Sample records for loop bubble columns

  1. Influence of cross-sectional ratio of down comer to riser on the efficiency of liquid circulation in loop air lift bubble column

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tatsumi; Kawasaki, Hiroyuki; Mori, Hidetoshi

    2017-11-01

    Loop type bubble columns have good performance of liquid circulation and mass transfer by airlift effect, where the liquid circulation time is an important measurable characteristic parameter. This parameter is affected by the column construction, the aspect ratio of the column, the cross-sectional area ratio of down comer to riser (R), and the superficial gas velocity in the riser (UGR). In this work, the mean gas holdup and the liquid circulation time (TC) have been measured in four types of loop airlift type bubble column: concentric tube internal loop airlift type, rectangular internal loop airlift type, external loop airlift type, external loop airlift with separator. Air and tap water were used as gas and liquid phase, respectively. The results have demonstrated that the mean gas holdup in riser increases in proportion to UGR, and that it in downcomer changes according to the geometric parameters of each bubble column. TC has been found to conform to an empirical equation which depends on UGR and the length of draft tube or division plate in the region of 0.33 < R < 1.

  2. Scale up of fuel ethanol production from sugar beet juice using loofa sponge immobilized bioreactor.

    PubMed

    Ogbonna, J C; Mashima, H; Tanaka, H

    2001-01-01

    Production of fuel ethanol from sugar beet juice, using cells immobilized on loofa sponge was investigated. Based on ethanol productivity and ease of cell immobilization, a flocculating yeast strain, Saccharomyces cerevisiae IR2 was selected for ethanol production from sugar beet juice. It was found that raw sugar beet juice was an optimal substrate for ethanol production, requiring neither pH adjustment nor nitrogen source supplement. When compared with a 2 l bubble column bioreactor, mixing was not sufficient in an 8 l bioreactor containing a bed of sliced loofa sponges and consequently, the immobilized cells were not uniformly distributed within the bed. Most of the cells were immobilized in the lower part of the bed and this resulted in decreased ethanol productivity. By using an external loop bioreactor, constructing the fixed bed with cylindrical loofa sponges, dividing the bed into upper, middle and lower sections with approximately 1 cm spaces between them and circulating the broth through the loop during the immobilization, uniform cell distribution within the bed was achieved. Using this method, the system was scaled up to 50 l and when compared with the 2 l bubble column bioreactor, there were no significant differences (P > 0.05) in ethanol productivity and yield. By using external loop bioreactor to immobilize the cells uniformly on the loofa sponge beds, efficient large scale ethanol production systems can be constructed.

  3. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE PAGES

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon; ...

    2017-05-06

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  4. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez-Alvarado, Freddy; Kalaga, Dinesh V.; Turney, Damon

    Micro-bubbles dispersed in bubble column reactors have received great interest in recent years, due to their small size, stability, high gas-liquid interfacial area concentrations and longer residence times. The high gas-liquid interfacial area concentrations lead to high mass transfer rates compared to conventional bubble column reactors. In the present work, experiments have been performed in a down-flow bubble column reactor with micro-bubbles generated and dispersed by a novel mechanism to determine the gas-liquid interfacial area concentrations by measuring the void fraction and bubble size distributions. Gamma-ray densitometry has been employed to determine the axial and radial distributions of void fractionmore » and a high speed camera equipped with a borescope is used to measure the axial and radial variations of bubble sizes. Also, the effects of superficial gas and liquid velocities on the two-phase flow characteristics have been investigated. Further, reconstruction techniques of the radial void fraction profiles from the gamma densitometry's chordal measurements are discussed and compared for a bubble column reactor with dispersed micro-bubbles. The results demonstrate that the new bubble generation technique offers high interfacial area concentrations (1,000 to 4,500 m 2/m 3) with sub-millimeter bubbles (500 to 900 µm) and high overall void fractions (10% – 60%) in comparison with previous bubble column reactor designs. The void fraction data was analyzed using slip velocity model and empirical correlation has been proposed to predict the Sauter mean bubble diameter.« less

  5. Bubble Shuttle: A newly discovered transport mechanism, which transfers microorganisms from the sediment into the water column

    NASA Astrophysics Data System (ADS)

    Schmale, O.; Stolle, C.; Leifer, I.; Schneider von Deimling, J.; Kiesslich, K.; Krause, S.; Frahm, A.; Treude, T.

    2013-12-01

    The diversity and abundance of methanotrophic microorganisms is well studied in the aquatic environment, indicating their importance in biogeochemical cycling of methane in the sediment and the water column. However, whether methanotrophs are distinct populations in these habitats or are exchanged between benthic and pelagic environments, remains an open question. Therefore, field studies were conducted at the 'Rostocker Seep' site (Coal Oil Point seep area, California, USA) to test our hypothesis that methane-oxidizing microorganisms can be transported by gas bubbles from the sediment into the water column. The natural methane emanating location 'Rostocker Seep' showed a strong surface water oversaturation in methane with respect to the atmospheric equilibrium. Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) analyzes were performed to determine the abundance of aerobic and anaerobic methanotrophic microorganisms. Aerobic methane oxidizing bacteria were detected in the sediment and the water column, whereas anaerobic methanotrophs were detected exclusively in the sediment. The key device of the project was the newly developed "Bubble Catcher" used to collect naturally emanating gas bubbles at the sea floor together with particles attached to the bubble surface rim. Bubble Catcher experiments were carried out directly above a natural bubble release spot and on a reference site at which artificially released gas bubbles were caught, which had no contact with the sediment. CARD-FISH analyzes showed that aerobic methane oxidizing bacteria were transported by gas bubbles from the sediment into the water column. In contrast anaerobic methanotrophs were not detected in the bubble catcher. Further results indicate that this newly discovered Bubble Shuttle transport mechanism might influence the distribution pattern of methanotrophic microorganisms in the water column and even at the air-sea interface. Methane seep areas are often characterized by an elevated abundance of methane-oxidizing microorganisms, which consume a considerable amount of methane before it escapes into the atmosphere. Based on our study we hypothesize that the Bubble Shuttle transport mechanism contributes to this pelagic methane sink by a sediment-water column transfer of methane oxidizing microorganisms. Furthermore, this Bubble Shuttle may influence the methanotrophic community in the water column after massive short-term submarine inputs of methane (e.g. release of methane from bore holes). Especially in deep-sea regions, where the abundance of methane oxidizing microorganisms in the water column is low in general, Bubble Shuttle may inject a relevant amount of methane oxidizing microorganisms into the water column during massive inputs, supporting indirectly the turnover of this greenhouse active trace gas in the submarine environment.

  6. Bubble Size Distribution in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  7. Influence of mass transfer on the ozonation of wastewater from the glass fiber industry.

