMI, while reading and computer use were not. Greater time spent in higher but not lower intensities of light activity (assessed objectively) was associated with greater grip strength in men but not women, while neither objectively assessed nor self-reported sedentary time was associated with grip strength. In this cross-sectional study, greater time spent in light intensity activity and lower sedentary times were associated with lower BMI. These results are consistent with the hypothesis that replacing sedentary activities with light intensity activities could lead to lower BMI levels and obesity prevalence among the population of older adults. However, longitudinal and experimental studies are needed to strengthen causal inferences.
NASA Astrophysics Data System (ADS)
Konka, Hari P.; Wahab, M. A.; Lian, K.
2012-01-01
Piezoelectric fiber composite sensors (PFCSs) made from micro-sized lead zirconate titanate (PZT) fibers have many advantages over the traditional bulk PZT sensors for embedded sensor applications. PFCSs as embedded sensors will be an ideal choice to continuously monitor the stress/strain levels and health conditions of composite structures. PFCSs are highly flexible, easily embeddable, have high compatibility with composite structures, and also provides manufacturing flexibility. This research is focused on examining the effects of embedding PFCS sensors (macro-fiber composite (MFC) and piezoelectric fiber composite (PFC)) on the structural integrity of glass-fiber-epoxy composite laminates. The strengths of composite materials with embedded PFCSs and conventional PZT sensors were compared, and the advantages of PFCS sensors over PZTs were demonstrated. Initially a numerical simulation study is performed to understand the local stress/strain field near the embedded sensor region inside a composite specimen. High stress concentration regions were observed near the embedded sensor corner edge. Using PFCS leads to a reduction of 56% in longitudinal stress concentration and 38% in transverse stress concentration, when compared to using the conventional PZTs as embedded sensors. In-plane tensile, in-plane tension-tension fatigue, and short beam strength tests are performed to evaluate the strengths/behavior of the composite specimens containing embedded PFCS. From the tensile test it is observed that embedding PFCS and PZT sensors in the composite structures leads to a reduction in ultimate strength by 3 and 6% respectively. From the fatigue test results it is concluded that both embedded PFCS and PZT sensors do not have a significant effect on the fatigue behavior of the composite specimens. From the short beam strength test it is found that embedding PFCS and PZT sensors leads to a reduction in shear strength by 7 and 15% respectively. Overall the pure PZT sensors seem to have low compatibility with composites when compared to PFCSs.
Brisson, Nicholas M; Gatti, Anthony A; Stratford, Paul W; Maly, Monica R
2018-02-01
This study examined the extent to which baseline measures of quadriceps strength, quadriceps power, knee pain and self-efficacy for functional tasks, and their interactions, predicted 2-year changes in mobility performance (walking, stair ascent, stair descent) in women with knee osteoarthritis. We hypothesized that lesser strength, power and self-efficacy, and higher pain at baseline would each be independently associated with reduced mobility over 2 years, and each of pain and self-efficacy would interact with strength and power in predicting 2-year change in stair-climbing performance. This was a longitudinal, observational study of women with clinical knee osteoarthritis. At baseline and follow-up, mobility was assessed with the Six-Minute Walk Test, and stair ascent and descent tasks. Quadriceps strength and power, knee pain, and self-efficacy for functional tasks were also collected at baseline. Multiple linear regression examined the extent to which 2-year changes in mobility performances were predicted by baseline strength, power, pain, and self-efficacy, after adjusting for covariates. Data were analyzed for 37 women with knee osteoarthritis over 2 years. Lower baseline self-efficacy predicted decreased walking (β = 1.783; p = 0.030) and stair ascent (β = -0.054; p < 0.001) performances over 2 years. Higher baseline pain intensity/frequency predicted decreased walking performance (β = 1.526; p = 0.002). Lower quadriceps strength (β = 0.051; p = 0.015) and power (β = 0.022; p = 0.022) interacted with lesser self-efficacy to predict worsening stair ascent performance. Strategies to sustain or improve mobility in women with knee osteoarthritis must focus on controlling pain and boosting self-efficacy. In those with worse self-efficacy, developing knee muscle capacity is an important target.
[Influence of carbodiimide-ethanol solution surface treatment on dentin microtensile bond strength].
Zhang, Yi; Liu, Yu-hua; Zhou, Yong-sheng; Chung, Kwok-hung
2015-10-18
To evaluate the microtensile bond strength changes and patterns of fractures of the bonding interface after dentine surface treatment with carbodiimide-ethanol solution. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) dissolved in ethanol was diluted into different concentrations of 2, 1, 0.3, 0.1 and 0.01 mol/L EDC-ethanol solutions. Twenty-eight caries-free extracted human third molars were ground metallurgically to prepare flat occlusal mid-coronal dentin surfaces and etched with 35% (mass fraction) phosphoric acid gel. Then they were treated with EDC-ethanol solution for 60 s before the bonding procedure and randomly divided into five experimental groups corresponding to the tested EDC-ethanol concentrations. The ethanol treated and no pre-treated surfaces were used as controls. Single Bond 2 adhesive was applied and resin composite disk was stacked on the treated dentine surface. The teeth with resin composite disks were stored in water at room temperature for 24 h and then sectioned longitudinally to produce stick specimens for microtensile bond strength test. Fracture patterns were observed with a stereomicroscope. The dentin surfaces pre-treated with 2 mol/L [(22.17±13.31) MPa] and 1 mol/L [(45.31±17.80) MPa] EDC-ethanol solutions resulted in statistically significant lower bond strength value (P<0.05). Increasing numbers of fracture pattern at the resin-dentin interface were also found in this two groups with percentages of 81.2% and 41.3% respectively. No significant difference was observed in the groups with 0.3, 0.1, 0.01 mol/L EDC surface treatment (P>0.05). No significant difference of immediate bond strengths was found in the 0.3, 0.1, 0.01 mol/L groups compared with the control group. EDC-ethanol solution surface treatment with concentrations of 2 mol/L and 1 mol/L resulted in decreasing of the bonding strength.
