Sample records for loop amino terminus

  1. Propensities of Aromatic Amino Acids versus Leucine and Proline to Induce Residual Structure in the Denatured State Ensemble of Iso-1-cytochrome c

    PubMed Central

    Finnegan, Michaela L.; Bowler, Bruce E.

    2010-01-01

    Histidine-heme loop formation in the denatured state of a protein is a sensitive means to probe for residual structure under unfolding conditions. In this study, we use a host-guest approach to investigate the relative tendencies of different amino acids to promote residual structure under denaturing conditions. The host for this work is a 6 amino acid insert of five alanines followed by a lysine engineered immediately following a unique histidine near the N-terminus of yeast iso-1-cytochrome c. We substitute the 4th alanine in this sequence, HAAAXAK, with X = Trp, Phe, Tyr and Leu. The effects of proline are tested with substitutions at positions 1 and 5 in the insert, HPAAAAK and HAAAAPK, respectively. Thermodynamic studies on His-heme loop formation in 3 M guanidine hydrochloride reveal significant stabilization of residual structure by aromatic amino acids, particularly, Trp and Phe, and minimal stabilization of residual structure by Leu. Prolines disfavor His-heme loop formation slightly, presumably due to enhanced chain stiffness. Kinetic studies reveal that much of the change in His-heme loop stability for the aromatic amino acids is caused by a slowing of the rate of His-heme loop breakage, indicating that residual structure is preferentially stabilized in the closed-loop form of the denatured state. PMID:20850458

  2. Membrane topology of rat sodium-coupled neutral amino acid transporter 2 (SNAT2).

    PubMed

    Ge, Yudan; Gu, Yanting; Wang, Jiahong; Zhang, Zhou

    2018-07-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) is a subtype of the amino acid transport system A that is widely expressed in mammalian tissues. It plays critical roles in glutamic acid-glutamine circulation, liver gluconeogenesis and other biological pathway. However, the topology of the SNAT2 amino acid transporter is unknown. Here we identified the topological structure of SNAT2 using bioinformatics analysis, Methoxy-polyethylene glycol maleimide (mPEG-Mal) chemical modification, protease cleavage assays, immunofluorescence and examination of glycosylation. Our results show that SNAT2 contains 11 transmembrane domains (TMDs) with an intracellular N terminus and an extracellular C terminus. Three N-glycosylation sites were verified at the largest extracellular loop. This model is consistent with the previous model of SNAT2 with the exception of a difference in number of glycosylation sites. This is the first time to confirm the SNAT2 membrane topology using experimental methods. Our study on SNAT2 topology provides valuable structural information of one of the solute carrier family 38 (SLC38) members. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Functional map of arrestin-1 at single amino acid resolution

    PubMed Central

    Ostermaier, Martin K.; Peterhans, Christian; Jaussi, Rolf; Deupi, Xavier; Standfuss, Jörg

    2014-01-01

    Arrestins function as adapter proteins that mediate G protein-coupled receptor (GPCR) desensitization, internalization, and additional rounds of signaling. Here we have compared binding of the GPCR rhodopsin to 403 mutants of arrestin-1 covering its complete sequence. This comprehensive and unbiased mutagenesis approach provides a functional dimension to the crystal structures of inactive, preactivated p44 and phosphopeptide-bound arrestins and will guide our understanding of arrestin–GPCR complexes. The presented functional map quantitatively connects critical interactions in the polar core and along the C tail of arrestin. A series of amino acids (Phe375, Phe377, Phe380, and Arg382) anchor the C tail in a position that blocks binding of the receptor. Interaction of phosphates in the rhodopsin C terminus with Arg29 controls a C-tail exchange mechanism in which the C tail of arrestin is released and exposes several charged amino acids (Lys14, Lys15, Arg18, Lys20, Lys110, and Lys300) for binding of the phosphorylated receptor C terminus. In addition to this arrestin phosphosensor, our data reveal several patches of amino acids in the finger (Gln69 and Asp73–Met75) and the lariat loops (L249–S252 and Y254) that can act as direct binding interfaces. A stretch of amino acids at the edge of the C domain (Trp194–Ser199, Gly337–Gly340, Thr343, and Thr345) could act as membrane anchor, binding interface for a second rhodopsin, or rearrange closer to the central loops upon complex formation. We discuss these interfaces in the context of experimentally guided docking between the crystal structures of arrestin and light-activated rhodopsin. PMID:24449856

  4. Functional map of arrestin-1 at single amino acid resolution.

    PubMed

    Ostermaier, Martin K; Peterhans, Christian; Jaussi, Rolf; Deupi, Xavier; Standfuss, Jörg

    2014-02-04

    Arrestins function as adapter proteins that mediate G protein-coupled receptor (GPCR) desensitization, internalization, and additional rounds of signaling. Here we have compared binding of the GPCR rhodopsin to 403 mutants of arrestin-1 covering its complete sequence. This comprehensive and unbiased mutagenesis approach provides a functional dimension to the crystal structures of inactive, preactivated p44 and phosphopeptide-bound arrestins and will guide our understanding of arrestin-GPCR complexes. The presented functional map quantitatively connects critical interactions in the polar core and along the C tail of arrestin. A series of amino acids (Phe375, Phe377, Phe380, and Arg382) anchor the C tail in a position that blocks binding of the receptor. Interaction of phosphates in the rhodopsin C terminus with Arg29 controls a C-tail exchange mechanism in which the C tail of arrestin is released and exposes several charged amino acids (Lys14, Lys15, Arg18, Lys20, Lys110, and Lys300) for binding of the phosphorylated receptor C terminus. In addition to this arrestin phosphosensor, our data reveal several patches of amino acids in the finger (Gln69 and Asp73-Met75) and the lariat loops (L249-S252 and Y254) that can act as direct binding interfaces. A stretch of amino acids at the edge of the C domain (Trp194-Ser199, Gly337-Gly340, Thr343, and Thr345) could act as membrane anchor, binding interface for a second rhodopsin, or rearrange closer to the central loops upon complex formation. We discuss these interfaces in the context of experimentally guided docking between the crystal structures of arrestin and light-activated rhodopsin.

  5. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NASA Astrophysics Data System (ADS)

    Rustgi, Anil K.; Dyson, Nicholas; Bernards, Rene

    1991-08-01

    THE proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms1. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization2-5. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation6,7. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.

  6. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Blount, P.; Sukharev, S. I.; Schroeder, M. J.; Nagle, S. K.; Kung, C.

    1996-01-01

    MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating.

  7. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli.

    PubMed Central

    Blount, P; Sukharev, S I; Schroeder, M J; Nagle, S K; Kung, C

    1996-01-01

    MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating. Images Fig. 3 PMID:8876191

  8. Delineation of the peptide binding site of the human galanin receptor.

    PubMed Central

    Kask, K; Berthold, M; Kahl, U; Nordvall, G; Bartfai, T

    1996-01-01

    Galanin, a neuroendocrine peptide of 29 amino acids, binds to Gi/Go-coupled receptors to trigger cellular responses. To determine which amino acids of the recently cloned seven-transmembrane domain-type human galanin receptor are involved in the high-affinity binding of the endogenous peptide ligand, we performed a mutagenesis study. Mutation of the His264 or His267 of transmembrane domain VI to alanine, or of Phe282 of transmembrane domain VII to glycine, results in an apparent loss of galanin binding. The substitution of Glu271 to serine in the extracellular loop III of the receptor causes a 12-fold loss in affinity for galanin. We combined the mutagenesis results with data on the pharmacophores (Trp2, Tyr9) of galanin and with molecular modelling of the receptor using bacteriorhodopsin as a model. Based on these studies, we propose a binding site model for the endogenous peptide ligand in the galanin receptor where the N-terminus of galanin hydrogen bonds with Glu271 of the receptor, Trp2 of galanin interacts with the Zn2+ sensitive pair of His264 and His267 of transmembrane domain VI, and Tyr9 of galanin interacts with Phe282 of transmembrane domain VII, while the C-terminus of galanin is pointing towards the N-terminus of th Images PMID:8617199

  9. Dopamine-2 receptor extracellular N-terminus regulates receptor surface availability and is the target of human pathogenic antibodies from children with movement and psychiatric disorders.

    PubMed

    Sinmaz, Nese; Tea, Fiona; Pilli, Deepti; Zou, Alicia; Amatoury, Mazen; Nguyen, Tina; Merheb, Vera; Ramanathan, Sudarshini; Cooper, Sandra T; Dale, Russell C; Brilot, Fabienne

    2016-12-01

    Anti-Dopamine-2 receptor (D2R) antibodies have been recently identified in a subgroup of children with autoimmune movement and psychiatric disorders, however the epitope(s) and mechanism of pathogenicity remain unknown. Here we report a major biological role for D2R extracellular N-terminus as a regulator of receptor surface availability, and as a major epitope targeted and impaired in brain autoimmunity. In transfected human cells, purified anti-D2R antibody from patients specifically and significantly reduced human D2R surface levels. Next, human D2R mutants modified in their extracellular domains were subcloned, and we analyzed the region bound by 35 anti-D2R antibody-positive patient sera using quantitative flow cytometry on live transfected cells. We found that N-glycosylation at amino acids N5 and/or N17 was critical for high surface expression in interaction with the last 15 residues of extracellular D2R N-terminus. No anti-D2R antibody-positive patient sera bound to the three extracellular loops, but all patient sera (35/35) targeted the extracellular N-terminus. Overall, patient antibody binding was dependent on two main regions encompassing amino acids 20 to 29, and 23 to 37. Residues 20 to 29 contributed to the majority of binding (77%, 27/35), among which 26% (7/27) sera bound to amino acids R20, P21, and F22, 37% (10/27) patients were dependent on residues at positions 26 and 29, that are different between humans and mice, and 30% (8/27) sera required R20, P21, F22, N23, D26, and A29. Seven patient sera bound to the region 23 to 37 independently of D26 and A29, but most sera exhibited N-glycosylation-independent epitope recognition at N23. Interestingly, no evident segregation of binding pattern according to patient clinical phenotype was observed. D2R N-terminus is a central epitope in autoimmune movement and psychiatric disorders and this knowledge could help the design of novel specific immune therapies tailored to improve patient outcome.

  10. Bacteriophage phi 6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer.

    PubMed

    Laurila, Minni R L; Makeyev, Eugene V; Bamford, Dennis H

    2002-05-10

    Like most RNA polymerases, the polymerase of double-strand RNA bacteriophage phi6 (phi6pol) is capable of primer-independent initiation. Based on the recently solved phi6pol initiation complex structure, a four-amino acid-long loop (amino acids 630-633) has been suggested to stabilize the first two incoming NTPs through stacking interactions with tyrosine, Tyr(630). A similar loop is also present in the hepatitis C virus polymerase, another enzyme capable of de novo initiation. Here, we use a series of phi6pol mutants to address the role of this element. As predicted, mutants at the Tyr(630) position are inefficient in initiation de novo. Unexpectedly, when the loop is disordered by changing Tyr(630)-Lys(631)-Trp(632) to GSG, phi6pol becomes a primer-dependent enzyme, either extending complementary oligonucleotide or, when the template 3' terminus can adopt a hairpin-like conformation, utilizing a "copy-back" initiation mechanism. In contrast to the wild-type phi6pol, the GSG mutant does not require high GTP concentration for its optimal activity. These findings suggest a general model for the initiation of de novo RNA synthesis.

  11. Autoantibodies to IA-2 in IDDM: location of major antigenic determinants.

    PubMed

    Zhang, B; Lan, M S; Notkins, A L

    1997-01-01

    Thirty-three IDDM sera that immunoprecipitated full-length IA-2 were tested for reactivity with different fragments of the IA-2 molecule. The fragments were prepared by PCR amplification of IA-2 cDNA and by expression in a rabbit reticulocyte transcription/translation system. Whereas all 33 sera reacted with the intracellular domain (amino acid 604 to 979), none of the sera reacted with the extracellular domain of IA-2 (amino acid 31 to 577). Analysis of the reactivity of IDDM sera with the different regions of the intracellular domain showed that 94% (31 of the 33) reacted with the COOH-terminus (amino acid 771 to 979), 40% reacted with the NH2-terminus (amino acid 604 to 776), and 40% reacted with the middle portion (amino acid 692 to 875). Of the 31 sera that reacted with the COOH-terminus, 14 of these reacted only with the COOH-terminus and with no other region. Of the 13 sera that reacted with the NH2-terminus, only one reacted exclusively with the NH2-terminus. Treatments of the different domains of IA-2 with trypsin showed that only the COOH-terminus was resistant to trypsin, arguing that it is from this region of the IA-2 molecule that the 40-kDa tryptic fragment from insulinoma cells is derived. From these experiments, it is concluded that the major antigenic determinant of IA-2 is located at the COOH-terminus and that minor antigenic determinants are located at the NH2-terminus and middle portion of the intracellular domain.

  12. Characterisation and cloning of a Na(+)-dependent broad-specificity neutral amino acid transporter from NBL-1 cells: a novel member of the ASC/B(0) transporter family.

    PubMed

    Pollard, Matthew; Meredith, David; McGivan, John D

    2002-04-12

    Na(+)-dependent neutral amino acid transport into the bovine renal epithelial cell line NBL-1 is catalysed by a broad-specificity transporter originally termed System B(0). This transporter is shown to differ in specificity from the B(0) transporter cloned from JAR cells [J. Biol. Chem. 271 (1996) 18657] in that it interacts much more strongly with phenylalanine. Using probes designed to conserved transmembrane regions of the ASC/B(0) transporter family we have isolated a cDNA encoding the NBL-1 cell System B(0) transporter. When expressed in Xenopus oocytes the clone catalysed Na(+)-dependent alanine uptake which was inhibited by glutamine, leucine and phenylalanine. However, the clone did not catalyse Na(+)-dependent phenylalanine transport, again as in NBL-1 cells. The clone encoded a protein of 539 amino acids; the predicted transmembrane domains were almost identical in sequence to those of the other members of the B(0)/ASC transporter family. Comparison of the sequences of NBL-1 and JAR cell transporters showed some differences near the N-terminus, C-terminus and in the loop between helices 3 and 4. The NBL-1 B(0) transporter is not the same as the renal brush border membrane transporter since it does not transport phenylalanine. Differences in specificity in this protein family arise from relatively small differences in amino acid sequence.

  13. Mirrors in the PDB: left-handed alpha-turns guide design with D-amino acids.

    PubMed

    Annavarapu, Srinivas; Nanda, Vikas

    2009-09-22

    Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Propensities for amino acids to occur in contiguous alpha(L) helices correlate with published thermodynamic scales for incorporation of D-amino acids into alpha(R) helices. Two backbone rules for terminating a left-handed helix are found: an alpha(R) conformation is disfavored at the amino terminus, and a beta(R) conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to alpha(L) helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. By examining left-handed alpha-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed alpha-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds.

  14. Mirrors in the PDB: left-handed α-turns guide design with D-amino acids

    PubMed Central

    Annavarapu, Srinivas; Nanda, Vikas

    2009-01-01

    Background Incorporating variable amino acid stereochemistry in molecular design has the potential to improve existing protein stability and create new topologies inaccessible to homochiral molecules. The Protein Data Bank has been a reliable, rich source of information on molecular interactions and their role in protein stability and structure. D-amino acids rarely occur naturally, making it difficult to infer general rules for how they would be tolerated in proteins through an analysis of existing protein structures. However, protein elements containing short left-handed turns and helices turn out to contain useful information. Molecular mechanisms used in proteins to stabilize left-handed elements by L-amino acids are structurally enantiomeric to potential synthetic strategies for stabilizing right-handed elements with D-amino acids. Results Propensities for amino acids to occur in contiguous αL helices correlate with published thermodynamic scales for incorporation of D-amino acids into αR helices. Two backbone rules for terminating a left-handed helix are found: an αR conformation is disfavored at the amino terminus, and a βR conformation is disfavored at the carboxy terminus. Helix capping sidechain-backbone interactions are found which are unique to αL helices including an elevated propensity for L-Asn, and L-Thr at the amino terminus and L-Gln, L-Thr and L-Ser at the carboxy terminus. Conclusion By examining left-handed α-turns containing L-amino acids, new interaction motifs for incorporating D-amino acids into right-handed α-helices are identified. These will provide a basis for de novo design of novel heterochiral protein folds. PMID:19772623

  15. Extreme primary and secondary protein structure variability in the chimeric male-transmitted cytochrome c oxidase subunit II protein in freshwater mussels: Evidence for an elevated amino acid substitution rate in the face of domain-specific purifying selection

    PubMed Central

    2008-01-01

    Background Freshwater unionoidean bivalves, and species representing two marine bivalve orders (Mytiloida and Veneroida), exhibit a mode of mtDNA inheritance involving distinct maternal (F) and paternal (M) transmission routes concomitant with highly divergent gender-associated mtDNA genomes. Additionally, male unionoidean bivalves have a ~550 bp 3' coding extension to the cox2 gene (Mcox2e), that is apparently absent from all other metazoan taxa. Results Our molecular sequence analyses of MCOX2e indicate that both the primary and secondary structures of the MCOX2e region are evolving much faster than other regions of the F and M COX2-COX1 gene junction. The near N-terminus ~2/3 of the MCOX2e region contains an interspecifically variable number of predicted transmembrane helices (TMH) and interhelical loops (IHL) whereas the C-terminus ~1/3 is relatively conserved and hydrophilic while containing conserved functional motifs. MCOX2e displays an overall pattern of purifying selection that leads to the preservation of TMH/IHL and C-terminus tail sub-regions. However, 14 amino acid positions in the MCOX2e TMH/IHL sub-region might be targeted by diversifying selection, each representing a site where there exists interspecific variation for the constituent amino acids residing in a TMH or IHL. Conclusion Our results indicate that Mcox2e is unique to unionoidean bivalves, likely the result of a single insertion event that took place over 65 MYA and that MCOX2e is functional. The predicted TMH number, length and position variability likely stems from substitution-based processes rather than the typically implicated insertion/deletion events. MCOX2e has relatively high rates of primary and secondary structure evolution, with some amino acid residues potentially subjected to site-specific positive selection, yet an overall pattern of purifying selection leading to the preservation of the TMH/IHL and hydrophilic C-terminus tail subregions. The more conserved C-terminus tail (relative to the TMH/IHL sub-region of MCOX2e) is likely biologically active because it contains functional motifs. The rapid evolution of primary and secondary structure in MCOX2e, combined with the action of both positive and purifying selection, provide supporting evidence for the hypothesis that MCOX2e has a novel reproductive function within unionoidean bivalves. All tolled, our data indicate that unionoidean bivalve MCOX2 is the first reported chimeric animal mtDNA-encoded protein. PMID:18513440

  16. Location of the antigenic determinants of conjugative F-like pili.

    PubMed Central

    Worobec, E A; Frost, L S; Pieroni, P; Armstrong, G D; Hodges, R S; Parker, J M; Finlay, B B; Paranchych, W

    1986-01-01

    The amino terminus of the pilin protein constitutes the major epitope of F-like conjugative pili studied to date (F, ColB2, R1-19, R100-1, and pED208). Anti-pED208 pilus antibodies were passed through a CNBr-Sepharose affinity column linked to bovine serum albumin which was conjugated to a synthetic peptide, AcP(1-12), containing the major epitope at the amino terminus of pED208 pilin. This allowed the separation of two classes of antibodies; one was specific for the amino terminus and bound to the column, while the other, which recognizes a second epitope on the pilus, did not bind to the column. In addition, antibodies were raised against two amino-terminal peptide-bovine serum albumin conjugates [AcP(1-8) and AcP(1-12)] to ensure a source of pure, high-titer antibodies directed against the amino terminus. The location of these antibodies on intact pili was assayed by immunoelectron microscopy with a protein A-gold technique. The amino terminus-specific antibodies did not bind to the sides of the pili but appeared to be associated with the pilus tip. In addition, these antibodies were found to bind to the vesicle-like structure at the base of the pilus. The anti-pilus antibodies not specific for the amino terminus (unbound immunoglobulin G) were found to bind to the sides of the pilus. Anti-F and anti-ColB2 pilus antibodies bound to the sides of F, ColB2, and R1-19 pili, which have only their secondary epitope in common. The carboxyl-terminal lysine of R1-19 pilin prevents the absorption of anti-F plus antiserum but not anti-ColB2 pilus antiserum to the sides of the pilus, presumably by interfering with the recognition of this secondary epitope. Images PMID:2426247

  17. Location of the antigenic determinants of conjugative F-like pili.

    PubMed

    Worobec, E A; Frost, L S; Pieroni, P; Armstrong, G D; Hodges, R S; Parker, J M; Finlay, B B; Paranchych, W

    1986-08-01

    The amino terminus of the pilin protein constitutes the major epitope of F-like conjugative pili studied to date (F, ColB2, R1-19, R100-1, and pED208). Anti-pED208 pilus antibodies were passed through a CNBr-Sepharose affinity column linked to bovine serum albumin which was conjugated to a synthetic peptide, AcP(1-12), containing the major epitope at the amino terminus of pED208 pilin. This allowed the separation of two classes of antibodies; one was specific for the amino terminus and bound to the column, while the other, which recognizes a second epitope on the pilus, did not bind to the column. In addition, antibodies were raised against two amino-terminal peptide-bovine serum albumin conjugates [AcP(1-8) and AcP(1-12)] to ensure a source of pure, high-titer antibodies directed against the amino terminus. The location of these antibodies on intact pili was assayed by immunoelectron microscopy with a protein A-gold technique. The amino terminus-specific antibodies did not bind to the sides of the pili but appeared to be associated with the pilus tip. In addition, these antibodies were found to bind to the vesicle-like structure at the base of the pilus. The anti-pilus antibodies not specific for the amino terminus (unbound immunoglobulin G) were found to bind to the sides of the pilus. Anti-F and anti-ColB2 pilus antibodies bound to the sides of F, ColB2, and R1-19 pili, which have only their secondary epitope in common. The carboxyl-terminal lysine of R1-19 pilin prevents the absorption of anti-F plus antiserum but not anti-ColB2 pilus antiserum to the sides of the pilus, presumably by interfering with the recognition of this secondary epitope.

  18. Activation of renal ClC-K chloride channels depends on an intact N terminus of their accessory subunit barttin.

    PubMed

    Wojciechowski, Daniel; Thiemann, Stefan; Schaal, Christina; Rahtz, Alina; de la Roche, Jeanne; Begemann, Birgit; Becher, Toni; Fischer, Martin

    2018-06-01

    ClC-K channels belong to the CLC family of chloride channels and chloride/proton antiporters. They contribute to sodium chloride reabsorption in Henle's loop of the kidney and to potassium secretion into the endolymph by the stria vascularis of the inner ear. Their accessory subunit barttin stabilizes the ClC-K/barttin complex, promotes its insertion into the surface membrane, and turns the pore-forming subunits into a conductive state. Barttin mutations cause Bartter syndrome type IV, a salt-wasting nephropathy with sensorineural deafness. Here, studying ClC-K/barttin channels heterologously expressed in MDCK-II and HEK293T cells with confocal imaging and patch-clamp recordings, we demonstrate that the eight-amino-acids-long barttin N terminus is required for channel trafficking and activation. Deletion of the complete N terminus (Δ2-8 barttin) retained barttin and human hClC-Ka channels in intracellular compartments. Partial N-terminal deletions did not compromise subcellular hClC-Ka trafficking but drastically reduced current amplitudes. Sequence deletions encompassing Thr-6, Phe-7, or Arg-8 in barttin completely failed to activate hClC-Ka. Analyses of protein expression and whole-cell current noise revealed that inactive channels reside in the plasma membrane. Substituting the deleted N terminus with a polyalanine sequence was insufficient for recovering chloride currents, and single amino acid substitutions highlighted that the correct sequence is required for proper function. Fast and slow gate activation curves obtained from rat V166E rClC-K1/barttin channels indicated that mutant barttin fails to constitutively open the slow gate. Increasing expression of barttin over that of ClC-K partially recovered this insufficiency, indicating that N-terminal modifications of barttin alter both binding affinities and gating properties. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Computer-aided active-site-directed modeling of the Herpes Simplex Virus 1 and human thymidine kinase

    NASA Astrophysics Data System (ADS)

    Folkers, Gerd; Trumpp-Kallmeyer, Susanne; Gutbrod, Oliver; Krickl, Sabine; Fetzer, Jürgen; Keil, Günther M.

    1991-10-01

    Thymidine kinase (TK), which is induced by Herpes Simplex Virus 1 (HSV1), plays a key role in the antiviral activity of guanine derivatives such as aciclovir (ACV). In contrast, ACV shows only low affinity to the corresponding host cell enzyme. In order to define the differences in substrate binding of the two enzymes on molecular level, models for the three-dimensional (3-D) structures of the active sites of HSV1-TK and human TK were developed. The reconstruction of the active sites started from primary and secondary structure analysis of various kinases. The results were validated to homologous enzymes with known 3-D structures. The models predict that both enzymes consist of a central core β-sheet structure, connected by loops and α-helices very similar to the overall structure of other nucleotide binding enzymes. The phosphate binding is made up of a highly conserved glycine-rich loop at the N-terminus of the proteins and a conserved region at the C-terminus. The thymidine recognition site was found about 100 amino acids downstream from the phosphate binding loop. The differing substrate specificity of human and HSV1-TK can be explained by amino-acid substitutions in the homologous regions. To achieve a better understanding of the structure of the active site and how the thymidine kinase proteins interact with their substrates, the corresponding complexes of thymidine and dihydroxypropoxyguanine (DHPG) with HSV1 and human TK were built. For the docking of the guanine derivative, the X-ray structure of Elongation Factor Tu (EF-Tu), co-crystallized with guanosine diphosphate, was taken as reference. Fitting of thymidine into the active sites was done with respect to similar interactions found in thymidylate kinase. To complement the analysis of the 3-D structures of the two kinases and the substrate enzyme interactions, site-directed mutagenesis of the thymidine recognition site of HSV1-TK has been undertaken, changing Asp162 in the thymidine recognition site into Asn. First investigations reveal that the enzymatic activity of the mutant protein is destroyed.

  20. Cleavage sites within the poliovirus capsid protein precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occurmore » between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein.« less

  1. Structural Characterization of the N Terminus of IpaC from Shigella flexneri

    PubMed Central

    Harrington, Amanda T.; Hearn, Patricia D.; Picking, Wendy L.; Barker, Jeffrey R.; Wessel, Andrew; Picking, William D.

    2003-01-01

    The primary effector for Shigella invasion of epithelial cells is IpaC, which is secreted via a type III secretion system. We recently reported that the IpaC N terminus is required for type III secretion and possibly other functions. In this study, mutagenesis was used to identify an N-terminal secretion signal and to determine the functional importance of the rest of the IpaC N terminus. The 15 N-terminal amino acids target IpaC for secretion by Shigella flexneri, and placing additional amino acids at the N terminus does not interfere with IpaC secretion. Furthermore, amino acid sequences with no relationship to the native IpaC secretion signal can also direct its secretion. Deletions introduced beyond amino acid 20 have no effect on secretion and do not adversely affect IpaC function in vivo until they extend beyond residue 50, at which point invasion function is completely eliminated. Deletions introduced at amino acid 100 and extending toward the N terminus reduce IpaC's invasion function but do not eliminate it until they extend to the N-terminal side of residue 80, indicating that a region from amino acid 50 to 80 is critical for IpaC invasion function. To explore this further, the ability of an IpaC N-terminal peptide to associate in vitro with its translocon partner IpaB and its chaperone IpgC was studied. The N-terminal peptide binds tightly to IpaB, but the IpaC central hydrophobic region also appears to participate in this binding. The N-terminal peptide also associates with the chaperone IpgC and IpaB is competitive for this interaction. Based on additional biophysical data, we propose that a region between amino acids 50 and 80 is required for chaperone binding, and that the IpaB binding domain is located downstream from, and possibly overlapping, this region. From these data, we propose that the secretion signal, chaperone binding region, and IpaB binding domain are located at the IpaC N terminus and are essential for presentation of IpaC to host cells during bacterial entry; however, IpaC effector activity may be located elsewhere. PMID:12595440

  2. Structural asymmetry and intersubunit communication in muscle creatine kinase.

    PubMed

    Ohren, Jeffrey F; Kundracik, Melisa L; Borders, Charles L; Edmiston, Paul; Viola, Ronald E

    2007-03-01

    The structure of a transition-state analog complex of a highly soluble mutant (R134K) of rabbit muscle creatine kinase (rmCK) has been determined to 1.65 A resolution in order to elucidate the structural changes that are required to support and regulate catalysis. Significant structural asymmetry is seen within the functional homodimer of rmCK, with one monomer found in a closed conformation with the active site occupied by the transition-state analog components creatine, MgADP and nitrate. The other monomer has the two loops that control access to the active site in an open conformation and only MgADP is bound. The N-terminal region of each monomer makes a substantial contribution to the dimer interface; however, the conformation of this region is dramatically different in each subunit. Based on this structural evidence, two mutational modifications of rmCK were conducted in order to better understand the role of the amino-terminus in controlling creatine kinase activity. The deletion of the first 15 residues of rmCK and a single point mutant (P20G) both disrupt subunit cohesion, causing the dissociation of the functional homodimer into monomers with reduced catalytic activity. This study provides support for a structural role for the amino-terminus in subunit association and a mechanistic role in active-site communication and catalytic regulation.

  3. The Amino Terminus of Herpes Simplex Virus 1 Glycoprotein K (gK) Is Required for gB Binding to Akt, Release of Intracellular Calcium, and Fusion of the Viral Envelope with Plasma Membranes.

    PubMed

    Musarrat, Farhana; Jambunathan, Nithya; Rider, Paul J F; Chouljenko, V N; Kousoulas, K G

    2018-03-15

    Previously, we have shown that the amino terminus of glycoprotein K (gK) binds to the amino terminus of gB and that deletion of the amino-terminal 38 amino acids of gK prevents herpes simplex virus 1 (HSV-1) infection of mouse trigeminal ganglia after ocular infection and virus entry into neuronal axons. Recently, it has been shown that gB binds to Akt during virus entry and induces Akt phosphorylation and intracellular calcium release. Proximity ligation and two-way immunoprecipitation assays using monoclonal antibodies against gB and Akt-1 phosphorylated at S473 [Akt-1(S473)] confirmed that HSV-1(McKrae) gB interacted with Akt-1(S473) during virus entry into human neuroblastoma (SK-N-SH) cells and induced the release of intracellular calcium. In contrast, the gB specified by HSV-1(McKrae) gKΔ31-68, lacking the amino-terminal 38 amino acids of gK, failed to interact with Akt-1(S473) and induce intracellular calcium release. The Akt inhibitor miltefosine inhibited the entry of McKrae but not the gKΔ31-68 mutant into SK-N-SH cells. Importantly, the entry of the gKΔ31-68 mutant but not McKrae into SK-N-SH cells treated with the endocytosis inhibitors pitstop-2 and dynasore hydrate was significantly inhibited, indicating that McKrae gKΔ31-68 entered via endocytosis. These results suggest that the amino terminus of gK functions to regulate the fusion of the viral envelope with cellular plasma membranes. IMPORTANCE HSV-1 glycoprotein B (gB) functions in the fusion of the viral envelope with cellular membranes during virus entry. Herein, we show that a deletion in the amino terminus of glycoprotein K (gK) inhibits gB binding to Akt-1(S473), the release of intracellular calcium, and virus entry via fusion of the viral envelope with cellular plasma membranes. Copyright © 2018 American Society for Microbiology.

  4. Structural basis of GSK-3 inhibition by N-terminal phosphorylation and by the Wnt receptor LRP6.

    PubMed

    Stamos, Jennifer L; Chu, Matthew Ling-Hon; Enos, Michael D; Shah, Niket; Weis, William I

    2014-03-18

    Glycogen synthase kinase-3 (GSK-3) is a key regulator of many cellular signaling pathways. Unlike most kinases, GSK-3 is controlled by inhibition rather than by specific activation. In the insulin and several other signaling pathways, phosphorylation of a serine present in a conserved sequence near the amino terminus of GSK-3 generates an auto-inhibitory peptide. In contrast, Wnt/β-catenin signal transduction requires phosphorylation of Ser/Pro rich sequences present in the Wnt co-receptors LRP5/6, and these motifs inhibit GSK-3 activity. We present crystal structures of GSK-3 bound to its phosphorylated N-terminus and to two of the phosphorylated LRP6 motifs. A conserved loop unique to GSK-3 undergoes a dramatic conformational change that clamps the bound pseudo-substrate peptides, and reveals the mechanism of primed substrate recognition. The structures rationalize target sequence preferences and suggest avenues for the design of inhibitors selective for a subset of pathways regulated by GSK-3. DOI: http://dx.doi.org/10.7554/eLife.01998.001.

  5. HIV-1 V3 loop crown epitope-focused mimotope selection by patient serum from random phage display libraries: implications for the epitope structural features.

    PubMed

    Gazarian, Karlen G; Palacios-Rodríguez, Yadira; Gazarian, Tatiana G; Huerta, Leonor

    2013-06-01

    The crown region of the V3 loop in HIV-1 that contains the conserved amino acid sequence GPGR/G is known as the principal neutralizing determinant due to the extraordinary ability of antibodies to this region to neutralize the virus. To complement the existing peptide models of this epitope, we describe a family of 18 phage-displayed peptides, which include linear 12mer and constrained 7mer peptides that was selected by screening random libraries with serum from HIV-1 subtype B-infected patients. The 7mer constrained peptides presented two conserved amino acid sequences: PR-L in N-terminus and GPG in the C-terminus. On the basis of these peptides we propose a mimotope model of the V3 crown epitope in which the PR-L and GPG sequences represent the two known epitope binding sites. The GPG, has the same function as the V3 crown GPGR sequence but without the involvement of the "R" despite its being considered as the signature of the epitope in B-subtype viruses. The PR-L contains a proline not existing in the epitope that is postulated to induce kinks in the backbones of all peptides and create a spatial element mimicking the N-terminal conformationally variable binding site. Rabbit serum to these mimotopes recognized the V3 peptides and moderately decreased the fusion between HIV-1 Env- and CD4-expressing Jurkat cells. This study proposes the efficient generation by means of patient sera of V3 epitope mimics validated by interaction with the antibodies to contemporary viruses induced in patients. The serum antibody-selectable mimotopes are sources of novel information on the fine structure-function properties of HIV-1 principal neutralizing domain and candidate anti-HIV-1 immunogens. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Molecular characterization of the TonB2 protein from the fish pathogen Vibrio anguillarum

    PubMed Central

    LÓPEZ, Claudia S.; PEACOCK, R. Sean; CROSA, Jorge H.; VOGEL, Hans J.

    2011-01-01

    In the fish pathogen Vibrio anguillarum the TonB2 protein is essential for the uptake of the indigenous siderophore anguibactin. Here we describe deletion mutants and alanine replacements affecting the final six amino acids of TonB2. Deletions of more than two amino acids of the TonB2 C-terminus abolished ferric-anguibactin transport, whereas replacement of the last three residues resulted in a protein with wild-type transport properties. We have solved the high-resolution solution structure of the TonB2 C-terminal domain by NMR spectroscopy. The core of this domain (residues 121–206) has an αββαβ structure, whereas residues 76–120 are flexible and extended. This overall folding topology is similar to the Escherichia coli TonB C-terminal domain, albeit with two differences: the β4 strand found at the C-terminus of TonB is absent in TonB2, and loop 3 is extended by 9 Å (0.9 nm) in TonB2. By examining several mutants, we determined that a complete loop 3 is not essential for TonB2 activity. Our results indicate that the β4 strand of E. coli TonB is not required for activity of the TonB system across Gram-negative bacterial species. We have also determined, through NMR chemical-shift-perturbation experiments, that the E. coli TonB binds in vitro to the TonB box from the TonB2-dependent outer membrane transporter FatA; moreover, it can substitute in vivo for TonB2 during ferric-anguibactin transport in V. anguillarum. Unexpectedly, TonB2 did not bind in vitro to the FatA TonB-box region, suggesting that additional factors may be required to promote this interaction. Overall our results indicate that TonB2 is a representative of a different class of TonB proteins. PMID:18973471

  7. Sequence diversity within the reovirus S2 gene: reovirus genes reassort in nature, and their termini are predicted to form a panhandle motif.

    PubMed Central

    Chapell, J D; Goral, M I; Rodgers, S E; dePamphilis, C W; Dermody, T S

    1994-01-01

    To better understand genetic diversity within mammalian reoviruses, we determined S2 nucleotide and deduced sigma 2 amino acid sequences of nine reovirus strains and compared these sequences with those of prototype strains of the three reovirus serotypes. The S2 gene and sigma 2 protein are highly conserved among the four type 1, one type 2, and seven type 3 strains studied. Phylogenetic analyses based on S2 nucleotide sequences of the 12 reovirus strains indicate that diversity within the S2 gene is independent of viral serotype. Additionally, we found marked topological differences between phylogenetic trees generated from S1 and S2 gene nucleotide sequences of the seven type 3 strains. These results demonstrate that reovirus S1 and S2 genes have distinct evolutionary histories, thus providing phylogenetic evidence for lateral transfer of reovirus genes in nature. When variability among the 12 sigma 2-encoding S2 nucleotide sequences was analyzed at synonymous positions, we found that approximately 60 nucleotides at the 5' terminus and 30 nucleotides at the 3' terminus were markedly conserved in comparison with other sigma 2-encoding regions of S2. Predictions of RNA secondary structures indicate that the more conserved S2 sequences participate in the formation of an extended region of duplex RNA interrupted by a pair of stem-loops. Among the 12 deduced sigma 2 amino acid sequences examined, substitutions were observed at only 11% of amino acid positions. This finding suggests that constraints on the structure or function of sigma 2, perhaps in part because of its location in the virion core, have limited sequence diversity within this protein. PMID:8289378

  8. Structural Basis of the Induced-Fit Mechanism of 1,4-Dihydroxy-2-Naphthoyl Coenzyme A Synthase from the Crotonase Fold Superfamily

    PubMed Central

    Li, Jie; Li, Yan; Jiang, Ming; Zhou, Jiahai; Guo, Zhihong

    2013-01-01

    1, 4-Dihydroxy-2-naphthoyl coenzyme A (DHNA-CoA) synthase is a typical crotonase fold enzyme with an implicated role of conformational changes in catalysis. We have identified these conformational changes by determining the structures of its Escherichia coli and Synechocystis sp. PCC6803 orthologues in complex with a product analog. The structural changes include the folding of an active-site loop into a β-hairpin and significant reorientation of a helix at the carboxy terminus. Interestingly, a new interface is formed between the ordered loop and the reoriented helix, both of which also form additional interactions with the coenzyme A moiety of the ligand. Site-directed mutation of the amino acid residues involved in these ligand-induced interactions significantly diminishes the enzyme activity. These results suggest a catalytically essential induced-fit that is likely initiated by the enzyme-ligand interactions at the active site. PMID:23658663

  9. Identification of a novel aminergic-like G protein-coupled receptor in the cnidarian Renilla koellikeri.

    PubMed

    Bouchard, Christelle; Ribeiro, Paula; Dubé, François; Demers, Christian; Anctil, Michel

    2004-10-27

    Biogenic amines exert various physiological effects in cnidarians, but the receptors involved in these responses are not known. We have cloned a novel G protein-coupled receptor cDNA from an anthozoan, the sea pansy Renilla koellikeri, that shows homology to mammalian catecholamine receptors and, to a lesser extent, to peptidergic receptors. This putative receptor, named Ren2, has a DRC pattern that replaces the well-conserved DRY motif on the cytoplasmic side of the transmembrane III and lacks the cysteine residues usually found in the second extracellular loop and C-terminus tail. Both the second extracellular loop and the N-terminal tail were seen to be short (six and three amino acids, respectively). Northern blot analysis suggests that the receptor gene codes for two transcripts. Localization of these transcripts by in situ hybridization demonstrated abundant expression in the epithelium of the pharyngeal wall, the oral disk and tentacles as well as in the endodermal epithelium lining the gastrovascular cavities.

  10. The chloroplast tRNALys(UUU) gene from mustard (Sinapis alba) contains a class II intron potentially coding for a maturase-related polypeptide.

    PubMed

    Neuhaus, H; Link, G

    1987-01-01

    The trnK gene endocing the tRNALys(UUU) has been located on mustard (Sinapis alba) chloroplast DNA, 263 bp upstream of the psbA gene on the same strand. The nucleotide sequence of the trnK gene and its flanking regions as well as the putative transcription start and termination sites are shown. The 5' end of the transcript lies 121 bp upstream of the 5' tRNA coding region and is preceded by procaryotic-type "-10" and "-35" sequence elements, while the 3' end maps 2.77 kb downstream to a DNA region with possible stemloop secondary structure. The anticodon loop of the tRNALys is interrupted by a 2,574 bp intron containing a long open reading frame, which codes for 524 amino acids. Based on conserved stem and loop structures, this intron has characteristic features of a class II intron. A region near the carboxyl terminus of the derived polypeptide appears structurally related to maturases.

  11. A Looping-Based Model for Quenching Repression

    PubMed Central

    Pollak, Yaroslav; Goldberg, Sarah; Amit, Roee

    2017-01-01

    We model the regulatory role of proteins bound to looped DNA using a simulation in which dsDNA is represented as a self-avoiding chain, and proteins as spherical protrusions. We simulate long self-avoiding chains using a sequential importance sampling Monte-Carlo algorithm, and compute the probabilities for chain looping with and without a protrusion. We find that a protrusion near one of the chain’s termini reduces the probability of looping, even for chains much longer than the protrusion–chain-terminus distance. This effect increases with protrusion size, and decreases with protrusion-terminus distance. The reduced probability of looping can be explained via an eclipse-like model, which provides a novel inhibitory mechanism. We test the eclipse model on two possible transcription-factor occupancy states of the D. melanogaster eve 3/7 enhancer, and show that it provides a possible explanation for the experimentally-observed eve stripe 3 and 7 expression patterns. PMID:28085884

  12. Plasmin-Cellular Interactions in Breast Cancer Invasion and Metastasis.

    DTIC Science & Technology

    1997-10-01

    Boehringer Mannheim. Aprotinin, chloramine T, e- aminocaproic acid (eACA), phenylmethylsulfonyl fluo- ride, and bovine serum albumin (BSA) were from...containing 174 amino acids from the C-terminus of CK8 (CK8f). The second construct was identical to the first except that the C-terminal lysine...amino acids from the C-terminus of wild type CK18. A detailed analysis of the experiments performed with these constructs, including eight figures, is

  13. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban.

    PubMed Central

    Fujii, J; Ueno, A; Kitano, K; Tanaka, S; Kadoma, M; Tada, M

    1987-01-01

    Complementary DNA (cDNA) clones specific for phospholamban of sarcoplasmic reticulum membranes have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence indicates that phospholamban consists of 52 amino acid residues and lacks an amino-terminal signal sequence. The protein has an inferred mol wt 6,080 that is in agreement with its apparent monomeric mol wt 6,000, estimated previously by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phospholamban contains two distinct domains, a hydrophilic region at the amino terminus (domain I) and a hydrophobic region at the carboxy terminus (domain II). We propose that domain I is localized at the cytoplasmic surface and offers phosphorylatable sites whereas domain II is anchored into the sarcoplasmic reticulum membrane. PMID:3793929

  14. Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling.

    PubMed

    Miller, Laurence J; Chen, Quan; Lam, Polo C-H; Pinon, Delia I; Sexton, Patrick M; Abagyan, Ruben; Dong, Maoqing

    2011-05-06

    The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7-36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu(141) above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp(297) within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.

  15. Expression and purification of antimicrobial peptide adenoregulin with C-amidated terminus in Escherichia coli.

    PubMed

    Cao, Wei; Zhou, Yuxun; Ma, Yushu; Luo, Qingping; Wei, Dongzhi

    2005-04-01

    Adenoregulin is a 33 amino acid antimicrobial peptide isolated from the skin of the arboreal frog Phyllomedusa bicolor. Natural adenoregulin is synthesized with an amidated valine residue at C-terminus and shows lethal effects against filamentous fungi, as well as a broad spectrum of pathogenic microorganisms. A synthetic gene for adenoregulin (ADR) with an additional amino acid glutamine at C-terminus was cloned into pET32a vector to allow expression of ADR as a Trx fusion protein in Escherichia coli BL21(DE3). The resulting expression level of the fusion protein could reach up to 20% of the total cell proteins. The fusion protein could be purified effectively by Ni2+-chelating chromatography. Released from the fusion protein by enterokinase cleavage and purified to homogeneity, the recombinant ADR displayed antimicrobial activity similar to that of the synthetic ADR reported earlier. Comparing the antimicrobial activities of the recombinant adenoregulin with C-amidated terminus to that without an amidated C-terminus, we found that the amide of glutamine at C-terminus of ADR improved its potency on certain microorganisms such as Tritirachium album and Saccharomyces cerevisiae.

  16. A Stretch of 17 Amino Acids in the Prosaposin C Terminus Is Critical for Its Binding to Sortilin and Targeting to Lysosomes

    PubMed Central

    Yuan, Libin; Morales, Carlos R.

    2010-01-01

    Prosaposin, the precursor of four lysosomal cofactors required for the hydrolysis of sphingolipids, is transported to the lysosomes via the alternative receptor, sortilin. In this study, we identified a specific domain of 17 amino acids within the C terminus of prosaposin involved in binding to this sorting receptor. We generated six prosaposin deletion constructs and examined the effect of truncation by coimmunoprecipitation and confocal microscopy. The experiments revealed that the first half of the prosaposin C terminus (aa 524–540), containing a saposin-like motif, was required and necessary to bind sortilin and to transport it to the lysosomes. Based on this result, we introduced twelve site-directed point mutations within the first half of the C terminus. Although the interaction of prosaposin with sortilin was pH dependent, the mutation of hydrophilic amino acids that usually modulate pH-dependent protein interactions did not affect the binding of prosaposin to sortilin. Conversely, a tryptophan (W530) and two cysteines (C528 and C536) were essential for its interaction with sortilin and for its transport to the lysosomes. In conclusion, our investigation demonstrates that a saposin-like motif within the first half of the prosaposin C terminus contains the sortilin recognition site. (J Histochem Cytochem 58:287–300, 2010) PMID:19934382

  17. Differential regulation of cellular functions by the C-termini of transmembrane 4 L six family proteins in 2- or 3-dimensional environment.

    PubMed

    Cheong, Jin-Gyu; Song, Dae-Geun; Song, Haeng Eun; Berditchevski, Fedor; Nam, Seo Hee; Jung, Jae Woo; Kim, Hye-Jin; Kim, Ji Eon; Kim, Somi; Ryu, Jihye; Cho, Chang Yun; Lee, Kyung-Min; Lee, Jung Weon

    2017-02-21

    The transmembrane 4 L six family proteins TM4SF1, TM4SF4, and TM4SF5 share 40-50% overall sequence identity, but their C-terminus identity is limited. It may be likely that the C-termini of the members are important and unique for own regulatory functions. We thus examined how the TM4SF5 C-terminus affected cellular functions differentially from other family members. Using colon cancer cells expressing wildtype (WT), C-terminus-deleted, or chimeric mutants, diverse cellular functions were explored in 2-dimensional (2D) and 3-dimensional (3D) condition. The C-termini of the proteins were relatively comparable with respect to 2D cell proliferation, although each C-terminal-deletion mutant exhibited increased proliferation relative to the WT. Using chimeric constructs, we found that the TM4SF5 C-terminus was critical for regulating the diverse metastatic functions of TM4SF5, and could positively replace the C-termini of other family members. Replacement of the TM4SF1 or TM4SF4 C-terminus with that of TM4SF5 increased spheroids growth, transwell migration, and invasive dissemination from spheroids in 3D collagen gels. TM4SF5-mediated effects required its extracellular loop 2 linked to the C-terminus via the transmembrane domain 4, with causing c-Src activation. Altogether, the C-terminus of TM4SF5 appears to mediate pro-migratory roles, depending on a structural relay from the second extracellular loop to the C-terminus.

  18. Voltage-dependent conformational changes in connexin channels.

    PubMed

    Bargiello, Thaddeus A; Tang, Qingxiu; Oh, Seunghoon; Kwon, Taekyung

    2012-08-01

    Channels formed by connexins display two distinct types of voltage-dependent gating, termed V(j)- or fast-gating and loop- or slow-gating. Recent studies, using metal bridge formation and chemical cross-linking have identified a region within the channel pore that contributes to the formation of the loop-gate permeability barrier. The conformational changes are remarkably large, reducing the channel pore diameter from 15 to 20Å to less than 4Å. Surprisingly, the largest conformational change occurs in the most stable region of the channel pore, the 3(10) or parahelix formed by amino acids in the 42-51 segment. The data provide a set of positional constraints that can be used to model the structure of the loop-gate closed state. Less is known about the conformation of the V(j)-gate closed state. There appear to be two different mechanisms; one in which conformational changes in channel structure are linked to a voltage sensor contained in the N-terminus of Cx26 and Cx32 and a second in which the C-terminus of Cx43 and Cx40 may act either as a gating particle to block the channel pore or alternatively to stabilize the closed state. The later mechanism utilizes the same domains as implicated in effecting pH gating of Cx43 channels. It is unclear if the two V(j)-gating mechanisms are related or if they represent different gating mechanisms that operate separately in different subsets of connexin channels. A model of the V(j)-closed state of Cx26 hemichannel that is based on the X-ray structure of Cx26 and electron crystallographic structures of a Cx26 mutation suggests that the permeability barrier for V(j)-gating is formed exclusively by the N-terminus, but recent information suggests that this conformation may not represent a voltage-closed state. Closed state models are considered from a thermodynamic perspective based on information from the 3.5Å Cx26 crystal structure and molecular dynamics (MD) simulations. The applications of computational and experimental methods to define the path of allosteric molecular transitions that link the open and closed states are discussed. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu Wei; Leal, Walter S.

    Pheromone-binding proteins (PBPs) are involved in the uptake of pheromones from pores on the antennae, transport through an aqueous environment surrounding the olfactory receptor neurons, and fast delivery to pheromone receptors. We tested the hypothesis that a C-terminal segment and a flexible loop are involved in the release of pheromones to membrane-bound receptors. We expressed in Escherichia coli 11 mutants of the PBP from the silkworm moth, BmorPBP, taking into consideration structural differences between the forms with high and low binding affinity. The N-terminus was truncated and His-69, His-70 and His-95 at the base of a flexible loop, and amore » cluster of acidic residues at the C-terminus were mutated. Binding assays and circular dichroism analyses support a mechanism involving protonation of acidic residues Asp-132 and Glu-141 at the C-terminus and histidines, His-70 and His-95, in the base of a loop covering the binding pocket. The former leads to the formation of a new {alpha}-helix, which competes with pheromone for the binding pocket, whereas positive charge repulsion of the histidines opens the opposite side of the binding pocket.« less

  20. Genotype-phenotype aspects of type 2 long QT syndrome.

    PubMed

    Shimizu, Wataru; Moss, Arthur J; Wilde, Arthur A M; Towbin, Jeffrey A; Ackerman, Michael J; January, Craig T; Tester, David J; Zareba, Wojciech; Robinson, Jennifer L; Qi, Ming; Vincent, G Michael; Kaufman, Elizabeth S; Hofman, Nynke; Noda, Takashi; Kamakura, Shiro; Miyamoto, Yoshihiro; Shah, Samit; Amin, Vinit; Goldenberg, Ilan; Andrews, Mark L; McNitt, Scott

    2009-11-24

    The purpose of this study was to investigate the effect of location, coding type, and topology of KCNH2(hERG) mutations on clinical phenotype in type 2 long QT syndrome (LQTS). Previous studies were limited by population size in their ability to examine phenotypic effect of location, type, and topology. Study subjects included 858 type 2 LQTS patients with 162 different KCNH2 mutations in 213 proband-identified families. The Cox proportional-hazards survivorship model was used to evaluate independent contributions of clinical and genetic factors to the first cardiac events. For patients with missense mutations, the transmembrane pore (S5-loop-S6) and N-terminus regions were a significantly greater risk than the C-terminus region (hazard ratio [HR]: 2.87 and 1.86, respectively), but the transmembrane nonpore (S1-S4) region was not (HR: 1.19). Additionally, the transmembrane pore region was significantly riskier than the N-terminus or transmembrane nonpore regions (HR: 1.54 and 2.42, respectively). However, for nonmissense mutations, these other regions were no longer riskier than the C-terminus (HR: 1.13, 0.77, and 0.46, respectively). Likewise, subjects with nonmissense mutations were at significantly higher risk than were subjects with missense mutations in the C-terminus region (HR: 2.00), but that was not the case in other regions. This mutation location-type interaction was significant (p = 0.008). A significantly higher risk was found in subjects with mutations located in alpha-helical domains than in subjects with mutations in beta-sheet domains or other locations (HR: 1.74 and 1.33, respectively). Time-dependent beta-blocker use was associated with a significant 63% reduction in the risk of first cardiac events (p < 0.001). The KCNH2 missense mutations located in the transmembrane S5-loop-S6 region are associated with the greatest risk.

  1. Structural similarity of ghrelin derivatives to peptidyl growth hormone secretagogues.

    PubMed

    Matsumoto, M; Kitajima, Y; Iwanami, T; Hayashi, Y; Tanaka, S; Minamitake, Y; Hosoda, H; Kojima, M; Matsuo, H; Kangawa, K

    2001-06-15

    Ghrelin is a 28-amino acid residue endogenous growth hormone secretagogue. Intensive investigations revealed that the N-terminus tetrapeptide, having octanoyl group at Ser(3), is the minimum active core. In this study, we further explored the structure-function relationships of the active N-terminus portion of ghrelin using a Ca(2+) mobilization assay. The smallest and most potent ghrelin derivative we have found so far is 5-aminopentanoyl-Ser(Octyl)-Phe-Leu-aminoethylamide, showing comparable activity to the natural molecule. In the process of modifying the active core, the ghrelin-derived short analogues emerged structurally close to peptidyl growth hormone secretagogues. The N-terminus modification suggested that Gly(1)-Ser(2) unit works as a spacer, forming adequate distance between N(alpha)-amino group and n-octanoyl group. Replacement of 3rd and 4th amino acid residues to D-isomer suggested that the N-terminal dipeptide contributes to shape the biologically active geometry by effecting conformation of residues in positions 3 and 4. Copyright 2001 Academic Press.

  2. C-terminal peptide extension via gas-phase ion/ion reactions

    PubMed Central

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  3. Computational Model for DNA Organization Mediated by Protein Interaction in Prokaryotes

    NASA Astrophysics Data System (ADS)

    Garimella, Karthik; Kharel, Savan

    2016-03-01

    In Escherichia Coli, there are several mechanisms that drive chromosomal organization. We know through experiments that the E. Coli chromosome is condensed into highly structured regions known as macrodomains (MDs). One of the regions known as the Terminus undergoes DNA-bridging condensation that form loops between distant DNA sites and it is known to be mediated by a Terminus specific protein, which binds to specific markers within the Terminus region. In the absence of Terminus specific protein, however, the Terminus region is known to not condense nearly as much, which will likely impede several biological processes including DNA replication. In order to understand the molecular basis of protein mediation in vivo several models of Terminus specific segregation have been constructed in silico which model DNA as polymer chains.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leong, JoAnn Ching

    The nucleotide sequence of the IHNV glycoprotein gene has been determined from a cDNA clone containing the entire coding region. The glycoprotein cDNA clone contained a leader sequence of 48 bases, a coding region of 1524 nucleotides, and 39 bases at the 3 foot end. The entire cDNA clone contains 1609 nucleodites and encodes a protein of 508 amino acids. The deduced amino acid sequence gave a translated molecular weight of 56,795 daltons. A hydropathicity profile of the deduced amino acid sequence indicated that there were two major hydrophobic domains: one,at the N-terminus,delineating a signal peptide of 18 amino acidsmore » and the other, at the C-terminus,delineating the region of the transmembrane. Five possible sites of N-linked glyscoylation were identified. Although no nucleic acid homology existed between the IHNV glycoprotein gene and the glycoprotein genes of rabies and VSV, there was significant homology at the amino acid level between all three rhabdovirus glycoproteins.« less

  5. Deletion mutation analysis on C-terminal domain of plant vacuolar H(+)-pyrophosphatase.

    PubMed

    Lin, Hsin Hung; Pan, Yih Jiuan; Hsu, Shen Hsing; Van, Ru Chuan; Hsiao, Yi Yuong; Chen, Jiun Hsien; Pan, Rong Long

    2005-10-15

    Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton-translocase; it contains a single type of polypeptide of approximately 81kDa. A line of evidence demonstrated that the carboxyl terminus of V-PPase is relatively conserved in various plant V-PPases and presumably locates in the vicinity of the catalytic site. In this study, we attempt to identify the roles of the C-terminus of V-PPase by generating a series of C-terminal deletion mutants over-expressed in Saccharomyces cerevisiae, and determining their enzymatic and proton translocating reactions. Our results showed that the deletion mutation at last 5 amino acids in the C-terminus (DeltaC5) induced a dramatic decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase; but the mutant lacking last 10 amino acids (DeltaC10) retained about 60-70% of the enzymatic activity of wild-type. Truncation of the C-terminus by more than 10 amino acids completely abolished the enzymatic activity and proton translocation of V-PPase. Furthermore, the DeltaC10 mutant displayed a shift in T(1/2) (pretreatment temperature at which half enzymatic activity is observed) but not the optimal pH for PP(i) hydrolytic activity. The deletion of the C-terminus substantially modified apparent K(+) binding constant, but exert no significant changes in the Na(+)-, F(-)-, and Ca(2+)-inhibition of the enzymatic activity of V-PPase. Taken together, we speculate that the C-terminus of V-PPase may play a crucial role in sustaining enzymatic activity and is likely involved in the K(+)-regulation of the enzyme in an indirect manner.

  6. Differential regulation of cellular functions by the C-termini of transmembrane 4 L six family proteins in 2- or 3-dimensional environment

    PubMed Central

    Cheong, Jin-Gyu; Song, Dae-Geun; Song, Haeng Eun; Berditchevski, Fedor; Nam, Seo Hee; Jung, Jae Woo; Kim, Hye-Jin; Kim, Ji Eon; Kim, Somi; Ryu, Jihye; Cho, Chang Yun; Lee, Kyung-Min; Lee, Jung Weon

    2017-01-01

    The transmembrane 4 L six family proteins TM4SF1, TM4SF4, and TM4SF5 share 40-50% overall sequence identity, but their C-terminus identity is limited. It may be likely that the C-termini of the members are important and unique for own regulatory functions. We thus examined how the TM4SF5 C-terminus affected cellular functions differentially from other family members. Using colon cancer cells expressing wildtype (WT), C-terminus-deleted, or chimeric mutants, diverse cellular functions were explored in 2-dimensional (2D) and 3-dimensional (3D) condition. The C-termini of the proteins were relatively comparable with respect to 2D cell proliferation, although each C-terminal-deletion mutant exhibited increased proliferation relative to the WT. Using chimeric constructs, we found that the TM4SF5 C-terminus was critical for regulating the diverse metastatic functions of TM4SF5, and could positively replace the C-termini of other family members. Replacement of the TM4SF1 or TM4SF4 C-terminus with that of TM4SF5 increased spheroids growth, transwell migration, and invasive dissemination from spheroids in 3D collagen gels. TM4SF5-mediated effects required its extracellular loop 2 linked to the C-terminus via the transmembrane domain 4, with causing c-Src activation. Altogether, the C-terminus of TM4SF5 appears to mediate pro-migratory roles, depending on a structural relay from the second extracellular loop to the C-terminus. PMID:28129652

  7. The carboxy-terminal tail or the intracellular loop 3 is required for β-arrestin-dependent internalization of a mammalian type II GnRH receptor.

    PubMed

    Madziva, Michael T; Mkhize, Nonhlanhla N; Flanagan, Colleen A; Katz, Arieh A

    2015-08-15

    The type II GnRH receptor (GnRH-R2) in contrast to mammalian type I GnRH receptor (GnRH-R1) has a cytosolic carboxy-terminal tail. We investigated the role of β-arrestin 1 in GnRH-R2-mediated signalling and mapped the regions in GnRH-R2 required for recruitment of β-arrestin, employing internalization assays. We show that GnRH-R2 activation of ERK is dependent on β-arrestin and protein kinase C. Appending the tail of GnRH-R2 to GnRH-R1 enabled GRK- and β-arrestin-dependent internalization of the chimaeric receptor. Surprisingly, carboxy-terminally truncated GnRH-R2 retained β-arrestin and GRK-dependent internalization, suggesting that β-arrestin interacts with additional elements of GnRH-R2. Mutating serine and threonine or basic residues of intracellular loop 3 did not abolish β-arrestin 1-dependent internalization but a receptor lacking these basic residues and the carboxy-terminus showed no β-arrestin 1-dependent internalization. Our results suggest that basic residues at the amino-terminal end of intracellular loop 3 or the carboxy-terminal tail are required for β-arrestin dependent internalization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. The D1 and D2 proteins of dinoflagellates: unusually accumulated mutations which influence on PSII photoreaction.

    PubMed

    Iida, Satoko; Kobiyama, Atsushi; Ogata, Takehiko; Murakami, Akio

    2008-01-01

    Plastid encoded genes of the dinoflagellates are rapidly evolving and most divergent. The importance of unusually accumulated mutations on structure of PSII core protein and photosynthetic function was examined in the dinoflagellates, Symbiodinium sp. and Alexandrium tamarense. Full-length cDNA sequences of psbA (D1 protein) and psbD (D2 protein) were obtained and compared with the other oxygen-evolving photoautotrophs. Twenty-three amino acid positions (7%) for the D1 protein and 34 positions (10%) for the D2 were mutated in the dinoflagellates, although amino acid residues at these positions were conserved in cyanobacteria, the other algae, and plant. Many mutations were likely to distribute in the N-terminus and the D-E interhelical loop of the D1 protein and helix B of D2 protein, while the remaining regions were well conserved. The different structural properties in these mutated regions were supported by hydropathy profiles. The chlorophyll fluorescence kinetics of the dinoflagellates was compared with Synechocystis sp. PCC6803 in relation to the altered protein structure.

  9. Targeting of GLUT1-GLUT5 chimeric proteins in the polarized cell line Caco-2.

    PubMed

    Inukai, K; Takata, K; Asano, T; Katagiri, H; Ishihara, H; Nakazaki, M; Fukushima, Y; Yazaki, Y; Kikuchi, M; Oka, Y

    1997-04-01

    Caco-2, a human differentiated intestinal epithelial cell line, is a promising model for investigating the mechanism of polarized targeting of apical and basolateral membrane proteins. We stably transfected rat GLUT5 cDNA and rabbit GLUT1 cDNA into Caco-2 cells with an expression vector. Immunohistochemical study revealed that the GLUT5 protein expressed was localized at apical membranes and that the GLUT1 expressed was present primarily in the basolateral membranes of cells grown on permeable support. Next, to investigate the domain responsible for determining apical vs. basolateral sorting in glucose transporters, we prepared several GLUT1-GLUT5 chimeric cDNAs and transfected them into Caco-2 cells. A GLUT1 [N terminus approximately sixth transmembrane domain (TM6)]-GLUT5 [intracellular loop (IL) approximately C terminus] chimera was observed exclusively at the apical membrane, while GLUT1 (N terminus approximately IL)-GLUT5 (TM7 approximately C terminus) and GLUT1 (N terminus approximately TM12)-GLUT5 (C-terminal domain) chimeras were observed mainly at the basolateral membrane, a localization similar to that of GLUT1. Moreover, using a recombinant adenovirus expression system, we expressed a GLUT5 (N terminus approximately TM6)-GLUT1(IL)-GLUT5(TM7 approximately C-terminus) chimera, which was observed at the basolateral membrane. Based on these results, the C-terminal domain does not determine isoform-specific targeting of GLUT1 and GLUT5. Rather, it is the intracellular loop in glucose transporters that appears to play a pivotal role in apical-basolateral sorting signals in Caco-2 cells.

  10. STRUCTURAL AND FUNCTIONAL CONSEQUENCES OF CIRCULAR PERMUTATION ON THE ACTIVE SITE OF OLD YELLOW ENZYME.

    PubMed

    Daugherty, Ashley B; Horton, John R; Cheng, Xiaodong; Lutz, Stefan

    2015-02-06

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme's catalytic performance. Termini relocation into four regions of the protein (sectors I-IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I-III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location, but also provide a possible explanation for the catalytic gains in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290-310) of OYE1 which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such active site remodeling does not negatively impact the enzyme's activity and stereoselectivity, nor does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereo-selectivity for ( S )-carvone reduction. Our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.« less

  12. Structural and Functional Consequences of Circular Permutation on the Active Site of Old Yellow Enzyme

    DOE PAGES

    Daugherty, Ashley B.; Horton, John R.; Cheng, Xiaodong; ...

    2014-12-09

    Circular permutation of the NADPH-dependent oxidoreductase Old Yellow Enzyme from Saccharomyces pastorianus (OYE1) can significantly enhance the enzyme’s catalytic performance. Termini relocation into four regions of the protein (sectors I–IV) near the active site has proven effective in altering enzyme function. To better understand the structural consequences and rationalize the observed functional gains in these OYE1 variants, we selected representatives from sectors I–III for further characterization by biophysical methods and X-ray crystallography. These investigations not only show trends in enzyme stability and quaternary structure as a function of termini location but also provide a possible explanation for the catalytic gainsmore » in our top-performing OYE variant (new N-terminus at residue 303; sector III). Crystallographic analysis indicates that termini relocation into sector III affects the loop β6 region (amino acid positions: 290–310) of OYE1, which forms a lid over the active site. Peptide backbone cleavage greatly enhances local flexibility, effectively converting the loop into a tether and consequently increasing the environmental exposure of the active site. Interestingly, such an active site remodeling does not negatively impact the enzyme’s activity and stereoselectivity; neither does it perturb the conformation of other key active site residues with the exception of Y375. These observations were confirmed in truncation experiments, deleting all residues of the loop β6 region in our OYE variant. Intrigued by the finding that circular permutation leaves most of the key catalytic residues unchanged, we also tested OYE permutants for possible additive or synergistic effects of amino acid substitutions. Distinct functional changes in these OYE variants were detected upon mutations at W116, known in native OYE1 to cause inversion of diastereoselectivity for (S)-carvone reduction. In conclusion, our findings demonstrate the contribution of loop β6 toward determining the stereoselectivity of OYE1, an important insight for future OYE engineering efforts.« less

  13. Identification of a Novel EF-Loop in the N-terminus of TRPM2 Channel Involved in Calcium Sensitivity

    PubMed Central

    Luo, Yuhuan; Yu, Xiafei; Ma, Cheng; Luo, Jianhong; Yang, Wei

    2018-01-01

    As an oxidative stress sensor, transient receptor potential melastatin 2 (TRPM2) channel is involved in many physiological and pathological processes including warmth sensing, ischemia injury, inflammatory diseases and diabetes. Intracellular calcium is critical for TRPM2 channel activation and the IQ-like motif in the N-terminus has been shown to be important by mediating calmodulin binding. Sequence analysis predicted two potential EF-loops in the N-terminus of TRPM2. Site-directed mutagenesis combining with functional assay showed that substitution with alanine of several residues, most of which are conserved in the typical EF-loop, including D267, D278, D288, and E298 dramatically reduced TRPM2 channel currents. By further changing the charges or side chain length of these conserved residues, our results indicate that the negative charge of D267 and the side chain length of D278 are critical for calcium-induced TRPM2 channel activation. G272I mutation also dramatically reduced the channel currents, suggesting that this site is critical for calcium-induced TRPM2 channel activation. Furthermore, D267A mutant dramatically reduced the currents induced by calcium alone compared with that by ADPR, indicating that D267 residue in D267–D278 motif is the most important site for calcium sensitivity of TRPM2. In addition, inside-out recordings showed that mutations at D267, G272, D278, and E298 had no effect on single-channel conductance. Taken together, our data indicate that D267–D278 motif in the N-terminus as a novel EF-loop is critical for calcium-induced TRPM2 channel activation.

  14. A potyvirus vector efficiently targets recombinant proteins to chloroplasts, mitochondria and nuclei in plant cells when expressed at the amino terminus of the polyprotein.

    PubMed

    Majer, Eszter; Navarro, José-Antonio; Daròs, José-Antonio

    2015-09-01

    Plant virus-based expression systems allow quick and efficient production of recombinant proteins in plant biofactories. Among them, a system derived from tobacco etch virus (TEV; genus potyvirus) permits coexpression of equimolar amounts of several recombinant proteins. This work analyzed how to target recombinant proteins to different subcellular localizations in the plant cell using this system. We constructed TEV clones in which green fluorescent protein (GFP), with a chloroplast transit peptide (cTP), a nuclear localization signal (NLS) or a mitochondrial targeting peptide (mTP) was expressed either as the most amino-terminal product or embedded in the viral polyprotein. Results showed that cTP and mTP mediated efficient translocation of GFP to the corresponding organelle only when present at the amino terminus of the viral polyprotein. In contrast, the NLS worked efficiently at both positions. Viruses expressing GFP in the amino terminus of the viral polyprotein produced milder symptoms. Untagged GFPs and cTP and NLS tagged amino-terminal GFPs accumulated to higher amounts in infected tissues. Finally, viral progeny from clones with internal GFPs maintained the extra gene better. These observations will help in the design of potyvirus-based vectors able to coexpress several proteins while targeting different subcellular localizations, as required in plant metabolic engineering. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Loss of Complex I activity in the Escherichia coli enzyme results from truncating the C-terminus of subunit K, but not from cross-linking it to subunits N or L.

    PubMed

    Zhu, Shaotong; Canales, Alejandra; Bedair, Mai; Vik, Steven B

    2016-06-01

    Complex I is a multi-subunit enzyme of the respiratory chain with seven core subunits in its membrane arm (A, H, J, K, L, M, and N). In the enzyme from Escherichia coli the C-terminal ten amino acids of subunit K lie along the lateral helix of subunit L, and contribute to a junction of subunits K, L and N on the cytoplasmic surface. Using double cysteine mutagenesis, the cross-linking of subunit K (R99C) to either subunit L (K581C) or subunit N (T292C) was attempted. A partial yield of cross-linked product had no effect on the activity of the enzyme, or on proton translocation, suggesting that the C-terminus of subunit K has no dynamic role in function. To further elucidate the role of subunit K genetic deletions were constructed at the C-terminus. Upon the serial deletion of the last 4 residues of the C-terminus of subunit K, various results were obtained. Deletion of one amino acid had little effect on the activity of Complex I, but deletions of 2 or more amino acids led to total loss of enzyme activity and diminished levels of subunits L, M, and N in preparations of membrane vesicles. Together these results suggest that while the C-terminus of subunit K has no dynamic role in energy transduction by Complex I, it is vital for the correct assembly of the enzyme.

  16. Heterologous expression and structure-function relationship of low-temperature and alkaline active protease from Acinetobacter sp. IHB B 5011(MN12).

    PubMed

    Salwan, Richa; Sharma, Vivek; Pal, Mohinder; Kasana, Ramesh Chand; Yadav, Sudesh Kumar; Gulati, Arvind

    2018-02-01

    The gene encoding protease from Acinetobacter sp. IHB B 5011(MN12) was cloned and expressed in Escherichia coli BL21(DE3). The nucleotide sequence revealed 1323bp ORF encoding 441 amino acids protein with molecular weight 47.2kDa. The phylogenetic analysis showed clustering of Alp protease with subtilisin-like serine proteases of S8 family. The amino acid sequence was comprised of N-terminal signal peptide 1-21 amino acids, pre-peptide 22-143 amino acids, peptidase S8 domain 144-434 amino acids, and pro-peptide 435-441 amino acids at C-terminus. Three constructs with signal peptide pET-Alp, without signal peptide pET-Alp1 and peptidase S8 domain pET-Alp2 were prepared for expression in E. coli BL21(DE3). The recombinant proteins Alp1 and Alp2 expressed as inclusion bodies showed ∼50kDa and ∼40kDa bands, respectively. The pre-propeptide ∼11kDa removed from Alp1 resulted in mature protein of ∼35kDa with 1738Umg -1 specific activity. The recombinant protease was optimally active at 40°C and pH 9, and stable over 10-70°C and 6-12pH. The activity at low-temperature and alkaline pH was supported by high R/(R+K) ratio, more glycine, less proline, negatively charged amino acids, less salt bridges and longer loops. These properties suggested the suitability of Alp as additive in the laundry. Copyright © 2017. Published by Elsevier B.V.

  17. C-TERMINAL FRAGMENT OF TRANSFORMING GROWTH FACTOR BETA-INDUCED PROTEIN (TGFBIp) IS REQUIRED FOR APOPTOSIS IN HUMAN OSTEOSARCOMA CELLS

    PubMed Central

    Zamilpa, Rogelio; Rupaimoole, Rajesha; Phelix, Clyde F.; Somaraki-Cormier, Maria; Haskins, William; Asmis, Reto; LeBaron, Richard G.

    2009-01-01

    Transforming growth factor beta induced protein (TGFBIp), is secreted into the extracellular space. When fragmentation of C-terminal portions is blocked, apoptosis is low, even when the protein is overexpressed. If fragmentation occurs, apoptosis is observed. Whether full-length TGFBIp or integrin-binding fragments released from its C-terminus is necessary for apoptosis remains equivocal. More importantly, the exact portion of the C-terminus that conveys the pro-apoptotic property of TGFBIp is uncertain. It is reportedly within the final 166 amino acids. We sought to determine if this property is dependent upon the final 69 amino acids containing the integrin-binding, EPDIM and RGD, sequences. With MG-63 osteosarcoma cells, transforming growth factor (TGF)-β1 treatment increased expression of TGFBIp over 72 hours (p<0.001). At this time point, apoptosis was significantly increased (p<0.001) and was prevented by an anti-TGFBIp, polyclonal antibody (p<0.05). Overexpression of TGFBIp by transient transfection produced a 2-fold increase in apoptosis (p<0.01). Exogenous purified TGFBIp at concentrations of 37 to 150 nM produced a dose dependent increase in apoptosis (p<0.001). Mass spectrometry analysis of TGFBIp isolated from conditioned medium of cells treated with TGF-β1 revealed truncated forms of TGFBIp that lacked integrin-binding sequences in the C-terminus. Recombinant TGFBIp truncated, similarly, at amino acid 614 failed to induce apoptosis. A recombinant fragment encoding the final 69 amino acids of the TGFBIp C-terminus produced significant apoptosis. This apoptosis level was comparable to that induced by TGF-β1 upregulation of endogenous TGFBIp. Mutation of the integrin-binding sequence EPDIM, but not RGD, blocked apoptosis (p<0.001). These pro-apoptotic actions are dependent on the C-terminus most likely to interact with integrins. PMID:19505574

  18. Nucleotide sequence analysis of the gene encoding the Deinococcus radiodurans surface protein, derived amino acid sequence, and complementary protein chemical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, J.; Peters, M.; Lottspeich, F.

    1987-11-01

    The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate (HPI))-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and M/sub r/ estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%)more » of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.« less

  19. Allosteric Regulation of Mammalian Pantothenate Kinase*

    PubMed Central

    Subramanian, Chitra; Yun, Mi-Kyung; Yao, Jiangwei; Sharma, Lalit Kumar; Lee, Richard E.; White, Stephen W.; Jackowski, Suzanne; Rock, Charles O.

    2016-01-01

    Pantothenate kinase is the master regulator of CoA biosynthesis and is feedback-inhibited by acetyl-CoA. Comparison of the human PANK3·acetyl-CoA complex to the structures of PANK3 in four catalytically relevant complexes, 5′-adenylyl-β,γ-imidodiphosphate (AMPPNP)·Mg2+, AMPPNP·Mg2+·pantothenate, ADP·Mg2+·phosphopantothenate, and AMP phosphoramidate (AMPPN)·Mg2+, revealed a large conformational change in the dimeric enzyme. The amino-terminal nucleotide binding domain rotates to close the active site, and this allows the P-loop to engage ATP and facilitates required substrate/product interactions at the active site. Biochemical analyses showed that the transition between the inactive and active conformations, as assessed by the binding of either ATP·Mg2+ or acyl-CoA to PANK3, is highly cooperative indicating that both protomers move in concert. PANK3(G19V) cannot bind ATP, and biochemical analyses of an engineered PANK3/PANK3(G19V) heterodimer confirmed that the two active sites are functionally coupled. The communication between the two protomers is mediated by an α-helix that interacts with the ATP-binding site at its amino terminus and with the substrate/inhibitor-binding site of the opposite protomer at its carboxyl terminus. The two α-helices within the dimer together with the bound ligands create a ring that stabilizes the assembly in either the active closed conformation or the inactive open conformation. Thus, both active sites of the dimeric mammalian pantothenate kinases coordinately switch between the on and off states in response to intracellular concentrations of ATP and its key negative regulators, acetyl(acyl)-CoA. PMID:27555321

  20. Individual Substitution Mutations in the AID C Terminus That Ablate IgH Class Switch Recombination

    PubMed Central

    Kadungure, Tatenda; Ucher, Anna J.; Linehan, Erin K.; Schrader, Carol E.; Stavnezer, Janet

    2015-01-01

    Activation-induced cytidine deaminase (AID) is essential for class switch recombination (CSR) and somatic hypermutation (SHM) of Ig genes. The C terminus of AID is required for CSR but not for SHM, but the reason for this is not entirely clear. By retroviral transduction of mutant AID proteins into aid -/- mouse splenic B cells, we show that 4 amino acids within the C terminus of mouse AID, when individually mutated to specific amino acids (R190K, A192K, L196S, F198S), reduce CSR about as much or more than deletion of the entire C terminal 10 amino acids. Similar to ΔAID, the substitutions reduce binding of UNG to Ig Sμ regions and some reduce binding of Msh2, both of which are important for introducing S region DNA breaks. Junctions between the IgH donor switch (S)μ and acceptor Sα regions from cells expressing ΔAID or the L196S mutant show increased microhomology compared to junctions in cells expressing wild-type AID, consistent with problems during CSR and the use of alternative end-joining, rather than non-homologous end-joining (NHEJ). Unlike deletion of the AID C terminus, 3 of the substitution mutants reduce DNA double-strand breaks (DSBs) detected within the Sμ region in splenic B cells undergoing CSR. Cells expressing these 3 substitution mutants also have greatly reduced mutations within unrearranged Sμ regions, and they decrease with time after activation. These results might be explained by increased error-free repair, but as the C terminus has been shown to be important for recruitment of NHEJ proteins, this appears unlikely. We hypothesize that Sμ DNA breaks in cells expressing these C terminus substitution mutants are poorly repaired, resulting in destruction of Sμ segments that are deaminated by these mutants. This could explain why these mutants cannot undergo CSR. PMID:26267846

  1. Site-specific Phosphorylation Protects Glycogen Synthase Kinase-3β from Calpain-mediated Truncation of Its N and C Termini*

    PubMed Central

    Ma, Shanshan; Liu, Shaojun; Huang, Qiaoying; Xie, Bo; Lai, Bingquan; Wang, Chong; Song, Bin; Li, Mingtao

    2012-01-01

    Glycogen synthase kinase-3β (GSK-3β), a key regulator of neuronal apoptosis, is inhibited by the phosphorylation of Ser-9/Ser-389 and was recently shown to be cleaved by calpain at the N terminus, leading to its subsequent activation. In this study calpain was found to cleave GSK-3β not only at the N terminus but also at the C terminus, and cleavage sites were identified at residues Thr-38–Thr-39 and Ile-384–Gln-385. Furthermore, the cleavage of GSK-3β occurred in tandem with Ser-9 dephosphorylation during cerebellar granule neuron apoptosis. Increasing Ser-9 phosphorylation of GSK-3β by inhibiting phosphatase 1/2A or pretreating with purified active Akt inhibited calpain-mediated cleavage of GSK-3β at both N and C termini, whereas non-phosphorylatable mutant GSK-3β S9A facilitated its cleavage. In contrast, Ser-389 phosphorylation selectively inhibited the cleavage of GSK-3β at the C terminus but not the N terminus. Calpain-mediated cleavage resulted in three truncated products, all of which contained an intact kinase domain: ΔN-GSK-3β (amino acids 39–420), ΔC-GSK-3β (amino acids 1–384), and ΔN/ΔC-GSK-3β (amino acids 39–384). All three truncated products showed increased kinase and pro-apoptotic activity, with ΔN/ΔC-GSK-3β being the most active form. This observation suggests that the GSK-3β C terminus acts as an autoinhibitory domain similar to the N terminus. Taken together, these findings demonstrate that calpain-mediated cleavage activates GSK-3β by removing its N- and C-terminal autoinhibitory domains and that Ser-9 phosphorylation inhibits the cleavage of GSK-3β at both termini. In contrast, Ser-389 phosphorylation inhibits only C-terminal cleavage but not N-terminal cleavage. These findings also identify a mechanism by which site-specific phosphorylation and calpain-mediated cleavage operate in concert to regulate GSK-3β activity. PMID:22496446

  2. Site-specific phosphorylation protects glycogen synthase kinase-3β from calpain-mediated truncation of its N and C termini.