    PubMed

    Byun, S; Cho, S H; Yoon, J; Geissen, S U; Vogelpohl, A; Kim, S M

    2004-01-01

    The mass transfer rate (kLa) is one of the most important parameters in the ozonation of wastewater, because it frequently constitutes the rate-determining step. This study investigated the influence of kLa on the ozonation of glass fiber wastewater using a high-performance jet loop reactor (HJLR), which is well known for its high mass transfer property, and compared the results of this investigation with those obtained using the bubble column reactor. It was found that the higher kLa achieved by increasing the energy input did not lead to higher ozonation efficiency, since the reaction involving the OH radical was greatly hindered at the low pH produced as a result of ozonation. By maintaining the pH at a value greater than 8.0, the higher kLa in the HJLR reactor contributed to increasing not only the TOC removal of wastewater, but also the ozone consumption efficiency, as expressed by the specific ozone consumption. The specific ozone consumption in the HJLR reactor (7.1 g ozone/ g TOC) was 20% better than that in the bubble column reactor.

  8. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  9. Chaotic bubbling and nonstagnant foams.

    PubMed

    Tufaile, Alberto; Sartorelli, José Carlos; Jeandet, Philippe; Liger-Belair, Gerard

    2007-06-01

    We present an experimental investigation of the agglomeration of bubbles obtained from a nozzle working in different bubbling regimes. This experiment consists of a continuous production of bubbles from a nozzle at the bottom of a liquid column, and these bubbles create a two-dimensional (2D) foam (or a bubble raft) at the top of this column. The bubbles can assemble in various dynamically stable arrangement, forming different kinds of foams in a liquid mixture of water and glycerol, with the effect that the bubble formation regimes influence the foam obtained from this agglomeration of bubbles. The average number of bubbles in the foam is related to the bubble formation frequency and the bubble mean lifetime. The periodic bubbling can generate regular or irregular foam, while a chaotic bubbling only generates irregular foam.

  10. A parallel bubble column system for the cultivation of phototrophic microorganisms.

    PubMed

    Havel, Jan; Franco-Lara, Ezequiel; Weuster-Botz, Dirk

    2008-07-01

    An incubator with up to 16 parallel bubble columns was equipped with artificial light sources assuring a light supply with a homogenous light spectrum directly above the bioreactors. Cylindrical light reflecting tubes were positioned around every single bubble column to avoid light scattering effects and to redirect the light from the top onto the cylindrical outer glass surface of each bubble column. The light reflecting tubes were equipped with light intensity filters to control the total light intensity for every single photo-bioreactor. Parallel cultivations of the unicellular obligate phototrophic cyanobacterium, Synechococcus PCC7942, were studied under different constant light intensities ranging from 20 to 102 microE m(-2)s(-1) at a constant humidified air flow rate supplemented with CO(2).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less

  12. Characterizing fluid dynamics in a bubble column aimed for the determination of reactive mass transfer

    NASA Astrophysics Data System (ADS)

    Kováts, Péter; Thévenin, Dominique; Zähringer, Katharina

    2018-02-01

    Bubble column reactors are multiphase reactors that are used in many process engineering applications. In these reactors a gas phase comes into contact with a fluid phase to initiate or support reactions. The transport process from the gas to the liquid phase is often the limiting factor. Characterizing this process is therefore essential for the optimization of multiphase reactors. For a better understanding of the transfer mechanisms and subsequent chemical reactions, a laboratory-scale bubble column reactor was investigated. First, to characterize the flow field in the reactor, two different methods have been applied. The shadowgraphy technique is used for the characterisation of the bubbles (bubble diameter, velocity, shape or position) for various process conditions. This technique is based on particle recognition with backlight illumination, combined with particle tracking velocimetry (PTV). The bubble trajectories in the column can also be obtained in this manner. Secondly, the liquid phase flow has been analysed by particle image velocimetry (PIV). The combination of both methods, delivering relevant information concerning disperse (bubbles) and continuous (liquid) phases, leads to a complete fluid dynamical characterization of the reactor, which is the pre-condition for the analysis of mass transfer between both phases.

  13. Methane gas seepage - Disregard of significant water column filter processes?

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the basis for a follow up research scheduled for August 2016 with the R/V POSEIDON with the aim to better constrain their mechanisms and to quantify their overall importance.

  14. INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW OF COLUMN TOPS. CARBON DIOXIDE BUBBLED THROUGH AMMONIONATED SALT BRINE TO MAKE BICARBONATE OF SODA. - Solvay Process Company, SA Wetside Building, Between Willis & Milton Avenue, Solvay, Onondaga County, NY

  15. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  16. Strings in bubbling geometries and dual Wilson loop correlators

    NASA Astrophysics Data System (ADS)

    Aguilera-Damia, Jeremías; Correa, Diego H.; Fucito, Francesco; Giraldo-Rivera, Victor I.; Morales, Jose F.; Pando Zayas, Leopoldo A.

    2017-12-01

    We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU( N) gauge group in N=4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry, explicitly. We also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a "small" one in the fundamental, totally symmetric or totally antisymmetric representation.

  17. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    DOE PAGES

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...

    2016-11-15

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 10 6 to 10 12 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structuremore » around the bubble.« less

  18. Improved virus inactivation using a hot bubble column evaporator (HBCE).

    PubMed

    Sanchis, Adrian Garrido; Shahid, Muhammad; Pashley, R M

    2018-05-01

    An improved hot bubble column evaporator (HBCE) was used to study virus inactivation rates using hot bubble-virus interactions in two different conditions: (1) using the bubble coalescence inhibition phenomenon of monovalent electrolytes and (2) with reducing the electrostatic repulsive forces between virus and bubble, by the addition of divalent electrolytes. It is shown that the continuous flow of (dry) air, even at 150-250 °C, only heats the aqueous solution in the bubble column to about 45°-55 °C and it was also established that viruses are not significantly affected by even long term exposure to this solution temperature, as confirmed separately from water bath experiments. Hence, the effects observed appeared to be caused entirely by collisions between the hot air bubbles and the virus organisms. It was also established that the use of high air inlet temperatures, for short periods of time, can reduce the thermal energy requirement to only about 25% (about 114 kJ/L) of that required for boiling (about 450 kJ/L). Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Strings in bubbling geometries and dual Wilson loop correlators

    DOE PAGES

    Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco; ...

    2017-12-20

    We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less

  20. Strings in bubbling geometries and dual Wilson loop correlators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguilera-Damia, Jeremias; Correa, Diego H.; Fucito, Francesco

    We consider a fundamental string in a bubbling geometry of arbitrary genus dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N) gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild conditions, that the minimum value of the string classical action for a bubbling geometry of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental representation and one in a general large representation. We work out the case in which the large representation is given by a rectangular Young tableau, corresponding to a genus one bubbling geometry,more » explicitly. Lastly, we also present explicit results in the field theory for a correlator of two Wilson loops: a large one in an arbitrary representation and a “small” one in the fundamental, totally symmetric or totally antisymmetric representation.« less

  1. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Papenberg, C.

    2011-07-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. However, up to the present, the extremely high data rate hampers water column backscatter investigations. More sophisticated visualization and processing techniques for water column backscatter analysis are still under development. We here present such water column backscattering data gathered with a 50 kHz prototype multibeam system. Water column backscattering data is presented in videoframes grabbed over 75 s and a "re-sorted" singlebeam presentation. Thus individual gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images and rise velocities can be determined. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. It applies a cross-correlation technique similar to that used in Particle Imaging Velocimetry (PIV) to the acoustic backscatter images. Tempo-spatial drift patterns of the bubbles are assessed and match very well measured and theoretical rise patterns. The application of this processing scheme to our field data gives impressive results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main driver for misinterpretations, i.e. fish-mediated echoes. Even though image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, this technique was never applied in the proposed sense for an acoustic bubble detector.