Kiriella, Jeevaka B; Araujo, Tamara; Vergara, Martin; Lopez-Hernandez, Laura; Cameron, Jill I; Herridge, Margaret; Gage, William H; Mathur, Sunita
2018-01-01
The path to recovery of muscle strength and mobility following discharge from the intensive care unit (ICU) has not been well described. The study objective was to quantify muscle function, gait, and postural control at 3 and 6 months after discharge in people who were recovering from critical illness and who were ventilated for 7 days or more. This was a nested longitudinal study with continuous inclusion of individuals over a 2-year period and with age- and sex-matched controls. Twenty-four people were tested at 3 months after ICU discharge; 16 of them (67%) were reevaluated at 6 months (post-ICU group). Healthy controls (n = 12) were tested at a single time point. Muscle function of the knee extensors (KEs), plantar flexors (PFs), and dorsiflexors (DFs) was assessed on a dynamometer. Gait was measured using an electronic walkway, and postural control was measured with 2 portable force plates. Muscle weakness was observed across all muscle groups at 3 months, with the greatest strength reductions in the ankle PFs (45%) and DFs (30%). Muscle power was reduced in the PFs and DFs but was not reduced in the KEs. Gait in the post-ICU group was characterized by a narrower step, longer stride, and longer double-support time than in the controls. Improvements were found in KE strength and in stride time and double-support time during gait at 6 months. Leg muscle strength and power had moderate associations with gait velocity, step width, and stride length (r = .44-.65). The small heterogeneous sample of people with a high level of function was a limitation of this study. Muscle strength and power were impaired at 6 months after ICU discharge and were associated with gait parameters. Future studies are needed to examine the role of muscle strength and power training in post-ICU rehabilitation programs to improve mobility. © 2017 American Physical Therapy Association
Pin, Tamis W; Eldridge, Bev; Galea, Mary P
2010-09-01
Preterm infants are recognised as developing at a significantly slower rate than their full-term peers and with different movement quality. This study aimed to describe the longitudinal gross motor trajectories of these infants in the first 18 months of (corrected) age and investigate factors associated with gross motor development. A longitudinal study was conducted with convenience samples of 58 preterm infants born < or = 29 weeks of gestation and 52 control full-term infants in Australia. The infants were assessed at 4, 8, 12 and 18 months of (corrected) age using the Alberta Infant Motor Scale (AIMS). Forty-six preterm and 48 control infants completed all four assessments. The preterm group scored significantly lower on various sub-scores at all age levels. Almost half of the preterm infants demonstrated less progression in the sit sub-scale from 4 to 8 months (corrected) age, possibly due to an imbalance between flexor and extensor strength in the trunk. At 12 and 18 months of (corrected) age, lack of rotation and fluency in their movements were evident in some preterm infants. Presence of intra-ventricular haemorrhage and chronic lung disease were associated with poor motor performance at 4 months and use of postnatal steroids was associated with poor motor performance at 4, 8 and 18 months of corrected age. The imbalance between flexor and extensor muscle strength in preterm infants had a stronger impact on motor development than usually expected. The AIMS appears to be a sensitive assessment tool to demonstrate the unique movement characteristics in this preterm cohort. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Segerström, Susanna; Ruyter, I Eystein
2007-09-01
Mechanical properties and quality of fiber/matrix adhesion of poly(methyl methacrylate) (PMMA)-based materials, reinforced with carbon-graphite (CG) fibers that are able to remain in a plastic state until polymerization, were examined. Tubes of cleaned braided CG fibers were treated with a sizing resin. Two resin mixtures, resin A and resin B, stable in the fluid state and containing different cross-linking agents, were reinforced with CG fiber loadings of 24, 36, and 47 wt% (20, 29, and 38 vol.%). In addition, resin B was reinforced with 58 wt% (47 vol.%). After heat-polymerization, flexural strength and modulus were evaluated, both dry and after water storage. Coefficient of thermal expansion, longitudinally and in the transverse direction of the specimens, was determined. Adhesion between fibers and matrix was evaluated with scanning electron microscopy (SEM). Flexural properties and linear coefficient of thermal expansion were similar for both fiber composites. With increased fiber loading, flexural properties increased. For 47 wt% fibers in polymer A the flexural strength was 547.7 (28.12) MPa and for polymer B 563.3 (89.24) MPa when water saturated. Linear coefficient of thermal expansion was for 47 wt% CG fiber-reinforced polymers; -2.5 x 10(-6) degrees C-1 longitudinally and 62.4 x 10(-6) degrees C-1 in the transverse direction of the specimens. SEM revealed good adhesion between fibers and matrix. More porosity was observed with fiber loading of 58 wt%. The fiber treatment and the developed resin matrices resulted in good adhesion between CG fibers and matrix. The properties observed indicate a potential for implant-retained prostheses.