    PubMed

    Ma, Shanshan; Liu, Shaojun; Huang, Qiaoying; Xie, Bo; Lai, Bingquan; Wang, Chong; Song, Bin; Li, Mingtao

    2012-06-29

    Glycogen synthase kinase-3β (GSK-3β), a key regulator of neuronal apoptosis, is inhibited by the phosphorylation of Ser-9/Ser-389 and was recently shown to be cleaved by calpain at the N terminus, leading to its subsequent activation. In this study calpain was found to cleave GSK-3β not only at the N terminus but also at the C terminus, and cleavage sites were identified at residues Thr-38-Thr-39 and Ile-384-Gln-385. Furthermore, the cleavage of GSK-3β occurred in tandem with Ser-9 dephosphorylation during cerebellar granule neuron apoptosis. Increasing Ser-9 phosphorylation of GSK-3β by inhibiting phosphatase 1/2A or pretreating with purified active Akt inhibited calpain-mediated cleavage of GSK-3β at both N and C termini, whereas non-phosphorylatable mutant GSK-3β S9A facilitated its cleavage. In contrast, Ser-389 phosphorylation selectively inhibited the cleavage of GSK-3β at the C terminus but not the N terminus. Calpain-mediated cleavage resulted in three truncated products, all of which contained an intact kinase domain: ΔN-GSK-3β (amino acids 39-420), ΔC-GSK-3β (amino acids 1-384), and ΔN/ΔC-GSK-3β (amino acids 39-384). All three truncated products showed increased kinase and pro-apoptotic activity, with ΔN/ΔC-GSK-3β being the most active form. This observation suggests that the GSK-3β C terminus acts as an autoinhibitory domain similar to the N terminus. Taken together, these findings demonstrate that calpain-mediated cleavage activates GSK-3β by removing its N- and C-terminal autoinhibitory domains and that Ser-9 phosphorylation inhibits the cleavage of GSK-3β at both termini. In contrast, Ser-389 phosphorylation inhibits only C-terminal cleavage but not N-terminal cleavage. These findings also identify a mechanism by which site-specific phosphorylation and calpain-mediated cleavage operate in concert to regulate GSK-3β activity.

  3. Effect of T- and C-loop mutations on the Herbaspirillum seropedicae GlnB protein in nitrogen signalling.

    PubMed

    Bonatto, Ana C; Souza, Emanuel M; Pedrosa, Fábio O; Yates, M Geoffrey; Benelli, Elaine M

    2005-01-01

    Proteins of the PII family are found in species of all kingdoms. Although these proteins usually share high identity, their functions are specific to the different organisms. Comparison of structural data from Escherichia coli GlnB and GlnK and Herbaspirillum seropedicae GlnB showed that the T-loop and C-terminus were variable regions. To evaluate the role of these regions in signal transduction by the H. seropedicae GlnB protein, four mutants were constructed: Y51F, G108A/P109a, G108W and Q3R/T5A. The activities of the native and mutated proteins were assayed in an E. coli background constitutively expressing the Klebsiella pneumoniae nifLA operon. The results suggested that the T-loop and C-terminus regions of H. seropedicae GlnB are involved in nitrogen signal transduction.

  4. Chymase Cleavage of Stem Cell Factor Yields a Bioactive, Soluble Product

    NASA Astrophysics Data System (ADS)

    Longley, B. Jack; Tyrrell, Lynda; Ma, Yongsheng; Williams, David A.; Halaban, Ruth; Langley, Keith; Lu, Hsieng S.; Schechter, Norman M.

    1997-08-01

    Stem cell factor (SCF) is produced by stromal cells as a membrane-bound molecule, which may be proteolytically cleaved at a site close to the membrane to produce a soluble bioactive form. The proteases producing this cleavage are unknown. In this study, we demonstrate that human mast cell chymase, a chymotrypsin-like protease, cleaves SCF at a novel site. Cleavage is at the peptide bond between Phe-158 and Met-159, which are encoded by exon 6 of the SCF gene. This cleavage results in a soluble bioactive product that is 7 amino acids shorter at the C terminus than previously identified soluble SCF. This research shows the identification of a physiologically relevant enzyme that specifically cleaves SCF. Because mast cells express the KIT protein, the receptor for SCF, and respond to SCF by proliferation and degranulation, this observation identifies a possible feedback loop in which chymase released from mast cell secretory granules may solubilize SCF bound to the membrane of surrounding stromal cells. The liberated soluble SCF may in turn stimulate mast cell proliferation and differentiated functions; this loop could contribute to abnormal accumulations of mast cells in the skin and hyperpigmentation at sites of chronic cutaneous inflammation.

  5. Age-dependent loss of the C-terminal amino acid from alpha crystallin

    NASA Technical Reports Server (NTRS)

    Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum made against the C-terminal region of alpha-A crystallin was used to monitor the purification of a tryptic peptide containing the C-terminus of the molecule from fetal versus adult bovine lenses. Mass spectral analysis of the peptide preparations obtained from these lenses demonstrated the presence of a peptide (T20) containing an intact C-terminus from fetal lenses and the presence of an additional peptide (T20') from older lenses that contained a cleaved C-terminal serine. These results demonstrate an age-dependent processing of alpha-A crystallin in the bovine lens, resulting in removal of the C-terminal amino acid residue.

  6. Suppression of retroviral MA deletions by the amino-terminal membrane-binding domain of p60src.

    PubMed Central

    Wills, J W; Craven, R C; Weldon, R A; Nelle, T D; Erdie, C R

    1991-01-01

    The molecular mechanism by which retroviral Gag proteins are directed to the plasma membrane for the formation of particles (budding) is unknown, but it is widely believed that the MA domain, located at the amino terminus, plays a critical role. Consistent with this idea, we found that small deletions in this segment of the Rous sarcoma virus Gag protein completely blocked particle formation. The mutant proteins appear to have suffered only localized structural damage since they could be rescued (i.e., packaged into particles) when coexpressed with Gag proteins that are competent for particle formation. To our surprise, the effects of the MA deletions could be completely suppressed by fusing as few as seven residues of the myristylated amino terminus of the oncoprotein p60src to the beginning of the mutant Gag proteins. Particles produced by the chimeras were of the same density as the wild type. Two myristylated peptides having sequences distinct from that of p60src were entirely unable to suppress MA deletions, indicating that myristate alone is not a sufficient membrane targeting signal. We hypothesize that the amino terminus of p60src suppresses the effects of MA deletions by diverting the Rous sarcoma virus Gag protein from its normal site of assembly to the Src receptor for particle formation. Images PMID:1710290

  7. Cleavage of precursors by the mitochondrial processing peptidase requires a compatible mature protein or an intermediate octapeptide

    PubMed Central

    1991-01-01

    Many precursors of mitochondrial proteins are processed in two successive steps by independent matrix peptidases (MPP and MIP), whereas others are cleaved in a single step by MPP alone. To explain this dichotomy, we have constructed deletions of all or part of the octapeptide characteristic of a twice cleaved precursor (human ornithine transcarbamylase [pOTC]), have exchanged leader peptide sequences between once-cleaved (human methylmalonyl-CoA mutase [pMUT]; yeast F1ATPase beta-subunit [pF1 beta]) and twice-cleaved (pOTC; rat malate dehydrogenase (pMDH); Neurospora ubiquinol-cytochrome c reductase iron-sulfur subunit [pFe/S]) precursors, and have incubated these proteins with purified MPP and MIP. When the octapeptide of pOTC was deleted, or when the entire leader peptide of a once-cleaved precursor (pMUT or pF1 beta) was joined to the mature amino terminus of a twice-cleaved precursor (pOTC or pFe/S), no cleavage was produced by either protease. Cleavage of these constructs by MPP was restored by re- inserting as few as two amino-terminal residues of the octapeptide or of the mature amino terminus of a once-cleaved precursor. We conclude that the mature amino terminus of a twice-cleaved precursor is structurally incompatible with cleavage by MPP; such proteins have evolved octapeptides cleaved by MIP to overcome this incompatibility. PMID:1672532

  8. Membrane topology analysis of Escherichia coli K-12 Mtr permease by alkaline phosphatase and beta-galactosidase fusions.

    PubMed

    Sarsero, J P; Pittard, A J

    1995-01-01

    The mtr gene of Escherichia coli K-12 encodes an inner membrane protein which is responsible for the active transport of trypotophan into the cell. It has been proposed that the Mtr permease has a novel structure consisting of 11 hydrophobic transmembrane spans, with a cytoplasmically disposed amino terminus and a carboxyl terminus located in the periplasmic space (J.P. Sarsero, P. J. Wookey, P. Gollnick, C. Yanofsky, and A.J. Pittard, J. Bacteriol. 173:3231-3234, 1991). The validity of this model was examined by the construction of fusion proteins between the Mtr permease and alkaline phosphatase or beta-galactosidase. In addition to the conventional methods, in which the reporter enzyme replaces a carboxyl-terminal portion of the membrane protein, the recently developed alkaline phosphatase sandwich fusion technique was utilized, in which alkaline phosphatase is inserted into an otherwise intact membrane protein. A cluster of alkaline phosphatase fusions to the carboxyl-terminal end of the Mtr permease exhibited high levels of alkaline phosphatase activity, giving support to the proposition of a periplasmically located carboxyl terminus. The majority of fusion proteins produced enzymatic activities which were in agreement with the positions of the fusion sites on the proposed topological model of the permease. The synthesis of a small cluster of hybrid proteins, whose enzymatic activity did not agree with the location of their fusion sites within putative transmembrane span VIII or the preceding periplasmic loop, was not detected by immunological techniques and did not necessitate modification of the proposed model in this region. Slight alterations may need to be made in the positioning of the carboxyl-terminal end of transmembrane span X.

  9. Phosphorylation and cellular function of the human Rpa2 N-terminus in the budding yeast Saccharomyces cerevisiae.

    PubMed

    Ghospurkar, Padmaja L; Wilson, Timothy M; Liu, Shengqin; Herauf, Anna; Steffes, Jenna; Mueller, Erica N; Oakley, Gregory G; Haring, Stuart J

    2015-02-01

    Maintenance of genome integrity is critical for proper cell growth. This occurs through accurate DNA replication and repair of DNA lesions. A key factor involved in both DNA replication and the DNA damage response is the heterotrimeric single-stranded DNA (ssDNA) binding complex Replication Protein A (RPA). Although the RPA complex appears to be structurally conserved throughout eukaryotes, the primary amino acid sequence of each subunit can vary considerably. Examination of sequence differences along with the functional interchangeability of orthologous RPA subunits or regions could provide insight into important regions and their functions. This might also allow for study in simpler systems. We determined that substitution of yeast Replication Factor A (RFA) with human RPA does not support yeast cell viability. Exchange of a single yeast RFA subunit with the corresponding human RPA subunit does not function due to lack of inter-species subunit interactions. Substitution of yeast Rfa2 with domains/regions of human Rpa2 important for Rpa2 function (i.e., the N-terminus and the loop 3-4 region) supports viability in yeast cells, and hybrid proteins containing human Rpa2 N-terminal phospho-mutations result in similar DNA damage phenotypes to analogous yeast Rfa2 N-terminal phospho-mutants. Finally, the human Rpa2 N-terminus (NT) fused to yeast Rfa2 is phosphorylated in a manner similar to human Rpa2 in human cells, indicating that conserved kinases recognize the human domain in yeast. The implication is that budding yeast represents a potential model system for studying not only human Rpa2 N-terminal phosphorylation, but also phosphorylation of Rpa2 N-termini from other eukaryotic organisms. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Shigella flexneri 3a Outer Membrane Protein C Epitope Is Recognized by Human Umbilical Cord Sera and Associated with Protective Activity

    PubMed Central

    Jarząb, Anna; Witkowska, Danuta; Ziomek, Edmund; Dąbrowska, Anna; Szewczuk, Zbigniew; Gamian, Andrzej

    2013-01-01

    Shigella flexneri 3a is one of the five major strains of the Shigella genus responsible for dysentery, especially among children, in regions of high poverty and poor sanitation. The outer membrane proteins (OMP) of this bacterium elicit immunological responses and are considered a prime target for vaccine development. When injected into mice they elicit a protective immunological response against a lethal dose of the pathogen. The OMPs from S. flexneri 3a were isolated and resolved by two-dimension-SDS-PAGE. Two 38-kDa spots were of particular interest since in our earlier studies OMPs of such molecular mass were found to interact with umbilical cord sera. These two spots were identified as OmpC by ESI-MS/MS spectrometry. By DNA sequencing, the ompC gene from S. flexneri 3a was identical to ompC from S. flexneri 2a [Gene Bank: 24113600]. A 3D model of OmpC was built and used to predict B-cell type (discontinuous) antigenic epitopes. Six epitopes bearing the highest score were selected and the corresponding peptides were synthesized. Only the peptides representing loop V of OmpC reacted strongly with the umbilical cord serum immunoglobulins. To determine which amino acids are essential for the antigenic activity of the epitope, the loop V was scanned with a series of dodecapeptides. The peptide RYDERY was identified as a minimal sequence for the loop V epitope. Truncation at either the C- or N-terminus rendered this peptide inactive. Apart from C-terminal tyrosine, substitution of each of the remaining five amino acids with glycine, led to a precipitous loss of immunological activity. This peptide may serve as a ligand in affinity chromatography of OmpC-specific antibodies and as a component of a vaccine designed to boost human immune defenses against enterobacterial infections. PMID:23940590

  11. Antiamnesic properties of analogs and mimetics of the tripeptide human urocortin 3.

    PubMed

    Telegdy, Gyula; Kovács, Anita Kármen; Rákosi, Kinga; Zarándi, Márta; Tóth, Gábor K

    2016-09-01

    Amnesia is a deficit in memory caused by brain damage, disease, or trauma. Until now, there are no successful medications on the drug market available to treat amnesia. Short analogs and mimetics of human urocortin 3 (Ucn 3) tripeptide were synthetized and tested for their action against amnesia induced by eletroconvulsion in mice. Among the 16 investigated derivatives of Ucn 3 tripeptide, eight compounds displayed antiamnesic effect. Our results proved that the configuration of chiral center of glutamine does not affect the antiamnesic properties. Alkyl amide or isoleucyl amide at the C-terminus may lead to antiamnesic compounds. As concerned the N-terminus, acetyl, Boc, and alkyl ureido moieties were found among the active analogs, but the free amino function at the N-terminus usually led to an inactive derivatives. These observations may lead to the design and synthesis of small peptidomimetics and amino acid derivatives as antiamnesic drug candidates, although the elucidation of the mechanism of the action requires further investigations.

  12. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase.

    PubMed

    Fenwick, Michael K; Mehta, Angad P; Zhang, Yang; Abdelwahed, Sameh H; Begley, Tadhg P; Ealick, Steven E

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active site metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.

  13. The NEXT-A (N-terminal EXtension with Transferase and ARS) reaction.

    PubMed

    Taki, Masumi; Kuroiwa, Hiroyuki; Sisido, Masahiko

    2009-01-01

    L/F-transferase is known to catalyze transfer of hydrophobic amino acids from aminoacyl tRNA to the N-terminus of a protein possessing lysine or arginine as the N-terminus. Combining L/F-transferase with E. coli phenylalanyl-tRNA synthetase (ARS), we achieved non-ribosomal N-terminal-specific introduction of various kinds of nonnatural amino acids to a protein. A nonnatural amino acid is once charged onto an E. coli tRNA(Phe) by a mutant ARS in situ, and successively transferred from the tRNA to a target protein, namely the NEXT-A reaction. Besides alphaA294G mutation on the ARS, alphaT251A, betaG318W, or betaA356W double-mutation were effective to increase the introduction efficiency through the NEXT-A reaction. Protein specific fluorescence labelling via the NEXT-A reaction followed by Huisgen cycloaddition was also demonstrated.

  14. Peptide retention prediction using hydrophilic interaction liquid chromatography coupled to mass spectrometry.

    PubMed

    Badgett, Majors J; Boyes, Barry; Orlando, Ron

    2018-02-16

    A model that predicts retention for peptides using a HALO ® penta-HILIC column and gradient elution was created. Coefficients for each amino acid were derived using linear regression analysis and these coefficients can be summed to predict the retention of peptides. This model has a high correlation between experimental and predicted retention times (0.946), which is on par with previous RP and HILIC models. External validation of the model was performed using a set of H. pylori samples on the same LC-MS system used to create the model, and the deviation from actual to predicted times was low. Apart from amino acid composition, length and location of amino acid residues on a peptide were examined and two site-specific corrections for hydrophobic residues at the N-terminus as well as hydrophobic residues one spot over from the N-terminus were created. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Vav1-mediated scaffolding interactions stabilize SLP-76 microclusters and contribute to antigen-dependent T cell responses.

    PubMed

    Sylvain, Nicholas R; Nguyen, Ken; Bunnell, Stephen C

    2011-03-08

    The guanine nucleotide exchange factor (GEF) Vav1 synergizes with the adaptor protein SLP-76 (Src homology 2 domain--containing leukocyte phosphoprotein of 76 kD) to support T cell development and activation. In response to ligation of the T cell receptor (TCR), SLP-76 is assembled into microclusters that provide an essential platform for the signaling events that drive T cell activation. We found that Vav1 selectively entered SLP-76 microclusters, rather than TCR microclusters, influencing their stability and function. The carboxyl terminus of Vav1, which consists of Src homology domains, was both necessary and sufficient for the entry of Vav1 into SLP-76 microclusters; however, this fragment of Vav1 was insufficient to stabilize the microclusters, and it potently suppressed T cell activation. This indicated that the amino terminus of Vav1, which has the GEF domain, also contributed to the integrity of SLP-76 microclusters and thereby to T cell activation. These microcluster-stabilizing functions were independent of the GEF activity in the amino terminus of Vav1 and were unaffected if the GEF function of Vav1 was either inactivated or constitutively activated by mutation. In contrast, Vav1 deletion mutants lacking either the calponin homology domain or the catalytic core of the GEF exhibited mild scaffolding defects, but they differentially affected TCR-dependent calcium ion (Ca²+) responses. We conclude that multiple GEF-independent scaffolding functions distributed throughout the amino terminus of Vav1 contribute to the activation of T cells by acting synergistically to increase the stability and function of SLP-76 microclusters.

  16. Quantum Computational Calculations of the Ionization Energies of Acidic and Basic Amino Acids: Aspartate, Glutamate, Arginine, Lysine, and Histidine

    NASA Astrophysics Data System (ADS)

    de Guzman, C. P.; Andrianarijaona, M.; Lee, Y. S.; Andrianarijaona, V.

    An extensive knowledge of the ionization energies of amino acids can provide vital information on protein sequencing, structure, and function. Acidic and basic amino acids are unique because they have three ionizable groups: the C-terminus, the N-terminus, and the side chain. The effects of multiple ionizable groups can be seen in how Aspartate's ionizable side chain heavily influences its preferred conformation (J Phys Chem A. 2011 April 7; 115(13): 2900-2912). Theoretical and experimental data on the ionization energies of many of these molecules is sparse. Considering each atom of the amino acid as a potential departing site for the electron gives insight on how the three ionizable groups affect the ionization process of the molecule and the dynamic coupling between the vibrational modes. In the following study, we optimized the structure of each acidic and basic amino acid then exported the three dimensional coordinates of the amino acids. We used ORCA to calculate single point energies for a region near the optimized coordinates and systematically went through the x, y, and z coordinates of each atom in the neutral and ionized forms of the amino acid. With the calculations, we were able to graph energy potential curves to better understand the quantum dynamic properties of the amino acids. The authors thank Pacific Union College Student Association for providing funds.

  17. Amino- and carboxyl-terminal amino acid sequences of proteins coded by gag gene of murine leukemia virus

    PubMed Central

    Oroszlan, Stephen; Henderson, Louis E.; Stephenson, John R.; Copeland, Terry D.; Long, Cedric W.; Ihle, James N.; Gilden, Raymond V.

    1978-01-01

    The amino- and carboxyl-terminal amino acid sequences of proteins (p10, p12, p15, and p30) coded by the gag gene of Rauscher and AKR murine leukemia viruses were determined. Among these proteins, p15 from both viruses appears to have a blocked amino end. Proline was found to be the common NH2 terminus of both p30s and both p12s, and alanine of both p10s. The amino-terminal sequences of p30s are identical, as are those of p10s, while the p12 sequences are clearly distinctive but also show substantial homology. The carboxyl-terminal amino acids of both viral p30s and p12s are leucine and phenylalanine, respectively. Rauscher leukemia virus p15 has tyrosine as the carboxyl terminus while AKR virus p15 has phenylalanine in this position. The compositional and sequence data provide definite chemical criteria for the identification of analogous gag gene products and for the comparison of viral proteins isolated in different laboratories. On the basis of amino acid sequences and the previously proposed H-p15-p12-p30-p10-COOH peptide sequence in the precursor polyprotein, a model for cleavage sites involved in the post-translational processing of the precursor coded for by the gag gene is proposed. PMID:206897

  18. Diverse amino acid changes at specific positions in the N-terminal region of the coat protein allow Plum pox virus to adapt to new hosts.

    PubMed

    Carbonell, Alberto; Maliogka, Varvara I; Pérez, José de Jesús; Salvador, Beatriz; León, David San; García, Juan Antonio; Simón-Mateo, Carmen

    2013-10-01

    Plum pox virus (PPV)-D and PPV-R are two isolates from strain D of PPV that differ in host specificity. Previous analyses of chimeras originating from PPV-R and PPV-D suggested that the N terminus of the coat protein (CP) includes host-specific pathogenicity determinants. Here, these determinants were mapped precisely by analyzing the infectivity in herbaceous and woody species of chimeras containing a fragment of the 3' region of PPV-D (including the region coding for the CP) in a PPV-R backbone. These chimeras were not infectious in Prunus persica, but systemically infected Nicotiana clevelandii and N. benthamiana when specific amino acids were modified or deleted in a short 30-amino-acid region of the N terminus of the CP. Most of these mutations did not reduce PPV fitness in Prunus spp. although others impaired systemic infection in this host. We propose a model in which the N terminus of the CP, highly relevant for virus systemic movement, is targeted by a host defense mechanism in Nicotiana spp. Mutations in this short region allow PPV to overcome the defense response in this host but can compromise the efficiency of PPV systemic movement in other hosts such as Prunus spp.

  19. Lon-mediated proteolysis of the Escherichia coli UmuD mutagenesis protein: in vitro degradation and identification of residues required for proteolysis

    PubMed Central

    Gonzalez, Martín; Frank, Ekaterina G.; Levine, Arthur S.; Woodgate, Roger

    1998-01-01

    Most SOS mutagenesis in Escherichia coli is dependent on the UmuD and UmuC proteins. Perhaps as a consequence, the activity of these proteins is exquisitely regulated. The intracellular level of UmuD and UmuC is normally quite low but increases dramatically in lon− strains, suggesting that both proteins are substrates of the Lon protease. We report here that the highly purified UmuD protein is specifically degraded in vitro by Lon in an ATP-dependent manner. To identify the regions of UmuD necessary for Lon-mediated proteolysis, we performed ‘alanine-stretch’ mutagenesis on umuD and followed the stability of the mutant protein in vivo. Such an approach allowed us to localize the site(s) within UmuD responsible for Lon-mediated proteolysis. The primary signal is located between residues 15 and 18 (FPLF), with an auxiliary site between residues 26 and 29 (FPSP), of the amino terminus of UmuD. Transfer of the amino terminus of UmuD (residues 1–40) to an otherwise stable protein imparts Lon-mediated proteolysis, thereby indicating that the amino terminus of UmuD is sufficient for Lon recognition and the ensuing degradation of the protein. PMID:9869642

  20. Pathological conformations involving the amino terminus of tau occur early in Alzheimer’s disease and are differentially detected by monoclonal antibodies

    PubMed Central

    Combs, Benjamin; Hamel, Chelsey; Kanaan, Nicholas M.

    2016-01-01

    Conformational changes involving the amino terminus of the tau protein are among the earliest alterations associated with tau pathology in Alzheimer’s disease and other tauopathies. This region of tau contains a phosphatase-activating domain (PAD) that is aberrantly exposed in pathological forms of the protein, an event that is associated with disruptions in anterograde fast axonal transport. We utilized four antibodies that recognize the amino terminus of tau, TNT1, TNT2 (a novel antibody), Tau12, and Tau13, to further study this important region. Using scanning alanine mutations in recombinant tau proteins, we refined the epitopes of each antibody. We examined the antibodies’ relative abilities to specifically label pathological tau in non-denaturing and denaturing assays to gain insight into some of the mechanistic details of PAD exposure. We then determined the pattern of tau pathology labeled by each antibody in human hippocampal sections at various disease stages in order to characterize PAD exposure in the context of disease progression. The characteristics of reactivity for the antibodies fell into two groups. TNT1 and TNT2 recognized epitopes within amino acids 7–12 and specifically identified recombinant tau aggregates and pathological tau from Alzheimer’s disease brains in a conformation-dependent manner. These antibodies labeled early pre-tangle pathology from neurons in early Braak stages and colocalized with thiazine red, a marker of fibrillar pathology, in classic neurofibrillary tangles. However, late tangles were negative for TNT1 and TNT2 indicating a loss of the epitope in later stages of tangle evolution. In contrast, Tau12 and Tau13 both identified discontinuous epitopes in the amino terminus and were unable to differentiate between normal and pathological tau in biochemical and tissue immunohistological assays. Despite the close proximity of these epitopes, the antibodies demonstrated remarkably different abilities to identify pathological changes in tau indicating that detection of conformational alterations involving PAD exposure is not achieved by all N-terminal tau antibodies and that a relatively discrete region of the N-terminus (i.e., amino acids 7–12, the TNT1 and TNT2 epitope) is central to the differences between normal and pathological tau. The appearance of PAD in early tau pathology and its disappearance in late-stage tangles suggest that toxic forms of tau are associated with the earliest forms of tau deposits. Collectively, these findings demonstrate that the TNT antibodies are useful markers for early conformational display of PAD and provide information regarding conformational changes that have potential implications in the toxic mechanisms of tau pathology. PMID:27260838

  1. Properties of GluR3 receptors tagged with GFP at the amino or carboxyl terminus

    PubMed Central

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Eusebi, Fabrizio; Miledi, Ricardo

    2007-01-01

    Anatomical visualization of neurotransmitter receptor localization is facilitated by tagging receptors, but this process can alter their functional properties. We have evaluated the distribution and properties of WT glutamate receptor 3 (GluR3) α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (WT GluR3) and two receptors in which GFP was tagged to the amino terminus (GFP-GluR3) or to the carboxyl terminus (GluR3-GFP). Although the fluorescence in Xenopus oocytes was stronger in the vegetal hemisphere because of localization of internal structures (probable sites of production, storage or recycling of receptors), the insertion of receptors into the plasma membrane was polarized to the animal hemisphere. The fluorescence intensity of oocytes injected with GluR3-GFP RNA was approximately double that of oocytes injected with GFP-GluR3 RNA. Accordingly, GluR3-GFP oocytes generated larger kainate-induced currents than GFP-GluR3 oocytes, with similar EC50 values. Currents elicited by glutamate, or AMPA coapplied with cyclothiazide, were also larger in GluR3-GFP oocytes. The glutamate- to kainate-current amplitude ratios differed, with GluR3-GFP being activated more efficiently by glutamate than the WT or GFP-GluR3 receptors. This pattern correlates with the slower decay of glutamate-induced currents generated by GluR3-GFP receptors. These changes were not observed when GFP was tagged to the amino terminus, and these receptors behaved like the WT. The antagonistic effects of 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were not altered in any of the tagged receptors. We conclude that GFP is a useful and convenient tag for visualizing these proteins. However, the effects of different sites of tag insertion on receptor characteristics must be taken into account in assessing the roles played by these receptor proteins. PMID:17881566

  2. Properties of GluR3 receptors tagged with GFP at the amino or carboxyl terminus.

    PubMed

    Limon, Agenor; Reyes-Ruiz, Jorge Mauricio; Eusebi, Fabrizio; Miledi, Ricardo

    2007-09-25

    Anatomical visualization of neurotransmitter receptor localization is facilitated by tagging receptors, but this process can alter their functional properties. We have evaluated the distribution and properties of WT glutamate receptor 3 (GluR3) alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (WT GluR3) and two receptors in which GFP was tagged to the amino terminus (GFP-GluR3) or to the carboxyl terminus (GluR3-GFP). Although the fluorescence in Xenopus oocytes was stronger in the vegetal hemisphere because of localization of internal structures (probable sites of production, storage or recycling of receptors), the insertion of receptors into the plasma membrane was polarized to the animal hemisphere. The fluorescence intensity of oocytes injected with GluR3-GFP RNA was approximately double that of oocytes injected with GFP-GluR3 RNA. Accordingly, GluR3-GFP oocytes generated larger kainate-induced currents than GFP-GluR3 oocytes, with similar EC(50) values. Currents elicited by glutamate, or AMPA coapplied with cyclothiazide, were also larger in GluR3-GFP oocytes. The glutamate- to kainate-current amplitude ratios differed, with GluR3-GFP being activated more efficiently by glutamate than the WT or GFP-GluR3 receptors. This pattern correlates with the slower decay of glutamate-induced currents generated by GluR3-GFP receptors. These changes were not observed when GFP was tagged to the amino terminus, and these receptors behaved like the WT. The antagonistic effects of 6-nitro-7-sulfamoylbenzo[f]quinoxaline-2,3-dione (NBQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) were not altered in any of the tagged receptors. We conclude that GFP is a useful and convenient tag for visualizing these proteins. However, the effects of different sites of tag insertion on receptor characteristics must be taken into account in assessing the roles played by these receptor proteins.

  3. Functional role of the extracellular N-terminal domain of neuropeptide Y subfamily receptors in membrane integration and agonist-stimulated internalization.

    PubMed

    Lindner, Diana; Walther, Cornelia; Tennemann, Anja; Beck-Sickinger, Annette G

    2009-01-01

    The N terminus is the most variable element in G protein-coupled receptors (GPCRs), ranging from seven residues up to approximately 5900 residues. For family B and C GPCRs it is described that at least part of the ligand binding site is located within the N terminus. Here we investigated the role of the N terminus in the neuropeptide Y receptor family, which belongs to the class A of GPCRs. We cloned differentially truncated Y receptor mutants, in which the N terminus was partially or completely deleted. We found, that eight amino acids are sufficient for full ligand binding and signal transduction activity. Interestingly, we could show that no specific amino acids but rather the extension of the first transmembrane helix by any residues is sufficient for receptor activity but also for membrane integration in case of the hY(1) and the hY(4) receptors. In contrast, the complete deletion of the N terminus in the hY(2) receptors resulted in a mutant that is fully integrated in the membrane but does not bind the ligand very well and internalizes much slower compared to the wild type receptor. Interestingly, also these effects could be reverted by any N-terminal extension. Accordingly, the most important function of the N termini seems to be the stabilization of the first transmembrane helix to ensure the correct receptor structure, which obviously is essential for ligand binding, integration into the cell membrane and receptor internalization.

  4. Poliovirus replication proteins: RNA sequence encoding P3-1b and the sites of proteolytic processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semler, B.L.; Anderson, C.W.; Kitamura, N.

    1981-06-01

    A partial amino-terminal amino acid sequence of each of the major proteins encoded by the replicase region of the poliovirus genome has been determined. A comparison of this sequence information with the amino acid sequence predicted from the RNA sequence that has been determined for the 3' region of the poliovirus genome has allowed us to locate precisely the proteolytic cleavage sites at which the initial polyprotein is processed to create the poliovirus products P3-1b (NCVP1b), P3-2 (NCVP2), P3-4b (NCVP4b), and P3-7c (NCVP7c). For each of these products, as well as for the small genome-linked protein VPg, proteolytic cleavage occursmore » between a glutamine and a glycine residue to create the amino terminus of each protein. This result suggests that a single proteinase may be responsible for all of these cleavages. The sequence data also allow the precise positioning of the genome-linked protein VPg within the precursor P3-1b just proximal to the amino terminus of polypeptide P3-2.« less

  5. The amino-terminal region of the retinoblastoma gene product binds a novel nuclear matrix protein that co-localizes to centers for RNA processing

    PubMed Central

    1994-01-01

    The tumor suppressing capacity of the retinoblastoma protein (p110RB) is dependent on interactions made with cellular proteins through its carboxy-terminal domains. How the p110RB amino-terminal region contributes to this activity is unclear, though evidence now indicates it is important for both growth suppression and regulation of the full- length protein. We have used the yeast two-hybrid system to screen for cellular proteins which bind to the first 300 amino acids of p110RB. The only gene isolated from this screen encodes a novel 84-kD nuclear matrix protein that localizes to subnuclear regions associated with RNA processing. This protein, p84, requires a structurally defined domain in the amino terminus of p110RB for binding. Furthermore, both in vivo and in vitro experiments demonstrate that p84 binds preferentially to the functionally active, hypophosphorylated form of p110RB. Thus, the amino terminus of p110RB may function in part to facilitate the binding of growth promoting factors at subnuclear regions actively involved in RNA metabolism. PMID:7525595

  6. The Recombinant Inhibitor of DNA Binding Id2 Forms Multimeric Structures via the Helix-Loop-Helix Domain and the Nuclear Export Signal.

    PubMed

    Roschger, Cornelia; Schubert, Mario; Regl, Christof; Andosch, Ancuela; Marquez, Augusto; Berger, Thomas; Huber, Christian G; Lütz-Meindl, Ursula; Cabrele, Chiara

    2018-04-07

    The inhibitor of DNA binding and cell differentiation 2 (Id2) is a helix-loop-helix (HLH) protein that acts as negative dominant regulator of basic-HLH transcription factors during development and in cancer. The structural properties of Id2 have been investigated so far by using synthetic or recombinant fragments reproducing single domains (N-terminus, HLH, C-terminus): the HLH domain tends to dimerize into a four-helix bundle, whereas the flanking regions are flexible. In this work, the intact protein was expressed in E. coli , solubilized from inclusion bodies with urea, purified and dissolved in water at pH~4. Under these conditions, Id2 was obtained with both cysteine residues disulfide-bonded to β-mercaptoethanol that was present during the solubilization process. Moreover, it existed in a self-assembled state, in which the N-terminus remained highly flexible, while the HLH domain and, surprisingly, part of the C-terminus, which corresponds to the nuclear export signal (NES), both were involved in slowly tumbling, rigid structures. The protein oligomers also formed twisted fibrils that were several micrometers long and up to 80 nm thick. These results show that self-assembly decreases the backbone flexibility of those two protein regions (HLH and NES) that are important for interaction with basic-HLH transcription factors or for nucleocytoplasmic shuttling.

  7. A Maraviroc-Resistant HIV-1 with Narrow Cross-Resistance to Other CCR5 Antagonists Depends on both N-Terminal and Extracellular Loop Domains of Drug-Bound CCR5▿

    PubMed Central

    Tilton, John C.; Wilen, Craig B.; Didigu, Chukwuka A.; Sinha, Rohini; Harrison, Jessamina E.; Agrawal-Gamse, Caroline; Henning, Elizabeth A.; Bushman, Frederick D.; Martin, Jeffrey N.; Deeks, Steven G.; Doms, Robert W.

    2010-01-01

    CCR5 antagonists inhibit HIV entry by binding to a coreceptor and inducing changes in the extracellular loops (ECLs) of CCR5. In this study, we analyzed viruses from 11 treatment-experienced patients who experienced virologic failure on treatment regimens containing the CCR5 antagonist maraviroc (MVC). Viruses from one patient developed high-level resistance to MVC during the course of treatment. Although resistance to one CCR5 antagonist is often associated with broad cross-resistance to other agents, these viruses remained sensitive to most other CCR5 antagonists, including vicriviroc and aplaviroc. MVC resistance was dependent upon mutations within the V3 loop of the viral envelope (Env) protein and was modulated by additional mutations in the V4 loop. Deep sequencing of pretreatment plasma viral RNA indicated that resistance appears to have occurred by evolution of drug-bound CCR5 use, despite the presence of viral sequences predictive of CXCR4 use. Envs obtained from this patient before and during MVC treatment were able to infect cells expressing very low CCR5 levels, indicating highly efficient use of a coreceptor. In contrast to previous reports in which CCR5 antagonist-resistant viruses interact predominantly with the N terminus of CCR5, these MVC-resistant Envs were also dependent upon the drug-modified ECLs of CCR5 for entry. Our results suggest a model of CCR5 cross-resistance whereby viruses that predominantly utilize the N terminus are broadly cross-resistant to multiple CCR5 antagonists, whereas viruses that require both the N terminus and antagonist-specific ECL changes demonstrate a narrow cross-resistance profile. PMID:20702642

  8. Conversion of proteins from a non-polarized to an apical secretory pattern in MDCK cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, Lotte K.; Larsen, Jakob E.; Hansen, Martin

    2005-05-13

    Previously it was shown that fusion proteins containing the amino terminus of an apical targeted member of the serpin family fused to the corresponding carboxyl terminus of the non-polarized secreted serpin, antithrombin, are secreted mainly to the apical side of MDCK cells. The present study shows that this is neither due to the transfer of an apical sorting signal from the apically expressed proteins, since a sequence of random amino acids acts the same, nor is it due to the deletion of a conserved signal for correct targeting from the non-polarized secreted protein. Our results suggest that the polarity ofmore » secretion is determined by conformational sensitive sorting signals.« less

  9. Identification of amino acid changes in the envelope glycoproteins of bovine viral diarrhea viruses isolated from alpaca that may be involved in host adaptation.

    PubMed

    Neill, John D; Dubovi, Edward J; Ridpath, Julia F

    2015-09-30

    Bovine viral diarrhea viruses (BVDV) are most commonly associated with infections of cattle. However, BVDV are often isolated from closely related ruminants with a number of BVDV-1b viruses being isolated from alpacas that were both acutely and persistently infected. The complete nucleotide sequence of the open reading frame of eleven alpaca-adapted BVDV isolates and the region encoding the envelope glycoproteins of an additional three isolates were determined. With the exception of one, all alpaca isolates were >99.2% similar at the nucleotide level. The Hercules isolate was more divergent, with 95.7% sequence identity to the other viruses. Sequence similarity of the 14 viruses indicated they were isolates of a single BVDV strain that had adapted to and were circulating through alpaca herds. Hercules was a more distantly related strain that has been isolated only once in Canada and represented a separate adaptation event that possessed the same adaptive changes. Comparison of amino acid sequences of alpaca and bovine-derived BVDV strains revealed three regions with amino acid sequences unique to all alpaca isolates. The first contained two small in-frame deletions near the N-terminus of the E2 glycoprotein. The second was found near the C-terminus of the E2 protein where four altered amino acids were located within a 30 amino acid domain that participates in E2 homodimerization. The third region contained three variable amino acids in the C-terminus of the E(rns) within the amphipathic helix membrane anchor. These changes were found in the polar side of the amphipathic helix and resulted in an increased charge within the polar face. Titration of bovine and alpaca viruses in both bovine and alpaca cells indicated that with increased charge in the amphipathic helix, the ability to infect alpaca cells also increased. Published by Elsevier B.V.

  10. Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain.

    PubMed

    Saxena, Ashima; Hur, Regina S; Luo, Chunyuan; Doctor, Bhupendra P

    2003-12-30

    Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.

  11. Crotoxin: Structural Studies, Mechanism of Action and Cloning of Its Gene

    DTIC Science & Technology

    1989-12-01

    n the acidic subunit was reported In the above reference. The N-terminus was blocked by pyroglutamate , although the residue was refractory to the...immunogens. as 1potential vaccines against crotoxin and its homologs. Acidic and basic suburdts of crotoxin were sequenced and their higher- ordered...and acidic subunits ot crotoxin. The acidic subunit peptides were difficult, since two of the three peptides were blocked at the amino-terminus by

  12. Use of protein cross-linking and radiolytic footprinting to elucidate PsbP and PsbQ interactions within higher plant Photosystem II

    DOE PAGES

    Mummadisetti, Manjula P.; Frankel, Laurie K.; Bellamy, Henry D.; ...

    2014-10-27

    We used protein cross-linking and radiolytic footprinting coupled with high-resolution mass spectrometry to examine the structure of PsbP and PsbQ when they are bound to Photosystem II, in this paper. In its bound state, the N-terminal 15-amino-acid residue domain of PsbP, which is unresolved in current crystal structures, interacts with domains in the C terminus of the protein. These interactions may serve to stabilize the structure of the N terminus and may facilitate PsbP binding and function. These interactions place strong structural constraints on the organization of PsbP when associated with the Photosystem II complex. Additionally, amino acid residues inmore » the structurally unresolved loop 3A domain of PsbP ( 90K– 107V), 93Y and 96K, are in close proximity (≤11.4 Å) to the N-terminal 1E residue of PsbQ. Our findings are the first, to our knowledge, to identify a putative region of interaction between these two components. Cross-linked domains within PsbQ were also identified, indicating that two PsbQ molecules can interact in higher plants in a manner similar to that observed by Liu et al. [(2014) Proc Natl Acad Sci 111(12):4638–4643] in cyanobacterial Photosystem II. Furthermore, this interaction is consistent with either intra-Photosystem II dimer or inter-Photosystem II dimer models in higher plants. Finally, OH• produced by synchrotron radiolysis of water was used to oxidatively modify surface residues on PsbP and PsbQ. Finally, domains on the surface of both protein subunits were resistant to modification, indicating that they were shielded from water and appear to define buried regions that are in contact with other Photosystem II components.« less

  13. A Mutation Directs the Structural Switch of DNA Binding Proteins under Starvation to a Ferritin-like Protein Cage.

    PubMed

    Williams, Sunanda Margrett; Chandran, Anu Vijayakumari; Prakash, Sunita; Vijayan, Mamannamana; Chatterji, Dipankar

    2017-09-05

    Proteins of the ferritin family are ubiquitous in living organisms. With their spherical cage-like structures they are the iron storehouses in cells. Subfamilies of ferritins include 24-meric ferritins and bacterioferritins (maxiferritins), and 12-meric Dps (miniferritins). Dps safeguards DNA by direct binding, affording physical protection and safeguards from free radical-mediated damage by sequestering iron in its core. The maxiferritins can oxidize and store iron but cannot bind DNA. Here we show that a mutation at a critical interface in Dps alters its assembly from the canonical 12-mer to a ferritin-like 24-mer under crystallization. This structural switch was attributed to the conformational alteration of a highly conserved helical loop and rearrangement of the C-terminus. Our results demonstrate a novel concept of mutational switch between related protein subfamilies and corroborate the popular model for evolution by which subtle substitutions in an amino acid sequence lead to diversification among proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mechanism of action of chromogranin A on catecholamine release: molecular modeling of the catestatin region reveals a β-strand/loop/β-strand structure secured by hydrophobic interactions and predictive of activity

    PubMed Central

    Tsigelny, Igor; Mahata, Sushil K.; Taupenot, Laurent; Preece, Nicholas E.; Mahata, Manjula; Khan, Imran; Parmer, Robert J.; O’Connor, Daniel T.

    2009-01-01

    A novel fragment of chromogranin A, known as ‘catestatin’ (bovine chromogranin A344–364), inhibits catecholamine release from chromaffin cells and noradrenergic neurons by acting as a non-competitive nicotinic cholinergic antagonist, and may therefore constitute an endogenous autocrine feedback regulator of sympathoadrenal activity. To characterize how this activity depends on the peptide’s structure, we searched for common 3-dimensional motifs for this primary structure or its homologs. Catestatin’s primary structure bore significant (29–35.5% identity, general alignment score 44–57) sequence homology to fragment sequences within three homologs of known 3-dimensional structures, based on solved X-ray crystals: 8FAB, 1PKM, and 2IG2. Each of these sequences exists in nature as a β-strand/loop/β-strand structure, stabilized by hydrophobic interactions between the β-strands. The catestatin structure was stable during molecular dynamics simulations. The catestatin loop contains three Arg residues, whose electropositive side chains form the terminus of the structure, and give rise to substantial uncompensated charge asymmetry in the molecule. A hydrophobic moment plot revealed that catestatin is the only segment of chromogranin A predicted to contain amphiphilic β-strand. Circular dichroism in the far ultraviolet showed substantial (63%) β-sheet structure, especially in a hydrophobic environment. Alanine-substitution mutants of catestatin established a crucial role for the three central arginine residues in the loop (Arg351, Arg353, and Arg358), though not for two arginine residues in the strand region toward the amino-terminus. [125I]Catestatin bound to Torpedo membranes at a site other than the nicotinic agonist binding site. When the catestatin structure was ‘docked’ with the extracellular domain of the Torpedo nicotinic cholinergic receptor, it interacted principally with the β and δ subunits, in a relatively hydrophobic region of the cation pore extracellular orifice, and the complex of ligand and receptor largely occluded the cation pore, providing a structural basis for the non-competitive nicotinic cholinergic antagonist properties of the peptide. We conclude that a homology model of catestatin correctly predicts actual features of the peptide, both physical and biological. The model suggests particular spatial and charge features of the peptide which may serve as starting points in the development of non-peptide mimetics of this endogenous nicotinic cholinergic antagonist. PMID:9809795

  15. Physicist's simple access to protein structures: the computer program WHAT IF

    NASA Astrophysics Data System (ADS)

    Altenberg-Greulich, Brigitte; Zech, Stephan G.; Stehlik, Dietmar; Vriend, Gert

    2001-06-01

    We describe the computer program WHAT IF and its application to two physical examples. For the DNA binding protein, OCT-1 (pou domain) the location of amino acids with a sidechain amino group is shown. Such knowledge is required when staining this molecule with a fluorescence dye, which binds chemically to the amino terminus as well as amino groups in sidechains. The program shows that most sidechain amino groups are protected when DNA is bound to OCT-1, allowing selective staining of the amino terminal NH2 group. A protein stained this way can be used in fluorescence spectroscopic studies on function aspects of OCT-1.

  16. Non-canonical active site architecture of the radical SAM thiamin pyrimidine synthase

    DOE PAGES

    Fenwick, Michael K.; Mehta, Angad P.; Zhang, Yang; ...

    2015-03-27

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical. Canonical radical SAM enzymes are characterized by a β-barrel-like fold and SAM anchors to the differentiated iron of the cluster, which is located near the amino terminus and within the β-barrel, through its amino and carboxylate groups. Here we show that ThiC, the thiamin pyrimidine synthase in plants and bacteria, contains a tethered cluster-binding domain at its carboxy terminus that moves in and out of the active site during catalysis. In contrast to canonical radical SAM enzymes, we predict that SAM anchors to an additional active sitemore » metal through its amino and carboxylate groups. Superimposition of the catalytic domains of ThiC and glutamate mutase shows that these two enzymes share similar active site architectures, thus providing strong evidence for an evolutionary link between the radical SAM and adenosylcobalamin-dependent enzyme superfamilies.« less

  17. A Simple Procedure for Constructing 5'-Amino-Terminated Oligodeoxynucleotides in Aqueous Solution

    NASA Technical Reports Server (NTRS)

    Bruick, Richard K.; Koppitz, Marcus; Joyce, Gerald F.; Orgel, Leslie E.

    1997-01-01

    A rapid method for the synthesis of oligodeoxynucleotides (ODNs) terminated by 5'-amino-5'-deoxythymidine is described. A 3'-phosphorylated ODN (the donor) is incubated in aqueous solution with 5'-amino- 5'-deoxythymidine in the presence of N-(3-dimethylaminopropyl)-)N'-ethylcarbodiimide hydrochloride (EDC), extending the donor by one residue via a phosphoramidate bond. Template- directed ligation of the extended donor and an acceptor ODN, followed by acid hydrolysis, yields the acceptor ODN extended by a single 5'-amino-5'-deoxythymidine residue at its 5'terminus.

  18. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence.

    PubMed Central

    Casal, J I; Langeveld, J P; Cortés, E; Schaaper, W W; van Dijk, E; Vela, C; Kamstrup, S; Meloen, R H

    1995-01-01

    The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine, but detailed information about number of epitopes, optimal length, sequence choice, and site of coupling to the carrier protein was lacking. Therefore, several overlapping peptides based on this N terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. The specificity and neutralizing ability of the antibody response for these peptides were determined. Within the N-terminal 23 residues of VP2, two subsites able to induce neutralizing antibodies and which overlapped by only two glycine residues at positions 10 and 11 could be discriminated. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N terminus than through the C terminus to keyhole limpet hemocyanin. The results suggest that the presence of amino acid residues 2 to 21 (and probably 3 to 17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine. PMID:7474152

  19. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence.

    PubMed

    Casal, J I; Langeveld, J P; Cortés, E; Schaaper, W W; van Dijk, E; Vela, C; Kamstrup, S; Meloen, R H

    1995-11-01

    The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine, but detailed information about number of epitopes, optimal length, sequence choice, and site of coupling to the carrier protein was lacking. Therefore, several overlapping peptides based on this N terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. The specificity and neutralizing ability of the antibody response for these peptides were determined. Within the N-terminal 23 residues of VP2, two subsites able to induce neutralizing antibodies and which overlapped by only two glycine residues at positions 10 and 11 could be discriminated. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N terminus than through the C terminus to keyhole limpet hemocyanin. The results suggest that the presence of amino acid residues 2 to 21 (and probably 3 to 17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine.

  20. A+-Helix of Protein C Inhibitor (PCI) Is a Cell-penetrating Peptide That Mediates Cell Membrane Permeation of PCI*

    PubMed Central

    Yang, Hanjiang; Wahlmüller, Felix Christof; Sarg, Bettina; Furtmüller, Margareta; Geiger, Margarethe

    2015-01-01

    Protein C inhibitor (PCI) is a serpin with broad protease reactivity. It binds glycosaminoglycans and certain phospholipids that can modulate its inhibitory activity. PCI can penetrate through cellular membranes via binding to phosphatidylethanolamine. The exact mechanism of PCI internalization and the intracellular role of the serpin are not well understood. Here we showed that testisin, a glycosylphosphatidylinositol-anchored serine protease, cleaved human PCI and mouse PCI (mPCI) at their reactive sites as well as at sites close to their N terminus. This cleavage was observed not only with testisin in solution but also with cell membrane-anchored testisin on U937 cells. The cleavage close to the N terminus released peptides rich in basic amino acids. Synthetic peptides corresponding to the released peptides of human PCI (His1–Arg11) and mPCI (Arg1–Ala18) functioned as cell-penetrating peptides. Because intact mPCI but not testisin-cleaved mPCI was internalized by Jurkat T cells, a truncated mPCI mimicking testisin-cleaved mPCI was created. The truncated mPCI lacking 18 amino acids at the N terminus was not taken up by Jurkat T cells. Therefore our model suggests that testisin or other proteases could regulate the internalization of PCI by removing its N terminus. This may represent one of the mechanisms regulating the intracellular functions of PCI. PMID:25488662

  1. DNA-PK assay

    DOEpatents

    Anderson, Carl W.; Connelly, Margery A.

    2004-10-12

    The present invention provides a method for detecting DNA-activated protein kinase (DNA-PK) activity in a biological sample. The method includes contacting a biological sample with a detectably-labeled phosphate donor and a synthetic peptide substrate defined by the following features to provide specific recognition and phosphorylation by DNA-PK: (1) a phosphate-accepting amino acid pair which may include serine-glutamine (Ser-Gln) (SQ), threonine-glutamine (Thr-Gln) (TQ), glutamine-serine (Gln-Ser) (QS), or glutamine-threonine (Gln-Thr) (QT); (2) enhancer amino acids which may include glutamic acid or glutamine immediately adjacent at the amino- or carboxyl- side of the amino acid pair and forming an amino acid pair-enhancer unit; (3) a first spacer sequence at the amino terminus of the amino acid pair-enhancer unit; (4) a second spacer sequence at the carboxyl terminus of the amino acid pair-enhancer unit, which spacer sequences may include any combination of amino acids that does not provide a phosphorylation site consensus sequence motif; and, (5) a tag moiety, which may be an amino acid sequence or another chemical entity that permits separating the synthetic peptide from the phosphate donor. A compostion and a kit for the detection of DNA-PK activity are also provided. Methods for detecting DNA, protein phosphatases and substances that alter the activity of DNA-PK are also provided. The present invention also provides a method of monitoring protein kinase and DNA-PK activity in living cells. -A composition and a kit for monitoring protein kinase activity in vitro and a composition and a kit for monitoring DNA-PK activities in living cells are also provided. A method for identifying agents that alter protein kinase activity in vitro and a method for identifying agents that alter DNA-PK activity in living cells are also provided.

  2. Alteration of the C-terminal ligand specificity of the erbin PDZ domain by allosteric mutational effects.

    PubMed

    Murciano-Calles, Javier; McLaughlin, Megan E; Erijman, Ariel; Hooda, Yogesh; Chakravorty, Nishant; Martinez, Jose C; Shifman, Julia M; Sidhu, Sachdev S

    2014-10-23

    Modulation of protein binding specificity is important for basic biology and for applied science. Here we explore how binding specificity is conveyed in PDZ (postsynaptic density protein-95/discs large/zonula occludens-1) domains, small interaction modules that recognize various proteins by binding to an extended C terminus. Our goal was to engineer variants of the Erbin PDZ domain with altered specificity for the most C-terminal position (position 0) where a Val is strongly preferred by the wild-type domain. We constructed a library of PDZ domains by randomizing residues in direct contact with position 0 and in a loop that is close to but does not contact position 0. We used phage display to select for PDZ variants that bind to 19 peptide ligands differing only at position 0. To verify that each obtained PDZ domain exhibited the correct binding specificity, we selected peptide ligands for each domain. Despite intensive efforts, we were only able to evolve Erbin PDZ domain variants with selectivity for the aliphatic C-terminal side chains Val, Ile and Leu. Interestingly, many PDZ domains with these three distinct specificities contained identical amino acids at positions that directly contact position 0 but differed in the loop that does not contact position 0. Computational modeling of the selected PDZ domains shows how slight conformational changes in the loop region propagate to the binding site and result in different binding specificities. Our results demonstrate that second-sphere residues could be crucial in determining protein binding specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. A five-residue sequence near the carboxyl terminus of the polytopic membrane protein lac permease is required for stability within the membrane.

    PubMed Central

    Roepe, P D; Zbar, R I; Sarkar, H K; Kaback, H R

    1989-01-01

    The lac permease (lacY gene product) of Escherichia coli contains 417 amino acid residues and is predicted to have a short hydrophilic amino terminus on the inner surface of the cytoplasmic membrane, multiple transmembrane hydrophobic segments in alpha-helical conformation, and a 17-amino acid residue hydrophilic carboxyl-terminal tail on the inner surface of the membrane. To assess the importance of the carboxyl terminus, the properties of several truncation mutants were studied. The mutants were constructed by site-directed mutagenesis such that stop codons were placed at specified positions, and the altered lacY genes were expressed at a relatively low rate from plasmid pACYC184. Permease truncated at position 407 or 401 retains full activity, and a normal complement of molecules is present in the membrane, as judged by immunoblot analyses. Thus, it is apparent that the carboxyl-terminal tail plays no direct role in membrane insertion of the permease, its stability, or in the mechanism of lactose/H+ symport. In marked contrast, when truncations are made at residues 396 (i.e., 4 amino acid residues from the carboxyl terminus of putative helix XII), 389, 372, or 346, the permease is no longer found in the membrane. Remarkably, however, when each of the mutated lacY genes is expressed at a high rate by means of the T7 RNA polymerase system [Tabor, S. & Richardson, C. C. (1985) Proc. Natl. Acad. Sci. USA 82, 1074-1079], all of the truncated permeases are present in the membrane, as indicated by [35S]methionine incorporation studies; however, permease truncated at residue 396, 389, 372, or 346 is defective with respect to lactose/H+ symport. Finally, pulse-chase experiments indicate that wild-type permease or permease truncated at residue 401 is stable, whereas permease truncated at or prior to residue 396 is degraded at a significant rate. The results are consistent with the notion that residues 396-401 in putative helix XII are important for protection against proteolytic degradation and suggest that this region of the permease may be necessary for proper folding. Images PMID:2657733

  4. Targeting of Drosophila Rhodopsin Requires Helix 8 but Not the Distal C-Terminus

    PubMed Central

    Kock, Ines; Bulgakova, Natalia A.; Knust, Elisabeth; Sinning, Irmgard; Panneels, Valérie

    2009-01-01

    Background The fundamental role of the light receptor rhodopsin in visual function and photoreceptor cell development has been widely studied. Proper trafficking of rhodopsin to the photoreceptor membrane is of great importance. In human, mutations in rhodopsin involving its intracellular mislocalization, are the most frequent cause of autosomal dominant Retinitis Pigmentosa, a degenerative retinal pathology characterized by progressive blindness. Drosophila is widely used as an animal model in visual and retinal degeneration research. So far, little is known about the requirements for proper rhodopsin targeting in Drosophila. Methodology/Principal Findings Different truncated fly-rhodopsin Rh1 variants were expressed in the eyes of Drosophila and their localization was analyzed in vivo or by immunofluorescence. A mutant lacking the last 23 amino acids was found to properly localize in the rhabdomeres, the light-sensing organelle of the photoreceptor cells. This constitutes a major difference to trafficking in vertebrates, which involves a conserved QVxPA motif at the very C-terminus. Further truncations of Rh1 indicated that proper localization requires the last amino acid residues of a region called helix 8 following directly the last transmembrane domain. Interestingly, the very C-terminus of invertebrate visual rhodopsins is extremely variable but helix 8 shows conserved amino acid residues that are not conserved in vertebrate homologs. Conclusions/Significance Despite impressive similarities in the folding and photoactivation of vertebrate and invertebrate visual rhodopsins, a striking difference exists between mammalian and fly rhodopsins in their requirements for proper targeting. Most importantly, the distal part of helix 8 plays a central role in invertebrates. Since the last amino acid residues of helix 8 are dispensable for rhodopsin folding and function, we propose that this domain participates in the recognition of targeting factors involved in transport to the rhabdomeres. PMID:19572012

  5. Mechanism of auxiliary β-subunit-mediated membrane targeting of L-type (CaV1.2) channels

    PubMed Central

    Fang, Kun; Colecraft, Henry M

    2011-01-01

    Abstract Ca2+ influx via CaV1/CaV2 channels drives processes ranging from neurotransmission to muscle contraction. Association of a pore-forming α1 and cytosolic β is necessary for trafficking CaV1/CaV2 channels to the cell surface through poorly understood mechanisms. A prevalent idea suggests β binds the α1 intracellular I–II loop, masking an endoplasmic reticulum (ER) retention signal as the dominant mechanism for CaV1/CaV2 channel membrane trafficking. There are hints that other α1 subunit cytoplasmic domains may play a significant role, but the nature of their potential contribution is unclear. We assessed the roles of all intracellular domains of CaV1.2-α1C by generating chimeras featuring substitutions of all possible permutations of intracellular loops/termini of α1C into the β-independent CaV3.1-α1G channel. Surprisingly, functional analyses demonstrated α1C I–II loop strongly increases channel surface density while other cytoplasmic domains had a competing opposing effect. Alanine-scanning mutagenesis identified an acidic-residue putative ER export motif responsible for the I–II loop-mediated increase in channel surface density. β-dependent increase in current arose as an emergent property requiring four α1C intracellular domains, with the I–II loop and C-terminus being essential. The results suggest β binding to the α1C I–II loop causes a C-terminus-dependent rearrangement of intracellular domains, shifting a balance of power between export signals on the I–II loop and retention signals elsewhere. PMID:21746784

  6. The Myristate Moiety and Amino Terminus of Vaccinia Virus L1 Constitute a Bipartite Functional Region Needed for Entry

    PubMed Central

    Whitbeck, J. Charles; Ponce-de-León, Manuel; Saw, Wan Ting; Cohen, Gary H.; Eisenberg, Roselyn J.

    2012-01-01

    Vaccinia virus (VACV) L1 is a myristoylated envelope protein which is required for cell entry and the fusion of infected cells. L1 associates with members of the entry-fusion complex (EFC), but its specific role in entry has not been delineated. We recently demonstrated (Foo CH, et al., Virology 385:368–382, 2009) that soluble L1 binds to cells and blocks entry, suggesting that L1 serves as the receptor-binding protein for entry. Our goal is to identify the structural domains of L1 which are essential for its functions in VACV entry. We hypothesized that the myristate and the conserved residues at the N terminus of L1 are critical for entry. To test our hypothesis, we generated mutants in the N terminus of L1 and used a complementation assay to evaluate their ability to rescue infectivity. We also assessed the myristoylation efficiency of the mutants and their ability to interact with the EFC. We found that the N terminus of L1 constitutes a region that is critical for the infectivity of VACV and for myristoylation. At the same time, the nonmyristoylated mutants were incorporated into mature virions, suggesting that the myristate is not required for the association of L1 with the viral membrane. Although some of the mutants exhibited altered structural conformations, two mutants with impaired infectivity were similar in conformation to wild-type L1. Importantly, these two mutants, with changes at A4 and A5, undergo myristoylation. Overall, our results imply dual differential roles for myristate and the amino acids at the N terminus of L1. We propose a myristoyl switch model to describe how L1 functions. PMID:22398293

  7. Amino- and carboxy-terminal deletion mutants of Gs alpha are localized to the particulate fraction of transfected COS cells

    PubMed Central

    1992-01-01

    To elucidate the structural basis for membrane attachment of the alpha subunit of the stimulatory G protein (Gs alpha), mutant Gs alpha cDNAs with deletions of amino acid residues in the amino and/or carboxy termini were transiently expressed in COS-7 cells. The particulate and soluble fractions prepared from these cells were analyzed by immunoblot using peptide specific antibodies to monitor distribution of the expressed proteins. Transfection of mutant forms of Gs alpha with either 26 amino terminal residues deleted (delta 3-28) or with 59 amino terminal residues deleted (delta 1-59) resulted in immunoreactive proteins which localized primarily to the particulate fraction. Similarly, mutants with 10 (delta 385-394), 32 (delta 353-384), or 42 (delta 353-394) amino acid residues deleted from the carboxy terminus also localized to the particulate fraction, as did a mutant form of Gs alpha lacking amino acid residues at both the amino and carboxy termini (delta 3-28)/(delta 353-384). Mutant and wild type forms of Gs alpha demonstrated a similar degree of tightness in their binding to membranes as demonstrated by treatment with 2.5 M NaCl or 6 M urea, but some mutant forms were relatively resistant compared with wild type Gs alpha to solubilization by 15 mM NaOH or 1% sodium cholate. We conclude that: (a) deletion of significant portions of the amino and/or carboxyl terminus of Gs alpha is still compatible with protein expression; (b) deletion of these regions is insufficient to cause cytosolic localization of the expressed protein. The basis of Gs alpha membrane targeting remains to be elucidated. PMID:1400589

  8. Identification of amino acid sequences in the polyomavirus capsid proteins that serve as nuclear localization signals

    NASA Technical Reports Server (NTRS)

    Chang, D.; Haynes, J. I. Jr; Brady, J. N.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    The molecular mechanism participating in the transport of newly synthesized proteins from the cytoplasm to the nucleus in mammalian cells is poorly understood. Recently, the nuclear localization signal sequences (NLS) of many nuclear proteins have been identified, and most have been found to be composed of a highly basic amino acid stretch. A genetic "subtractive" and a biochemical "additive" approach were used in our studies to identify the NLS's of the polyomavirus structural capsid proteins. An NLS was identified at the N-terminus (Ala1-Pro-Lys-Arg-Lys-Ser-Gly-Val-Ser-Lys-Cys11) of the major capsid protein VP1 and at the C-terminus (Glu307 -Glu-Asp-Gly-Pro-Glu-Lys-Lys-Lys-Arg-Arg-Leu318) of the VP2/VP3 minor capsid proteins.

  9. The Amino-Terminus of Vav1 Regulates TCR-Induced SLP-76 Microclusters via the Calponin Homology Domain and Non-Catalytic Surfaces within the GEF Module

    PubMed Central

    Sylvain, Nicholas R.; Nguyen, Ken; Bunnell, Stephen C.

    2013-01-01

    The guanine nucleotide exchange factor (GEF) Vav1 synergizes with the adapter SLP-76 to support T cell development and activation. Here, we demonstrate that Vav1 controls the stability and movement T cell receptor-induced SLP-76 microclusters. The SH2 domain enables the recruitment of Vav1 into SLP-76 microclusters, whereas the SH3 domains of Vav1 cooperate to enhance microcluster stability and function. Although the amino-terminus of Vav1 is essential for downstream signaling, it possesses novel scaffolding functions that are unaffected by the inactivation of the Vav1 GEF or by the constitutive GEF activation that accompanies the mutation of the regulatory tyrosine residues 142, 160, and 174. In contrast, GEF-inactivating point mutations predicted to perturb the structural integrity of the Vav1 GEF abolish these scaffolding functions. Paradoxically, the excision of catalytic Dbl-homology (DH) / pleckstrin homology (PH) cassette produces a relatively mild scaffolding defect, indicating that the L213A and L278Q point mutations antagonize scaffolding functions mediated by adjacent domains. A deletion mutant lacking the CH domain potently inhibits calcium responses, but also exhibits mild scaffolding defects. We conclude multiple GEF-independent scaffolding functions contained within the amino-terminus of Vav1 contribute to T cell activation by acting synergistically to increase the stability and functionality of SLP-76 microclusters. PMID:21386095

  10. Refinement of protein termini in template-based modeling using conformational space annealing.

    PubMed

    Park, Hahnbeom; Ko, Junsu; Joo, Keehyoung; Lee, Julian; Seok, Chaok; Lee, Jooyoung

    2011-09-01

    The rapid increase in the number of experimentally determined protein structures in recent years enables us to obtain more reliable protein tertiary structure models than ever by template-based modeling. However, refinement of template-based models beyond the limit available from the best templates is still needed for understanding protein function in atomic detail. In this work, we develop a new method for protein terminus modeling that can be applied to refinement of models with unreliable terminus structures. The energy function for terminus modeling consists of both physics-based and knowledge-based potential terms with carefully optimized relative weights. Effective sampling of both the framework and terminus is performed using the conformational space annealing technique. This method has been tested on a set of termini derived from a nonredundant structure database and two sets of termini from the CASP8 targets. The performance of the terminus modeling method is significantly improved over our previous method that does not employ terminus refinement. It is also comparable or superior to the best server methods tested in CASP8. The success of the current approach suggests that similar strategy may be applied to other types of refinement problems such as loop modeling or secondary structure rearrangement. Copyright © 2011 Wiley-Liss, Inc.

  11. Insights into the Folding and Unfolding Processes of Wild-Type and Mutated SH3 Domain by Molecular Dynamics and Replica Exchange Molecular Dynamics Simulations

    PubMed Central

    Chu, Wen-Ting; Zhang, Ji-Long; Zheng, Qing-Chuan; Chen, Lin; Zhang, Hong-Xing

    2013-01-01

    Src-homology regions 3 (SH3) domain is essential for the down-regulation of tyrosine kinase activity. Mutation A39V/N53P/V55L of SH3 is found to be relative to the urgent misfolding diseases. To gain insight, the human and gallus SH3 domains (PDB ID: 1NYG and 2LP5), including 58 amino acids in each protein, were selected for MD simulations (Amber11, ff99SB force field) and cluster analysis to investigate the influence of mutations on the spatial structure of the SH3 domain. It is found that the large conformational change of mutations mainly exists in three areas in the vicinity of protein core: RT loop, N-src loop, distal β-hairpin to 310 helix. The C-terminus of the mutated gallus SH3 is disordered after simulation, which represents the intermediate state of aggregation. The disappeared strong Hbond net in the mutated human and gallus systems will make these mutated proteins looser than the wild-type proteins. Additionally, by performing the REMD simulations on the gallus SH3 domain, the mutated domain is found to have an obvious effect on the unfolding process. These studies will be helpful for further aggregation mechanisms investigations on SH3 family. PMID:23734224

  12. Insights into the folding and unfolding processes of wild-type and mutated SH3 domain by molecular dynamics and replica exchange molecular dynamics simulations.

    PubMed

    Chu, Wen-Ting; Zhang, Ji-Long; Zheng, Qing-Chuan; Chen, Lin; Zhang, Hong-Xing

    2013-01-01

    Src-homology regions 3 (SH3) domain is essential for the down-regulation of tyrosine kinase activity. Mutation A39V/N53P/V55L of SH3 is found to be relative to the urgent misfolding diseases. To gain insight, the human and gallus SH3 domains (PDB ID: 1NYG and 2LP5), including 58 amino acids in each protein, were selected for MD simulations (Amber11, ff99SB force field) and cluster analysis to investigate the influence of mutations on the spatial structure of the SH3 domain. It is found that the large conformational change of mutations mainly exists in three areas in the vicinity of protein core: RT loop, N-src loop, distal β-hairpin to 310 helix. The C-terminus of the mutated gallus SH3 is disordered after simulation, which represents the intermediate state of aggregation. The disappeared strong Hbond net in the mutated human and gallus systems will make these mutated proteins looser than the wild-type proteins. Additionally, by performing the REMD simulations on the gallus SH3 domain, the mutated domain is found to have an obvious effect on the unfolding process. These studies will be helpful for further aggregation mechanisms investigations on SH3 family.

  13. DNA Memory and Input/Output

    DTIC Science & Technology

    2006-09-01

    amino acid glutamine at their N-terminus. This is consistent with the formation of pyroglutamate reported in the literature (Baldwin et al. 1990...ion volume for each amino acid in the protein (mature BSA). ............................ 48 Figure B12. Calibration curves for the five most abundant...throughput nucleic acid assays (licensed commercially to Agencourt – Beckmann - Coulter) and simple self-organizing systems (as in item 1 above) c

  14. Mapping and mutagenesis of the amino-terminal transcriptional repression domain of the Drosophila Krüppel protein.

    PubMed Central

    Licht, J D; Hanna-Rose, W; Reddy, J C; English, M A; Ro, M; Grossel, M; Shaknovich, R; Hansen, U

    1994-01-01

    We previously demonstrated that the Drosophila Krüppel protein is a transcriptional repressor with separable DNA-binding and transcriptional repression activities. In this study, the minimal amino (N)-terminal repression region of the Krüppel protein was defined by transferring regions of the Krüppel protein to a heterologous DNA-binding protein, the lacI protein. Fusion of a predicted alpha-helical region from amino acids 62 to 92 in the N terminus of the Krüppel protein was sufficient to transfer repression activity. This putative alpha-helix has several hydrophobic surfaces, as well as a glutamine-rich surface. Mutants containing multiple amino acid substitutions of the glutamine residues demonstrated that this putative alpha-helical region is essential for repression activity of a Krüppel protein containing the entire N-terminal and DNA-binding regions. Furthermore, one point mutant with only a single glutamine on this surface altered to lysine abolished the ability of the Krüppel protein to repress, indicating the importance of the amino acid at residue 86 for repression. The N terminus also contained an adjacent activation region localized between amino acids 86 and 117. Finally, in accordance with predictions from primary amino acid sequence similarity, a repression region from the Drosophila even-skipped protein, which was six times more potent than that of the Krüppel protein in the mammalian cells, was characterized. This segment included a hydrophobic stretch of 11 consecutive alanine residues and a proline-rich region. Images PMID:8196644

  15. Two new mutations in the 3' coding region of the glycogen debranching enzyme in a glycogen storage disease type IIIa Ashkenazi Jewish patient.

    PubMed

    Parvari, R; Shen, J; Hershkovitz, E; Chen, Y T; Moses, S W

    1998-04-01

    Glycogen storage disease type III (GSD III) is an autosomal recessive disease caused by the deficiency of glycogen debranching enzyme (AGL). We report the finding of two new mutations in a GSD IIIa Ashkenazi Jewish patient. Both mutations are insertion of an adenine into a stretch of 8 adenines towards the 3' end of the coding region, one at position 3904 (3904insA) in exon 30, the second at position 4214 (4214insA) in exon 32. The mutations cause frameshifts and premature terminations of the glycogen debranching enzyme, the first causing a frameshift at amino acid 1304, the second causing a frameshift at amino acid 1408 of the total of 1532. These mutations demonstrate the importance of the 125 amino acids at the carboxy-terminus of the debrancher enzyme for its activity and support the suggestion that the putative glycogen binding domain is located in the carboxy-terminus of the AGL. The mutations cause distinctive single-strand conformation polymorphism (SSCP) patterns enabling easy detection.

  16. Muscular tissues of the squid Doryteuthis pealeii express identical myosin heavy chain isoforms: an alternative mechanism for tuning contractile speed

    PubMed Central

    Shaffer, Justin F.; Kier, William M.

    2012-01-01

    SUMMARY The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds. PMID:22189767

  17. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Ho, Joseph X.; Keeling, Kim; Gilliland, Gary L.; Ji, Xinhua; Rueker, Florian; Carter, Daniel C.

    1994-01-01

    The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(sub 3)2(sub 1)2 with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed.

  18. Effects of Chemical Structure on Hydrolysis Pathways of Small Peptides in Coastal Seawater

    NASA Astrophysics Data System (ADS)

    Liu, S.; Reyna, N. E.; Hamdan, L. J.; Liu, Z.

    2016-02-01

    Deciphering peptide hydrolysis pathways is key to understanding the mechanism of peptide hydrolysis, in particular the types of extracellular enzymes that are active in seawater. From the hydrolyzed fragments of small peptides, one can estimate the role of amino-, carboxy-, and endopeptidases in a quantitative way. In this study, we incubated several small peptides with different amino acid compositions, alanine-valine-phenylalanine-alanine (AVFA), phenylalanine-alanine-serine-tryptophan-glycine-alanine (FASWGA), VFA, SWGA, VVFA, arginine-valine-phenylalanine-alanine (RVFA), SVFA, aspartic acid-valine-phenylalanine-alanine (DVFA), trialanine (AAA), and AVF in two coastal seawaters (ship channel seawater in the western Gulf of Mexico and Sta. C6 seawater in the northern Gulf of Mexico). In both seawaters, aminopeptidases played a more dominant role (22-67%) in hydrolyzing peptides with hydrophobic amino acid at the N-terminus, such as AVFA, VVFA, VFA, and AAA, or with basic amino acid at the N-terminus (RVFA), as compared to those with N-terminal polar amino acid (SVFA, SWGA) or acidic amino acid (DVFA) (0-24%). This result indicates that amino acid composition in a peptide structure affects how the peptide is hydrolyzed. We also found that peptides in the C6 seawater were hydrolyzed dominantly by aminopeptidases (10-59%), while those in the ship channel seawater also by endo- or carboxypeptidases (9-69%). This pattern suggests that peptide hydrolysis pathways depend on specific environment conditions, such as bacterial community structure, that can lead to variations in abundances or activities among amino-, carboxy- and endopeptidases. Overall, the results provide insights into the effects of chemical structure and seawater environment on peptide hydrolysis pathways.

  19. Precerebellin is a cerebellum-specific protein with similarity to the globular domain of complement C1q B chain.

    PubMed Central

    Urade, Y; Oberdick, J; Molinar-Rode, R; Morgan, J I

    1991-01-01

    The cerebellum contains a hexadecapeptide, termed cerebellin, that is conserved in sequence from human to chicken. Three independent, overlapping cDNA clones have been isolated from a human cerebellum cDNA library that encode the cerebellin sequence. The longest clone codes for a protein of 193 amino acids that we term precerebellin. This protein has a significant similarity (31.3% identity, 52.2% similarity) to the globular (non-collagen-like) region of the B chain of human complement component C1q. The region of relatedness extends over approximately 145 amino acids located in the carboxyl terminus of both proteins. Unlike C1q B chain, no collagen-like motifs are present in the amino-terminal regions of precerebellin. The amino terminus of precerebellin contains three possible N-linked glycosylation sites. Although hydrophobic amino acids are clustered at the amino terminus, they do not conform to the classical signal-peptide motif, and no other obvious membrane-spanning domains are predicted from the cDNA sequence. The cDNA predicts that the cerebellin peptide is flanked by Val-Arg and Glu-Pro residues. Therefore, cerebellin is not liberated from precerebellin by the classical dibasic amino acid proteolytic-cleavage mechanism seen in many neuropeptide precursors. In Northern (RNA) blots, precerebellin transcripts, with four distinct sizes (1.8, 2.3, 2.7, and 3.0 kilobases), are abundant in cerebellum. These transcripts are present at either very low or undetectable levels in other brain areas and extraneural structures. A similar pattern of cerebellin precursor transcripts are seen in rat, mouse, and human cerebellum. Furthermore, a partial genomic fragment from mouse shows the same bands in Northern blots as the human cDNA clone. During rat development, precerebellin transcripts mirror the level of cerebellin peptide. Low levels of precerebellin mRNA are seen at birth. Levels increase modestly from postpartum day 1 to 8, then increase more dramatically between day 5 and 15, and eventually reach peak values between day 21 and 56. Because cerebellin-like immunoreactivity is associated with Purkinje cell postsynaptic structures, these data raise interesting possibilities concerning the function of the cerebellin precursor in synaptic physiology. Images PMID:1704129

  20. Virus-cell fusion inhibitory activity of novel analogue peptides based on the HP (2-20) derived from N-terminus of Helicobacter pylori Ribosomal Protein L1.

    PubMed

    Woo, Eun-Rhan; Lee, Dong Gun; Chang, Young-Su; Park, Yoonkyung; Hahm, Kyung-Soo

    2002-12-01

    HP (2-20) (AKKVFKRLEKLFSKIQNDK) is the antibacterial sequence derived from N-terminus of Helicobacter pylori Ribosomal Protein L1 (RPL1). It has a broad-spectrum microbicidal activity in vitro that is thought to be related to the membrane-disruptive properties of the peptide. Based on the putative membrane-targeted mode of action, we postulated that HP (2-20) might be possessed virus-cell fusion inhibitory activity. To develop the novel virus-cell fusion inhibitory peptides, several analogues with amino acid substitution were designed to increase or decrease only net hydrophobic region. In particular, substitution of Gln and Asp for hydrophobic amino acid, Trp at position 17 and 19 of HP (2-20) (Anal 3) caused a dramatic increase in virus-cell fusion inhibitory activity without hemolytic effect.

  1. Structural dynamics of F-actin: I. Changes in the C terminus.

    PubMed

    Orlova, A; Egelman, E H

    1995-02-03

    The biochemical properties of G-actin, and the kinetics of polymerization of G-actin into F-actin, are dependent upon whether Mg2+ or Ca2+ is bound at the high-affinity metal-binding site in actin. Three-dimensional reconstructions from electron micrographs show that a bridge of density, that we interpret as arising from a major shift of the C terminus, exists between the two strands of the filament in Ca(2+)-actin that is absent in Mg(2+)-actin. This bridge is also absent in models of F-actin built from an atomic structure of G-Ca(2+)-actin. The cleavage of the DNase I-binding loop in actin between residues 42 and 43, with the non-covalent association of the 42 cleaved residues with the remainder of the actin, induces an even larger bridge of density between the two strands. When the bridge is absent, the two C-terminal residues in F-actin are easily cleaved by trypsin, while these residues become increasingly resistant to tryptic cleavage as the bridge becomes more prominent. Conversely, cleavage of the two C-terminal residues leads to a conformational change in the DNase I-binding loop. Since both the DNase I-binding loop and the metal-binding site are quite distant from the C terminus, large allosteric effects must exist in F-actin. The conformational change in F-actin that results from the creation of this bridge may be induced by myosin binding, since this movement generates changes in actin's diffraction that are very similar to the changes in the muscle X-ray pattern during activation that are associated with the binding of myosin to the thin filament.

  2. Left-handed helical preference in an achiral peptide chain is induced by an L-amino acid in an N-terminal type II β-turn.

    PubMed

    De Poli, Matteo; De Zotti, Marta; Raftery, James; Aguilar, Juan A; Morris, Gareth A; Clayden, Jonathan

    2013-03-15

    Oligomers of the achiral amino acid Aib adopt helical conformations in which the screw-sense may be controlled by a single N-terminal residue. Using crystallographic and NMR techniques, we show that the left- or right-handed sense of helical induction arises from the nature of the β-turn at the N terminus: the tertiary amino acid L-Val induces a left-handed type II β-turn in both the solid state and in solution, while the corresponding quaternary amino acid L-α-methylvaline induces a right-handed type III β-turn.

  3. Crystal structure of the second PDZ domain of SAP97 in complex with a GluR-A C-terminal peptide.

    PubMed

    von Ossowski, Ingemar; Oksanen, Esko; von Ossowski, Lotta; Cai, Chunlin; Sundberg, Maria; Goldman, Adrian; Keinänen, Kari

    2006-11-01

    Synaptic targeting of GluR-A subunit-containing glutamate receptors involves an interaction with synapse-associated protein 97 (SAP97). The C-terminus of GluR-A, which contains a class I PDZ ligand motif (-x-Ser/Thr-x-phi-COOH where phi is an aliphatic amino acid) associates preferentially with the second PDZ domain of SAP97 (SAP97(PDZ2)). To understand the structural basis of this interaction, we have determined the crystal structures of wild-type and a SAP97(PDZ2) variant in complex with an 18-mer C-terminal peptide (residues 890-907) of GluR-A and of two variant PDZ2 domains in unliganded state at 1.8-2.44 A resolutions. SAP97(PDZ2) folds to a compact globular domain comprising six beta-strands and two alpha-helices, a typical architecture for PDZ domains. In the structure of the peptide complex, only the last four C-terminal residues of the GluR-A are visible, and align as an antiparallel beta-strand in the binding groove of SAP97(PDZ2). The free carboxylate group and the aliphatic side chain of the C-terminal leucine (Leu907), and the hydroxyl group of Thr905 of the GluR-A peptide are engaged in essential class I PDZ interactions. Comparison between the free and complexed structures reveals conformational changes which take place upon peptide binding. The betaAlpha-betaBeta loop moves away from the C-terminal end of alphaB leading to a slight opening of the binding groove, which may better accommodate the peptide ligand. The two conformational states are stabilized by alternative hydrogen bond and coulombic interactions of Lys324 in betaAlpha-betaBeta loop with Asp396 or Thr394 in betaBeta. Results of in vitro binding and immunoprecipitation experiments using a PDZ motif-destroying L907A mutation as well as the insertion of an extra alanine residue between the C-terminal Leu907 and the stop codon are also consistent with a 'classical' type I PDZ interaction between SAP97 and GluR-A C-terminus.