  2. Acoustic observations of gas bubble streams in the NW Black Sea as a method for estimation of gas flux from vent sites

    NASA Astrophysics Data System (ADS)

    Artemov, Yu. G.

    2003-04-01

    Relatively recent discovery of the natural CH_4 gas seepage from the sea bed had action upon the philosophy of CH_4 contribution to global budgets. So far as numerous gas vent sites are known, an acceptable method for released gas quantification is required. In particular, the questions should be answered as follows: 1) how much amount of gas comes into the water column due to a certain bubble stream, 2) how much amount of gas comes into the water column due to a certain seepage area of the see floor, 3) how much amount of gas diffuses into the water and how much gas phase enters the atmosphere. Echo-sounder is the habitual equipment for detecting gas plumes (flares) in the water column. To provide observations of gas seeps with bubbles tracking, single target and volume backscattering strength measurements, we use installed on board the R/V "Professor Vodyanitskiy" dual frequency (38 and 120 kHz) split-beam scientific echo-sounder SIMRAD EK-500. Dedicated software is developed to extract from the raw echo data and to handle the definite information for analyses of gas bubble streams features. This improved hydroacoustic techniques allows to determine gas bubbles size spectrum at different depths through the water column as well as rise velocity of bubbles of different sizes. For instance, bubble of 4.5 mm diameter has rising speed of 25.8 cm/sec at 105 m depth, while bubble of 1.7 mm diameter has rising speed of 16.3 cm/sec at 32 m depth. Using volume backscattering measurements in addition, it is possible to evaluate flux of the gas phase produced by methane bubble streams and to learn of its fate in the water column. Ranking of various gas plumes by flux rate value is available also. In this presentation results of acoustic observations at the shallow NW Black Sea seepage area are given.

  3. Feasibility of self-structured current accessed bubble devices in spacecraft recording systems

    NASA Technical Reports Server (NTRS)

    Nelson, G. L.; Krahn, D. R.; Dean, R. H.; Paul, M. C.; Lo, D. S.; Amundsen, D. L.; Stein, G. A.

    1985-01-01

    The self-structured, current aperture approach to magnetic bubble memory is described. Key results include: (1) demonstration that self-structured bubbles (a lattice of strongly interacting bubbles) will slip by one another in a storage loop at spacings of 2.5 bubble diameters, (2) the ability of self-structured bubbles to move past international fabrication defects (missing apertures) in the propagation conductors (defeat tolerance), and (3) moving bubbles at mobility limited speeds. Milled barriers in the epitaxial garnet are discussed for containment of the bubble lattice. Experimental work on input/output tracks, storage loops, gates, generators, and magneto-resistive detectors for a prototype device are discussed. Potential final device architectures are described with modeling of power consumption, data rates, and access times. Appendices compare the self-structured bubble memory from the device and system perspectives with other non-volatile memory technologies.

  4. Models and observations of foam coverage and bubble content in the surf zone

    NASA Astrophysics Data System (ADS)

    Kirby, J. T.; Shi, F.; Holman, R. A.

    2010-12-01

    Optical and acoustical observations and communications are hampered in the nearshore by the presence of bubbles and foam generated by breaking waves. Bubble clouds in the water column provide a highly variable (both spatially and temporally) obstacle to direct acoustic and optical paths. Persistent foam riding on the water surface creates a primary occlusion of optical penetration into the water column. In an effort to better understand and predict the level of bubble and foam content in the surfzone, we have been pursuing the development of a detailed phase resolved model of fluid and gaseous components of the water column, using a Navier-Stokes/VOF formulation extended to include a multiphase description of polydisperse bubble populations. This sort of modeling provides a detailed description of large scale turbulent structures and associated bubble transport mechanisms under breaking wave crests. The modeling technique is too computationally intensive, however, to provide a wider-scale description of large surfzone regions. In order to approach the larger scale problem, we are developing a model for spatial and temporal distribution of foam and bubbles within the framework of a Boussinesq model. The basic numerical framework for the code is described by Shi et al (2010, this conference). Bubble effects are incorporated both in the mass and momentum balances for weakly dispersive, fully nonlinear waves, with spatial and temporal bubble distributions parameterized based on the VOF modeling and measurements and tied to the computed rate of dissipation of energy during breaking. A model of a foam layer on the water surface is specified using a shallow water formulation. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The foam layer motion in the plane of the water surface arises due to a balance of drag forces due to wind and water column motion. Preliminary steps to calibrate and verify the resulting models will be taken based on results to be collected during the Surf Zone Optics experiment at Duck, NC in September 2010. Initial efforts will focus on an examination of breaking wave patterns and persistent foam distributions, using ARGUS imagery.

  5. Effect of polymer additives on hydrodynamics and oxygen transfer in a bubble column bioreactor.

    PubMed

    Kawase, Y

    1993-01-01

    The influence of polymer additives (polyethylene oxide and polyacrylamide) on the hydrodynamics and oxygen transfer in a bubble column bioreactor was examined. The addition of small amounts of these polymers has been known to cause significant drag reduction in turbulent flow circumstances. The gas hold-up was slightly decreased and the liquid-phase mixing was somewhat enhanced due to the addition of the polymers. The addition of polymer additives brought about a reduction of the volumetric oxygen transfer coefficient by about 40%. In dilute polymer solutions, large bubbles formed by bubble coalescence moved with high rise velocities in the presence of many small bubbles and the bubble size distributions were less uniform compared with those in water. The complicated changes in bubble hydrodynamic characteristics were examined to give possible explanations for oxygen transfer reduction.

  6. Enhancing Photon Utilization Efficiency for Astaxanthin Production from Haematococcus lacustris Using a Split-Column Photobioreactor.

    PubMed

    Kim, Z-Hun; Park, Hanwool; Lee, Ho-Sang; Lee, Choul-Gyun

    2016-07-28

    A split-column photobioreactor (SC-PBR), consisting of two bubble columns with different sizes, was developed to enhance the photon utilization efficiency in an astaxanthin production process from Haematococcus lacustris. Among the two columns, only the smaller column of SC-PBR was illuminated. Astaxanthin productivities and photon efficiencies of the SC-PBRs were compared with a standard bubble-column PBR (BC-PBR). Astaxanthin productivity of SC-PBR was improved by 28%, and the photon utilization efficiencies were 28-366% higher than the original BC-PBR. The results clearly show that the effective light regime of SC-PBR could enhance the production of astaxanthin.

  7. Study on bubble column humidification and dehumidification system for coal mine wastewater treatment.

    PubMed

    Gao, Penghui; Zhang, Meng; Du, Yuji; Cheng, Bo; Zhang, Donghai

    2018-04-01

    Water is important resource for human survival and development. Coal mine wastewater (CMW) is a byproduct of the process of coal mining, which is about 7.0 × 10 10 m 3 in China in 2016. Considering coal mine wastewater includes different ingredients, a new bubble column humidification and dehumidification system is proposed for CMW treatment. The system is mainly composed of a bubble column humidification and dehumidification unit, solar collector, fan and water tank, in which air is used as a circulating medium. The system can avoid water treatment component blocking for reverse osmosis (RO) and multi effect distillation (MED) dealing with CMW, and produce water greenly. By analysis of heat and mass transfer, the effects of solar radiation, air bubble velocity and mine water temperature on water treatment production characteristics are studied. Compared with other methods, thermal energy consumption (TEC) of bubble column humidification and dehumidification (BCHD) is moderate, which is about 700 kJ/kg (powered by solar energy). The results would provide a new method for CMW treatment and insights into the efficient coal wastewater treatment, besides, it helps to identify the parameters for the technology development in mine water treatment.

  8. Quantification of Methane Gas Flux and Bubble Fate on the Eastern Siberian Arctic Shelf Utilizing Calibrated Split-beam Echosounder Data.

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Mayer, L. A.; Weber, T. C.; Jerram, K.; Jakobsson, M.; Chernykh, D.; Ananiev, R.; Mohammad, R.; Semiletov, I. P.

    2016-12-01

    On the Eastern Siberian Arctic Shelf (ESAS) subsea permafrost, shallow gas hydrates, and trapped free gas hold an estimated 1400 Gt of methane. Recent observations of methane bubble plumes and high concentrations of dissolved methane in the water column indicate methane release via ebullition. Methane gas released from the shallow ESAS (<50 m average depth) has high potential to be transported to the atmosphere. To directly and quantitatively address the magnitude of methane flux and the fate of rising bubbles in the ESAS, methane seeps were mapped with a broadband split-beam echosounder as part of the Swedish-Russian-US Arctic Ocean Investigation of Climate-Cryosphere-Carbon Interactions program (SWERUS-C3). Acoustic measurements were made over a broad range of frequencies (16 to 29 kHz). The broad bandwidth provided excellent discrimination of individual targets in the water column, allowing for the identification of single bubbles. Absolute bubble target strength values were determined by compensating apparent target strength measurements for beam pattern effects via standard calibration techniques. The bubble size distribution of seeps with individual bubble signatures was determined by exploiting bubble target strength models over the broad range of frequencies. For denser seeps, with potential higher methane flux, bubble size distribution was determined via extrapolation from seeps in similar geomorphological settings. By coupling bubble size distributions with rise velocity measurements, which are made possible by split-beam target tracking, methane gas flux can be estimated. Of the 56 identified seeps in the SWERUS data set, individual bubbles scatterers were identified in more than half (31) of the seeps. Preliminary bubble size distribution results indicate bubble radii range from 0.75 to 3.0 mm, with relatively constant bubble size distribution throughout the water column. Initial rise velocity observations indicate bubble rise velocity increases with decreasing depth, seemingly independent of bubble radius.

  9. Effects of Particle Size and Bubble Characteristics on Transport of Micro- and Nano-Bubbles in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Nihei, N.; Ueda, Y.; Moldrup, P.; Nishimura, T.

    2016-12-01

    The micro- and nano-bubbles (MNBs) have considerable potentials for the remediation of soil contaminated by organic compounds when used in conjunction with bioremediation technology. Understanding a transport mechanism of MNBs in soils is essential to optimize remediation techniques using MNBs. In this study, column transport experiments using glass beads with different size fractions (average particles size: 0.1 mm and 0.4 mm) were conducted, where MNBs created by oxygen gas were injected to the column with different flow rates. Effects of particle size and bubble characteristics on MNB transport in porous media were investigated based on the column experiments. The results showed that attachments of MNBs were enhanced under lower flow rate. Under higher flow rate condition, there were not significant differences of MNBs transport in porous media with different particle size. A convection-dispersion model including bubble attachment, detachment, and straining terms was applied to the obtained breakthrough curves for each experiment, showing good fitness against the measured data. Further investigations will be conducted to understand bubble characteristics including bubble size and zeta potential on MNB transport in porous media. Relations between in model parameters in the transport model and physical and chemical properties in porous media and MNBs will be discussed.

  10. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishna, R.; Baten, J.M. van

    About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions.more » The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.« less

  11. Removal of dichloromethane from waste gas streams using a hybrid bubble column/biofilter bioreactor

    PubMed Central

    2014-01-01

    The performance of a hybrid bubble column/biofilter (HBCB) bioreactor for the removal of dichloromethane (DCM) from waste gas streams was studied in continuous mode for several months. The HBCB bioreactor consisted of two compartments: bubble column bioreactor removing DCM from liquid phase and biofilter removing DCM from gas phase. Effect of inlet DCM concentration on the elimination capacity was examined in the DCM concentration range of 34–359 ppm with loading rates ranged from 2.2 to 22.8 g/m3.h and constant total empty bed retention time (EBRT) of 200 s. In the equal loading rates, the elimination capacity and removal efficiency of the biofilter were higher than the corresponding values of the bubble column bioreactor. The maximum elimination capacity of the HBCB bioreactor was determined to be 15.7 g/m3.h occurred in the highest loading rate of 22.8 g/m3.h with removal efficiency of 69%. The overall mineralization portion of the HBCB bioreactor was in the range of 72-79%. The mixed liquor acidic pH especially below 5.5 inhibited microbial activity and decreased the elimination capacity. Inhibitory effect of high ionic strength was initiated in the mixed liquor electrical conductivity of 12.2 mS/cm. This study indicated that the HBCB bioreactor could benefit from advantages of both bubble column and biofilter reactors and could remove DCM from waste gas streams in a better manner. PMID:24406056

  12. Close-up view of sugar crystals in a water bubble within a metal loop on Expedition Six

    NASA Image and Video Library

    2003-03-15

    ISS006-E-39299 (15 March 2003) --- A close up view of sugar crystals in a water bubble within a 50-millimeter (mm) metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  13. Controlling the trajectories of bubble trains at a microfluidic junction

    NASA Astrophysics Data System (ADS)

    Parthiban, Pravien; Khan, Saif

    2011-11-01

    The increasing number of applications facilitated by digital microfluidic flows has resulted in a sustained interest in not only understanding the diverse, interesting and often complex dynamics associated with such flows in microchannel networks but also in developing facile strategies to control them. We find that there are readily accessible flow speeds wherein resistance to flow in microchannels decreases with an increase in the number of confined bubbles present, and exploit this intriguing phenomenon to sort all bubble of a train exclusively into one of the arms of a nominally symmetric microfluidic loop. We also demonstrate how the arm into which the train filters into can be chosen by applying a temporary external stimulus by means of an additional flow of the continuous liquid into one the arms of the loop. Furthermore, we show how by tuning the magnitude and period of this temporary stimulus we can switch controllably, the traffic of bubbles between both arms of the loop even when the loop is asymmetric. The results of this work should aid in developing viable methods to regulate traffic of digital flows in microfluidic networks.