  4. Analysis of the Human Immunodeficiency Virus Type 1 gp41 Membrane Proximal External Region Arrayed on Hepatitis B Surface Antigen Particles

    PubMed Central

    Phogat, S; K, Svehla; M, Tang; A, Spadaccini; J, Muller; J, Mascola; Berkower; R, Wyatt

    2009-01-01

    Vaccine immunogens derived from the envelope glycoproteins of the human immunodeficiency virus type 1 (HIV-1) that elicit broad neutralizing antibodies remains an elusive goal. The highly conserved 30 amino acid membrane proximal external region (MPER) of HIV gp41 contains the hydrophobic epitopes for two rare HIV-1 broad cross-reactive neutralizing antibodies, 2F5 and 4E10. Both these antibodies possess relatively hydrophobic HCDR3 loops and demonstrate enhanced binding to their epitopes in the context of the native gp160 precursor envelope glycoprotein by the intimate juxtaposition of a lipid membrane. The Hepatitis B surface antigen (HBsAg) S1 protein forms nanoparticles that can be utilized both as an immunogenic array of the MPER and to provide the lipid environment needed for enhanced 2F5 and 4E10 binding. We show that recombinant HBsAg particles with MPER (HBsAg-MPER) appended at the C-terminus of the S1 protein are recognized by 2F5 and 4E10 with high affinity compared to positioning the MPER at the N-terminus or the extracellular loop (ECL) of S1. Addition of C-terminal hydrophobic residues derived from the HIV-1 Env transmembrane region further enhances recognition of the MPER by both 2F5 and 4E10. Delipidation of the HBsAg-MPER particles decreases 2F5 and 4E10 binding and subsequent reconstitution with synthetic lipids restores optimal binding. Inoculation of the particles into small animals raised cross-reactive antibodies that recognize both the MPER and HIV-1 gp160 envelope glycoproteins expressed on the cell surface; however, no neutralizing activity could be detected. Prime:boost immunization of the HBsAg-MPER particles in sequence with HIV envelope glycoprotein proteoliposomes (Env-PLs) did not raise neutralizing antibodies that could be mapped to the MPER region. However, the Env-PLs did raise anti-Env antibodies that had the ability to neutralize selected HIV-1 isolates. The first generation HBsAg-MPER particles represent a unique means to present HIV-1 envelope glycoprotein neutralizing determinants to the immune system. PMID:18155743

  5. Pea chloroplast tRNA(Lys) (UUU) gene: transcription and analysis of an intron-containing gene.

    PubMed

    Boyer, S K; Mullet, J E

    1988-07-01

    The pea chloroplast trnK gene which encodes tRNA(Lys) (UUU) was sequenced. TrnK is located 210 bp upstream from the promoter of psbA and immediately downstream from the 3'-end of rbcL. The gene is transcribed from the same DNA strand as psbA and rbcL. A 2447 bp intron with class II features is located in the trnK anticodon loop. The intron contains a 506 amino acid open reading frame which could encode an RNA maturase. The primary transcript of trnK is 2.9 kb long; its 5'-end was identified as a site of transcription initiation by in vitro transcription experiments. The 5'-terminus is adjacent to DNA sequences previously identified as transcription promoter elements. The most abundant trnK transcript is 2.5 kb long with termini corresponding to the 5' and 3' ends of the trnK exons. Intron specific RNAs were not detected. This suggests that RNA processing which produces tRNA(Lys) leads to rapid degradation of intron sequences.

  6. Structure of the horseradish peroxidase isozyme C genes.

    PubMed

    Fujiyama, K; Takemura, H; Shibayama, S; Kobayashi, K; Choi, J K; Shinmyo, A; Takano, M; Yamada, Y; Okada, H

    1988-05-02

    We have isolated, cloned and characterized three cDNAs and two genomic DNAs corresponding to the mRNAs and genes for the horseradish (Armoracia rusticana) peroxidase isoenzyme C (HPR C). The amino acid sequence of HRP C1, deduced from the nucleotide sequence of one of the cDNA clone, pSK1, contained the same primary sequence as that of the purified enzyme established by Welinder [FEBS Lett. 72, 19-23 (1976)] with additional sequences at the N and C terminal. All three inserts in the cDNA clones, pSK1, pSK2 and pSK3, coded the same size of peptide (308 amino acid residues) if these are processed in the same way, and the amino acid sequence were homologous to each other by 91-94%. Functional amino acids, including His40, His170, Tyr185 and Arg183 and S-S-bond-forming Cys, were conserved in the three isozymes, but a few N-glycosylation sites were not the same. Two HRP C isoenzyme genomic genes, prxC1 and prxC2, were tandem on the chromosomal DNA and each gene consisted of four exons and three introns. The positions in the exons interrupted by introns were the same in two genes. We observed a putative promoter sequence 5' upstream and a poly(A) signal 3' downstream in both genes. The gene product of prxC1 might be processed with a signal sequence of 30 amino acid residues at the N terminus and a peptide consisting of 15 amino acid residues at the C terminus.

  7. Critical role in CXCR4 signaling and internalization of the polypeptide main chain in the amino terminus of SDF-1α probed by novel N-methylated synthetically and modularly modified chemokine analogues.

    PubMed

    Dong, Chang-Zhi; Tian, Shaomin; Choi, Won-Tak; Kumar, Santhosh; Liu, Dongxiang; Xu, Yan; Han, Xiaofeng; Huang, Ziwei; An, Jing

    2012-07-31

    The replication of human immunodeficiency virus type 1 (HIV-1) can be profoundly inhibited by the natural ligands of two major HIV-1 coreceptors, CXCR4 and CCR5. Stromal cell-derived factor-1α (SDF-1α) is a natural ligand of CXCR4. We have recently developed a synthetic biology approach of using synthetically and modularly modified (SMM)-chemokines to dissect various aspects of the structure-function relationship of chemokines and their receptors. Here, we used this approach to design novel SMM-SDF-1α analogues containing unnatural N-methylated residues in the amino terminus to investigate whether the polypeptide main chain amide bonds in the N-terminus of SDF-1α play a role in SDF-1α signaling via CXCR4 and/or receptor internalization. The results show that SDF-1α analogues with a modified N-methylated main chain at position 2, 3, or 5 retain significant CXCR4 binding and yet completely lose signaling activities. Furthermore, a representative N-methylated analogue has been shown to be incapable of causing CXCR4 internalization. These results suggest that the ability of SDF-1α to activate CXCR4 signaling and internalization is dependent upon the main chain amide bonds in the N-terminus of SDF-1α. This study demonstrates the feasibility and value of applying a synthetic biology approach to chemically engineer natural proteins and peptide ligands as probes of important biological functions that are not addressed by other biological techniques.

  8. Insight from TonB Hybrid Proteins into the Mechanism of Iron Transport through the Outer Membrane▿

    PubMed Central

    Kaserer, Wallace A.; Jiang, Xiaoxu; Xiao, Qiaobin; Scott, Daniel C.; Bauler, Matthew; Copeland, Daniel; Newton, Salete M. C.; Klebba, Phillip E.

    2008-01-01

    We created hybrid proteins to study the functions of TonB. We first fused the portion of Escherichia coli tonB that encodes the C-terminal 69 amino acids (amino acids 170 to 239) of TonB downstream from E. coli malE (MalE-TonB69C). Production of MalE-TonB69C in tonB+ bacteria inhibited siderophore transport. After overexpression and purification of the fusion protein on an amylose column, we proteolytically released the TonB C terminus and characterized it. Fluorescence spectra positioned its sole tryptophan (W213) in a weakly polar site in the protein interior, shielded from quenchers. Affinity chromatography showed the binding of the TonB C-domain to other proteins: immobilized TonB-dependent (FepA and colicin B) and TonB-independent (FepAΔ3-17, OmpA, and lysozyme) proteins adsorbed MalE-TonB69C, revealing a general affinity of the C terminus for other proteins. Additional constructions fused full-length TonB upstream or downstream of green fluorescent protein (GFP). TonB-GFP constructs had partial functionality but no fluorescence; GFP-TonB fusion proteins were functional and fluorescent. The activity of the latter constructs, which localized GFP in the cytoplasm and TonB in the cell envelope, indicate that the TonB N terminus remains in the inner membrane during its biological function. Finally, sequence analyses revealed homology in the TonB C terminus to E. coli YcfS, a proline-rich protein that contains the lysin (LysM) peptidoglycan-binding motif. LysM structural mimicry occurs in two positions of the dimeric TonB C-domain, and experiments confirmed that it physically binds to the murein sacculus. Together, these findings infer that the TonB N terminus remains associated with the inner membrane, while the downstream region bridges the cell envelope from the affinity of the C terminus for peptidoglycan. This architecture suggests a membrane surveillance model of action, in which TonB finds occupied receptor proteins by surveying the underside of peptidoglycan-associated outer membrane proteins. PMID:18390658

  9. Guanidinium/ammonium competition and proton transfer in the interaction of the amino acid arginine with the tetracarboxylic 18-crown-6 ionophore.

    PubMed

    Avilés-Moreno, Juan Ramón; Berden, Giel; Oomens, Jos; Martínez-Haya, Bruno

    2018-02-07

    The recognition of arginine plays a central role in modern proteomics and genomics. Arginine is unique among natural amino acids due to the high basicity of its guanidinium side chain, which sustains specific interactions and proton exchange biochemical processes. The search for suitable macrocyclic ionophores constitutes a promising route towards the development of arginine receptors. This study evaluates the conformational features involved in the binding of free arginine by the polyether macrocycle (18-crown-6)-tetracarboxylic acid. Infrared action vibrational spectroscopy and quantum-chemical computations are combined to characterize the complexes with net charges +1 and +2. The spectrum of the +1 complex can be explained in terms of a configuration predominantly stabilized by a robust bidentate coordination of guanidinium with a carboxylate group formed from the deprotonation of one side group of the crown ether. The released proton is transferred to the amino terminus of arginine, which then coordinates with the crown ether ring. In an alternative type of conformation, partly consistent with experiment, the amino terminus is neutral and the guanidinium group inserts into the crown ether cavity. In the +2 complexes, arginine is always doubly protonated and the most stable conformations are characterized by a tripodal coordination of the ammonium -NH 3 + group of arginine with the oxygen atoms of the macrocycle ring, while the interactions of the amino acid with the side carboxylic acid groups of the crown ether acquire a remarkable lesser role.

  10. An Externalized Polypeptide Partitions between Two Distinct Sites on Genome-Released Poliovirus Particles ▿

    PubMed Central

    Lin, Jun; Cheng, Naiqian; Chow, Marie; Filman, David J.; Steven, Alasdair C.; Hogle, James M.; Belnap, David M.

    2011-01-01

    During cell entry, native poliovirus (160S) converts to a cell-entry intermediate (135S) particle, resulting in the externalization of capsid proteins VP4 and the amino terminus of VP1 (residues 1 to 53). Externalization of these entities is followed by release of the RNA genome (uncoating), leaving an empty (80S) particle. The antigen-binding fragment (Fab) of a monospecific peptide 1 (P1) antibody, which was raised against a peptide corresponding to amino-terminal residues 24 to 40 of VP1, was utilized to track the location of the amino terminus of VP1 in the 135S and 80S states of poliovirus particles via cryogenic electron microscopy (cryo-EM) and three-dimensional image reconstruction. On 135S, P1 Fabs bind to a prominent feature on the external surface known as the “propeller tip.” In contrast, our initial 80S-P1 reconstruction showed P1 Fabs also binding to a second site, at least 50 Å distant, at the icosahedral 2-fold axes. Further analysis showed that the overall population of 80S-P1 particles consisted of three kinds of capsids: those with P1 Fabs bound only at the propeller tips, P1 Fabs bound only at the 2-fold axes, or P1 Fabs simultaneously bound at both positions. Our results indicate that, in 80S particles, a significant fraction of VP1 can deviate from icosahedral symmetry. Hence, this portion of VP1 does not change conformation synchronously when switching from the 135S state. These conclusions are compatible with previous observations of multiple conformations of the 80S state and suggest that movement of the amino terminus of VP1 has a role in uncoating. Similar deviations from icosahedral symmetry may be biologically significant during other viral transitions. PMID:21775460

  11. Macromolecular assembly of the adaptor SLP-65 at intracellular vesicles in resting B cells.

    PubMed

    Engelke, Michael; Pirkuliyeva, Sona; Kühn, Julius; Wong, Leo; Boyken, Janina; Herrmann, Nadine; Becker, Stefan; Griesinger, Christian; Wienands, Jürgen

    2014-08-19

    The traditional view of how intracellular effector proteins are recruited to the B cell antigen receptor (BCR) complex at the plasma membrane is based on the occurrence of direct protein-protein interactions, as exemplified by the recruitment of the tyrosine kinase Syk (spleen tyrosine kinase) to phosphorylated motifs in BCR signaling subunits. By contrast, the subcellular targeting of the cytosolic adaptor protein SLP-65 (Src homology 2 domain-containing leukocyte adaptor protein of 65 kD), which serves as a proximal Syk substrate, is unclear. We showed that SLP-65 activation required its association at vesicular compartments in resting B cells. A module of ~50 amino acid residues located at the amino terminus of SLP-65 anchored SLP-65 to the vesicles. Nuclear magnetic resonance spectroscopy showed that the SLP-65 amino terminus was structurally disordered in solution but could bind in a structured manner to noncharged lipid components of cellular membranes. Our finding that preformed vesicular signaling scaffolds are required for B cell activation indicates that vesicles may deliver preassembled signaling cargo to sites of BCR activation. Copyright © 2014, American Association for the Advancement of Science.

  12. Identification of a Domain within the Human T-Cell Leukemia Virus Type 2 Envelope Required for Syncytium Induction and Replication

    PubMed Central

    Poon, Betty; Chen, Irvin S. Y.

    1998-01-01

    In vitro infection by human T-cell leukemia virus type 1 and 2 (HTLV-1 and HTLV-2) can result in syncytium formation, facilitating viral entry. Using cell lines that were susceptible to HTLV-2-mediated syncytium formation but were nonfusogenic with HTLV-1, we constructed chimeric envelopes between HTLV-1 and -2 and assayed for the ability to induce syncytia in BJAB cells and HeLa cells. We have identified a fusion domain composed of the first 64 amino acids at the amino terminus of the HTLV-2 transmembrane protein, p21, the retention of which was required for syncytium induction. Construction of replication-competent HTLV genomic clones allowed us to correlate the ability of HTLV-2 to induce syncytia with the ability to replicate in BJAB cells. Differences in the ability to induce syncytia were not due to differences in the levels of total or cell membrane-associated envelope or in the formation of multimers. Therefore, we have localized a fusion domain within the amino terminus of the transmembrane protein of HTLV-2 envelope that is necessary for syncytium induction and viral replication. PMID:9499049

  13. Complete nucleotide and derived amino acid sequence of cDNA encoding the mitochondrial uncoupling protein of rat brown adipose tissue: lack of a mitochondrial targeting presequence.

    PubMed Central

    Ridley, R G; Patel, H V; Gerber, G E; Morton, R C; Freeman, K B

    1986-01-01

    A cDNA clone spanning the entire amino acid sequence of the nuclear-encoded uncoupling protein of rat brown adipose tissue mitochondria has been isolated and sequenced. With the exception of the N-terminal methionine the deduced N-terminus of the newly synthesized uncoupling protein is identical to the N-terminal 30 amino acids of the native uncoupling protein as determined by protein sequencing. This proves that the protein contains no N-terminal mitochondrial targeting prepiece and that a targeting region must reside within the amino acid sequence of the mature protein. Images PMID:3012461

  14. Key amino acid residues involved in multi-point binding interactions between brazzein, a sweet protein, and the T1R2-T1R3 human sweet receptor

    PubMed Central

    Assadi-Porter, Fariba M.; Maillet, Emeline L.; Radek, James T.; Quijada, Jeniffer; Markley, John L.; Max, Marianna

    2010-01-01

    The sweet protein brazzein activates the human sweet receptor, a heterodimeric G-protein coupled receptor (GPCR) composed of subunits T1R2 and T1R3. In order to elucidate the key amino acid(s) responsible for this interaction, we mutated residues in brazzein and each of the two subunits of the receptor. The effects of brazzein mutations were assayed by a human taste panel and by an in vitro assay involving receptor subunits expressed recombinantly in human embryonic kidney cells; the effects of the receptor mutations were assayed by the in vitro assay. We mutated surface residues of brazzein at three putative interaction sites: Site 1 (Loop43), Site 2 (N- and C-terminus and adjacent Glu36, Loop33), and Site 3 (Loop9–19). Basic residues in Site 1 and acidic residues in Site 2 were essential for positive responses from each assay. Mutation of Y39A (Site 1) greatly reduced positive responses. A bulky side chain at position 54 (Site 2), rather than a side chain with hydrogen bonding potential, was required for positive responses as was the presence of the native disulfide bond in Loop 9–19 (Site 3). Results from mutagenesis and chimeras of the receptor indicated that brazzein interacts with both T1R2 and T1R3 and that the Venus fly trap module of T1R2 is important for brazzein agonism. With one exception, all mutations of receptor residues at putative interaction sites predicted by wedge models failed to yield the expected decrease in the brazzein response. The exception, hT1R2:R217A-hT1R3, which contained a substitution in lobe 2 at the interface between the two subunits, exhibited a small selective decrease in brazzein activity. However, because the mutation was found to increase the positive cooperativity of binding by multiple ligands proposed to bind both T1R subunits (brazzein, monellin, and sucralose) but not those that bind to a single subunit (neotame and cyclamate), we suggest that this site in involved in subunit-subunit interaction rather than direct brazzein binding. Results from this study support a multipoint interaction between brazzein and the sweet receptor by some mechanism other than the proposed wedge models. PMID:20302879

  15. A novel member of glycoside hydrolase family 30 subfamily 8 with altered substrate specificity

    PubMed Central

    St John, Franz J.; Dietrich, Diane; Crooks, Casey; Pozharski, Edwin; González, Javier M.; Bales, Elizabeth; Smith, Kennon; Hurlbert, Jason C.

    2014-01-01

    Endoxylanases classified into glycoside hydrolase family 30 subfamily 8 (GH30-8) are known to hydrolyze the hemicellulosic polysaccharide glucuronoxylan (GX) but not arabinoxylan or neutral xylooligosaccharides. This is owing to the specificity of these enzymes for the α-1,2-linked glucuronate (GA) appendage of GX. Limit hydrolysis of this substrate produces a series of aldouronates each containing a single GA substituted on the xylose penultimate to the reducing terminus. In this work, the structural and biochemical characterization of xylanase 30A from Clostridium papyro­solvens (CpXyn30A) is presented. This xylanase possesses a high degree of amino-acid identity to the canonical GH30-8 enzymes, but lacks the hallmark β8–α8 loop region which in part defines the function of this GH30 subfamily and its role in GA recognition. CpXyn30A is shown to have a similarly low activity on all xylan substrates, while hydrolysis of xylohexaose revealed a competing transglycosylation reaction. These findings are directly compared with the model GH30-8 enzyme from Bacillus subtilis, XynC. Despite its high sequence identity to the GH30-8 enzymes, CpXyn30A does not have any apparent specificity for the GA appendage. These findings confirm that the typically conserved β8–α8 loop region of these enzymes influences xylan substrate specificity but not necessarily β-1,4-xylanase function. PMID:25372685

  16. Molecular Characteristics of Multicorn, a New Large Proteolytic Assembly and Potential Anti-Cancer Drug Target, in Human Breast Cancer Cells

    DTIC Science & Technology

    2005-05-01

    modifications: peptide N-terminal glutamine to pyroglutamic transformation, oxidation of methionine, acetylation of protein N-terminus, and...or identical with human tripeptidyl peptidase II (TPPII) with a sequence of 1249 amino acids , accession number CAH72179, GI:55661755, derived from the...34In- Gel" Digestion Procedure for the Micropreparation of Internal Protein Fragments for Amino Acid Sequencing. Anal. Biochem., 224, 451-455. Osmulski

  17. Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein.

    PubMed

    Duncan, R; Horne, D; Strong, J E; Leone, G; Pon, R T; Yeung, M C; Lee, P W

    1991-06-01

    We have been investigating structure-function relationships in the reovirus cell attachment protein sigma 1 using various deletion mutants and protease analysis. In the present study, a series of deletion mutants were constructed which lacked 90, 44, 30, 12, or 4 amino acids from the C-terminus of the 455-amino acid-long reovirus type 3 (T3) sigma 1 protein. The full-length and truncated sigma 1 proteins were expressed in an in vitro transcription/translation system and assayed for L cell binding activity. It was found that the removal of as few as four amino acids from the C-terminus drastically affected the cell binding function of the sigma 1 protein. The C-terminal-truncated proteins were further characterized using trypsin, chymotrypsin, and monoclonal and polyclonal antibodies. Our results indicated that the C-terminal portions of the mutant proteins were misfolded, leading to a loss in cell binding function. The N-terminal fibrous tail of the proteins was unaffected by the deletions as was sigma 1 oligomerization, further illustrating the discrete structural and functional roles of the N- and C-terminal domains of sigma 1. In an attempt to identify smaller, functional peptides, full-length sigma 1 expressed in vitro was digested with trypsin and subsequently with chymotrypsin under various conditions. The results clearly demonstrated the highly stable nature of the C-terminal globular head of sigma 1, even when separated from the N-terminal fibrous tail. We concluded that: (1) the C-terminal globular head of sigma 1 exists as a compact, protease-resistant oligomeric structure; (2) an intact C-terminus is required for proper head folding and generation of the conformationally dependent cell binding domain.

  18. The C-terminal domain of TRPV4 is essential for plasma membrane localization.

    PubMed

    Becker, Daniel; Müller, Margarethe; Leuner, Kristina; Jendrach, Marina

    2008-02-01

    Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.

  19. Localization of the Intracellular Activity Domain of Pasteurella multocida Toxin to the N Terminus

    PubMed Central

    Wilson, Brenda A.; Ponferrada, Virgilio G.; Vallance, Jefferson E.; Ho, Mengfei

    1999-01-01

    We have shown that Pasteurella multocida toxin (PMT) directly causes transient activation of Gqα protein that is coupled to phosphatidylinositol-specific phospholipase Cβ1 in Xenopus oocytes (B. A. Wilson, X. Zhu, M. Ho, and L. Lu, J. Biol. Chem. 272:1268–1275, 1997). We found that antibodies directed against an N-terminal peptide of PMT inhibited the toxin-induced response in Xenopus oocytes, but antibodies against a C-terminal peptide did not. To test whether the intracellular activity domain of PMT is localized to the N terminus, we conducted a deletion mutational analysis of the PMT protein, using the Xenopus oocyte system as a means of screening for toxin activity. Using PCR and conventional cloning techniques, we cloned from a toxinogenic strain of P. multocida the entire toxA gene, encoding the 1,285-amino-acid PMT protein, and expressed the recombinant toxin as a His-tagged fusion protein in Escherichia coli. We subsequently generated a series of N-terminal and C-terminal deletion mutants and expressed the His-tagged PMT fragments in E. coli. These proteins were screened for cytotoxic activity on cultured Vero cells and for intracellular activity in the Xenopus oocyte system. Only the full-length protein without the His tag exhibited activity on Vero cells. The full-length PMT and N-terminal fragments containing the first 500 residues elicited responses in oocytes, but the C-terminal 780 amino acid fragment did not. Our results confirm that the intracellular activity domain of PMT is localized to the N-terminal 500 amino acids of the protein and that the C terminus is required for entry into cells. PMID:9864199

  20. Characterization and sequence analysis of pilin from F-like plasmids.

    PubMed Central

    Frost, L S; Finlay, B B; Opgenorth, A; Paranchych, W; Lee, J S

    1985-01-01

    Conjugative pili are expressed by derepressed plasmids and initiate cell-to-cell contact during bacterial conjugation. They are also the site of attachment for pilus-specific phages (f1, f2, and QB). In this study, the number of pili per cell and their ability to retract in the presence of cyanide was estimated for 13 derepressed plasmids. Selected pilus types were further characterized for reactivity with anti-F and anti-ColB2 pilus antisera as well as two F pilus-specific monoclonal antibodies, one of which is specific for a sequence common to most F-like pilin types (JEL92) and one which is specific for the amino terminus of F pilin (JEL93). The pilin genes from eight of these plasmids were cloned and sequenced, and the results were compared with information on F, ColB2, and pED208 pilin. Six pilus groups were defined: I, was F-like [F, pED202(R386), ColV2-K94, and ColVBtrp]; IIA was ColB2-like in sequence but had a lowered sensitivity to f1 phage due to its decreased ability for pilus retraction [pED236(ColB2) and pED203(ColB4)]; IIB was ColB2-like but retained f1 sensitivity [pED200(R124) and pED207(R538-1)]; III contained R1-19, which had a ColB2-like amino terminus but had an additional lysine residue at its carboxy terminus which may affect its phage sensitivity pattern and its antigenicity; IV was R100-1-like [R100-1 and presumably pED241(R136) and pED204(R6)] which had a unique amino-terminal sequence combined with a carboxy terminus similar to that of F. pED208(Folac) formed group V, which was multipiliated and exhibited poor pilus retraction although it retained full sensitivity to f1 phage. The pED208 pilin gene could not be cloned at this time since it shared no homology with the pilin gene of the F plasmid. Images PMID:2999074

  1. The development and application of new crystallization method for tobacco mosaic virus coat protein.

    PubMed

    Li, Xiangyang; Song, Baoan; Hu, Deyu; Wang, Zhenchao; Zeng, Mengjiao; Yu, Dandan; Chen, Zhuo; Jin, Linhong; Yang, Song

    2012-11-21

    Although tobacco mosaic virus (TMV) coat protein (CP) has been isolated from virus particles and its crystals have grown in ammonium sulfate buffers for many years, to date, no one has reported on the crystallization of recombinant TMV-CP connecting peptides expressed in E. coli. In the present papers genetically engineered TMV-CP was expressed, into which hexahistidine (His) tags or glutathione-S-transferase (GST) tags were incorporated. Considering that GST-tags are long peptides and His-tags are short peptides, an attempt was made to grow crystals of TMV-CP cleaved GST-tags (WT-TMV-CP32) and TMV-CP incorporated His-tags (WT-His-TMV-CP12) simultaneously in ammonium sulfate buffers and commercial crystallization reagents. It was found that the 20S disk form of WT-TMV-CP32 and WT-His-TMV-CP12 did not form high resolution crystals by using various crystallization buffers and commercial crystallization reagents. Subsequently, a new experimental method was adopted in which a range of truncated TMV-CP was constructed by removing several amino acids from the N- or the C-terminal, and high resolution crystals were grown in ammonium sulfate buffers and commercial crystallization reagents. The new crystallization method was developed and 3.0 Å resolution macromolecular crystal was thereby obtained by removing four amino acids at the C-terminal of His-TMV-CP and connecting six His-tags at the N-terminal of His-TMV-CP (TR-His-TMV-CP19). The Four-layer aggregate disk structure of TR-His-TMV-CP19 was solved. This phenomenon showed that peptides at the C-terminus hindered the growth of high resolution crystals and the peptides interactions at the N-terminus were attributed to the quality of TMV-CP crystals. A 3.0 Å resolution macromolecular crystal of TR-His-TMV-CP19 was obtained and the corresponding structure was solved by removing four amino acids at the C-terminus of TMV-CP and connecting His-tags at the N-terminus of TMV-CP. It indicated that short peptides influenced the resolution of TMV-CP crystals.

  2. In Vitro and in Vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B, Type I (SR-BI), to the PDZ1 Domain of Its Adaptor Protein PDZK1*

    PubMed Central

    Kocher, Olivier; Birrane, Gabriel; Tsukamoto, Kosuke; Fenske, Sara; Yesilaltay, Ayce; Pal, Rinku; Daniels, Kathleen; Ladias, John A. A.; Krieger, Monty

    2010-01-01

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys14-Xaa4-Asn19-Tyr-Gly-Phe-Phe-Leu24), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI (503VLQEAKL509). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (Kd) of the K14A and F22A mutants were 3.2 and 4.0 μm, respectively, similar to 2.6 μm measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI (505QEAKL509) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10–20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1. PMID:20739281

  3. In vitro and in vivo Analysis of the Binding of the C Terminus of the HDL Receptor Scavenger Receptor Class B type I (SR-BI) to the PDZ1 Domain of its Cytoplasmic Adaptor Protein PDZK1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O Kocher; G Birrane; K Tsukamoto

    2011-12-31

    The PDZ1 domain of the four PDZ domain-containing protein PDZK1 has been reported to bind the C terminus of the HDL receptor scavenger receptor class B, type I (SR-BI), and to control hepatic SR-BI expression and function. We generated wild-type (WT) and mutant murine PDZ1 domains, the mutants bearing single amino acid substitutions in their carboxylate binding loop (Lys(14)-Xaa(4)-Asn(19)-Tyr-Gly-Phe-Phe-Leu(24)), and measured their binding affinity for a 7-residue peptide corresponding to the C terminus of SR-BI ((503)VLQEAKL(509)). The Y20A and G21Y substitutions abrogated all binding activity. Surprisingly, binding affinities (K(d)) of the K14A and F22A mutants were 3.2 and 4.0 ?M,more » respectively, similar to 2.6 ?M measured for the WT PDZ1. To understand these findings, we determined the high resolution structure of WT PDZ1 bound to a 5-residue sequence from the C-terminal SR-BI ((505)QEAKL(509)) using x-ray crystallography. In addition, we incorporated the K14A and Y20A substitutions into full-length PDZK1 liver-specific transgenes and expressed them in WT and PDZK1 knock-out mice. In WT mice, the transgenes did not alter endogenous hepatic SR-BI protein expression (intracellular distribution or amount) or lipoprotein metabolism (total plasma cholesterol, lipoprotein size distribution). In PDZK1 knock-out mice, as expected, the K14A mutant behaved like wild-type PDZK1 and completely corrected their hepatic SR-BI and plasma lipoprotein abnormalities. Unexpectedly, the 10-20-fold overexpressed Y20A mutant also substantially, but not completely, corrected these abnormalities. The results suggest that there may be an additional site(s) within PDZK1 that bind(s) SR-BI and mediate(s) productive SR-BI-PDZK1 interaction previously attributed exclusively to the canonical binding of the C-terminal SR-BI to PDZ1.« less

  4. Elucidation of the Binding Mode of the Carboxyterminal Region of Peptide YY to the Human Y2 Receptor.

    PubMed

    Xu, Bo; Vasile, Silvana; Østergaard, Søren; Paulsson, Johan F; Pruner, Jasna; Åqvist, Johan; Wulff, Birgitte S; Gutiérrez-de-Terán, Hugo; Larhammar, Dan

    2018-04-01

    Understanding the agonist-receptor interactions in the neuropeptide Y (NPY)/peptide YY (PYY) signaling system is fundamental for the design of novel modulators of appetite regulation. We report here the results of a multidisciplinary approach to elucidate the binding mode of the native peptide agonist PYY to the human Y 2 receptor, based on computational modeling, peptide chemistry and in vitro pharmacological analyses. The preserved binding orientation proposed for full-length PYY and five analogs, truncated at the amino terminus, explains our pharmacological results where truncations of the N-terminal proline helix showed little effect on peptide affinity. This was followed by receptor mutagenesis to investigate the roles of several receptor positions suggested by the modeling. As a complement, PYY-(3-36) analogs were synthesized with modifications at different positions in the common PYY/NPY C-terminal fragment ( 32 TRQRY 36 -amide). The results were assessed and interpreted by molecular dynamics and Free Energy Perturbation (FEP) simulations of selected mutants, providing a detailed map of the interactions of the PYY/NPY C-terminal fragment with the transmembrane cavity of the Y 2 receptor. The amidated C-terminus would be stabilized by polar interactions with Gln288 6.55 and Tyr219 5.39 , while Gln130 3.32 contributes to interactions with Q 34 in the peptide and T 32 is close to the tip of TM7 in the receptor. This leaves the core, α -helix of the peptide exposed to make potential interactions with the extracellular loops. This model agrees with most experimental data available for the Y 2 system and can be used as a basis for optimization of Y 2 receptor agonists. Copyright © 2018 by The Author(s).

  5. Identification of cysteine-644 as the covalent site of attachment of dexamethasone 21-mesylate to murine glucocorticoid receptors in WEHI-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, L.I.; Bodwell, J.E.; Mendel, D.B.

    1988-05-17

    Dexamethasone 21-mesylate is a highly specific synthetic glucocorticoid derivative that binds covalently to glucocorticoid receptors via sulfhydryl groups. The authors have identified the amino acid that reacts with the dexamethasone 21-mesylate by using enzymatic digestion and microsequencing for radiolabel. Nonactivated glucocorticoid receptors obtained from labeling intact WEHI-7 mouse thymoma cells with (/sup 3/H)dexamethasone 21-mesylate were immunopurified and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Trypsin digestion followed by reversed-phase high-performance liquid chromatography (reversed-phase HPLC) produced a single (/sup 3/H)dexamethasone 21-mesylate labeled peptide. Automated Edman degradation of this peptide revealed that the (/sup 3/H)dexamethasone 21-mesylate was located at position 5 frommore » the amino terminus. Dual-isotope labeling studies with (/sup 3/H)dexamethasone 21-mesylate and (/sup 35/S)methionine demonstrated that this peptide contained methionine. Staphylococcus aureus V8 protease digestion of (/sup 3/H)dexamethasone 21-mesylate labeled steroid-binding subunits generated a different radiolabeled peptide containing label at position 7 from the amino terminus. On the basis of the published amino acid sequence of the murine glucocorticoid receptor, their data clearly identify cysteine-644 as the single residue in the steroid-binding domain that covalently binds dexamethasone 21-mesylate. They have confirmed this finding by demonstrating that a synthetic peptide representing the amino acid sequence 640-650 of the murine glucocorticoid receptor behaves in an identical manner on reversed-phase HPLC as the trypsin-generated peptide from intact cells.« less

  6. Shared epitopes of glycoprotein A and protein 4.1 defined by antibody NaM10-3C10.

    PubMed

    Rasamoelisolo, M; Czerwinski, M; Willem, C; Blanchard, D

    1998-06-01

    We have produced the murine monoclonal antibody (MAb) NaM70-3C10 (IgM) from splenocytes of mice immunized with human red blood cells (RBCs). The MAb agglutinated untreated as well as trypsin, chymotrypsin, neuraminidase, or ficin-treated RBCs from controls. In contrast, control RBCs treated with papaine or bromelaine were not agglutinated. On immunoblots, the MAb bound to glycophorin A (GPA) and to a 80 kDa protein identified as protein 4.1. Analysis by agglutination of variant RBCs carrying hybrid glycophorins made of the N-terminus (amino acids 1-58) of GPA and of the C-terminus (amino acids 27-72) of glycophorin B (GPB) and competition-inhibition test using purified GPA and a synthetic peptide corresponding to the amino acid sequence 48-58 of GPA demonstrated that the epitope is located within residues 48-58 of GPA. Epitope analysis with immobilized peptides showed that the MAb recognizes the sequence 53Pro-Pro-Glu-Glu-GIu58 of GPA. A homologous sequence is also present within amino acids 395 to 405 of protein 4.1. Finally, the MAb bound to 16 kDa chymotryptic peptide of protein 4.1, which carries the above amino acid sequence. In conclusion, it may be assumed that NaM70-3C10 specifically recognizes a common epitope on the extracellular domain of GPA and on the intracellular protein 4.1; this specificity explains the persistence of the 80 kDa band on blots when RBCs are treated with papain.

  7. Cloning of cDNAs encoding amphibian bombesin: evidence for the relationship between bombesin and gastrin-releasing peptide.

    PubMed Central

    Spindel, E R; Gibson, B W; Reeve, J R; Kelly, M

    1990-01-01

    Bombesin is a tetradecapeptide originally isolated from frog skin; its mammalian homologue is the 27-amino acid peptide gastrin-releasing peptide (GRP). cDNAs encoding GRP have been cloned from diverse species, but little is yet known about the amphibian bombesin precursor. Mass spectrometry of HPLC-separated skin exudate from Bombina orientalis was performed to demonstrate the existence of authentic bombesin in the skin of this frog. A cDNA library was prepared from the skin of B. orientalis and mixed oligonucleotide probes were used to isolate cDNAs encoding amphibian bombesin. Sequence analysis revealed that bombesin is encoded in a 119-amino acid prohormone. The carboxyl terminus of bombesin is flanked by two basic amino acids; the amino terminus is not flanked by basic amino acids but is flanked by a chymotryptic-like cleavage site. Northern blot analysis demonstrated similarly sized bombesin mRNAs in frog skin, brain, and stomach. Polymerase chain reaction was used to show that the skin and gut bombesin mRNAs encoded the identical prohormones. Prohormone processing, however, differed between skin and gut. Chromatography showed the presence of only authentic bombesin in skin whereas gut extracts contained two peaks of bombesin immunoreactivity, one consistent in size with bombesin and one closer in size to mammalian GRP. Thus the same bombesin prohormone is processed solely to bombesin in skin but is processed to a peptide similar in size to bombesin and to a peptide similar in size to mammalian GRP in stomach. Images PMID:2263631

  8. Sequences of heavy and light chain variable regions from four bovine immunoglobulins.

    PubMed

    Armour, K L; Tempest, P R; Fawcett, P H; Fernie, M L; King, S I; White, P; Taylor, G; Harris, W J

    1994-12-01

    Oligodeoxyribonucleotide primers based on the 5' ends of bovine IgG1/2 and lambda constant (C) region genes, together with primers encoding conserved amino acids at the N-terminus of mature variable (V) regions from other species, have been used in cDNA and polymerase chain reactions (PCRs) to amplify heavy and light chain V region cDNA from bovine heterohybridomas. The amino acid sequences of VH and V lambda from four bovine immunoglobulins of different specificities are presented.

  9. Identification of specific sites in the third intracellular loop and carboxyl terminus of the Bombyx mori PBAN receptor crucial for ligand-induced internalization

    USDA-ARS?s Scientific Manuscript database

    Sex pheromone production in most moths is mediated by the pheromone biosynthesis activating neuropeptide receptor (PBANR). Similar to other rhodopsin-like G protein-coupled receptors, the silkmoth Bombyx mori PBANR (BmPBANR) undergoes agonist-induced internalization. Despite interest in developing...

  10. Importance of nuclear localization for the apoptosis-induced activity of a fungal galectin AAL (Agrocybe aegerita lectin)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Yi; Feng, Lei; Tong, Xin

    2009-08-28

    Agrocybe aegerita lectin (AAL) was identified previously in our group as a novel galectin from medicinal fungi Agrocybe aegerita, and has been shown to effectively induce cancer cell cycle arrest and apoptosis in vitro and tumor regression in vivo. Here, AAL was observed to translocate into the HeLa cell nucleus and induce cell apoptosis when it was predominantly in the nucleus. The N-terminus and C-terminus of AAL were required for nuclear localization. Site mutated proteins were generated based on AAL structure. Dimer interface mutant I25G, carbohydrate recognition domain (CRD) mutant R63H, and loop region mutant L33A could not enter themore » nucleus and lost the ability to induce apoptosis. CRD mutant H59Q and loop region mutant I144G maintained nuclear localization activity, and H59Q retained residual bioability but I144G had no activity, indicating that nuclear localization is important but not sufficient for AAL to become apoptotically active. Our findings provide a novel antitumor mechanism of fungal galectin.« less

  11. Single amino acid insertions in extracellular loop 2 of Bombyx mori ABCC2 disrupt its receptor function for Bacillus thuringiensis Cry1Ab and Cry1Ac but not Cry1Aa toxins.

    PubMed

    Tanaka, Shiho; Miyamoto, Kazuhisa; Noda, Hiroaki; Endo, Haruka; Kikuta, Shingo; Sato, Ryoichi

    2016-04-01

    In a previous report, seven Cry1Ab-resistant strains were identified in the silkworm, Bombyx mori; these strains were shown to have a tyrosine insertion at position 234 in extracellular loop 2 of the ABC transporter C2 (BmABCC2). This insertion was confirmed to destroy the receptor function of BmABCC2 and confer the strains resistance against Cry1Ab and Cry1Ac. However, these strains were susceptible to Cry1Aa. In this report, we examined the mechanisms of the loss of receptor function of the transporter by expressing mutations in Sf9 cells. After replacement of one or two of the five amino acid residues in loop 2 of the susceptible BmABCC2 gene [BmABCC2_S] with alanine, cells still showed susceptibility, retaining the receptor function. Five mutants with single amino acid insertions at position 234 in BmABCC2 were also generated, resulting in loop 2 having six amino acids, which corresponds to replacing the tyrosine insertion in the resistant BmABCC2 gene [BmABCC2_R(+(234)Y)] with another amino acid. All five mutants exhibited loss of function against Cry1Ab and Cry1Ac. These results suggest that the amino acid sequence in loop 2 is less important than the loop size (five vs. six amino acids) or loop structure for Cry1Ab and Cry1Ac activity. Several domain-swapped mutant toxins were then generated among Cry1Aa, Cry1Ab, and Cry1Ac, which are composed of three domains. Swapped mutants containing domain II of Cry1Ab or Cry1Ac did not kill Sf9 cells expressing BmABCC2_R(+(234)Y), suggesting that domain II of the Cry toxin is related to the interaction with the receptor function of BmABCC2. This also suggests that different reactions against Bt-toxins in some B. mori strains, that is, Cry1Ab resistance or Cry1Aa susceptibility, are attributable to structural differences in domain II of Cry1A toxins. Copyright © 2016. Published by Elsevier Inc.

  12. Binding of transcription termination protein nun to nascent RNA and template DNA.

    PubMed

    Watnick, R S; Gottesman, M E

    1999-12-17

    The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.

  13. Biologically active peptides of the vesicular stomatitis virus glycoprotein.

    PubMed Central

    Schlegel, R; Wade, M

    1985-01-01

    A peptide corresponding to the amino-terminal 25 amino acids of the mature vesicular stomatitis virus glycoprotein has recently been shown to be a pH-dependent hemolysin. In the present study, we analyzed smaller constituent peptides and found that the hemolytic domain resides within the six amino-terminal amino acids. Synthesis of variant peptides indicates that the amino-terminal lysine can be replaced by another positively charged amino acid (arginine) but that substitution with glutamic acid results in the total loss of the hemolytic function. Peptide-induced hemolysis was dependent upon buffer conditions and was inhibited when isotonicity was maintained with mannitol, sucrose, or raffinose. In sucrose, all hemolytic peptides were also observed to mediate hemagglutination. The large 25-amino acid peptide is also a pH-dependent cytotoxin for mammalian cells and appears to effect gross changes in cell permeability. Conservation of the amino terminus of vesicular stomatitis virus and rabies virus suggests that the membrane-destabilizing properties of this domain may be important for glycoprotein function. Images PMID:2981356

  14. Solution 1H NMR determination of secondary structure for the three-iron form of ferredoxin from the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    Teng, Q; Zhou, Z H; Smith, E T; Busse, S C; Howard, J B; Adams, M W; La Mar, G N

    1994-05-24

    Two-dimensional 1H NMR data have been used to make sequence-specific assignments and define the secondary structure of the three-iron form of the oxidized ferredoxin, Fd, from the hyperthermophilic archaeon Pyrococcus furiosus, Pf. Signals for at least some protons were located for 65 of the 66 amino acids in the sequence, in spite of the paramagnetic (S = 1/2) ground state, but not all could be assigned. Unassigned and missing signals could be qualitatively correlated with the expected proximity of the protons to the paramagnetic cluster. The secondary structure was deduced from qualitative analysis of the 2D nuclear Overhauser effect, which identified two antiparallel beta-sheets, one triple-stranded including Ala1-Ser5, Val39-Glu41, and Thr62-Ala66, and one double-stranded consisting of Glu26-Asn28 and Lys32-Glu34, as well as an alpha-helix involving Glu43-Glu54. Three tight type I turns are located at residues Asp7-Thr10, Pro22-Phe25, and Asp29-Gly31. Comparison with the crystal structure of Desulfovibrio gigas, Dg, Fd (Kissinger et al., 1991) reveals a very similar folding topology, although several secondary structural elements are extended in Pf relative to Dg Fd. Thus the beta-sheet involving the two termini is expanded to include the two terminal residues and incorporates a third strand from the internal loop that is lengthened by several insertions in Pf relative to Dg Fd. The double-stranded beta-sheet in the interior of Pf Fd is lengthened slightly due to a much tighter type I turn between the two strands. The helix near the C-terminus is three residues longer in Pf than in Dg Fd, as well as being shifted toward the N-terminus. The disulfide link between the two nonligating Cys residues (Cys21 and Cys48) is conserved in Pf Fd, but the link near the C-terminus is in the middle of the long alpha-helix in Pf Fd, instead of at the N-terminus of the helix as in Dg Fd. The extensions of the beta-sheets and alpha-helix increase the number of main-chain hydrogen bonds in Pf Fd by approximately 8 relative to those in Dg Fd and likely contribute to its remarkable thermostability (it is unaffected by anaerobic incubation at 95 degrees C for 24 h).(ABSTRACT TRUNCATED AT 400 WORDS)

  15. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-08-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded.

  16. Calmodulin is a phospholipase C-beta interacting protein.

    PubMed

    McCullar, Jennifer S; Larsen, Shana A; Millimaki, Ryan A; Filtz, Theresa M

    2003-09-05

    Phospholipase C-beta 3 (PLC beta 3) is an important effector enzyme in G protein-coupled signaling pathways. Activation of PLC beta 3 by G alpha and G beta gamma subunits has been fairly well characterized, but little is known about other protein interactions that may also regulate PLC beta 3 function. A yeast two-hybrid screen of a mouse brain cDNA library with the amino terminus of PLC beta 3 has yielded potential PLC beta 3 interacting proteins including calmodulin (CaM). Physical interaction between CaM and PLC beta 3 is supported by a positive secondary screen in yeast and the identification of a CaM binding site in the amino terminus of PLC beta 3. Co-precipitation of in vitro translated and transcribed amino- and carboxyl-terminal PLC beta 3 revealed CaM binding at a putative amino-terminal binding site. Direct physical interaction of PLC beta 3 and PLC beta 1 isoforms with CaM is supported by pull-down of both isoenzymes with CaM-Sepharose beads from 1321N1 cell lysates. CaM inhibitors reduced M1-muscarinic receptor stimulation of inositol phospholipid hydrolysis in 1321N1 astrocytoma cells consistent with a physiologic role for CaM in modulation of PLC beta activity. There was no effect of CaM kinase II inhibitors, KN-93 and KN-62, on M1-muscarinic receptor stimulation of inositol phosphate hydrolysis, consistent with a direct interaction between PLC beta isoforms and CaM.

  17. Localization, cloning, and sequence determination of the conjugative plasmid ColB2 pilin gene.

    PubMed Central

    Finlay, B B; Frost, L S; Paranchych, W

    1984-01-01

    ColB2 is a colicin-producing, 96-kilobase plasmid which encodes a conjugative system that is similar, but not identical, to F. A restriction map of this plasmid was generated, and DNA homology studies between F and ColB2 plasmids revealed homology only between their transfer operons. The locations of the ColB2 transfer operon and ColB2 pilin gene were localized on this restriction map. The gene encoding ColB2 pilin, traA, was cloned and sequenced. The pilin protein of ColB2 is identical to F, except at the amino terminus, where ala-gln of ColB2 pilin corresponds to Ala-Gly-Ser-Ser of F pilin. This is due to a 6-base-pair deletion in the ColB2 pilin gene. Biochemical studies on tryptic peptides derived from ColB2 pilin demonstrate the location of this gene to be correct. There is a putative signal peptidase cleavage site after the sequence Ala-Met-Ala, giving a signal peptide of 51 amino acids and a mature pilin protein of 68 amino acids (7,000 daltons). The amino terminus is blocked, probably with an acetyl group. A chimera containing the ColB2 pilin gene was able to complement an F traA mutant, demonstrating that the pilus assembly proteins of F can utilize the ColB2 pilin protein to form a pilus. Images PMID:6090427

  18. The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity.

    PubMed

    Patil, Nitin A; Bathgate, Ross A D; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger; Grosse, Johannes; Hughes, Richard A; Wade, John D; Hossain, Mohammed Akhter

    2016-04-01

    Insulin-like peptide 5 (INSL5) is an orexigenic peptide hormone belonging to the relaxin family of peptides. It is expressed primarily in the L-cells of the colon and has a postulated key role in regulating food intake. Its G protein-coupled receptor, RXFP4, is a potential drug target for treating obesity and anorexia. We studied the effect of modification of the C-terminus of the A and B-chains of human INSL5 on RXFP4 binding and activation. Three variants of human INSL5 were prepared using solid phase peptide synthesis and subsequent sequential regioselective disulfide bond formation. The peptides were synthesized as C-terminal acids (both A- and B-chains with free C-termini, i.e., the native form), amides (both chains as the C-terminal amide) and one analog with the C-terminus of its A-chain as the amide and the C-terminus of the B-chain as the acid. The results showed that C-terminus of the B-chain is more important than that of the A-chain for RXFP4 binding and activity. Amidation of the A-chain C-terminus does not have any effect on the INSL5 activity. The difference in RXFP4 binding and activation between the three peptides is believed to be due to electrostatic interaction of the free carboxylate of INSL5 with a positively charged residue (s), either situated within the INSL5 molecule itself or in the receptor extracellular loops.

  19. Problem-Solving Test: The Mechanism of Protein Synthesis

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2009-01-01

    Terms to be familiar with before you start to solve the test: protein synthesis, ribosomes, amino acids, peptides, peptide bond, polypeptide chain, N- and C-terminus, hemoglobin, [alpha]- and [beta]-globin chains, radioactive labeling, [[to the third power]H] and [[to the fourteenth power]C]leucine, cytosol, differential centrifugation, density…

  20. Phosphorylation of G Protein-Coupled Receptors: From the Barcode Hypothesis to the Flute Model.

    PubMed

    Yang, Zhao; Yang, Fan; Zhang, Daolai; Liu, Zhixin; Lin, Amy; Liu, Chuan; Xiao, Peng; Yu, Xiao; Sun, Jin-Peng

    2017-09-01

    Seven transmembrane G protein-coupled receptors (GPCRs) are often phosphorylated at the C terminus and on intracellular loops in response to various extracellular stimuli. Phosphorylation of GPCRs by GPCR kinases and certain other kinases can promote the recruitment of arrestin molecules. The arrestins critically regulate GPCR functions not only by mediating receptor desensitization and internalization, but also by redirecting signaling to G protein-independent pathways via interactions with numerous downstream effector molecules. Accumulating evidence over the past decade has given rise to the phospho-barcode hypothesis, which states that ligand-specific phosphorylation patterns of a receptor direct its distinct functional outcomes. Our recent work using unnatural amino acid incorporation and fluorine-19 nuclear magnetic resonance ( 19 F-NMR) spectroscopy led to the flute model, which provides preliminary insight into the receptor phospho-coding mechanism, by which receptor phosphorylation patterns are recognized by an array of phosphate-binding pockets on arrestin and are translated into distinct conformations. These selective conformations are recognized by various effector molecules downstream of arrestin. The phospho-barcoding mechanism enables arrestin to recognize a wide range of phosphorylation patterns of GPCRs, contributing to their diverse functions. Copyright © 2017 by The Author(s).

  1. Dysfunctional growth hormone receptor in a strain of sex-linked dwarf chicken: evidence for a mutation in the intracellular domain.

    PubMed

    Agarwal, S K; Cogburn, L A; Burnside, J

    1994-09-01

    The sex-linked dwarf (dwdw) chicken represents a valuable animal model for studying GH insensitivity and the consequence of mutations in the GH receptor (GHR) gene. We have recently reported undetectable hepatic GH-binding activity and an aberrantly sized transcript in a strain of dwdw chickens obtained from Arbor Acre Farms, Inc. (Glastonbury, CT, USA). Southern blot analysis of the chicken GHR (cGHR) gene revealed a restriction-fragment length polymorphism in HindIII and EcoRI digests of genomic DNA in this strain of dwdw chicken. In order to localize the molecular mutation, we analysed the gene structure and determined the complete sequence of the 3' untranslated region (3' UTR) of the normal cGHR. With the use of this information, we located a large deletion in the 3' end of the cGHR gene of the Connecticut (CT) strain of dwdw chicken. This deletion (1773 bp) contained 27 highly conserved amino acids of the 3' end of the coding region, the in-frame stop codon, a less frequently used poly(A) signal that is normally found 445 bp downstream of the stop codon, and a large portion of the 3' UTR. Because of this deletion, 27 novel amino acids were substituted and the open reading frame was extended for an additional 26 amino acids before reaching the transcriptional termination site. The predicted amino acid sequence of the novel carboxyl-terminus of the dwdw cGHR is largely hydrophobic with a polylysine tail, whereas the carboxyl-terminus of the wild-type (DwDw) cGHR is composed of hydrophilic amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Immunogenic Characterization of the Dengue Virus Specified Nonstructural Glycoprotein GP48 (NV3, Soluble Complement Fixing Antigen)

    DTIC Science & Technology

    1988-09-09

    Biochemlcals,.Gsnrbridge, UK), we synthesized all 404 possible over- lapping hexapeptideS of 17D YF NSI as well as a 98 amino acid segment of DEN 2 NS1, shown... acids from the NS1 amino terminus. In contrast, rabbit serum that we prepared to authentic YF NS1 was cytolytic and competed with the protective lytic Mab...precipitated. The method was modified y exposing NS1-containing acrylamide gel slices to CnBr vapors (10) in an effort to minimize formic acid -induced

  3. Conserved amino acids within the N-terminus of the West Nile virus NS4A protein contribute to virus replication, protein stability and membrane proliferation.

    PubMed

    Ambrose, R L; Mackenzie, J M

    2015-07-01

    The West Nile virus strain Kunjin virus (WNVKUN) NS4A protein is a multifunctional protein involved in many aspects of the virus life-cycle and is a major component of the WNVKUN replication complex (RC). Previously we identified a conserved region in the C-terminus of NS4A regulating proteolytic processing and RC assembly, and now investigate key conserved residues in the N-terminus of NS4A and their contribution to WNVKUN replication. Mutation of P13 completely ablated replication, whereas, mutation of P48 and D49, near the first transmembrane helix, and G66 within the helix, showed variable defects in replication, virion secretion and membrane proliferation. Intriguingly, the P48 and G66 NS4A mutants resulted in specific proteasome depletion of NS4A that could in part be rescued with a proteasome inhibitor. Our results suggest that the N-terminus of NS4A contributes to correct folding and stability, essential for facilitating the essential roles of NS4A during replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Vasonatrin peptide: a unique synthetic natriuretic and vasorelaxing peptide.

    PubMed Central

    Wei, C M; Kim, C H; Miller, V M; Burnett, J C

    1993-01-01

    This study reports the cardiovascular and renal actions of a novel and newly synthesized 27-amino acid peptide termed vasonatrin peptide (VNP). VNP is a chimera of atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP). This synthetic peptide possesses the 22-amino acid structure of CNP, which is a cardiovascular selective peptide of endothelial origin and is structurally related to ANP. VNP also possesses the five-amino acid COOH terminus of ANP. The current study demonstrates both in vitro and in vivo that VNP possesses the venodilating actions of CNP, the natriuretic actions of ANP, and unique arterial vasodilating actions not associated with either ANP or CNP. Images PMID:8408658

  5. A novel chimeric peptide with antimicrobial activity.

    PubMed

    Alaybeyoglu, Begum; Akbulut, Berna Sariyar; Ozkirimli, Elif

    2015-04-01

    Beta-lactamase-mediated bacterial drug resistance exacerbates the prognosis of infectious diseases, which are sometimes treated with co-administration of beta-lactam type antibiotics and beta-lactamase inhibitors. Antimicrobial peptides are promising broad-spectrum alternatives to conventional antibiotics in this era of evolving bacterial resistance. Peptides based on the Ala46-Tyr51 beta-hairpin loop of beta-lactamase inhibitory protein (BLIP) have been previously shown to inhibit beta-lactamase. Here, our goal was to modify this peptide for improved beta-lactamase inhibition and cellular uptake. Motivated by the cell-penetrating pVEC sequence, which includes a hydrophobic stretch at its N-terminus, our approach involved the addition of LLIIL residues to the inhibitory peptide N-terminus to facilitate uptake. Activity measurements of the peptide based on the 45-53 loop of BLIP for enhanced inhibition verified that the peptide was a competitive beta-lactamase inhibitor with a K(i) value of 58 μM. Incubation of beta-lactam-resistant cells with peptide decreased the number of viable cells, while it had no effect on beta-lactamase-free cells, indicating that this peptide had antimicrobial activity via beta-lactamase inhibition. To elucidate the molecular mechanism by which this peptide moves across the membrane, steered molecular dynamics simulations were carried out. We propose that addition of hydrophobic residues to the N-terminus of the peptide affords a promising strategy in the design of novel antimicrobial peptides not only against beta-lactamase but also for other intracellular targets. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  6. Optimization of a reusable, DNA pseudoknot-based electrochemical sensor for sequence-specific DNA detection in blood serum.

    PubMed

    Cash, Kevin J; Heeger, Alan J; Plaxco, Kevin W; Xiao, Yi

    2009-01-15

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem's loop forms part of the second stem, is modified with a methylene blue redox tag at its 3' terminus and covalently attached to a gold electrode via the 5' terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density ( approximately 1.8 x 10(13) molecules/cm(2) apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3' stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3' loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum.

  7. Optimization of a Reusable, DNA Pseudoknot-Based Electrochemical Sensor for Sequence-Specific DNA Detection in Blood Serum

    PubMed Central

    Cash, Kevin J.; Heeger, Alan J.; Plaxco, Kevin W.; Xiao, Yi

    2010-01-01

    We describe in detail a new electrochemical DNA (E-DNA) sensing platform based on target-induced conformation changes in an electrode-bound DNA pseudoknot. The pseudoknot, a DNA structure containing two stem-loops in which the first stem’s loop forms part of the second stem, is modified with a methylene blue redox tag at its 3′ terminus and covalently attached to a gold electrode via the 5′ terminus. In the absence of a target, the structure of the pseudoknot probe minimizes collisions between the redox tag and the electrode, thus reducing faradaic current. Target binding disrupts the pseudoknot structure, liberating a flexible, single-stranded element that can strike the electrode and efficiently transfer electrons. In this article we report further characterization and optimization of this new E-DNA architecture. We find that optimal signaling is obtained at an intermediate probe density (~1.8 × 1013 molecules/cm2 apparent density), which presumably represents a balance between steric and electrostatic blocking at high probe densities and increased background currents arising from transfer from the pseudoknot probe at lower densities. We also find that optimal 3′ stem length, which appears to be 7 base pairs, represents a balance between pseudoknot structural stability and target affinity. Finally, a 3′ loop comprised of poly(A) exhibits better mismatch discrimination than the equivalent poly(T) loop, but at the cost of decreased gain. Optimization over this parameter space significantly improves the signaling of the pseudoknot-based E-DNA architecture, leading to the ability to sensitively and specifically detect DNA targets even when challenged in complex, multicomponent samples such as blood serum. PMID:19093760

  8. A small cellulose binding domain protein (CBD1) is highly variable in the nonbinding amino terminus

    USDA-ARS?s Scientific Manuscript database

    The small cellulose binding domain protein CBD1 is tightly bound to the cellulosic cell wall of the plant pathogenic stramenophile Phytophthora infestans. Transgene expression of the protein in plants has also demonstrated binding to plant cell walls. A study was undertaken using 47 isolates of P. ...

  9. Broad Cross-Protection Is Induced in Preclinical Models by a Human Papillomavirus Vaccine Composed of L1/L2 Chimeric Virus-Like Particles

    PubMed Central

    Boxus, Mathieu; Fochesato, Michel; Miseur, Agnès; Mertens, Emmanuel; Dendouga, Najoua; Brendle, Sarah; Balogh, Karla K.; Christensen, Neil D.

    2016-01-01

    ABSTRACT At least 15 high-risk human papillomaviruses (HPVs) are linked to anogenital preneoplastic lesions and cancer. Currently, there are three licensed prophylactic HPV vaccines based on virus-like particles (VLPs) of the L1 major capsid protein from HPV-2, -4, or -9, including the AS04-adjuvanted HPV-16/18 L1 vaccine. The L2 minor capsid protein contains HPV-neutralizing epitopes that are well conserved across numerous high-risk HPVs. Therefore, the objective of our study was to assess the capacity to broaden vaccine-mediated protection using AS04-adjuvanted vaccines based on VLP chimeras of L1 with one or two L2 epitopes. Several chimeric VLPs were constructed by inserting L2 epitopes within the DE loop and/or C terminus of L1. Based on the shape, yield, size, and immunogenicity, one of seven chimeras was selected for further evaluation in mouse and rabbit challenge models. The chimeric VLP consisted of HPV-18 L1 with insertions of HPV-33 L2 (amino acid residues 17 to 36; L1 DE loop) and HPV-58 L2 (amino acid residues 56 to 75; L1 C terminus). This chimeric L1/L2 VLP vaccine induced persistent immune responses and protected against all of the different HPVs evaluated (HPV-6, -11, -16, -31, -35, -39, -45, -58, and -59 as pseudovirions or quasivirions) in both mouse and rabbit challenge models. The degree and breadth of protection in the rabbit were further enhanced when the chimeric L1/L2 VLP was formulated with the L1 VLPs from the HPV-16/18 L1 vaccine. Therefore, the novel HPV-18 L1/L2 chimeric VLP (alone or in combination with HPV-16 and HPV-18 L1 VLPs) formulated with AS04 has the potential to provide broad protective efficacy in human subjects. IMPORTANCE From evaluations in human papillomavirus (HPV) protection models in rabbits and mice, our study has identified a prophylactic vaccine with the potential to target a wide range of HPVs linked to anogenital cancer. The three currently licensed vaccines contain virus-like particles (VLPs) of the L1 major capsid protein from two, four, or nine different HPVs. Rather than increasing the diversity of L1 VLPs, this vaccine contains VLPs based on a recombinant chimera of two highly conserved neutralizing epitopes from the L2 capsid protein inserted into L1. Our study demonstrated that the chimeric L1/L2 VLP is an effective vehicle for displaying two different L2 epitopes and can be used in a quantity equivalent to what is used in the licensed vaccines. Hence, using the chimeric L1/L2 VLP may be a more cost-effective approach for vaccine formulation than adding different VLPs for each HPV. PMID:27147749

  10. Molecular cloning of a cDNA encoding the precursor of adenoregulin from frog skin. Relationships with the vertebrate defensive peptides, dermaseptins.

    PubMed

    Amiche, M; Ducancel, F; Lajeunesse, E; Boulain, J C; Ménez, A; Nicolas, P

    1993-03-31

    Adenoregulin has recently been isolated from Phyllomedusa skin as a 33 amino acid residues peptide which enhanced binding of agonists to the A1 adenosine receptor. In order to study the structure of the precursor of adenoregulin we constructed a cDNA library from mRNAs extracted from the skin of Phyllomedusa bicolor. We detected the complete nucleotide sequence of a cDNA encoding the adenoregulin biosynthetic precursor. The deduced sequence of the precursor is 81 amino acids long, exhibits a putative signal sequence at the NH2 terminus and contains a single copy of the biologically active peptide at the COOH terminus. Structural and conformational homologies that are observed between adenoregulin and the dermaseptins, antimicrobial peptides exhibiting strong membranolytic activities against various pathogenic agents, suggest that adenoregulin is an additional member of the growing family of cytotropic antimicrobial peptides that allow vertebrate animals to defend themselves against microorganisms. As such, the adenosine receptor regulating activity of adenoregulin could be due to its ability to interact with and disrupt membranes lipid bilayers.

  11. Analysis of the regulatory region of the protease III (ptr) gene of Escherichia coli K-12.

    PubMed

    Claverie-Martin, F; Diaz-Torres, M R; Kushner, S R

    1987-01-01

    The ptr gene of Escherichia coli encodes protease III (Mr 110,000) and a 50-kDa polypeptide, both of which are found in the periplasmic space. The gene is physically located between the recC and recB loci on the E. coli chromosome. The nucleotide sequence of a 1167-bp EcoRV-ClaI fragment of chromosomal DNA containing the promoter region and 885 bp of the ptr coding sequence has been determined. S1 nuclease mapping analysis showed that the major 5' end of the ptr mRNA was localized 127 bp upstream from the ATG start codon. The open reading frame (ORF), preceded by a Shine-Dalgarno sequence, extends to the end of the sequenced DNA. Downstream from the -35 and -10 regions is a sequence that strongly fits the consensus sequence of known nitrogen-regulated promoters. A signal peptide of 23 amino acids residues is present at the N terminus of the derived amino acid sequence. The cleavage site as well as the ORF were confirmed by sequencing the N terminus of mature protease III.

  12. 4-Cyano-α-methyl-l-phenylalanine as a spectroscopic marker for the investigation of peptaibiotic-membrane interactions.

    PubMed

    De Zotti, Marta; Bobone, Sara; Bortolotti, Annalisa; Longo, Edoardo; Biondi, Barbara; Peggion, Cristina; Formaggio, Fernando; Toniolo, Claudio; Dalla Bona, Andrea; Kaptein, Bernard; Stella, Lorenzo

    2015-04-01

    Two analogs of the ten-amino acid residue, membrane-active lipopeptaibiotic trichogin GA IV, mono-labeled with 4-cyano-α-methyl-L-phenylalanine, a potentially useful fluorescence and IR absorption probe of the local microenvironment, were synthesized by the solid-phase methodology and conformationally characterized. The single modification was incorporated either at the N-terminus (position 1) or near the C-terminus (position 8) of the peptide main chain. In both cases, the replaced amino acid was the equally helicogenic α-aminoisobutyric acid (Aib) residue. We performed a solution conformational analysis by use of FT-IR absorption, CD, and 2D-NMR spectroscopies. The results indicate that both labeled analogs essentially maintain the overall helical propensity of the naturally occurring lipopeptaibiotic. Peptide-membrane interactions were assessed by fluorescence and ATR-IR absorption techniques. Analogies and differences between the two peptides were highlighted. Taken together, our data confirm literature results that some of the spectroscopic parameters of the 4-cyanobenzyl chromophore are sensitive markers of the local microenvironment. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  13. Evidence that the C-terminus of Human Presenilin 1 is Located in the Extra-cytoplasmic Space

    PubMed Central

    James Turner, R.

    2005-01-01

    The polytopic membrane protein presenilin 1 (PS1) is a component of the γ-secretase complex that is responsible for the intramembranous cleavage of a number of type I transmembrane proteins including the β-amyloid precursor protein (APP). Mutations of PS1, apparently leading to aberrant processing of APP, have been genetically linked to early-onset familial Alzheimer's disease. PS1 contains ten hydrophobic regions (HRs) sufficiently long to be α-helical membrane spanning segments. Most topology models for PS1 place its C-terminal ∼40 amino acids, which include the 10th HR, in the cytosolic space. However, several recent observations suggest that HR 10 may be integrated into the membrane and involved in the interaction between PS1 and APP. We have applied three independent methodologies to investigate the location of HR 10 and the extreme C-terminus of PS1. The results from these methods indicate that HR 10 spans the membrane and that the C-terminal amino acids of PS1 lie in the extra-cytoplasmic space. PMID:15843437

  14. The C Terminus of Formin FMNL3 Accelerates Actin Polymerization and Contains a WH2 Domain-like Sequence That Binds Both Monomers and Filament Barbed Ends*

    PubMed Central

    Heimsath, Ernest G.; Higgs, Henry N.

    2012-01-01

    Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin. PMID:22094460

  15. Three-dimensional structure of Schistosoma japonicum glutathione S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV

    NASA Technical Reports Server (NTRS)

    Lim, K.; Ho, J. X.; Keeling, K.; Gilliland, G. L.; Ji, X.; Ruker, F.; Carter, D. C.

    1994-01-01

    The 3-dimensional crystal structure of glutathione S-transferase (GST) of Schistosoma japonicum (Sj) fused with a conserved neutralizing epitope on gp41 (glycoprotein, 41 kDa) of human immunodeficiency virus type 1 (HIV-1) (Muster T et al., 1993, J Virol 67:6642-6647) was determined at 2.5 A resolution. The structure of the 3-3 isozyme rat GST of the mu gene class (Ji X, Zhang P, Armstrong RN, Gilliland GL, 1992, Biochemistry 31:10169-10184) was used as a molecular replacement model. The structure consists of a 4-stranded beta-sheet and 3 alpha-helices in domain 1 and 5 alpha-helices in domain 2. The space group of the Sj GST crystal is P4(3)2(1)2, with unit cell dimensions of a = b = 94.7 A, and c = 58.1 A. The crystal has 1 GST monomer per asymmetric unit, and 2 monomers that form an active dimer are related by crystallographic 2-fold symmetry. In the binding site, the ordered structure of reduced glutathione is observed. The gp41 peptide (Glu-Leu-Asp-Lys-Trp-Ala) fused to the C-terminus of Sj GST forms a loop stabilized by symmetry-related GSTs. The Sj GST structure is compared with previously determined GST structures of mammalian gene classes mu, alpha, and pi. Conserved amino acid residues among the 4 GSTs that are important for hydrophobic and hydrophilic interactions for dimer association and glutathione binding are discussed.

  16. Importance of the short cytoplasmic domain of the feline immunodeficiency virus transmembrane glycoprotein for fusion activity and envelope glycoprotein incorporation into virions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Celma, Cristina C.P.; Paladino, Monica G.; Gonzalez, Silvia A.

    2007-09-30

    The mature form of the envelope (Env) glycoprotein of lentiviruses is a heterodimer composed of the surface (SU) and transmembrane (TM) subunits. Feline immunodeficiency virus (FIV) possesses a TM glycoprotein with a cytoplasmic tail of approximately 53 amino acids which is unusually short compared with that of the other lentiviral glycoproteins (more than 100 residues). To investigate the relevance of the FIV TM cytoplasmic domain to Env-mediated viral functions, we characterized the biological properties of a series of Env glycoproteins progressively shortened from the carboxyl terminus. All the mutant Env proteins were efficiently expressed in feline cells and processed intomore » the SU and TM subunits. Deletion of 5 or 11 amino acids from the TM C-terminus did not significantly affect Env surface expression, fusogenic activity or Env incorporation into virions, whereas removal of 17 or 23 residues impaired Env-mediated cell-to-cell fusion. Further truncation of the FIV TM by 29 residues resulted in an Env glycoprotein that was poorly expressed at the cell surface, exhibited only 20% of the wild-type Env fusogenic capacity and was inefficiently incorporated into virions. Remarkably, deletion of the TM C-terminal 35 or 41 amino acids restored or even enhanced Env biological functions. Indeed, these mutant Env glycoproteins bearing cytoplasmic domains of 18 or 12 amino acids were found to be significantly more fusogenic than the wild-type Env and were efficiently incorporated into virions. Interestingly, truncation of the TM cytoplasmic domain to only 6 amino acids did not affect Env incorporation into virions but abrogated Env fusogenicity. Finally, removal of the entire TM cytoplasmic tail or deletion of as many as 6 amino acids into the membrane-spanning domain led to a complete loss of Env functions. Our results demonstrate that despite its relatively short length, the FIV TM cytoplasmic domain plays an important role in modulating Env-mediated viral functions.« less

  17. The amino-terminal hydrophilic region of the vacuolar transporter Avt3p is dispensable for the vacuolar amino acid compartmentalization of Schizosaccharomyces pombe.

    PubMed

    Kawano-Kawada, Miyuki; Chardwiriyapreecha, Soracom; Manabe, Kunio; Sekito, Takayuki; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi

    2016-12-01

    Avt3p, a vacuolar amino acid exporter (656 amino acid residues) that is important for vacuolar amino acid compartmentalization as well as spore formation in Schizosaccharomyces pombe, has an extremely long hydrophilic region (approximately 290 amino acid residues) at its N-terminus. Because known functional domains have not been found in this region, its functional role was examined with a deletion mutant avt3 (∆1-270) expressed in S. pombe avt3∆ cells. The deletion of this region did not affect its intracellular localization or vacuolar contents of basic amino acids as well as neutral ones. The defect of avt3Δ cells in spore formation was rescued by the expression of avt3 + but was not completely rescued by the expression of avt3 (∆1-270) . The N-terminal region is thus dispensable for the function of Avt3p as an amino acid exporter, but it is likely to be involved in the role of Avt3p under nutritional starvation conditions.

  18. Amino terminus of substance P potentiates kainic acid-induced activity in the mouse spinal cord.

    PubMed

    Larson, A A; Sun, X

    1992-12-01

    Sensitization to the behavioral effects produced by repeated injections of kainic acid (KA) into the mouse spinal cord area has been previously shown to be abolished by pretreatment with capsaicin, a neurotoxin of substance P (SP)-containing primary afferent C-fibers. While SP has a variety of well characterized biological actions that are mediated by interactions of its COOH terminus with neurokinin receptors, more recently we have characterized an amino-terminally directed SP binding site. The present studies were initiated to determine whether behavioral sensitization to repeated injections of intrathecally administered KA is mediated by the COOH or NH2 terminal of SP. In the present studies, pretreatment with SP(1-7), an NH2-terminal fragment of SP, but not SP(5-11), a COOH-terminal fragment, potentiated KA-induced behavioral activity in mice. Pretreatment with [D-Pro2,D-Phe7]SP(1-7), an inhibitor of SP NH2-terminal binding, blocked the potentiative effect of SP(1-7) as well as the sensitization to repeated injections of KA. In contrast, [D-Pro2,D-Trp7,9]SP, a neurokinin antagonist, had little effect on behavioral sensitization to KA. The present study suggests that SP has an important modulatory role on excitatory amino acid activity in the spinal cord that is mediated by an action of the NH2 terminal of SP at a non-neurokinin receptor.

  19. Saccharomyces cerevisiae SSB1 protein and its relationship to nucleolar RNA-binding proteins.

    PubMed Central

    Jong, A Y; Clark, M W; Gilbert, M; Oehm, A; Campbell, J L

    1987-01-01

    To better define the function of Saccharomyces cerevisiae SSB1, an abundant single-stranded nucleic acid-binding protein, we determined the nucleotide sequence of the SSB1 gene and compared it with those of other proteins of known function. The amino acid sequence contains 293 amino acid residues and has an Mr of 32,853. There are several stretches of sequence characteristic of other eucaryotic single-stranded nucleic acid-binding proteins. At the amino terminus, residues 39 to 54 are highly homologous to a peptide in calf thymus UP1 and UP2 and a human heterogeneous nuclear ribonucleoprotein. Residues 125 to 162 constitute a fivefold tandem repeat of the sequence RGGFRG, the composition of which suggests a nucleic acid-binding site. Near the C terminus, residues 233 to 245 are homologous to several RNA-binding proteins. Of 18 C-terminal residues, 10 are acidic, a characteristic of the procaryotic single-stranded DNA-binding proteins and eucaryotic DNA- and RNA-binding proteins. In addition, examination of the subcellular distribution of SSB1 by immunofluorescence microscopy indicated that SSB1 is a nuclear protein, predominantly located in the nucleolus. Sequence homologies and the nucleolar localization make it likely that SSB1 functions in RNA metabolism in vivo, although an additional role in DNA metabolism cannot be excluded. Images PMID:2823109

  20. Conformational analysis of the N-terminal sequence Met1 Val60 of the tyrosine hydroxylase

    NASA Astrophysics Data System (ADS)

    Alieva, Irada N.; Mustafayeva, Narmina N.; Gojayev, Niftali M.

    2006-03-01

    Molecular mechanics method and molecular dynamics (MD) simulation techniques are used to study the behavior and the effect of the amino acids substitution on structure and molecular dynamics of the specific portion of Met1-Val60 amino acid residues from N-terminal regulatory domain of the tyrosine hydroxylase (TH) and its mutants in which the positively charged arginine residues at positions 37 and 38 were replaced by electrically neutral Gly and negatively charged Glu, and serine residue at position 40 was replaced by Ala or Asp residue. Our study allowed us to make the following conclusions: (i) the higher conformational flexibility of the Met1-Arg16 sequence is revealed in comparision to other part of the N-terminus; (ii) the stretch of amino acid residues Met30-Ser40 within the N-terminus forms β-turn so that two α-helices (residues 16-29 and residues 41-60) are paralel one another; (ii) the significant differences that are observed for the Arg37→Gly37, Arg37-Arg38→Glu37-Glu38 mutant segments indicates that the positive charge of the Arg37 and Arg38 residues is one of the main factor that maintains the characteristic of the turn; (ii) no major conformational changes are observed between Ser40→Ala40, and Ser40→Asp40 mutant segments.

  1. Variation of amino acid sequences of serum amyloid a (SAA) and immunohistochemical analysis of amyloid a (AA) in Japanese domestic cats.

    PubMed

    Tei, Meina; Uchida, Kazuyuki; Chambers, James K; Watanabe, Ken-Ichi; Tamamoto, Takashi; Ohno, Koichi; Nakayama, Hiroyuki

    2018-02-02

    Amyloid A (AA) amyloidosis, a fatal systemic amyloid disease, occurs secondary to chronic inflammatory conditions in humans. Although persistently elevated serum amyloid A (SAA) levels are required for its pathogenesis, not all individuals with chronic inflammation necessarily develop AA amyloidosis. Furthermore, many diseases in cats are associated with the elevated production of SAA, whereas only a small number actually develop AA amyloidosis. We hypothesized that a genetic mutation in the SAA gene may strongly contribute to the pathogenesis of feline AA amyloidosis. In the present study, genomic DNA from four Japanese domestic cats (JDCs) with AA amyloidosis and from five without amyloidosis was analyzed using polymerase chain reaction (PCR) amplification and direct sequencing. We identified the novel variation combination of 45R-51A in the deduced amino acid sequences of four JDCs with amyloidosis and five without. However, there was no relationship between amino acid variations and the distribution of AA amyloid deposits, indicating that differences in SAA sequences do not contribute to the pathogenesis of AA amyloidosis. Immunohistochemical analysis using antisera against the three different parts of the feline SAA protein-i.e., the N-terminal, central, and C-terminal regions-revealed that feline AA contained the C-terminus, unlike human AA. These results indicate that the cleavage and degradation of the C-terminus are not essential for amyloid fibril formation in JDCs.

  2. Insight into the Structural and Biological Relevance of the T/R Transition of the N-Terminus of the B-Chain in Human Insulin

    PubMed Central

    2014-01-01

    The N-terminus of the B-chain of insulin may adopt two alternative conformations designated as the T- and R-states. Despite the recent structural insight into insulin–insulin receptor (IR) complexes, the physiological relevance of the T/R transition is still unclear. Hence, this study focused on the rational design, synthesis, and characterization of human insulin analogues structurally locked in expected R- or T-states. Sites B3, B5, and B8, capable of affecting the conformation of the N-terminus of the B-chain, were subjects of rational substitutions with amino acids with specific allowed and disallowed dihedral φ and ψ main-chain angles. α-Aminoisobutyric acid was systematically incorporated into positions B3, B5, and B8 for stabilization of the R-state, and N-methylalanine and d-proline amino acids were introduced at position B8 for stabilization of the T-state. IR affinities of the analogues were compared and correlated with their T/R transition ability and analyzed against their crystal and nuclear magnetic resonance structures. Our data revealed that (i) the T-like state is indeed important for the folding efficiency of (pro)insulin, (ii) the R-state is most probably incompatible with an active form of insulin, (iii) the R-state cannot be induced or stabilized by a single substitution at a specific site, and (iv) the B1–B8 segment is capable of folding into a variety of low-affinity T-like states. Therefore, we conclude that the active conformation of the N-terminus of the B-chain must be different from the “classical” T-state and that a substantial flexibility of the B1–B8 segment, where GlyB8 plays a key role, is a crucial prerequisite for an efficient insulin–IR interaction. PMID:24819248

  3. The glucagon-like peptide-2 receptor C terminus modulates beta-arrestin-2 association but is dispensable for ligand-induced desensitization, endocytosis, and G-protein-dependent effector activation.

    PubMed

    Estall, Jennifer L; Koehler, Jacqueline A; Yusta, Bernardo; Drucker, Daniel J

    2005-06-10

    Classic models of receptor desensitization and internalization have been largely based on the behavior of Family A G-protein-coupled receptors (GPCRs). The glucagon-like peptide-2 receptor (GLP-2R) is a member of the Family B glucagon-secretin GPCR family, which exhibit significant sequence and structural differences from the Family A receptors in their intracellular and extracellular domains. To identify structural motifs that regulate GLP-2R signaling and cell surface receptor expression, we analyzed the functional properties of a series of mutant GLP-2Rs. The majority of the C-terminal receptor tail was dispensable for GLP-2-induced cAMP accumulation, ERK1/2 activation, and endocytosis in transfected cells. However, progressive truncation of the C terminus reduced cell surface receptor expression, altered agonist-induced GLP-2R trafficking, and abrogated protein kinase A-mediated heterologous receptor desensitization. Elimination of the distal 21 amino acids of the receptor was sufficient to promote constitutive receptor internalization and prevent agonist-induced recruitment of beta-arrestin-2. Site-directed mutagenesis identified specific amino acid residues within the distal GLP-2R C terminus that mediate the stable association with beta-arrestin-2. Surprisingly, although the truncated mutant receptors failed to interact with beta-arrestin-2, they underwent homologous desensitization and subsequent resensitization with kinetics similar to that observed with the wild-type GLP-2R. Our data suggest that, although the GLP-2R C terminus is not required for coupling to cellular machinery regulating signaling or desensitization, it may serve as a sorting signal for intracellular trafficking. Taken together with the previously demonstrated clathrin and dynamin-independent, lipid-raft-dependent pathways for internalization, our data suggest that GLP-2 receptor signaling has evolved unique structural and functional mechanisms for control of receptor trafficking, desensitization, and resensitization.