  14. Dynamic morphology of gas hydrate on a methane bubble in water: Observations and new insights for hydrate film models

    NASA Astrophysics Data System (ADS)

    Warzinski, Robert P.; Lynn, Ronald; Haljasmaa, Igor; Leifer, Ira; Shaffer, Frank; Anderson, Brian J.; Levine, Jonathan S.

    2014-10-01

    Predicting the fate of subsea hydrocarbon gases escaping into seawater is complicated by potential formation of hydrate on rising bubbles that can enhance their survival in the water column, allowing gas to reach shallower depths and the atmosphere. The precise nature and influence of hydrate coatings on bubble hydrodynamics and dissolution is largely unknown. Here we present high-definition, experimental observations of complex surficial mechanisms governing methane bubble hydrate formation and dissociation during transit of a simulated oceanic water column that reveal a temporal progression of deep-sea controlling mechanisms. Synergistic feedbacks between bubble hydrodynamics, hydrate morphology, and coverage characteristics were discovered. Morphological changes on the bubble surface appear analogous to macroscale, sea ice processes, presenting new mechanistic insights. An inverse linear relationship between hydrate coverage and bubble dissolution rate is indicated. Understanding and incorporating these phenomena into bubble and bubble plume models will be necessary to accurately predict global greenhouse gas budgets for warming ocean scenarios and hydrocarbon transport from anthropogenic or natural deep-sea eruptions.

  15. Metabolic modeling of synthesis gas fermentation in bubble column reactors.

    PubMed

    Chen, Jin; Gomez, Jose A; Höffner, Kai; Barton, Paul I; Henson, Michael A

    2015-01-01

    A promising route to renewable liquid fuels and chemicals is the fermentation of synthesis gas (syngas) streams to synthesize desired products such as ethanol and 2,3-butanediol. While commercial development of syngas fermentation technology is underway, an unmet need is the development of integrated metabolic and transport models for industrially relevant syngas bubble column reactors. We developed and evaluated a spatiotemporal metabolic model for bubble column reactors with the syngas fermenting bacterium Clostridium ljungdahlii as the microbial catalyst. Our modeling approach involved combining a genome-scale reconstruction of C. ljungdahlii metabolism with multiphase transport equations that govern convective and dispersive processes within the spatially varying column. The reactor model was spatially discretized to yield a large set of ordinary differential equations (ODEs) in time with embedded linear programs (LPs) and solved using the MATLAB based code DFBAlab. Simulations were performed to analyze the effects of important process and cellular parameters on key measures of reactor performance including ethanol titer, ethanol-to-acetate ratio, and CO and H2 conversions. Our computational study demonstrated that mathematical modeling provides a complementary tool to experimentation for understanding, predicting, and optimizing syngas fermentation reactors. These model predictions could guide future cellular and process engineering efforts aimed at alleviating bottlenecks to biochemical production in syngas bubble column reactors.

  16. Degradation of trichloroethylene by photocatalysis in an internally circulating slurry bubble column reactor.

    PubMed

    Jeon, Jin Hee; Kim, Sang Done; Lim, Tak Hyoung; Lee, Dong Hyun

    2005-08-01

    The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID x 0.85 m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2 wt%. The stripping fraction of TCE by air flow increases but photodegradation fraction of TCE decreases with increasing the initial TCE concentration, recirculating liquid flow rate and gas velocity. The average removal efficiency of TCE is found to be approximately 97% in an internally circulating slurry bubble column reactor.

  17. Unit operations for gas-liquid mass transfer in reduced gravity environments

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Allen, David T.

    1992-01-01

    Basic scaling rules are derived for converting Earth-based designs of mass transfer equipment into designs for a reduced gravity environment. Three types of gas-liquid mass transfer operations are considered: bubble columns, spray towers, and packed columns. Application of the scaling rules reveals that the height of a bubble column in lunar- and Mars-based operations would be lower than terrestrial designs by factors of 0.64 and 0.79 respectively. The reduced gravity columns would have greater cross-sectional areas, however, by factors of 2.4 and 1.6 for lunar and Martian settings. Similar results were obtained for spray towers. In contract, packed column height was found to be nearly independent of gravity.

  18. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    NASA Astrophysics Data System (ADS)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  19. Regeneration of barium carbonate from barium sulphide in a pilot-scale bubbling column reactor and utilization for acid mine drainage.

    PubMed

    Mulopo, J; Zvimba, J N; Swanepoel, H; Bologo, L T; Maree, J

    2012-01-01

    Batch regeneration of barium carbonate (BaCO(3)) from barium sulphide (BaS) slurries by passing CO(2) gas into a pilot-scale bubbling column reactor under ambient conditions was used to assess the technical feasibility of BaCO(3) recovery in the Alkali Barium Calcium (ABC) desalination process and its use for sulphate removal from high sulphate Acid Mine Drainage (AMD). The effect of key process parameters, such as BaS slurry concentration and CO(2) flow rate on the carbonation, as well as the extent of sulphate removal from AMD using the recovered BaCO(3) were investigated. It was observed that the carbonation reaction rate for BaCO(3) regeneration in a bubbling column reactor significantly increased with increase in carbon dioxide (CO(2)) flow rate whereas the BaS slurry content within the range 5-10% slurry content did not significantly affect the carbonation rate. The CO(2) flow rate also had an impact on the BaCO(3) morphology. The BaCO(3) recovered from the pilot-scale bubbling column reactor demonstrated effective sulphate removal ability during AMD treatment compared with commercial BaCO(3).

  20. Heat transfer in three-phase fluidization and bubble-columns with high gas holdups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.; Kusakabe, K.; Fan, L.S.

    1993-08-01

    Bubble column and three-phase fluidized bed reactors have wide applications in biotechnological and petroleum processes (Deckwer, 1985; Fan, 1989). In such biotechnological processes as fermentation and waste water treatment, small bubbles of oxygen and/or nitrogen are introduced in the column to enhance oxygen transfer and to ensure the stability of immobilized cell particles. In addition, tiny bubbles are produced during the biological process due to the production of surface active compounds. The presence of these small bubbles causes an increase in the gas holdup of the system. High gas holdups are also characteristics of industrial processes such as coal liquefactionmore » and hydrotreating of residual oils. Good understanding of the transport properties of three-phase fluidized beds with high gas holdups is essential to the design, control and optimum operations of the commercial reactors employed in the above-mentioned processes. Heat-transfer studies in three-phase fluidized beds have been reviewed recently by Kim and Laurent (1991). Past studies focused primarily on the measurements of time-averaged heat transfer from the column wall to bed (Chiu and Ziegler 1983; Muroyama et al., 1986) or on immersed heating objects to bed (Baker et al., 1978; Kato et al., 1984) in aqueous systems. Recently, Kumar et al. (1992) provided a mechanistic understanding of the heat transfer in bubbly-liquid and liquid-solid systems. The purpose of this work is to investigate the heat transfer in a three-phase fluidized bed under high gas holdup conditions. The associated hydrodynamic behavior of the system is also studied.« less

  1. Membrane-Based Gas Traps for Ammonia, Freon-21, and Water Systems to Simplify Ground Processing

    NASA Technical Reports Server (NTRS)

    Ritchie, Stephen M. C.

    2003-01-01

    Gas traps are critical for the smooth operation of coolant loops because gas bubbles can cause loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and blockage of passages to remote systems. Coolant loops are ubiquitous in space flight hardware, and thus there is a great need for this technology. Conventional gas traps will not function in micro-gravity due to the absence of buoyancy forces. Therefore, clever designs that make use of adhesion and momentum are required for adequate separation, preferable in a single pass. The gas traps currently used in water coolant loops on the International Space Station are composed of membrane tube sets in a shell. Each tube set is composed of a hydrophilic membrane (used for water transport and capture of bubbles) and a hydrophobic membrane (used for venting of air bubbles). For the hydrophilic membrane, there are two critical pressures, the pressure drop and the bubble pressure. The pressure drop is the decrease in system pressure across the gas trap. The bubble pressure is the pressure required for air bubbles to pass across the water filled membrane. A significant difference between these pressures is needed to ensure complete capture of air bubbles in a single pass. Bubbles trapped by the device adsorb on the hydrophobic membrane in the interior of the hydrophilic membrane tube. After adsorption, the air is vented due to a pressure drop of approximately 1 atmosphere across the membrane. For water systems, the air is vented to the ambient (cabin). Because water vapor can also transport across the hydrophobic membrane, it is critical that a minimum surface area is used to avoid excessive water loss (would like to have a closed loop for the coolant). The currently used gas traps only provide a difference in pressure drop and bubble pressure of 3-4 psid. This makes the gas traps susceptible to failure at high bubble loading and if gas venting is impaired. One mechanism for the latter is when particles adhere to the hydrophobic membrane, promoting formation of a water layer about it that can blind the membrane for gas transport (Figure 1). This mechanism is the most probable cause for observed failures with the existing design. The objective of this project was to devise a strategy for choosing new membrane materials (database development and procedure), redesign of the gas trap to mitigate blinding effects, and to develop a design that can be used in ammonia and Freon-21 coolant loops.

  2. Determining the Enthalpy of Vaporization of Salt Solutions Using the Cooling Effect of a Bubble Column Evaporator

    ERIC Educational Resources Information Center

    Fan, Chao; Pashley, Richard M.

    2016-01-01

    The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…

  3. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    ERIC Educational Resources Information Center

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  4. Quantifying Methane Flux from a Prominent Seafloor Crater with Water Column Imagery Filtering and Bubble Quantification Techniques

    NASA Astrophysics Data System (ADS)

    Mitchell, G. A.; Gharib, J. J.; Doolittle, D. F.

    2015-12-01

    Methane gas flux from the seafloor to atmosphere is an important variable for global carbon cycle and climate models, yet is poorly constrained. Methodologies used to estimate seafloor gas flux commonly employ a combination of acoustic and optical techniques. These techniques often use hull-mounted multibeam echosounders (MBES) to quickly ensonify large volumes of the water column for acoustic backscatter anomalies indicative of gas bubble plumes. Detection of these water column anomalies with a MBES provides information on the lateral distribution of the plumes, the midwater dimensions of the plumes, and their positions on the seafloor. Seafloor plume locations are targeted for visual investigations using a remotely operated vehicle (ROV) to determine bubble emission rates, venting behaviors, bubble sizes, and ascent velocities. Once these variables are measured in-situ, an extrapolation of gas flux is made over the survey area using the number of remotely-mapped flares. This methodology was applied to a geophysical survey conducted in 2013 over a large seafloor crater that developed in response to an oil well blowout in 1983 offshore Papua New Guinea. The site was investigated by multibeam and sidescan mapping, sub-bottom profiling, 2-D high-resolution multi-channel seismic reflection, and ROV video and coring operations. Numerous water column plumes were detected in the data suggesting vigorously active vents within and near the seafloor crater (Figure 1). This study uses dual-frequency MBES datasets (Reson 7125, 200/400 kHz) and ROV video imagery of the active hydrocarbon seeps to estimate total gas flux from the crater. Plumes of bubbles were extracted from the water column data using threshold filtering techniques. Analysis of video images of the seep emission sites within the crater provided estimates on bubble size, expulsion frequency, and ascent velocity. The average gas flux characteristics made from ROV video observations is extrapolated over the number of individual flares detected acoustically and extracted to estimate gas flux from the survey area. The gas flux estimate from the water column filtering and ROV observations yields a range of 2.2 - 6.6 mol CH4 / min.

  5. Bubble Dynamics in Polymer Solutions Undergoing Shear.

    DTIC Science & Technology

    1985-04-01

    cavitation bubble in water has been established as the fundamental theoretical approach to understanding this phenomenon. LA_ Laser -induced...cavitation inception. 1-2 Polymer effects on cavity appearance. 2-1 Spherical laser -induced bubble dynamics. 2-2 Vapor cavity jet formation. 2-3 Bubble...distilled water. 2-6B Nonspherical bubble dynamics in dilute polymer. 3-1 Closed-loop hydraulic cavitation tunnel. 3-2 Laser system optical components. 3-3

  6. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    PubMed

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.

  7. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability

    NASA Astrophysics Data System (ADS)

    Greinert, Jens; Artemov, Yuriy; Egorov, Viktor; De Batist, Marc; McGinnis, Daniel

    2006-04-01

    A mud volcano area in the deep waters (> 2000 m) of the Black Sea was studied by hydroacoustic measurements during several cruises between January 2002 and June 2004. Gas bubbles in the water column give strong backscatter signals and thus can be detected even in great water depths by echosounders as the 38 kHz EK500 scientific split-beam system that was used during the surveys. Because of their shape in echograms and to differentiate against geochemical plumes and real upwelling bubble-water plumes, we call these hydroacoustic manifestations of bubbles in the water column 'flares'. Digital recording and processing of the data allows a 3D visualization and data comparison over the entire observation period, without artefacts caused by changing system settings. During our surveys, we discovered bubble release from three separate mud volcanoes, Dvurechenskiy (DMV), Vodianitskiy (VMV) and the Nameless Seep Site (NSS), in about 2080 m water depth simultaneously. Bubble release was observed between 9 June 2003 and 5 June 2004. The most frequently surveyed, DMV, was found to be inactive during very intensive studies in January 2002. The first activity was observed on 27 June 2002, which finally ceased between 5 and 15 June 2004 after a period of continuously decreasing activity. This observed 2-yr bubble-release period at a mud volcano may give an indication for the duration of active periods. The absence of short-term variations (within days or hours) may indicate that the bubble release from the observed mud volcanoes does not undergo rapid changes. The recorded echograms show that bubbles rise about 1300 m high through the water column, to a final water depth of about 770 m, which is ˜75 m below the phase boundary of pure methane hydrate in the Black Sea. With a release depth from 2068 m and a detected rise height of 1300 m, the flare at VMV is among the deepest and highest reported so far, and gives evidence of highly extended bubble life times (up to 108 min) in deep marine environments. To better understand how a methane bubble (gas analyses of the pore water and gas hydrate gave 99.4% methane) can rise so high without dissolving, we applied a recently developed bubble dissolution model that takes into account a decreased mass transfer due to an immediately formed gas-hydrate rim. Using the hydroacoustically determined bubble rising speeds (19-22 cm/s at the bottom; 12-14 cm/s at the flare top) and the relation between the rising speed of 'dirty'/gas hydrate rimmed bubbles and the bubble size, we could validate that a gas-hydrate-rimmed bubble with a diameter of 9 mm could survive the 1300-m-rise through the water column, before it is finally dissolved. A diameter of about 9 mm is reasonable for bubbles released at seep sites and the coincidence between the observed bubble rising speed and the model approach of a 9-mm bubble supports the assumption of gas-hydrate-rimmed bubbles.