  4. Functional significance of the E loop, a novel motif conserved in the lantibiotic immunity ATP-binding cassette transport systems.

    PubMed

    Okuda, Ken-ichi; Yanagihara, Sae; Sugayama, Tomomichi; Zendo, Takeshi; Nakayama, Jiro; Sonomoto, Kenji

    2010-06-01

    Lantibiotics are peptide-derived antibacterial substances produced by some Gram-positive bacteria and characterized by the presence of unusual amino acids, like lanthionines and dehydrated amino acids. Because lantibiotic producers may be attacked by self-produced lantibiotics, they express immunity proteins on the cytoplasmic membrane. An ATP-binding cassette (ABC) transport system mediated by the LanFEG protein complex is a major system in lantibiotic immunity. Multiple-sequence alignment analysis revealed that LanF proteins contain the E loop, a variant of the Q loop, which is a well-conserved motif in the nucleotide-binding domains (NBDs) of general ABC transporters. To elucidate E loop function, we introduced a mutation in the NukF protein, which is involved in the nukacin-ISK-1 immunity system. Amino acid replacement of glutamic acid in the E loop with glutamine (E85Q) resulted in slight decreases in the immunity level and transport activity. Additionally, the E85A mutation severely impaired the immunity level and transport activity. On the other hand, ATPase activities of purified E85Q and E85A mutants were almost similar to that of the wild type. These results suggested that the E loop found in ABC transporters involved in lantibiotic immunity plays a significant role in the function of these transporters, especially in the structural change of transmembrane domains.

  5. Sequence characterization and immunogenicity of cystatins from the cattle tick Rhipicephalus (Boophilus) microplus.

    PubMed

    Parizi, Luís F; Githaka, Naftaly W; Acevedo, Carolina; Benavides, Uruguaysito; Seixas, Adriana; Logullo, Carlos; Konnai, Satoru; Ohashi, Kazuhiko; Masuda, Aoi; da Silva Vaz, Itabajara

    2013-12-01

    Various classes of endopeptidases and their inhibitors facilitate blood feeding and digestion in ticks. Cystatins, a family of tight-binding and reversible inhibitors of cysteine endopeptidases, have recently been found in several tick tissues. Moreover, vaccine trials using tick cystatins have been found to induce protective immune responses against tick infestation. However, the mode of action of tick cystatins is still poorly understood, limiting the elucidation of their physiological role. Against this background, we have investigated sequence characteristics and immunogenic properties of 5 putative cystatins from Rhipicephalus (Boophilus) microplus from Brazil and Uruguay. The similarity of the deduced amino acid sequences among cystatins from the Brazilian tick strain was 27-42%, all of which had a secretory signal peptide. The cystatin motif (QxVxG), a glycine in the N-terminal region, and the PW motif in the second hairpin loop in the C-terminal region are highly conserved in all 5 cystatins identified in this study. Four cysteine residues in the C terminus characteristic of type 2 cystatins are also present. qRT-PCR revealed differential expression patterns among the 5 cystatins identified, as well as variation in mRNA transcripts present in egg, larva, gut, salivary glands, ovary, and fat body tissues. One R. microplus cystatin showed 97-100% amino acid similarity between Brazilian and Uruguayan isolates. Furthermore, by in silico analysis, antigenic amino acid regions from R. microplus cystatins showed high degrees of homology (54-92%) among Rhipicephalus spp. cystatins. Three Brazilian R. microplus cystatins were expressed in Escherichia coli, and immunogenicity of the recombinant proteins were determined by vaccinating mice. Western blotting using mice sera indicated cross-reactivity between the cystatins, suggesting shared epitopes. The present characterization of Rhipicephalus spp. cystatins represents an empirical approach in an effort to evaluate the physiological role of cystatins in a larger context of targeting them for use in future tick control strategies. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. An unusual form of lipid linkage to the CD45 peptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, Akiko; Maizel, A.L.

    1990-11-02

    Some protein kinases and phosphatases are myristoylated on their amino terminus, which perhaps contributes to subcellular localization or regulation. Glycoprotein CD45, a hematopoietic tyrosine phosphatase, was examined for fatty acid content. The CD45 protein incorporated ({sup 3}H)myristate, but little ({sup 3}H)palmitate. The label was not metabolized and reincorporated into amino acids or saccharides, as revealed by peptide maps of CD45 labeled with ({sup 3}H)myristate, {sup 14}C-labeled amino acids, ({sup 35}S)methionine, or {sup 125}I, and glycosidase treatments, respectively. The myristate label was resistant to mild alkaline methanolysis and was found in fatty acid and sphingosine, indicating an unusual form of lipidmore » attachment to CD45.« less

  7. Characterization of a chimeric foot-and-mouth disease virus bearing bovine rhinitis B virus leader proteinase

    USDA-ARS?s Scientific Manuscript database

    Our recent study has shown that bovine rhinovirus type 2 (BRV2), a new member of the Aphthovirus genus, shares many motifs and sequence similarities with foot-and-mouth disease virus (FMDV). Despite low sequence conservation (36percent amino acid identity) and N- and C-terminus folding differences,...

  8. The effect of amino acid deletions and substitutions in the longest loop of GFP

    PubMed Central

    Flores-Ramírez, Gabriela; Rivera, Manuel; Morales-Pablos, Alfredo; Osuna, Joel; Soberón, Xavier; Gaytán, Paul

    2007-01-01

    Background The effect of single and multiple amino acid substitutions in the green fluorescent protein (GFP) from Aequorea victoria has been extensively explored, yielding several proteins of diverse spectral properties. However, the role of amino acid deletions in this protein -as with most proteins- is still unknown, due to the technical difficulties involved in generating combinatorial in-phase amino acid deletions on a target region. Results In this study, the region I129-L142 of superglo GFP (sgGFP), corresponding to the longest loop of the protein and located far away from the central chromophore, was subjected to a random amino acid deletion approach, employing an in-house recently developed mutagenesis method termed Codon-Based Random Deletion (COBARDE). Only two mutants out of 16384 possible variant proteins retained fluorescence: sgGFP-Δ I129 and sgGFP-Δ D130. Interestingly, both mutants were thermosensitive and at 30°C sgGFP-Δ D130 was more fluorescent than the parent protein. In contrast with deletions, substitutions of single amino acids from residues F131 to L142 were well tolerated. The substitution analysis revealed a particular importance of residues F131, G135, I137, L138, H140 and L142 for the stability of the protein. Conclusion The behavior of GFP variants with both amino acid deletions and substitutions demonstrate that this loop is playing an important structural role in GFP folding. Some of the amino acids which tolerated any substitution but no deletion are simply acting as "spacers" to localize important residues in the protein structure. PMID:17594481

  9. A linear mitochondrial genome of Cyclospora cayetanensis (Eimeriidae, Eucoccidiorida, Coccidiasina, Apicomplexa) suggests the ancestral start position within mitochondrial genomes of eimeriid coccidia.

    PubMed

    Ogedengbe, Mosun E; Qvarnstrom, Yvonne; da Silva, Alexandre J; Arrowood, Michael J; Barta, John R

    2015-05-01

    The near complete mitochondrial genome for Cyclospora cayetanensis is 6184 bp in length with three protein-coding genes (Cox1, Cox3, CytB) and numerous lsrDNA and ssrDNA fragments. Gene arrangements were conserved with other coccidia in the Eimeriidae, but the C. cayetanensis mitochondrial genome is not circular-mapping. Terminal transferase tailing and nested PCR completed the 5'-terminus of the genome starting with a 21 bp A/T-only region that forms a potential stem-loop. Regions homologous to the C. cayetanensis mitochondrial genome 5'-terminus are found in all eimeriid mitochondrial genomes available and suggest this may be the ancestral start of eimeriid mitochondrial genomes. Copyright © 2015 Australian Society for Parasitology Inc. All rights reserved.

  10. Preferential hydrophobic interactions are responsible for a preference of D-amino acids in the aminoacylation of 5'-AMP with hydrophobic amino acids

    NASA Technical Reports Server (NTRS)

    Lacey, J. C. Jr; Wickramasinghe, N. S.; Sabatini, R. S.

    1992-01-01

    We have studied the chemistry of aminoacyl AMP to model reactions at the 3' terminus of aminoacyl tRNA for the purpose of understanding the origin of protein synthesis. The present studies relate to the D, L preference in the esterification of 5'-AMP. All N-acetyl amino acids we studied showed faster reaction of the D-isomer, with a generally decreasing preference for D-isomer as the hydrophobicity of the amino acid decreased. The beta-branched amino acids, Ile and Val, showed an extreme preference for D-isomer. Ac-Leu, the gamma-branched amino acid, showed a slightly low D/L ratio relative to its hydrophobicity. The molecular basis for these preferences for D-isomer is understandable in the light of our previous studies and seems to be due to preferential hydrophobic interaction of the D-isomer with adenine. The preference for hydrophobic D-amino acids can be decreased by addition of an organic solvent to the reaction medium. Conversely, peptidylation with Ac-PhePhe shows a preference for the LL isomer over the DD isomer.

  11. Determinants of affinity and mode of DNA binding at the carboxy terminus of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1.

    PubMed

    Andera, L; Geiduschek, E P

    1994-03-01

    The role of the carboxy-terminal amino acids of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1, in DNA binding was analyzed. Chain-terminating mutations truncating the normally 99-amino-acid TF1 at amino acids 96, 97, and 98 were constructed, as were missense mutations substituting cysteine, arginine, and serine for phenylalanine at amino acid 97 and tryptophan for lysine at amino acid 99. The binding of the resulting proteins to a synthetic 44-bp binding site in 5-(hydroxymethyl)uracil DNA, to binding sites in larger SPO1 [5-(hydroxymethyl)uracil-containing] DNA fragments, and to thymine-containing homologous DNA was analyzed by gel retardation and also by DNase I and hydroxy radical footprinting. We conclude that the C tail up to and including phenylalanine at amino acid 97 is essential for DNA binding and that the two C-terminal amino acids, 98 and 99, are involved in protein-protein interactions between TF1 dimers bound to DNA.

  12. The Carboxyl Terminus of v-Abl Protein Can Augment SH2 Domain Function

    PubMed Central

    Warren, David; Heilpern, Andrew J.; Berg, Kent; Rosenberg, Naomi

    2000-01-01

    Abelson murine leukemia virus (Ab-MLV) transforms NIH 3T3 and pre-B cells via expression of the v-Abl tyrosine kinase. Although the enzymatic activity of this molecule is absolutely required for transformation, other regions of the protein are also important for this response. Among these are the SH2 domain, involved in phosphotyrosine-dependent protein-protein interactions, and the long carboxyl terminus, which plays an important role in transformation of hematopoietic cells. Important signals are sent from each of these regions, and transformation is most likely orchestrated by the concerted action of these different parts of the protein. To explore this idea, we compared the ability of the v-Src SH2 domain to substitute for that of v-Abl in the full-length P120 v-Abl protein and in P70 v-Abl, a protein that lacks the carboxyl terminus characteristic of Abl family members. Ab-MLV strains expressing P70/S2 failed to transform NIH 3T3 cells and demonstrated a greatly reduced capacity to mediate signaling events associated with the Ras-dependent mitogen-activated protein (MAP) kinase pathway. In contrast, Ab-MLV strains expressing P120/S2 were indistinguishable from P120 with respect to these features. Analyses of additional mutants demonstrated that the last 162 amino acids of the carboxyl terminus were sufficient to restore transformation. These data demonstrate that an SH2 domain with v-Abl substrate specificity is required for NIH 3T3 transformation in the absence of the carboxyl terminus and suggest that cooperativity between the extreme carboxyl terminus and the SH2 domain facilitates the transmission of transforming signals via the MAP kinase pathway. PMID:10775585

  13. AID binds cooperatively with UNG and Msh2-Msh6 to Ig switch regions dependent upon the AID C terminus*

    PubMed Central

    Ranjit, Sanjay; Khair, Lyne; Linehan, Erin K.; Ucher, Anna J.; Chakrabarti, Mrinmay; Schrader, Carol E.; Stavnezer, Janet

    2011-01-01

    Activation-induced cytidine deaminase (AID) is induced in B cells during an immune response and is essential for both class switch recombination (CSR) and somatic hypermutation (SHM) of antibody genes. The C terminal 10 amino acids of AID are required for CSR but not for SHM, although their role in CSR is unknown. Using retroviral transduction into mouse splenic B cells, we show that the C terminus is not required for S region DSBs, and therefore functions downstream of DSBs. Using chromatin immunoprecipitation, we show that AID binds cooperatively with UNG and the mismatch repair proteins Msh2-Msh6 to Ig Sμ and Sγ3 regions, and this depends on the C terminus and the deaminase activity of AID. We also show that mismatch repair does not contribute to the efficiency of CSR in the absence of the AID C terminus. Although it has been demonstrated that both UNG and Msh2-Msh6 are important for introduction of S region DSBs, our data suggest that the ability of AID to recruit these proteins is important for DSB resolution, perhaps by directing the S region DSBs toward accurate and efficient CSR via non-homologous end joining. PMID:21804017

  14. NMR structure and localization of a large fragment of the SARS-CoV fusion protein: Implications in viral cell fusion.

    PubMed

    Mahajan, Mukesh; Chatterjee, Deepak; Bhuvaneswari, Kannaian; Pillay, Shubhadra; Bhattacharjya, Surajit

    2018-02-01

    The lethal Coronaviruses (CoVs), Severe Acute Respiratory Syndrome-associated Coronavirus (SARS-CoV) and most recently Middle East Respiratory Syndrome Coronavirus, (MERS-CoV) are serious human health hazard. A successful viral infection requires fusion between virus and host cells carried out by the surface spike glycoprotein or S protein of CoV. Current models propose that the S2 subunit of S protein assembled into a hexameric helical bundle exposing hydrophobic fusogenic peptides or fusion peptides (FPs) for membrane insertion. The N-terminus of S2 subunit of SARS-CoV reported to be active in cell fusion whereby FPs have been identified. Atomic-resolution structure of FPs derived either in model membranes or in membrane mimic environment would glean insights toward viral cell fusion mechanism. Here, we have solved 3D structure, dynamics and micelle localization of a 64-residue long fusion peptide or LFP in DPC detergent micelles by NMR methods. Micelle bound structure of LFP is elucidated by the presence of discretely folded helical and intervening loops. The C-terminus region, residues F42-Y62, displays a long hydrophobic helix, whereas the N-terminus is defined by a short amphipathic helix, residues R4-Q12. The intervening residues of LFP assume stretches of loops and helical turns. The N-terminal helix is sustained by close aromatic and aliphatic sidechain packing interactions at the non-polar face. 15 N{ 1 H}NOE studies indicated dynamical motion, at ps-ns timescale, of the helices of LFP in DPC micelles. PRE NMR showed that insertion of several regions of LFP into DPC micelle core. Together, the current study provides insights toward fusion mechanism of SARS-CoV. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Promiscuous partnerships in Ewing's sarcoma.

    PubMed

    Sankar, Savita; Lessnick, Stephen L

    2011-07-01

    Ewing's sarcoma is a highly aggressive bone and soft tissue tumor of children and young adults. At the molecular genetic level Ewing's sarcoma is characterized by a balanced reciprocal translocation, t(11;22)(q24;q12), which encodes an oncogenic fusion protein and transcription factor EWS/FLI. This tumor-specific chimeric fusion retains the amino terminus of EWS, a member of the TET (TLS/EWS/TAF15) family of RNA-binding proteins, and the carboxy terminus of FLI, a member of the ETS family of transcription factors. In addition to EWS/FLI, variant translocation fusions belonging to the TET/ETS family have been identified in Ewing's sarcoma. These studies solidified the importance of TET/ETS fusions in the pathogenesis of Ewing's sarcoma and have since been used as diagnostic markers for the disease. EWS fusions with non-ETS transcription factor family members have been described in sarcomas that are clearly distinct from Ewing's sarcoma. However, in recent years there have been reports of rare fusions in "Ewing's-like tumors" that harbor the amino-terminus of EWS fused to the carboxy-terminal DNA or chromatin-interacting domains contributed by non-ETS proteins. This review aims to summarize the growing list of fusion oncogenes that characterize Ewing's sarcoma and Ewing's-like tumors and highlights important questions that need to be answered to further support the existing concept that Ewing's sarcoma is strictly a "TET/ETS" fusion-driven malignancy. Understanding the molecular mechanisms of action of the various different fusion oncogenes will provide better insights into the biology underlying this rare but important solid tumor. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Metalloprotease cleavage of the N terminus of the orphan G protein-coupled receptor GPR37L1 reduces its constitutive activity.

    PubMed

    Coleman, James L J; Ngo, Tony; Schmidt, Johannes; Mrad, Nadine; Liew, Chu Kong; Jones, Nicole M; Graham, Robert M; Smith, Nicola J

    2016-04-12

    Little is known about the pharmacology or physiology of GPR37L1, a G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor that is abundant in the cerebellum. Mice deficient in this receptor exhibit precocious cerebellar development and hypertension. We showed that GPR37L1 coupled to the G protein Gα(s) when heterologously expressed in cultured cells in the absence of any added ligand, whereas a mutant receptor that lacked the amino terminus was inactive. Conversely, inhibition of ADAMs (a disintegrin and metalloproteases) enhanced receptor activity, indicating that the presence of the amino terminus is necessary for GPR37L1 signaling. Metalloprotease-dependent processing of GPR37L1 was evident in rodent cerebellum, where we detected predominantly the cleaved, inactive form. However, comparison of the accumulation of cAMP (adenosine 3',5'-monophosphate) in response to phosphodiesterase inhibition in cerebellar slice preparations from wild-type and GPR37L1-null mice showed that some constitutive signaling remained in the wild-type mice. In reporter assays of Gα(s) or Gα(i) signaling, the synthetic, prosaposin-derived peptide prosaptide (TX14A) did not increase GPR37L1 activity. Our data indicate that GPR37L1 may be a constitutively active receptor, or perhaps its ligand is present under the conditions that we used for analysis, and that the activity of this receptor is instead controlled by signals that regulate metalloprotease activity in the tissue. Copyright © 2016, American Association for the Advancement of Science.

  17. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1.

    PubMed

    You, Zhongsheng; Chahwan, Charly; Bailis, Julie; Hunter, Tony; Russell, Paul

    2005-07-01

    ATM has a central role in controlling the cellular responses to DNA damage. It and other phosphoinositide 3-kinase-related kinases (PIKKs) have giant helical HEAT repeat domains in their amino-terminal regions. The functions of these domains in PIKKs are not well understood. ATM activation in response to DNA damage appears to be regulated by the Mre11-Rad50-Nbs1 (MRN) complex, although the exact functional relationship between the MRN complex and ATM is uncertain. Here we show that two pairs of HEAT repeats in fission yeast ATM (Tel1) interact with an FXF/Y motif at the C terminus of Nbs1. This interaction resembles nucleoporin FXFG motif binding to HEAT repeats in importin-beta. Budding yeast Nbs1 (Xrs2) appears to have two FXF/Y motifs that interact with Tel1 (ATM). In Xenopus egg extracts, the C terminus of Nbs1 recruits ATM to damaged DNA, where it is subsequently autophosphorylated. This interaction is essential for ATM activation. A C-terminal 147-amino-acid fragment of Nbs1 that has the Mre11- and ATM-binding domains can restore ATM activation in an Nbs1-depleted extract. We conclude that an interaction between specific HEAT repeats in ATM and the C-terminal FXF/Y domain of Nbs1 is essential for ATM activation. We propose that conformational changes in the MRN complex that occur upon binding to damaged DNA are transmitted through the FXF/Y-HEAT interface to activate ATM. This interaction also retains active ATM at sites of DNA damage.

  18. The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone.

    PubMed

    Marcu, M G; Chadli, A; Bouhouche, I; Catelli, M; Neckers, L M

    2000-11-24

    Heat shock protein 90 (Hsp90), one of the most abundant chaperones in eukaryotes, participates in folding and stabilization of signal-transducing molecules including steroid hormone receptors and protein kinases. The amino terminus of Hsp90 contains a non-conventional nucleotide-binding site, related to the ATP-binding motif of bacterial DNA gyrase. The anti-tumor agents geldanamycin and radicicol bind specifically at this site and induce destabilization of Hsp90-dependent client proteins. We recently demonstrated that the gyrase inhibitor novobiocin also interacts with Hsp90, altering the affinity of the chaperone for geldanamycin and radicicol and causing in vitro and in vivo depletion of key regulatory Hsp90-dependent kinases including v-Src, Raf-1, and p185(ErbB2). In the present study we used deletion/mutation analysis to identify the site of interaction of novobiocin with Hsp90, and we demonstrate that the novobiocin-binding site resides in the carboxyl terminus of the chaperone. Surprisingly, this motif also recognizes ATP, and ATP and novobiocin efficiently compete with each other for binding to this region of Hsp90. Novobiocin interferes with association of the co-chaperones Hsc70 and p23 with Hsp90. These results identify a second site on Hsp90 where the binding of small molecule inhibitors can significantly impact the function of this chaperone, and they support the hypothesis that both amino- and carboxyl-terminal domains of Hsp90 interact to modulate chaperone activity.

  19. Complex folding and misfolding effects of deer-specific amino acid substitutions in the β2-α2 loop of murine prion protein

    NASA Astrophysics Data System (ADS)

    Agarwal, Sonya; Döring, Kristina; Gierusz, Leszek A.; Iyer, Pooja; Lane, Fiona M.; Graham, James F.; Goldmann, Wilfred; Pinheiro, Teresa J. T.; Gill, Andrew C.

    2015-10-01

    The β2-α2 loop of PrPC is a key modulator of disease-associated prion protein misfolding. Amino acids that differentiate mouse (Ser169, Asn173) and deer (Asn169, Thr173) PrPC appear to confer dramatically different structural properties in this region and it has been suggested that amino acid sequences associated with structural rigidity of the loop also confer susceptibility to prion disease. Using mouse recombinant PrP, we show that mutating residue 173 from Asn to Thr alters protein stability and misfolding only subtly, whilst changing Ser to Asn at codon 169 causes instability in the protein, promotes oligomer formation and dramatically potentiates fibril formation. The doubly mutated protein exhibits more complex folding and misfolding behaviour than either single mutant, suggestive of differential effects of the β2-α2 loop sequence on both protein stability and on specific misfolding pathways. Molecular dynamics simulation of protein structure suggests a key role for the solvent accessibility of Tyr168 in promoting molecular interactions that may lead to prion protein misfolding. Thus, we conclude that ‘rigidity’ in the β2-α2 loop region of the normal conformer of PrP has less effect on misfolding than other sequence-related effects in this region.

  20. 90K Glycoprotein Promotes Degradation of Mutant β-Catenin Lacking the ISGylation or Phosphorylation Sites in the N-terminus.

    PubMed

    Park, So-Yeon; Yoon, Somy; Kim, Hangun; Kim, Kyung Keun

    2016-10-01

    β-Catenin is a major transducer of the Wnt signaling pathway, which is aberrantly expressed in colorectal and other cancers. Previously, we showed that β-catenin is downregulated by the 90K glycoprotein via ISGylation-dependent degradation. However, the further mechanisms of β-catenin degradation by 90K-mediated ISGylation pathway were not investigated. This study aimed to identify the β-catenin domain responsible for the action of 90K and to compare the mechanism of 90K on β-catenin degradation with phosphorylation-dependent ubiquitinational degradation of β-catenin. The deletion mutants of β-catenin lacking N- or C-terminal domain or mutating the N-terminal lysine or nonlysine residue were employed to delineate the characteristics of β-catenin degradation by 90K-mediated ISGylation pathway. 90K induced Herc5 and ISG15 expression and reduced β-catenin levels in HeLa and CSC221 cells. The N-terminus of β-catenin is required for 90K-induced β-catenin degradation, but the N-terminus of β-catenin is not essential for interaction with Herc5. However, substituting lysine residues in the N-terminus of β-catenin with arginine or deleting serine or threonine residue containing domains from the N-terminus does not affect 90K-induced β-catenin degradation, indicating that the N-terminal 86 amino acids of β-catenin are crucial for 90K-mediated ISGylation/degradation of β-catenin in which the responsible lysine or nonlysine residues were not identified. Our present results highlight the action of 90K on promoting degradation of mutant β-catenin lacking the phosphorylation sites in the N-terminus. It provides further insights into the discrete pathway downregulating the stabilized β-catenin via acquiring mutations at the serine/threonine residues in the N-terminus. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Properties of the simian virus 40 (SV40) large T antigens encoded by SV40 mutants with deletions in gene A.

    PubMed Central

    Cole, C N; Tornow, J; Clark, R; Tjian, R

    1986-01-01

    The biochemical properties of the large T antigens encoded by simian virus 40 (SV40) mutants with deletions at DdeI sites in the SV40 A gene were determined. Mutant large T antigens containing only the first 138 to 140 amino acids were unable to bind to the SV40 origin of DNA replication as were large T antigens containing at their COOH termini 96 or 97 amino acids encoded by the long open reading frame located between 0.22 and 0.165 map units (m.u.). All other mutant large T antigens were able to bind to the SV40 origin of replication. Mutants with in-phase deletions at 0.288 and 0.243 m.u. lacked ATPase activity, but ATPase activity was normal in mutants lacking origin-binding activity. The 627-amino acid large T antigen encoded by dlA2465, with a deletion at 0.219 m.u., was the smallest large T antigen displaying ATPase activity. Mutant large T antigens with the alternate 96- or 97-amino acid COOH terminus also lacked ATPase activity. All mutant large T antigens were found in the nuclei of infected cells; a small amount of large T with the alternate COOH terminus was also located in the cytoplasm. Mutant dlA2465 belonged to the same class of mutants as dlA2459. It was unable to form plaques on CV-1p cells at 37 or 32 degrees C but could form plaques on BSC-1 monolayers at 37 degrees C but not at 32 degrees C. It was positive for viral DNA replication and showed intracistronic complementation with any group A mutant whose large T antigen contained a normal carboxyl terminus. These findings and those of others suggest that both DNA binding and ATPase activity are required for the viral DNA replication function of large T antigen, that these two activities must be located on the same T antigen monomer, and that these two activities are performed by distinct domains of the polypeptide. These domains are distinct and separable from the domain affected by the mutation of dlA2465 and indicate that SV40 large T antigen is made up of at least three separate functional domains. Images PMID:3003386

  2. Amino acid sequence of tyrosinase from Neurospora crassa.

    PubMed Central

    Lerch, K

    1978-01-01

    The amino-acid sequence of tyrosinase from Neurospora crassa (monophenol,dihydroxyphenylalanine:oxygen oxidoreductase, EC 1.14.18.1) is reported. This copper-containing oxidase consists of a single polypeptide chain of 407 amino acids. The primary structure was determined by automated and manual sequence analysis on fragments produced by cleavage with cyanogen bromide and on peptides obtained by digestion with trypsin, pepsin, thermolysin, or chymotrypsin. The amino terminus of the protein is acetylated and the single cysteinyl residue 96 is covalently linked via a thioether bridge to histidyl residue 94. The formation and the possible role of this unusual structure in Neurospora tyrosinase is discussed. Dye-sensitized photooxidation of apotyrosinase and active-site-directed inactivation of the native enzyme indicate the possible involvement of histidyl residues 188, 192, 289, and 305 or 306 as ligands to the active-site copper as well as in the catalytic mechanism of this monooxygenase. PMID:151279

  3. The arrestin-1 finger loop interacts with two distinct conformations of active rhodopsin.

    PubMed

    Elgeti, Matthias; Kazmin, Roman; Rose, Alexander S; Szczepek, Michal; Hildebrand, Peter W; Bartl, Franz J; Scheerer, Patrick; Hofmann, Klaus Peter

    2018-03-23

    Signaling of the prototypical G protein-coupled receptor (GPCR) rhodopsin through its cognate G protein transducin (G t ) is quenched when arrestin binds to the activated receptor. Although the overall architecture of the rhodopsin/arrestin complex is known, many questions regarding its specificity remain unresolved. Here, using FTIR difference spectroscopy and a dual pH/peptide titration assay, we show that rhodopsin maintains certain flexibility upon binding the "finger loop" of visual arrestin (prepared as synthetic peptide ArrFL-1). We found that two distinct complexes can be stabilized depending on the protonation state of E3.49 in the conserved (D)ERY motif. Both complexes exhibit different interaction modes and affinities of ArrFL-1 binding. The plasticity of the receptor within the rhodopsin/ArrFL-1 complex stands in contrast to the complex with the C terminus of the G t α-subunit (GαCT), which stabilizes only one specific substate out of the conformational ensemble. However, G t α-subunit binding and both ArrFL-1-binding modes involve a direct interaction to conserved R3.50, as determined by site-directed mutagenesis. Our findings highlight the importance of receptor conformational flexibility and cytoplasmic proton uptake for modulation of rhodopsin signaling and thereby extend the picture provided by crystal structures of the rhodopsin/arrestin and rhodopsin/ArrFL-1 complexes. Furthermore, the two binding modes of ArrFL-1 identified here involve motifs of conserved amino acids, which indicates that our results may have elucidated a common modulation mechanism of class A GPCR-G protein/-arrestin signaling. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Molecular cloning of a CC-NBS-LRR gene from Vitis quinquangularis and its expression pattern in response to downy mildew pathogen infection.

    PubMed

    Zhang, Shuwei; Ding, Feng; Peng, Hongxiang; Huang, Yu; Lu, Jiang

    2018-02-01

    Downy mildew, caused by Plasmopara viticola, can result in a substantial decrease in grapevine productivity. Vitis vinifera is a widely cultivated grapevine species, which is susceptible to this disease. Repeated pesticide applications are harmful for both the environment and human health. Thus, it is essential to develop varieties/cultivars that are resistant to downy mildew and other diseases. In our previous studies, we investigated the natural resistance of the Chinese wild grapevine V. quinquangularis accession 'PS' against P. viticola and obtained several candidate resistance (R) genes that may play important roles in plant disease resistance. In the present study, we isolated a CC-NBS-LRR-type R gene from 'PS' and designated it VqCN. Its open reading frame is 2676 bp which encodes a protein of 891 amino acids with a predicted molecular mass of 102.12 kDa and predicted isoelectric point of 6.53. Multiple alignments with other disease resistant (R) proteins revealed a conserved phosphate-binding loop (P-loop), resistance nucleotide binding site, a hydrophobic domain (GLPL) and methionine-histidine-aspartate (MHD) motifs, which are typical components of nucleotide-binding site leucine-rich repeat proteins, as well as a coiled-coil region in the N-terminus. Quantitative real-time polymerase chain reaction analysis showed that the transcript of VqCN was rapidly and highly induced after infection with P. viticola in 'PS'. Moreover, the leaves of susceptible 'Cabernet Sauvignon' transiently expressing VqCN manifested increased resistance to P. viticola. The results indicated that VqCN might play a positive role in protecting grapevine against infection with P. viticola. Cloning and functional analysis of a putative resistance gene provide a basis for disease-resistance breeding.

  5. Computational Design of Thermostabilizing d-Amino Acid Substitutions

    PubMed Central

    Rodriguez-Granillo, Agustina; Annavarapu, Srinivas; Zhang, Lei; Koder, Ronald L.; Nanda, Vikas

    2012-01-01

    Judicious incorporation of d-amino acids in engineered proteins confer many advantages such as preventing degradation by endogenous proteases, and designing novel structures and functions not accessible to homochiral polypeptides. Glycine to d-alanine substitutions at the carboxy-termini can stabilize α-helices by reducing conformational entropy. Beyond alanine, we propose additional side chain effects on the degree of stabilization conferred by d-amino acid substitutions. A detailed, molecular understanding of backbone and side chain interactions is important for developing rational, broadly applicable strategies in using d-amino acids to increase protein thermostability. Insight from structural bioinformatics combined with computational protein design can successfully guide the selection of stabilizing d-amino acid mutations. Substituting a key glycine in the Trp-Cage mini-protein with d-Gln dramatically stabilizes the fold without altering the protein backbone. Stabilities of individual substitutions can be understood in terms of the balance of intramolecular forces at both the α-helix C-terminus and throughout the protein. PMID:21978298

  6. Molecular cloning and sequence analysis of the gene coding for the 57kDa soluble antigen of the salmonid fish pathogen Renibacterium salmoninarum

    USGS Publications Warehouse

    Chien, Maw-Sheng; Gilbert , Teresa L.; Huang, Chienjin; Landolt, Marsha L.; O'Hara, Patrick J.; Winton, James R.

    1992-01-01

    The complete sequence coding for the 57-kDa major soluble antigen of the salmonid fish pathogen, Renibacterium salmoninarum, was determined. The gene contained an opening reading frame of 1671 nucleotides coding for a protein of 557 amino acids with a calculated Mr value of 57190. The first 26 amino acids constituted a signal peptide. The deduced sequence for amino acid residues 27–61 was in agreement with the 35 N-terminal amino acid residues determined by microsequencing, suggesting the protein in synthesized as a 557-amino acid precursor and processed to produce a mature protein of Mr 54505. Two regions of the protein contained imperfect direct repeats. The first region contained two copies of an 81-residue repeat, the second contained five copies of an unrelated 25-residue repeat. Also, a perfect inverted repeat (including three in-frame UAA stop codons) was observed at the carboxyl-terminus of the gene.

  7. State of the art in PEGylation: the great versatility achieved after forty years of research.

    PubMed

    Pasut, Gianfranco; Veronese, Francesco M

    2012-07-20

    In the recent years, protein PEGylation has become an established and highly refined technology by moving forward from initial simple random coupling approaches based on conjugation at the level of lysine ε-amino group. Nevertheless, amino PEGylation is still yielding important conjugates, currently in clinical practice, where the degree of homogeneity was improved by optimizing the reaction conditions and implementing the purification processes. However, the current research is mainly focused on methods of site-selective PEGylation that allow the obtainment of a single isomer, thus highly increasing the degree of homogeneity and the preservation of bioactivity. Protein N-terminus and free cysteines were the first sites exploited for selective PEGylation but currently further positions can be addressed thanks to approaches like bridging PEGylation (disulphide bridges), enzymatic PEGylation (glutamines and C-terminus) and glycoPEGylation (sites of O- and N-glycosylation or the glycans of a glycoprotein). Furthermore, by combining the tools of genetic engineering with specific PEGylation approaches, the polymer can be basically coupled at any position on the protein surface, owing to the substitution of a properly chosen amino acid in the sequence with a natural or unnatural amino acid bearing an orthogonal reactive group. On the other hand, PEGylation has not achieved the same success in the delivery of small drugs, despite the large interest and several studies in this field. Targeted conjugates and PEGs for combination therapy might represent the promising answers for the so far unmet needs of PEG as carrier of small drugs. This review presents a thorough panorama of recent advances in the field of PEGylation. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Phosphoenolpyruvate carboxykinase of Trypanosoma brucei is targeted to the glycosomes by a C-terminal sequence.

    PubMed

    Sommer, J M; Nguyen, T T; Wang, C C

    1994-08-15

    Import of proteins into the glycosomes of T. brucei resembles the peroxisomal protein import in that C-terminal SKL-like tripeptide sequences can function as targeting signals. Many of the glycosomal proteins do not, however, possess such C-terminal tripeptide signals. Among these, phosphoenolpyruvate carboxykinase (PEPCK (ATP)) was thought to be targeted to the glycosomes by an N-terminal or an internal targeting signal. A limited similarity to the N-terminal targeting signal of rat peroxisomal thiolase exists at the N-terminus of T. brucei PEPCK. However, we found that this peroxisomal targeting signal does not function for glycosomal protein import in T. brucei. Further studies of the PEPCK gene revealed that the C-terminus of the predicted protein does not correspond to the previously deduced protein sequence of 472 amino acids due to a -1 frame shift error in the original DNA sequence. Readjusting the reading frame of the sequence results in a predicted protein of 525 amino acids in length ending in a tripeptide serine-arginine-leucine (SRL), which is a potential targeting signal for import into the glycosomes. A fusion protein of firefly luciferase, without its own C-terminal SKL targeting signal, and T. brucei PEPCK is efficiently imported into the glycosomes when expressed in procyclic trypanosomes. Deletion of the C-terminal SRL tripeptide or the last 29 amino acids of PEPCK reduced the import only by about 50%, while a deletion of the last 47 amino acids completely abolished the import. These results suggest that T. brucei PEPCK may contain a second, internal glycosomal targeting signal upstream of the C-terminal SRL sequence.

  9. Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity.

    PubMed

    Hardin, Shane C; Winter, Heike; Huber, Steven C

    2004-04-01

    Sucrose synthase (SUS) is phosphorylated on a major, amino-terminal site located at Ser-15 (S15) in the maize (Zea mays) SUS1 protein. Site- and phospho-specific antibodies against a phosphorylated S15 (pS15) peptide allowed direct analysis of S15 phosphorylation in relation to membrane association. Immunoblots of the maize leaf elongation zone, divided into 4-cm segments, demonstrated that the abundance of soluble (s-SUS) and membrane (m-SUS) SUS protein showed distinct positional profiles. The content of m-SUS was maximal in the 4- to 8-cm segment where it represented 9% of total SUS and occurred as a peripheral membrane protein. In contrast, s-SUS was highest in the 12- to 16-cm segment. Relative to s-SUS, m-SUS was hypophosphorylated at S15 in the basal 4 cm but hyperphosphorylated in apical segments. Differing capabilities of the anti-pS15 and anti-S15 peptide antibodies to immunoprecipitate SUS suggested that phosphorylation of S15, or exposure of unphosphorylated SUS to slightly acidic pH, altered the structure of the amino terminus. These structural changes were generally coincident with the increased sucrose cleavage activity that occurs at pH values below 7.5. In vitro S15 phosphorylation of the S170A SUS protein by a maize calcium-dependent protein kinase (CDPK) significantly increased sucrose cleavage activity at low pH. Collectively, the results suggest that (1) SUS membrane binding is controlled in vivo; (2) relative pS15 content of m-SUS depends on the developmental state of the organ; and (3) phosphorylation of S15 affects amino-terminal conformation in a way that may stimulate the catalytic activity of SUS and influence membrane association.

  10. Tandem mass spectrometric analysis of novel peptide-modified gemini surfactants used as gene delivery vectors.

    PubMed

    Al-Dulaymi, M; El-Aneed, A

    2017-06-01

    Diquaternary ammonium gemini surfactants have emerged as effective gene delivery vectors. A novel series of 11 peptide-modified compounds was synthesized, showing promising results in delivering genetic materials. The purpose of this work is to elucidate the tandem mass spectrometric (MS/MS) dissociation behavior of these novel molecules establishing a generalized MS/MS fingerprint. Exact mass measurements were achieved using a hybrid quadrupole orthogonal time-of-flight mass spectrometer, and a multi-stage MS/MS analysis was conducted using a triple quadrupole-linear ion trap mass spectrometer. Both instruments were operated in the positive ionization mode and are equipped with electrospray ionization. Abundant triply charged [M+H] 3+ species were observed in the single-stage analysis of all the evaluated compounds with mass accuracies of less than 8 ppm in mass error. MS/MS analysis showed that the evaluated gemini surfactants exhibited peptide-related dissociation characteristics because of the presence of amino acids within the compounds' spacer region. In particular, diagnostic product ions were originated from the neutral loss of ammonia from the amino acids' side chain resulting in the formation of pipecolic acid at the N-terminus part of the gemini surfactants. In addition, a charge-directed amide bond cleavage was initiated by the amino acids' side chain producing a protonated α-amino-ε-caprolactam ion and its complimentary C-terminus ion that contains quaternary amines. MS/MS and MS 3 analysis revealed common fragmentation behavior among all tested compounds, resulting in the production of a universal MS/MS fragmentation pathway. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Characterization and Promoter Analysis of a Cotton Ring-Type Ubiquitin Ligase (E3) Gene

    USDA-ARS?s Scientific Manuscript database

    A cotton fiber cDNA, GhRING1, and its corresponding gene have been cloned and characterized. The GhRING1 gene encodes a RING-type ubiquitin ligase (E3) containing 337 amino acids (aa). The GhRING1 protein contains a RING finger motif with conserved cysteine and histine residues at the C-terminus a...

  12. Determination of the Gene Sequence of Poliovirus with Pactamycin

    PubMed Central

    Summers, D. F.; Maizel, J. V.

    1971-01-01

    By examination of the virus-specific polypeptides formed after the addition of pactamycin, an inhibitor of protein chain initiation, to infected cells, it has been possible to tentatively locate the virus coat proteins at the amino terminus of the large, virus-specific protein precursor, and, therefore, to assign the coat protein cistron to the 5′ end of the RNA. PMID:4330946

  13. Structural insights into the T6SS effector protein Tse3 and the Tse3-Tsi3 complex from Pseudomonas aeruginosa reveal a calcium-dependent membrane-binding mechanism.

    PubMed

    Lu, Defen; Shang, Guijun; Zhang, Heqiao; Yu, Qian; Cong, Xiaoyan; Yuan, Jupeng; He, Fengjuan; Zhu, Chunyuan; Zhao, Yanyu; Yin, Kun; Chen, Yuanyuan; Hu, Junqiang; Zhang, Xiaodan; Yuan, Zenglin; Xu, Sujuan; Hu, Wei; Cang, Huaixing; Gu, Lichuan

    2014-06-01

    The opportunistic pathogen Pseudomonas aeruginosa uses the type VI secretion system (T6SS) to deliver the muramidase Tse3 into the periplasm of rival bacteria to degrade their peptidoglycan (PG). Concomitantly, P. aeruginosa uses the periplasm-localized immunity protein Tsi3 to prevent potential self-intoxication caused by Tse3, and thus gains an edge over rival bacteria in fierce niche competition. Here, we report the crystal structures of Tse3 and the Tse3-Tsi3 complex. Tse3 contains an annexin repeat-like fold at the N-terminus and a G-type lysozyme fold at the C-terminus. One loop in the N-terminal domain (Loop 12) and one helix (α9) from the C-terminal domain together anchor Tse3 and the Tse3-Tsi3 complex to membrane in a calcium-dependent manner in vitro, and this membrane-binding ability is essential for Tse3's activity. In the C-terminal domain, a Y-shaped groove present on the surface likely serves as the PG binding site. Two calcium-binding motifs are also observed in the groove and these are necessary for Tse3 activity. In the Tse3-Tsi3 structure, three loops of Tsi3 insert into the substrate-binding groove of Tse3, and three calcium ions present at the interface of the complex are indispensable for the formation of the Tse3-Tsi3 complex. © 2014 John Wiley & Sons Ltd.

  14. Purification and characterization of a β-amylase from soya beans

    PubMed Central

    Gertler, A.; Birk, Yehudith

    1965-01-01

    1. β-Amylase obtained by acidic extraction of soya-bean flour was purified by ammonium sulphate precipitation, followed by chromatography on calcium phosphate, diethylaminoethylcellulose, Sephadex G-25 and carboxymethylcellulose. 2. The homogeneity of the pure enzyme was established by criteria such as ultracentrifugation and electrophoresis on paper and in polyacrylamide gel. 3. The pure enzyme had a nitrogen content of 16·3%, its extinction coefficient, E1%1cm., at 280mμ was 17·3 and its specific activity/mg. of enzyme was 880 amylase units. 4. The molecular weight of the pure enzyme was determined as 61700 and its isoelectric point was pH5·85. 5. Preliminary examinations indicated that glutamic acid formed the N-terminus and glycine the C-terminus. 6. The amino acid content of the pure enzyme was established, one molecule consisting of 617 amino acid residues. 7. The pH optimum for pure soya-bean β-amylase is in the range 5–6. Pretreatment of the enzyme at pH3–5 decreases enzyme activity, whereas at pH6–9 it is not affected. ImagesFig. 2.Fig. 3. PMID:14342495

  15. Identification of the domains in cyclin A required for binding to, and activation of, p34cdc2 and p32cdk2 protein kinase subunits.

    PubMed Central

    Kobayashi, H; Stewart, E; Poon, R; Adamczewski, J P; Gannon, J; Hunt, T

    1992-01-01

    The binding of cyclin A to p34cdc2 and p32cdk2 and the protein kinase activity of the complexes has been measured by cell-free translation of the corresponding mRNA in extracts of frog eggs, followed by immunoprecipitation. A variety of mutant cyclin A molecules have been constructed and tested in this assay. Small deletions and point mutations of highly conserved residues in the 100-residue "cyclin box" abolish binding and activation of both p34cdc2 and p32cdk2. By contrast, large deletions at the N-terminus have no effect on kinase binding and activation, until they remove residues beyond 161, where the first conserved amino acids are found in all known examples of cyclin A. At the C-terminus, removal of 14 or more amino acids abolishes activity. We also demonstrate that deletion of, or point mutations, in the cyclin A homologue of the 10-residue "destruction box," previously described in cyclin B (Glotzer et al., 1991) abolish cyclin proteolysis at the transition from M-phase to interphase. Images PMID:1333843

  16. Identification of the domains in cyclin A required for binding to, and activation of, p34cdc2 and p32cdk2 protein kinase subunits.

    PubMed

    Kobayashi, H; Stewart, E; Poon, R; Adamczewski, J P; Gannon, J; Hunt, T

    1992-11-01

    The binding of cyclin A to p34cdc2 and p32cdk2 and the protein kinase activity of the complexes has been measured by cell-free translation of the corresponding mRNA in extracts of frog eggs, followed by immunoprecipitation. A variety of mutant cyclin A molecules have been constructed and tested in this assay. Small deletions and point mutations of highly conserved residues in the 100-residue "cyclin box" abolish binding and activation of both p34cdc2 and p32cdk2. By contrast, large deletions at the N-terminus have no effect on kinase binding and activation, until they remove residues beyond 161, where the first conserved amino acids are found in all known examples of cyclin A. At the C-terminus, removal of 14 or more amino acids abolishes activity. We also demonstrate that deletion of, or point mutations, in the cyclin A homologue of the 10-residue "destruction box," previously described in cyclin B (Glotzer et al., 1991) abolish cyclin proteolysis at the transition from M-phase to interphase.

  17. A Novel Type III Endosome Transmembrane Protein, TEMP

    PubMed Central

    Aturaliya, Rajith N.; Kerr, Markus C.; Teasdale, Rohan D.

    2012-01-01

    As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP’s plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport. PMID:24710541

  18. Helixconstraints and amino acid substitution in GLP-1 increase cAMP and insulin secretion but not beta-arrestin 2 signaling.

    PubMed

    Plisson, Fabien; Hill, Timothy A; Mitchell, Justin M; Hoang, Huy N; de Araujo, Aline D; Xu, Weijun; Cotterell, Adam; Edmonds, David J; Stanton, Robert V; Derksen, David R; Loria, Paula M; Griffith, David A; Price, David A; Liras, Spiros; Fairlie, David P

    2017-02-15

    Glucagon-like peptide (GLP-1) is an endogenous hormone that induces insulin secretion from pancreatic islets and modified forms are used to treat diabetes mellitus type 2. Understanding how GLP-1 interacts with its receptor (GLP-1R) can potentially lead to more effective drugs. Modeling and NMR studies of the N-terminus of GLP-1 suggest a β-turn between residues Glu9-Phe12 and a kinked alpha helix between Val16-Gly37. N-terminal turn constraints attenuated binding affinity and activity (compounds 1-8). Lys-Asp (i, i+4) crosslinks in the middle and at the C-terminus increased alpha helicity and cAMP stimulation without much effect on binding affinity or beta-arrestin 2 recruitment (compounds 9-18). Strategic positioning of helix-inducing constraints and amino acid substitutions (Tyr16, Ala22) increased peptide helicity and produced ten-fold higher cAMP potency (compounds 19-28) over GLP-1(7-37)-NH 2 . The most potent cAMP activator (compound 23) was also the most potent inducer of insulin secretion. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Processing of mammalian preprogastrin-releasing peptide.

    PubMed

    Reeve, J R; Cuttitta, F; Vigna, S R; Shively, J E; Walsh, J H

    1988-01-01

    The processing of preprogastrin-releasing peptide in mammalian tissues and in cultured cells takes place at discrete sites (Figure 6). Signal peptidase cleaves away the signal peptide from the amino terminus of gastrin-releasing peptide. An exopeptidase activity may remove dipeptides from the amino terminus. The amidation site (not shown in Fig. 6; see Fig. 2) has the same general sequence (Gly-Lys-Lys) seen for other amidated peptides. Cleavage after single basic residues yields gene-related products from Form I or II preproGRP. A unique non-basic cleavage yields a gene-related product from Form III preproGRP. The processing that occurs to form GRP, GRP, and GRP gene-related peptides is shown in Figure 7. ProGRP is cleaved by a series of enzymes to form GRP with an amidated carboxyl-terminal methionine (indicated by an asterisk in Fig. 7). GRP is cleaved to form the decapeptide GRP. The carboxyl-terminal flanking peptides of all three mRNA translation products are cleaved to form several gastrin-releasing peptide gene-related products. Knowledge of the processing of gastrin-releasing peptide and its gene-related products will allow synthesis of duplicates of the stored forms of these peptides, which can then be used for biological testing.

  20. Molecular Dynamics Analysis Reveals Structural Insights into Mechanism of Nicotine N-Demethylation Catalyzed by Tobacco Cytochrome P450 Mono-Oxygenase

    PubMed Central

    Wang, Shan; Yang, Shuo; An, Baiyi; Wang, Shichen; Yin, Yuejia; Lu, Yang; Xu, Ying; Hao, Dongyun

    2011-01-01

    CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent site-directed mutagenesis study revealed that a single amino acid substitution, i.e., cysteine to tryptophan at the 330 position in the middle of protein, restores the NND activity of CYP82E3 entirely. However, the same amino acid change caused the loss of the NND activity of CYP82E4. To determine the mechanism of the functional turnover of the two molecules, four 3D structures, i.e., the two molecules and their corresponding cys–trp mutants were modeled. The resulting structures exhibited that the mutation site is far from the active site, which suggests that no direct interaction occurs between the two sites. Simulation studies in different biological scenarios revealed that the mutation introduces a conformation drift with the largest change at the F-G loop. The dynamics trajectories analysis using principal component analysis and covariance analysis suggests that the single amino acid change causes the opening and closing of the transfer channels of the substrates, products, and water by altering the motion of the F-G and B-C loops. The motion of helix I is also correlated with the motion of both the F-G loop and the B-C loop and; the single amino acid mutation resulted in the curvature of helix I. These results suggest that the single amino acid mutation outside the active site region may have indirectly mediated the flexibility of the F-G and B-C loops through helix I, causing a functional turnover of the P450 monooxygenase. PMID:21858078

  1. Charge-switching amino acids-based cationic lipids for efficient gene delivery.

    PubMed

    Zheng, Li-Ting; Yi, Wen-Jing; Liu, Qiang; Su, Rong-Chuan; Zhao, Zhi-Gang

    2015-12-15

    A series of charge-switching amino acids-based cationic lipids 4a-4e bearing a benzyl ester at the terminus of the acyl chain, but differing in the polar-head group were prepared. The physicochemical properties of these lipids, including size, zeta potential and cellular uptake of the lipoplexes formed from with DNA, as well as the transfection efficiency (TE), were investigated. The results showed that the chemical structure of the cationic head-group clearly affects the physicochemical parameters of the amino acid-based lipids and especially the TE. The selected lipid, 4c gave 2.1 times higher TE than bPEI 25k in the presence of 10% serum in HeLa cells, with little toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Foot-and-mouth disease virus 5’-terminal S fragment is required for replication and modulation of the innate immune response in host cells

    USDA-ARS?s Scientific Manuscript database

    The foot-and-mouth disease virus (FMDV) contains a 5’ untranslated region (5’UTR) with multiple structural domains that regulate viral genome replication, translation, and virus-host interactions. At its 5’terminus, the S fragment of over 360 bp is predicted to form a stable stem-loop that is separ...

  3. Cryo-Electron Microscopy Reconstruction Shows Poliovirus 135S Particles Poised for Membrane Interaction and RNA Release

    PubMed Central

    Butan, Carmen; Filman, David J.

    2014-01-01

    During infection, binding of mature poliovirus to cell surface receptors induces an irreversible expansion of the capsid, to form an infectious cell-entry intermediate particle that sediments at 135S. In these expanded virions, the major capsid proteins (VP1 to VP3) adopt an altered icosahedral arrangement to open holes in the capsid at 2-fold and quasi-3-fold axes, and internal polypeptides VP4 and the N terminus of VP1, which can bind membranes, become externalized. Cryo-electron microscopy images for 117,330 particles were collected using Leginon and reconstructed using FREALIGN. Improved rigid-body positioning of major capsid proteins established reliably which polypeptide segments become disordered or rearranged. The virus-to-135S transition includes expansion of 4%, rearrangements of the GH loops of VP3 and VP1, and disordering of C-terminal extensions of VP1 and VP2. The N terminus of VP1 rearranges to become externalized near its quasi-3-fold exit, binds to rearranged GH loops of VP3 and VP1, and attaches to the top surface of VP2. These details improve our understanding of subsequent stages of infection, including endocytosis and RNA transfer into the cytoplasm. PMID:24257617

  4. The N-terminus of survivin is a mitochondrial-targeting sequence and Src regulator

    PubMed Central

    Dunajová, Lucia; Cash, Emily; Markus, Robert; Rochette, Sophie; Townley, Amelia R.

    2016-01-01

    ABSTRACT Survivin (also known as BIRC5) is a cancer-associated protein that exists in several locations in the cell. Its cytoplasmic residence in interphase cells is governed by CRM1 (also known as XPO1)-mediated nuclear exportation, and its localisation during mitosis to the centromeres and midzone microtubules is that of a canonical chromosomal passenger protein. In addition to these well-established locations, survivin is also a mitochondrial protein, but how it gets there and its function therein is presently unclear. Here, we show that the first ten amino acids at the N-terminus of survivin are sufficient to target GFP to the mitochondria in vivo, and ectopic expression of this decapeptide decreases cell adhesion and accelerates proliferation. The data support a signalling mechanism in which this decapeptide regulates the tyrosine kinase Src, leading to reduced focal adhesion plaques and disruption of F-actin organisation. This strongly suggests that the N-terminus of survivin is a mitochondrial-targeting sequence that regulates Src, and that survivin acts in concert with Src to promote tumorigenesis. PMID:27246243

  5. Structure-activity relationship study of Aib-containing amphipathic helical peptide-cyclic RGD conjugates as carriers for siRNA delivery.

    PubMed

    Wada, Shun-Ichi; Takesada, Anna; Nagamura, Yurie; Sogabe, Eri; Ohki, Rieko; Hayashi, Junsuke; Urata, Hidehito

    2017-12-15

    The conjugation of Aib-containing amphipathic helical peptide with cyclo(-Arg-Gly-Asp-d-Phe-Cys-) (cRGDfC) at the C-terminus of the helix peptide (PI) has been reported to be useful for constructing a carrier for targeted siRNA delivery into cells. In order to explore structure-activity relationships for the development of potential carriers for siRNA delivery, we synthesized conjugates of Aib-containing amphipathic helical peptide with cRGDfC at the N-terminus (PII) and both the N- and C-termini (PIII) of the helical peptide. Furthermore, to examine the influence of PI helical chain length on siRNA delivery, truncated peptides containing 16 (PIV), 12 (PV), and 8 (PVI) amino acid residues at the N-terminus of the helical chain were synthesized. PII and PIII, as well as PI, could deliver anti-luciferase siRNA into cells to induce the knockdown of luciferase stably expressed in cells. In contrast, all of the truncated peptides were unlikely to transport siRNA into cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A traffic signal for heterodimeric amino acid transporters to transfer from the ER to the Golgi.

    PubMed

    Ganapathy, Vadivel

    2009-01-15

    Heterodimeric amino acid transporters represent a unique class of transport systems that consist of a light chain that serves as the 'transporter proper' and a heavy chain that is necessary for targeting the complex to the plasma membrane. The currently prevailing paradigm assigns no role for the light chains in the cellular processing of these transporters. In this issue of the Biochemical Journal, Sakamoto et al. provide evidence contrary to this paradigm. Their studies with the rBAT -b(0,+)AT (related to b(0,+) amino acid transporter-b(0,+)-type amino acid transporter) heterodimeric amino acid transporter show that the C-terminus of the light chain b(0,+)AT contains a sequence motif that serves as the traffic signal for the transfer of the heterodimeric complex from the endoplasmic reticulum to the Golgi. This is a novel function for the light chain in addition to its already established role as the subunit responsible for the transport activity. These new findings also seem to be applicable to other heterodimeric amino acid transporters as well.

  7. Biologically active and C-amidated hinnavinII-38-Asn produced from a Trx fusion construct in Escherichia coli.

    PubMed

    Kang, Chang Soo; Son, Seung-Yeol; Bang, In Seok

    2008-12-01

    The cabbage butterfly (Artogeia rapae) antimicrobial peptide hinnavinII as a member of cecropin family is synthesized as 37 residues in size with an amidated lysine at C-terminus and shows the humoral immune response to a bacterial invasion. In this work, a synthetic gene for hinnavinII-38-Asn (HIN) with an additional amino acid asparagine residue containing amide group at C-terminus was cloned into pET-32a(+) vector to allow expression of HIN as a Trx fusion protein in Escherichia coli strain BL21 (DE3) pLysS. The resulting expression level of the fusion protein Trx-HIN could reach 15-20% of the total cell proteins and more than 70% of the target proteins were in soluble form. The fusion protein could be purified successfully by HiTrap Chelating HP column and a high yield of 15 mg purified fusion protein was obtained from 80 ml E. coli culture. Recombinant HIN was readily obtained by enterokinase cleavage of the fusion protein followed by FPLC chromatography, and 3.18 mg pure active recombinant HIN was obtained from 80 ml culture. The molecular mass of recombinant HIN determined by MALDI-TOF mass spectrometer is 4252.084 Da which matches the theoretical mass (4252.0 Da) of HIN. Comparing the antimicrobial activities of the recombinant hinnavinII with C-amidated terminus to that without an amidated C-terminus, we found that the amide of asparagine at C-terminus of hinnavinII improved its potency on certain microorganism such as E. coli, Enterobacter cloacae, Bacillus megaterium, and Staphylococcus aureus.

  8. Structure of Escherichia coli Arginyl-tRNA Synthetase in Complex with tRNAArg: Pivotal Role of the D-loop.

    PubMed

    Stephen, Preyesh; Ye, Sheng; Zhou, Ming; Song, Jian; Zhang, Rongguang; Wang, En-Duo; Giegé, Richard; Lin, Sheng-Xiang

    2018-05-25

    Aminoacyl-tRNA synthetases are essential components in protein biosynthesis. Arginyl-tRNA synthetase (ArgRS) belongs to the small group of aminoacyl-tRNA synthetases requiring cognate tRNA for amino acid activation. The crystal structure of Escherichia coli (Eco) ArgRS has been solved in complex with tRNA Arg at 3.0-Å resolution. With this first bacterial tRNA complex, we are attempting to bridge the gap existing in structure-function understanding in prokaryotic tRNA Arg recognition. The structure shows a tight binding of tRNA on the synthetase through the identity determinant A20 from the D-loop, a tRNA recognition snapshot never elucidated structurally. This interaction of A20 involves 5 amino acids from the synthetase. Additional contacts via U20a and U16 from the D-loop reinforce the interaction. The importance of D-loop recognition in EcoArgRS functioning is supported by a mutagenesis analysis of critical amino acids that anchor tRNA Arg on the synthetase; in particular, mutations at amino acids interacting with A20 affect binding affinity to the tRNA and specificity of arginylation. Altogether the structural and functional data indicate that the unprecedented ArgRS crystal structure represents a snapshot during functioning and suggest that the recognition of the D-loop by ArgRS is an important trigger that anchors tRNA Arg on the synthetase. In this process, A20 plays a major role, together with prominent conformational changes in several ArgRS domains that may eventually lead to the mature ArgRS:tRNA complex and the arginine activation. Functional implications that could be idiosyncratic to the arginine identity of bacterial ArgRSs are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Interactions of the EcoRV restriction endonuclease with fluorescent oligodeoxynucleotides.

    PubMed

    Erskine, S G; Halford, S E

    1995-05-19

    A self-complementary dodecadeoxyribonucleotide that contains the recognition sequence for the R.EcoRV ENase was synthesised with a primary amino group at its 5' terminus. The 5' amino function was labeled with the fluorescent dye 5-[dimethylamino] napthalene-1-sulfonyl chloride. The labeled oligodeoxyribonucleotide in its duplex form was shown to be a suitable substrate for kinetic studies on the ENase and that no significant dye-DNA or dye-protein interactions occurred. Finally, the binding of R.EcoRV to the labeled DNA was followed by detecting the fluorescence resonance energy transfer between the tryptophans of the protein and the fluorescent labels of the DNA.

  10. Identification of the in vivo truncation sites at the C-terminal region of alpha-A crystallin from aged bovine and human lens

    NASA Technical Reports Server (NTRS)

    Takemoto, L. J.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Total alpha-A crystallin was purified from young versus old lens, followed by digestion with cyanogen bromide. Laser desorption mass spectrometry of the C-terminal fragment demonstrated age-dependent loss of one and five amino acids from the C-terminus of alpha-A crystallin from both bovine and human lens. These results demonstrate specific peptide bonds of alpha-A crystallin are cleaved during the aging process of the normal lens. The C-terminal region is cleaved in two places between the two hydroxyl-containing amino acids present in the sequence -P-S(T)-S-.

  11. The structure of the ends of α-helices in globular proteins: effect of additional hydrogen bonds and implications for helix formation.

    PubMed

    Leader, David P; Milner-White, E James

    2011-03-01

    We prepared a set of about 2000 α-helices from a relational database of high-resolution three-dimensional structures of globular proteins, and identified additional main chain i ← i+3 hydrogen bonds at the ends of the helices (i.e., where the hydrogen bonding potential is not fulfilled by canonical i ← i+4 hydrogen bonds). About one-third of α-helices have such additional hydrogen bonds at the N-terminus, and more than half do so at the C-terminus. Although many of these additional hydrogen bonds at the C-terminus are associated with Schellman loops, the majority are not. We compared the dihedral angles at the termini of α-helices having or lacking the additional hydrogen bonds. Significant differences were found, especially at the C-terminus, where the dihedral angles at positions C2 and C1 in the absence of additional hydrogen bonds deviate substantially from those occurring within the α-helix. Using a novel approach we show how the structure of the C-terminus of the α-helix can emerge from that of constituent overlapping α-turns and β-turns, which individually show a variation in dihedral angles at different positions. We have also considered the direction of propagation of the α-helix using this approach. If one assumes that helices start as a single α-turn and grow by successive addition of further α-turns, the paths for growth in the N → C and C → N directions differ in a way that suggests that extension in the C → N direction is favored. Copyright © 2010 Wiley-Liss, Inc.

  12. HIV-1 Fusion Is Blocked through Binding of GB Virus C E2D Peptides to the HIV-1 gp41 Disulfide Loop

    PubMed Central

    Eissmann, Kristin; Mueller, Sebastian; Sticht, Heinrich; Jung, Susan; Zou, Peng; Jiang, Shibo; Gross, Andrea; Eichler, Jutta; Fleckenstein, Bernhard; Reil, Heide

    2013-01-01

    A strategy for antiviral drug discovery is the elucidation and imitation of viral interference mechanisms. HIV-1 patients benefit from a coinfection with GB Virus C (GBV-C), since HIV-positive individuals with long-term GBV-C viraemia show better survival rates than HIV-1 patients without persisting GBV-C. A direct influence of GBV-C on HIV-1 replication has been shown in coinfection experiments. GBV-C is a human non-pathogenic member of the flaviviridae family that can replicate in T and B cells. Therefore, GBV-C shares partly the same ecological niche with HIV-1. In earlier work we have demonstrated that recombinant glycoprotein E2 of GBV-C and peptides derived from the E2 N-terminus interfere with HIV entry. In this study we investigated the underlying mechanism. Performing a virus-cell fusion assay and temperature-arrested HIV-infection kinetics, we provide evidence that the HIV-inhibitory E2 peptides interfere with late HIV-1 entry steps after the engagement of gp120 with CD4 receptor and coreceptor. Binding and competition experiments revealed that the N-terminal E2 peptides bind to the disulfide loop region of HIV-1 transmembrane protein gp41. In conjunction with computational analyses, we identified sequence similarities between the N-termini of GBV-C E2 and the HIV-1 glycoprotein gp120. This similarity appears to enable the GBV-C E2 N-terminus to interact with the HIV-1 gp41 disulfide loop, a crucial domain involved in the gp120-gp41 interface. Furthermore, the results of the present study provide initial proof of concept that peptides targeted to the gp41 disulfide loop are able to inhibit HIV fusion and should inspire the development of this new class of HIV-1 entry inhibitors. PMID:23349893

  13. Promiscuous Partnerships in Ewing’s Sarcoma

    PubMed Central

    Sankar, Savita; Lessnick, Stephen L.

    2011-01-01

    Ewing’s sarcoma is a highly aggressive bone and soft tissue tumor of children and young adults. At the molecular genetic level Ewing’s sarcoma is characterized by a balanced reciprocal translocation, t(11;22)(q24;q12), which encodes an oncogenic fusion protein and transcription factor EWS/FLI. This tumor-specific chimeric fusion retains the amino terminus of EWS, a member of the TET (TLS/EWS/TAF15) family of RNA-binding proteins, and the carboxy terminus of FLI, a member of the ETS family of transcription factors. In addition to EWS/FLI, variant translocation fusions belonging to the TET/ETS family have been identified in Ewing’s sarcoma. These studies solidified the importance of TET/ETS fusions in the pathogenesis of Ewing’s sarcoma and have since been used as diagnostic markers for the disease. EWS fusions with non-ETS transcription factor family members have been described in sarcomas that are clearly distinct from Ewing’s sarcoma. However, in recent years there have been reports of rare fusions in “Ewing’s-like tumors” that harbor the amino-terminus of EWS fused to the carboxy-terminal DNA or chromatin-interacting domains contributed by non-ETS proteins. This review aims to summarize the growing list of fusion oncogenes that characterize Ewing’s sarcoma and Ewing’s-like tumors and highlights important questions that need to be answered to further support the existing concept that Ewing’s sarcoma is strictly a “TET/ETS” fusion-driven malignancy. Understanding the molecular mechanisms of action of the various different fusion oncogenes will provide better insights into the biology underlying this rare but important solid tumor. PMID:21872822

  14. Cellular Nuclear Export Factors TAP and Aly Are Required for HDAg-L-mediated Assembly of Hepatitis Delta Virus.

    PubMed

    Huang, Hsiu-Chen; Lee, Chung-Pei; Liu, Hui-Kang; Chang, Ming-Fu; Lai, Yu-Heng; Lee, Yu-Ching; Huang, Cheng

    2016-12-09

    Hepatitis delta virus (HDV) is a satellite virus of hepatitis B virus (HBV). HDV genome encodes two forms of hepatitis delta antigen (HDAg), small HDAg (HDAg-S), which is required for viral replication, and large HDAg (HDAg-L), which is essential for viral assembly. HDAg-L is identical to HDAg-S except that it bears a 19-amino acid extension at the C terminus. Both HDAgs contain a nuclear localization signal (NLS), but only HDAg-L contains a CRM1-independent nuclear export signal at its C terminus. The nuclear export activity of HDAg-L is important for HDV particle formation. However, the mechanisms of HDAg-L-mediated nuclear export of HDV ribonucleoprotein are not clear. In this study, the host cellular RNA export complex TAP-Aly was found to form a complex with HDAg-L, but not with an export-defective HDAg-L mutant, in which Pro 205 was replaced by Ala. HDAg-L was found to colocalize with TAP and Aly in the nucleus. The C-terminal domain of HDAg-L was shown to directly interact with the N terminus of TAP, whereas an HDAg-L mutant lacking the NLS failed to interact with full-length TAP. In addition, small hairpin RNA-mediated down-regulation of TAP or Aly reduced nuclear export of HDAg-L and assembly of HDV virions. Furthermore, a peptide, TAT-HDAg-L(198-210), containing the 10-amino acid TAT peptide and HDAg-L(198-210), inhibited the interaction between HDAg-L and TAP and blocked HDV virion assembly and secretion. These data demonstrate that formation and release of HDV particles are mediated by TAP and Aly. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. A PR-4 gene identified from Malus domestica is involved in the defense responses against Botryosphaeria dothidea.

    PubMed

    Bai, Suhua; Dong, Chaohua; Li, Baohua; Dai, Hongyi

    2013-01-01

    Pathogenesis-related protein-4 (PR-4) family is a group of proteins with a Barwin domain in C-terminus and generally thought to be involved in plant defense responses. However, their detailed roles are poorly understood in defense of apple plant against pathogenic infection. In the present study, a new PR-4 gene (designated as MdPR-4) was identified from Malus domestica, and its roles in defense responses of apple were investigated. The open reading frame of MdPR-4 gene is of 447 bp encoding a protein of 148 amino acids with a Barwin domain in C-terminus and a signal peptide of 26 amino acids in N-terminus. Sequence and structural analysis indicated that MdPR-4 protein belongs to class II of PR-4 family. The high-level expression of MdPR-4 was observed in flowers and leaves as revealed by quantitative real time PCR. The temporal expression analysis demonstrated that MdPR-4 expression could be up-regulated by Botryosphaeria dothidea infection and salicylic acid (SA) or methyl jasmonate (MeJA) treatment, but suppressed by diethyldithiocarbamic acid (DIECA). In vitro assays, recombinant MdPR-4 protein exhibited ribonuclease activity specific for single strand RNA and significant inhibition to hyphal growth of three apple pathogenic fungi B. dothidea, Valsa ceratosperma and Glomerella cingulata. Moreover, the inhibition was reduced by the presence of 5'-ADP. Taken all together, the results indicate that MdPR-4 protein is involved in the defense responses of apple against pathogenic attack by directly inhibiting hyphal growth, and the inhibition is correlated with its ribonuclease activity, where as MdPR-4 expression is regulated by both SA and JA signaling pathway. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Small peptides patterned after the N-terminus domain of SNAP25 inhibit SNARE complex assembly and regulated exocytosis.

    PubMed

    Blanes-Mira, Clara; Merino, Jaime M; Valera, Elvira; Fernández-Ballester, Gregorio; Gutiérrez, Luis M; Viniegra, Salvador; Pérez-Payá, Enrique; Ferrer-Montiel, Antonio

    2004-01-01

    Synthetic peptides patterned after the C-terminus of synaptosomal associated protein of 25 kDa (SNAP25) efficiently abrogate regulated exocytosis. In contrast, the use of SNAP25 N-terminal-derived peptides to modulate SNAP receptors (SNARE) complex assembly and neurosecretion has not been explored. Here, we show that the N-terminus of SNAP25, specially the segment that encompasses 22Ala-44Ile, is essential for the formation of the SNARE complex. Peptides patterned after this protein domain are potent inhibitors of SNARE complex formation. The inhibitory activity correlated with their propensity to adopt an alpha-helical secondary structure. These peptides abrogated SNARE complex formation only when added previous to the onset of aggregate assembly. Analysis of the mechanism of action revealed that these peptides disrupted the binary complex formed by SNAP25 and syntaxin. The identified peptides inhibited Ca2+-dependent exocytosis from detergent-permeabilized excitable cells. Noteworthy, these amino acid sequences markedly protected intact hippocampal neurones against hypoglycaemia-induced, glutamate-mediated excitotoxicity with a potency that rivalled that displayed by botulinum neurotoxins. Our findings indicate that peptides patterned after the N-terminus of SNAP25 are potent inhibitors of SNARE complex formation and neuronal exocytosis. Because of their activity in intact neurones, these cell permeable peptides may be hits for antispasmodic and analgesic drug development.

  17. The N-terminus of IFT46 mediates intraflagellar transport of outer arm dynein and its cargo-adaptor ODA16

    PubMed Central

    Hou, Yuqing; Witman, George B.

    2017-01-01

    Cilia are assembled via intraflagellar transport (IFT). The IFT machinery is composed of motors and multisubunit particles, termed IFT-A and IFT-B, that carry cargo into the cilium. Knowledge of how the IFT subunits interact with their cargo is of critical importance for understanding how the unique ciliary domain is established. We previously reported a Chlamydomonas mutant, ift46-1, that fails to express the IFT-B protein IFT46, has greatly reduced levels of other IFT-B proteins, and assembles only very short flagella. A spontaneous suppression of ift46-1 restored IFT-B levels and enabled growth of longer flagella, but the flagella lacked outer dynein arms. Here we show that the suppression is due to insertion of the transposon MRC1 into the ift46-1 allele, causing the expression of a fusion protein including the IFT46 C-terminal 240 amino acids. The IFT46 C-terminus can assemble into and stabilize IFT-B but does not support transport of outer arm dynein into flagella. ODA16, a cargo adaptor specific for outer arm dynein, also fails to be imported into the flagella in the absence of the IFT46 N-terminus. We conclude that the IFT46 N-terminus, ODA16, and outer arm dynein interact for IFT of the latter. PMID:28701346

  18. Clostridium perfringens Iota-Toxin: Mapping of Receptor Binding and Ia Docking Domains on Ib

    PubMed Central

    Marvaud, Jean-Christophe; Smith, Theresa; Hale, Martha L.; Popoff, Michel R.; Smith, Leonard A.; Stiles, Bradley G.

    2001-01-01

    Clostridium perfringens iota-toxin is a binary toxin consisting of iota a (Ia), an ADP-ribosyltransferase that modifies actin, and iota b (Ib), which binds to a cell surface protein and translocates Ia into a target cell. Fusion proteins of recombinant Ib and truncated variants were tested for binding to Vero cells and docking with Ia via fluorescence-activated cytometry and cytotoxicity experiments. C-terminal residues (656 to 665) of Ib were critical for cell surface binding, and truncated Ib variants containing ≥200 amino acids of the C terminus were effective Ib competitors and prevented iota cytotoxicity. The N-terminal domain (residues 1 to 106) of Ib was important for Ia docking, yet this region was not an effective competitor of iota cytotoxicity. Further studies showed that Ib lacking just the N-terminal 27 residues did not facilitate Ia entry into a target cell and subsequent cytotoxicity. Five monoclonal antibodies against Ib were also tested with each truncated Ib variant for epitope and structural mapping by surface plasmon resonance and an enzyme-linked immunosorbent assay. Each antibody bound to a linear epitope within the N terminus (residues 28 to 66) or the C terminus (residues 632 to 655). Antibodies that target the C terminus neutralized in vitro cytotoxicity and delayed the lethal effects of iota-toxin in mice. PMID:11254604

  19. The amino-terminus of the hepatitis C virus (HCV) p7 viroporin and its cleavage from glycoprotein E2-p7 precursor determine specific infectivity and secretion levels of HCV particle types

    PubMed Central

    Denolly, Solène; Bourlet, Thomas; Amirache, Fouzia

    2017-01-01

    Viroporins are small transmembrane proteins with ion channel activities modulating properties of intracellular membranes that have diverse proviral functions. Hepatitis C virus (HCV) encodes a viroporin, p7, acting during assembly, envelopment and secretion of viral particles (VP). HCV p7 is released from the viral polyprotein through cleavage at E2-p7 and p7-NS2 junctions by signal peptidase, but also exists as an E2p7 precursor, of poorly defined properties. Here, we found that ectopic p7 expression in HCVcc-infected cells reduced secretion of particle-associated E2 glycoproteins. Using biochemical assays, we show that p7 dose-dependently slows down the ER-to-Golgi traffic, leading to intracellular retention of E2, which suggested that timely E2p7 cleavage and p7 liberation are critical events to control E2 levels. By studying HCV mutants with accelerated E2p7 processing, we demonstrate that E2p7 cleavage controls E2 intracellular expression and secretion levels of nucleocapsid-free subviral particles and infectious virions. In addition, our imaging data reveal that, following p7 liberation, the amino-terminus of p7 is exposed towards the cytosol and coordinates the encounter between NS5A and NS2-based assembly sites loaded with E1E2 glycoproteins, which subsequently leads to nucleocapsid envelopment. We identify punctual mutants at p7 membrane interface that, by abrogating NS2/NS5A interaction, are defective for transmission of infectivity owing to decreased secretion of core and RNA and to increased secretion of non/partially-enveloped particles. Altogether, our results indicate that the retarded E2p7 precursor cleavage is essential to regulate the intracellular and secreted levels of E2 through p7-mediated modulation of the cell secretory pathway and to unmask critical novel assembly functions located at p7 amino-terminus. PMID:29253880

  20. Constrained Combinatorial Libraries of Gp2 Proteins Enhance Discovery of PD-L1 Binders.

    PubMed

    Kruziki, Max A; Sarma, Vidur; Hackel, Benjamin J

    2018-06-05

    Engineered protein ligands are used for molecular therapy, diagnostics, and industrial biotechnology. The Gp2 domain is a 45-amino acid scaffold that has been evolved for specific, high-affinity binding to multiple targets by diversification of two solvent-exposed loops. Inspired by sitewise enrichment of select amino acids, including cysteine pairs, in earlier Gp2 discovery campaigns, we hypothesized that the breadth and efficiency of de novo Gp2 discovery will be aided by sitewise amino acid constraint within combinatorial library design. We systematically constructed eight libraries and comparatively evaluated their efficacy for binder discovery via yeast display against a panel of targets. Conservation of a cysteine pair at the termini of the first diversified paratope loop increased binder discovery 16-fold ( p < 0.001). Yet two other libraries with conserved cysteine pairs, within the second loop or an interloop pair, did not aid discovery thereby indicating site-specific impact. Via a yeast display protease resistance assay, Gp2 variants from the loop one cysteine pair library were 3.3 ± 2.1-fold ( p = 0.005) more stable than nonconstrained variants. Sitewise constraint of noncysteine residues-guided by previously evolved binders, natural Gp2 homology, computed stability, and structural analysis-did not aid discovery. A panel of binders to programmed death ligand 1 (PD-L1), a key target in cancer immunotherapy, were discovered from the loop 1 cysteine constraint library. Affinity maturation via loop walking resulted in strong, specific cellular PD-L1 affinity ( K d = 6-9 nM).

  1. Cyclic Nucleotide-gated Channel α-3 (CNGA3) Interacts with Stereocilia Tip-Link Cadherin 23 + Exon 68 or Alternatively with Myosin VIIa, Two Proteins Required for Hair Cell Mechanotransduction*

    PubMed Central

    Selvakumar, Dakshnamurthy; Drescher, Marian J.; Drescher, Dennis G.

    2013-01-01

    Previously, we obtained evidence for a photoreceptor/olfactory type of CNGA3 transcript in a purified teleost vestibular hair cell preparation with immunolocalization of CNGA3 protein to stereocilia of teleost vestibular and mammalian cochlear hair cells. The carboxyl terminus of highly Ca2+-permeable CNGA3 expressed in the mammalian organ of Corti and saccular hair cells was found to interact with an intracellular domain of microfibril interface-located protein 1 (EMILIN 1), a member of the elastin superfamily, also immunolocalizd to hair cell stereocilia (Selvakumar, D., Drescher, M. J., Dowdall, J. R., Khan, K. M., Hatfield, J. S., Ramakrishnan, N. A., and Drescher, D. G. (2012) Biochem. J. 443, 463–476). Here, we provide evidence for organ of Corti proteins, of Ca2+-dependent binding of the amino terminus of CNGA3 specifically to the carboxyl terminus of stereocilia tip-link protein CDH23 +68 (cadherin 23 with expressed exon 68) by yeast two-hybrid mating and co-transformation protocols, pulldown assays, and surface plasmon resonance analysis. Myosin VIIa, required for adaptation of hair cell mechanotransduction (MET) channel(s), competed with CDH23 +68, with direct Ca2+-dependent binding to the amino terminus of CNGA3. Based upon the premise that hair cell stereocilia tip-link proteins are closely coupled with MET, these results are consistent with the possibility that CNGA3 participates in hair-cell MET. Together with the demonstration of protein-protein interaction between HCN1 and tip-link protein protocadherin 15 CD3 (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227–3238; Ramakrishnan, N. A., Drescher, M. J., Khan, K. M., Hatfield, J. S., and Drescher, D. G. (2012) J. Biol. Chem. 287, 37628–37646), a protein-protein interaction for CNGA3 and a second tip-link protein, CDH23 +68, further suggests possible association of two different channels with a single stereocilia tip link. PMID:23329832

  2. Cyclic nucleotide-gated channel α-3 (CNGA3) interacts with stereocilia tip-link cadherin 23 + exon 68 or alternatively with myosin VIIa, two proteins required for hair cell mechanotransduction.