  8. Bubble column and CFD simulation for chemical recycling of polyethylene terephthalate

    NASA Astrophysics Data System (ADS)

    Alzuhairi, Mohammed

    2018-05-01

    Computational Fluid Dynamics (CFD) is an important simulation tool, which uses powerful computer to get optimal design in industrial processes. New approach technique of bubble column for three phases has been used with respect to chemical recycling of Polyethylene Terephthalate (PET). The porous ceramic has been used in thin plate (5 mm) with a narrow pore size distribution. Excellent agreement between CFD has been predicted and experimental profiles of hold-up and velocity close to wall have been observed for a column diameter 0.08 m, column height 0.15 m (HD), and superficial gas velocity (VG) 0.05 m/s. The main purpose of the current study is to highlight depolymerization of PET chemically by using the close system of Ethylene Glycol, PET-Catalyzed, and Nitrogen glycolysis process in bubble column of three phases technique by using Nano catalyst, SiO2 with various weight percent (0.01, 0.02, 0.05, 0.1, 0.2, and 0.5) based on PET weight and preheated Nitrogen up to 100° C by extra heater in bubble column reactor. The depolymerization time could be reduced in order to improve heat and mass transfer in comparison with the traditional methods. Little amount not exceeding 0.01% of Nano SiO2 is enough for completing depolymerization. The final product of PET depolymerization has full characterization by FTIR, AFM, CHN tests and has been used as a vital additive for Bitumen, it has been investigated as a moisture-proof, water seepage-proof material, and as a tough resistant to environmental conditions.

  9. Acoustic mapping of shallow water gas releases using shipborne multibeam systems

    NASA Astrophysics Data System (ADS)

    Urban, Peter; Köser, Kevin; Weiß, Tim; Greinert, Jens

    2015-04-01

    Water column imaging (WCI) shipborne multibeam systems are effective tools for investigating marine free gas (bubble) release. Like single- and splitbeam systems they are very sensitive towards gas bubbles in the water column, and have the advantage of the wide swath opening angle, 120° or more allowing a better mapping and possible 3D investigations of targets in the water column. On the downside, WCI data are degraded by specific noise from side-lobe effects and are usually not calibrated for target backscattering strength analysis. Most approaches so far concentrated on manual investigations of bubbles in the water column data. Such investigations allow the detection of bubble streams (flares) and make it possible to get an impression about the strength of detected flares/the gas release. Because of the subjective character of these investigations it is difficult to understand how well an area has been investigated by a flare mapping survey and subjective impressions about flare strength can easily be fooled by the many acoustic effects multibeam systems create. Here we present a semi-automated approach that uses the behavior of bubble streams in varying water currents to detect and map their exact source positions. The focus of the method is application of objective rules for flare detection, which makes it possible to extract information about the quality of the seepage mapping survey, perform automated noise reduction and create acoustic maps with quality discriminators indicating how well an area has been mapped.

  10. Two-phase flow patterns of a top heat mode closed loop oscillating heat pipe with check valves (THMCLOHP/CV)

    NASA Astrophysics Data System (ADS)

    Thongdaeng, S.; Bubphachot, B.; Rittidech, S.

    2016-11-01

    This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.

  11. Processes and catalysts for conducting fischer-tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, Alan H.; Oukaci, Rachid; Goodwin, James G.

    1999-01-01

    Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided.

  12. Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors.

    PubMed

    Srivastava, Smita; Srivastava, Ashok K

    2013-11-01

    Batch cultivation of Azadirachta indica hairy roots was carried out in different liquid-phase bioreactor configurations (stirred-tank, bubble column, bubble column with polypropylene basket, and polyurethane foam disc as root supports) to investigate possible scale-up of the A. indica hairy root culture for in vitro production of the biopesticide azadirachtin. The hairy roots failed to grow in the conventional bioreactor designs (stirred tank and bubble column). However, modified bubble column reactor (with polyurethane foam as root support) configuration facilitated high-density culture of A. indica hairy roots with a biomass production of 9.2 g l(-1)dry weight and azadirachtin yield of 3.2 mg g(-1) leading to a volumetric productivity of azadirachtin as 1.14 mg l(-1) day(-1). The antifeedant activity in the hairy roots was also evaluated by no choice feeding tests with known concentrations of the hairy root powder and its solvent extract separately on the desert locust Schistocerca gregaria. The hairy root powder and its solvent extract demonstrated a high level of antifeedant activity (with an antifeedant index of 97 % at a concentration of 2 % w/v and 83 % at a concentration of 0.05 % (w/v), respectively, in ethanol).

  13. Pump for molten metal or other fluid

    DOEpatents

    Horton, James A.; Brown, Donald L.

    1994-01-01

    A pump having no moving parts which can be used to pump high temperature molten metal or other fluids in a vacuum or low pressure environment, and a method for pumping such fluids. The pump combines elements of a bubble pump with a trap which isolates the vacuum or low pressure region from the gas used to create the bubbles. When used in a vacuum the trap prevents the pumping gas from escaping into the isolated region and thereby reducing the quality of the vacuum. The pump includes a channel in which a pumping gas is forced under pressure into a cavity where bubbles are formed. The cavity is in contact with a reservoir which contains the molten metal or other fluid which is to be pumped. The bubbles rise up into a column (or pump tube) carrying the fluid with them. At the top of the column is located a deflector which causes the bubbles to burst and the drops of pumped fluid to fall into a trap. The fluid accumulates in the trap, eventually forcing its way to an outlet. A roughing pump can be used to withdraw the pumping gas from the top of the column and assist with maintaining the vacuum or low pressure environment.

  14. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Papenberg, C.

    2012-03-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV) to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  15. Processes and catalysts for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor

    DOEpatents

    Singleton, A.H.; Oukaci, R.; Goodwin, J.G.

    1999-08-17

    Processes and catalysts are disclosed for conducting Fischer-Tropsch synthesis in a slurry bubble column reactor (SBCR). One aspect of the invention involves the use of cobalt catalysts without noble metal promotion in an SBCR. Another aspect involves using palladium promoted cobalt catalysts in an SBCR. Methods for preparing noble metal promoted catalysts via totally aqueous impregnation and procedures for producing attrition resistant catalysts are also provided. 1 fig.

  16. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    PubMed

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

  17. Study of a Novel Method for the Thermolysis of Solutes in Aqueous Solution Using a Low Temperature Bubble Column Evaporator.