    PubMed

    Selvakumar, Dakshnamurthy; Drescher, Marian J; Drescher, Dennis G

    2013-03-08

    Previously, we obtained evidence for a photoreceptor/olfactory type of CNGA3 transcript in a purified teleost vestibular hair cell preparation with immunolocalization of CNGA3 protein to stereocilia of teleost vestibular and mammalian cochlear hair cells. The carboxyl terminus of highly Ca(2+)-permeable CNGA3 expressed in the mammalian organ of Corti and saccular hair cells was found to interact with an intracellular domain of microfibril interface-located protein 1 (EMILIN 1), a member of the elastin superfamily, also immunolocalizd to hair cell stereocilia (Selvakumar, D., Drescher, M. J., Dowdall, J. R., Khan, K. M., Hatfield, J. S., Ramakrishnan, N. A., and Drescher, D. G. (2012) Biochem. J. 443, 463-476). Here, we provide evidence for organ of Corti proteins, of Ca(2+)-dependent binding of the amino terminus of CNGA3 specifically to the carboxyl terminus of stereocilia tip-link protein CDH23 +68 (cadherin 23 with expressed exon 68) by yeast two-hybrid mating and co-transformation protocols, pulldown assays, and surface plasmon resonance analysis. Myosin VIIa, required for adaptation of hair cell mechanotransduction (MET) channel(s), competed with CDH23 +68, with direct Ca(2+)-dependent binding to the amino terminus of CNGA3. Based upon the premise that hair cell stereocilia tip-link proteins are closely coupled with MET, these results are consistent with the possibility that CNGA3 participates in hair-cell MET. Together with the demonstration of protein-protein interaction between HCN1 and tip-link protein protocadherin 15 CD3 (Ramakrishnan, N. A., Drescher, M. J., Barretto, R. L., Beisel, K. W., Hatfield, J. S., and Drescher, D. G. (2009) J. Biol. Chem. 284, 3227-3238; Ramakrishnan, N. A., Drescher, M. J., Khan, K. M., Hatfield, J. S., and Drescher, D. G. (2012) J. Biol. Chem. 287, 37628-37646), a protein-protein interaction for CNGA3 and a second tip-link protein, CDH23 +68, further suggests possible association of two different channels with a single stereocilia tip link.

  3. Partial amino-acid sequence of the precursor of an immunoglobulin light chain containing NH2-terminal pyroglutamic acid.

    PubMed Central

    Burstein, Y; Kantour, F; Schechter, I

    1976-01-01

    Analyses of amino-acid sequences of the total cell-free products programmed by the mRNA of MOPC-104E gamma light (L)-chain show that over 95% of the products have sequences of a distinct protein that correspond to the L-chain precursor. In this precursor an extra piece is coupled to the NH2-terminus of the mature L-chain. Analyses of products labeled with [3H]alanine, [3H]leucine, and [3H]proline demonstrate that the extra piece is composed of at least 18 residues. Analyses of [35S]methione-labeled product indicate that the extra piece may contain an additional NH2-terminal methionine, which is detected in about 10% of the molecules. Partial recovery of the NJ2-terminal methionine (alanine, leucine, and proline are recovered in yields close to theoretical, greater than 95%) suggests that it is the initiator methionine, which is known to be short lived in eukaryotes due to rapid hydrolysis. Thus, the extra piece seems to be 19 residues in length, and it contains one methionine at the NH2-terminus, three alanines at positions 2, 12, and 17, and five leucines at positions 6, 8, 10, 11, and 13. The close gathering of leucine residues, as well as their abundance (26%), suggest that the extra piece would be quite hydrophobic. Hydrophobicity seems to be a general property of the extra piece, since similar clusters of leucine were found in the precursors of 3 KL-chains (Burstein, Y. & Schechter, I. (1976) Biochem. J. 157, 145-151). The NH2-terminus of the mature MOPC-104E gamma L-chain is blocked by pyroglutamic acid. The fact that in the precursor a peptide segment precedes this NH2-terminus establishes that pyroglutamic acid is not the initiator residue for synthesis of the L-chain. Apparently, the pyroglutamic acid is formed by cyclization of glutamic acid or glutamine during cleavage of the extra piece to yield the mature L-chain. Images PMID:822420

  4. The pH Stability of Foot-and-Mouth Disease Virus Particles Is Modulated by Residues Located at the Pentameric Interface and in the N Terminus of VP1.

    PubMed

    Caridi, Flavia; Vázquez-Calvo, Angela; Sobrino, Francisco; Martín-Acebes, Miguel A

    2015-05-01

    The picornavirus foot-and-mouth disease virus (FMDV) is the etiological agent of a highly contagious disease that affects important livestock species. The FMDV capsid is highly acid labile, and viral particles lose infectivity due to their disassembly at pH values slightly below neutrality. This acid sensitivity is related to the mechanism of viral uncoating and genome penetration from endosomes. In this study, we have analyzed the molecular basis of FMDV acid-induced disassembly by isolating and characterizing a panel of novel FMDV mutants differing in acid sensitivity. Amino acid replacements altering virion stability were preferentially distributed in two different regions of the capsid: the N terminus of VP1 and the pentameric interface. Even more, the acid labile phenotype induced by a mutation located at the pentameric interface in VP3 could be compensated by introduction of an amino acid substitution in the N terminus of VP1. These results indicate that the acid sensitivity of FMDV can be considered a multifactorial trait and that virion stability is the fine-tuned product of the interaction between residues from different capsid proteins, in particular those located within the N terminus of VP1 or close to the pentameric interface. The viral capsid protects the viral genome from environmental factors and contributes to virus dissemination and infection. Thus, understanding of the molecular mechanisms that modulate capsid stability is of interest for the basic knowledge of the biology of viruses and as a tool to improve the stability of conventional vaccines based on inactivated virions or empty capsids. Using foot-and-mouth disease virus (FMDV), which displays a capsid with extreme acid sensitivity, we have performed a genetic study to identify the molecular determinants involved in capsid stability. A panel of FMDV mutants with differential sensitivity to acidic pH was generated and characterized, and the results showed that two different regions of FMDV capsid contribute to modulating viral particle stability. These results provide new insights into the molecular mechanisms of acid-mediated FMDV uncoating. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Different mutation patterns of mitochondrial DNA displacement-loop in hepatocellular carcinomas induced by N-nitrosodiethylamine and a choline-deficient l-amino acid-defined diet in rats.

    PubMed

    Onishi, Mariko; Sokuza, Yui; Nishikawa, Tomoki; Mori, Chiharu; Uwataki, Kimiko; Honoki, Kanya; Tsujiuchi, Toshifumi

    2007-10-12

    Mutations of the mitochondria DNA (mtDNA) displacement loop (D-loop) were investigated to clarify different changes of exogenous and endogenous liver carcinogenesis in rats. We induced hepatocellular carcinomas (HCCs) in rats with N-nitrosodiethylamine (DEN) and a choline-deficient l-amino acid-defined (CDAA) diet. DNAs were extracted from 10 HCCs induced by DEN and 10 HCCs induced by the CDAA diet. To identify mutations in mtDNA D-loop, polymerase chain reaction (PCR)-single strand conformation polymorphism (SSCP) analysis, followed by nucleotide sequencing, was performed. Mutations were detected in 5 out of 10 HCCs (50%) induced by DEN. Four out of 5 mutations were G/C to A/T transitions at positions 15707, 15717, 15930, and 16087, and one T/A to C/G transition at position 15559. By contrast, no mutations were found in 10 HCCs induced by the CDAA diet. These results demonstrated that mutations in mtDNA D-loop occur in rat HCCs induced by DEN but not by the CDAA diet, suggesting that mtDNA D-loop is a target of exogenous liver carcinogenesis in rats.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azarkh, Eugene; Robinson, Erin; Hirunkanokpun, Supanee

    Mosquito densonucleosis viruses synthesize two non-structural proteins, NS1 and NS2. While NS1 has been studied relatively well, little is known about NS2. Antiserum was raised against a peptide near the N-terminus of NS2, and used to conduct Western blot analysis and immuno-fluorescence assays. Western blots revealed a prominent band near the expected size (41 kDa). Immuno-fluorescence studies of mosquito cells transfected with AeDNV indicate that NS2 has a wider distribution pattern than does NS1, and the distribution pattern appears to be a function of time post-infection. Nuclear localization of NS2 requires intact C-terminus but does not require additional viral proteins.more » Mutations ranging from complete NS2 knock-out to a single missense amino acid substitution in NS2 can significantly reduce viral replication and production of viable progeny.« less

  7. Quasi-specific access of the potassium channel inactivation gate

    PubMed Central

    Venkataraman, Gaurav; Srikumar, Deepa; Holmgren, Miguel

    2014-01-01

    Many voltage-gated potassium channels open in response to membrane depolarization and then inactivate within milliseconds. Neurons use these channels to tune their excitability. In Shaker K+ channels, inactivation is caused by the cytoplasmic amino terminus, termed the inactivation gate. Despite having four such gates, inactivation is caused by the movement of a single gate into a position that occludes ion permeation. The pathway that this single inactivation gate takes into its inactivating position remains unknown. Here we show that a single gate threads through the intracellular entryway of its own subunit, but the tip of the gate has sufficient freedom to interact with all four subunits deep in the pore, and does so with equal probability. This pathway demonstrates that flexibility afforded by the inactivation peptide segment at the tip of the N-terminus is used to mediate function. PMID:24909510

  8. An improved procedure, involving mass spectrometry, for N-terminal amino acid sequence determination of proteins which are N alpha-blocked.

    PubMed Central

    Rose, K; Kocher, H P; Blumberg, B M; Kolakofsky, D

    1984-01-01

    A modification to a previously described procedure [Gray & del Valle (1970) Biochemistry 9, 2134-2137; Rose, Simona & Offord (1983) Biochem. J. 215, 261-272] for mass-spectral identification of the N-terminal regions of proteins is shown to be useful in cases where the N-terminus is blocked. Three proteins were studied: vesicular-stomatitis-virus N protein, Sendai-virus NP protein, and a rabbit immunoglobulin lambda-light chain. These proteins, found to be blocked at the N-terminus with either the acetyl group or a pyroglutamic acid residue, had all failed to yield to attempted Edman degradation, in one case even after attempted enzymic removal of the pyroglutamic acid residue. The N-terminal regions of all three proteins were sequenced by using the new procedure. PMID:6421284

  9. Partial amino acid sequence of the branched chain amino acid aminotransferase (TmB) of E. coli JA199 pDU11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feild, M.J.; Armstrong, F.B.

    1987-05-01

    E. coli JA199 pDU11 harbors a multicopy plasmid containing the ilv GEDAY gene cluster of S. typhimurium. TmB, gene product of ilv E, was purified, crystallized, and subjected to Edman degradation using a gas phase sequencer. The intact protein yielded an amino terminal 31 residue sequence. Both carboxymethylated apoenzyme and (/sup 3/H)-NaBH-reduced holoenzyme were then subjected to digestion by trypsin. The digests were fractionated using reversed phase HPLC, and the peptides isolated were sequenced. The borohydride-treated holoenzyme was used to isolate the cofactor-binding peptide. The peptide is 27 residues long and a comparison with known sequences of other aminotransferases revealedmore » limited homology. Peptides accounting for 211 of 288 predicted residues have been sequenced, including 9 residues of the carboxyl terminus. Comparison of peptides with the inferred amino acid sequence of the E. coli K-12 enzyme has helped determine the sequence of the amino terminal 59 residues; only two differences between the sequences are noted in this region.« less

  10. Brain cDNA clone for human cholinesterase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McTiernan, C.; Adkins, S.; Chatonnet, A.

    1987-10-01

    A cDNA library from human basal ganglia was screened with oligonucleotide probes corresponding to portions of the amino acid sequence of human serum cholinesterase. Five overlapping clones, representing 2.4 kilobases, were isolated. The sequenced cDNA contained 207 base pairs of coding sequence 5' to the amino terminus of the mature protein in which there were four ATG translation start sites in the same reading frame as the protein. Only the ATG coding for Met-(-28) lay within a favorable consensus sequence for functional initiators. There were 1722 base pairs of coding sequence corresponding to the protein found circulating in human serum.more » The amino acid sequence deduced from the cDNA exactly matched the 574 amino acid sequence of human serum cholinesterase, as previously determined by Edman degradation. Therefore, our clones represented cholinesterase rather than acetylcholinesterase. It was concluded that the amino acid sequences of cholinesterase from two different tissues, human brain and human serum, were identical. Hybridization of genomic DNA blots suggested that a single gene, or very few genes coded for cholinesterase.« less

  11. Truncation of the human immunodeficiency virus type 1 transmembrane glycoprotein cytoplasmic domain blocks virus infectivity.

    PubMed Central

    Dubay, J W; Roberts, S J; Hahn, B H; Hunter, E

    1992-01-01

    Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1. Images PMID:1357190

  12. Inhibitors of amyloid toxicity based on β-sheet packing of Aβ40 and Aβ42

    PubMed Central

    Sato, Takeshi; Kienlen-Campard, Pascal; Ahmed, Mahiuddin; Liu, Wei; Li, Huilin; Elliott, James I.; Aimoto, Saburo; Constantinescu, Stefan N.; Octave, Jean-Noel; Smith, Steven O.

    2008-01-01

    Amyloid fibrils associated with Alzheimer’s disease and a wide range of other neurodegenerative diseases have a cross β-sheet structure where main chain hydrogen bonding occurs between β-strands in the direction of the fibril axis. The surface of the β-sheet has pronounced ridges and grooves when the individual β-strands have a parallel orientation and the amino acids are in-register with one another. Here we show that in Aβ amyloid fibrils, Met35 packs against Gly33 in the C-terminus of Aβ40 and against Gly37 in the C-terminus of Aβ42. These packing interactions suggest that the protofilament subunits are displaced relative to one another in the Aβ40 and Aβ42 fibril structures. We take advantage of this corrugated structure to design a new class of inhibitors that prevent fibril formation by placing alternating glycine and aromatic residues on one face of a β-strand. We show that peptide inhibitors based on a GxFxGxF framework disrupt sheet-to-sheet packing and inhibit the formation of mature Aβ fibrils as assayed by thioflavin T fluorescence, electron microscopy and solid-state NMR spectroscopy. The alternating large and small amino acids in the GxFxGxF sequence are complementary to the corresponding amino acids in the IxGxMxG motif found in the C-terminal sequence of Aβ40 and Aβ42. Importantly, the designed peptide inhibitors significantly reduce the toxicity induced by Aβ42 on cultured rat cortical neurons. PMID:16634632

  13. Tetrahydrofuran Calpha-tetrasubstituted amino acids: two consecutive beta-turns in a crystalline linear tripeptide.

    PubMed

    Maity, Prantik; Zabel, Manfred; König, Burkhard

    2007-10-12

    The synthesis of tetrahydrofuran Calpha-tetrasubstituted amino acids (TAAs) and their effect on the conformation in small peptides are reported. The synthesis starts from the protein amino acid methionine, which is protected at the C and N terminus and converted into the corresponding sulfonium salt by alkylation. Simple base treatment in the presence of an aryl aldehyde leads to the formation of tetrahydrofuran tetrasubstituted Calpha-amino acids in a highly diastereoselective (trans/cis ratio up to 97:3) reaction with moderate to good yields (35-78%) depending on the aldehyde used. Palladium-catalyzed coupling reactions allow a subsequent further functionalization of the TAA. The R,S,S-TAA-Ala dipeptide amide adopts a beta-turn type I conformation, whereas its S,R,S isomer does not. The R,S,S-Gly-TAA-Ala tripeptide amide shows in the solid state and in solution a conformation of two consecutive beta-turn type III structures, stabilized by i+3-->i intramolecular hydrogen bonds.

  14. Cleavage sites in the polypeptide precursors of poliovirus protein P2-X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selmer, B.L.; Hanecak, R.; Anderson, C.W.

    1981-01-01

    Partial amino-terminal sequence analysis has been performed on the three major polypeptide products (P2-3b, P2-5b, and P2-X) from the central region (P2) of the poliovirus polyprotein, and this analysis precisely locates the amino termini of these products with respect to the nucleotide sequence of the poliovirus RNA genome. Like most of the products of the replicase region (P3), the amino termini of P2-5b and P2-X are generated by cleavage between glutamine and glycine residues. Thus, P2-5b and P2-X are probably both produced by the action of a singly (virus-encoded.) proteinase. The amino terminus of P2-3b, on the other hand, ismore » produced by a cleavage between the carboxy-terminal tyrosine of VP1 and the glycine encoded by nucleotides 3381-3383. This result may suggest that more than one proteolytic activity is required for the complete processing of the poliovirus polyprotein.« less

  15. A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani.

    PubMed

    Yang, Chia-Ann; Cheng, Chi-Hua; Lo, Chaur-Tsuen; Liu, Shu-Ying; Lee, Jeng-Woei; Peng, Kou-Cheng

    2011-05-11

    Trichoderma spp. are used as biocontrol agents against phytopathogens such as Rhizoctonia solani, but their biocontrol mechanisms are poorly understood. A novel L-amino oxidase (Th-LAAO) was identified from the extracellular proteins of Trichoderma harzianum ETS 323. Here, we show a FAD-binding glycoprotein with the best substrate specificity constant for L-phenylalanine. Although the amino acid sequence of Th-LAAO revealed limited homology (16-24%) to other LAAO members, a highly conserved FAD-binding motif was identified in the N-terminus. Th-LAAO was shown to be a homodimeric protein, but the monomeric form was predominant when grown in the presence of deactivated Rhizoctonia solani. Furthermore, in vitro assays demonstrated that Th-LAAO had an antagonistic effect against Rhizoctonia solani and a stimulatory one on hyphal density and sporulation in T. harzianum ETS 323. These findings further our understanding of T. harzianum as a biocontrol agent and provide insight into the biological function of l-amino acid oxidase.

  16. Identification and Characterization of ART-27, a Novel Coactivator for the Androgen Receptor N Terminus

    PubMed Central

    Markus, Steven M.; Taneja, Samir S.; Logan, Susan K.; Li, Wenhui; Ha, Susan; Hittelman, Adam B.; Rogatsky, Inez; Garabedian, Michael J.

    2002-01-01

    The androgen receptor (AR) is a ligand-regulated transcription factor that stimulates cell growth and differentiation in androgen-responsive tissues. The AR N terminus contains two activation functions (AF-1a and AF-1b) that are necessary for maximal transcriptional enhancement by the receptor; however, the mechanisms and components regulating AR transcriptional activation are not fully understood. We sought to identify novel factors that interact with the AR N terminus from an androgen-stimulated human prostate cancer cell library using a yeast two-hybrid approach designed to identify proteins that interact with transcriptional activation domains. A 157-amino acid protein termed ART-27 was cloned and shown to interact predominantly with the AR153–336, containing AF-1a and a part of AF-1b, localize to the nucleus and increase the transcriptional activity of AR when overexpressed in cultured mammalian cells. ART-27 also enhanced the transcriptional activation by AR153–336 fused to the LexA DNA-binding domain but not other AR N-terminal subdomains, suggesting that ART-27 exerts its effect via an interaction with a defined region of the AR N terminus. ART-27 interacts with AR in nuclear extracts from LNCaP cells in a ligand-independent manner. Interestingly, velocity gradient sedimentation of HeLa nuclear extracts suggests that native ART-27 is part of a multiprotein complex. ART-27 is expressed in a variety of human tissues, including sites of androgen action such as prostate and skeletal muscle, and is conserved throughout evolution. Thus, ART-27 is a novel cofactor that interacts with the AR N terminus and plays a role in facilitating receptor-induced transcriptional activation. PMID:11854421

  17. Identification and characterization of ART-27, a novel coactivator for the androgen receptor N terminus.

    PubMed

    Markus, Steven M; Taneja, Samir S; Logan, Susan K; Li, Wenhui; Ha, Susan; Hittelman, Adam B; Rogatsky, Inez; Garabedian, Michael J

    2002-02-01

    The androgen receptor (AR) is a ligand-regulated transcription factor that stimulates cell growth and differentiation in androgen-responsive tissues. The AR N terminus contains two activation functions (AF-1a and AF-1b) that are necessary for maximal transcriptional enhancement by the receptor; however, the mechanisms and components regulating AR transcriptional activation are not fully understood. We sought to identify novel factors that interact with the AR N terminus from an androgen-stimulated human prostate cancer cell library using a yeast two-hybrid approach designed to identify proteins that interact with transcriptional activation domains. A 157-amino acid protein termed ART-27 was cloned and shown to interact predominantly with the AR(153-336), containing AF-1a and a part of AF-1b, localize to the nucleus and increase the transcriptional activity of AR when overexpressed in cultured mammalian cells. ART-27 also enhanced the transcriptional activation by AR(153-336) fused to the LexA DNA-binding domain but not other AR N-terminal subdomains, suggesting that ART-27 exerts its effect via an interaction with a defined region of the AR N terminus. ART-27 interacts with AR in nuclear extracts from LNCaP cells in a ligand-independent manner. Interestingly, velocity gradient sedimentation of HeLa nuclear extracts suggests that native ART-27 is part of a multiprotein complex. ART-27 is expressed in a variety of human tissues, including sites of androgen action such as prostate and skeletal muscle, and is conserved throughout evolution. Thus, ART-27 is a novel cofactor that interacts with the AR N terminus and plays a role in facilitating receptor-induced transcriptional activation.

  18. The N Terminus of Monoamine Transporters Is a Lever Required for the Action of Amphetamines*

    PubMed Central

    Sucic, Sonja; Dallinger, Stefan; Zdrazil, Barbara; Weissensteiner, René; Jørgensen, Trine N.; Holy, Marion; Kudlacek, Oliver; Seidel, Stefan; Cha, Joo Hwan; Gether, Ulrik; Newman, Amy H.; Ecker, Gerhard F.; Freissmuth, Michael; Sitte, Harald H.

    2010-01-01

    The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). We explored the functional importance of the N terminus in mediating the action of amphetamines by focusing initially on the highly conserved threonine residue at position 81, a candidate site for phosphorylation by protein kinase C. Molecular dynamics simulations of the wild type SERT, compared with its mutations SERTT81A and SERTT81D, suggested structural changes in the inner vestibule indicative of an opening of the inner vestibule. Predictions from this model (e.g. the preferential accumulation of SERTT81A in the inward conformation, its reduced turnover number, and a larger distance between its N and C termini) were verified. Most importantly, SERTT81A (and the homologous mutations in noradrenaline and dopamine) failed to support amphetamine-induced efflux, and this was not remedied by aspartate at this position. Amphetamine-induced currents through SERTT81A were comparable with those through the wild type transporter. Both abundant Na+ entry and accumulation of SERTT81A in the inward facing conformation ought to favor amphetamine-induced efflux. Thus, we surmised that the N terminus must play a direct role in driving the transporter into a state that supports amphetamine-induced efflux. This hypothesis was verified by truncating the first 64 amino acids and by tethering the N terminus to an additional transmembrane helix. Either modification abolished amphetamine-induced efflux. We therefore conclude that the N terminus of monoamine transporters acts as a lever that sustains reverse transport. PMID:20118234

  19. Levels of the Novel Glycoprotein Lacritin in Human Tears After Laser Refractive Surgery

    DTIC Science & Technology

    2013-10-01

    13. SUPPLEMENTARY NOTES 14. ABSTRACT Lacritin is a naturally occurring tear protein with antimicrobial activity that is capable of stimulating...Development and validation testing of lacritin assay. Lacritin Peptide , Anti-N-Terminal Anti-lacritin (Pep Lac N-Term) polyclonal antibodies were...generated in rabbits against a synthetic peptide corresponding to the first 19 N-terminus amino acids of mature human lacritin as previously described

  20. Crotoxin: Structural Studies, Mechanism of Action and Cloning of Its gene

    DTIC Science & Technology

    1989-12-01

    B-chain. Sequencing of the three peptides present in the acidic subunit, two of which are blocked by pyroglutamate , represents a significant...We have completed the sequence determination of both the basic and acidic subunits of crotoxin. The acidic subunit peptides were difficult, since two...of the three peptides were blocked at the amino-terminus by pyroglutamate . Earlier structural studies on crotoxin and related crotalid dimeric

  1. Influence of minor displacements in loops of the porcine parvovirus VP2 capsid on virus-like particles assembly and the induction of antibody responses.

    PubMed

    Pan, Qunxing; He, Kongwang; Wang, Yongshan; Wang, Xiaoli; Ouyang, Wei

    2013-06-01

    An antigen-delivery system based on hybrid virus-like particles (VLPs) formed by the self-assembly of the capsid VP2 protein of porcine parvovirus (PPV) and expressing foreign peptides offers an alternative method for vaccination. In this study, the three-dimensional structure of the PPV capsid protein and surface loops deletion mutants were analyzed to define essential domains in PPV VP2 for the assembly of VLPs. Electron microscopic analysis and SDS-PAGE analysis confirmed the presence of abundant VLPs in a loop2 deletion mutant of expected size and appropriate morphology. Loop4 and loop2-loop4 deletion mutants, however, resulted in a lower number of particles and the morphology of the particles was not well preserved. Furthermore, the green fluorescent protein (gfp) gene was used as a model. GFP was observed at the same level in displacements mutants. However, GFP displacement mutants in loop2 construct allowed better adaptation for the fusion GFP to be further displayed on the surface of the capsid-like structure. Immunogenicity study showed that there is no obvious difference in mice inoculated with rAd-VP2(Δloop2), rAd-VP2(Δloop4), rAd-VP2(Δloop2-Δloop4), and PPV inactivated vaccine. The results suggested the possibility of inserting simultaneously B and T cell epitopes in the surface loop2 and the N-terminus. The combination of different types of epitopes (B, CD4+, and CD8+) in different positions of the PPV particles opens the way to the development of highly efficient vaccines, able to stimulate at the same time the different branches of the immune system.

  2. Identification of continuous interaction sites in PLA(2)-based protein complexes by peptide arrays.

    PubMed

    Fortes-Dias, Consuelo Latorre; Santos, Roberta Márcia Marques dos; Magro, Angelo José; Fontes, Marcos Roberto de Mattos; Chávez-Olórtegui, Carlos; Granier, Claude

    2009-01-01

    Crotoxin (CA.CB) is a beta-neurotoxin from Crotalus durissus terrificus snake venom that is responsible for main envenomation effects upon biting by this snake. It is a heterodimer of an acidic protein (CA) devoid of any biological activity per se and a basic, enzymatically active, PLA(2) counterpart (CB). Both lethal and enzymatic activities of crotoxin have been shown to be inhibited by CNF, a protein from the blood of C. d. terrificus snakes. CNF replaces CA in the CA.CB complex, forming a stable, non-toxic complex CNF.CB. The molecular sites involved in the tight interfacial protein-protein interactions in these PLA(2)-based complexes have not been clearly determined. To help address this question, we used the peptide arrays approach to map possible interfacial interaction sites in CA.CB and CNF.CB. Amino acid stretches putatively involved in these interactions were firstly identified in the primary structure of CB. Further analysis of the interfacial availability of these stretches in the presumed biologically active structure of CB, suggested two interaction main sites, located at the amino-terminus and beta-wing regions. Peptide segments at the carboxyl-terminus of CB were also suggested to play a secondary role in the binding of both CA and CNF.

  3. Processing of the precursor of protamine P2 in mouse. Peptide mapping and N-terminal sequence analysis of intermediates.

    PubMed Central

    Carré-Eusèbe, D; Lederer, F; Lê, K H; Elsevier, S M

    1991-01-01

    Protamine P2, the major basic chromosomal protein of mouse spermatozoa, is synthesized as a precursor almost twice as long as the mature protein, its extra length arising from an N-terminal extension of 44 amino acid residues. This precursor is integrated into chromatin of spermatids, and the extension is processed during chromatin condensation in the haploid cells. We have studied processing in the mouse and have identified two intermediates generated by proteolytic cleavage of the precursor. H.p.l.c. separated protamine P2 from four other spermatid proteins, including the precursor and three proteins known to possess physiological characteristics expected of processing intermediates. Peptide mapping indicated that all of these proteins were structurally similar. Two major proteins were further purified by PAGE, transferred to poly(vinylidene difluoride) membranes and submitted to automated N-terminal sequence analysis. Both sequences were found within the deduced sequence of the precursor extension. The N-terminus of the larger intermediate, PP2C, was Gly-12, whereas the N-terminus of the smaller, PP2D, was His-21. Both processing sites involved a peptide bond in which the carbonyl function was contributed by an acidic amino acid. Images Fig. 1. Fig. 3. Fig. 4. PMID:1854346

  4. Orpinomyces cellulase celf protein and coding sequences

    DOEpatents

    Li, Xin-Liang; Chen, Huizhong; Ljungdahl, Lars G.

    2000-09-05

    A cDNA (1,520 bp), designated celF, consisting of an open reading frame (ORF) encoding a polypeptide (CelF) of 432 amino acids was isolated from a cDNA library of the anaerobic rumen fungus Orpinomyces PC-2 constructed in Escherichia coli. Analysis of the deduced amino acid sequence showed that starting from the N-terminus, CelF consists of a signal peptide, a cellulose binding domain (CBD) followed by an extremely Asn-rich linker region which separate the CBD and the catalytic domains. The latter is located at the C-terminus. The catalytic domain of CelF is highly homologous to CelA and CelC of Orpinomyces PC-2, to CelA of Neocallimastix patriciarum and also to cellobiohydrolase IIs (CBHIIs) from aerobic fungi. However, Like CelA of Neocallimastix patriciarum, CelF does not have the noncatalytic repeated peptide domain (NCRPD) found in CelA and CelC from the same organism. The recombinant protein CelF hydrolyzes cellooligosaccharides in the pattern of CBHII, yielding only cellobiose as product with cellotetraose as the substrate. The genomic celF is interrupted by a 111 bp intron, located within the region coding for the CBD. The intron of the celF has features in common with genes from aerobic filamentous fungi.

  5. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction.

    PubMed Central

    Derbyshire, V; Grindley, N D; Joyce, C M

    1991-01-01

    We have used site-directed mutagenesis to change amino acid side chains that have been shown crystallographically to be in close proximity to a DNA 3' terminus bound at the 3'-5' exonuclease active site of Klenow fragment. Exonuclease assays of the resulting mutant proteins indicate that the largest effects on exonuclease activity result from mutations in a group of carboxylate side chains (Asp355, Asp424 and Asp501) anchoring two divalent metal ions that are essential for exonuclease activity. Another carboxylate (Glu357) within this cluster seems to be less important as a metal ligand, but may play a separate role in catalysis of the exonuclease reaction. A second group of residues (Leu361, Phe473 and Tyr497), located around the terminal base and ribose positions, plays a secondary role, ensuring correct positioning of the substrate in the active site and perhaps also facilitating melting of a duplex DNA substrate by interacting with the frayed 3' terminus. The pH-dependence of the 3'-5' exonuclease reaction is consistent with a mechanism in which nucleophilic attack on the terminal phosphodiester bond is initiated by a hydroxide ion coordinated to one of the enzyme-bound metal ions. PMID:1989882

  6. Comparison of llama VH sequences from conventional and heavy chain antibodies.

    PubMed

    Vu, K B; Ghahroudi, M A; Wyns, L; Muyldermans, S

    1997-01-01

    Forty different PCR clones encoding a llama variable heavy chain domain were analysed. The majority of these clones are derived from heavy-chain antibody cDNA in which the entire CH1 exon is absent. It appears from the amino acid within the VHH framework 1 and 3 that all the llama clones belong to the VH III family. However, the individual llama VHH sequences differ more substantially from each other than expected for members of the same family. Several remarkable amino acid substitutions in the framework 2 hinder the proper association of the VL. However, they lay the foundation for the secretion from the endoplasmic reticulum and good solubility behaviour of llama H2 antibodies. The repertoire of the llama VHHs may be extensive due to the presence of a long CDR3-loop, often constrained by a disulfide bridge and the occurrence of H1 and H2 loop conformations not yet encountered in mice or human VHs. The variability plot of the amino acids in the VHH shows that the first hypervariable region coincides with the structural H1 loop in contrast to the situation found in mice and man where the CDR1 and H1 are slightly offset. We propose that the amino acids of the llama H1 loop participate actively in the antigen binding. All these observations are characteristic for the llama VHHs of the homodimeric heavy-chain H2 antibodies, but are not maintained in the llama clones from conventional heterotetrameric H2L2 immunoglobulins.

  7. Molecular Structure and Transformation of the Glucose Dehydrogenase Gene in Drosophila Melanogaster

    PubMed Central

    Whetten, R.; Organ, E.; Krasney, P.; Cox-Foster, D.; Cavener, D.

    1988-01-01

    We have precisely mapped and sequenced the three 5' exons of the Drosophila melanogaster Gld gene and have identified the start sites for transcription and translation. The first exon is composed of 335 nucleotides and does not contain any putative translation start codons. The second exon is separated from the first exon by 8 kb and contains the Gld translation start codon. The inferred amino acid sequence of the amino terminus contains two unusual features: three tandem repeats of serine-alanine, and a relatively high density of cysteine residues. P element-mediated transformation experiments demonstrated that a 17.5-kb genomic fragment contains the functional and regulatory components of the Gld gene. PMID:3143620

  8. Sequence of a cDNA encoding pancreatic preprosomatostatin-22.

    PubMed Central

    Magazin, M; Minth, C D; Funckes, C L; Deschenes, R; Tavianini, M A; Dixon, J E

    1982-01-01

    We report the nucleotide sequence of a precursor to somatostatin that upon proteolytic processing may give rise to a hormone of 22 amino acids. The nucleotide sequence of a cDNA from the channel catfish (Ictalurus punctatus) encodes a precursor to somatostatin that is 105 amino acids (Mr, 11,500). The cDNA coding for somatostatin-22 consists of 36 nucleotides in the 5' untranslated region, 315 nucleotides that code for the precursor to somatostatin-22, 269 nucleotides at the 3' untranslated region, and a variable length of poly(A). The putative preprohormone contains a sequence of hydrophobic amino acids at the amino terminus that has the properties of a "signal" peptide. A connecting sequence of approximately 57 amino acids is followed by a single Arg-Arg sequence, which immediately precedes the hormone. Somatostatin-22 is homologous to somatostatin-14 in 7 of the 14 amino acids, including the Phe-Trp-Lys sequence. Hybridization selection of mRNA, followed by its translation in a wheat germ cell-free system, resulted in the synthesis of a single polypeptide having a molecular weight of approximately 10,000 as estimated on Na-DodSO4/polyacrylamide gels. Images PMID:6127673

  9. The Local Dinucleotide Preference of APOBEC3G Can Be Altered from 5′-CC to 5′-TC by a Single Amino Acid Substitution

    PubMed Central

    Rathore, Anurag; Carpenter, Michael A; Demir, Özlem; Ikeda, Terumasa; Li, Ming; Shaban, Nadine; Law, Emily K.; Anokhin, Dmitry; Brown, William L.; Amaro, Rommie E.; Harris, Reuben S.

    2013-01-01

    APOBEC3A and APOBEC3G are DNA cytosine deaminases with biological functions in foreign DNA and retrovirus restriction, respectively. APOBEC3A has an intrinsic preference for cytosine preceded by thymine (5′-TC) in single-stranded DNA substrates, whereas APOBEC3G prefers the target cytosine to be preceded by another cytosine (5′-CC). To determine the amino acids responsible for these strong dinucleotide preferences, we analyzed a series of chimeras in which putative DNA binding loop regions of APOBEC3G were replaced with the corresponding regions from APOBEC3A. Loop 3 replacement enhanced APOBEC3G catalytic activity but did not alter its intrinsic 5′-CC dinucleotide substrate preference. Loop 7 replacement caused APOBEC3G to become APOBEC3A-like and strongly prefer 5′-TC substrates. Simultaneous loop 3/7 replacement resulted in a hyperactive APOBEC3G variant that also preferred 5′-TC dinucleotides. Single amino acid exchanges revealed D317 as a critical determinant of dinucleotide substrate specificity. Multi-copy explicitly solvated all-atom molecular dynamics simulations suggested a model in which D317 acts as a helix-capping residue by constraining the mobility of loop 7, forming a novel binding pocket that favorably accommodates cytosine. All catalytically active APOBEC3G variants, regardless of dinucleotide preference, retained HIV-1 restriction activity. These data support a model in which the loop 7 region governs the selection of local dinucleotide substrates for deamination but is unlikely to be part of the higher level targeting mechanisms that direct these enzymes to biological substrates such as HIV-1 cDNA. PMID:23938202

  10. Folding and Aggregation of Mucin Domains.

    NASA Astrophysics Data System (ADS)

    Urbanc, Brigita; Bansil, Rama; Turner, Bradley

    2007-03-01

    Mucin glycoproteins consist of tandem repeating glycosylated regions flanked by non-repetitive protein domains with little glycosylation. These non-repetitive domains are involved in polymerization of mucin via disulfide bonds and play an important role in the pH dependent gelation of gastric mucin, which is essential to protecting the stomach from autodigestion. We have examined the folding and aggregation of the non-repetitive sequence of von Willebrand factor vWF-C1 domain (67 amino acids) and PGM 2X (242 amino acids) using Discrete Molecular Dynamics (four-bead protein model with hydrogen bonding and amino acid-specific hydrophobic/hydrophilic and electrostatic interactions of side chains). Simulations of vWF C1 show 4-6 β-strands separated by turns/loops with more loops at lower pH. A simulation of several vWF C1 proteins at low pH shows aggregates still with a high content of β-strands and enhanced turn/loop regions. For the PGM 2X simulation the contact map shows several salt bridges enclosing hairpin turns. The implications of these simulations for describing the aggregation/gelation of PGM will be discussed.

  11. Targeting of Arabidopsis KNL2 to Centromeres Depends on the Conserved CENPC-k Motif in Its C Terminus.

    PubMed

    Sandmann, Michael; Talbert, Paul; Demidov, Dmitri; Kuhlmann, Markus; Rutten, Twan; Conrad, Udo; Lermontova, Inna

    2017-01-01

    KINETOCHORE NULL2 (KNL2) is involved in recognition of centromeres and in centromeric localization of the centromere-specific histone cenH3. Our study revealed a cenH3 nucleosome binding CENPC-k motif at the C terminus of Arabidopsis thaliana KNL2, which is conserved among a wide spectrum of eukaryotes. Centromeric localization of KNL2 is abolished by deletion of the CENPC-k motif and by mutating single conserved amino acids, but can be restored by insertion of the corresponding motif of Arabidopsis CENP-C. We showed by electrophoretic mobility shift assay that the C terminus of KNL2 binds DNA sequence-independently and interacts with the centromeric transcripts in vitro. Chromatin immunoprecipitation with anti-KNL2 antibodies indicated that in vivo KNL2 is preferentially associated with the centromeric repeat pAL1 Complete deletion of the CENPC-k motif did not influence its ability to interact with DNA in vitro. Therefore, we suggest that KNL2 recognizes centromeric nucleosomes, similar to CENP-C, via the CENPC-k motif and binds adjoining DNA. © 2017 American Society of Plant Biologists. All rights reserved.

  12. Identification of a tetrameric assembly domain in the C terminus of heat-activated TRPV1 channels.

    PubMed

    Zhang, Feng; Liu, Shuang; Yang, Fan; Zheng, Jie; Wang, KeWei

    2011-04-29

    Transient receptor potential (TRP) channels as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing channel multimerization remain largely elusive. Here we report the identification of a segment comprising 21 amino acids (residues 752-772 of mouse TRPV1) after the known TRP-like domain in the channel C terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N terminus, mediated the protein-protein interaction in an in vitro pulldown assay. Western blot analysis combined with electrophysiology and calcium imaging demonstrated that TAD exerted a robust dominant-negative effect on wild-type TRPV1. When fused with the membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers. Calcium imaging and current recordings showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominant-negative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in TRPV1 channels functions as a domain that is conserved among TRPV1-4 and mediates a direct subunit-subunit interaction for tetrameric assembly.

  13. Selectivity in ligand recognition of G-quadruplex loops.

    PubMed

    Campbell, Nancy H; Patel, Manisha; Tofa, Amina B; Ghosh, Ragina; Parkinson, Gary N; Neidle, Stephen

    2009-03-03

    A series of disubstituted acridine ligands have been cocrystallized with a bimolecular DNA G-quadruplex. The ligands have a range of cyclic amino end groups of varying size. The crystal structures show that the diagonal loop in this quadruplex results in a large cavity for these groups, in contrast to the steric constraints imposed by propeller loops in human telomeric quadruplexes. We conclude that the nature of the loop has a significant influence on ligand selectivity for particular quadruplex folds.

  14. A free VP3 C-terminus is essential for the replication of infectious bursal disease virus.

    PubMed

    Mosley, Yung-Yi C; Wu, Ching Ching; Lin, Tsang Long

    2017-03-15

    Green fluorescent protein (GFP) has been successfully incorporated into the viral-like particles of infectious bursal disease virus (IBDV) with a linker at the C-terminus of VP3 in a baculovirus system. However, when the same locus in segment A was used to express GFP by a reverse genetic (RG) system, no viable GFP-expressing IBDV was recovered. To elucidate the underlying mechanism, cDNA construct of segment A with only the linker sequence (9 amino acids) was applied to generate RG IBDV virus (rIBDV). Similarly, no rIBDV was recovered. Moreover, when the incubation after transfection was extended, wildtype rIBDV without the linker was recovered suggesting a free C-terminus of VP3 might be necessary for IBDV replication. On the other hand, rIBDV could be recovered when additional sequence (up to 40 nucleotides) were inserted at the 3' noncoding region (NCR) adjacent to the stop codon of VP3, suggesting that the burden of the linker sequence was not in the stretched genome size but the disruption of the VP3 function. Finally, when the stop codon of VP3 was deleted in segment A to extend the translation into the 3' NCR without introducing additional genomic sequence, no rIBDV was recovered. Our data suggest that a free VP3 C-terminus is essential for IBDV replication. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. c-Jun binds the N terminus of human TAF(II)250 to derepress RNA polymerase II transcription in vitro.

    PubMed

    Lively, T N; Ferguson, H A; Galasinski, S K; Seto, A G; Goodrich, J A

    2001-07-06

    c-Jun is an oncoprotein that activates transcription of many genes involved in cell growth and proliferation. We studied the mechanism of transcriptional activation by human c-Jun in a human RNA polymerase II transcription system composed of highly purified recombinant and native transcription factors. Transcriptional activation by c-Jun depends on the TATA-binding protein (TBP)-associated factor (TAF) subunits of transcription factor IID (TFIID). Protein-protein interaction assays revealed that c-Jun binds with high specificity to the largest subunit of human TFIID, TAF(II)250. The region of TAF(II)250 bound by c-Jun lies in the N-terminal 163 amino acids. This same region of TAF(II)250 binds to TBP and represses its interaction with TATA boxes, thereby decreasing DNA binding by TFIID. We hypothesized that c-Jun is capable of derepressing the effect of the TAF(II)250 N terminus on TFIID-driven transcription. In support of this hypothesis, we found that c-Jun increased levels of TFIID-driven transcription in vitro when added at high concentrations to a DNA template lacking activator protein 1 (AP-1) sites. Moreover, c-Jun blocked the repression of TBP DNA binding caused by the N terminus of TAF(II)250. In addition to revealing a mechanism by which c-Jun activates transcription, our studies provide the first evidence that an activator can bind directly to the N terminus of TAF(II)250 to derepress RNA polymerase II transcription in vitro.

  16. New Kunitz-Type HCRG Polypeptides from the Sea Anemone Heteractis crispa

    PubMed Central

    Gladkikh, Irina; Monastyrnaya, Margarita; Zelepuga, Elena; Sintsova, Oksana; Tabakmakher, Valentin; Gnedenko, Oksana; Ivanov, Alexis; Hua, Kuo-Feng; Kozlovskaya, Emma

    2015-01-01

    Sea anemones are a rich source of Kunitz-type polypeptides that possess not only protease inhibitor activity, but also Kv channels toxicity, analgesic, antihistamine, and anti-inflammatory activities. Two Kunitz-type inhibitors belonging to a new Heteractis crispa RG (HCRG) polypeptide subfamily have been isolated from the sea anemone Heteractis crispa. The amino acid sequences of HCRG1 and HCRG2 identified using the Edman degradation method share up to 95% of their identity with the representatives of the HCGS polypeptide multigene subfamily derived from H. crispa cDNA. Polypeptides are characterized by positively charged Arg at the N-terminus as well as P1 Lys residue at their canonical binding loop, identical to those of bovine pancreatic trypsin inhibitor (BPTI). These polypeptides are shown by our current evidence to be more potent inhibitors of trypsin than the known representatives of the HCGS subfamily with P1Thr. The kinetic and thermodynamic characteristics of the intermolecular interactions between inhibitors and serine proteases were determined by the surface plasmon resonance (SPR) method. Residues functionally important for polypeptide binding to trypsin were revealed using molecular modeling methods. Furthermore, HCRG1 and HCRG2 possess anti-inflammatory activity, reducing tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) secretions, as well as proIL-1β expression in lipopolysaccharide (LPS)-activated macrophages. However, there was no effect on nitric oxide (NO) generation. PMID:26404319

  17. Structural evidence for the role of polar core residue Arg175 in arrestin activation

    PubMed Central

    Granzin, Joachim; Stadler, Andreas; Cousin, Anneliese; Schlesinger, Ramona; Batra-Safferling, Renu

    2015-01-01

    Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail ‘activating’ arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the ‘phosphosensor’ leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361–404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E. PMID:26510463

  18. Structural evidence for the role of polar core residue Arg175 in arrestin activation.

    PubMed

    Granzin, Joachim; Stadler, Andreas; Cousin, Anneliese; Schlesinger, Ramona; Batra-Safferling, Renu

    2015-10-29

    Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail 'activating' arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the 'phosphosensor' leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361-404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E.

  19. Identification of a novel phosphorylation site in c-jun directly targeted in vitro by protein kinase D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldron, Richard T.; Whitelegge, Julian P.; Faull, Kym F.

    Protein kinase D (PKD) phosphorylates the c-jun amino-terminal in vitro at site(s) distinct from JNK [C. Hurd, R.T. Waldron, E. Rozengurt, Protein kinase D complexes with c-jun N-terminal kinase via activation loop phosphorylation and phosphorylates the c-jun N-terminus, Oncogene 21 (2002) 2154-2160], but the sites have not been identified. Here, metabolic {sup 32}P-labeling of c-jun protein in COS-7 cells indicated that PKD phosphorylates c-jun in vivo at a site(s) between aa 43-93, a region containing important functional elements. On this basis, the PKD-mediated phosphorylation site(s) was further characterized in vitro using GST-c-jun fusion proteins. PKD did not incorporate phosphate intomore » Ser63 and Ser73, the JNK sites in GST-c-jun(1-89). Rather, PKD and JNK could sequentially phosphorylate distinct site(s) simultaneously. By mass spectrometry of tryptic phosphopeptides, Ser58 interposed between the JNK-binding portion of the delta domain and the adjacent TAD1 was identified as a prominent site phosphorylated in vitro by PKD. These data were further supported by kinase reactions using truncations or point-mutations of GST-c-jun. Together, these data suggest that PKD-mediated phosphorylation modulates c-jun at the level of its N-terminal functional domains.« less

  20. ChAy/Bx, a novel chimeric high-molecular-weight glutenin subunit gene apparently created by homoeologous recombination in Triticum turgidum ssp. dicoccoides.

    PubMed

    Guo, Xiao-Hui; Bi, Zhe-Guang; Wu, Bi-Hua; Wang, Zhen-Zhen; Hu, Ji-Liang; Zheng, You-Liang; Liu, Deng-Cai

    2013-12-01

    High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n=4x=28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1,671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs. © 2013.

  1. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation.

    PubMed

    Kang, H; Sayner, S L; Gross, K L; Russell, L C; Chinkers, M

    2001-09-04

    Protein phosphatase 5 (PP5) exhibits low basal activity due to the autoinhibitory properties of its N-terminal and C-terminal domains but can be activated approximately 40-fold in vitro by polyunsaturated fatty acids. To identify residues involved in regulating PP5 activity, we performed scanning mutagenesis of its N-terminal tetratricopeptide repeat (TPR) domain and deletion mutagenesis of its C-terminal domain. Mutating residues in a groove of the TPR domain that binds to heat shock protein 90 had no effect on basal phosphatase activity. Mutation of Glu-76, however, whose side chain projects away from this groove, resulted in a 10-fold elevation of basal activity without affecting arachidonic acid-stimulated activity. Thus, the interface of the TPR domain involved in PP5 autoinhibition appears to be different from that involved in heat shock protein 90 binding. We also observed a 10-fold elevation of basal phosphatase activity upon removing the C-terminal 13 amino acids of PP5, with a concomitant 50% decrease in arachidonic acid-stimulated activity. These two effects were accounted for by two distinct amino acid deletions: deleting the four C-terminal residues (496-499) of PP5 had no effect on its activity, but removing Gln-495 elevated basal activity 10-fold. Removal of a further three amino acids had no additional effect, but deleting Asn-491 resulted in a 50% reduction in arachidonic acid-stimulated activity. Thus, Glu-76 in the TPR domain and Gln-495 at the C-terminus were implicated in maintaining the low basal activity of PP5. While the TPR domain alone has been thought to mediate fatty acid activation of PP5, our data suggest that Asn-491, near its C-terminus, may also be involved in this process.

  2. Hepatitis A Virus Capsid Protein VP1 Has a Heterogeneous C Terminus

    PubMed Central

    Graff, Judith; Richards, Oliver C.; Swiderek, Kristine M.; Davis, Michael T.; Rusnak, Felicia; Harmon, Shirley A.; Jia, Xi-Yu; Summers, Donald F.; Ehrenfeld, Ellie

    1999-01-01

    Hepatitis A virus (HAV) encodes a single polyprotein which is posttranslationally processed into the functional structural and nonstructural proteins. Only one protease, viral protease 3C, has been implicated in the nine protein scissions. Processing of the capsid protein precursor region generates a unique intermediate, PX (VP1-2A), which accumulates in infected cells and is assumed to serve as precursor to VP1 found in virions, although the details of this reaction have not been determined. Coexpression in transfected cells of a variety of P1 precursor proteins with viral protease 3C demonstrated efficient production of PX, as well as VP0 and VP3; however, no mature VP1 protein was detected. To identify the C-terminal amino acid residue of HAV VP1, we performed peptide sequence analysis by protease-catalyzed [18O]H2O incorporation followed by liquid chromatography ion-trap microspray tandem mass spectrometry of HAV VP1 isolated from purified virions. Two different cell culture-adapted isolates of HAV, strains HM175pE and HM175p35, were used for these analyses. VP1 preparations from both virus isolates contained heterogeneous C termini. The predominant C-terminal amino acid in both virus preparations was VP1-Ser274, which is located N terminal to a methionine residue in VP1-2A. In addition, the analysis of HM175pE recovered smaller amounts of amino acids VP1-Glu273 and VP1-Thr272. In the case of HM175p35, which contains valine at amino acid position VP1-273, VP1-Thr272 was found in addition to VP1-Ser274. The data suggest that HAV 3C is not the protease responsible for generation of the VP1 C terminus. We propose the involvement of host cell protease(s) in the production of HAV VP1. PMID:10364353

  3. Free-Energy Landscape of the Amino-Terminal Fragment of Huntingtin in Aqueous Solution

    PubMed Central

    Binette, Vincent; Côté, Sébastien; Mousseau, Normand

    2016-01-01

    The first exon of Huntingtin—a protein with multiple biological functions whose misfolding is related to Huntington’s disease—modulates its localization, aggregation, and function within the cell. It is composed of a 17-amino-acid amphipathic segment (Htt17), an amyloidogenic segment of consecutive glutamines (QN), and a proline-rich segment. Htt17 is of fundamental importance: it serves as a membrane anchor to control the localization of huntingtin, it modulates huntingtin’s function through posttranslational modifications, and it controls the self-assembly of the amyloidogenic QN segment into oligomers and fibrils. Experimentally, the conformational ensemble of the Htt17 monomer, as well as the impact of the polyglutamine and proline-rich segments, remains, however, mostly uncharacterized at the atomic level due to its intrinsic flexibility. Here, we unveil the free-energy landscape of Htt17, Htt17Q17, and Htt17Q17P11 using Hamiltonian replica exchange combined with well-tempered metadynamics. We characterize the free-energy landscape of these three fragments in terms of a few selected collective variables. Extensive simulations reveal that the free energy of Htt17 is dominated by a broad ensemble of configurations that agree with solution NMR chemical shifts. Addition of Q17 at its carboxy-terminus reduces the extent of the main basin to more extended configurations of Htt17 with lower helix propensity. Also, the aliphatic carbons of Q17 partially sequester the nonpolar amino acids of Htt17. For its part, addition of Q17P11 shifts the overall landscape to a more extended and helical Htt17 stabilized by interactions with Q17 and P11, which almost exclusively form a PPII-helix, as well as by intramolecular H-bonds and salt bridges. Our characterization of Huntingtin’s amino-terminus provides insights into the structural origin of its ability to oligomerize and interact with phospholipid bilayers, processes closely linked to the biological functions of this protein. PMID:26958885

  4. Albumin Redhill, a human albumin variant.

    PubMed

    Brand, S; Hutchinson, D W; Donaldson, D

    1984-01-31

    Albumin Redhill, a variant human albumin with the same C-terminal amino acid as albumin A but with arginine at the N-terminus has been isolated by chromatofocusing from the sera of an English family. Albumin Redhill appears to contain two sites of mutation in its protein chain and is probably a proalbumin. The ability of albumin Redhill to bind Ni(II) or Cu(II) ions is considerably less than that of albumin A.

  5. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  6. The KCNE Tango – How KCNE1 Interacts with Kv7.1

    PubMed Central

    Wrobel, Eva; Tapken, Daniel; Seebohm, Guiscard

    2012-01-01

    The classical tango is a dance characterized by a 2/4 or 4/4 rhythm in which the partners dance in a coordinated way, allowing dynamic contact. There is a surprising similarity between the tango and how KCNE β-subunits “dance” to the fast rhythm of the cell with their partners from the Kv channel family. The five KCNE β-subunits interact with several members of the Kv channels, thereby modifying channel gating via the interaction of their single transmembrane-spanning segment, the extracellular amino terminus, and/or the intracellular carboxy terminus with the Kv α-subunit. Best studied is the molecular basis of interactions between KCNE1 and Kv7.1, which, together, supposedly form the native cardiac IKs channel. Here we review the current knowledge about functional and molecular interactions of KCNE1 with Kv7.1 and try to summarize and interpret the tango of the KCNEs. PMID:22876232

  7. Broad Neutralization of Ebolaviruses via a Fusion Loop Epitope Elicited by Immunization

    DTIC Science & Technology

    2017-03-31

    overnight. After incubation with blocking buffer (BB, 2% non- fat milk , 5% FBS in PBS), the WT or mutant supernatant in five-fold serial dilution in BB was...replication competent rVSV pseudotyped with filovirus GP, which also expressed the reporter protein GFP (rVSV-GP-GFP) (Miller et al., 2012). CA45 potently...for proper protein folding and expression. The epitope mapping identified EBOV GP residues R64 within the N-terminus of GP1 in addition to Y517

  8. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digestsmore » of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.« less

  9. Isolation, characterization, and purification to homogeneity of an endogenous polypeptide with agonistic action on benzodiazepine receptors.

    PubMed Central

    Guidotti, A; Forchetti, C M; Corda, M G; Konkel, D; Bennett, C D; Costa, E

    1983-01-01

    A brain polypeptide termed diazepam-binding inhibitor (DBI) and thought to be chemically and functionally related to the endogenous effector of the benzodiazepine recognition site was purified to homogeneity. This peptide gives a single band of protein on NaDodSO4 and acidic urea gel electrophoresis. A single UV-absorbing peak was obtained by HPLC using three different columns and solvent systems. DBI has a molecular mass of approximately equal to 11,000 daltons. Carboxyl-terminus analysis shows that tyrosine is the only residue while the amino-terminus was blocked. Cyanogen bromide treatment of DBI yields three polypeptide fragments, and the sequences of two of them have been determined for a total of 45 amino acids. DBI is a competitive inhibitor for the binding of [3H]diazepam, [3H]flunitrazepam, beta-[3H]carboline propyl esters, and 3H-labeled Ro 15-1788. The Ki for [3H]-diazepam and beta-[3H]carboline binding were 4 and 1 microM, respectively. Doses of DBI that inhibited [3H]diazepam binding by greater than 50% fail to change [3H]etorphine, gamma-amino[3H]butyric acid, [3H]-quinuclidinyl benzilate, [3H]dihydroalprenolol, [3H]adenosine, and [3H]imipramine binding tested at their respective Kd values. DBI injected intraventricularly at doses of 5-10 nmol completely reversed the anticonflict action of diazepam on unpunished drinking and, similar to the anxiety-inducing beta-carboline derivative FG 7142 (beta-carboline-3-carboxylic acid methyl ester), facilitated the shock-induced suppression of drinking by lowering the threshold for this response. Images PMID:6304714

  10. Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b.

    PubMed

    Deppenmeier, U; Blaut, M; Lentes, S; Herzberg, C; Gottschalk, G

    1995-01-15

    DNA encompassing the structural genes of two membrane-bound hydrogenases from Methanosarcina mazei Gö1 was cloned and sequenced. The genes, arranged in the order vhoG and vhoA as well as vhtG and vhtA, were identified as those encoding the small and the large subunits of the NiFe hydrogenases [Deppenmeier, U., Blaut, M., Schmidt, B. & Gottschalk, G. (1992) Arch. Microbiol. 157, 505-511]. Northern-blot analysis revealed that the structural genes formed part of two operons, both containing one additional open reading frame (vhoC and vhtC) which codes for a cytochrome b. This conclusion was drawn from the homology of the deduced N-terminal amino acid sequences of vhoC and vhtC and the N-terminus of a 27-kDa cytochrome isolated from Ms. mazei C16. VhoC and VhtC contain four tentative hydrophobic segments which might span the cytoplasmic membrane. Hydropathy plots suggest that His23 and His50 are involved in heme coordination. The comparison of the sequencing data of vhoG and vhtG with the experimentally determined N-terminus of the small subunit indicate the presence of a 48-amino-acid leader peptide in front of the polypeptides. VhoA and VhtA contained the conserved sequence DPCXXC in the C-terminal region, which excludes the presence of a selenocysteine residue in these hydrogenases. Promoter sequences were found upstream of vhoG and vhtG, respectively. Downstream of vhoC, a putative terminator sequence was identified. Alignments of the deduced amino acid sequences of the gene clusters vhoGAC and vhtGAC showed 92-97% identity. Only the C-termini of VhoC and VhtC were not similar.

  11. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar.more » For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells.« less

  12. Biological and Structural Characterization of a Host-Adapting Amino Acid in Influenza Virus

    PubMed Central

    Yamada, Shinya; Hatta, Masato; Staker, Bart L.; Watanabe, Shinji; Imai, Masaki; Shinya, Kyoko; Sakai-Tagawa, Yuko; Ito, Mutsumi; Ozawa, Makoto; Watanabe, Tokiko; Sakabe, Saori; Li, Chengjun; Kim, Jin Hyun; Myler, Peter J.; Phan, Isabelle; Raymond, Amy; Smith, Eric; Stacy, Robin; Nidom, Chairul A.; Lank, Simon M.; Wiseman, Roger W.; Bimber, Benjamin N.; O'Connor, David H.; Neumann, Gabriele; Stewart, Lance J.; Kawaoka, Yoshihiro

    2010-01-01

    Two amino acids (lysine at position 627 or asparagine at position 701) in the polymerase subunit PB2 protein are considered critical for the adaptation of avian influenza A viruses to mammals. However, the recently emerged pandemic H1N1 viruses lack these amino acids. Here, we report that a basic amino acid at position 591 of PB2 can compensate for the lack of lysine at position 627 and confers efficient viral replication to pandemic H1N1 viruses in mammals. Moreover, a basic amino acid at position 591 of PB2 substantially increased the lethality of an avian H5N1 virus in mice. We also present the X-ray crystallographic structure of the C-terminus of a pandemic H1N1 virus PB2 protein. Arginine at position 591 fills the cleft found in H5N1 PB2 proteins in this area, resulting in differences in surface shape and charge for H1N1 PB2 proteins. These differences may affect the protein's interaction with viral and/or cellular factors, and hence its ability to support virus replication in mammals. PMID:20700447

  13. Isolation, sequencing and expression of RED, a novel human gene encoding an acidic-basic dipeptide repeat.

    PubMed

    Assier, E; Bouzinba-Segard, H; Stolzenberg, M C; Stephens, R; Bardos, J; Freemont, P; Charron, D; Trowsdale, J; Rich, T

    1999-04-16

    A novel human gene RED, and the murine homologue, MuRED, were cloned. These genes were named after the extensive stretch of alternating arginine (R) and glutamic acid (E) or aspartic acid (D) residues that they contain. We term this the 'RED' repeat. The genes of both species were expressed in a wide range of tissues and we have mapped the human gene to chromosome 5q22-24. MuRED and RED shared 98% sequence identity at the amino acid level. The open reading frame of both genes encodes a 557 amino acid protein. RED fused to a fluorescent tag was expressed in nuclei of transfected cells and localised to nuclear dots. Co-localisation studies showed that these nuclear dots did not contain either PML or Coilin, which are commonly found in the POD or coiled body nuclear compartments. Deletion of the amino terminal 265 amino acids resulted in a failure to sort efficiently to the nucleus, though nuclear dots were formed. Deletion of a further 50 amino acids from the amino terminus generates a protein that can sort to the nucleus but is unable to generate nuclear dots. Neither construct localised to the nucleolus. The characteristics of RED and its nuclear localisation implicate it as a regulatory protein, possibly involved in transcription.

  14. Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins

    DTIC Science & Technology

    2013-10-01

    acids. These sites constitute a variable environment, with the effect of mutations largely isolated to effects on interactions with the P4 side chain. 2...desires to cut. We observe, however, sequence-specific cleavage is much more subtle, depending upon how side chain interactions influence not only...first five substrate amino acids on the acyl side of the scissile bond (denoted P1 through P5, numbering from the scissile bond toward the N-terminus

  15. Engineering Environmentally-Stable Proteases to Specifically Neutralize Protein Toxins

    DTIC Science & Technology

    2012-10-14

    effect of mutations largely isolated to effects on interactions with the P4 side chain. 2) Most mutations at some sites (e.g. 126, 128) decrease...to cut. We observe, however, sequence-specific cleavage is much more subtle, depending upon how side chain interactions influence not only ground...five substrate amino acids on the acyl side of the scissile bond (denoted P1 through P5, numbering from the scissile bond toward the N-terminus of the

  16. CAPA-Gene Products in the Haematophagous Sandfly Phlebotomus papatasi (Scopoli) - Vector for Leishmaniasis Disease

    DTIC Science & Technology

    2012-01-01

    121 glass capillary and the tissues were air-dried. For peptide analysis, 122 a limited amount of matrix solution (-cyano-4-hydroxycinnamic 123 acid ...genomic sequence of P. papatasi was screened with 143 the amino acid sequence RSGNMGLFPFPRVGR using TBLASTN. 144 The genomic data were produced by The...250 have the N-terminus of CAPA-PVK-2 blocked by pyroglutamate 251 (see Table 1). Pyroglutamate may prevent rapid degradation of this 252 peptide

  17. The Processed Amino-Terminal Fragment of Human TLR7 Acts as a Chaperone To Direct Human TLR7 into Endosomes

    PubMed Central

    Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano

    2015-01-01

    TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086

  18. Monoamine Oxidase Inhibitory Activity of Ferulic Acid Amides: Curcumin-Based Design and Synthesis.

    PubMed

    Badavath, Vishnu N; Baysal, İpek; Uçar, Gülberk; Mondal, Susanta K; Sinha, Barij N; Jayaprakash, Venkatesan

    2016-01-01

    Ferulic acid has structural similarity with curcumin which is being reported for its monoamine oxidase (MAO) inhibitory activity. Based on this similarity, we designed a series of ferulic acid amides 6a-m and tested for their inhibitory activity on human MAO (hMAO) isoforms. All the compounds were found to inhibit the hMAO isoforms either selectively or non-selectively. Nine compounds (6a, 6b, 6g-m) were found to inhibit hMAO-B selectively, whereas the other four (6c-f) were found to be non-selective. There is a gradual shift from hMAO-B selectivity (6a,b) to non-selectivity (6c-f) as there is an increase in chain length at the amino terminus. In case of compounds having an aromatic nucleus at the amino terminus, increasing the carbon number between N and the aromatic ring increases the potency as well as selectivity toward hMAO-B. Compounds 6f, 6j, and 6k were subjected to membrane permeability and metabolic stability studies by in vitro assay methods. They were found to have a better pharmacokinetic profile than curcumin, ferulic acid, and selegiline. In order to understand the structural features responsible for the potency and selectivity of 6k, we carried out a molecular docking simulation study. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electrochemical studies of a truncated laccase produced in Pichia pastoris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelo-Pujic, M.; Kim, H.H.; Butlin, N.G.

    1999-12-01

    The cDNA that encodes an isoform is laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms ofmore » their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon influences the rate of heterogeneous electron transfer between and electrode and the copper-containing active site. These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis.« less

  20. Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications

    PubMed Central

    Lakshmanan, Anupama; Hauser, Charlotte A.E.

    2011-01-01

    In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures. PMID:22016623

  1. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance.

    PubMed

    Sayer, Jane M; Agniswamy, Johnson; Weber, Irene T; Louis, John M

    2010-11-01

    The mature protease from Group N human immunodeficiency virus Type 1 (HIV-1) (PR1(N)) differs in 20 amino acids from the extensively studied Group M protease (PR1(M)) at positions corresponding to minor drug-resistance mutations (DRMs). The first crystal structure (1.09 Å resolution) of PR1(N) with the clinical inhibitor darunavir (DRV) reveals the same overall structure as PR1(M), but with a slightly larger inhibitor-binding cavity. Changes in the 10s loop and the flap hinge propagate to shift one flap away from the inhibitor, whereas L89F and substitutions in the 60s loop perturb inhibitor-binding residues 29-32. However, kinetic parameters of PR1(N) closely resemble those of PR1(M), and calorimetric results are consistent with similar binding affinities for DRV and two other clinical PIs, suggesting that minor DRMs coevolve to compensate for the detrimental effects of drug-specific major DRMs. A miniprecursor (TFR 1-61-PR1(N)) comprising the transframe region (TFR) fused to the N-terminus of PR1(N) undergoes autocatalytic cleavage at the TFR/PR1(N) site concomitant with the appearance of catalytic activity characteristic of the dimeric, mature enzyme. This cleavage is inhibited at an equimolar ratio of precursor to DRV (∼6 μM), which partially stabilizes the precursor dimer from a monomer. However, cleavage at L34/W35 within the TFR, which precedes the TFR 1-61/PR1(N) cleavage at pH ≤ 5, is only partially inhibited. Favorable properties of PR1(N) relative to PR1(M) include its suitability for column fractionation by size under native conditions and >10-fold higher dimer dissociation constant (150 nM). Exploiting these properties may facilitate testing of potential dimerization inhibitors that perturb early precursor processing steps.

  2. Cloning and characterisation of type 4 fimbrial genes from Actinobacillus pleuropneumoniae.

    PubMed

    Stevenson, Andrew; Macdonald, Julie; Roberts, Mark

    2003-03-20

    Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumoniae. Little is known about the mechanisms by which A. pleuropneumoniae colonises the respiratory tract. Fimbriae are common mediators of bacterial adherence to mucosal epithelia and have been observed on the surface of A. pleuropneumoniae cells. Here we report the identification and characterisation of the type 4 fimbrial structural gene (apfA) from A. pleuropneumoniae. In addition a number of open reading frames were identified in A. pleuropneumoniae that have significant homology to type 4 fimbrial biogenesis genes from other species, including a putative leader specific peptidase (apfD). A. pleuropneumoniae apfA codes for a predicted polypeptide of approximately 16kDa, removal of the leader sequence at the predicted cleavage site would yield a 14.5kDa polypeptide. The first 30 residues of the mature polypeptide are well conserved with other members of the group A type 4 fimbriae family. The signal sequence of ApfA is 13 amino acids in length and, unusually, the residue that precedes the cleavage site is alanine rather than glycine which is found in most other type 4 fimbriae. The C-terminus of ApfA possesses cysteine residues that are conserved in type 4 fimbriae of many species. In other type 4 fimbriae the distal C-terminal cysteines form a disulphide bond that produces a loop, which is important for the function of fimbriae and also comprises a major antigenic determinant. A motif within the predicted loop in ApfA was found to be highly conserved in type 4 fimbriae of other HAP organisms (Haemophilus, Actinobacillus, Pasteurella). The A. pleuropneumoniae type 4 fimbrial biogenesis genes showed the strongest homology to putative type 4 fimbrial genes of Haemophilus ducreyi. A. pleuropneumoniae apfA gene was shown to be present and highly conserved in different serotypes of A. pleuropneumoniae. Recombinant ApfA was produced and used to raise anti-ApfA antisera.

  3. The RAG2 C-terminus and ATM protect genome integrity by controlling antigen receptor gene cleavage

    PubMed Central

    Chaumeil, Julie; Micsinai, Mariann; Ntziachristos, Panagiotis; Roth, David B.; Aifantis, Iannis; Kluger, Yuval; Deriano, Ludovic; Skok, Jane A.

    2013-01-01

    Tight control of antigen-receptor gene rearrangement is required to preserve genome integrity and prevent the occurrence of leukemia and lymphoma. Nonetheless, mistakes can happen, leading to the generation of aberrant rearrangements, such as Tcra/d-Igh inter-locus translocations that are a hallmark of ATM deficiency. Current evidence indicates that these translocations arise from the persistence of unrepaired breaks converging at different stages of thymocyte differentiation. Here we show that a defect in feedback control of RAG2 activity gives rise to bi-locus breaks and damage on Tcra/d and Igh in the same T cell at the same developmental stage, which provides a direct mechanism for generating these inter-locus rearrangements. Both the RAG2 C-terminus and ATM prevent bi-locus RAG-mediated cleavage through modulation of 3D conformation (higher order loops) and nuclear organization of the two loci. This limits the number of potential substrates for translocation and provides an important mechanism for protecting genome stability. PMID:23900513

  4. The NH2-terminus of substance P modulates NMDA-induced activity in the mouse spinal cord.

    PubMed

    Hornfeldt, C S; Sun, X; Larson, A A

    1994-05-01

    Excitatory amino acids (EAAs) and substance P are believed to transmit nociceptive information in the spinal cord. As substance P NH2-terminal fragments can modulate non-NMDA EAA-mediated activity, we examined the effects of substance P fragments to ascertain whether the COOH- or NH2-terminus of substance P modulates the actions of NMDA in the spinal cord. NMDA activity was measured by the intensity of behaviors produced by NMDA (0.2 nmol) administered intrathecally in the mouse. The NMDA response was attenuated after pretreatment with either substance P (22.5 pmol, 30 min) or the NH2-terminal fragment of substance P, SP-(1-7). Pretreatment with the COOH-terminal fragment SP-(5-11) (22.5 pmol, 30 min), a neurokinin ligand, had no effect on NMDA-induced behaviors, suggesting that the inhibitory effect of substance P is caused by the NH2-terminus. Pretreatment with D-Pro2,D-Phe7 substance P-(1-7), a SP-(1-7) antagonist, potentiated NMDA activity, suggesting a tonic inhibitory effect of the substance P NH2-terminus. Desensitization to NMDA typically develops when NMDA is injected at 2 min intervals. While pretreatment with SP-(1-7) inhibited NMDA, coadministration of SP-(1-7) (22.5 pmol), with the first of four injections of NMDA, first inhibited but then potentiated responses to each challenge with NMDA. Coadministration of the same dose of SP-(1-7) with the fourth injection of NMDA immediately potentiated the response to NMDA.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Design and characterization of an engineered gp41 protein from human immunodeficiency virus-1 as a tool for drug discovery

    NASA Astrophysics Data System (ADS)

    Stewart, Kent D.; Steffy, Kevin; Harris, Kevin; Harlan, John E.; Stoll, Vincent S.; Huth, Jeffrey R.; Walter, Karl A.; Gramling-Evans, Emily; Mendoza, Renaldo R.; Severin, Jean M.; Richardson, Paul L.; Barrett, Leo W.; Matayoshi, Edmund D.; Swift, Kerry M.; Betz, Stephen F.; Muchmore, Steve W.; Kempf, Dale J.; Molla, Akhter

    2007-01-01

    Two new proteins of approximately 70 amino acids in length, corresponding to an unnaturally-linked N- and C-helix of the ectodomain of the gp41 protein from the human immunodeficiency virus (HIV) type 1, were designed and characterized. A designed tripeptide links the C-terminus of the C-helix with the N-terminus of the N-helix in a circular permutation so that the C-helix precedes the N-helix in sequence. In addition to the artificial peptide linkage, the C-helix is truncated at its N-terminus to expose a region of the N-helix known as the "Trp-Trp-Ile" binding pocket. Sedimentation, crystallographic, and nuclear magnetic resonance studies confirmed that the protein had the desired trimeric structure with an unoccupied binding site. Spectroscopic and centrifugation studies demonstrated that the engineered protein had ligand binding characteristics similar to previously reported constructs. Unlike previous constructs which expose additional, shallow, non-conserved, and undesired binding pockets, only the single deep and conserved Trp-Trp-Ile pocket is exposed in the proteins of this study. This engineered version of gp41 protein will be potentially useful in research programs aimed at discovery of new drugs for therapy of HIV-infection in humans.

  6. The Structure of the Poliovirus 135S Cell Entry Intermediate at 10-Angstrom Resolution Reveals the Location of an Externalized Polypeptide That Binds to Membranes†

    PubMed Central

    Bubeck, Doryen; Filman, David J.; Cheng, Naiqian; Steven, Alasdair C.; Hogle, James M.; Belnap, David M.

    2005-01-01

    Poliovirus provides a well-characterized system for understanding how nonenveloped viruses enter and infect cells. Upon binding its receptor, poliovirus undergoes an irreversible conformational change to the 135S cell entry intermediate. This transition involves shifts of the capsid protein β barrels, accompanied by the externalization of VP4 and the N terminus of VP1. Both polypeptides associate with membranes and are postulated to facilitate entry by forming a translocation pore for the viral RNA. We have calculated cryo-electron microscopic reconstructions of 135S particles that permit accurate placement of the β barrels, loops, and terminal extensions of the capsid proteins. The reconstructions and resulting models indicate that each N terminus of VP1 exits the capsid though an opening in the interface between VP1 and VP3 at the base of the canyon that surrounds the fivefold axis. Comparison with reconstructions of 135S particles in which the first 31 residues of VP1 were proteolytically removed revealed that the externalized N terminus is located near the tips of propeller-like features surrounding the threefold axes rather than at the fivefold axes, as had been proposed in previous models. These observations have forced a reexamination of current models for the role of the 135S particle in transmembrane pore formation and suggest testable alternatives. PMID:15919927

  7. Mutational analysis of the extracellular disulphide bridges of the atypical chemokine receptor ACKR3/CXCR7 uncovers multiple binding and activation modes for its chemokine and endogenous non-chemokine agonists.

    PubMed

    Szpakowska, Martyna; Meyrath, Max; Reynders, Nathan; Counson, Manuel; Hanson, Julien; Steyaert, Jan; Chevigné, Andy

    2018-07-01

    The atypical chemokine receptor ACKR3/CXCR7 plays crucial roles in numerous physiological processes but also in viral infection and cancer. ACKR3 shows strong propensity for activation and, unlike classical chemokine receptors, can respond to chemokines from both the CXC and CC families as well as to the endogenous peptides BAM22 and adrenomedullin. Moreover, despite belonging to the G protein coupled receptor family, its function appears to be mainly dependent on β-arrestin. ACKR3 has also been shown to continuously cycle between the plasma membrane and the endosomal compartments, suggesting a possible role as a scavenging receptor. So far, the molecular basis accounting for these atypical binding and signalling properties remains elusive. Noteworthy, ACKR3 extracellular domains bear three disulphide bridges. Two of them lie on top of the two main binding subpockets and are conserved among chemokine receptors, and one, specific to ACKR3, forms an intra-N terminus four-residue-loop of so far unknown function. Here, by mutational and functional studies, we examined the impact of the different disulphide bridges for ACKR3 folding, ligand binding and activation. We showed that, in contrast to most classical chemokine receptors, none of the extracellular disulphide bridges was essential for ACKR3 function. However, the disruption of the unique ACKR3 N-terminal loop drastically reduced the binding of CC chemokines whereas it only had a mild impact on CXC chemokine binding. Mutagenesis also uncovered that chemokine and endogenous non-chemokine ligands interact and activate ACKR3 according to distinct binding modes characterized by different transmembrane domain subpocket occupancy and N-terminal loop contribution, with BAM22 mimicking the binding mode of CC chemokine N terminus. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Molecular Determinants of the Human α2C-Adrenergic Receptor Temperature-Sensitive Intracellular Traffic

    PubMed Central

    Pullikuth, Ashok K.; Guidry, Jessie J.

    2015-01-01

    The human α2C-adrenergic receptor (α2C-AR) is localized intracellularly at physiologic temperature. Decreasing the environmental temperature strongly stimulates the receptor transport to the cell surface. In contrast, rat and mouse α2C-AR plasma membrane levels are less sensitive to decrease in temperature, whereas the opossum α2C-AR cell surface levels are not changed in these conditions. Structural analysis demonstrated that human α2C-AR has a high number of arginine residues in the third intracellular loop and in the C-terminus, organized as putative RXR motifs. Although these motifs do not affect the receptor subcellular localization at 37°C, deletion of the arginine clusters significantly enhanced receptor plasma membrane levels at reduced temperature. We found that this exaggerated transport of the human receptor is mediated by two functional arginine clusters, one in the third intracellular loop and one in the C-terminus. This effect is mediated by interactions with COPI vesicles, but not by 14-3-3 proteins. In rat α2C-AR, the arginine cluster from the third intracellular loop is shifted to the left due to three missing residues. Reinsertion of these residues in the rat α2C-AR restored the same temperature sensitivity as in the human receptor. Proteomic and coimmunoprecipitation experiments identified pontin as a molecule having stronger interactions with human α2C-AR compared with rat α2C-AR. Inhibition of pontin activity enhanced human receptor plasma membrane levels and signaling at 37°C. Our results demonstrate that human α2C-AR has a unique temperature-sensitive traffic pattern within the G protein–coupled receptor class due to interactions with different molecular chaperones, mediated in part by strict spatial localization of specific arginine residues. PMID:25680754

  9. Specific Detection of Campylobacter Jejuni and Campylobacter Coli by Using Polymerase Chain Reaction

    DTIC Science & Technology

    1992-10-01

    indicated a high degree of SSC buffer (1x SSC is 0.15 M NaC! plus 0.015 M sodium conservation at the amino terminus of the protein (20). We citrate...Guerry, P., S. M. Logan, S. A. Thornton, and T. J. Trust. 1990. American Society for Microbiology, Washington, D.C. Genomic organization and expression of...Probes 4:261-271. 1981. Construction and expression of recombinant plasmids 36. Taylor, D. N. 1991. Campylobacter infections in developing encoding type 1

  10. Yin and Yang of Heparanase in Breast Cancer Initiation

    DTIC Science & Technology

    2014-09-01

    significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38: 2018 -2039, 2006 2. Gotte M, Yip GW: Heparanase...Methods Plasmids. The C-terminus of the HPR1 gene (encoding amino acid 413-543) was cloned into a RCAS vector digested with a PacI and Cla I. An...contained a cleaved Pac I site. This fragment was directly ligated into Not I/PacI- digested RCAS-C. The following plasmid designated as RCAS-8C was used

  11. INDUCTION OF RABBIT ANTIBODY WITH MOLECULAR UNIFORMITY AFTER IMMUNIZATION WITH GROUP C STREPTOCOCCI

    PubMed Central

    Eichmann, Klaus; Lackland, Henry; Hood, Leroy; Krause, Richard M.

    1970-01-01

    Antibodies with uniform properties may occur in rabbits after immunization with Group C streptococci. These precipitating antibodies possess specificity for the group-specific carbohydrate. Not uncommonly, their concentration is between 20 and 40 mg/ml of antiserum. Evidence for molecular uniformity in the case of one of these antibodies, described in detail here, includes: individual antigenic specificity; monodisperse distribution of the light chains by alkaline urea polyacrylamide disc electrophoresis; and a single amino acid in each of the first three N-terminal positions of the light chains. When the amino acid sequence of rabbit antibody b+ light chains (κ type) are aligned against their human κ counterparts, a definite homology is observed between the N-terminus of the human and the rabbit variable region. PMID:5409946

  12. Further kinetic and molecular characterization of an extremely heat-stable carboxylesterase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius.

    PubMed Central

    Sobek, H; Görisch, H

    1989-01-01

    The carboxylesterase (serine esterase, EC 3.1.1.1) from Sulfolobus acidocaldarius was purified 940-fold to homogeneity by an improved purification procedure with a yield of 57%. In the presence of alcohols the enzyme catalyses the transfer of the substrate acyl group to alcohols in parallel to hydrolysis. The results show the existence of an alcohol-binding site and a competitive partitioning of the acyl-enzyme intermediate between water and alcohols. Aniline acts also as a nucleophilic acceptor for the acyl group. On the basis of titration with diethyl p-nitrophenyl phosphate, a number of four active centres is determined for the tetrameric carboxylesterase. The sequence of 20 amino acid residues at the esterase N-terminus and the amino acid composition are reported. PMID:2508625

  13. Structure-Function Model for Kissing Loop Interactions That Initiate Dimerization of Ty1 RNA

    PubMed Central

    Gamache, Eric R.; Doh, Jung H.; Ritz, Justin; Laederach, Alain; Bellaousov, Stanislav; Mathews, David H.; Curcio, M. Joan

    2017-01-01

    The genomic RNA of the retrotransposon Ty1 is packaged as a dimer into virus-like particles. The 5′ terminus of Ty1 RNA harbors cis-acting sequences required for translation initiation, packaging and initiation of reverse transcription (TIPIRT). To identify RNA motifs involved in dimerization and packaging, a structural model of the TIPIRT domain in vitro was developed from single-nucleotide resolution RNA structural data. In general agreement with previous models, the first 326 nucleotides of Ty1 RNA form a pseudoknot with a 7-bp stem (S1), a 1-nucleotide interhelical loop and an 8-bp stem (S2) that delineate two long, structured loops. Nucleotide substitutions that disrupt either pseudoknot stem greatly reduced helper-Ty1-mediated retrotransposition of a mini-Ty1, but only mutations in S2 destabilized mini-Ty1 RNA in cis and helper-Ty1 RNA in trans. Nested in different loops of the pseudoknot are two hairpins with complementary 7-nucleotide motifs at their apices. Nucleotide substitutions in either motif also reduced retrotransposition and destabilized mini- and helper-Ty1 RNA. Compensatory mutations that restore base-pairing in the S2 stem or between the hairpins rescued retrotransposition and RNA stability in cis and trans. These data inform a model whereby a Ty1 RNA kissing complex with two intermolecular kissing-loop interactions initiates dimerization and packaging. PMID:28445416

  14. Homology-based modeling of the Erwinia amylovora type III secretion chaperone DspF used to identify amino acids required for virulence and interaction with the effector DspE.

    PubMed

    Triplett, Lindsay R; Wedemeyer, William J; Sundin, George W

    2010-09-01

    The structure of DspF, a type III secretion system (T3SS) chaperone required for virulence of the fruit tree pathogen Erwinia amylovora, was modeled based on predicted structural homology to characterized T3SS chaperones. This model guided the selection of 11 amino acid residues that were individually mutated to alanine via site-directed mutagenesis. Each mutant was assessed for its effect on virulence complementation, dimerization and interaction with the N-terminal chaperone-binding site of DspE. Four amino acid residues were identified that did not complement the virulence defect of a dspF knockout mutant, and three of these residues were required for interaction with the N-terminus of DspE. This study supports the significance of the predicted beta-sheet helix-binding groove in DspF chaperone function. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  15. Molecular cloning, structural analysis, and expression in Escherichia coli of a chitinase gene from Enterobacter agglomerans.

    PubMed Central

    Chernin, L S; De la Fuente, L; Sobolev, V; Haran, S; Vorgias, C E; Oppenheim, A B; Chet, I

    1997-01-01

    The gene chiA, which codes for endochitinase, was cloned from a soilborne Enterobacter agglomerans. Its complete sequence was determined, and the deduced amino acid sequence of the enzyme designated Chia_Entag yielded an open reading frame coding for 562 amino acids of a 61-kDa precursor protein with a putative leader peptide at its N terminus. The nucleotide and polypeptide sequences of Chia_Entag showed 86.8 and 87.7% identity with the corresponding gene and enzyme, Chia_Serma, of Serratia marcescens, respectively. Homology modeling of Chia_Entag's three-dimensional structure demonstrated that most amino acid substitutions are at solvent-accessible sites. Escherichia coli JM109 carrying the E. agglomerans chiA gene produced and secreted Chia_Entag. The antifungal activity of the secreted endochitinase was demonstrated in vitro by inhibition of Fusarium oxysporum spore germination. The transformed strain inhibited Rhizoctonia solani growth on plates and the root rot disease caused by this fungus in cotton seedlings under greenhouse conditions. PMID:9055404

  16. Molecular cloning and expression of a gene for a factor which stabilizes formation of inhibitor-mitochondrial ATPase complex from Saccharomyces cerevisiae.

    PubMed

    Akashi, A; Yoshida, Y; Nakagoshi, H; Kuroki, K; Hashimoto, T; Tagawa, K; Imamoto, F

    1988-10-01

    Stabilizing factor, a 9 kDa protein, stabilizes and facilitates formation of the complex between mitochondrial ATP synthase and its intrinsic inhibitor protein. A clone containing the gene encoding the 9 kDa protein was selected from a yeast genomic library to determine the structure of its precursor protein. As deduced from the nucleotide sequence, the precursor of the yeast 9 kDa stabilizing factor contains 86 amino acid residues and has a molecular weight of 10,062. From the predicted sequence we infer that the stabilizing factor precursor contains a presequence of 23 amino acid residues at its amino terminus. We also used S1 mapping to determine the initiation site of transcription under glucose-repressed or derepressed conditions. These experiments suggest that transcription of this gene starts at three different sites and that only one of them is not affected by the presence of glucose.

  17. "De-novo" amino acid sequence elucidation of protein G'e by combined "top-down" and "bottom-up" mass spectrometry.

    PubMed

    Yefremova, Yelena; Al-Majdoub, Mahmoud; Opuni, Kwabena F M; Koy, Cornelia; Cui, Weidong; Yan, Yuetian; Gross, Michael L; Glocker, Michael O

    2015-03-01

    Mass spectrometric de-novo sequencing was applied to review the amino acid sequence of a commercially available recombinant protein G´ with great scientific and economic importance. Substantial deviations to the published amino acid sequence (Uniprot Q54181) were found by the presence of 46 additional amino acids at the N-terminus, including a so-called "His-tag" as well as an N-terminal partial α-N-gluconoylation and α-N-phosphogluconoylation, respectively. The unexpected amino acid sequence of the commercial protein G' comprised 241 amino acids and resulted in a molecular mass of 25,998.9 ± 0.2 Da for the unmodified protein. Due to the higher mass that is caused by its extended amino acid sequence compared with the original protein G' (185 amino acids), we named this protein "protein G'e." By means of mass spectrometric peptide mapping, the suggested amino acid sequence, as well as the N-terminal partial α-N-gluconoylations, was confirmed with 100% sequence coverage. After the protein G'e sequence was determined, we were able to determine the expression vector pET-28b from Novagen with the Xho I restriction enzyme cleavage site as the best option that was used for cloning and expressing the recombinant protein G'e in E. coli. A dissociation constant (K(d)) value of 9.4 nM for protein G'e was determined thermophoretically, showing that the N-terminal flanking sequence extension did not cause significant changes in the binding affinity to immunoglobulins.

  18. The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops.

    PubMed

    Tsuchiya, Yuko; Mizuguchi, Kenji

    2016-04-01

    Of the complementarity-determining regions (CDRs) of antibodies, H3 loops, with varying amino acid sequences and loop lengths, adopt particularly diverse loop conformations. The diversity of H3 conformations produces an array of antigen recognition patterns involving all the CDRs, in which the residue positions actually in contact with the antigen vary considerably. Therefore, for a deeper understanding of antigen recognition, it is necessary to relate the sequence and structural properties of each residue position in each CDR loop to its ability to bind antigens. In this study, we proposed a new method for characterizing the structural features of the CDR loops and obtained the antigen-binding ability of each residue position in each CDR loop. This analysis led to a simple set of rules for identifying probable antigen-binding residues. We also found that the diversity of H3 loop lengths and conformations affects the antigen-binding tendencies of all the CDR loops. © 2016 The Protein Society.

  19. The synthetic peptide P111-136 derived from the C-terminal domain of heparin affin regulatory peptide inhibits tumour growth of prostate cancer PC-3 cells

    PubMed Central

    2011-01-01

    Background Heparin affin regulatory peptide (HARP), also called pleiotrophin, is a heparin-binding, secreted factor that is overexpressed in several tumours and associated to tumour growth, angiogenesis and metastasis. The C-terminus part of HARP composed of amino acids 111 to 136 is particularly involved in its biological activities and we previously established that a synthetic peptide composed of the same amino acids (P111-136) was capable of inhibiting the biological activities of HARP. Here we evaluate the ability of P111-136 to inhibit in vitro and in vivo the growth of a human tumour cell line PC-3 which possess an HARP autocrine loop. Methods A total lysate of PC-3 cells was incubated with biotinylated P111-136 and pulled down for the presence of the HARP receptors in Western blot. In vitro, the P111-136 effect on HARP autocrine loop in PC-3 cells was determined by colony formation in soft agar. In vivo, PC-3 cells were inoculated in the flank of athymic nude mice. Animals were treated with P111-136 (5 mg/kg/day) for 25 days. Tumour volume was evaluated during the treatment. After the animal sacrifice, the tumour apoptosis and associated angiogenesis were evaluated by immunohistochemistry. In vivo anti-angiogenic effect was confirmed using a mouse Matrigel™ plug assay. Results Using pull down experiments, we identified the HARP receptors RPTPβ/ζ, ALK and nucleolin as P111-136 binding proteins. In vitro, P111-136 inhibits dose-dependently PC-3 cell colony formation. Treatment with P111-136 inhibits significantly the PC-3 tumour growth in the xenograft model as well as tumour angiogenesis. The angiostatic effect of P111-136 on HARP was also confirmed using an in vivo Matrigel™ plug assay in mice Conclusions Our results demonstrate that P111-136 strongly inhibits the mitogenic effect of HARP on in vitro and in vivo growth of PC-3 cells. This inhibition could be linked to a direct or indirect binding of this peptide to the HARP receptors (ALK, RPTPβ/ζ, nucleolin). In vivo, the P111-136 treatment significantly inhibits both the PC-3 tumour growth and the associated angiogenesis. Thus, P111-136 may be considered as an interesting pharmacological tool to interfere with tumour growth that has now to be evaluated in other cancer types. PMID:21624116

  20. Nucleotide sequence analysis establishes the role of endogenous murine leukemia virus DNA segments in formation of recombinant mink cell focus-forming murine leukemia viruses.

    PubMed Central

    Khan, A S

    1984-01-01

    The sequence of 363 nucleotides near the 3' end of the pol gene and 564 nucleotides from the 5' terminus of the env gene in an endogenous murine leukemia viral (MuLV) DNA segment, cloned from AKR/J mouse DNA and designated as A-12, was obtained. For comparison, the nucleotide sequence in an analogous portion of AKR mink cell focus-forming (MCF) 247 MuLV provirus was also determined. Sequence features unique to MCF247 MuLV DNA in the 3' pol and 5' env regions were identified by comparison with nucleotide sequences in analogous regions of NFS -Th-1 xenotropic and AKR ecotropic MuLV proviruses. These included (i) an insertion of 12 base pairs encoding four amino acids located 60 base pairs from the 3' terminus of the pol gene and immediately preceding the env gene, (ii) the deletion of 12 base pairs (encoding four amino acids) and the insertion of 3 base pairs (encoding one amino acid) in the 5' portion of the env gene, and (iii) single base substitutions resulting in 2 MCF247 -specific amino acids in the 3' pol and 23 in the 5' env regions. Nucleotide sequence comparison involving the 3' pol and 5' env regions of AKR MCF247 , NFS xenotropic, and AKR ecotropic MuLV proviruses with the cloned endogenous MuLV DNA indicated that MCF247 proviral DNA sequences were conserved in the cloned endogenous MuLV proviral segment. In fact, total nucleotide sequence identity existed between the endogenous MuLV DNA and the MCF247 MuLV provirus in the 3' portion of the pol gene. In the 5' env region, only 4 of 564 nucleotides were different, resulting in three amino acid changes between AKR MCF247 MuLV DNA and the endogenous MuLV DNA present in clone A-12. In addition, nucleotide sequence comparison indicated that Moloney-and Friend-MCF MuLVs were also highly related in the 3' pol and 5' env regions to the cloned endogenous MuLV DNA. These results establish the role of endogenous MuLV DNA segments in generation of recombinant MCF viruses. PMID:6328017

  1. Bovine lactoferrin and lactoferricin exert antitumor activities on human colorectal cancer cells (HT-29) by activating various signaling pathways.

    PubMed

    Jiang, Rulan; Lönnerdal, Bo

    2017-02-01

    Lactoferrin (Lf) is an iron-binding glycoprotein that is present at high concentrations in milk. Bovine lactoferricin (LfcinB) is a peptide fragment generated by pepsin proteolysis of bovine lactoferrin (bLf). LfcinB consists of amino acid residues 17-41 proximal to the N-terminus of bLf and a disulfide bond between residues 19 and 36, forming a loop. Both bLf and LfcinB have been demonstrated to have antitumor activities. Colorectal cancer is the second most common cause of cancer death in developed countries. We hypothesized that bLf and LfcinB exert antitumor activities on colon cancer cells (HT-29) by triggering various signaling pathways. bLf and LfcinB significantly induced apoptosis in HT-29 cells but not in normal human intestinal epithelial cells, as revealed by the ApoTox-Glo Triplex Assay. The LIVE/DEAD cell viability assay showed that both bLf and LfcinB reduced the viability of HT-29 cells. Transcriptome analysis indicated that bLf, cyclic LfcinB, and linear LfcinB exerted antitumor activities by differentially activating diverse signaling pathways, including p53, apoptosis, and angiopoietin signaling. Immunoblotting results confirmed that both bLf and LfcinBs increased expression of caspase-8, p53, and p21, critical proteins in tumor suppression. These results provide valuable information regarding bLf and LfcinB for potential clinical applications in colon cancer therapy.

  2. Synthetic and semi-synthetic strategies to study ubiquitin signaling.

    PubMed

    van Tilburg, Gabriëlle Ba; Elhebieshy, Angela F; Ovaa, Huib

    2016-06-01

    The post-translational modification ubiquitin can be attached to the ɛ-amino group of lysine residues or to a protein's N-terminus as a mono ubiquitin moiety. Via its seven intrinsic lysine residues and its N-terminus, it can also form ubiquitin chains on substrates in many possible ways. To study ubiquitin signals, many synthetic and semi-synthetic routes have been developed for generation of ubiquitin-derived tools and conjugates. The strength of these methods lies in their ability to introduce chemo-selective ligation handles at sites that currently cannot be enzymatically modified. Here, we review the different synthetic and semi-synthetic methods available for ubiquitin conjugate synthesis and their contribution to how they have helped investigating conformational diversity of diubiquitin signals. Next, we discuss how these methods help understanding the ubiquitin conjugation-deconjugation system by recent advances in ubiquitin ligase probes and diubiquitin-based DUB probes. Lastly, we discuss how these methods help studying post-translational modification of ubiquitin itself. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mass Spectrometry and Ion Mobility Characterization of Bioactive Peptide-Synthetic Polymer Conjugates.

    PubMed

    Alalwiat, Ahlam; Tang, Wen; Gerişlioğlu, Selim; Becker, Matthew L; Wesdemiotis, Chrys

    2017-01-17

    The bioconjugate BMP2-(PEO-HA) 2 , composed of a dendron with two monodisperse poly(ethylene oxide) (PEO) branches terminated by a hydroxyapatite binding peptide (HA), and a focal point substituted with a bone growth stimulating peptide (BMP2), has been comprehensively characterized by mass spectrometry (MS) methods, encompassing matrix-assisted laser desorption ionization (MALDI), electrospray ionization (ESI), tandem mass spectrometry (MS 2 ), and ion mobility mass spectrometry (IM-MS). MS 2 experiments using different ion activation techniques validated the sequences of the synthetic, bioactive peptides HA and BMP2, which contained highly basic amino acid residues either at the N-terminus (BMP2) or C-terminus (HA). Application of MALDI-MS, ESI-MS, and IM-MS to the polymer-peptide biomaterial confirmed its composition. Collision cross-section measurements and molecular modeling indicated that BMP2-(PEO-HA) 2 exists in several folded and extended conformations, depending on the degree of protonation. Protonation of all basic sites of the hybrid material nearly doubles its conformational space and accessible surface area.

  4. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNAmore » binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.« less

  5. Role of IRS-2 in insulin and cytokine signalling.

    PubMed

    Sun, X J; Wang, L M; Zhang, Y; Yenush, L; Myers, M G; Glasheen, E; Lane, W S; Pierce, J H; White, M F

    1995-09-14

    The protein IRS-1 acts as an interface between signalling proteins with Src-homology-2 domains (SH2 proteins) and the receptors for insulin, IGF-1, growth hormone, several interleukins (IL-4, IL-9, IL-13) and other cytokines. It regulates gene expression and stimulates mitogenesis, and appears to mediate insulin/IGF-1-stimulated glucose transport. Thus, survival of the IRS-1-/- mouse with only mild resistance to insulin was surprising. This dilemma is provisionally resolved with our discovery of a second IRS-signalling protein. We purified and cloned a likely candidate called 4PS from myeloid progenitor cells and, because of its resemblance to IRS-1, we designate it IRS-2. Alignment of the sequences of IRS-2 and IRS-1 revealed a highly conserved amino terminus containing a pleckstrin-homology domain and a phosphotyrosine-binding domain, and a poorly conserved carboxy terminus containing several tyrosine phosphorylation motifs. IRS-2 is expressed in many cells, including tissues from IRS-1-/- mice, and may be essential for signalling by several receptor systems.

  6. FpvA receptor involvement in pyoverdine biosynthesis in Pseudomonas aeruginosa.

    PubMed

    Shen, Jiangsheng; Meldrum, Allison; Poole, Keith

    2002-06-01

    Alignment of the Pseudomonas aeruginosa ferric pyoverdine receptor, FpvA, with similar ferric-siderophore receptors revealed that the mature protein carries an extension of ca. 70 amino acids at its N terminus, an extension shared by the ferric pseudobactin receptors of P. putida. Deletion of fpvA from the chromosome of P. aeruginosa reduced pyoverdine production in this organism, as a result of a decline in expression of genes (e.g., pvdD) associated with the biosynthesis of the pyoverdine peptide moiety. Wild-type fpvA restored pvd expression in the mutant, thereby complementing its pyoverdine deficiency, although a deletion derivative of fpvA encoding a receptor lacking the N terminus of the mature protein did not. The truncated receptor was, however, functional in pyoverdine-mediated iron uptake, as evidenced by its ability to promote pyoverdine-dependent growth in an iron-restricted medium. These data are consistent with the idea that the N-terminal extension plays a role in FpvA-mediated pyoverdine biosynthesis in P. aeruginosa.

  7. Phosphorylation and nuclear localization of the varicella-zoster virus gene 63 protein.

    PubMed Central

    Stevenson, D; Xue, M; Hay, J; Ruyechan, W T

    1996-01-01

    The protein encoded by varicella-zoster virus open reading frame 63 and carboxy-terminal deletions of the same were expressed either as fusion proteins at the carboxy terminus of the maltose-binding protein in Escherichia coli or independently in transfected mammalian cells. The truncations contained amino acids 1 to 142 (63 delta N) or 1 to 210 (63 delta K) of the complete 278-amino-acid primary sequence. Recombinant casein kinase II phosphorylated the 63F and 63 delta KF fusion proteins in vitro but did not phosphorylate the 63 delta NF fusion protein, implying that phosphorylation occurred between amino acids 142 and 210. Immunoprecipitation of 35S- or 32P-labelled extracts of cells transfected with plasmids expressing 63, 63 delta N, or 63 delta K also indicated that in situ phosphorylation most likely occurred between amino acids 142 and 210. These combined results suggest that casein kinase II plays a significant role in the phosphorylation of the varicella-zoster virus 63 protein. Indirect immunofluorescence of transfected cells indicated nuclear localization of the 63 protein and cytoplasmic localization of 63 delta K and 63 delta N, implying a requirement for sequences between amino acids 210 and 278 for efficient nuclear localization. PMID:8523589

  8. Human somatostatin I: sequence of the cDNA.

    PubMed Central

    Shen, L P; Pictet, R L; Rutter, W J

    1982-01-01

    RNA has been isolated from a human pancreatic somatostatinoma and used to prepare a cDNA library. After prescreening, clones containing somatostatin I sequences were identified by hybridization with an anglerfish somatostatin I-cloned cDNA probe. From the nucleotide sequence of two of these clones, we have deduced an essentially full-length mRNA sequence, including the preprosomatostatin coding region, 105 nucleotides from the 5' untranslated region and the complete 150-nucleotide 3' untranslated region. The coding region predicts a 116-amino acid precursor protein (Mr, 12.727) that contains somatostatin-14 and -28 at its COOH terminus. The predicted amino acid sequence of human somatostatin-28 is identical to that of somatostatin-28 isolated from the porcine and ovine species. A comparison of the amino acid sequences of human and anglerfish preprosomatostatin I indicated that the COOH-terminal region encoding somatostatin-14 and the adjacent 6 amino acids are highly conserved, whereas the remainder of the molecule, including the signal peptide region, is more divergent. However, many of the amino acid differences found in the pro region of the human and anglerfish proteins are conservative changes. This suggests that the propeptides have a similar secondary structure, which in turn may imply a biological function for this region of the molecule. Images PMID:6126875

  9. Characterization of the canine mda-7 gene, transcripts and expression patterns

    PubMed Central

    Sandey, Maninder; Bird, R. Curtis; Das, Swadesh K.; Sarkar, Devanand; Curiel, David T.; Fisher, Paul B.; Smith, Bruce F.

    2014-01-01

    Human melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) displays potent growth suppressing and cell killing activity against a wide variety of human and rodent cancer cells. In this study, we identified a canine ortholog of the human mda-7/IL-24 gene located within a cluster of IL-10 family members on chromosome 7. The full-length mRNA sequence of canine mda-7 was determined, which encodes a 186-amino acid protein that has 66% similarity to human MDA-7/IL-24. Canine MDA-7 is constitutively expressed in cultured normal canine epidermal keratinocytes (NCEKs), and its expression levels are increased after lipopolysaccharide stimulation. In cultured NCEKs, the canine mda-7 pre-mRNA is differentially spliced, via exon skipping and alternate 5′-splice donor sites, to yield five splice variants (canine mda-7sv1, canine mda-7sv2, canine mda-7sv3, canine mda-7sv4 and canine mda-7sv5) that encode four protein isoforms of the canine MDA-7 protein. These protein isoforms have a conserved N-terminus (signal peptide sequence) and are dissimilar in amino acid sequences at their C-terminus. Canine MDA-7 is not expressed in primary canine tumor samples, and most tumor derived cancer cell lines tested, like its human counterpart. Unlike human MDA-7/IL-24, canine mda-7 mRNA is not expressed in unstimulated or lipopolysaccharide (LPS), concanavalin A (ConA) or phytohemagglutinin (PHA) stimulated canine peripheral blood mononuclear cells (PBMCs). Furthermore, in-silico analysis revealed that canonical canine MDA-7 has a potential 28 amino acid signal peptide sequence that can target it for active secretion. This data suggests that canine mda-7 is indeed an ortholog of human mda-7/IL-24, its protein product has high amino acid similarity to human MDA-7/IL-24 protein and it may possess similar biological properties to human MDA-7/IL-24, but its expression pattern is more restricted than its human ortholog. PMID:24865935

  10. Free-Energy Landscape of the Amino-Terminal Fragment of Huntingtin in Aqueous Solution.

    PubMed

    Binette, Vincent; Côté, Sébastien; Mousseau, Normand

    2016-03-08

    The first exon of Huntingtin-a protein with multiple biological functions whose misfolding is related to Huntington's disease-modulates its localization, aggregation, and function within the cell. It is composed of a 17-amino-acid amphipathic segment (Htt17), an amyloidogenic segment of consecutive glutamines (QN), and a proline-rich segment. Htt17 is of fundamental importance: it serves as a membrane anchor to control the localization of huntingtin, it modulates huntingtin's function through posttranslational modifications, and it controls the self-assembly of the amyloidogenic QN segment into oligomers and fibrils. Experimentally, the conformational ensemble of the Htt17 monomer, as well as the impact of the polyglutamine and proline-rich segments, remains, however, mostly uncharacterized at the atomic level due to its intrinsic flexibility. Here, we unveil the free-energy landscape of Htt17, Htt17Q17, and Htt17Q17P11 using Hamiltonian replica exchange combined with well-tempered metadynamics. We characterize the free-energy landscape of these three fragments in terms of a few selected collective variables. Extensive simulations reveal that the free energy of Htt17 is dominated by a broad ensemble of configurations that agree with solution NMR chemical shifts. Addition of Q17 at its carboxy-terminus reduces the extent of the main basin to more extended configurations of Htt17 with lower helix propensity. Also, the aliphatic carbons of Q17 partially sequester the nonpolar amino acids of Htt17. For its part, addition of Q17P11 shifts the overall landscape to a more extended and helical Htt17 stabilized by interactions with Q17 and P11, which almost exclusively form a PPII-helix, as well as by intramolecular H-bonds and salt bridges. Our characterization of Huntingtin's amino-terminus provides insights into the structural origin of its ability to oligomerize and interact with phospholipid bilayers, processes closely linked to the biological functions of this protein. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Architecture of a Diels-Alderase ribozyme with a preformed catalytic pocket.

    PubMed

    Keiper, Sonja; Bebenroth, Dirk; Seelig, Burckhard; Westhof, Eric; Jäschke, Andres

    2004-09-01

    Artificial ribozymes catalyze a variety of chemical reactions. Their structures and reaction mechanisms are largely unknown. We have analyzed a ribozyme catalyzing Diels-Alder cycloaddition reactions by comprehensive mutation analysis and a variety of probing techniques. New tertiary interactions involving base pairs between nucleotides of the 5' terminus and a large internal loop forming a pseudoknot fold were identified. The probing data indicate a preformed tertiary structure that shows no major changes on substrate or product binding. Based on these observations, a molecular architecture featuring a Y-shaped arrangement is proposed. The tertiary structure is formed in a rather unusual way; that is, the opposite sides of the asymmetric internal loop are clamped by the four 5'-terminal nucleotides, forming two adjacent two base-pair helices. It is proposed that the catalytic pocket is formed by a wedge within one of these helices.

  12. N-glycans of Human Protein C Inhibitor: Tissue-Specific Expression and Function

    PubMed Central

    Engström, Åke; Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Hreinsson, Julius; Wånggren, Kjell; Clark, Gary F.; Dell, Anne; Schedin-Weiss, Sophia

    2011-01-01

    Protein C inhibitor (PCI) is a serpin type of serine protease inhibitor that is found in many tissues and fluids in human, including blood plasma, seminal plasma and urine. This inhibitor displays an unusually broad protease specificity compared with other serpins. Previous studies have shown that the N-glycan(s) and the NH2-terminus affect some blood-related functions of PCI. In this study, we have for the first time determined the N-glycan profile of seminal plasma PCI, by mass spectrometry. The N-glycan structures differed markedly compared with those of both blood-derived and urinary PCI, providing evidence that the N-glycans of PCI are expressed in a tissue-specific manner. The most abundant structure (m/z 2592.9) had a composition of Fuc3Hex5HexNAc4, consistent with a core fucosylated bi-antennary glycan with terminal Lewisx. A major serine protease in semen, prostate specific antigen (PSA), was used to evaluate the effects of N-glycans and the NH2-terminus on a PCI function related to the reproductive tract. Second-order rate constants for PSA inhibition by PCI were 4.3±0.2 and 4.1±0.5 M−1s−1 for the natural full-length PCI and a form lacking six amino acids at the NH2-terminus, respectively, whereas these constants were 4.8±0.1 and 29±7 M−1s−1 for the corresponding PNGase F-treated forms. The 7–8-fold higher rate constants obtained when both the N-glycans and the NH2-terminus had been removed suggest that these structures jointly affect the rate of PSA inhibition, presumably by together hindering conformational changes of PCI required to bind to the catalytic pocket of PSA. PMID:22205989

  13. Targeting the Atypical Chemokine Receptor ACKR3/CXCR7: Phase 1 - Phage Display Peptide Identification and Characterization.

    PubMed

    Vestal, R D; LaJeunesse, D R; Taylor, E W

    2016-01-01

    One of the greatest challenges in fighting cancer is cell targeting and biomarker selection. The Atypical Chemokine Receptor ACKR3/CXCR7 is expressed on many cancer cell types, including breast cancer and glioblastoma, and binds the endogenous ligands SDF1/CXCL12 and ITAC/CXCL11. A 20 amino acid region of the ACKR3/CXCR7 N-terminus was synthesized and targeted with the NEB PhD-7 Phage Display Peptide Library. Twenty-nine phages were isolated and heptapeptide inserts sequenced; of these, 23 sequences were unique. A 3D molecular model was created for the ACKR3/CXCR7 N-terminus by mutating the corresponding region of the crystal structure of CXCR4 with bound SDF1/CXCL12. A ClustalW alignment was performed on each peptide sequence using the entire SDF1/CXCL12 sequence as the template. The 23-peptide sequences showed similarity to three distinct regions of the SDF1/CXCL12 molecule. A 3D molecular model was made for each of the phage peptide inserts to visually identify potential areas of steric interference of peptides that simulated CXCL12 regions not in contact with the receptor's Nterminus. An ELISA analysis of the relative binding affinity between the peptides identified 9 peptides with statistically significant results. The candidate pool of 9 peptides was further reduced to 3 peptides based on their affinity for the targeted N-terminus region peptide versus no target peptide present or a scrambled negative control peptide. The results clearly show the Phage Display protocol can be used to target a synthesized region of the ACKR3/CXCR7 N-terminus. The 3 peptides chosen, P20, P3, and P9, will be the basis for further targeting studies.

  14. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.

    PubMed

    Li, Zhong; Yalcin, Talat; Cassady, Carolyn J

    2006-07-01

    Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.

  15. Location of Dual Sites in E. coli FtsZ Important for Degradation by ClpXP; One at the C-Terminus and One in the Disordered Linker

    PubMed Central

    Camberg, Jodi L.; Viola, Marissa G.; Rea, Leslie; Hoskins, Joel R.; Wickner, Sue

    2014-01-01

    ClpXP is a two-component ATP-dependent protease that unfolds and degrades proteins bearing specific recognition signals. One substrate degraded by Escherichia coli ClpXP is FtsZ, an essential cell division protein. FtsZ forms polymers that assemble into a large ring-like structure, termed the Z-ring, during cell division at the site of constriction. The FtsZ monomer is composed of an N-terminal polymerization domain, an unstructured linker region and a C-terminal conserved region. To better understand substrate selection by ClpXP, we engineered FtsZ mutant proteins containing amino acid substitutions or deletions near the FtsZ C-terminus. We identified two discrete regions of FtsZ important for degradation of both FtsZ monomers and polymers by ClpXP in vitro. One region is located 30 residues away from the C-terminus in the unstructured linker region that connects the polymerization domain to the C-terminal region. The other region is near the FtsZ C-terminus and partially overlaps the recognition sites for several other FtsZ-interacting proteins, including MinC, ZipA and FtsA. Mutation of either region caused the protein to be more stable and mutation of both caused an additive effect, suggesting that both regions are important. We also observed that in vitro MinC inhibits degradation of FtsZ by ClpXP, suggesting that some of the same residues in the C-terminal site that are important for degradation by ClpXP are important for binding MinC. PMID:24722340

  16. Synthesis and biological activity of lipophilic analogs of the cationic antimicrobial active peptide anoplin.

    PubMed

    Chionis, Kostas; Krikorian, Dimitrios; Koukkou, Anna-Irini; Sakarellos-Daitsiotis, Maria; Panou-Pomonis, Eugenia

    2016-11-01

    Anoplin is a short natural cationic antimicrobial peptide which is derived from the venom sac of the solitary wasp, Anoplius samariensis. Due to its short sequence G 1 LLKR 5 IKT 8 LL-NH 2 , it is ideal for research tests. In this study, novel analogs of anoplin were prepared and examined for their antimicrobial, hemolytic activity, and proteolytic stability. Specific substitutions were introduced in amino acids Gly 1 , Arg 5 , and Thr 8 and lipophilic groups with different lengths in the N-terminus in order to investigate how these modifications affect their antimicrobial activity. These cationic analogs exhibited higher antimicrobial activity than the native peptide; they are also nontoxic at their minimum inhibitory concentration (MIC) values and resistant to enzymatic degradation. The substituted peptide GLLKF 5 IKK 8 LL-NH 2 exhibited high activity against Gram-negative bacterium Zymomonas mobilis (MIC = 7 µg/ml), and the insertion of octanoic, decanoic, and dodecanoic acid residues in its N-terminus increased the antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC = 5 µg/ml). The conformational characteristics of the peptide analogs were studied by circular dichroism. Structure activity studies revealed that the substitution of specific amino acids and the incorporation of lipophilic groups enhanced the amphipathic α-helical conformation inducing better antimicrobial effects. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  17. Electrochemical Studies of a Truncated Laccase Produced in Pichia pastoris

    PubMed Central

    Gelo-Pujic, Mirjana; Kim, Hyug-Han; Butlin, Nathan G.; Palmore, G. Tayhas R.

    1999-01-01

    The cDNA that encodes an isoform of laccase from Trametes versicolor (LCCI), as well as a truncated version (LCCIa), was subcloned and expressed by using the yeast Pichia pastoris as the heterologous host. The amino acid sequence of LCCIa is identical to that of LCCI except that the final 11 amino acids at the C terminus of LCCI are replaced with a single cysteine residue. This modification was introduced for the purpose of improving the kinetics of electron transfer between an electrode and the copper-containing active site of laccase. The two laccases (LCCI and LCCIa) are compared in terms of their relative activity with two substrates that have different redox potentials. Results from electrochemical studies on solutions containing LCCI and LCCIa indicate that the redox potential of the active site of LCCIa is shifted to more negative values (411 mV versus normal hydrogen electrode voltage) than that found in other fungal laccases. In addition, replacing the 11 codons at the C terminus of the laccase gene with a single cysteine codon (i.e., LCCI→LCCIa) influences the rate of heterogeneous electron transfer between an electrode and the copper-containing active site (khet for LCCIa = 1.3 × 10−4 cm s−1). These results demonstrate for the first time that the rate of electron transfer between an oxidoreductase and an electrode can be enhanced by changes to the primary structure of a protein via site-directed mutagenesis. PMID:10584012

  18. Cloning and expression analysis of phytoene desaturase and ζ-carotene desaturase genes in Carica papaya.

    PubMed

    Yan, P; Gao, X Z; Shen, W T; Zhou, P

    2011-02-01

    The fruit flesh color of papaya is an important nutritional quality trait and is due to the accumulation of carotenoid. To elucidate the carotenoid biosynthesis pathway in Carica papaya, the phytoene desaturase (PDS) and the ζ-carotene desaturase (ZDS) genes were isolated from papaya (named CpPDS and CpZDS) using the rapid amplification of cDNA ends (RACE) approach, and their expression levels were investigated in red- and yellow-fleshed papaya varieties. CpPDS contains a 1749 bp open reading frame coding for 583 amino acids, while CpZDS contains a 1716 bp open reading frame coding for 572 amino acids. The deduced CpPDS and CpZDS proteins contain a conserved dinucleotide-binding site at the N-terminus and a carotenoid-binding domain at the C-terminus. Papaya genome sequence analysis revealed that CpPDS and CpZDS are single copy; the CpPDS was mapped to papaya chromosome LG6, and the CpZDS was mapped to chromosome LG3. Quantitative PCR showed that both CpPDS and CpZDS were expressed in all tissues examined with the highest expression in maturing fruits, and that the expression of CpPDS and CpZDS were higher in red-fleshed fruits than in yellow-fleshed fruits. These results indicated that the differential accumulation of carotenoids in red- and yellow-fleshed papaya varieties might be partly explained by the transcriptional level of CpPDS and CpZDS.

  19. A Novel Hepacivirus with an Unusually Long and Intrinsically Disordered NS5A Protein in a Wild Old World Primate

    PubMed Central

    Lauck, Michael; Sibley, Samuel D.; Lara, James; Purdy, Michael A.; Khudyakov, Yury; Hyeroba, David; Tumukunde, Alex; Weny, Geoffrey; Switzer, William M.; Chapman, Colin A.; Hughes, Austin L.; Friedrich, Thomas C.; O'Connor, David H.

    2013-01-01

    GB virus B (GBV-B; family Flaviviridae, genus Hepacivirus) has been studied in New World primates as a model for human hepatitis C virus infection, but the distribution of GBV-B and its relatives in nature has remained obscure. Here, we report the discovery of a novel and highly divergent GBV-B-like virus in an Old World monkey, the black-and-white colobus (Colobus guereza), in Uganda. The new virus, guereza hepacivirus (GHV), clusters phylogenetically with GBV-B and recently described hepaciviruses infecting African bats and North American rodents, and it shows evidence of ancient recombination with these other hepaciviruses. Direct sequencing of reverse-transcribed RNA from blood plasma from three of nine colobus monkeys yielded near-complete GHV genomes, comprising two distinct viral variants. The viruses contain an exceptionally long nonstructural 5A (NS5A) gene, approximately half of which codes for a protein with no discernible homology to known proteins. Computational structure-based analyses indicate that the amino terminus of the GHV NS5A protein may serve a zinc-binding function, similar to the NS5A of other viruses within the family Flaviviridae. However, the 521-amino-acid carboxy terminus is intrinsically disordered, reflecting an unusual degree of structural plasticity and polyfunctionality. These findings shed new light on the natural history and evolution of the hepaciviruses and on the extent of structural variation within the Flaviviridae. PMID:23740998

  20. A novel hepacivirus with an unusually long and intrinsically disordered NS5A protein in a wild Old World primate.

    PubMed

    Lauck, Michael; Sibley, Samuel D; Lara, James; Purdy, Michael A; Khudyakov, Yury; Hyeroba, David; Tumukunde, Alex; Weny, Geoffrey; Switzer, William M; Chapman, Colin A; Hughes, Austin L; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L

    2013-08-01

    GB virus B (GBV-B; family Flaviviridae, genus Hepacivirus) has been studied in New World primates as a model for human hepatitis C virus infection, but the distribution of GBV-B and its relatives in nature has remained obscure. Here, we report the discovery of a novel and highly divergent GBV-B-like virus in an Old World monkey, the black-and-white colobus (Colobus guereza), in Uganda. The new virus, guereza hepacivirus (GHV), clusters phylogenetically with GBV-B and recently described hepaciviruses infecting African bats and North American rodents, and it shows evidence of ancient recombination with these other hepaciviruses. Direct sequencing of reverse-transcribed RNA from blood plasma from three of nine colobus monkeys yielded near-complete GHV genomes, comprising two distinct viral variants. The viruses contain an exceptionally long nonstructural 5A (NS5A) gene, approximately half of which codes for a protein with no discernible homology to known proteins. Computational structure-based analyses indicate that the amino terminus of the GHV NS5A protein may serve a zinc-binding function, similar to the NS5A of other viruses within the family Flaviviridae. However, the 521-amino-acid carboxy terminus is intrinsically disordered, reflecting an unusual degree of structural plasticity and polyfunctionality. These findings shed new light on the natural history and evolution of the hepaciviruses and on the extent of structural variation within the Flaviviridae.

  1. The role of charge and multiple faces of the CD8 alpha/alpha homodimer in binding to major histocompatibility complex class I molecules: support for a bivalent model.

    PubMed

    Giblin, P A; Leahy, D J; Mennone, J; Kavathas, P B

    1994-03-01

    The CD8 dimer interacts with the alpha 3 domain of major histocompatibility complex class I molecules through two immunoglobulin variable-like domains. In this study a crystal structure-informed mutational analysis has been performed to identify amino acids in the CD8 alpha/alpha homodimer that are likely to be involved in binding to class I. Several key residues are situated on the top face of the dimer within loops analogous to the complementarity-determining regions (CDRs) of immunoglobulin. In addition, other important amino acids are located in the A and B beta-strands on the sides of the dimer. The potential involvement of amino acids on both the top and the side faces of the molecule is consistent with a bivalent model for the interaction between a single CD8 alpha/alpha homodimer and two class I molecules and may have important implications for signal transduction in class I-expressing cells. This study also demonstrates a role for the positive surface potential of CD8 in class I binding and complements previous work demonstrating the importance of a negatively charged loop on the alpha 3 domain of class I for CD8 alpha/alpha-class I interaction. We propose a model whereby residues located on the CDR-like loops of the CD8 homodimer interact with the alpha 3 domain of MHC class I while amino acids on the side of the molecule containing the A and B beta-strands contact the alpha 2 domain of class I.

  2. Sequence of the amino-terminal region of rat liver ribosomal proteins S4, S6, S8, L6, L7a, L18, L27, L30, L37, L37a, and L39.

    PubMed

    Wittmann-Liebold, B; Geissler, A W; Lin, A; Wool, I G

    1979-01-01

    The sequence of the amino-terminal region of eleven rat liver ribosomal proteins--S4, S6, S8, L6, L7a, L18, L27, L30, L37a, and L39--was determined. The analysis confirmed the homogeneity of the proteins and suggests that they are unique, since no extensive common sequences were found. The N-terminal regions of the rat liver proteins were compared with amino acid sequences in Saccharomyces cerevisiae and in Escherichia coli ribosomal proteins. It seems likely that the proteins L37 from rat liver and Y55 from yeast ribosomes are homologous. It is possible that rat liver L7a or L37a or both are related to S cerevisiae Y44, although the similar sequences are at the amino-terminus of the rat liver proteins and in an internal region of Y44. A number of similarities in the sequences of rat liver and E coli ribosomal proteins have been found; however, it is not yet possible to say whether they connote a common ancestry.

  3. Molecular structure, chemical synthesis, and antibacterial activity of ABP-dHC-cecropin A from drury (Hyphantria cunea).

    PubMed

    Zhang, Jiaxin; Movahedi, Ali; Wang, Xiaoli; Wu, Xiaolong; Yin, Tongming; Zhuge, Qiang

    2015-06-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous efforts to develop new antibiotics with new modes of actions. In this paper, cDNA encoding cecropin A was amplified from drury (Hyphantria cunea) (dHC) pupa fatbody total RNA using RT-PCR. The full-length dHC-cecropin A cDNA encoded a protein of 63 amino acids with a predicted 26-amino acid signal peptide and a 37-amino acid functional domain. We synthesized the antibacterial peptide (ABP) from the 37-amino acid functional domain (ABP-dHC-cecropin A), and amidated it via the C-terminus. Time-of-flight mass spectrometry showed its molecular weight to be 4058.94. The ABP-dHC-cecropin A was assessed in terms of its protein structure using bioinformatics and CD spectroscopy. The protein's secondary structure was predicted to be α-helical. In an antibacterial activity analysis, the ABP-dHC-cecropin A exhibited strong antibacterial activity against E. coli K12D31 and Agrobacterium EHA105. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The Treacher Collins syndrome (TCOF1) gene product, treacle, is targeted to the nucleolus by signals in its C-terminus.

    PubMed

    Winokur, S T; Shiang, R

    1998-11-01

    The TCOF1 gene product, treacle, responsible for the craniofacial disorder Treacher Collins syndrome, has been predicted to be a member of a class of nucleolar phosphoproteins based on its primary amino acid sequence. Treacle is a low complexity protein with ten repeating units of acidic and basic residues, each of which contains a large number of putative casein kinase 2 and protein kinase C phosphorylation sites. In addition, the C-terminus of treacle contains multiple putative nuclear localization signals. The overall structure of treacle, as well as sequence similarity to several nucleolar phosphoproteins, predicts that treacle is a member of this class of proteins. Using green fluorescent protein fusion constructs with the full-length and deleted domains of the murine homolog of treacle, we demonstrate that the cellular localization of treacle is nucleolar. This localization is mediated by the last 41 residues of the C-terminus (residues 1262-1302). At least two functional nuclear localization signals have been identified in the protein, one between residues 1176 and 1270 and the second within the last 32 residues of the protein (1271-1302). The nucleolar localization signal is disrupted by two constructs that split the C-terminal region between residues 1270 and 1271. This study provides the first direct analysis of treacle and demonstrates that the protein involved in TCOF1 is a nucleolar protein.

  5. Comparison of ZP3 protein sequences among vertebrate species: to obtain a consensus sequence for immunocontraception.

    PubMed

    Zhu, X; Naz, R K

    1999-03-01

    The deduced ZP3 amino acid (aa) sequences of 13 vertebrate species namely mouse, hamster, rabbit, pig, porcine, cow, dog, cat, human, bonnet, marmoset, carp, and frog were compared using the PILEUP and PRETTY alignment programs (GCG, Wisconsin, USA). The published aa sequences obtained from 13 vertebrate species indicated the overall evolutionarily conservation in the N-terminus, central region, and C-terminus of the ZP3 polypeptide. More variations of ZP3 polypeptide sequences were seen in the alignments of carp and frog from the 11 mammalian species making the leader sequence more prominent. The canonical furin proteolytic processing signal at the C-terminus was found in all the ZP3 polypeptide sequences except of carp and frog. In the central region, the ZP3 deduced aa sequences of all the 13 vertebrate species aligned well, and six relatively conserved sequences were found. There are 11 conserved cysteine residues in the central region across all species including carp and frog, indicating that these residues have longer evolutionary history. The ZP3 aa sequence similarities were examined using the GAP program (GCG). The highest aa similarities are observed between the members of the same order within the class mammalia, and also (95.4%) between pig (ungulata) and rabbit (lagomorpha). The deduced ZP3 aa sequences per se may not be enough to build a phylogenetic tree.

  6. Functional analysis of the C-terminal region of human adenovirus E1A reveals a misidentified nuclear localization signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Michael J.; King, Cason R.; Dikeakos, Jimmy D.

    The immortalizing function of the human adenovirus 5 E1A oncoprotein requires efficient localization to the nucleus. In 1987, a consensus monopartite nuclear localization sequence (NLS) was identified at the C-terminus of E1A. Since that time, various experiments have suggested that other regions of E1A influence nuclear import. In addition, a novel bipartite NLS was recently predicted at the C-terminal region of E1A in silico. In this study, we used immunofluorescence microscopy and co-immunoprecipitation analysis with importin-α to verify that full nuclear localization of E1A requires the well characterized NLS spanning residues 285–289, as well as a second basic patch situatedmore » between residues 258 and 263 ({sup 258}RVGGRRQAVECIEDLLNEPGQPLDLSCKRPRP{sup 289}). Thus, the originally described NLS located at the C-terminus of E1A is actually a bipartite signal, which had been misidentified in the existing literature as a monopartite signal, altering our understanding of one of the oldest documented NLSs. - Highlights: • Human adenovirus E1A is localized to the nucleus. • The C-terminus of E1A contains a bipartite nuclear localization signal (NLS). • This signal was previously misidentified to be a monopartite NLS. • Key basic amino acid residues within this sequence are highly conserved.« less

  7. DifA, a methyl-accepting chemoreceptor protein-like sensory protein, uses a novel signaling mechanism to regulate exopolysaccharide production in Myxococcus xanthus.

    PubMed

    Xu, Qian; Black, Wesley P; Nascimi, Heidi M; Yang, Zhaomin

    2011-02-01

    DifA is a methyl-accepting chemotaxis protein (MCP)-like sensory transducer that regulates exopolysaccharide (EPS) production in Myxococcus xanthus. Here mutational analysis and molecular biology were used to probe the signaling mechanisms of DifA in EPS regulation. We first identified the start codon of DifA experimentally; this identification extended the N terminus of DifA for 45 amino acids (aa) from the previous bioinformatics prediction. This extension helped to address the outstanding question of how DifA receives input signals from type 4 pili without a prominent periplasmic domain. The results suggest that DifA uses its N-terminus extension to sense an upstream signal in EPS regulation. We suggest that the perception of the input signal by DifA is mediated by protein-protein interactions with upstream components. Subsequent signal transmission likely involves transmembrane signaling instead of direct intramolecular interactions between the input and the output modules in the cytoplasm. The basic functional unit of DifA for signal transduction is likely dimeric as mutational alteration of the predicted dimeric interface of DifA significantly affected EPS production. Deletions of 14-aa segments in the C terminus suggest that the newly defined flexible bundle subdomain in MCPs is likely critical for DifA function because shortening of this bundle can lead to constitutively active mutations.

  8. Molecular mechanisms of Sonic hedgehog mutant effects in holoprosencephaly.

    PubMed

    Maity, Tapan; Fuse, Naoyuki; Beachy, Philip A

    2005-11-22

    Holoprosencephaly (HPE), a human developmental brain defect, usually is also associated with varying degrees of midline facial dysmorphism. Heterozygous mutations in the Sonic hedgehog (SHH) gene are the most common genetic lesions associated with HPE, and loss of Shh function in the mouse produces cyclopia and alobar forebrain development. The N-terminal domain (ShhNp) of Sonic hedgehog protein, generated by cholesterol-dependent autoprocessing and modification at the C terminus and by palmitate addition at the N terminus, is the active ligand in the Shh signal transduction pathway. Here, we analyze seven reported missense mutations (G31R, D88V, Q100H, N115K, W117G, W117R, and E188Q) that alter the N-terminal signaling domain of Shh protein, and show that two of these mutations (Q100H and E188Q), which are questionably linked to HPE, produce no detectable effects on function. The remaining five alterations affect normal processing, Ptc binding, and signaling to varying degrees. These effects include introduction of a recognition site for furin-like proteases by the G31R alteration, resulting in cleavage of 11 amino acid residues from the N terminus of ShhNp and consequent reduced signaling potency. Two other alterations, W117G and W117R, cause temperature-dependent misfolding and retention in the sterol-poor endoplasmic reticulum, thus disrupting cholesterol-dependent autoprocessing.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichijo, Yuta; Mochimaru, Yuta; Azuma, Morio

    Human G2A is activated by various stimuli such as lysophosphatidylcholine (LPC), 9-hydroxyoctadecadienoic acid (9-HODE), and protons. The receptor is coupled to multiple intracellular signaling pathways, including the G{sub s}-protein/cAMP/CRE, G{sub 12/13}-protein/Rho/SRE, and G{sub q}-protein/phospholipase C/NFAT pathways. In the present study, we examined whether zebrafish G2A homologs (zG2A-a and zG2A-b) could respond to these stimuli and activate multiple intracellular signaling pathways. We also examined whether histidine residue and basic amino acid residue in the N-terminus of the homologs also play roles similar to those played by human G2A residues if the homologs sense protons. We found that the zG2A-a showed themore » high CRE, SRE, and NFAT activities, however, zG2A-b showed only the high SRE activity under a pH of 8.0. Extracellular acidification from pH 7.4 to 6.3 ameliorated these activities in zG2A-a-expressing cells. On the other hand, acidification ameliorated the SRE activity but not the CRE and NFAT activities in zG2A-b-expressing cells. LPC or 9-HODE did not modify any activity of either homolog. The substitution of histidine residue at the 174{sup th} position from the N-terminus of zG2A-a to asparagine residue attenuated proton-induced CRE and NFAT activities but not SRE activity. The substitution of arginine residue at the 32nd position from the N-terminus of zG2A-a to the alanine residue also attenuated its high and the proton-induced CRE and NFAT activities. On the contrary, the substitution did not attenuate SRE activity. The substitution of the arginine residue at the 10th position from the N-terminus of zG2A-b to the alanine residue also did not attenuate its high or the proton-induced SRE activity. These results indicate that zebrafish G2A homologs were activated by protons but not by LPC and 9-HODE, and the activation mechanisms of the homologs were similar to those of human G2A. - Highlights: • Zebrafish two G2A homologs are proton-sensing receptors. • The signaling pathways activated by the homologs are different. • Histidine residues and basic amino acid residues critical for sensing protons are conserved.« less

  10. Amino acid substitutions in subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Sequence analysis of a series of revertants of an oli1 mit- mutant carrying an amino acid substitution in the hydrophilic loop of subunit 9.

    PubMed

    Willson, T A; Nagley, P

    1987-09-01

    This work concerns a biochemical genetic study of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Subunit 9, encoded by the mitochondrial oli1 gene, contains a hydrophilic loop connecting two transmembrane stems. In one particular oli1 mit- mutant 2422, the substitution of a positively charged amino acid in this loop (Arg39----Met) renders the ATPase complex non-functional. A series of 20 revertants, selected for their ability to grow on nonfermentable substrates, has been isolated from mutant 2422. The results of DNA sequence analysis of the oli1 gene in each revertant have led to the recognition of three groups of revertants. Class I revertants have undergone a same-site reversion event: the mutant Met39 is replaced either by arginine (as in wild-type) or lysine. Class II revertants maintain the mutant Met39 residue, but have undergone a second-site reversion event (Asn35----Lys). Two revertants showing an oligomycin-resistant phenotype carry this same second-site reversion in the loop region together with a further amino acid substitution in either of the two membrane-spanning segments of subunit 9 (either Gly23----Ser or Leu53----Phe). Class III revertants contain subunit 9 with the original mutant 2422 sequence, and additionally carry a recessive nuclear suppressor, demonstrated to represent a single gene. The results on the revertants in classes I and II indicate that there is a strict requirement for a positively charged residue in the hydrophilic loop close to the boundary of the lipid bilayer. The precise location of this positive charge is less stringent; in functional ATPase complexes it can be found at either residue 39 or 35. This charged residue is possibly required to interact with some other component of the mitochondrial ATPase complex. These findings, together with hydropathy plots of subunit 9 polypeptides from normal, mutant and revertant strains, led to the conclusion that the hydrophilic loop in normal subunit 9 extends further than previously suggested, with the boundary of the N-terminal membrane-embedded stem lying at residue 34. The possibility is raised that the observed suppression of the 2422 mutant phenotype in class III revertants is manifested through an accommodating change in a nuclear-encoded subunit of the ATPase complex.

  11. Dynamic Consequences of Mutation of Tryptophan 215 in Thrombin.

    PubMed

    Peacock, Riley B; Davis, Jessie R; Markwick, Phineus R L; Komives, Elizabeth A

    2018-05-08

    Thrombin normally cleaves fibrinogen to promote coagulation; however, binding of thrombomodulin to thrombin switches the specificity of thrombin toward protein C, triggering the anticoagulation pathway. The W215A thrombin mutant was reported to have decreased activity toward fibrinogen without significant loss of activity toward protein C. To understand how mutation of Trp215 may alter thrombin specificity, hydrogen-deuterium exchange experiments (HDXMS), accelerated molecular dynamics (AMD) simulations, and activity assays were carried out to compare the dynamics of Trp215 mutants with those of wild type (WT) thrombin. Variation in NaCl concentration had no detectable effect on the sodium-binding (220s CT ) loop, but appeared to affect other surface loops. Trp215 mutants showed significant increases in amide exchange in the 170s CT loop consistent with a loss of H-bonding in this loop identified by the AMD simulations. The W215A thrombin showed increased amide exchange in the 220s CT loop and in the N-terminus of the heavy chain. The AMD simulations showed that a transient conformation of the W215A thrombin has a distorted catalytic triad. HDXMS experiments revealed that mutation of Phe227, which engages in a π-stacking interaction with Trp215, also caused significantly increased amide exchange in the 170s CT loop. Activity assays showed that only the F227V mutant had wild type catalytic activity, whereas all other mutants showed markedly lower activity. Taken together, the results explain the reduced pro-coagulant activity of the W215A mutant and demonstrate the allosteric connection between Trp215, the sodium-binding loop, and the active site.

  12. Self-assembling Polypeptide Nanoparticles: Design, Synthesis, Biophysical Characterization and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Araujo Pereira Falcao Pimentel, Tais de

    Inspired by the architecture of icosahedral viruses, self-assembling polypeptide nanoparticles (SAPN) with icosahedral symmetry were developed. The building block for the SAPN was a single polypeptide chain. Similarly, the capsid of quite a few small viruses are built from one single peptide chain. The polypeptide chain of the SAPN consists of a pentameric coiled-coil domain at the N-terminus joined by a short linker segment to a trimeric coiled-coil domain at the C-terminus. Here we have studied factors governing self-assembly of the SAPN such as linker constitution and trimer length. The interdomain linker 2i88 afforded the most homogenous nanoparticles as verified by TEM and DLS. Furthermore, AUC and STEM analyses suggest that the nanoparticles formed using the linker 2i88 have a T=3-like architecture confirming computer modeling predictions. As for trimer length, we have shown that it is possible to synthesize SAPN with a trimer that is as short as only 17 amino acids. Given that the N-terminus and C-terminus of the SAPN can be extended to include epitopes and give rise to a repetitive antigen display system, vaccine applications of the SAPN were also investigated here. We grafted parts of the SARS virus' spike protein onto our SAPN to repetitively display this B-cell epitope. Biophysical characterization showed that single nanoparticles of the expected size range were formed. Immunization experiments in mice at University of Colorado Denver revealed that the antibodies elicited were conformation-specific. Moreover, the antibodies significantly inhibited SARS virus infection of Vero E6 cells. SAPN were also functionalized at the C-terminus with a B-cell epitope from the circumsporozoite protein (CSP) of the malaria parasite Plasmodium falciparum and at the N-terminus with CTL epitopes from CSP. The trimeric coiled-coil domains of these malaria SAPN were modified to include a HTL epitope. Even will all these modifications, self-assembly occurred as confirmed by TEM and DLS. In immunization experiments performed at WRAIR good immune responses were obtained. Another biomedical application of SAPN is the development of a peptide-based serodiagnostic assay for tuberculosis (Tb). In an ELISA format, Tb-SAPN showed modest responses in serodiagnosis of Tb.

  13. Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah

    A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND 2 and ND –, suggesting a role for the copper ion inmore » shifting the pK a of the amino terminus.« less

  14. Vibrational Spectra of Cryogenic Peptide Ions Using H_2 Predissociation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Leavitt, Christopher M.; Wolk, Arron B.; Kamrath, Michael Z.; Garand, Etienne; Johnson, Mark A.; van Stipdonk, Michael J.

    2011-06-01

    H_2 predissociation spectroscopy was used to collect the vibrational spectra of the model protonated peptides, GlyGly, GlySar, SarGly and SarSar (Gly=glycine and Sar=sarcosine). H_2 molecules were condensed onto protonated peptide ions in a quadrupole ion trap cooled to approximately 10 K. The resulting spectra yielded clearly resolved vibrational transitions throughout the mid IR region, 600-4200 Cm-1, with linewidths of approximately 6 Cm-1. Protonation nominally occurred on the amino terminus giving rise to an intramolecular H-bond between the protonated amine and the neighboring amide oxygen. The sarcosine containing peptides incorporate a methyl group onto either the amino group or the amide nitrogen causing the peptide backbone to adopt a different structure, resulting in the shifts in the amide I and II bands and the N-H stretches.

  15. Neutron and Atomic Resolution X-ray Structures of a Lytic Polysaccharide Monooxygenase Reveal Copper-Mediated Dioxygen Binding and Evidence for N-Terminal Deprotonation

    DOE PAGES

    Bacik, John-Paul; Mekasha, Sophanit; Forsberg, Zarah; ...

    2017-05-08

    A 1.1 Å resolution, room-temperature X-ray structure and a 2.1 Å resolution neutron structure of a chitin-degrading lytic polysaccharide monooxygenase domain from the bacterium Jonesia denitrificans (JdLPMO10A) show a putative dioxygen species equatorially bound to the active site copper. We found that both structures show an elongated density for the dioxygen, most consistent with a Cu(II)-bound peroxide. The coordination environment is consistent with Cu(II). Furthermore, in the neutron and X-ray structures, difference maps reveal the N-terminal amino group, involved in copper coordination, is present as a mixed ND 2 and ND –, suggesting a role for the copper ion inmore » shifting the pK a of the amino terminus.« less

  16. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  17. Molecular Structural Basis for the Cold Adaptedness of the Psychrophilic β-Glucosidase BglU in Micrococcus antarcticus

    PubMed Central

    Miao, Li-Li; Hou, Yan-Jie; Fan, Hong-Xia; Qu, Jie; Qi, Chao; Liu, Ying

    2016-01-01

    Psychrophilic enzymes play crucial roles in cold adaptation of microbes and provide useful models for studies of protein evolution, folding, and dynamic properties. We examined the crystal structure (2.2-Å resolution) of the psychrophilic β-glucosidase BglU, a member of the glycosyl hydrolase 1 (GH1) enzyme family found in the cold-adapted bacterium Micrococcus antarcticus. Structural comparison and sequence alignment between BglU and its mesophilic and thermophilic counterpart enzymes (BglB and GlyTn, respectively) revealed two notable features distinct to BglU: (i) a unique long-loop L3 (35 versus 7 amino acids in others) involved in substrate binding and (ii) a unique amino acid, His299 (Tyr in others), involved in the stabilization of an ordered water molecule chain. Shortening of loop L3 to 25 amino acids reduced low-temperature catalytic activity, substrate-binding ability, the optimal temperature, and the melting temperature (Tm). Mutation of His299 to Tyr increased the optimal temperature, the Tm, and the catalytic activity. Conversely, mutation of Tyr301 to His in BglB caused a reduction in catalytic activity, thermostability, and the optimal temperature (45 to 35°C). Loop L3 shortening and H299Y substitution jointly restored enzyme activity to the level of BglU, but at moderate temperatures. Our findings indicate that loop L3 controls the level of catalytic activity at low temperatures, residue His299 is responsible for thermolability (particularly heat lability of the active center), and long-loop L3 and His299 are jointly responsible for the psychrophilic properties. The described structural basis for the cold adaptedness of BglU will be helpful for structure-based engineering of new cold-adapted enzymes and for the production of mutants useful in a variety of industrial processes at different temperatures. PMID:26801571

  18. Molecular Structural Basis for the Cold Adaptedness of the Psychrophilic β-Glucosidase BglU in Micrococcus antarcticus.

    PubMed

    Miao, Li-Li; Hou, Yan-Jie; Fan, Hong-Xia; Qu, Jie; Qi, Chao; Liu, Ying; Li, De-Feng; Liu, Zhi-Pei

    2016-01-22

    Psychrophilic enzymes play crucial roles in cold adaptation of microbes and provide useful models for studies of protein evolution, folding, and dynamic properties. We examined the crystal structure (2.2-Å resolution) of the psychrophilic β-glucosidase BglU, a member of the glycosyl hydrolase 1 (GH1) enzyme family found in the cold-adapted bacterium Micrococcus antarcticus. Structural comparison and sequence alignment between BglU and its mesophilic and thermophilic counterpart enzymes (BglB and GlyTn, respectively) revealed two notable features distinct to BglU: (i) a unique long-loop L3 (35 versus 7 amino acids in others) involved in substrate binding and (ii) a unique amino acid, His299 (Tyr in others), involved in the stabilization of an ordered water molecule chain. Shortening of loop L3 to 25 amino acids reduced low-temperature catalytic activity, substrate-binding ability, the optimal temperature, and the melting temperature (Tm). Mutation of His299 to Tyr increased the optimal temperature, the Tm, and the catalytic activity. Conversely, mutation of Tyr301 to His in BglB caused a reduction in catalytic activity, thermostability, and the optimal temperature (45 to 35°C). Loop L3 shortening and H299Y substitution jointly restored enzyme activity to the level of BglU, but at moderate temperatures. Our findings indicate that loop L3 controls the level of catalytic activity at low temperatures, residue His299 is responsible for thermolability (particularly heat lability of the active center), and long-loop L3 and His299 are jointly responsible for the psychrophilic properties. The described structural basis for the cold adaptedness of BglU will be helpful for structure-based engineering of new cold-adapted enzymes and for the production of mutants useful in a variety of industrial processes at different temperatures. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. The 2.3-Angstrom Structure of Porcine Circovirus 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khayat, Reza; Brunn, Nicholas; Speir, Jeffrey A.

    Porcine circovirus 2 (PCV2) is a T = 1 nonenveloped icosahedral virus that has had severe impact on the swine industry. Here we report the crystal structure of an N-terminally truncated PCV2 virus-like particle at 2.3-{angstrom} resolution, and the cryo-electron microscopy (cryo-EM) image reconstruction of a full-length PCV2 virus-like particle at 9.6-{angstrom} resolution. This is the first atomic structure of a circovirus. The crystal structure revealed that the capsid protein fold is a canonical viral jelly roll. The loops connecting the strands of the jelly roll define the limited features of the surface. Sulfate ions interacting with the surface andmore » electrostatic potential calculations strongly suggest a heparan sulfate binding site that allows PCV2 to gain entry into the cell. The crystal structure also allowed previously determined epitopes of the capsid to be visualized. The cryo-EM image reconstruction showed that the location of the N terminus, absent in the crystal structure, is inside the capsid. As the N terminus was previously shown to be antigenic, it may externalize through viral 'breathing'.« less

  20. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity.

    PubMed

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J V

    2016-12-08

    TMEM16A and TMEM16B are plasma membrane proteins with Ca 2+ -dependent Cl - channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the "activating domain" to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca 2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl - transport.

  1. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity

    PubMed Central

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J. V.

    2016-01-01

    TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl− channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl− transport. PMID:27929144

  2. Intermolecular Interactions in the TMEM16A Dimer Controlling Channel Activity

    NASA Astrophysics Data System (ADS)

    Scudieri, Paolo; Musante, Ilaria; Gianotti, Ambra; Moran, Oscar; Galietta, Luis J. V.

    2016-12-01

    TMEM16A and TMEM16B are plasma membrane proteins with Ca2+-dependent Cl- channel function. By replacing the carboxy-terminus of TMEM16A with the equivalent region of TMEM16B, we obtained channels with potentiation of channel activity. Progressive shortening of the chimeric region restricted the “activating domain” to a short sequence close to the last transmembrane domain and led to TMEM16A channels with high activity at very low intracellular Ca2+ concentrations. To elucidate the molecular mechanism underlying this effect, we carried out experiments based on double chimeras, Forster resonance energy transfer, and intermolecular cross-linking. We also modeled TMEM16A structure using the Nectria haematococca TMEM16 protein as template. Our results indicate that the enhanced activity in chimeric channels is due to altered interaction between the carboxy-terminus and the first intracellular loop in the TMEM16A homo-dimer. Mimicking this perturbation with a small molecule could be the basis for a pharmacological stimulation of TMEM16A-dependent Cl- transport.

  3. Conformational Preference of ‘CαNN’ Short Peptide Motif towards Recognition of Anions

    PubMed Central

    Banerjee, Raja

    2013-01-01

    Among several ‘anion binding motifs’, the recently described ‘CαNN’ motif occurring in the loop regions preceding a helix, is conserved through evolution both in sequence and its conformation. To establish the significance of the conserved sequence and their intrinsic affinity for anions, a series of peptides containing the naturally occurring ‘CαNN’ motif at the N-terminus of a designed helix, have been modeled and studied in a context free system using computational techniques. Appearance of a single interacting site with negative binding free-energy for both the sulfate and phosphate ions, as evidenced in docking experiments, establishes that the ‘CαNN’ segment has an intrinsic affinity for anions. Molecular Dynamics (MD) simulation studies reveal that interaction with anion triggers a conformational switch from non-helical to helical state at the ‘CαNN’ segment, which extends the length of the anchoring-helix by one turn at the N-terminus. Computational experiments substantiate the significance of sequence/structural context and justify the conserved nature of the ‘CαNN’ sequence for anion recognition through “local” interaction. PMID:23516403

  4. Regulation of pokemon 1 activity by sumoylation.

    PubMed

    Roh, Hee-Eun; Lee, Min-Nyung; Jeon, Bu-Nam; Choi, Won-Il; Kim, Yoo-Jin; Yu, Mi-Young; Hur, Man-Wook

    2007-01-01

    Pokemon 1 is a proto-oncogenic transcriptional regulator that contains a POZ domain at the N-terminus and four Kruppel-like zinc fingers at the C-terminus. Pokemon 1 plays an important role in adipogenesis, osteogenesis, oncogenesis, and transcription of NF-kB responsive genes. Recent reports have shown that biological activities of transcription factors are regulated by sumolylation. We investigated whether Pokemon 1 is post-translationally modified by sumoylation and whether the modification affects Pokemon 1's transcriptional properties. We found that Pokemon 1 is sumoylated in vitro and in vivo. Upon careful analysis of the amino acid sequence of Pokemon 1, we found ten potential sumoylation sites located at lysines 61, 354, 371, 379, 383, 396, 486, 487, 536 and 539. We mutated each of these amino acids into arginine and tested whether the mutation could affect the transcriptional properties of Pokemon 1 on the Pokemon 1 responsive genes, such as ADH5/FDH and pG5-FRE-Luc. Wild-type Pokemon 1 potently represses transcription of ADH5/FDH. Most of the mutants, however, were weaker transcription repressors and repressed transcription 1.3-3.3 fold less effective. Although potential sumoylation sites were located close to the DNA binding domain or the nuclear localization sequence, the mutations did not alter nuclear localization or DNA binding activity. In addition, on the pG5-FRE-Luc test promoter construct, ectopic SUMO-1 repressed transcription in the presence of Pokemon 1. The sumoylation target lysine residue at amino acid 61, which is located in the middle of the POZ-domain, is important because K61R mutation resulted in a much weaker molecular interaction with corepressors. Our data suggest that Pokemon 1's activity as a transcription factor may involve sumoylation, and that sumoylation might be important in the regulation of transcription by Pokemon 1.

  5. The NH2 terminus regulates voltage-dependent gating of CALHM ion channels.

    PubMed

    Tanis, Jessica E; Ma, Zhongming; Foskett, J Kevin

    2017-08-01

    Calcium homeostasis modulator protein-1 (CALHM1) and its Caenorhabditis elegans (ce) homolog, CLHM-1, belong to a new family of physiologically important ion channels that are regulated by voltage and extracellular Ca 2+ (Ca 2+ o ) but lack a canonical voltage-sensing domain. Consequently, the intrinsic voltage-dependent gating mechanisms for CALHM channels are unknown. Here, we performed voltage-clamp experiments on ceCLHM-1 chimeric, deletion, insertion, and point mutants to assess the role of the NH 2 terminus (NT) in CALHM channel gating. Analyses of chimeric channels in which the ceCLHM-1 and human (h)CALHM1 NH 2 termini were interchanged showed that the hCALHM1 NT destabilized channel-closed states, whereas the ceCLHM-1 NT had a stabilizing effect. In the absence of Ca 2+ o , deletion of up to eight amino acids from the ceCLHM-1 NT caused a hyperpolarizing shift in the conductance-voltage relationship with little effect on voltage-dependent slope. However, deletion of nine or more amino acids decreased voltage dependence and induced a residual conductance at hyperpolarized voltages. Insertion of amino acids into the NH 2 -terminal helix also decreased voltage dependence but did not prevent channel closure. Mutation of ceCLHM-1 valine 9 and glutamine 13 altered half-maximal activation and voltage dependence, respectively, in 0 Ca 2+ In 2 mM Ca 2+ o , ceCLHM-1 NH 2 -terminal deletion and point mutant channels closed completely at hyperpolarized voltages with apparent affinity for Ca 2+ o indistinguishable from wild-type ceCLHM-1, although the ceCLHM-1 valine 9 mutant exhibited an altered conductance-voltage relationship and kinetics. We conclude that the NT plays critical roles modulating voltage dependence and stabilizing the closed states of CALHM channels. Copyright © 2017 the American Physiological Society.

  6. Dolichol phosphate mannose synthase: a Glycosyltransferase with Unity in molecular diversities.

    PubMed

    Banerjee, Dipak K; Zhang, Zhenbo; Baksi, Krishna; Serrano-Negrón, Jesús E

    2017-08-01

    N-glycans provide structural and functional stability to asparagine-linked (N-linked) glycoproteins, and add flexibility. Glycan biosynthesis is elaborative, multi-compartmental and involves many glycosyltransferases. Failure to assemble N-glycans leads to phenotypic changes developing infection, cancer, congenital disorders of glycosylation (CDGs) among others. Biosynthesis of N-glycans begins at the endoplasmic reticulum (ER) with the assembly of dolichol-linked tetra-decasaccharide (Glc 3 Man 9 GlcNAc 2 -PP-Dol) where dolichol phosphate mannose synthase (DPMS) plays a central role. DPMS is also essential for GPI anchor biosynthesis as well as for O- and C-mannosylation of proteins in yeast and in mammalian cells. DPMS has been purified from several sources and its gene has been cloned from 39 species (e.g., from protozoan parasite to human). It is an inverting GT-A folded enzyme and classified as GT2 by CAZy (carbohydrate active enZyme; http://www.cazy.org ). The sequence alignment detects the presence of a metal binding DAD signature in DPMS from all 39 species but finds cAMP-dependent protein phosphorylation motif (PKA motif) in only 38 species. DPMS also has hydrophobic region(s). Hydropathy analysis of amino acid sequences from bovine, human, S. crevisiae and A. thaliana DPMS show PKA motif is present between the hydrophobic domains. The location of PKA motif as well as the hydrophobic domain(s) in the DPMS sequence vary from species to species. For example, the domain(s) could be located at the center or more towards the C-terminus. Irrespective of their catalytic similarity, the DNA sequence, the amino acid identity, and the lack of a stretch of hydrophobic amino acid residues at the C-terminus, DPMS is still classified as Type I and Type II enzyme. Because of an apparent bio-sensing ability, extracellular signaling and microenvironment regulate DPMS catalytic activity. In this review, we highlight some important features and the molecular diversities of DPMS.

  7. Turoctocog alfa (NovoEight®)--from design to clinical proof of concept.

    PubMed

    Ezban, Mirella; Vad, Knud; Kjalke, Marianne

    2014-11-01

    Turoctocog alfa (NovoEight®) is a recombinant factor VIII (rFVIII) with a truncated B-domain made from the sequence coding for 10 amino acids from the N-terminus and 11 amino acids from the C-terminus of the naturally occurring B-domain. Turoctocog alfa is produced in Chinese hamster ovary (CHO) cells without addition of any human- or animal-derived materials. During secretion, some rFVIII molecules are cleaved at the C-terminal of the heavy chain (HC) at amino acid 720, and a monoclonal antibody binding C-terminal to this position is used in the purification process allowing isolation of the intact rFVIII. Viral inactivation is ensured by a detergent inactivation step as well as a 20-nm nano-filtration step. Characterisation of the purified protein demonstrated that turoctocog alfa was fully sulphated at Tyr346 and Tyr1664, which is required for optimal proteolytic activation by thrombin. Kinetic assessments confirmed that turoctocog alfa was activated by thrombin at a similar rate as seen for other rFVIII products fully sulphated at these positions. Tyr1680 was also fully sulphated in turoctocog alfa resulting in strong affinity (low nm Kd ) for binding to von Willebrand factor (VWF). Half-lives of 7.2 ± 0.9 h in F8-KO mice and 8.9 ± 1.8 h haemophilia A dogs supported that turoctocog alfa bound to VWF after infusion. Functional studies including thromboelastography analysis of human haemophilia A whole blood with added turoctocog alfa and effect studies in mice bleeding models demonstrated a dose-dependent effect of turoctocog alfa. The non-clinical data thus confirm the haemostatic effect of turoctocog alfa and, together with the comprehensive clinical evaluation, support the use as FVIII replacement therapy in patients with haemophilia A. © 2014 The Authors. European Journal of Haematology Published by John Wiley & Sons Ltd.

  8. Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA

    NASA Astrophysics Data System (ADS)

    Goubin, Gerard; Goldman, Debra S.; Luce, Judith; Neiman, Paul E.; Cooper, Geoffrey M.

    1983-03-01

    A transforming gene detected by transfection of chicken B-cell lymphoma DNA has been isolated by molecular cloning. It is homologous to a conserved family of sequences present in normal chicken and human DNAs but is not related to transforming genes of acutely transforming retroviruses. The nucleotide sequence of the cloned transforming gene suggests that it encodes a protein that is partially homologous to the amino terminus of transferrin and related proteins although only about one tenth the size of transferrin.

  9. Lipid-peptide-polymer conjugates and nanoparticles thereof

    DOEpatents

    Xu, Ting; Dong, He; Shu, Jessica

    2015-06-02

    The present invention provides a conjugate having a peptide with from about 10 to about 100 amino acids, wherein the peptide adopts a helical structure. The conjugate also includes a first polymer covalently linked to the peptide, and a hydrophobic moiety covalently linked to the N-terminus of the peptide, wherein the hydrophobic moiety comprises a second polymer or a lipid moiety. The present invention also provides helix bundles form by self-assembling the conjugates, and particles formed by self-assembling the helix bundles. Methods of preparing the helix bundles and particles are also provided.

  10. Precursors of vertebrate peptide antibiotics dermaseptin b and adenoregulin have extensive sequence identities with precursors of opioid peptides dermorphin, dermenkephalin, and deltorphins.

    PubMed

    Amiche, M; Ducancel, F; Mor, A; Boulain, J C; Menez, A; Nicolas, P

    1994-07-08

    The dermaseptins are a family of broad spectrum antimicrobial peptides, 27-34 amino acids long, involved in the defense of the naked skin of frogs against microbial invasion. They are the first vertebrate peptides to show lethal effects against the filamentous fungi responsible for severe opportunistic infections accompanying immunodeficiency syndrome and the use of immunosuppressive agents. A cDNA library was constructed from skin poly(A+) RNA of the arboreal frog Phyllomedusa bicolor and screened with an oligonucleotide probe complementary to the COOH terminus of dermaseptin b. Several clones contained a full-length DNA copy of a 443-nucleotide mRNA that encoded a 78-residue dermaseptin b precursor protein. The deduced precursor contained a putative signal sequence at the NH2 terminus, a 20-residue spacer sequence extremely rich (60%) in glutamic and aspartic acids, and a single copy of a dermaseptin b progenitor sequence at the COOH terminus. One clone contained a complete copy of adenoregulin, a 33-residue peptide reported to enhance the binding of agonists to the A1 adenosine receptor. The mRNAs encoding adenoregulin and dermaseptin b were very similar: 70 and 75% nucleotide identities between the 5'- and 3'-untranslated regions, respectively; 91% amino acid identity between the signal peptides; 82% identity between the acidic spacer sequences; and 38% identity between adenoregulin and dermaseptin b. Because adenoregulin and dermaseptin b have similar precursor designs and antimicrobial spectra, adenoregulin should be considered as a new member of the dermaseptin family and alternatively named dermaseptin b II. Preprodermaseptin b and preproadenoregulin have considerable sequence identities to the precursors encoding the opioid heptapeptides dermorphin, dermenkephalin, and deltorphins. This similarity extended into the 5'-untranslated regions of the mRNAs. These findings suggest that the genes encoding the four preproproteins are all members of the same family despite the fact that they encode end products having very different biological activities. These genes might contain a homologous export exon comprising the 5'-untranslated region, the 22-residue signal peptide, the 20-24-residue acidic spacer, and the basic pair Lys-Arg.

  11. An asparagine residue at the N-terminus affects the maturation process of low molecular weight glutenin subunits of wheat endosperm

    PubMed Central

    2014-01-01

    Background Wheat glutenin polymers are made up of two main subunit types, the high- (HMW-GS) and low- (LMW-GS) molecular weight subunits. These latter are represented by heterogeneous proteins. The most common, based on the first amino acid of the mature sequence, are known as LMW-m and LMW-s types. The mature sequences differ as a consequence of three extra amino acids (MET-) at the N-terminus of LMW-m types. The nucleotide sequences of their encoding genes are, however, nearly identical, so that the relationship between gene and protein sequences is difficult to ascertain. It has been hypothesized that the presence of an asparagine residue in position 23 of the complete coding sequence for the LMW-s type might account for the observed three-residue shortened sequence, as a consequence of cleavage at the asparagine by an asparaginyl endopeptidase. Results We performed site-directed mutagenesis of a LMW-s gene to replace asparagine at position 23 with threonine and thus convert it to a candidate LMW-m type gene. Similarly, a candidate LMW-m type gene was mutated at position 23 to replace threonine with asparagine. Next, we produced transgenic durum wheat (cultivar Svevo) lines by introducing the mutated versions of the LMW-m and LMW-s genes, along with the wild type counterpart of the LMW-m gene. Proteomic comparisons between the transgenic and null segregant plants enabled identification of transgenic proteins by mass spectrometry analyses and Edman N-terminal sequencing. Conclusions Our results show that the formation of LMW-s type relies on the presence of an asparagine residue close to the N-terminus generated by signal peptide cleavage, and that LMW-GS can be quantitatively processed most likely by vacuolar asparaginyl endoproteases, suggesting that those accumulated in the vacuole are not sequestered into stable aggregates that would hinder the action of proteolytic enzymes. Rather, whatever is the mechanism of glutenin polymer transport to the vacuole, the proteins remain available for proteolytic processing, and can be converted to the mature form by the removal of a short N-terminal sequence. PMID:24629124

  12. Production of Nα-acetylated thymosin α1 in Escherichia coli

    PubMed Central

    2011-01-01

    Background Thymosin α1 (Tα1), a 28-amino acid Nα-acetylated peptide, has a powerful general immunostimulating activity. Although biosynthesis is an attractive means of large-scale manufacture, to date, Tα1 can only be chemosynthesized because of two obstacles to its biosynthesis: the difficulties in expressing small peptides and obtaining Nα-acetylation. In this study, we describe a novel production process for Nα-acetylated Tα1 in Escherichia coli. Results To obtain recombinant Nα-acetylated Tα1 efficiently, a fusion protein, Tα1-Intein, was constructed, in which Tα1 was fused to the N-terminus of the smallest mini-intein, Spl DnaX (136 amino acids long, from Spirulina platensis), and a His tag was added at the C-terminus. Because Tα1 was placed at the N-terminus of the Tα1-Intein fusion protein, Tα1 could be fully acetylated when the Tα1-Intein fusion protein was co-expressed with RimJ (a known prokaryotic Nα-acetyltransferase) in Escherichia coli. After purification by Ni-Sepharose affinity chromatography, the Tα1-Intein fusion protein was induced by the thiols β-mercaptoethanol or d,l-dithiothreitol, or by increasing the temperature, to release Tα1 through intein-mediated N-terminal cleavage. Under the optimal conditions, more than 90% of the Tα1-Intein fusion protein was thiolyzed, and 24.5 mg Tα1 was obtained from 1 L of culture media. The purity was 98% after a series of chromatographic purification steps. The molecular weight of recombinant Tα1 was determined to be 3107.44 Da by mass spectrometry, which was nearly identical to that of the synthetic version (3107.42 Da). The whole sequence of recombinant Tα1 was identified by tandem mass spectrometry and its N-terminal serine residue was shown to be acetylated. Conclusions The present data demonstrate that Nα-acetylated Tα1 can be efficiently produced in recombinant E. coli. This bioprocess could be used as an alternative to chemosynthesis for the production of Tα1. The described methodologies may also be helpful for the biosynthesis of similar peptides. PMID:21513520

  13. Intra-molecular cross-linking of acidic residues for protein structure studies.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruppa, Gary Hermann; Young, Malin M.; Novak, Petr

    2005-03-01

    Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would be useful in developing structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine selective reagents that can cross-link lysine residues to other lysine residues or the amino terminus. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution, and solvent accessibility of themore » lysines in the protein sequence. To overcome these limitations we have investigated the use of cross-linking reagents that can react with other reactive sidechains in proteins. We used 1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E), and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO sidechains can react to form 'zero-length' cross-links with nearby primary amine containing resides, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO sidechains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker ann of variable length. Using these reagents, we have found three new 'zero-length' cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18, and K63-E64). Using the dihydrazide cross-linkers, we have identified 2 new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 angstroms. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry, increasing the probability that the protein target of choice will yield sufficient distance constraints to develop a structural model.« less

  14. Targeting the atypical chemokine receptor ACKR3/CXCR7 for the treatment of cancer and other diseases

    NASA Astrophysics Data System (ADS)

    Vestal, Richard D., Jr.

    One of the greatest challenges in fighting cancer is cell targeting and biomarker selection. The Atypical Chemokine Receptor ACKR3/CXCR7 is expressed on many cancer cell types, including breast cancer and glioblastoma, and binds the endogenous ligands SDF1/CXCL12 and ITAC/CXCL11. A 20 amino acid region of the ACKR3/CXCR7 N-terminus was synthesized and targeted with the NEB PhD-7 Phage Display Peptide Library. Twenty-nine phages were isolated and heptapeptide inserts sequenced; of these, 23 sequences were unique. A 3D molecular model was created for the ACKR3/CXCR7 N-terminus by mutating the corresponding region of the crystal structure of CXCR4 with bound SDF1/CXCL12. A ClustalW alignment was performed on each peptide sequence using the entire SDF1/CXCL12 sequence as the template. The 23-peptide sequences showed similarity to three distinct regions of the SDF1/CXCL12 molecule. A 3D molecular model was made for each of the phage peptide inserts to visually identify potential areas of steric interference of peptides that simulated CXCL12 regions not in contact with the receptor's N-terminus. An ELISA analysis of the relative binding affinity between the peptides identified 9 peptides with statistically significant results. The candidate pool of 9 peptides was further reduced to 3 peptides based on their affinity for the targeted N-terminus region peptide versus no target peptide present or a scrambled negative control peptide. The results clearly show the Phage Display protocol can be used to target a synthesized region of the ACKR3/CXCR7 N-terminus. The 3 peptides chosen, P20, P3, and P9, showed no effect on the viability or proliferation upon exposure to MCF-7 and U87-MG cells. Membrane binding, colocalization, and cellular uptake were confirmed by whole-cell ELISA and confocal microscopy. The recovered peptides did not activate the receptor as confirmed by a Beta-Arrestin recruitment assay. The data shows that the peptide sequences recovered from the phage display protocol are viable candidates for targeting cancer cells and delivering material to them.

  15. Identification of the likely translational start of Mycobacterium tuberculosis GyrB.

    PubMed

    Karkare, Shantanu; Brown, Amanda C; Parish, Tanya; Maxwell, Anthony

    2013-07-15

    Bacterial DNA gyrase is a validated target for antibacterial chemotherapy. It consists of two subunits, GyrA and GyrB, which form an A₂B₂ complex in the active enzyme. Sequence alignment of Mycobacterium tuberculosis GyrB with other bacterial GyrBs predicts the presence of 40 potential additional amino acids at the GyrB N-terminus. There are discrepancies between the M. tuberculosis GyrB sequences retrieved from different databases, including sequences annotated with or without the additional 40 amino acids. This has resulted in differences in the GyrB sequence numbering that has led to the reporting of previously known fluoroquinolone-resistance mutations as novel mutations. We have expressed M. tuberculosis GyrB with and without the extra 40 amino acids in Escherichia coli and shown that both can be produced as soluble, active proteins. Supercoiling and other assays of the two proteins show no differences, suggesting that the additional 40 amino acids have no effect on the enzyme in vitro. RT-PCR analysis of M. tuberculosis mRNA shows that transcripts that could yield both the longer and shorter protein are present. However, promoter analysis showed that only the promoter elements leading to the shorter GyrB (lacking the additional 40 amino acids) had significant activity. We conclude that the most probable translational start codon for M. tuberculosis GyrB is GTG (Val) which results in translation of a protein of 674 amino acids (74 kDa).

  16. Biosynthetic multitasking facilitates thalassospiramide structural diversity in marine bacteria.

    PubMed

    Ross, Avena C; Xu, Ying; Lu, Liang; Kersten, Roland D; Shao, Zongze; Al-Suwailem, Abdulaziz M; Dorrestein, Pieter C; Qian, Pei-Yuan; Moore, Bradley S

    2013-01-23

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multimodule skipping and iteration. Preliminary biochemical analysis of the N-terminal nonribosomal peptide synthetase module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N terminus.

  17. Biosynthetic Multitasking Facilitates Thalassospiramide Structural Diversity in Marine Bacteria

    PubMed Central

    Ross, Avena C.; Xu, Ying; Lu, Liang; Kersten, Roland D.; Shao, Zongze; Al-Suwailem, Abdulaziz M.; Dorrestein, Pieter C.; Qian, Pei-Yuan; Moore, Bradley S.

    2013-01-01

    Thalassospiramides A and B are immunosuppressant cyclic lipopeptides first reported from the marine α-proteobacterium Thalassospira sp. CNJ-328. We describe here the discovery and characterization of an extended family of 14 new analogues from four Tistrella and Thalassospira isolates. These potent calpain 1 protease inhibitors belong to six structure classes in which the length and composition of the acylpeptide side chain varies extensively. Genomic sequence analysis of the thalassospiramide-producing microbes revealed related, genus-specific biosynthetic loci encoding hybrid nonribosomal peptide synthetase/polyketide synthases consistent with thalassospiramide assembly. The bioinformatics analysis of the gene clusters suggests that structural diversity, which ranges from the 803.4 Da thalassospiramide C to the 1291.7 Da thalassospiramide F, results from a complex sequence of reactions involving amino acid substrate channeling and enzymatic multi-module skipping and iteration. Preliminary biochemical analysis of the N-terminal NRPS module from the Thalassospira TtcA megasynthase supports a biosynthetic model in which in cis amino acid activation competes with in trans activation to increase the range of amino acid substrates incorporated at the N-terminus. PMID:23270364

  18. A new method for the construction of a mutant library with a predictable occurrence rate using Poisson distribution.

    PubMed

    Seong, Ki Moon; Park, Hweon; Kim, Seong Jung; Ha, Hyo Nam; Lee, Jae Yung; Kim, Joon

    2007-06-01

    A yeast transcriptional activator, Gcn4p, induces the expression of genes that are involved in amino acid and purine biosynthetic pathways under amino acid starvation. Gcn4p has an acidic activation domain in the central region and a bZIP domain in the C-terminus that is divided into the DNA-binding motif and dimerization leucine zipper motif. In order to identify amino acids in the DNA-binding motif of Gcn4p which are involved in transcriptional activation, we constructed mutant libraries in the DNA-binding motif through an innovative application of random mutagenesis. Mutant library made by oligonucleotides which were mutated randomly using the Poisson distribution showed that the actual mutation frequency was in good agreement with expected values. This method could save the time and effort to create a mutant library with a predictable mutation frequency. Based on the studies using the mutant libraries constructed by the new method, the specific residues of the DNA-binding domain in Gcn4p appear to be involved in the transcriptional activities on a conserved binding site.

  19. An all sulfur analogue of the smallest subunit of F420-non-reducing hydrogenase from Methanococcus voltae--metal binding and structure.

    PubMed

    Pfeiffer, M; Klein, A; Steinert, P; Schomburg, D

    The 25 amino acid long subunit VhuU of the F420-non-reducing hydrogenase from Methanococcus voltae contains selenocysteine within the consensus sequence of known [NiFe] hydrogenases DP(C or U)CxxCxxH (U = selenocysteine). The sulfur-analogue VhuUc was chemically synthesized, purified and its metal binding capability, the catalytic properties, and structural features were investigated. The polypeptide was able to bind nickel, but did not catalyse the heterolytic activation of H2. 2D-NMR spectroscopy revealed an alpha-helical secondary structure for the 15 N-terminal amino acids in 50% TFE. Nickel only binds to the C-terminus, which contains the conserved amino acid motif. Structures derived from the NMR data are compatible with the participation of both sulfur atoms from the conserved cysteine residues in a metal ion binding. Structures obtained from the data sets for Ni.VhuUc as well as Zn.VhuUc showed no further ligands. The informational value for Ni.VhuUc was low due to paramagnetism.

  20. Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12.

    PubMed

    Murphy, C K; Klebba, P E

    1989-11-01

    A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.

  1. Purification, composition, and physical properties of a thermal hysteresis "antifreeze" protein from larvae of the beetle, Tenebrio molitor.

    PubMed

    Tomchaney, A P; Morris, J P; Kang, S H; Duman, J G

    1982-02-16

    Proteins which produce a thermal hysteresis (difference between the freezing and melting points) in aqueous solution are well-known for their antifreeze activity in polar marine fishes. Much less is known about the biology and biochemistry of similar antifreeze proteins found in certain insects. A thermal hysteresis protein was purified from cold acclimated larvae of the beetle, Tenebrio molitor, by using ethanol fractionation, DEAE ion-exchange chromatography, gel filtration, and high-pressure liquid chromatography. The purified protein had a molecular mass of 17 000 daltons and its N terminus was lysine. The amino acid composition of the antifreeze protein contained more hydrophilic amino acids than the fish antifreezes. This is consistent with the compositions of previously purified insect thermal hysteresis proteins. However, the percentage of hydrophilic amino acids in this Tenebrio antifreeze protein was considerably less than that of other insect thermal hysteresis proteins. The freezing point depressing activity of the Tenebrio antifreeze was less than that of fish proteins and glycoproteins at low protein concentrations but was greater at high protein concentrations.

  2. Residues within the Transmembrane Domain of the Glucagon-Like Peptide-1 Receptor Involved in Ligand Binding and Receptor Activation: Modelling the Ligand-Bound Receptor

    PubMed Central

    Coopman, K.; Wallis, R.; Robb, G.; Brown, A. J. H.; Wilkinson, G. F.; Timms, D.

    2011-01-01

    The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues. PMID:21868452

  3. Homology modeling study toward identifying structural properties in the HA2 B-loop that would influence the HA1 receptor-binding site.

    PubMed

    Cueno, Marni E; Imai, Kenichi; Shimizu, Kazufumi; Ochiai, Kuniyasu

    2013-07-01

    Influenza hemagglutinin (HA) consists of a fibrous globular stem (HA2) inserted into the viral membrane supporting a globular head (HA1). HA1 receptor-binding has been hypothesized to be structurally correlated to the HA2 B-loop, however, this was never fully understood. Here, we elucidated the structural relationship between the HA2 B-loop and the HA1 receptor-binding site (RBS). Throughout this study, we analyzed 2486 H1N1 HA homology models obtained from human, swine and avian strains during 1976-2012. Quality of all homology models were verified before further analyses. We established that amino acid residue 882 is putatively strain-conserved and differs in the human (K882), swine (H882) and avian (N882) strains. Moreover, we observed that the amino acid at residue 882 and, similarly, its orientation has the potential to influence the HA1 RBS diameter measurements which we hypothesize may consequentially affect influenza H1N1 viral infectivity, immune escape, transmissibility, and evolution. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Escherichia coli tatC mutations that suppress defective twin-arginine transporter signal peptides.

    PubMed

    Strauch, Eva-Maria; Georgiou, George

    2007-11-23

    In vitro studies have suggested that the TatBC complex serves as the receptor for signal peptides targeted for export via the twin-arginine translocation (Tat) pathway. Substitution of the hallmark twin-arginine dipeptide with two lysines abrogates export of physiological substrates in all organisms. We report the isolation and characterization of suppressor mutations that allow export of an ssTor(KK)-GFP-SsrA tripartite fusion. We identified two amino acid suppressor mutations in the first cytoplasmic loop of TatC. In addition, two other amino acids in the first cytoplasmic loop exhibit epistatic suppression. Surprisingly, we also identified a suppressor mutation predicted to lie within the second periplasmic loop of TatC, a region that is not expected to interact directly with the signal peptide. The suppressor mutations allowed export of the native Esherichia coli Tat substrate trimethylamine N-oxide reductase with a twin-lysine substitution in its signal sequence. The cytoplasmic suppressor mutations conferred SDS sensitivity and partial filamentation, indicating that Tat export of authentic substrates was impaired.

  5. AmrZ Beta-Sheet Residues Are Essential for DNA Binding and Transcriptional Control of Pseudomonas aeruginosa Virulence Genes ▿ †

    PubMed Central

    Waligora, Elizabeth A.; Ramsey, Deborah M.; Pryor, Edward E.; Lu, Haiping; Hollis, Thomas; Sloan, Gina P.; Deora, Rajendar; Wozniak, Daniel J.

    2010-01-01

    AmrZ is a putative ribbon-helix-helix (RHH) transcriptional regulator. RHH proteins utilize residues within the β-sheet for DNA binding, while the α-helices promote oligomerization. AmrZ is of interest due to its dual roles as a transcriptional activator and as a repressor, regulating genes encoding virulence factors associated with both chronic and acute Pseudomonas aeruginosa infection. In this study, cross-linking revealed that AmrZ forms oligomers in solution but that the amino terminus, containing an unordered region and a β-sheet, were not required for oligomerization. The first 12 unordered residues (extended amino terminus) contributed minimally to DNA binding. Mutagenesis of the AmrZ β-sheet demonstrated that residues 18, 20, and 22 were essential for DNA binding at both activation and repressor sites, suggesting that AmrZ utilizes a similar mechanism for binding to these sites. Mice infected with amrZ mutants exhibited reduced bacterial burden, morbidity, and mortality. Direct in vivo competition assays showed a 5-fold competitive advantage for the wild type over an isogenic amrZ mutant. Finally, the reduced infection phenotype of the amrZ-null strain was similar to that of a strain expressing a DNA-binding-deficient AmrZ variant, indicating that DNA binding and transcriptional regulation by AmrZ is responsible for the in vivo virulence defect. These recent infection data, along with previously identified AmrZ-regulated virulence factors, suggest the necessity of AmrZ transcriptional regulation for optimal virulence during acute infection. PMID:20709902

  6. Mechanism for pH-dependent gene regulation by amino-terminus-mediated homooligomerization of Bacillus subtilis anti-trp RNA-binding attenuation protein

    PubMed Central

    Sachleben, Joseph R.; McElroy, Craig A.; Gollnick, Paul; Foster, Mark P.

    2010-01-01

    Anti-TRAP (AT) is a small zinc-binding protein that regulates tryptophan biosynthesis in Bacillus subtilis by binding to tryptophan-bound trp RNA-binding attenuation protein (TRAP), thereby preventing it from binding RNA, and allowing transcription and translation of the trpEDCFBA operon. Crystallographic and sedimentation studies have shown that AT can homooligomerize to form a dodecamer, AT12, composed of a tetramer of trimers, AT3. Structural and biochemical studies suggest that only trimeric AT is active for binding to TRAP. Our chromatographic and spectroscopic data revealed that a large fraction of recombinantly overexpressed AT retains the N-formyl group (fAT), presumably due to incomplete N-formyl-methionine processing by peptide deformylase. Hydrodynamic parameters from NMR relaxation and diffusion measurements showed that fAT is exclusively trimeric (AT3), while (deformylated) AT exhibits slow exchange between both trimeric and dodecameric forms. We examined this equilibrium using NMR spectroscopy and found that oligomerization of active AT3 to form inactive AT12 is linked to protonation of the amino terminus. Global analysis of the pH dependence of the trimer-dodecamer equilibrium revealed a near physiological pKa for the N-terminal amine of AT and yielded a pH-dependent oligomerization equilibrium constant. Estimates of excluded volume effects due to molecular crowding suggest the oligomerization equilibrium may be physiologically important. Because deprotonation favors “active” trimeric AT and protonation favors “inactive” dodecameric AT, our findings illuminate a possible mechanism for sensing and responding to changes in cellular pH. PMID:20713740

  7. VP24 Is a Chitin-Binding Protein Involved in White Spot Syndrome Virus Infection

    PubMed Central

    Li, Zaipeng; Han, Yali; Xu, Limei

    2015-01-01

    ABSTRACT Oral ingestion is the major route of infection for the white spot syndrome virus (WSSV). However, the mechanism by which virus particles in the digestive tract invade host cells is unknown. In the present study, we demonstrate that WSSV virions can bind to chitin through one of the major envelope proteins (VP24). Mutagenesis analysis indicated that amino acids (aa) 186 to 200 in the C terminus of VP24 were required for chitin binding. Moreover, the P-VP24186–200 peptide derived from the VP24 chitin binding region significantly inhibited the VP24-chitin interaction and the WSSV-chitin interaction, implying that VP24 participates in WSSV binding to chitin. Oral inoculation experiments showed that P-VP24186–200 treatment reduced the number of virus particles remaining in the digestive tract during the early stage of infection and greatly hindered WSSV proliferation in shrimp. These data indicate that binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection and provide new ideas for preventing WSSV infection in shrimp farms. IMPORTANCE In this study, we show that WSSV can bind to chitin through the envelope protein VP24. The chitin-binding domain of VP24 maps to amino acids 186 to 200 in the C terminus. Binding of WSSV to chitin through the viral envelope protein VP24 is essential for WSSV per os infection. These findings not only extend our knowledge of WSSV infection but also provide new insights into strategies to prevent WSSV infection in shrimp farms. PMID:26512091

  8. The structure of human 4F2hc ectodomain provides a model for homodimerization and electrostatic interaction with plasma membrane.

    PubMed

    Fort, Joana; de la Ballina, Laura R; Burghardt, Hans E; Ferrer-Costa, Carles; Turnay, Javier; Ferrer-Orta, Cristina; Usón, Isabel; Zorzano, Antonio; Fernández-Recio, Juan; Orozco, Modesto; Lizarbe, María Antonia; Fita, Ignacio; Palacín, Manuel

    2007-10-26

    4F2hc (CD98hc) is a multifunctional type II membrane glycoprotein involved in amino acid transport and cell fusion, adhesion, and transformation. The structure of the ectodomain of human 4F2hc has been solved using monoclinic (Protein Data Bank code 2DH2) and orthorhombic (Protein Data Bank code 2DH3) crystal forms at 2.1 and 2.8 A, respectively. It is composed of a (betaalpha)(8) barrel and an antiparallel beta(8) sandwich related to bacterial alpha-glycosidases, although lacking key catalytic residues and consequently catalytic activity. 2DH3 is a dimer with Zn(2+) coordination at the interface. Human 4F2hc expressed in several cell types resulted in cell surface and Cys(109) disulfide bridge-linked homodimers with major architectural features of the crystal dimer, as demonstrated by cross-linking experiments. 4F2hc has no significant hydrophobic patches at the surface. Monomer and homodimer have a polarized charged surface. The N terminus of the solved structure, including the position of Cys(109) residue located four residues apart from the transmembrane domain, is adjacent to the positive face of the ectodomain. This location of the N terminus and the Cys(109)-intervening disulfide bridge imposes space restrictions sufficient to support a model for electrostatic interaction of the 4F2hc ectodomain with membrane phospholipids. These results provide the first crystal structure of heteromeric amino acid transporters and suggest a dynamic interaction of the 4F2hc ectodomain with the plasma membrane.

  9. The N-terminal Region of the DNA-dependent Protein Kinase Catalytic Subunit Is Required for Its DNA Double-stranded Break-mediated Activation*

    PubMed Central

    Davis, Anthony J.; Lee, Kyung-Jong; Chen, David J.

    2013-01-01

    DNA-dependent protein kinase (DNA-PK) plays an essential role in the repair of DNA double-stranded breaks (DSBs) mediated by the nonhomologous end-joining pathway. DNA-PK is a holoenzyme consisting of a DNA-binding (Ku70/Ku80) and catalytic (DNA-PKcs) subunit. DNA-PKcs is a serine/threonine protein kinase that is recruited to DSBs via Ku70/80 and is activated once the kinase is bound to the DSB ends. In this study, two large, distinct fragments of DNA-PKcs, consisting of the N terminus (amino acids 1–2713), termed N-PKcs, and the C terminus (amino acids 2714–4128), termed C-PKcs, were produced to determine the role of each terminal region in regulating the activity of DNA-PKcs. N-PKcs but not C-PKcs interacts with the Ku-DNA complex and is required for the ability of DNA-PKcs to localize to DSBs. C-PKcs has increased basal kinase activity compared with DNA-PKcs, suggesting that the N-terminal region of DNA-PKcs keeps basal activity low. The kinase activity of C-PKcs is not stimulated by Ku70/80 and DNA, further supporting that the N-terminal region is required for binding to the Ku-DNA complex and full activation of kinase activity. Collectively, the results show the N-terminal region mediates the interaction between DNA-PKcs and the Ku-DNA complex and is required for its DSB-induced enzymatic activity. PMID:23322783

  10. Peptaibol, secondary-metabolite, and hydrophobin pattern of commercial biocontrol agents formulated with species of the Trichoderma harzianum complex.

    PubMed

    Degenkolb, Thomas; Fog Nielsen, Kristian; Dieckmann, Ralf; Branco-Rocha, Fabiano; Chaverri, Priscila; Samuels, Gary J; Thrane, Ulf; von Döhren, Hans; Vilcinskas, Andreas; Brückner, Hans

    2015-04-01

    The production of bioactive polypeptides (peptaibiotics) in vivo is a sophisticated adaptation strategy of both mycoparasitic and saprotrophic Trichoderma species for colonizing and defending their natural habitats. This feature is of major practical importance, as the detection of peptaibiotics in plant-protective Trichoderma species, which are successfully used against economically relevant bacterial and fungal plant pathogens, certainly contributes to a better understanding of these complex antagonistic interactions. We analyzed five commercial biocontrol agents (BCAs), namely Canna(®) , Trichosan(®) , Vitalin(®) , Promot(®) WP, and TrichoMax(®) , formulated with recently described species of the Trichoderma harzianum complex, viz. T. afroharzianum, T. simmonsii, and T. guizhouense. By using the well-established, HPLC/MS-based peptaibiomics approach, it could unequivocally be demonstrated that all of these formulations contained new and recurrent peptaibols, i.e., peptaibiotics carrying an acetylated N-terminus, the C-terminus of which is reduced to a 1,2-amino alcohol. Their chain lengths, including the amino alcohol, were 11, 14, and 18 residues, respectively. Peptaibols were also to be the dominating secondary metabolites in plate cultures of the four strains obtained from four of the Trichoderma- based BCAs, contributing 95% of the UHPLC-UV/VIS peak areas and 99% of the total ion count MS peak area from solid media. Furthermore, species-specific hydrophobins, as well as non-peptaibiotic secondary metabolites, were detected, the latter being known for their antifungal, siderophore, or plant-growth-promoting activities. Notably, none of the isolates produced low-molecular weight mycotoxins. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Infusion of Autologous Lysed Plasma Into the Baboon: Assessment of Coagulation, Platelet, and Pulmonary Function

    DTIC Science & Technology

    1993-06-03

    obtained from whole blood collected into a commercially available tube containing thrombin and epsilon aminocaproic acid (Wellcome 44 Diagnostics...first proposed by Hall & Slayter in 1959 as an extended, multidomained molecule. Electron microscopy, amino acid sequencing and proteolytic studies have...Plasminogen (Figure 7) is a single chain, 88 kilodalton glycoprotein. It contains 790 amino acids , 24 disulfide bridges and five homologous triple loop

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurilla, M.G.; Stone, H.O.; Keene, J.D.

    The 3' end of the genomic RNA of Newcastle disease virus (NDV) has been sequenced and the leader RNA defined. Using hybridization to a 3'-end-labeled genome, leader RNA species from in vitro transcription reactions and from infected cell extracts were found to be 47 and 53 nucleotides long. In addition, the start site of the 3'-proximal mRNA was determined by sequence analysis of in vitro (beta-32P)GTP-labeled transcription products. The genomic sequence extending beyond the leader region demonstrated an open reading frame for at least 42 amino acids and probably represents the amino terminus of the nucleocapsid protein (NP). The terminalmore » 8 nucleotides of the NDV genome were identical to those of measles virus and Sendai virus while the sequence of the distal half of the leader region was more similar to that of vesicular stomatitis virus. These data argue for strong evolutionary relatedness between the paramyxovirus and rhabdovirus groups.« less

  13. Amino-terminal residues of ΔNp63, mutated in ectodermal dysplasia, are required for its transcriptional activity.

    PubMed

    Lena, Anna Maria; Duca, Sara; Novelli, Flavia; Melino, Sonia; Annicchiarico-Petruzzelli, Margherita; Melino, Gerry; Candi, Eleonora

    2015-11-13

    p63, a member of the p53 family, is a crucial transcription factor for epithelial development and skin homeostasis. Heterozygous mutations in TP63 gene have been associated with human ectodermal dysplasia disorders. Most of these TP63 mutations are missense mutations causing amino acidic substitutions at p63 DNA binding or SAM domains that reduce or abolish the transcriptional activity of mutants p63. A significant number of mutants, however, resides in part of the p63 protein that apparently do not affect DNA binding and/or transcriptional activity, such as the N-terminal domain. Here, we characterize five p63 mutations at the 5' end of TP63 gene aiming to understand the pathogenesis of the diseases and to uncover the role of ΔNp63α N-terminus residues in determining its transactivation potential. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Novel nonsense mutation in the katA gene of a catalase-negative Staphylococcus aureus strain.

    PubMed

    Lagos, Jaime; Alarcón, Pedro; Benadof, Dona; Ulloa, Soledad; Fasce, Rodrigo; Tognarelli, Javier; Aguayo, Carolina; Araya, Pamela; Parra, Bárbara; Olivares, Berta; Hormazábal, Juan Carlos; Fernández, Jorge

    2016-01-01

    We report the first description of a rare catalase-negative strain of Staphylococcus aureus in Chile. This new variant was isolated from blood and synovial tissue samples of a pediatric patient. Sequencing analysis revealed that this catalase-negative strain is related to ST10 strain, which has earlier been described in relation to S. aureus carriers. Interestingly, sequence analysis of the catalase gene katA revealed presence of a novel nonsense mutation that causes premature translational truncation of the C-terminus of the enzyme leading to a loss of 222 amino acids. Our study suggests that loss of catalase activity in this rare catalase-negative Chilean strain is due to this novel nonsense mutation in the katA gene, which truncates the enzyme to just 283 amino acids. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Nucleotide sequence analysis of the L gene of Newcastle disease virus: homologies with Sendai and vesicular stomatitis viruses.

    PubMed Central

    Yusoff, K; Millar, N S; Chambers, P; Emmerson, P T

    1987-01-01

    The nucleotide sequence of the L gene of the Beaudette C strain of Newcastle disease virus (NDV) has been determined. The L gene is 6704 nucleotides long and encodes a protein of 2204 amino acids with a calculated molecular weight of 248822. Mung bean nuclease mapping of the 5' terminus of the L gene mRNA indicates that the transcription of the L gene is initiated 11 nucleotides upstream of the translational start site. Comparison with the amino acid sequences of the L genes of Sendai virus and vesicular stomatitis virus (VSV) suggests that there are several regions of homology between the sequences. These data provide further evidence for an evolutionary relationship between the Paramyxoviridae and the Rhabdoviridae. A non-coding sequence of 46 nucleotides downstream of the presumed polyadenylation site of the L gene may be part of a negative strand leader RNA. Images PMID:3035486

  16. Synthesis of Triamino Acid Building Blocks with Different Lipophilicities

    PubMed Central

    Maity, Jyotirmoy; Honcharenko, Dmytro; Strömberg, Roger

    2015-01-01

    To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis. PMID:25876040

  17. Characterization of recombinant human HBP/CAP37/azurocidin, a pleiotropic mediator of inflammation-enhancing LPS-induced cytokine release from monocytes.

    PubMed

    Rasmussen, P B; Bjørn, S; Hastrup, S; Nielsen, P F; Norris, K; Thim, L; Wiberg, F C; Flodgaard, H

    1996-07-15

    Neutrophil-derived heparin-binding protein (HBP) is a strong chemoattractant for monocytes. We report here for the first time the expression of recombinant HBP. A baculovirus containing the human HBP cDNA mediated in insect cells the secretion of a 7-residue N-terminally extended HBP form (pro-HBP). Deletion of the pro-peptide-encoding cDNA sequence resulted in correctly processed HBP at the N-terminus. Electrospray mass spectrum analysis of recombinant HBP yielded a molecular weight of 27.237 +/- 3 amu. Consistent with this mass is a HBP form of 225 amino acids (mature part +3 amino acid C-terminal extension). The biological activity of recombinant HBP was confirmed by its chemotactic action towards monocytes. Furthermore, we have shown that recombinant HBP stimulates in a dose-dependent manner the lipopolysaccharide (LPS)-induced cytokine release from human monocytes.

  18. Efficient expression and purification of a protease from the common cold virus, human rhinovirus type 14

    NASA Astrophysics Data System (ADS)

    Leong, L. E.-C.; Walker, P. A.; Porter, A. G.

    1992-08-01

    The protease (3C pro) from human rhinovirus serotype-14 (HRV-14) has been cloned and efficiently expressed in E. coli. A straightforward single-step purification of the recombinant 3C pro has been achieved by fusing the protein to the car☐y-terminus of the glutathione-S-transferase from Schistosoma japonicum. Modifications made to the 5' end of the PCR fragment coding for the 3C pro have allowed the specific cleavage of the fusion protein using thrombin to yield mature 3C pro with the correct amino-terminal amino acid. This protease has been shown to be active when assayed using synthetic peptides corresponding to the natural cleavage recognition sequences within the polyprotein. Other substrates are being developed for this protease for possible use in the screening of inhibitors of 3C pro. Sufficient protease 3C pro has been purified for initial attempts at crystallization.

  19. Nucleotide sequence of a complementary DNA encoding pea cytosolic copper/zinc superoxide dismutase. [Pisum sativum L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.A.; Zilinskas, B.A.

    1991-08-01

    The authors now report the nucleotide sequence of the cytosolic Cu/Zn SOD cloned from a {lambda}gt11 cDNA library constructed from mRNA extracted from leaves of 7- to 10-d pea seedlings (Pisum sativum L.). The clone was isolated using a 22-base synthetic oligonucleotide complementary to the amino acid sequence CGIIGLQG. This sequence, found at the protein's carboxy terminus, is highly conserved among plant cytosolic Cu/Zn SODs but not chloroplastic Cu/Zn SODs. The 738-base pair sequence contains an open reading frame specifying 152 codons and a predicted M{sub r} of 18,024 D. The deduced amino acid sequence is highly homologous (79-82% identity)more » with the sequences of other known plant cytosolic Cu/Zn SODs but less highly conserved (63-65%) when compared with several chloroplastic Cu/Zn SODs including pea (10).« less

  20. Crystal structures of Bbp from Staphylococcus aureus reveal the ligand binding mechanism with Fibrinogen α.

    PubMed

    Zhang, Xinyue; Wu, Meng; Zhuo, Wei; Gu, Jinke; Zhang, Sensen; Ge, Jingpeng; Yang, Maojun

    2015-10-01

    Bone sialoprotein-binding protein (Bbp), a MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family protein expressed on the surface of Staphylococcus aureus (S. aureus), mediates adherence to fibrinogen α (Fg α), a component in the extracellular matrix of the host cell and is important for infection and pathogenesis. In this study, we solved the crystal structures of apo-Bbp(273-598) and Bbp(273-598)-Fg α(561-575) complex at a resolution of 2.03 Å and 1.45 Å, respectively. Apo-Bbp(273-598) contained the ligand binding region N2 and N3 domains, both of which followed a DE variant IgG fold characterized by an additional D1 strand in N2 domain and D1' and D2' strands in N3 domain. The peptide mapped to the Fg α(561-575) bond to Bbp(273-598) on the open groove between the N2 and N3 domains. Strikingly, the disordered C-terminus in the apo-form reorganized into a highly-ordered loop and a β-strand G'' covering the ligand upon ligand binding. Bbp(Ala298-Gly301) in the N2 domain of the Bbp(273-598)-Fg α(561-575) complex, which is a loop in the apo-form, formed a short α-helix to interact tightly with the peptide. In addition, Bbp(Ser547-Gln561) in the N3 domain moved toward the binding groove to make contact directly with the peptide, while Bbp(Asp338-Gly355) and Bbp(Thr365-Tyr387) in N2 domain shifted their configurations to stabilize the reorganized C-terminus mainly through strong hydrogen bonds. Altogether, our results revealed the molecular basis for Bbp-ligand interaction and advanced our understanding of S. aureus infection process.

  1. Structural basis for recognition of centromere histone variant CenH3 by the chaperone Scm3

    PubMed Central

    Zhou, Zheng; Feng, Hanqiao; Zhou, Bing-Rui; Ghirlando, Rodolfo; Hu, Kaifeng; Zwolak, Adam; Miller Jenkins, Lisa M.; Xiao, Hua; Tjandra, Nico; Wu, Carl; Bai, Yawen

    2011-01-01

    The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore1. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A2. A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH33, 4. The structural basis of this specification is of outstanding interest. Yeast Scm3 and human HJURP are conserved nonhistone proteins that interact physically with the (CenH3-H4)2 heterotetramer and are required for the deposition of CenH3 at centromeres in vivo5, 6, 7, 8, 9, 10, 11, 12, 13. Here we have elucidated the structural basis for recognition of budding yeast CenH3 (Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 complexed with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved N-terminus and a shorter α-helix at the C-terminus of Scm3-CBD wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3-CBD induces major conformational changes and sterically occludes DNA binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome. PMID:21412236

  2. A synthetic peptide vaccine directed against the 2ß2-2ß3 loop of domain 2 of protective antigen protects rabbits from inhalation anthrax.

    PubMed

    Oscherwitz, Jon; Yu, Fen; Cease, Kemp B

    2010-09-15

    The current vaccines for anthrax in the United States and United Kingdom are efficacious in the two most accepted animal models of inhalation anthrax, nonhuman primates and rabbits, but require extensive immunization protocols. We previously demonstrated that a linear determinant in domain 2 of Bacillus anthracis protective Ag (PA) is a potentially important target for an epitope-specific vaccine for anthrax, as Abs specific for this site, referred to as the loop-neutralizing determinant (LND), neutralize lethal toxin in vitro, yet are virtually absent in PA-immunized rabbits. In this study, we evaluated the immunogenicity and protective efficacy in rabbits of multiple antigenic peptides (MAPs) consisting of aa 304-319 from the LND of PA colinearly synthesized at the C terminus (T-B MAP) or N terminus (B-T MAP) with a heterologous T cell epitope from Plasmodium falciparum. Immunogenicity studies demonstrated that both MAPs elicited toxin-neutralizing Ab in rabbits. To evaluate the MAPs as potential anthrax vaccines, we immunized groups of rabbits (n = 7) with each MAP in Freund's adjuvant and then exposed all rabbits to a 200-LD(50) challenge with aerosolized spores of B. anthracis Ames strain. All seven rabbits immunized with the B-T MAP and 89% (six of seven) of rabbits immunized with the T-B MAP survived the spore challenge. Corollary studies with reference sera from human vaccinees immunized with rPA or anthrax vaccine absorbed and nonhuman primates immunized with PA revealed no detectable Ab with specificity for the LND. We conclude that a synthetic peptide vaccine targeting the LND would be a potentially efficacious vaccine for anthrax.

  3. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain

    PubMed Central

    Yin, Yanting; Zhou, X Edward; Hou, Li; Zhao, Li-Hua; Liu, Bo; Wang, Gaihong; Jiang, Yi; Melcher, Karsten; Xu, H Eric

    2016-01-01

    The glucagon-like peptide-1 receptor is a class B G protein coupled receptor (GPCR) that plays key roles in glucose metabolism and is a major therapeutic target for diabetes. The classic two-domain model for class B GPCR activation proposes that the apo-state receptor is auto-inhibited by its extracellular domain, which physically interacts with the transmembrane domain. The binding of the C-terminus of the peptide hormone to the extracellular domain allows the N-terminus of the hormone to insert into the transmembrane domain to induce receptor activation. In contrast to this model, here we demonstrate that glucagon-like peptide-1 receptor can be activated by N-terminally truncated glucagon-like peptide-1 or exendin-4 when fused to the receptor, raising the question regarding the role of N-terminal residues of peptide hormone in glucagon-like peptide-1 receptor activation. Mutations of cysteine 347 to lysine or arginine in intracellular loop 3 transform the receptor into a G protein-biased receptor and allow it to be activated by a nonspecific five-residue linker that is completely devoid of exendin-4 or glucagon-like peptide-1 sequence but still requires the presence of an intact extracellular domain. Moreover, the extracellular domain can activate the receptor in trans in the presence of an intact peptide hormone, and specific mutations in three extracellular loops abolished this extracellular domain trans-activation. Together, our data reveal a dominant role of the extracellular domain in glucagon-like peptide-1 receptor activation and support an intrinsic agonist model of the extracellular domain, in which peptide binding switches the receptor from the auto-inhibited state to the auto-activated state by releasing the intrinsic agonist activity of the extracellular domain. PMID:27917297

  4. Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibmer, Constantinos Kurt; Gorman, Jason; Ozorowski, Gabriel

    A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stainmore » electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing antibodies and identifies a set of mutations in the gp120 C terminus that exposes the membrane-proximal external region of gp41, with potential utility in HIV vaccine design.« less

  5. Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape

    PubMed Central

    Elliott, Debra H.; Rouelle, Julie; Smira, Ashley; Ndabambi, Nonkululeko; Druz, Aliaksandr; Williamson, Carolyn

    2017-01-01

    A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing antibodies and identifies a set of mutations in the gp120 C terminus that exposes the membrane-proximal external region of gp41, with potential utility in HIV vaccine design. PMID:28076415

  6. Extensive alternative splicing and dual promoter usage generate Tcf-1 protein isoforms with differential transcription control properties.

    PubMed Central

    Van de Wetering, M; Castrop, J; Korinek, V; Clevers, H

    1996-01-01

    Previously, we reported the isolation of cDNA clones representing four alternative splice forms of TCF-1, a T-cell-specific transcription factor. In the present study, Western blotting (immunoblotting) yielded a multitude of TCF-1 proteins ranging from 25-55 kDa, a pattern not simply explained from the known splice alternatives. Subsequent cDNA cloning, PCR amplification, and analysis by rapid amplification of 5' cDNA ends revealed (i) the presence of an alternative upstream promoter, which extended the known N terminus by 116 amino acids, (ii) the presence of four alternative exons, and (iii) the existence of a second reading frame in the last exon encoding an extended C terminus. Inclusion of the extended N terminus into the originally reported protein resulted in a striking similarity to the lymphoid factor Lef-1. Several of the TCF-1 isoforms, although less potent, mimicked Lef-1 in transactivating transcription through the T-cell receptor alpha-chain (TCR-alpha) enhancer. These data provide a molecular basis for the complexity of the expressed TCF-1 proteins and establish the existence of functional differences between these isoforms. Furthermore, the functional redundancy between Tcf-1 and Lef-1 explains the apparently normal TCR-alpha expression in single Tcf-1 or Lef-1 knockout mice despite the firm in vitro evidence for the importance of the Tcf/Lef site in the TCR-alpha enhancer. PMID:8622675

  7. New tyrosinase inhibitory decapeptide: Molecular insights into the role of tyrosine residues.

    PubMed

    Ochiai, Akihito; Tanaka, Seiya; Imai, Yuta; Yoshida, Hisashi; Kanaoka, Takumi; Tanaka, Takaaki; Taniguchi, Masayuki

    2016-06-01

    Tyrosinase, a rate-limiting enzyme in melanin biosynthesis, catalyzes the hydroxylation of l-tyrosine to 3,4-dihydroxy-l-phenylalanine (l-dopa) (monophenolase reaction) and the subsequent oxidation of l-dopa to l-dopaquinone (diphenolase reaction). Thus, tyrosinase inhibitors have been proposed as skin-lightening agents; however, many of the existing inhibitors cannot be widely used in the cosmetic industry due to their high cytotoxicity and instability. On the other hand, some tyrosinase inhibitory peptides have been reported as safe. In this study, we found that the peptide TH10, which has a similar sequence to the characterized inhibitory peptide P4, strongly inhibits the monophenolase reaction with a half-maximal inhibitory concentration of 102 μM. Seven of the ten amino acid residues in TH10 were identical to P4; however, TH10 possesses one N-terminal tyrosine, whereas P4 contains three tyrosine residues located at its N-terminus, center, and C-terminus. Subsequent analysis using sequence-shuffled variants indicated that the tyrosine residues located at the N-terminus and center of P4 have little to no contribution to its inhibitory activity. Furthermore, docking simulation analysis of these peptides with mushroom tyrosinase demonstrated that the active tyrosine residue was positioned close to copper ions, suggesting that TH10 and P4 bind to tyrosinase as a substrate analogue. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Phosphorylation of NHE3-S719 regulates NHE3 activity through the formation of multiple signaling complexes

    PubMed Central

    Sarker, Rafiquel; Cha, Boyoung; Kovbasnjuk, Olga; Cole, Robert; Gabelli, Sandra; Tse, Chung Ming; Donowitz, Mark

    2017-01-01

    Casein kinase 2 (CK2) binds to the NHE3 C-terminus and constitutively phosphorylates a downstream site (S719) that accounts for 40% of basal NHE3 activity. The role of CK2 in regulation of NHE3 activity in polarized Caco-2/bbe cells was further examined by mutation of NHE3-S719 to A (not phosphorylated) or D (phosphomimetic). NHE3-S719A but not -S719D had multiple changes in NHE3 activity: 1) reduced basal NHE3 activity—specifically, inhibition of the PI3K/AKT-dependent component; 2) reduced acute stimulation of NHE3 activity by LPA/LPA5R stimulation; and 3) reduced acute inhibition of NHE3 activity—specifically, elevated Ca2+ related (carbachol/Ca2+ ionophore), but there was normal inhibition by forskolin and hyperosmolarity. The S719A mutant had reduced NHE3 complex size, reduced expression in lipid rafts, increased BB mobile fraction, and reduced binding to multiple proteins that bind throughout the NHE3 intracellular C-terminus, including calcineurin homologous protein, the NHERF family and SNX27 (related PDZ domains). These studies show that phosphorylation of the NHE3 at a single amino acid in the distal part of the C-terminus affects multiple aspects of NHE3 complex formation and changes the NHE3 lipid raft distribution, which cause changes in specific aspects of basal as well as acutely stimulated and inhibited Na+/H+ exchange activity. PMID:28495796

  9. Purification and characterization of an endoglucanase from Streptomyces lividans 66 and DNA sequence of the gene.

    PubMed Central

    Théberge, M; Lacaze, P; Shareck, F; Morosoli, R; Kluepfel, D

    1992-01-01

    The endoglucanase isolated from culture filtrates of Streptomyces lividans IAF74 was shown to have an Mr of 46,000 and a pI of 3.3. The specific enzyme activity of 539 IU/mg, determined by the reducing assay method on carboxymethyl cellulose, is among the highest reported in the literature. The cellulase showed typical endo-type activity when reacting on oligocellodextrins. Optimal enzyme activity was obtained at 50 degrees C and pH 5.5. The kinetic constants for this endoglucanase, determined with carboxymethyl cellulose as the substrate, were a Vmax of 24.9 IU/mg of enzyme and a Km of 4.2 mg/ml. Activity was found against neither methylumbelliferyl- nor p-nitrophenyl-cellobiopyranoside nor with xylan. The DNA sequence contains one possible reading frame validated by the N terminus of the mature purified protein. However, neither ATG nor GTG starting codons were identified near the ribosome-binding site. A putative TTG codon was found as a good candidate for the start codon. Comparison of the primary amino acid sequence of the endoglucanase of S. lividans revealed that the N terminus contains a bacterial cellulose-binding domain. The catalytic domain at the C terminus showed similarity to endoglucanases from a Bacillus sp. Thus, the endoglucanase CelA belongs to family A of cellulases as described before (N. R. Gilkes, B. Henrissat, D. G. Kilburn, R. C. Miller, Jr., and R. A. J. Warren, Microbiol. Rev. 55:303-315, 1991. Images PMID:1575483

  10. The catalytic activity of a recombinant single chain variable fragment nucleic acid-hydrolysing antibody varies with fusion tag and expression host.

    PubMed

    Lee, Joungmin; Kim, Minjae; Seo, Youngsil; Lee, Yeonjin; Park, Hyunjoon; Byun, Sung June; Kwon, Myung-Hee

    2017-11-01

    The antigen-binding properties of single chain Fv antibodies (scFvs) can vary depending on the position and type of fusion tag used, as well as the host cells used for expression. The issue is even more complicated with a catalytic scFv antibody that binds and hydrolyses a specific antigen. Herein, we investigated the antigen-binding and -hydrolysing activities of the catalytic anti-nucleic acid antibody 3D8 scFv expressed in Escherichia coli or HEK293f cells with or without additional amino acid residues at the N- and C-termini. DNA-binding activity was retained in all recombinant forms. However, the DNA-hydrolysing activity varied drastically between forms. The DNA-hydrolysing activity of E. coli-derived 3D8 scFvs was not affected by the presence of a C-terminal human influenza haemagglutinin (HA) or His tag. By contrast, the activity of HEK293f-derived 3D8 scFvs was completely lost when additional residues were included at the N-terminus and/or when a His tag was incorporated at the C-terminus, whereas a HA tag at the C-terminus did not diminish activity. Thus, we demonstrate that the antigen-binding and catalytic activities of a catalytic antibody can be separately affected by the presence of additional residues at the N- and C-termini, and by the host cell type. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The basic leucine zipper domain of c-Jun functions in transcriptional activation through interaction with the N terminus of human TATA-binding protein-associated factor-1 (human TAF(II)250).

    PubMed

    Lively, Tricia N; Nguyen, Tuan N; Galasinski, Shelly K; Goodrich, James A

    2004-06-18

    We previously reported that c-Jun binds directly to the N-terminal 163 amino acids of Homo sapiens TATA-binding protein-associated factor-1 (hsTAF1), causing a derepression of transcription factor IID (TFIID)-driven transcription (Lively, T. N., Ferguson, H. A., Galasinski, S. K., Seto, A. G., and Goodrich, J. A. (2001) J. Biol. Chem. 276, 25582-25588). This region of hsTAF1 binds TATA-binding protein to repress TFIID DNA binding and transcription. Here we show that the basic leucine zipper domain of c-Jun, which allows for DNA binding and homodimerization, is necessary and sufficient for interaction with hsTAF1. Interestingly, the isolated basic leucine zipper domain of c-Jun was able to derepress TFIID-directed basal transcription in vitro. Moreover, when the N-terminal region of hsTAF1 was added to in vitro transcription reactions and overexpressed in cells, it blocked c-Jun activation. c-Fos, another basic leucine zipper protein, did not interact with hsTAF1, but c-Fos/c-Jun heterodimers did bind the N terminus of hsTAF1. Our studies show that, in addition to dimerization and DNA binding, the well characterized basic leucine zipper domain of c-Jun functions in transcriptional activation by binding to the N terminus of hsTAF1 to derepress transcription.

  12. Oracle, a novel PDZ-LIM domain protein expressed in heart and skeletal muscle.

    PubMed

    Passier, R; Richardson, J A; Olson, E N

    2000-04-01

    In order to identify novel genes enriched in adult heart, we performed a subtractive hybridization for genes expressed in mouse heart but not in skeletal muscle. We identified two alternative splicing variants of a novel PDZ-LIM domain protein, which we named Oracle. Both variants contain a PDZ domain at the amino-terminus and three LIM domains at the carboxy-terminus. Highest homology of Oracle was found with the human and rat enigma proteins in the PDZ domain (62 and 61%, respectively) and in the LIM domains (60 and 69%, respectively). By Northern hybridization analysis, we showed that expression is highest in adult mouse heart, low in skeletal muscle and undetectable in other adult mouse tissues. In situ hybridization in mouse embryos confirmed and extended these data by showing high expression of Oracle mRNA in atrial and ventricular myocardial cells from E8.5. From E9.5 low expression of Oracle mRNA was detectable in myotomes. These data suggest a role for Oracle in the early development and function of heart and skeletal muscle.

  13. Function of Several Critical Amino Acids in Human Pyruvate Dehydrogenase Revealed by Its Structure

    NASA Technical Reports Server (NTRS)

    Korotchkina, Lioubov G.; Ciszak, E.; Patel, M.

    2004-01-01

    Pyruvate dehydrogenase (E1), an alpha 2 beta 2 tetramer, catalyzes the oxidative decarboxylation of pyruvate and reductive acetylation of lipoyl moieties of the dihydrolipoamide acetyltransferase. The roles of beta W135, alpha P188, alpha M181, alpha H15 and alpha R349 of E1 determined by kinetic analysis were reassessed by analyzing the three-dimensional structure of human E1. The residues identified above are found to play a structural role rather than being directly involved in catalysis: beta W135 is the center residue in the hydrophobic interaction between beta and beta' subunits; alpha P188 and alpha M181 are critical for the conformation of the TPP-binding motif and interaction between alpha and beta subunits; alpha H15, is necessary for the organization of the N-terminus of alpha and alpha'; subunits and alpha R349 supports the interaction of the C-terminus of the alpha subunits with the beta subunits. Analysis of several critical E1 residues confirms the importance of residues distant from the active site for subunit interactions and enzyme function.

  14. The Phosphatidic Acid Binding Site of the Arabidopsis Trigalactosyldiacylglycerol 4 (TGD4) Protein Required for Lipid Import into Chloroplasts*

    PubMed Central

    Wang, Zhen; Anderson, Nicholas Scott; Benning, Christoph

    2013-01-01

    Chloroplast membrane lipid synthesis relies on the import of glycerolipids from the ER. The TGD (TriGalactosylDiacylglycerol) proteins are required for this lipid transfer process. The TGD1, -2, and -3 proteins form a putative ABC (ATP-binding cassette) transporter transporting ER-derived lipids through the inner envelope membrane of the chloroplast, while TGD4 binds phosphatidic acid (PtdOH) and resides in the outer chloroplast envelope. We identified two sequences in TGD4, amino acids 1–80 and 110–145, which are necessary and sufficient for PtdOH binding. Deletion of both sequences abolished PtdOH binding activity. We also found that TGD4 from 18:3 plants bound specifically and with increased affinity PtdOH. TGD4 did not interact with other proteins and formed a homodimer both in vitro and in vivo. Our results suggest that TGD4 is an integral dimeric β-barrel lipid transfer protein that binds PtdOH with its N terminus and contains dimerization domains at its C terminus. PMID:23297418

  15. Building proteins from C alpha coordinates using the dihedral probability grid Monte Carlo method.

    PubMed Central

    Mathiowetz, A. M.; Goddard, W. A.

    1995-01-01

    Dihedral probability grid Monte Carlo (DPG-MC) is a general-purpose method of conformational sampling that can be applied to many problems in peptide and protein modeling. Here we present the DPG-MC method and apply it to predicting complete protein structures from C alpha coordinates. This is useful in such endeavors as homology modeling, protein structure prediction from lattice simulations, or fitting protein structures to X-ray crystallographic data. It also serves as an example of how DPG-MC can be applied to systems with geometric constraints. The conformational propensities for individual residues are used to guide conformational searches as the protein is built from the amino-terminus to the carboxyl-terminus. Results for a number of proteins show that both the backbone and side chain can be accurately modeled using DPG-MC. Backbone atoms are generally predicted with RMS errors of about 0.5 A (compared to X-ray crystal structure coordinates) and all atoms are predicted to an RMS error of 1.7 A or better. PMID:7549885

  16. Purification and characterization of a tripeptidyl peptidase I from human osteoclastomas: evidence for its role in bone resorption.

    PubMed

    Page, A E; Fuller, K; Chambers, T J; Warburton, M J

    1993-11-01

    Tripeptidyl peptidase I (EC 3.4.14.9), which cleaves tripeptides from the N-terminus of synthetic substrates, has been purified from human osteoclastomas (a bone tumor containing large numbers of normal osteoclasts). The enzyme has an M(r) of 48 kDa but forms aggregates with an M(r) of about 700 kDa. The tripeptidyl peptidase has an acidic pH optimum (approximately pH 5.0), suggesting that it has a lysosomal localization and prefers substrates with a hydrophobic amino acid in the P1 position. There is an absolute requirement for a nonsubstituted N-terminus. The enzyme is inhibited by reagents which modify serine and histidine residues. Lysosomal tripeptidyl peptidase is known to be capable of cleaving Gly-Pro-X triplets from synthetic collagen-like polypeptides. Ala-Ala-Phe-CH2Cl, a potent inhibitor of osteoclastoma tripeptidyl peptidase, inhibits osteoclastic bone resorption in an in vitro test system. This suggests that tripeptidyl peptidase I, secreted by osteoclasts, is involved at some stage in the degradation of bone collagen.

  17. Identification and characterization of an autolysin gene, atlA, from Streptococcus criceti.

    PubMed

    Tamura, Haruki; Yamada, Arisa; Kato, Hirohisa

    2012-10-01

    AtlA of Streptococcus mutans is a major autolysin and belongs to glycoside hydrolase family 25 with cellosyl of Streptomyces coelicolor. The autolysin gene (atlA) encoding AtlA was identified from S. criceti. AtlA of S. criceti comprises the signal sequence in the N-terminus, the putative cell-wall-binding domain in the middle, and the catalytic domain in the C-terminus. Homology modeling analysis of the catalytic domain of AtlA showed the resemblance of the spatial arrangement of five amino acids around the predicted catalytic cavity to that of cellosyl. Recombinant AtlA and its four point mutants, D655A, D747A, W831A, and D849A, were evaluated on zymogram of S. criceti cells. Lytic activity was destroyed in the mutants D655A and D747A and diminished in the mutants W831A and D849A. These results suggest that Asp655 and Asp747 residues are critical for lytic activity and Trp831 and Asp849 residues are also associated with enzymatic activity.

  18. Interactions of histatin-3 and histatin-5 with actin.

    PubMed

    Blotnick, Edna; Sol, Asaf; Bachrach, Gilad; Muhlrad, Andras

    2017-03-06

    Histatins are histidine rich polypeptides produced in the parotid and submandibular gland and secreted into the saliva. Histatin-3 and -5 are the most important polycationic histatins. They possess antimicrobial activity against fungi such as Candida albicans. Histatin-5 has a higher antifungal activity than histatin-3 while histatin-3 is mostly involved in wound healing in the oral cavity. We found that these histatins, like other polycationic peptides and proteins, such as LL-37, lysozyme and histones, interact with extracellular actin. Histatin-3 and -5 polymerize globular actin (G-actin) to filamentous actin (F-actin) and bundle F-actin filaments. Both actin polymerization and bundling by histatins is pH sensitive due to the high histidine content of histatins. In spite of the equal number of net positive charges and histidine residues in histatin-3 and -5, less histatin-3 is needed than histatin-5 for polymerization and bundling of actin. The efficiency of actin polymerization and bundling by histatins greatly increases with decreasing pH. Histatin-3 and -5 induced actin bundles are dissociated by 100 and 50 mM NaCl, respectively. The relatively low NaCl concentration required to dissociate histatin-induced bundles implies that the actin-histatin filaments bind to each other mainly by electrostatic forces. The binding of histatin-3 to F-actin is stronger than that of histatin-5 showing that hydrophobic forces have also some role in histatin-3- actin interaction. Histatins affect the fluorescence of probes attached to the D-loop of G-actin indicating histatin induced changes in actin structure. Transglutaminase cross-links histatins to actin. Competition and limited proteolysis experiments indicate that the main histatin cross-linking site on actin is glutamine-49 on the D-loop of actin. Both histatin-3 and -5 interacts with actin, however, histatin 3 binds stronger to actin and affects actin structure at lower concentration than histatin-5 due to the extra 8 amino acid sequence at the C-terminus of histatin-3. Extracellular actin might regulate histatin activity in the oral cavity, which should be the subject of further investigation.

  19. Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1.

    PubMed

    Kawachi, Miki; Kobae, Yoshihiro; Kogawa, Sayaka; Mimura, Tetsuro; Krämer, Ute; Maeshima, Masayoshi

    2012-07-01

    Arabidopsis thaliana MTP1 is a vacuolar membrane Zn(2+)/H(+) antiporter of the cation diffusion facilitator family. Here we present a structure-function analysis of AtMTP1-mediated transport and its remarkable Zn(2+) selectivity by functional complementation tests of more than 50 mutant variants in metal-sensitive yeast strains. This was combined with homology modeling of AtMTP1 based on the crystal structure of the Escherichia coli broad-specificity divalent cation transporter YiiP. The Zn(2+)-binding sites of EcYiiP in the cytoplasmic C-terminus, and the pore formed by transmembrane helices TM2 and TM5, are conserved in AtMTP1. Although absent in EcYiiP, Cys31 and Cys36 in the extended N-terminal cytosolic domain of AtMTP1 are necessary for complementation of a Zn-sensitive yeast strain. On the cytosolic side of the active Zn(2+)-binding site inside the transmembrane pore, Ala substitution of either Asn258 in TM5 or Ser101 in TM2 non-selectively enhanced the metal tolerance conferred by AtMTP1. Modeling predicts that these residues obstruct the movement of cytosolic Zn(2+) into the intra-membrane Zn(2+)-binding site of AtMTP1. A conformational change in the immediately preceding His-rich cytosolic loop may displace Asn258 and permit Zn(2+) entry into the pore. This would allow dynamic coupling of Zn(2+) transport to the His-rich loop, thus acting as selectivity filter or sensor of cytoplasmic Zn(2+) levels. Individual mutations at diverse sites within AtMTP1 conferred Co and Cd tolerance in yeast, and included deletions in N-terminal and His-rich intra-molecular cytosolic domains, and mutations of single residues flanking the transmembrane pore or participating in intra- or inter-molecular domain interactions, all of which are not conserved in the non-selective EcYiiP. © 2012 The Authors Journal compilation © 2012 FEBS.

  20. Immunization-elicited Broadly Protective Antibody Reveals Ebolavirus Fusion Loop as a Site of Vulnerability

    PubMed Central

    Zhao, Xuelian; Howell, Katie A.; He, Shihua; Brannan, Jennifer M.; Wec, Anna Z.; Davidson, Edgar; Turner, Hannah L.; Chiang, Chi-I; Lei, Lin; Fels, J. Maximilian; Vu, Hong; Shulenin, Sergey; Turonis, Ashley N.; Kuehne, Ana I.; Liu, Guodong; Ta, Mi; Wang, Yimeng; Sundling, Christopher; Xiao, Yongli; Spence, Jennifer S.; Doranz, Benjamin J.; Holtsberg, Frederick W.; Ward, Andrew B.; Chandran, Kartik; Dye, John M.; Qiu, Xiangguo; Li, Yuxing; Aman, M. Javad

    2018-01-01

    Summary While neutralizing antibodies are highly effective against ebolavirus infections, current experimental ebolavirus vaccines primarily elicit species-specific antibody responses. Here we describe an immunization-elicited macaque antibody (CA45) that clamps the internal fusion loop with the N-terminus of the ebolavirus glycoproteins (GP) and potently neutralizes Ebola, Sudan, Bundibugyo, and Reston viruses. CA45, alone or in combination with an antibody that blocks receptor binding, provided full protection against all pathogenic ebolaviruses in mice, guinea pigs, and ferrets. Analysis of memory B cells from the immunized macaque suggests that elicitation of broadly neutralizing antibodies (bNAbs) for ebolaviruses is possible but difficult, potentially due to the rarity of bNAb clones and their precursors. Unexpectedly, germline-reverted CA45, while exhibiting negligible binding to full-length GP, bound a proteolytically remodeled GP with picomolar affinity, suggesting that engineered ebolavirus vaccines could trigger rare bNAb precursors more robustly. These findings have important implications for developing pan-ebolavirus vaccine and immunotherapeutic cocktails. PMID:28525756

  1. Enhanced Product Stability in the Hammerhead Ribozyme†

    PubMed Central

    Shepotinovskaya, Irina; Uhlenbeck, Olke C.

    2010-01-01

    The rate of dissociation of P1, the 5′ product of hammerhead cleavage, is 100–300-fold slower in full-length hammerheads than in hammerheads that either lack or have disrupting mutations in the loop-loop tertiary interaction. The added stability requires the presence of residue 17 at the 3′ terminus of P1 but not the 2′, 3′ terminal phosphate. Since residue 17 is buried within the catalytic core of the hammerhead in the x-ray structure, we propose that the enhanced P1 stability is the result of the cooperative folding of the hammerhead around this residue. However, since the P1 is fully stabilized above 2.5 mM MgCl2 while hammerhead activity continues to increase with increasing MgCl2, it is clear that the hammerhead structure in the transition state must differ from that of the product complex. The product stabilization assay is used to test our earlier proposal that different tertiary interactions modulate the cleavage rate by differentially stabilizing the core. PMID:20423112

  2. Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander

    2014-10-02

    Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibodymore » combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.« less

  3. A novel role for the integrin-binding III-10 module in fibronectin matrix assembly.

    PubMed

    Hocking, D C; Smith, R K; McKeown-Longo, P J

    1996-04-01

    Fibronectin matrix assembly is a cell-dependent process which is upregulated in tissues at various times during development and wound repair to support the functions of cell adhesion, migration, and differentiation. Previous studies have demonstrated that the alpha 5 beta 1 integrin and fibronectin's amino terminus and III-1 module are important in fibronectin polymerization. We have recently shown that fibronectin's III-1 module contains a conformationally sensitive binding site for fibronectin's amino terminus (Hocking, D.C., J. Sottile, and P.J. McKeown-Longo. 1994. J. Biol. Chem. 269: 19183-19191). The present study was undertaken to define the relationship between the alpha 5 beta 1 integrin and fibronectin polymerization. Solid phase binding assays using recombinant III-10 and III-1 modules of human plasma fibronectin indicated that the III-10 module contains a conformation-dependent binding site for the III-1 module of fibronectin. Unfolded III-10 could support the formation of a ternary complex containing both III-1 and the amino-terminal 70-kD fragment, suggesting that the III-1 module can support the simultaneous binding of III-10 and 70 kD. Both unfolded III-10 and unfolded III-1 could support fibronectin binding, but only III-10 could promote the formation of disulfide-bonded multimers of fibronectin in the absence of cells. III-10-dependent multimer formation was inhibited by both the anti-III-1 monoclonal antibody, 9D2, and amino-terminal fragments of fibronectin. A fragment of III-10, termed III-10/A, was able to block matrix assembly in fibroblast monolayers. Similar results were obtained using the III-10A/RGE fragment, in which the RGD site had been mutated to RGE, indicating that III-I0/A was blocking matrix assembly by a mechanism distinct from disruption of integrin binding. Texas red-conjugated recombinant III-1,2 localized to beta 1-containing sites of focal adhesions on cells plated on fibronectin or the III-9,10 modules of fibronectin. Monoclonal antibodies against the III-1 or the III-9,10 modules of fibronectin blocked binding of III-1,2 to cells without disrupting focal adhesions. These data suggest that a role of the alpha 5 beta 1 integrin in matrix assembly is to regulate a series of sequential self-interactions which result in the polymerization of fibronectin.

  4. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2)

    PubMed Central

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-01-01

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (Ncyt/Cexo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders. PMID:26797119

  5. Roles of the SH2 and SH3 domains in the regulation of neuronal Src kinase functions.

    PubMed

    Groveman, Bradley R; Xue, Sheng; Marin, Vedrana; Xu, Jindong; Ali, Mohammad K; Bienkiewicz, Ewa A; Yu, Xian-Min

    2011-02-01

    Previous studies demonstrated that intra-domain interactions between Src family kinases (SFKs), stabilized by binding of the phosphorylated C-terminus to the SH2 domain and/or binding of the SH2 kinase linker to the SH3 domain, lock the molecules in a closed conformation, disrupt the kinase active site, and inactivate SFKs. Here we report that the up-regulation of N-methyl-D-aspartate receptors (NMDARs) induced by expression of constitutively active neuronal Src (n-Src), in which the C-terminus tyrosine is mutated to phenylalanine (n-Src/Y535F), is significantly reduced by dysfunctions of the SH2 and/or SH3 domains of the protein. Furthermore, we found that dysfunctions of SH2 and/or SH3 domains reduce auto-phosphorylation of the kinase activation loop, depress kinase activity, and decrease NMDAR phosphorylation. The SH2 domain plays a greater regulatory role than the SH3 domain. Our data also show that n-Src binds directly to the C-terminus of the NMDAR NR2A subunit in vitro, with a K(D) of 108.2 ± 13.3 nM. This binding is not Src kinase activity-dependent, and dysfunctions of the SH2 and/or SH3 domains do not significantly affect the binding. These data indicate that the SH2 and SH3 domains may function to promote the catalytic activity of active n-Src, which is important in the regulation of NMDAR functions. © 2010 The Authors Journal compilation © 2010 FEBS.

  6. Cloning, characterization and comparative analysis of pig plasma apolipoprotein A-IV.

    PubMed

    Navarro, María A; Acín, Sergio; Iturralde, María; Calleja, Lucía; Carnicer, Ricardo; Guzmán-García, Mario A; González-Ramón, Nieves; Mata, Pedro; Isabel, Beatriz; López-Bote, Clemente J; Lampreave, Fermín; Piñeiro, Andrés; Osada, Jesús

    2004-01-21

    Pig apolipoprotein (apo) A-IV cDNA was cloned, characterized and compared to the human ortholog. Mature porcine apo A-IV consists of 362 amino acids and displays a 75.6% sequence identity with human protein. Pig apo A-IV is the smallest reported mammalian apo A-IV because it lacks the repeated motifs of glutamine and glutamic acid at the carboxyl terminus. A phylogenic tree of apo A-IV mammalian proteins reveals that porcine apo A-IV is more closely related to humans and primates than to rodents. This protein is highly hydrophobic and is mainly associated with lipoproteins.

  7. Inactivation properties of voltage-gated K+ channels altered by presence of beta-subunit.

    PubMed

    Rettig, J; Heinemann, S H; Wunder, F; Lorra, C; Parcej, D N; Dolly, J O; Pongs, O

    1994-05-26

    Structural and functional diversity of voltage-gated Kv1-type potassium channels in rat brain is enhanced by the association of two different types of subunits, the membrane-bound, poreforming alpha-subunits and a peripheral beta-subunit. We have cloned a beta-subunit (Kv beta 1) that is specifically expressed in the rat nervous system. Association of Kv beta 1 with alpha-subunits confers rapid A-type inactivation on non-inactivating Kv1 channels (delayed rectifiers) in expression systems in vitro. This effect is mediated by an inactivating ball domain in the Kv beta 1 amino terminus.

  8. Activation of mTor Signaling by Gene Transduction to Induce Axon Regeneration in the Central Nervous System Following Neural Injury

    DTIC Science & Technology

    2015-03-01

    terminus amino acids of amyloid precursor protein (cAPP). cAPP was found in our recent publication in Gene Therapy (2013) to be the most effective...Therapy. 2012;20:275-86 PubMed PMID: 22008911. 7. Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing...NatRevMolCell Biol. 2011;12:21-35. 8. Morita T, Sobue K. Specification of neuronal polarity regulated by local translation of CRMP2 and Tau via the mTOR

  9. Human cyclophilin has a significantly higher affinity for HIV-1 recombinant p55 than p24.

    PubMed

    Bristow, R; Byrne, J; Squirell, J; Trencher, H; Carter, T; Rodgers, B; Saman, E; Duncan, J

    1999-04-01

    The ability of cyclophilin to bind a panel of recombinant HIV-gag proteins was assessed using sensitive, quantitative, sandwich enzyme-linked immunosorbant assays (ELISAs). Significantly higher binding to cyclophilin was observed when recombinants contained at least 12 carboxy-terminal amino acids of p17 in addition to p24 sequences. These results indicate that the carboxy-terminus of p17 is important for optimal binding of cyclophilin to p24 and support the theory that cyclophilin acts on the uncleaved HIV-1 gag (p17-p24) precursor.

  10. Evaluation of the use of non-pathogenic porcine circovirus type 1 as a vaccine delivery virus vector to express antigenic epitopes of porcine reproductive and respiratory syndrome virus.

    PubMed

    Piñeyro, Pablo E; Kenney, Scott P; Giménez-Lirola, Luis G; Opriessnig, Tanja; Tian, Debin; Heffron, C Lynn; Meng, Xiang-Jin

    2016-02-02

    We previously demonstrated that the C-terminus of the capsid gene of porcine circovirus type 2 (PCV2) is an immune reactive epitope displayed on the surface of virions. Insertion of foreign epitope tags in the C-terminus produced infectious virions that elicited humoral immune responses against both PCV2 capsid and the inserted epitope tags, whereas mutation in the N terminus impaired viral replication. Since the non-pathogenic porcine circovirus type 1 (PCV1) shares similar genomic organization and significant sequence identity with pathogenic PCV2, in this study we evaluated whether PCV1 can serve as a vaccine delivery virus vector. Four different antigenic determinants of porcine reproductive and respiratory syndrome virus (PRRSV) were inserted in the C-terminus of the PCV1 capsid gene, the infectivity and immunogenicity of the resulting viruses are determined. We showed that an insertion of 12 (PRRSV-GP2 epitope II, PRRSV-GP3 epitope I, and PRRSV-GP5 epitope I), and 14 (PRRSV-GP5 epitope IV) amino acid residues did not affect PCV1 replication. We successfully rescued and characterized four chimeric PCV1 viruses expressing PRRSV linear antigenic determinants (GP2 epitope II: aa 40-51, ASPSHVGWWSFA; GP3 epitope I: aa 61-72, QAAAEAYEPGRS; GP5 epitope I: aa 35-46, SSSNLQLIYNLT; and GP5 epitope IV: aa 187-200, TPVTRVSAEQWGRP). We demonstrated that all chimeric viruses were stable and infectious in vitro and three chimeric viruses were infectious in vivo. An immunogenicity study in pigs revealed that PCV1-VR2385EPI chimeric viruses elicited neutralizing antibodies against PRRSV-VR2385. The results have important implications for further evaluating PCV1 as a potential vaccine delivery vector. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. The Cu(II) affinity of the N-terminus of human copper transporter CTR1: Comparison of human and mouse sequences.

    PubMed

    Bossak, Karolina; Drew, Simon C; Stefaniak, Ewelina; Płonka, Dawid; Bonna, Arkadiusz; Bal, Wojciech

    2018-05-01

    Copper Transporter 1 (CTR1) is a homotrimeric membrane protein providing the main route of copper transport into eukaryotic cells from the extracellular milieu. Its N-terminal extracellular domain, rich in His and Met residues, is considered responsible for directing copper into the transmembrane channel. Most of vertebrate CTR1 proteins contain the His residue in position three from N-terminus, creating a well-known Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) site. CTR1 from humans, primates and many other species contains the Met-Asp-His (MDH) sequence, while some rodents including mouse have the Met-Asn-His (MNH) N-terminal sequence. CTR1 is thought to collect Cu(II) ions from blood copper transport proteins, including albumin, but previous reports indicated that the affinity of N-terminal peptide/domain of CTR1 is significantly lower than that of albumin, casting serious doubt on this aspect of CTR1 function. Using potentiometry and spectroscopic techniques we demonstrated that MDH-amide, a tripeptide model of human CTR1 N-terminus, binds Cu(II) with K of 1.3 × 10 13  M -1 at pH 7.4, ~13 times stronger than Human Serum Albumin (HSA), and MNH-amide is even stronger, K of 3.2 × 10 14  M -1 at pH 7.4. These results indicate that the N-terminus of CTR1 may serve as intermediate binding site during Cu(II) transfer from blood copper carriers to the transporter. MDH-amide, but not MNH-amide also forms a low abundance complex with non-ATCUN coordination involving the Met amine, His imidazole and Asp carboxylate. This species might assist Cu(II) relay down the peptide chain or its reduction to Cu(I), both steps necessary for the CTR1 function. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The heptad repeats region is essential for AcMNPV P10 filament formation and not the proline-rich or the C-terminus basic regions.

    PubMed

    Dong, Chunsheng; Deng, Fei; Li, Dan; Wang, Hualin; Hu, Zhihong

    2007-09-01

    Baculovirus P10 protein is a small conserved protein and is expressed as bundles of filaments in the host cell during the late phase of virus infection. So far the published results on the domain responsible for filament structural formation have been contradictory. Electron microscopy revealed that the C-terminus basic region was involved in filament structural formation in the Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) [van Oers, M.M., Flipsen, J.T., Reusken, C.B., Sliwinsky, E.L., Vlak, J.M., 1993. Functional domains of the p10 protein of Autographa californica nuclear polyhedorsis virus. J. Gen. Virol. 74, 563-574.]. While in the Helicoverpa armigera nucleopolyhedrovirus (HearNPV), the heptad repeats region but not the C-terminus domain was proven to be responsible for filament formation [Dong, C., Li, D., Long, G., Deng, F., Wang, H., Hu, Z., 2005. Identification of functional domains required for HearNPV P10 filament formation. Virology 338, 112-120.]. In this manuscript, fluorescence confocal microscopy was applied to study AcMNPV P10 filament formation. A set of plasmids containing different P10 structural domains fused with a fluorescent protein were constructed and transfected into Sf-9 cells. The data indicated that the heptad repeats region, but not the proline-rich region or the C-terminus basic region, is essential for AcMNPV P10 filament formation. Co-transfection of P10s tagged with different fluorescent revealed that P10s with defective heptad repeats region could not interact with intact heptad repeats region or even full-length P10s to form filament structure. Within the heptad repeats region, deletion of the three amino acids spacing of AcMNPV P10 appeared to have no significant impact on the formation of filament structures, but the content of the heptad repeats region appeared to play a role in the morphology of the filaments.

  13. Molecular characterization of partial fusion gene and C-terminus extension length of haemagglutinin-neuraminidase gene of recently isolated Newcastle disease virus isolates in Malaysia

    PubMed Central

    2010-01-01

    Background Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a highly contagious disease of birds and has been one of the major causes of economic losses in the poultry industry. Despite routine vaccination programs, sporadic cases have occasionally occurred in the country and remain a constant threat to commercial poultry. Hence, the present study was aimed to characterize NDV isolates obtained from clinical cases in various locations of Malaysia between 2004 and 2007 based on sequence and phylogenetic analysis of partial F gene and C-terminus extension length of HN gene. Results The coding region of eleven NDV isolates fusion (F) gene and carboxyl terminal region of haemagglutinin-neuraminidase (HN) gene including extensions were amplified by reverse transcriptase PCR and directly sequenced. All the isolates have shown to have non-synonymous to synonymous base substitution rate ranging between 0.081 - 0.264 demonstrating presence of negative selection. Analysis based on F gene showed the characterized isolates possess three different types of protease cleavage site motifs; namely 112RRQKRF117, 112RRRKRF117 and 112GRQGRL117 and appear to show maximum identities with isolates in the region such as cockatoo/14698/90 (Indonesia), Ch/2000 (China), local isolate AF2240 indicating the high similarity of isolates circulating in the South East Asian countries. Meanwhile, one of the isolates resembles commonly used lentogenic vaccine strains. On further characterization of the HN gene, Malaysian isolates had C-terminus extensions of 0, 6 and 11 amino acids. Analysis of the phylogenetic tree revealed that the existence of three genetic groups; namely, genotype II, VII and VIII. Conclusions The study concluded that the occurrence of three types of NDV genotypes and presence of varied carboxyl terminus extension lengths among Malaysian isolates incriminated for sporadic cases. PMID:20691110

  14. Molecular characterization of partial fusion gene and C-terminus extension length of haemagglutinin-neuraminidase gene of recently isolated Newcastle disease virus isolates in Malaysia.

    PubMed

    Berhanu, Ayalew; Ideris, Aini; Omar, Abdul R; Bejo, Mohd Hair

    2010-08-08

    Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a highly contagious disease of birds and has been one of the major causes of economic losses in the poultry industry. Despite routine vaccination programs, sporadic cases have occasionally occurred in the country and remain a constant threat to commercial poultry. Hence, the present study was aimed to characterize NDV isolates obtained from clinical cases in various locations of Malaysia between 2004 and 2007 based on sequence and phylogenetic analysis of partial F gene and C-terminus extension length of HN gene. The coding region of eleven NDV isolates fusion (F) gene and carboxyl terminal region of haemagglutinin-neuraminidase (HN) gene including extensions were amplified by reverse transcriptase PCR and directly sequenced. All the isolates have shown to have non-synonymous to synonymous base substitution rate ranging between 0.081 - 0.264 demonstrating presence of negative selection. Analysis based on F gene showed the characterized isolates possess three different types of protease cleavage site motifs; namely 112RRQKRF117, 112RRRKRF117 and 112GRQGRL117 and appear to show maximum identities with isolates in the region such as cockatoo/14698/90 (Indonesia), Ch/2000 (China), local isolate AF2240 indicating the high similarity of isolates circulating in the South East Asian countries. Meanwhile, one of the isolates resembles commonly used lentogenic vaccine strains. On further characterization of the HN gene, Malaysian isolates had C-terminus extensions of 0, 6 and 11 amino acids. Analysis of the phylogenetic tree revealed that the existence of three genetic groups; namely, genotype II, VII and VIII. The study concluded that the occurrence of three types of NDV genotypes and presence of varied carboxyl terminus extension lengths among Malaysian isolates incriminated for sporadic cases.

  15. Nuclear targeting of the maize R protein requires two nuclear localization sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, M.W.; Raikhel, N.V.; Wessler, S.R.

    1993-02-01

    Previous genetic and structural evidence indicates that the maize R gene encodes a nuclear transcriptional activating factor. In-frame carboxyl- and amino-terminal fusions of the R gene to the reporter gene encoding [beta]-glucuronidase (GUS) were sufficient to direct GUS to the nucleus of the transiently transformed onion (Allium cepa) epidermal cells. Further analysis of chimeric constructs containing regions of the R gene fused to the GUS cDNA revealed three specific nuclear localization sequences (NLSs) that were capable of redirecting the GUS protein to the nucleus. Amino-terminal NLS-A (amino acids 100-109, GDRRAAPARP) contained several arginine residues; a similar localization signal is foundmore » in only a few viral proteins. The medial NLS-M (amino acids 419-428, MSERKRREKL) is a simian virus 40 large T antigen-type NLS, and the carboxyl-terminal NLS-C (amino acids 598-610, MISESLRKAIGKR) is a mating type [alpha]2 type. NLSs M and C are independently sufficient to direct the GUS protein to the nucleus when it is fused at the amino terminus of GUS, whereas NLS-A fused to GUS partitioned between the nucleus and cytoplasm. Similar partitioning was observed when localization signals NLS-A and NLS-C were independently fused to the carboxy-terminal portion of GUS. A sequential deletion of the localization signals indicated that the amino-terminal and carboxyl-terminal fusions of R and GUS were redirected to the nucleus only when both NLS-A and -M, or NLS-C and -M, were present. These results indicate that multiple localization signals are necessary for nuclear targeting of this protein. The conservation of the localization signals within the alleles of R and similar proteins from other organisms is also discussed. 45 refs., 6 figs.« less

  16. The TGA codons are present in the open reading frame of selenoprotein P cDNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, K.E.; Lloyd, R.S.; Read, R.

    1991-03-11

    The TGA codon in DNA has been shown to direct incorporation of selenocysteine into protein. Several proteins from bacteria and animals contain selenocysteine in their primary structures. Each of the cDNA clones of these selenoproteins contains one TGA codon in the open reading frame which corresponds to the selenocysteine in the protein. A cDNA clone for selenoprotein P (SeP), obtained from a {gamma}ZAP rat liver library, was sequenced by the dideoxy termination method. The correct reading frame was determined by comparison of the deduced amino acid sequence with the amino acid sequence of several peptides from SeP. Using SeP labelledmore » with {sup 75}Se in vivo, the selenocysteine content of the peptides was verified by the collection of carboxymethylated {sup 77}Se-selenocysteine as it eluted from the amino acid analyzer and determination of the radioactivity contained in the collected samples. Ten TGA codons are present in the open reading frame of the cDNA. Peptide fragmentation studies and the deduced sequence indicate that selenium-rich regions are located close to the carboxy terminus. Nine of the 10 selenocysteines are located in the terminal 26% of the sequence with four in the terminal 15 amino acids. The deduced sequence codes for a protein of 385 amino acids. Cleavage of the signal peptide gives the mature protein with 366 amino acids and a calculated mol wt of 41,052 Da. Searches of PIR and SWISSPROT protein databases revealed no similarity with glutathione peroxidase or other selenoproteins.« less

  17. Mapping the neutralizing epitopes on the glycoprotein of infectious haematopoietic necrosis virus, a fish rhabdovirus

    USGS Publications Warehouse

    Huang, C.; Chien, M.S.; Landolt, M.L.; Batts, W.; Winton, J.

    1996-01-01

    Twelve neutralizing monoclonal antibodies (MAbs) against the fish rhabdovirus, infectious haematopoietic necrosis virus (IHNV), were used to select 20 MAb escape mutants. The nucleotide sequence of the entire glycoprotein (G) gene was determined for six mutants representing differing cross-neutralization patterns and each had a single nucleotide change leading to a single amino acid substitution within one of three regions of the protein. These data were used to design nested PCR primers to amplify portions of the G gene of the 14 remaining mutants. When the PCR products from these mutants were sequenced, they also had single nucleotide substitutions coding for amino acid substitutions at the same, or nearby, locations. Of the 20 mutants for which all or part of the glycoprotein gene was sequenced, two MAbs selected mutants with substitutions at amino acids 230-231 (antigenic site I) and the remaining MAbs selected mutants with substitutions at amino acids 272-276 (antigenic site II). Two MAbs that selected mutants mapping to amino acids 272-276, selected other mutants that mapped to amino acids 78-81, raising the possibility that this portion of the N terminus of the protein was part of a discontinuous epitope defining antigenic site II. CLUSTAL alignment of the glycoproteins of rabies virus, vesicular stomatitis virus and IHNV revealed similarities in the location of the neutralizing epitopes and a high degree of conservation among cysteine residues, indicating that the glycoproteins of three different genera of animal rhabdoviruses may share a similar three-dimensional structure in spite of extensive sequence divergence.

  18. Crystal structures of apo wild-type M. jannaschii tyrosyl-tRNA synthetase (TyrRS) and an engineered TyrRS specific for O-methyl-L-tyrosine

    PubMed Central

    Zhang, Yan; Wang, Lei; Schultz, Peter G.; Wilson, Ian A.

    2005-01-01

    The Methanococcus jannaschii tRNATyr/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-l-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 Å, respectively, for comparison with the published structure of TyrRS complexed with tRNATyr and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257–263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through π-stacking and hydrogen bonding interactions. Loop 133–143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNATyr. Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133–143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over l-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids. PMID:15840835

  19. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takegami, T.; Semler, B.L.; Anderson, C.W.

    1983-01-01

    The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have alsomore » revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9.« less

  20. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence.

    PubMed Central

    DeWitt, D L; Smith, W L

    1988-01-01

    Prostaglandin G/H synthase (8,11,14-icosatrienoate, hydrogen-donor:oxygen oxidoreductase, EC 1.14.99.1) catalyzes the first step in the formation of prostaglandins and thromboxanes, the conversion of arachidonic acid to prostaglandin endoperoxides G and H. This enzyme is the site of action of nonsteroidal anti-inflammatory drugs. We have isolated a 2.7-kilobase complementary DNA (cDNA) encompassing the entire coding region of prostaglandin G/H synthase from sheep vesicular glands. This cDNA, cloned from a lambda gt 10 library prepared from poly(A)+ RNA of vesicular glands, hybridizes with a single 2.75-kilobase mRNA species. The cDNA clone was selected using oligonucleotide probes modeled from amino acid sequences of tryptic peptides prepared from the purified enzyme. The full-length cDNA encodes a protein of 600 amino acids, including a signal sequence of 24 amino acids. Identification of the cDNA as coding for prostaglandin G/H synthase is based on comparison of amino acid sequences of seven peptides comprising 103 amino acids with the amino acid sequence deduced from the nucleotide sequence of the cDNA. The molecular weight of the unglycosylated enzyme lacking the signal peptide is 65,621. The synthase is a glycoprotein, and there are three potential sites for N-glycosylation, two of them in the amino-terminal half of the molecule. The serine reported to be acetylated by aspirin is at position 530, near the carboxyl terminus. There is no significant similarity between the sequence of the synthase and that of any other protein in amino acid or nucleotide sequence libraries, and a heme binding site(s) is not apparent from the amino acid sequence. The availability of a full-length cDNA clone coding for prostaglandin G/H synthase should facilitate studies of the regulation of expression of this enzyme and the structural features important for catalysis and for interaction with anti-inflammatory drugs. Images PMID:3125548

  1. Switch loop flexibility affects substrate transport of the AcrB efflux pump

    DOE PAGES

    Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea; ...

    2017-10-05

    The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutionsmore » on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.« less

  2. Switch loop flexibility affects substrate transport of the AcrB efflux pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea

    The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutionsmore » on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.« less

  3. Loss of ATP-dependent lysine uptake in the vacuolar membrane vesicles of Saccharomyces cerevisiae ypq1∆ mutant.

    PubMed

    Sekito, Takayuki; Nakamura, Kyosuke; Manabe, Kunio; Tone, Junichi; Sato, Yumika; Murao, Nami; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2014-01-01

    Saccharomyces cerevisiae Ypq1p is a vacuolar membrane protein of the PQ-loop protein family. We found that ATP-dependent uptake activities of amino acids by vacuolar membrane vesicles were impaired by ypq1∆ mutation. Loss of lysine uptake was most remarkable, and the uptake was recovered by overproduction of Ypq1p. Ypq1p is thus involved in transport of amino acids into vacuoles.

  4. Deduced catalytic mechanism of d-amino acid amidase from Ochrobactrum anthropi SV3

    PubMed Central

    Okazaki, Seiji; Suzuki, Atsuo; Komeda, Hidenobu; Asano, Yasuhisa; Yamane, Takashi

    2008-01-01

    d-Amino acid amidase (DAA) from Ochrobactrum anthropi SV3 catalyzes d-stereospecific hydrolysis of amino acid amides. DAA has attracted attention as a catalyst for the stereospecific production of d-amino acids, although the mechanism that drives the reaction has not been clear. Previously, the structure of DAA was classified into two types, a substrate-bound state with an ordered Ω loop, and a ground state with a disordered Ω loop. Because the binding of the substrate facilitates ordering, this transition was regarded to be induced fit motion. The angles and distances of hydrogen bonds at Tyr149 Oη, Ser60 Oγ and Lys63 Nζ revealed that Tyr149 Oη donates an H atom to a water molecule in the substrate-bound state, and that Tyr149 Oη donates an H atom to Ser60 Oγ or Lys63 Nζ in the ground state. Taking into consideration the locations of the H atoms of Tyr149 Oη, Ser60 Oγ and Lys63 Nζ, a catalytic mechanism of DAA activity is presented, wherein a shift of an H atom at Tyr149 Oη in the substrate-bound versus the ground state plays a significant role in the reaction. This mechanism explains well why acylation proceeds and deacylation does not proceed in the substrate-bound state. PMID:18421151

  5. Conformational landscape of the HIV-V3 hairpin loop from all-atom free-energy simulations

    NASA Astrophysics Data System (ADS)

    Verma, Abhinav; Wenzel, Wolfgang

    2008-03-01

    Small beta hairpins have many distinct biological functions, including their involvement in chemokine and viral receptor recognition. The relevance of structural similarities between different hairpin loops with near homologous sequences is not yet understood, calling for the development of methods for de novo hairpin structure prediction and simulation. De novo folding of beta strands is more difficult than that of helical proteins because of nonlocal hydrogen bonding patterns that connect amino acids that are distant in the amino acid sequence and there is a large variety of possible hydrogen bond patterns. Here we use a greedy version of the basin hopping technique with our free-energy forcefield PFF02 to reproducibly and predictively fold the hairpin structure of a HIV-V3 loop. We performed 20 independent basin hopping runs for 500cycles corresponding to 7.4×107 energy evaluations each. The lowest energy structure found in the simulation has a backbone root mean square deviation (bRMSD) of only 2.04Å to the native conformation. The lowest 9 out of the 20 simulations converged to conformations deviating less than 2.5Å bRMSD from native.

  6. Conformational landscape of the HIV-V3 hairpin loop from all-atom free-energy simulations.

    PubMed

    Verma, Abhinav; Wenzel, Wolfgang

    2008-03-14

    Small beta hairpins have many distinct biological functions, including their involvement in chemokine and viral receptor recognition. The relevance of structural similarities between different hairpin loops with near homologous sequences is not yet understood, calling for the development of methods for de novo hairpin structure prediction and simulation. De novo folding of beta strands is more difficult than that of helical proteins because of nonlocal hydrogen bonding patterns that connect amino acids that are distant in the amino acid sequence and there is a large variety of possible hydrogen bond patterns. Here we use a greedy version of the basin hopping technique with our free-energy forcefield PFF02 to reproducibly and predictively fold the hairpin structure of a HIV-V3 loop. We performed 20 independent basin hopping runs for 500 cycles corresponding to 7.4 x 10(7) energy evaluations each. The lowest energy structure found in the simulation has a backbone root mean square deviation (bRMSD) of only 2.04 A to the native conformation. The lowest 9 out of the 20 simulations converged to conformations deviating less than 2.5 A bRMSD from native.

  7. Selection of the simplest RNA that binds isoleucine

    PubMed Central

    LOZUPONE, CATHERINE; CHANGAYIL, SHANKAR; MAJERFELD, IRENE; YARUS, MICHAEL

    2003-01-01

    We have identified the simplest RNA binding site for isoleucine using selection-amplification (SELEX), by shrinking the size of the randomized region until affinity selection is extinguished. Such a protocol can be useful because selection does not necessarily make the simplest active motif most prominent, as is often assumed. We find an isoleucine binding site that behaves exactly as predicted for the site that requires fewest nucleotides. This UAUU motif (16 highly conserved positions; 27 total), is also the most abundant site in successful selections on short random tracts. The UAUU site, now isolated independently at least 63 times, is a small asymmetric internal loop. Conserved loop sequences include isoleucine codon and anticodon triplets, whose nucleotides are required for amino acid binding. This reproducible association between isoleucine and its coding sequences supports the idea that the genetic code is, at least in part, a stereochemical residue of the most easily isolated RNA–amino acid binding structures. PMID:14561881

  8. First cytoplasmic loop of glucagon-like peptide-1 receptor can function at the third cytoplasmic loop position of rhodopsin.

    PubMed

    Yamashita, Takahiro; Tose, Koji; Shichida, Yoshinori

    2008-01-01

    G protein-coupled receptors (GPCRs) are classified into several families based on their amino acid sequences. In family 1, GPCRs such as rhodopsin and adrenergic receptor, the structure-function relationship has been extensively investigated to demonstrate that exposure of the third cytoplasmic loop is essential for selective G protein activation. In contrast, much less is known about other families. Here we prepared chimeric mutants between Gt-coupled rhodopsin and Gi/Go- and Gs-coupled glucagon-like peptide-1 (GLP-1) receptor of family 2 and tried to identify the loop region that functions at the third cytoplasmic loop position of rhodopsin. We succeeded in expressing a mutant having the first cytoplasmic loop of GLP-1 receptor and found that this mutant activated Gi and Go efficiently but did not activate Gt. Moreover, the rhodopsin mutant having the first loop of Gs-coupled secretin receptor of family 2 decreased the Gi and Go activation efficiencies. Therefore, the first loop of GLP-1 receptor would share a similar role to the third loop of rhodopsin in G protein activation. This result strongly suggested that different families of GPCRs have maintained molecular architectures of their ancestral types to generate a common mechanism, namely exposure of the cytoplasmic loop, to activate peripheral G protein.

  9. Minor displacements in the insertion site provoke major differences in the induction of antibody responses by chimeric parvovirus-like particles.

    PubMed

    Rueda, P; Hurtado, A; del Barrio, M; Martínez-Torrecuadrada, J L; Kamstrup, S; Leclerc, C; Casal, J I

    1999-10-10

    An antigen-delivery system based on hybrid virus-like particles (VLPs) formed by the self-assembly of the capsid VP2 protein of canine parvovirus (CPV) and expressing foreign peptides was investigated. In this report, we have studied the effects of inserting the poliovirus C3:B epitope in the four loops and the C terminus of the CPV VP2 on the particle structure and immunogenicity. Epitope insertions in the four loops allowed the recovery of capsids in all of the mutants. However, only insertions of the C3:B epitope in VP2 residue 225 of the loop 2 were able to elicit a significant anti-peptide antibody response, but not poliovirus-neutralizing antibodies, probably because residue 225 is located in an small depression of the surface. To fine modulate the insertion site in loop 2, a cassette-mutagenesis was carried out to insert the epitope in adjacent positions 226, 227, and 228. The epitope C3:B inserted into these positions was well recognized by the specific monoclonal antibody C3 by immunoelectron microscopy. BALB/c mice immunized with these chimeric C3:B CPV:VLPs were able to elicit an strong neutralizing antibody response (>3 log(10) units) against poliovirus type 1 (Mahoney strain). Therefore, minor displacements in the insertion place cause dramatic changes in the accessibility of the epitope and the induction of antibody responses. Copyright 1999 Academic Press.

  10. Sjögren Syndrome Antigen B (SSB)/La Promotes Global MicroRNA Expression by Binding MicroRNA Precursors through Stem-Loop Recognition*

    PubMed Central

    Liang, Chunyang; Xiong, Ke; Szulwach, Keith E.; Zhang, Yi; Wang, Zhaohui; Peng, Junmin; Fu, Mingui; Jin, Peng; Suzuki, Hiroshi I.; Liu, Qinghua

    2013-01-01

    MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ∼70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ∼21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3′ UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules. PMID:23129761

  11. Sjogren syndrome antigen B (SSB)/La promotes global microRNA expression by binding microRNA precursors through stem-loop recognition.

    PubMed

    Liang, Chunyang; Xiong, Ke; Szulwach, Keith E; Zhang, Yi; Wang, Zhaohui; Peng, Junmin; Fu, Mingui; Jin, Peng; Suzuki, Hiroshi I; Liu, Qinghua

    2013-01-04

    MicroRNAs (miRNA) control numerous physiological and pathological processes. Typically, the primary miRNA (pri-miRNA) transcripts are processed by nuclear Drosha complex into ~70-nucleotide stem-loop precursor miRNAs (pre-miRNA), which are further cleaved by cytoplasmic Dicer complex into ~21-nucleotide mature miRNAs. However, it is unclear how nascent pre-miRNAs are protected from ribonucleases, such as MCPIP1, that degrade pre-miRNAs to abort miRNA production. Here, we identify Sjögren syndrome antigen B (SSB)/La as a pre-miRNA-binding protein that regulates miRNA processing in vitro. All three RNA-binding motifs (LAM, RRM1, and RRM2) of La/SSB are required for efficient pre-miRNA binding. Intriguingly, La/SSB recognizes the characteristic stem-loop structure of pre-miRNAs, of which the majority lack a 3' UUU terminus. Moreover, La/SSB associates with endogenous pri-/pre-miRNAs and promotes miRNA biogenesis by stabilizing pre-miRNAs from nuclease (e.g. MCPIP1)-mediated decay in mammalian cells. Accordingly, we observed positive correlations between the expression status of La/SSB and Dicer in human cancer transcriptome and prognosis. These studies identify an important function of La/SSB as a global regulator of miRNA expression, and implicate stem-loop recognition as a major mechanism that mediates association between La/SSB and diverse RNA molecules.

  12. Crystal structure of human dual specificity phosphatase, JNK stimulatory phosphatase-1, at 1.5 A resolution.

    PubMed

    Yokota, Takehiro; Nara, Yukinori; Kashima, Akiko; Matsubara, Keiko; Misawa, Satoru; Kato, Ryohei; Sugio, Shigetoshi

    2007-02-01

    Human JNK stimulatory phosphatase-1 (JSP-1) is a novel member of dual specificity phosphatases. A C-terminus truncated JSP-1 was expressed in Escherichia coli and was crystallized using the sitting-drop vapor diffusion method. Thin-plate crystals obtained at 278 K belong to a monoclinic space group, C2, with unit-cell parameters a = 84.0 A, b = 49.3 A, c = 47.3 A, and beta = 119.5 degrees , and diffract up to 1.5 A resolution at 100 K. The structure of JSP-1 has a single compact (alpha/beta) domain, which consists of six alpha-helices and five beta-strands, and shows a conserved structural scaffold in regard to both DSPs and PTPs. A cleft formed by a PTP-loop at the active site is very shallow, and is occupied by one sulfonate compound, MES, at the bottom. In the binary complex structure of JSP-1 with MES, the conformations of three important segments in regard to the catalytic mechanism are not similar to those in PTP1B. JSP-1 has no loop corresponding to the Lys120-loop of PTP1B, and tryptophan residue corresponding to the substrate-stacking in PTP1B is substituted by alanine residue in JSP-1. Copyright 2006 Wiley-Liss, Inc.

  13. A conserved loop-wedge motif moderates reaction site search and recognition by FEN1.

    PubMed

    Thompson, Mark J; Gotham, Victoria J B; Ciani, Barbara; Grasby, Jane A

    2018-06-07

    DNA replication and repair frequently involve intermediate two-way junction structures with overhangs, or flaps, that must be promptly removed; a task performed by the essential enzyme flap endonuclease 1 (FEN1). We demonstrate a functional relationship between two intrinsically disordered regions of the FEN1 protein, which recognize opposing sides of the junction and order in response to the requisite substrate. Our results inform a model in which short-range translocation of FEN1 on DNA facilitates search for the annealed 3'-terminus of a primer strand, which is recognized by breaking the terminal base pair to generate a substrate with a single nucleotide 3'-flap. This recognition event allosterically signals hydrolytic removal of the 5'-flap through reaction in the opposing junction duplex, by controlling access of the scissile phosphate diester to the active site. The recognition process relies on a highly-conserved 'wedge' residue located on a mobile loop that orders to bind the newly-unpaired base. The unanticipated 'loop-wedge' mechanism exerts control over substrate selection, rate of reaction and reaction site precision, and shares features with other enzymes that recognize irregular DNA structures. These new findings reveal how FEN1 precisely couples 3'-flap verification to function.

  14. A versatile 2A peptide-based bicistronic protein expressing platform for the industrial cellulase producing fungus, Trichoderma reesei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Venkataramanan; Schuster, Logan A.; Moore, Kyle T.

    Here, the industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenablemore » marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a 'ribosomal skip' generating two (or more) independent gene products. When the 2A peptide is translated, the 'skip' occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein.« less

  15. Evidence of Distinct Channel Conformations and Substrate Binding Affinities for the Mitochondrial Outer Membrane Protein Translocase Pore Tom40*

    PubMed Central

    Kuszak, Adam J.; Jacobs, Daniel; Gurnev, Philip A.; Shiota, Takuya; Louis, John M.; Lithgow, Trevor; Bezrukov, Sergey M.; Rostovtseva, Tatiana K.; Buchanan, Susan K.

    2015-01-01

    Nearly all mitochondrial proteins are coded by the nuclear genome and must be transported into mitochondria by the translocase of the outer membrane complex. Tom40 is the central subunit of the translocase complex and forms a pore in the mitochondrial outer membrane. To date, the mechanism it utilizes for protein transport remains unclear. Tom40 is predicted to comprise a membrane-spanning β-barrel domain with conserved α-helical domains at both the N and C termini. To investigate Tom40 function, including the role of the N- and C-terminal domains, recombinant forms of the Tom40 protein from the yeast Candida glabrata, and truncated constructs lacking the N- and/or C-terminal domains, were functionally characterized in planar lipid membranes. Our results demonstrate that each of these Tom40 constructs exhibits at least four distinct conductive levels and that full-length and truncated Tom40 constructs specifically interact with a presequence peptide in a concentration- and voltage-dependent manner. Therefore, neither the first 51 amino acids of the N terminus nor the last 13 amino acids of the C terminus are required for Tom40 channel formation or for the interaction with a presequence peptide. Unexpectedly, substrate binding affinity was dependent upon the Tom40 state corresponding to a particular conductive level. A model where two Tom40 pores act in concert as a dimeric protein complex best accounts for the observed biochemical and electrophysiological data. These results provide the first evidence for structurally distinct Tom40 conformations playing a role in substrate recognition and therefore in transport function. PMID:26336107

  16. Expression of a Truncated ATHB17 Protein in Maize Increases Ear Weight at Silking

    PubMed Central

    Creelman, Robert A.; Griffith, Cara; Ahrens, Jeffrey E.; Taylor, J. Philip; Murphy, Lesley R.; Manjunath, Siva; Thompson, Rebecca L.; Lingard, Matthew J.; Back, Stephanie L.; Larue, Huachun; Brayton, Bonnie R.; Burek, Amanda J.; Tiwari, Shiv; Adam, Luc; Morrell, James A.; Caldo, Rico A.; Huai, Qing; Kouadio, Jean-Louis K.; Kuehn, Rosemarie; Sant, Anagha M.; Wingbermuehle, William J.; Sala, Rodrigo; Foster, Matt; Kinser, Josh D.; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E.; Huang, Mingya G.; Kuriakose, Saritha V.; Skottke, Kyle; Repetti, Peter P.; Reuber, T. Lynne; Ruff, Thomas G.; Petracek, Marie E.; Loida, Paul J.

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize. PMID:24736658

  17. Expression of a truncated ATHB17 protein in maize increases ear weight at silking.

    PubMed

    Rice, Elena A; Khandelwal, Abha; Creelman, Robert A; Griffith, Cara; Ahrens, Jeffrey E; Taylor, J Philip; Murphy, Lesley R; Manjunath, Siva; Thompson, Rebecca L; Lingard, Matthew J; Back, Stephanie L; Larue, Huachun; Brayton, Bonnie R; Burek, Amanda J; Tiwari, Shiv; Adam, Luc; Morrell, James A; Caldo, Rico A; Huai, Qing; Kouadio, Jean-Louis K; Kuehn, Rosemarie; Sant, Anagha M; Wingbermuehle, William J; Sala, Rodrigo; Foster, Matt; Kinser, Josh D; Mohanty, Radha; Jiang, Dongming; Ziegler, Todd E; Huang, Mingya G; Kuriakose, Saritha V; Skottke, Kyle; Repetti, Peter P; Reuber, T Lynne; Ruff, Thomas G; Petracek, Marie E; Loida, Paul J

    2014-01-01

    ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.

  18. A versatile 2A peptide-based bicistronic protein expressing platform for the industrial cellulase producing fungus, Trichoderma reesei

    DOE PAGES

    Subramanian, Venkataramanan; Schuster, Logan A.; Moore, Kyle T.; ...

    2017-02-06

    Here, the industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenablemore » marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a 'ribosomal skip' generating two (or more) independent gene products. When the 2A peptide is translated, the 'skip' occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein.« less

  19. Ammonia Excretion in an Osmoregulatory Syncytium Is Facilitated by AeAmt2, a Novel Ammonia Transporter in Aedes aegypti Larvae

    PubMed Central

    Durant, Andrea C.; Donini, Andrew

    2018-01-01

    The larvae of the mosquito Aedes aegypti inhabit ammonia rich septic tanks in tropical regions of the world that make extensive use of these systems, explaining the prevalence of disease during dry seasons. Since ammonia (NH3/NH4+) is toxic to animals, an understanding of the physiological mechanisms of ammonia excretion permitting the survival of A. aegypti larvae in high ammonia environments is important. We have characterized a novel ammonia transporter, AeAmt2, belonging to the Amt/MEP/Rh family of ammonia transporters. Based on the amino acid sequence, the predicted topology of AeAmt2 consists of 11 transmembrane helices with an extracellular N-terminus and a cytoplasmic C-terminus region. Alignment of the predicted AeAmt2 amino acid sequence with other Amt/MEP proteins from plants, bacteria, and yeast highlights the presence of conserved residues characteristic of ammonia conducting channels in this protein. AeAmt2 is expressed in the ionoregulatory anal papillae of A. aegypti larvae where it is localized to the apical membrane of the epithelium. dsRNA-mediated knockdown of AeAmt2 results in a significant decrease in NH4+ efflux from the anal papillae, suggesting a key role in facilitating ammonia excretion. The effect of high environmental ammonia (HEA) on expression of AeAmt2, along with previously characterized AeAmt1, AeRh50-1, and AeRh50-2 in the anal papillae was investigated. We show that changes in expression of ammonia transporters occur in response to acute and chronic exposure to HEA, which reflects the importance of these transporters in the physiology of life in high ammonia habitats. PMID:29695971

  20. Variation in Its C-Terminal Amino Acids Determines Whether Endo-β-Mannanase Is Active or Inactive in Ripening Tomato Fruits of Different Cultivars1

    PubMed Central

    Bourgault, Richard; Bewley, J. Derek

    2002-01-01

    Endo-β-mannanase cDNAs were cloned and characterized from ripening tomato (Lycopersicon esculentum Mill. cv Trust) fruit, which produces an active enzyme, and from the tomato cv Walter, which produces an inactive enzyme. There is a two-nucleotide deletion in the gene from tomato cv Walter, which results in a frame shift and the deletion of four amino acids at the C terminus of the full-length protein. Other cultivars that produce either active or inactive enzyme show the same absence or presence of the two-nucleotide deletion. The endo-β-mannanase enzyme protein was purified and characterized from ripe fruit to ensure that cDNA codes for the enzyme from fruit. Immunoblot analysis demonstrated that non-ripening mutants, which also fail to exhibit endo-β-mannanase activity, do so because they fail to express the protein. In a two-way genetic cross between tomato cvs Walter and Trust, all F1 progeny from both crosses produced fruit with active enzyme, suggesting that this form is dominant and homozygous in tomato cv Trust. Self-pollination of a plant from the heterozygous F1 generation yielded F2 plants that bear fruit with and without active enzyme at a ratio appropriate to Mendelian genetic segregation of alleles. Heterologous expression of the two endo-β-mannanase genes in Escherichia coli resulted in active enzyme being produced from cultures containing the tomato cv Trust gene and inactive enzyme being produced from those containing the tomato cv Walter gene. Site-directed mutagenesis was used to establish key elements in the C terminus of the endo-β-mannanase protein that are essential for full enzyme activity. PMID:12427992

  1. Adrenocorticotropic Hormone (ACTH) Responses Require Actions of the Melanocortin-2 Receptor Accessory Protein on the Extracellular Surface of the Plasma Membrane.

    PubMed

    Malik, Sundeep; Dolan, Terrance M; Maben, Zachary J; Hinkle, Patricia M

    2015-11-13

    The melanocortin-2 (MC2) receptor is a G protein-coupled receptor that mediates responses to ACTH. The MC2 receptor acts in concert with the MC2 receptor accessory protein (MRAP) that is absolutely required for ACTH binding and signaling. MRAP has a single transmembrane domain and forms a highly unusual antiparallel homodimer that is stably associated with MC2 receptors at the plasma membrane. Despite the physiological importance of the interaction between the MC2 receptor and MRAP, there is little understanding of how the accessory protein works. The dual topology of MRAP has made it impossible to determine whether highly conserved and necessary regions of MRAP are required on the intracellular or extracellular face of the plasma membrane. The strategy used here was to fix the orientation of two antiparallel MRAP molecules and then introduce inactivating mutations on one side of the membrane or the other. This was achieved by engineering proteins containing tandem copies of MRAP fused to the amino terminus of the MC2 receptor. The data firmly establish that only the extracellular amino terminus (Nout) copy of MRAP, oriented with critical segments on the extracellular side of the membrane, is essential. The transmembrane domain of MRAP is also required in only the Nout orientation. Finally, activity of MRAP-MRAP-MC2-receptor fusion proteins with inactivating mutations in either MRAP or the receptor was rescued by co-expression of free wild-type MRAP or free wild-type receptor. These results show that the basic MRAP-MRAP-receptor signaling unit forms higher order complexes and that these multimers signal. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Topology of subunits of the mammalian cytochrome c oxidase: Relationship to the assembly of the enzyme complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu-Zhong Zhang; Ewart, G.; Capaldi, R.A.

    The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane({sup 35}S)sulfonate and sodium methyl 4-({sup 3}H)formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibodymore » (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C-domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage produce from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.« less

  3. Rescuing discarded spectra: Full comprehensive analysis of a minimal proteome.

    PubMed

    Lluch-Senar, Maria; Mancuso, Francesco M; Climente-González, Héctor; Peña-Paz, Marcia I; Sabido, Eduard; Serrano, Luis

    2016-02-01

    A common problem encountered when performing large-scale MS proteome analysis is the loss of information due to the high percentage of unassigned spectra. To determine the causes behind this loss we have analyzed the proteome of one of the smallest living bacteria that can be grown axenically, Mycoplasma pneumoniae (729 ORFs). The proteome of M. pneumoniae cells, grown in defined media, was analyzed by MS. An initial search with both Mascot and a species-specific NCBInr database with common contaminants (NCBImpn), resulted in around 79% of the acquired spectra not having an assignment. The percentage of non-assigned spectra was reduced to 27% after re-analysis of the data with the PEAKS software, thereby increasing the proteome coverage of M. pneumoniae from the initial 60% to over 76%. Nonetheless, 33,413 spectra with assigned amino acid sequences could not be mapped to any NCBInr database protein sequence. Approximately, 1% of these unassigned peptides corresponded to PTMs and 4% to M. pneumoniae protein variants (deamidation and translation inaccuracies). The most abundant peptide sequence variants (Phe-Tyr and Ala-Ser) could be explained by alterations in the editing capacity of the corresponding tRNA synthases. About another 1% of the peptides not associated to any protein had repetitions of the same aromatic/hydrophobic amino acid at the N-terminus, or had Arg/Lys at the C-terminus. Thus, in a model system, we have maximized the number of assigned spectra to 73% (51,453 out of the 70,040 initial acquired spectra). All MS data have been deposited in the ProteomeXchange with identifier PXD002779 (http://proteomecentral.proteomexchange.org/dataset/PXD002779). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The role of aspartic acid residues 405 and 416 of the kidney isotype of sodium-bicarbonate cotransporter 1 in its targeting to the plasma membrane

    PubMed Central

    Kucher, Volodymyr; Li, Emily Y.; Conforti, Laura; Zahedi, Kamyar A.

    2012-01-01

    The NH2 terminus of the sodium-bicarbonate cotransporter 1 (NBCe1) plays an important role in its targeting to the plasma membrane. To identify the amino acid residues that contribute to the targeting of NBCe1 to the plasma membrane, polarized MDCK cells were transfected with expression constructs coding for green fluorescent protein (GFP)-tagged NBCe1 NH2-terminal deletion mutants, and the localization of GFP-tagged proteins was analyzed by confocal microscopy. Our results indicate that the amino acids between residues 399 and 424 of NBCe1A contain important sequences that contribute to its localization to the plasma membrane. Site-directed mutagenesis studies showed that GFP-NBCe1A mutants D405A and D416A are retained in the cytoplasm of the polarized MDCK epithelial cells. Examination of functional activities of D405A and D416A reveals that their activities are reduced compared with the wild-type NBCe1A. Similarly, aspartic acid residues 449 and 460 of pancreatic NBCe1 (NBCe1B), which correspond to residues 405 and 416 of NBCe1A, are also required for its full functional activity and accurate targeting to the plasma membrane. In addition, while replacement of D416 with glutamic acid did not affect the targeting or functional activity of NBCe1A, substitution of D405 with glutamic acid led to the retention of the mutated protein in the intracellular compartment and impaired functional activity. These studies demonstrate that aspartic acid residues 405 and 416 in the NH2 terminus of NBCe1A are important in its accurate targeting to the plasma membrane. PMID:22442137

  5. Interactions between N and C termini of α1C subunit regulate inactivation of CaV1.2 L-type Ca2+ channel

    PubMed Central

    Benmocha Guggenheimer, Adva; Almagor, Lior; Tsemakhovich, Vladimir; Tripathy, Debi Ranjan; Hirsch, Joel A; Dascal, Nathan

    2016-01-01

    The modulation and regulation of voltage-gated Ca2+ channels is affected by the pore-forming segments, the cytosolic parts of the channel, and interacting intracellular proteins. In this study we demonstrate a direct physical interaction between the N terminus (NT) and C terminus (CT) of the main subunit of the L-type Ca2+ channel CaV1.2, α1C, and explore the importance of this interaction for the regulation of the channel. We used biochemistry to measure the strength of the interaction and to map the location of the interaction sites, and electrophysiology to investigate the functional impact of the interaction. We show that the full-length NT (amino acids 1-154) and the proximal (close to the plasma membrane) part of the CT, pCT (amino acids 1508-1669) interact with sub-micromolar to low-micromolar affinity. Calmodulin (CaM) is not essential for the binding. The results further suggest that the NT-CT interaction regulates the channel's inactivation, and that Ca2+, presumably through binding to calmodulin (CaM), reduces the strength of NT-CT interaction. We propose a molecular mechanism in which NT and CT of the channel serve as levers whose movements regulate inactivation by promoting changes in the transmembrane core of the channel via S1 (NT) or S6 (pCT) segments of domains I and IV, accordingly, and not as a kind of pore blocker. We hypothesize that Ca2+-CaM-induced changes in NT-CT interaction may, in part, underlie the acceleration of CaV1.2 inactivation induced by Ca2+ entry into the cell. PMID:26577286

  6. Recombinant Protein Truncation Strategy for Inducing Bactericidal Antibodies to the Macrophage Infectivity Potentiator Protein of Neisseria meningitidis and Circumventing Potential Cross-Reactivity with Human FK506-Binding Proteins

    PubMed Central

    Bielecka, Magdalena K.; Devos, Nathalie; Gilbert, Mélanie; Hung, Miao-Chiu; Weynants, Vincent; Heckels, John E.

    2014-01-01

    A recombinant macrophage infectivity potentiator (rMIP) protein of Neisseria meningitidis induces significant serum bactericidal antibody production in mice and is a candidate meningococcal vaccine antigen. However, bioinformatics analysis of MIP showed some amino acid sequence similarity to human FK506-binding proteins (FKBPs) in residues 166 to 252 located in the globular domain of the protein. To circumvent the potential concern over generating antibodies that could recognize human proteins, we immunized mice with recombinant truncated type I rMIP proteins that lacked the globular domain and the signal leader peptide (LP) signal sequence (amino acids 1 to 22) and contained the His purification tag at either the N or C terminus (C-term). The immunogenicity of truncated rMIP proteins was compared to that of full (i.e., full-length) rMIP proteins (containing the globular domain) with either an N- or C-terminal His tag and with or without the LP sequence. By comparing the functional murine antibody responses to these various constructs, we determined that C-term His truncated rMIP (−LP) delivered in liposomes induced high levels of antibodies that bound to the surface of wild-type but not Δmip mutant meningococci and showed bactericidal activity against homologous type I MIP (median titers of 128 to 256) and heterologous type II and III (median titers of 256 to 512) strains, thereby providing at least 82% serogroup B strain coverage. In contrast, in constructs lacking the LP, placement of the His tag at the N terminus appeared to abrogate bactericidal activity. The strategy used in this study would obviate any potential concerns regarding the use of MIP antigens for inclusion in bacterial vaccines. PMID:25452551

  7. Evolution of flavone synthase I from parsley flavanone 3beta-hydroxylase by site-directed mutagenesis.

    PubMed

    Gebhardt, Yvonne Helen; Witte, Simone; Steuber, Holger; Matern, Ulrich; Martens, Stefan

    2007-07-01

    Flavanone 3beta-hydroxylase (FHT) and flavone synthase I (FNS I) are 2-oxoglutarate-dependent dioxygenases with 80% sequence identity, which catalyze distinct reactions in flavonoid biosynthesis. However, FNS I has been reported exclusively from a few Apiaceae species, whereas FHTs are more abundant. Domain-swapping experiments joining the N terminus of parsley (Petroselinum crispum) FHT with the C terminus of parsley FNS I and vice versa revealed that the C-terminal portion is not essential for FNS I activity. Sequence alignments identified 26 amino acid substitutions conserved in FHT versus FNS I genes. Homology modeling, based on the related anthocyanidin synthase structure, assigned seven of these amino acids (FHT/FNS I, M106T, I115T, V116I, I131F, D195E, V200I, L215V, and K216R) to the active site. Accordingly, FHT was modified by site-directed mutagenesis, creating mutants encoding from one to seven substitutions, which were expressed in yeast (Saccharomyces cerevisiae) for FNS I and FHT assays. The exchange I131F in combination with either M106T and D195E or L215V and K216R replacements was sufficient to confer some FNS I side activity. Introduction of all seven FNS I substitutions into the FHT sequence, however, caused a nearly complete change in enzyme activity from FHT to FNS I. Both FHT and FNS I were proposed to initially withdraw the beta-face-configured hydrogen from carbon-3 of the naringenin substrate. Our results suggest that the 7-fold substitution affects the orientation of the substrate in the active-site pocket such that this is followed by syn-elimination of hydrogen from carbon-2 (FNS I reaction) rather than the rebound hydroxylation of carbon-3 (FHT reaction).

  8. Effects of truncation of the peptide chain on the secondary structure and bioactivities of palmitoylated anoplin.

    PubMed

    Salas, Remmer L; Garcia, Jan Kathryne D L; Miranda, Ana Carmela R; Rivera, Windell L; Nellas, Ricky B; Sabido, Portia Mahal G

    2018-06-01

    Anoplin (GLLKRIKTLL-NH 2 ) is of current interest due to its short sequence and specificity towards bacteria. Recent studies on anoplin have shown that truncation and acylation compromises its antimicrobial activity and specificity, respectively. In this study, truncated analogues (pal-ano-9 to pal-ano-5) of palmitoylated anoplin (pal-anoplin) were synthesized to determine the effects of C-truncation on its bioactivities. Moreover, secondary structure of each analogue using circular dichroism (CD) spectroscopy was determined to correlate with bioactivities. Interestingly, pal-anoplin, pal-ano-9 and pal-ano-6 were helical in water, unlike anoplin. In contrast, pal-ano-8, pal-ano-7 and pal-ano-5, with polar amino acid residues at the C-terminus, were random coil in water. Nevertheless, all the peptides folded into helical structures in 30% trifluoroethanol/water (TFE/H 2 O) except for the shortest analogue pal-ano-5. Hydrophobicity played a significant role in the enhancement of activity against bacteria E. coli and S. aureus as all lipopeptides including the random coil pal-ano-5 were more active than the parent anoplin. Meanwhile, the greatest improvement in activity against the fungus C. albicans was observed for pal-anoplin analogues (pal-ano-9 and pal-ano-6) that were helical in water. Although, hydrophobicity is a major factor in the secondary structure and antimicrobial activity, it appears that the nature of amino acids at the C-terminus also influence folding of lipopeptides in water and its antifungal activity. Moreover, the hemolytic activity of the analogues was found to correlate with hydrophobicity, except for the least hemolytic, pal-ano-5. Since most of the analogues are more potent and shorter than anoplin, they are promising drug candidates for further development. Copyright © 2018. Published by Elsevier Inc.

  9. An aromatic amino acid in the coiled-coil 1 domain plays a crucial role in the auto-inhibitory mechanism of STIM1.

    PubMed

    Yu, Junwei; Zhang, Haining; Zhang, Mingshu; Deng, Yongqiang; Wang, Huiyu; Lu, Jingze; Xu, Tao; Xu, Pingyong

    2013-09-15

    STIM1 (stromal interaction molecule 1) is one of the key elements that mediate store-operated Ca²⁺ entry via CRAC (Ca²⁺- release-activated Ca²⁺) channels in immune and non-excitable cells. Under physiological conditions, the intramolecular auto-inhibitions in STIM1 C- and STIM1 N-termini play essential roles in keeping STIM1 in an inactive state. However, the auto-inhibitory mechanism of the STIM1 C-terminus is still unclear. In the present study, we first predicted a short inhibitory domain (residues 310-317) in human STIM1 that might determine the different localizations of human STIM1 from Caenorhabditis elegans STIM1 in resting cells. Next, we confirmed the prediction and further identified an aromatic amino acid residue, Tyr³¹⁶, that played a crucial role in maintaining STIM1 in a closed conformation in quiescent cells. Full-length STIM1-Y316A formed constitutive clusters near the plasma membrane and activated the CRAC channel in the resting state when co-expressed with Orai1. The introduction of a Y316A mutation caused the higher-order oligomerization of the in vitro purified STIM1 fragment containing both the auto-inhibitory domain and CAD(CRAC-activating domain).We propose that the Tyr³¹⁶ residue may be involved in the auto-inhibitory mechanism of the STIM1 C-terminus in the quiescent state. This inhibition could be achieved either by interacting with the CAD using hydrogen and/or hydrophobic bonds, or by an intermolecular interaction using repulsive forces, which maintained a dimeric STIM1.

  10. The X-ray structure of Paramecium bursaria Chlorella virus arginine decarboxylase: insight into the structural basis for substrate specificity

    PubMed Central

    Shah, Rahul; Akella, Radha; Goldsmith, Elizabeth J.; Phillips, Margaret A.

    2008-01-01

    The group IV pyridoxal-5′-phosphate (PLP)-dependent decarboxylases belong to the β/α barrel structural family, and include enzymes with substrate specificity for a range of basic amino acids. A unique homolog of this family, the Paramecium bursaria Chlorella virus arginine decarboxylase (cvADC), shares about 40% amino acid sequence identity with the eukaryotic ornithine decarboxylases (ODCs). The X-ray structure of cvADC has been solved to 1.95 and 1.8 Å resolution for the free and agmatine (product)-bound enzymes. The global structural differences between cvADC and eukaryotic ODC are minimal (rmsd of 1.2 – 1.4 Å), however, the active site has significant structural rearrangements. The key “specificity element,” is identified as the 310-helix that contains and positions substrate-binding residues such as E296 cvADC (D332 in T. brucei ODC). In comparison to the ODC structures, the 310-helix in cvADC is shifted over 2 Å away from the PLP cofactor, thus accommodating the larger arginine substrate. Within the context of this conserved fold, the protein is designed to be flexible in the positioning and amino acid sequence of the 310-helix, providing a mechanism to evolve different substrate preferences within the family without large structural rearrangements. Also, in the structure, the “K148-loop” (homologous to the “K169-loop” of ODC) is observed in a closed, substrate-bound conformation for the first time. Apparently the K148 loop is a mobile loop, analogous to those observed in triose phosphate isomerase and tryptophan synthetase. In conjunction with prior structural studies these data predict that this loop adopts different conformations throughout the catalytic cycle, and that loop movement may be kinetically linked to the rate-limiting step of product release. PMID:17305368

  11. A distal mutation perturbs dynamic amino acid networks in dihydrofolate reductase

    PubMed Central

    Bae, Sung-Hun; Duggan, Brendan M.; Benkovic, Stephen J.; Dyson, H. Jane; Wright, Peter E

    2013-01-01

    Correlated networks of amino acids have been proposed to play a fundamental role in allostery and enzyme catalysis. These networks of amino acids can be traced from surface-exposed residues all the way into the active site, and disruption of these networks can decrease enzyme activity. Substitution of the distal Gly121 residue in E.coli dihydrofolate reductase results in up to a 200-fold decrease in the hydride transfer rate despite the fact that the residue is located 15 Å from the active-site center. In the present study, NMR relaxation experiments are used to demonstrate that dynamics on the ps-ns and μs-ms timescales are changed significantly in the G121V mutant of dihydrofolate reductase. In particular, ps-ns timescale dynamics are decreased in the FG loop (containing the mutated residue 121) and the neighboring active-site loop (the Met20 loop) in the mutant compared to wild-type enzyme, suggesting that these loops are dynamically coupled. Changes in methyl order parameters reveal a pathway by which dynamic perturbations can be propagated more than 25 Å across the protein from the site of mutation. All of the enzyme complexes, including the model Michaelis complex with folate and NADP+ bound, assume an occluded ground state conformation, and we do not observe sampling of a higher energy closed conformation by 15N R2 relaxation dispersion. This is highly significant, since it is only in the closed conformation that the cofactor and substrate reactive centers are positioned for reaction. The mutation also impairs μs - ms timescale fluctuations that have been implicated in product release from the wild type enzyme. Our results are consistent with an important role for Gly121 in controlling protein dynamics critical for enzyme function and further validate the dynamic energy landscape hypothesis of enzyme catalysis. PMID:23758161

  12. Identification of the initiation site of poliovirus polyprotein synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorner, A.J.; Dorner, L.F.; Larsen, G.R.

    1982-06-01

    The complete nucleotide sequence of poliovirus RNA has a long open reading frame capable of encoding the precursor polyprotein NCVPOO. The first AUG codon in this reading frame is located 743 nucleotides from the 5' end of the RNA and is preceded by eight AUG codons in all three reading frames. Because all proteins that map at the amino terminus of the polyprotein (P1-1a, VPO, and VP4) are blocked at their amino termini and previous studies of ribosome binding have been inconclusive, direct identification of the initiation site of protein synthesis was difficult. We separated and identified all of themore » tryptic peptides of capsid protein VP4 and correlated these peptides with the amino acid sequence predicted to follow the AUG codon at nucleotide 743. Our data indicate that VP4 begins with a blocked glycine that is encoded immediately after the AUG codon at nucleotide 743. An S1 nuclease analysis of poliovirus mRNA failed to reveal a splice in the 5' region. We concluded that synthesis of poliovirus polyprotein is initiated at nucleotide 743, the first AUG codon in the long open reading frame.« less

  13. Immunoprecipitation of PDE2 phosphorylated and inactivated by an associated protein kinase.

    PubMed

    Bentley, J Kelley

    2005-01-01

    A PDE2A2-associated protein kinase phosphorylates PDE2A2 in vivo and in vitro to inhibit its catalytic activity. Rat brain PDE2A2 may be solubilized using nona (ethylene glycol) mono dodecyl ether (Lubrol 12A9). PDE2A2 exists in a complex with a protein kinase regulating its activity in an adenosine triphosphate-dependent manner. When native or recombinant PDE2 is immunoprecipitated from PC12 cells using an antibody to the amino terminus in a buffer containing Lubrol 12A9, protease inhibitors, and phosphatase inhibitors, a coimmunoprecipitating nerve growth factor-stimulated protein kinase acts to phosphorylate it. PDE2A2 phosphoryla-tion occurs optimally at pH 6.5 in a sodium 2-(4-morpholino)-ethane sulfonate buffer with 5 mM MgCl2 and 1 mM Na3VO4. I describe protocols for producing an antibody to an amino-terminal bacterial fusion protein encoding amino acids 1-251 of PDE2A2 as well as the use of this antibody in immunoprecipitating a PDE2: tyrosine protein-kinase complex from rat brain or PC12 cells.

  14. Cloning, functional expression, and characterization of a PKA-activated gastric Cl- channel.

    PubMed

    Malinowska, D H; Kupert, E Y; Bahinski, A; Sherry, A M; Cuppoletti, J

    1995-01-01

    cDNA encoding a Cl- channel was isolated from a rabbit gastric library, sequenced, and expressed in Xenopus oocytes. The predicted protein (898 amino acids, relative molecular mass 98,433 Da) was overall 93% similar to the rat brain ClC-2 Cl- channel. However, a 151-amino acid stretch toward the COOH-terminus was 74% similar to ClC-2 with six amino acids deleted. Two new potential protein kinase A (PKA) phosphorylation sites (also protein kinase C phosphorylation sites) were introduced. cRNA-injected Xenopus oocytes expressed a Cl- channel that was active at pHtrans 3 and had a linear current-voltage (I-V) curve and a slope conductance of 29 +/- 1 pS at 800 mM CsCl. A fivefold Cl- gradient caused a rightward shift in the I-V curve with a reversal potential of +30 +/- 3 mV, indicating anion selectivity. The selectivity was I- > Cl- > NO3-. The native and recombinant Cl- channel were both activated in vitro by PKA catalytic subunit and ATP. The electrophysiological and regulatory properties of the cloned and the native channel were similar. The cloned protein may be the Cl- channel involved in gastric HCl secretion.

  15. Free terminal amines in DNA-binding peptides alter the product distribution from guanine radicals produced by single electron oxidation.

    PubMed

    Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R

    2012-03-01

    Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.

  16. Identification of interaction domains within the UL37 tegument protein of herpes simplex virus type 1.

    PubMed

    Bucks, Michelle A; Murphy, Michael A; O'Regan, Kevin J; Courtney, Richard J

    2011-07-20

    Herpes simplex virus type 1 (HSV-1) UL37 is a 1123 amino acid tegument protein that self-associates and binds to the tegument protein UL36 (VP1/2). Studies were undertaken to identify regions of UL37 involved in these protein-protein interactions. Coimmunoprecipitation assays showed that residues within the carboxy-terminal half of UL37, amino acids 568-1123, are important for interaction with UL36. Coimmunoprecipitation assays also revealed that amino acids 1-300 and 568-1123 of UL37 are capable of self-association. UL37 appears to self-associate only under conditions when UL36 is not present or is present in low amounts, suggesting UL36 and UL37 may compete for binding. Transfection-infection experiments were performed to identify domains of UL37 that complement the UL37 deletion virus, K∆UL37. The carboxy-terminal region of UL37 (residues 568-1123) partially rescues the K∆UL37 infection. These results suggest the C-terminus of UL37 may contribute to its essential functional role within the virus-infected cell. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4

    PubMed Central

    Liu, Qian; Chen, Haoqian; Ojode, Teresa; Gao, Xiangxi; Anaya-O'Brien, Sandra; Turner, Nicholas A.; Ulrick, Jean; DeCastro, Rosamma; Kelly, Corin; Cardones, Adela R.; Gold, Stuart H.; Hwang, Eugene I.; Wechsler, Daniel S.; Malech, Harry L.; Murphy, Philip M.

    2012-01-01

    WHIM syndrome is a rare, autosomal dominant, immunodeficiency disorder so-named because it is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis (defective neutrophil egress from the BM). Gain-of-function mutations that truncate the C-terminus of the chemokine receptor CXCR4 by 10-19 amino acids cause WHIM syndrome. We have identified a family with autosomal dominant inheritance of WHIM syndrome that is caused by a missense mutation in CXCR4, E343K (1027G → A). This mutation is also located in the C-terminal domain, a region responsible for negative regulation of the receptor. Accordingly, like CXCR4R334X, the most common truncation mutation in WHIM syndrome, CXCR4E343K mediated approximately 2-fold increased signaling in calcium flux and chemotaxis assays relative to wild-type CXCR4; however, CXCR4E343K had a reduced effect on blocking normal receptor down-regulation from the cell surface. Therefore, in addition to truncating mutations in the C-terminal domain of CXCR4, WHIM syndrome may be caused by a single charge-changing amino acid substitution in this domain, E343K, that results in increased receptor signaling. PMID:22596258

  18. Identification of a novel PSR as the substrate of an SR protein kinase in the true slime mold.

    PubMed

    Zhang, Yong-Xia; Xing, Miao; Fei, Xuan; Zhang, Jian-Hua; Tian, Sheng-Li; Li, Ming-Hua; Liu, Shi-De

    2011-03-01

    Here, a novel cDNA encoding a serine/arginine (SR)-rich protein, designated PSR, was isolated from the true slime mold Physarum polycephalum and expressed in Escherichia coli. The deduced amino acid (aa) sequence reveals that PSR contains RS repeats at its C-terminus, similar to the conventional PSRPK substrate ASF/SF2. To study the novel protein, we generated a variety of mutant constructs by PCR and site-directed mutagenesis. Our analysis indicated that the purified recombinant PSR was phosphorylated by PSRPK in vitro and the SR-rich domain (amino acids 460-469) in the PSR protein was required for phosphorylation. In addition, removal of the docking motif (amino acids 424-450) from PSR significantly reduced the overall catalytic efficiency of the phosphorylation reaction. We also found that the conserved ATP-binding region (62)LGWGHFSTVWLAIDEKNGGREVALK(86) and the serine/threonine protein kinases active-site signature (184)IIHTDLKPENVLL(196) of PSRPK played a crucial role in substrate phosphorylation and Lys(86) and Asp(188) were crucial for PSRPK phosphorylation of PSR. These results suggest that PSR is a novel SR-related protein that is phosphorylated by PSRPK.

  19. Cloning and characterization of cDNAs encoding human gastrin-releasing peptide.

    PubMed Central

    Spindel, E R; Chin, W W; Price, J; Rees, L H; Besser, G M; Habener, J F

    1984-01-01

    We have prepared and cloned cDNAs derived from poly(A)+ RNA from a human pulmonary carcinoid tumor rich in immunoreactivity to gastrin-releasing peptide, a peptide closely related in structure to amphibian bombesin. Mixtures of synthetic oligodeoxyribonucleotides corresponding to amphibian bombesin were used as hybridization probes to screen a cDNA library prepared from the tumor RNA. Sequencing of the recombinant plasmids shows that human gastrin-releasing peptide (hGRP) mRNA encodes a precursor of 148 amino acids containing a typical signal sequence, hGRP consisting of 27 or 28 amino acids, and a carboxyl-terminal extension peptide. hGRP is flanked at its carboxyl terminus by two basic amino acids, following a glycine used for amidation of the carboxyl-terminal methionine. RNA blot analyses of tumor RNA show a major mRNA of 900 bases and a minor mRNA of 850 bases. Blot hybridization analyses using human genomic DNA are consistent with a single hGRP-encoding gene. The presence of two mRNAs encoding the hGRP precursor protein in the face of a single hGRP gene raises the possibility of alternative processing of the single RNA transcript. Images PMID:6207529

  20. Genetic characterization of the chemokine receptor CXCR4 gene in lagomorphs: comparison between the families Ochotonidae and Leporidae.

    PubMed

    Abrantes, J; Esteves, P J; Carmo, C R; Müller, A; Thompson, G; van der Loo, W

    2008-04-01

    Chemokines receptors are transmembrane proteins that bind chemokines. Chemokines and their receptors are known to play a crucial role in the immune system and in pathogen entry. There is evidence that myxoma virus, the causative agent of myxomatosis, can use the chemokine receptor CXCR4 to infect cells. This virus causes a benign disease in its natural host, Sylvilagus, but in the European rabbit (Oryctolagus cuniculus) it causes a highly fatal and infectious disease known as myxomatosis. We have characterized the chemokine receptor CXCR4 gene in five genera of the order Lagomorpha, Ochotona (Ochotonidae), and Oryctolagus, Lepus, Bunolagus and Sylvilagus (Leporidae). In lagomorphs, the CXCR4 is highly conserved, with most of the protein diversity found at surface regions. Five amino acid replacements were observed, two in the intracellular loops, one in the transmembrane domain and two in the extracellular loops. Oryctolagus features unique amino acid changes at the intracellular domains, putting this genus apart of all other lagomorphs. Furthermore, in the 37 European rabbits analysed, which included healthy rabbits and rabbits with clinical symptoms of myxomatosis, 14 nucleotide substitutions were obtained but no amino acid differences were observed.

  1. The N Terminus of Andes Virus L Protein Suppresses mRNA and Protein Expression in Mammalian Cells

    PubMed Central

    Heinemann, Patrick; Schmidt-Chanasit, Jonas

    2013-01-01

    Little is known about the structure and function of the 250-kDa L protein of hantaviruses, although it plays a central role in virus genome transcription and replication. When attempting to study Andes virus (ANDV) L protein in mammalian cells, we encountered difficulties. Even in a strong overexpression system, ANDV L protein could not be detected by immunoblotting. Deletion analysis revealed that the 534 N-terminal amino acid residues determine the low-expression phenotype. Inhibition of translation due to RNA secondary structures around the start codon, rapid proteasomal degradation, and reduced half-life time were excluded. However, ANDV L protein expression could be rescued upon mutation of the catalytic PD-E-K motif and further conserved residues of the putative endonuclease at the N terminus of the protein. In addition, wild-type ANDV L rather than expressible L mutants suppressed the level of L mRNA, as well as reporter mRNAs. Wild-type L protein also reduced the synthesis of cellular proteins in the high-molecular-weight range. Using expressible ANDV L mutants as a tool for localization studies, we show that L protein colocalizes with ANDV N and NSs but not Gc protein. A fraction of L protein also colocalized with the cellular processing (P) body component DCP1a. Overall, these data suggest that ANDV L protein possesses a highly active endonuclease at the N terminus suppressing the level of its own as well as heterologous mRNAs upon recombinant expression in mammalian cells. PMID:23576516

  2. Development of the expressed Ig CDR-H3 repertoire is marked by focusing of constraints in length, amino acid use, and charge that are first established in early B cell progenitors.

    PubMed

    Ivanov, Ivaylo I; Schelonka, Robert L; Zhuang, Yingxin; Gartland, G Larry; Zemlin, Michael; Schroeder, Harry W

    2005-06-15

    To gain insight into the mechanisms that regulate the development of the H chain CDR3 (CDR-H3), we used the scheme of Hardy to sort mouse bone marrow B lineage cells into progenitor, immature, and mature B cell fractions, and then performed sequence analysis on V(H)7183-containing Cmu transcripts. The essential architecture of the CDR-H3 repertoire observed in the mature B cell fraction F was already established in the early pre-B cell fraction C. These architectural features include V(H) gene segment use preference, D(H) family usage, J(H) rank order, predicted structures of the CDR-H3 base and loop, and the amino acid composition and average hydrophobicity of the CDR-H3 loop. With development, the repertoire was focused by eliminating outliers to what appears to be a preferred repertoire in terms of length, amino acid composition, and average hydrophobicity. Unlike humans, the average length of CDR-H3 increased during development. The majority of this increase came from enhanced preservation of J(H) sequence. This was associated with an increase in the prevalence of tyrosine. With an accompanying increase in glycine, a shift in hydrophobicity was observed in the CDR-H3 loop from near neutral in fraction C (-0.08 +/- 0.03) to mild hydrophilic in fraction F (-0.17 +/- 0.02). Fundamental constraints on the sequence and structure of CDR-H3 are thus established before surface IgM expression.

  3. Domain organization of p130, PLC-related catalytically inactive protein, and structural basis for the lack of enzyme activity.

    PubMed

    Kanematsu, T; Yoshimura, K; Hidaka, K; Takeuchi, H; Katan, M; Hirata, M

    2000-05-01

    The 130-kDa protein (p130) was isolated as a novel inositol 1,4, 5-trisphosphate [Ins(1,4,5)P3]-binding protein similar to phospholipase C-delta1 (PLC-delta1), but lacking catalytic activity [Kanematsu, T., Takeya, H., Watanabe, Y., Ozaki, S., Yoshida, M., Koga, T., Iwanaga, S. & Hirata, M. (1992) J. Biol. Chem. 267, 6518-6525; Kanematsu, T., Misumi, Y., Watanabe, Y., Ozaki, S., Koga, T., Iwanaga, S., Ikehara, Y. & Hirata, M. (1996) Biochem. J. 313, 319-325]. To test experimentally the domain organization of p130 and structural basis for lack of PLC activity, we subjected p130 to limited proteolysis and also constructed a number of chimeras with PLC-delta1. Trypsin treatment of p130 produced four major polypeptides with molecular masses of 86 kDa, 55 kDa, 33 kDa and 25 kDa. Two polypeptides of 86 kDa and 55 kDa started at Lys93 and were calculated to end at Arg851 and Arg568, respectively. Using the same approach, it has been found that the polypeptides of 33 kDa and 25 kDa are likely to correspond to regions between Val569 and Arg851 and Lys869 and Leu1096, respectively. All the proteolytic sites were in interconnecting regions between the predicted domains, therefore supporting domain organization based on sequence similarity to PLC-delta1 and demonstrating that all domains of p130, including the unique region at the C-terminus, are stable, tightly folded structures. p130 truncated at either or both the N-terminus (94 amino acids) and C-terminus (851-1096 amino acids) expressed in COS-1 cells showed no catalytic activity, indicating that p130 has intrinsically no PLC activity. A number of chimeric molecules between p130 and PLC-delta1 were constructed and assayed for PLC activity. It was shown that structural differences in interdomain interactions exist between the two proteins, as only some domains of p130 could replace the corresponding structures in PLC-delta1 to form a functional enzyme. These results suggest that p130 and the related proteins could represent a new protein family that may play some distinct role in cells due to the capability of binding Ins(1,4,5)P3 but the lack of catalytic activity.

  4. Application of Strep-Tactin XT for affinity purification of Twin-Strep-tagged CB2, a G protein-coupled cannabinoid receptor.

    PubMed

    Yeliseev, Alexei; Zoubak, Lioudmila; Schmidt, Thomas G M

    2017-03-01

    Human cannabinoid receptor CB 2 belongs to the class A of G protein-coupled receptor (GPCR). CB 2 is predominantly expressed in membranes of cells of immune origin and is implicated in regulation of metabolic pathways of inflammation, neurodegenerative disorders and pain sensing. High resolution structural studies of CB 2 require milligram quantities of purified, structurally intact protein. While we previously reported on the methodology for expression of the recombinant CB 2 and its stabilization in a functional state, here we describe an efficient protocol for purification of this protein using the Twin-Strep-tag/Strep-Tactin XT system. To improve the affinity of interaction of the recombinant CB 2 with the resin, the double repeat of the Strep-tag (a sequence of eight amino acids WSHPQFEK), named the Twin-Strep-tag was attached either to the N- or C-terminus of CB 2 via a short linker, and the recombinant protein was expressed in cytoplasmic membranes of E. coli as a fusion with the N-terminal maltose binding protein (MBP). The CB 2 was isolated at high purity from dilute solutions containing high concentrations of detergents, glycerol and salts, by capturing onto the Strep-Tactin XT resin, and was eluted from the resin under mild conditions upon addition of biotin. Surface plasmon resonance studies performed on the purified protein demonstrate the high affinity of interaction between the Twin-Strep-tag fused to the CB 2 and Strep-Tactin XT with an estimated Kd in the low nanomolar range. The affinity of binding did not vary significantly in response to the position of the tag at either N- or C-termini of the fusion. The binding capacity of the resin was several-fold higher for the tag located at the N-terminus of the protein as opposed to the C-terminus- or middle of the fusion. The variation in the length of the linker between the double repeats of the Strep-tag from 6 to 12 amino acid residues did not significantly affect the binding. The novel purification protocol reported here enables efficient isolation of a recombinant GPCR expressed at low titers in host cells. This procedure is suitable for preparation of milligram quantities of stable isotope-labelled receptor for high-resolution NMR studies. Published by Elsevier Inc.

  5. Role of the C-terminus in the activity, conformation, and stability of interleukin-6.

    PubMed Central

    Ward, L. D.; Hammacher, A.; Zhang, J. G.; Weinstock, J.; Yasukawa, K.; Morton, C. J.; Norton, R. S.; Simpson, R. J.

    1993-01-01

    Two murine interleukin-6 (mIL-6) variants were constructed using the polymerase chain reaction (PCR), one lacking the last five residues (183-187) at the C-terminus (pMC5) and another with the last five residues of mIL-6 substituted by the corresponding residues of human IL-6 (pMC5H). The growth stimulatory activity of pMC5 on the mouse hybridoma cell line 7TD1 was < 0.05% of mIL-6, whereas pMC5H and mIL-6 were equipotent. The loss of biological activity of pMC5 correlated with its negligible receptor binding affinity on 7TD1 cells, while the binding of pMC5H was comparable to that of mIL-6. Both pMC5 and pMC5H, like mIL-6, failed to interact with recombinant soluble human IL-6 receptor when assayed by surface plasmon resonance-based biosensor analysis. These studies suggest that the C-terminal seven amino acids of human IL-6, alone, do not define species specificity for receptor binding. A variety of biophysical techniques, as well as the binding of a conformational-specific monoclonal antibody, indicated that the global fold of the mIL-6 variants was similar to that of mIL-6, although small changes in the NMR spectra, particularly for pMC5, were observed. Some of these changes involved residues widely separated in the primary structure. For instance, interactions involving Tyr-22 were influenced by the C-terminal amino acids suggesting that the N- and C-termini of mIL-6 are in close proximity. Equilibrium unfolding experiments indicated that pMC5 was 0.8 kcal/mol less stable than mIL-6, whereas pMC5H was 1.4 kcal/mol more stable. These studies emphasize the structural importance of the C-terminal amino acids of IL-6 and suggest that truncation or mutation of this region could lead to small but significant alterations in other regions of the molecule. PMID:8401231

  6. Loops D, E and G in the Drosophila Dα1 subunit contribute to high neonicotinoid sensitivity of Dα1-chicken β2 nicotinic acetylcholine receptor.

    PubMed

    Ihara, Makoto; Hikida, Mai; Matsushita, Hiroyuki; Yamanaka, Kyosuke; Kishimoto, Yuya; Kubo, Kazuki; Watanabe, Shun; Sakamoto, Mifumi; Matsui, Koutaro; Yamaguchi, Akihiro; Okuhara, Daiki; Furutani, Shogo; Sattelle, David B; Matsuda, Kazuhiko

    2018-06-01

    Neonicotinoid insecticides interact with the orthosteric site formed at subunit interfaces of insect nicotinic ACh (nACh) receptors. However, their interactions with the orthosteric sites at α-non α and α-α subunit interfaces remain poorly understood. The aim of this study was to elucidate the mechanism of neonicotinoid actions using the Drosophila Dα1-chicken β2 hybrid nACh receptor. Computer models of the (Dα1) 3 (β2) 2 nACh receptor in complex with imidacloprid and thiacloprid were generated. Amino acids in the Dα1 subunit were mutated to corresponding amino acids in the human α4 subunit to examine their effects on the agonist actions of neonicotinoids on (Dα1) 3 (β2) 2 and (Dα1) 2 (β2) 3 nACh receptors expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology. The (Dα1) 3 (β2) 2 nACh receptor models indicated that amino acids in loops D, E and G probably determine the effects of neonicotinoids. The amino acid mutations tested had minimal effects on the EC 50 for ACh. However, the R57S mutation in loop G, although having minimal effect on imidacloprid's actions, reduced the affinity of thiacloprid for the (Dα1) 3 (β2) 2 nACh receptor, while scarcely affecting thiacloprid's action on the (Dα1) 2 (β2) 3 nACh receptor. Both the K140T and the combined R57S;K140T mutations reduced neonicotinoid efficacy but only for the (Dα1) 3 (β2) 2 nACh receptor. Combining the E78K mutation with the R57S;K140T mutations resulted in a selective reduction of thiacloprid's affinity for the (Dα1) 3 (β2) 2 nACh receptor. These findings suggest that a triangle of residues from loops D, E and G contribute to the selective actions of neonicotinoids on insect-vertebrate hybrid nACh receptors. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.

  7. Genetic variation of viral protein 1 genes of field strains of waterfowl parvoviruses and their attenuated derivatives.

    PubMed

    Tsai, Hsiang-Jung; Tseng, Chun-hsien; Chang, Poa-chun; Mei, Kai; Wang, Shih-Chi

    2004-09-01

    To understand the genetic variations between the field strains of waterfowl parvoviruses and their attenuated derivatives, we analyzed the complete nucleotide sequences of the viral protein 1 (VP1) genes of nine field strains and two vaccine strains of waterfowl parvoviruses. Sequence comparison of the VP1 proteins showed that these viruses could be divided into goose parvovirus (GPV) related and Muscovy duck parvovirus (MDPV) related groups. The amino acid difference between GPV- and MDPV-related groups ranged from 13.1% to 15.8%, and the most variable region resided in the N terminus of VP2. The vaccine strains of GPV and MDPV exhibited only 1.2% and 0.3% difference in amino acid when compared with their parental field strains, and most of these differences resided in residues 497-575 of VP1, suggesting that these residues might be important for the attenuation of GPV and MDPV. When the GPV strains isolated in 1982 (the strain 82-0308) and in 2001 (the strain 01-1001) were compared, only 0.3% difference in amino acid was found, while MDPV strains isolated in 1990 (the strain 90-0219) and 1997 (the strain 97-0104) showed only 0.4% difference in amino acid. The result indicates that the genome of waterfowl parvovirus had remained highly stable in the field.

  8. Identification of a Membrane Targeting and Degradation Signal in the p42 Protein of Influenza C Virus

    PubMed Central

    Pekosz, Andrew; Lamb, Robert A.

    2000-01-01

    Two mRNA species are derived from the influenza C virus RNA segment six, (i) a colinear transcript containing a 374-amino-acid residue open reading frame (referred to herein as the seg 6 ORF) which is translated to yield the p42 protein, and (ii) a spliced mRNA which encodes the influenza C virus matrix (CM1) protein consisting of the first 242 amino acids of p42. The p42 protein undergoes proteolytic cleavage at a consensus signal peptidase cleavage site after residue 259, yielding the p31 and CM2 proteins. Translocation of p42 into the endoplasmic reticulum membrane occurs cotranslationally and requires the hydrophobic internal signal peptide (residues 239 to 259), as well as the predicted transmembrane domain of CM2 (residues 285 to 308). The p31 protein was found to undergo rapid degradation after cleavage from p42. Addition of the 26S proteasome inhibitor lactacystin to influenza C virus-infected or seg 6 ORF cDNA-transfected cells drastically reduced p31 degradation. Transfer of the 17-residue C-terminal region of p31 to heterologous proteins resulted in their rapid turnover. The hydrophobic nature, but not the specific amino acid sequence of the 17-amino-acid C terminus of p31 appears to act as the signal for targeting the protein to membranes and for degradation. PMID:11044092

  9. Shark (Scyliorhinus torazame) metallothionein: cDNA cloning, genomic sequence, and expression analysis.

    PubMed

    Cho, Young Sun; Choi, Buyl Nim; Ha, En-Mi; Kim, Ki Hong; Kim, Sung Koo; Kim, Dong Soo; Nam, Yoon Kwon

    2005-01-01

    Novel metallothionein (MT) complementary DNA and genomic sequences were isolated from a cartilaginous shark species, Scyliorhinus torazame. The full-length open reading frame (ORF) of shark MT cDNA encoded 68 amino acids with a high cysteine content (29%). The genomic ORF sequence (932 bp) of shark MT isolated by polymerase chain reaction (PCR) comprised 3 exons with 2 interventing introns. Shark MT sequence shared many conserved features with other vertebrate MTs: overall amino acid identities of shark MT ranged from 47% to 57% with fish MTs, and 41% to 62% with mammalian MTs. However, in addition to these conserved characteristics, shark MT sequence exhibited some unique characteristics. It contained 4 extra amino acids (Lys-Ala-Gly-Arg) at the end of the beta-domain, which have not been reported in any other vertebrate MTs. The last amino acid residue at the C-terminus was Ser, which also has not been reported in fish and mammalian MTs. The MT messenger RNA levels in shark liver and kidney, assessed by semiquantitative reverse transcriptase PCR and RNA blot hybridization, were significantly affected by experimental exposures to heavy metals (cadmium, copper, and zinc). Generally, the transcriptional activation of shark MT gene was dependent on the dose (0-10 mg/kg body weight for injection and 0-20 microM for immersion) and duration (1-10 days); zinc was a more potent inducer than copper and cadmium.

  10. A Novel Topology of Proline-rich Transmembrane Protein 2 (PRRT2): HINTS FOR AN INTRACELLULAR FUNCTION AT THE SYNAPSE.

    PubMed

    Rossi, Pia; Sterlini, Bruno; Castroflorio, Enrico; Marte, Antonella; Onofri, Franco; Valtorta, Flavia; Maragliano, Luca; Corradi, Anna; Benfenati, Fabio

    2016-03-18

    Proline-rich transmembrane protein 2 (PRRT2) has been identified as the single causative gene for a group of paroxysmal syndromes of infancy, including epilepsy, paroxysmal movement disorders, and migraine. On the basis of topology predictions, PRRT2 has been assigned to the recently characterized family of Dispanins, whose members share the two-transmembrane domain topology with a large N terminus and short C terminus oriented toward the outside of the cell. Because PRRT2 plays a role at the synapse, it is important to confirm the exact orientation of its N and C termini with respect to the plasma membrane to get clues regarding its possible function. Using a combination of different experimental approaches, including live immunolabeling, immunogold electron microscopy, surface biotinylation and computational modeling, we demonstrate a novel topology for this protein. PRRT2 is a type II transmembrane protein in which only the second hydrophobic segment spans the plasma membrane, whereas the first one is associated with the internal surface of the membrane and forms a helix-loop-helix structure without crossing it. Most importantly, the large proline-rich N-terminal domain is not exposed to the extracellular space but is localized intracellularly, and only the short C terminus is extracellular (N cyt/C exo topology). Accordingly, we show that PRRT2 interacts with the Src homology 3 domain-bearing protein Intersectin 1, an intracellular protein involved in synaptic vesicle cycling. These findings will contribute to the clarification of the role of PRRT2 at the synapse and the understanding of pathogenic mechanisms on the basis of PRRT2-related neurological disorders. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. High-pressure EPR spectroscopy studies of the E. coli lipopolysaccharide transport proteins LptA and LptC.

    PubMed

    Schultz, Kathryn M; Klug, Candice S

    2017-12-01

    The use of pressure is an advantageous approach to the study of protein structure and dynamics because it can shift the equilibrium populations of protein conformations toward higher energy states that are not of sufficient population to be observable at atmospheric pressure. Recently, the Hubbell group at the University of California, Los Angeles, reintroduced the application of high pressure to the study of proteins by electron paramagnetic resonance (EPR) spectroscopy. This methodology is possible using X-band EPR spectroscopy due to advances in pressure intensifiers, sample cells, and resonators. In addition to the commercial availability of the pressure generation and sample cells by Pressure Biosciences Inc., a five-loop-four-gap resonator required for the initial high pressure EPR spectroscopy experiments by the Hubbell group, and those reported here, was designed by James S. Hyde and built and modified at the National Biomedical EPR Center. With these technological advances, we determined the effect of pressure on the essential periplasmic lipopolysaccharide (LPS) transport protein from Escherichia coli , LptA, and one of its binding partners, LptC. LptA unfolds from the N-terminus to the C-terminus, binding of LPS does not appreciably stabilize the protein under pressure, and monomeric LptA unfolds somewhat more readily than oligomeric LptA upon pressurization to 2 kbar. LptC exhibits a fold and relative lack of stability upon LPS binding similar to LptA, yet adopts an altered, likely monomeric, folded conformation under pressure with only its C-terminus unraveling. The pressure-induced changes likely correlate with functional changes associated with binding and transport of LPS.

  12. Contribution of the mu loop to the structure and function of rat glutathione transferase M1-1

    PubMed Central

    Hearne, Jennifer L.; Colman, Roberta F.

    2006-01-01

    The “mu loop,” an 11-residue loop spanning amino acid residues 33–43, is a characteristic structural feature of the mu class of glutathione transferases. To assess the contribution of the mu loop to the structure and function of rat GST M1-1, amino acid residues 35–44 (35GDAPDYDRSQ44) were excised by deletion mutagenesis, resulting in the “Deletion Enzyme.” Kinetic studies reveal that the Km values of the Deletion Enzyme are markedly increased compared with those of the wild-type enzyme: 32-fold for 1-chloro-2,4-dinitrobenzene, 99-fold for glutathione, and 880-fold for monobromobimane, while the Vmax value for each substrate is increased only modestly. Results from experiments probing the structure of the Deletion Enzyme, in comparison with that of the wild-type enzyme, suggest that the secondary and quaternary structures have not been appreciably perturbed. Thermostability studies indicate that the Deletion Enzyme is as stable as the wild-type enzyme at 4°C and 10°C, but it rapidly loses activity at 25°C, unlike the wild-type enzyme. In the temperature range of 4°C through 25°C, the loss of activity of the Deletion Enzyme is not the result of a change in its structure, as determined by circular dichroism spectroscopy and sedimentation equilibrium centrifugation. Collectively, these results indicate that the mu loop is not essential for GST M1-1 to maintain its structure nor is it required for the enzyme to retain some catalytic activity. However, it is an important determinant of the enzyme's affinity for its substrates. PMID:16672236

  13. Mapping the receptor site for alpha-scorpion toxins on a Na+ channel voltage sensor.

    PubMed

    Wang, Jinti; Yarov-Yarovoy, Vladimir; Kahn, Roy; Gordon, Dalia; Gurevitz, Michael; Scheuer, Todd; Catterall, William A

    2011-09-13

    The α-scorpions toxins bind to the resting state of Na(+) channels and inhibit fast inactivation by interaction with a receptor site formed by domains I and IV. Mutants T1560A, F1610A, and E1613A in domain IV had lower affinities for Leiurus quinquestriatus hebraeus toxin II (LqhII), and mutant E1613R had ~73-fold lower affinity. Toxin dissociation was accelerated by depolarization and increased by these mutations, whereas association rates at negative membrane potentials were not changed. These results indicate that Thr1560 in the S1-S2 loop, Phe1610 in the S3 segment, and Glu1613 in the S3-S4 loop in domain IV participate in toxin binding. T393A in the SS2-S6 loop in domain I also had lower affinity for LqhII, indicating that this extracellular loop may form a secondary component of the receptor site. Analysis with the Rosetta-Membrane algorithm resulted in a model of LqhII binding to the voltage sensor in a resting state, in which amino acid residues in an extracellular cleft formed by the S1-S2 and S3-S4 loops in domain IV interact with two faces of the wedge-shaped LqhII molecule. The conserved gating charges in the S4 segment are in an inward position and form ion pairs with negatively charged amino acid residues in the S2 and S3 segments of the voltage sensor. This model defines the structure of the resting state of a voltage sensor of Na(+) channels and reveals its mode of interaction with a gating modifier toxin.

  14. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding.

    PubMed

    Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I

    2001-05-01

    Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding.

  15. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding.

    PubMed Central

    Nakashima, T; Yao, M; Kawamura, S; Iwasaki, K; Kimura, M; Tanaka, I

    2001-01-01

    Ribosomal protein L5 is a 5S rRNA binding protein in the large subunit and plays an essential role in the promotion of a particular conformation of 5S rRNA. The crystal structure of the ribosomal protein L5 from Bacillus stearothermophilus has been determined at 1.8 A resolution. The molecule consists of a five-stranded antiparallel beta-sheet and four alpha-helices, which fold in a way that is topologically similar to the ribonucleoprotein (RNP) domain. The molecular shape and electrostatic representation suggest that the concave surface and loop regions are involved in 5S rRNA binding. To identify amino acid residues responsible for 5S rRNA binding, we made use of Ala-scanning mutagenesis of evolutionarily conserved amino acids occurring in the beta-strands and loop regions. The mutations of Asn37 at the beta1-strand and Gln63 at the loop between helix 2 and beta3-strand as well as that of Phe77 at the tip of the loop structure between the beta2- and beta3-strands caused a significant reduction in 5S rRNA binding. In addition, the mutations of Thr90 on the beta3-strand and Ile141 and Asp144 at the loop between beta4- and beta5-strands moderately reduced the 5S rRNA-binding affinity. Comparison of these results with the more recently analyzed structure of the 50S subunit from Haloarcula marismortui suggests that there are significant differences in the structure at N- and C-terminal regions and probably in the 5S rRNA binding. PMID:11350033

  16. Structure and function of ameloblastin as an extracellular matrix protein: adhesion, calcium binding, and CD63 interaction in human and mouse.

    PubMed

    Zhang, Xu; Diekwisch, Thomas G H; Luan, Xianghong

    2011-12-01

    The functional significance of extracellular matrix proteins in the life of vertebrates is underscored by a high level of sequence variability in tandem with a substantial degree of conservation in terms of cell-cell and cell-matrix adhesion interactions. Many extracellular matrix proteins feature multiple adhesion domains for successful attachment to substrates, such as integrin, CD63, and heparin. Here we have used homology and ab initio modeling algorithms to compare mouse ameloblastin (mAMBN) and human ameloblastin (hABMN) isoforms and to analyze their potential for cell adhesion and interaction with other matrix molecules as well as calcium binding. Sequence comparison between mAMBN and hAMBN revealed a 26-amino-acid deletion in mAMBN, corresponding to a helix-loop-helix frameshift. The human AMBN domain (174Q-201G), homologous to the mAMBN 157E-178I helix-loop-helix region, formed a helix-loop motif with an extended loop, suggesting a higher degree of flexibility of hAMBN compared with mAMBN, as confirmed by molecular dynamics simulation. Heparin-binding domains, CD63-interaction domains, and calcium-binding sites in both hAMBN and mAMBN support the concept of AMBN as an extracellular matrix protein. The high level of conservation between AMBN functional domains related to adhesion and differentiation was remarkable when compared with only 61% amino acid sequence homology. © 2011 Eur J Oral Sci.

  17. Human LINE-1 retrotransposition requires a metastable coiled coil and a positively charged N-terminus in L1ORF1p

    PubMed Central

    Khazina, Elena

    2018-01-01

    LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1 encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies. Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger meshworks and indicates critical novel steps in L1 retrotransposition. PMID:29565245

  18. The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses.

    PubMed

    Haigh, Cathryn L; Tumpach, Carolin; Drew, Simon C; Collins, Steven J

    2015-01-01

    Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response.

  19. The Prion Protein N1 and N2 Cleavage Fragments Bind to Phosphatidylserine and Phosphatidic Acid; Relevance to Stress-Protection Responses

    PubMed Central

    Haigh, Cathryn L.; Tumpach, Carolin; Drew, Simon C.; Collins, Steven J.

    2015-01-01

    Internal cleavage of the cellular prion protein generates two well characterised N-terminal fragments, N1 and N2. These fragments have been shown to bind to anionic phospholipids at low pH. We sought to investigate binding with other lipid moieties and queried how such interactions could be relevant to the cellular functions of these fragments. Both N1 and N2 bound phosphatidylserine (PS), as previously reported, and a further interaction with phosphatidic acid (PA) was also identified. The specificity of this interaction required the N-terminus, especially the proline motif within the basic amino acids at the N-terminus, together with the copper-binding region (unrelated to copper saturation). Previously, the fragments have been shown to be protective against cellular stresses. In the current study, serum deprivation was used to induce changes in the cellular lipid environment, including externalisation of plasma membrane PS and increased cellular levels of PA. When copper-saturated, N2 could reverse these changes, but N1 could not, suggesting that direct binding of N2 to cellular lipids may be part of the mechanism by which this peptide signals its protective response. PMID:26252007

  20. Peptide-controlled access to the interior surface of empty virus nanoparticles.

    PubMed

    Sainsbury, Frank; Saunders, Keith; Aljabali, Alaa A A; Evans, David J; Lomonossoff, George P

    2011-11-04

    The structure of Cowpea mosaic virus (CPMV) is known to high resolution, thereby enabling the rational use of the particles in diverse applications, from vaccine design to nanotechnology. A recently devised method for the production of empty virus-like particles (eVLPs) has opened up new possibilities for CPMV capsid-based technologies, such as internal mineralisation of the particle. We have investigated the role of the carboxyl (C) terminus of the small coat (S) protein in controlling access to the interior of CPMV eVLPs by determining the efficiency of internal mineralisation. The presence of the C-terminal 24-amino acid peptide of the S protein was found to inhibit internal mineralisation, an effect that could be eliminated by enzymatic removal of this region. We have also demonstrated the amenability of the C terminus to genetic modification. Substitution with six histidine residues generated stable particles and facilitated external mineralisation by cobalt. These findings demonstrate consistent internal and external mineralisation of CPMV, and will aid the further exploration and development of the use of eVLPs for bionanotechnological and medical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top