    PubMed

    Shahid, Muhammad; Xue, Xinkai; Fan, Chao; Ninham, Barry W; Pashley, Richard M

    2015-06-25

    An enhanced thermal decomposition of chemical compounds in aqueous solution has been achieved at reduced solution temperatures. The technique exploits hitherto unrecognized properties of a bubble column evaporator (BCE). It offers better heat transfer efficiency than conventional heat transfer equipment. This is obtained via a continuous flow of hot, dry air bubbles of optimal (1-3 mm) size. Optimal bubble size is maintained by using the bubble coalescence inhibition property of some salts. This novel method is illustrated by a study of thermal decomposition of ammonium bicarbonate (NH4HCO3) and potassium persulfate (K2S2O8) in aqueous solutions. The decomposition occurs at significantly lower temperatures than those needed in bulk solution. The process appears to work via the continuous production of hot (e.g., 150 °C) dry air bubbles, which do not heat the solution significantly but produce a transient hot surface layer around each rising bubble. This causes the thermal decomposition of the solute. The decomposition occurs due to the effective collision of the solute with the surface of the hot bubbles. The new process could, for example, be applied to the regeneration of the ammonium bicarbonate draw solution used in forward osmosis.

  18. Gas transport and vesicularity in low-viscosity liquids

    NASA Astrophysics Data System (ADS)

    Pioli, Laura; Bonadonna, Costanza; Abdulkareem, Lokman; Azzopardi, Barry; Phillips, Jeremy

    2010-05-01

    Vesicle textures of basaltic scoria preserve information on magma bubble content at fragmentation and are commonly used to constrain degassing, vesiculation and magma permeability. These studies are based on the assumption that microscale textures are representative of the conduit-scale structures and processes. However, the conditions for which this assumption is valid have not been investigated in detail. We have investigated conduit-scale structures by performing a series of experiments of separate two-phase flows in a 6.5-m high cylindrical bubble column using a combination of air with pure glucose syrup, water-syrup mixtures and pure water to reproduce open-system degassing and strombolian activity conditions in the upper volcanic conduit (i.e. at very low or zero liquid fluxes). We have varied gas fluxes, initial liquid height, gas inlet configuration and liquid viscosity and analyzed flow regimes and properties. Temperature and pressure were measured at several heights along the pipe and vesicularity was calculated using pressure data, liquid level measurements and an Electrical Capacitance tomography (ECT) system, which measures instantaneous vesicularity and phase distribution from capacitance measurements between pairs of electrodes placed uniformly around the pipe circumference. The aim of the experiments was to identify the effect of gas-flow rates on the flow regimes (i.e. bubbly, slug, churn and annular), the main degassing structures and the total gas content of the column. The effect of increasing and decreasing gas flow rates was also studied to check hysteresis effects. Results indicate that the vesicularity of the liquid column depends primarily on gas flux, whereas flow regimes exert a minor control. In fact, vesicularity increases with gas flux following a power-law trend whose exponent depends on the viscosity of the liquid. In addition, distributions of instantaneous gas fraction in the column cross section during syrup experiments have shown that gas is mainly transported by large, conduit-size bubbles rising in a microvesicular liquid. Coalescence processes occur throughout the whole column, and are strongly affected by bubble size, shearing and flow dynamics. Increasing gas fluxes increases frequency and length of the large bubbles but does not affect the concentration of small bubbles in the liquid matrix. Scaling of these experiments suggest that these conditions could be met in low viscosity, crystal-poor magmas and we therefore suggest that this dynamics could also characterize two-phase flow in open conduit mafic systems.

  19. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  20. Mixing on the Heard Island Plateau during HEOBI

    NASA Astrophysics Data System (ADS)

    Robertson, R.

    2016-12-01

    On the plateau near Heard and McDonald Islands, the water column was nearly always well mixed. Typically, temperature differences between the surface and the bottom, 100-200 m, were less than 0.2oC and often less that 0.1oC. Surface stratification developed through insolation and deep primarily through a combination of upwelling from canyons and over the edge of the plateau and tidal advection. This stratification was primarily removed by a combination of wind and tidal mixing. Persistent winds of 30 knots mixed the upper 20-50 m. Strong wind events, 40-60 knots, mixed the water column to 100-200 m depth, which over the plateau, was often the entire water column. Benthic tidal friction mixed the bottom 30-50 m. Although the water column was unstratified at the two plume sites intensively investigated, tidal velocities were baroclinic, probably due to topographic controls. Tidal advection changed the bottom temperatures by 0.5oC within 8 hours, more than doubling the prior stratification. Wind mixing quickly homogenized the water column, resulting in the surface often showing the deeper upwelling and advective events. Although acoustic plumes with bubbles were observed in the water column, there was no evidence of geothermal vents or geothermal influence on temperatures. Mixing by bubbles rising in the water column was indistinguishable from the wind and tidal mixing, although the strongest upward vertical velocities were observed at the sites of these acoustic/bubble plumes.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emissionmore » produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra con rm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the North and South Galactic direction and located within ~4° of the Galactic Center.« less

  2. Self assembly, mobilization, and flotation of crude oil contaminated sand particles as granular shells on gas bubbles in water.

    PubMed

    Tansel, Berrin; Boglaienko, Daria

    2017-01-01

    Contaminant fate and transport studies and models include transport mechanisms for colloidal particles and dissolved ions which can be easily moved with water currents. However, mobilization of much larger contaminated granular particles (i.e., sand) in sediments have not been considered as a possible mechanism due to the relatively larger size of sand particles and their high bulk density. We conducted experiments to demonstrate that oil contaminated granular particles (which exhibit hydrophobic characteristics) can attach on gas bubbles to form granular shells and transfer from the sediment phase to the water column. The interactions and conditions necessary for the oil contaminated granular particles to self assemble as tightly packed granular shells on the gas bubbles which transfer from sediment phase to the water column were evaluated both experimentally and theoretically for South Louisiana crude oil and quartz sand particles. Analyses showed that buoyancy forces can be adequate to move the granular shell forming around the air bubbles if the bubble radius is above 0.001mm for the sand particles with 0.28mm diameter. Relatively high magnitude of the Hamaker constant for the oil film between sand and air (5.81×10 -20 J for air-oil-sand) indicates that air bubbles have high affinity to attach on the oil film that is on the sand particles in comparison to attaching to the sand particles without the oil film in water (1.60×10 -20 J for air-water-sand). The mobilization mechanism of the contaminated granular particles with gas bubbles can occur in natural environments resulting in transfer of granular particles from sediments to the water column. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Magma Vesiculation and Infrasonic Activity in Open Conduit Volcanoes

    NASA Astrophysics Data System (ADS)

    Colo', L.; Baker, D. R.; Polacci, M.; Ripepe, M.

    2007-12-01

    At persistently active basaltic volcanoes such as Stromboli, Italy degassing of the magma column can occur in "passive" and "active" conditions. Passive degassing is generally understood as a continuous, non explosive release of gas mainly from the open summit vents and subordinately from the conduit's wall or from fumaroles. In passive degassing generally gas is in equilibrium with atmospheric pressure, while in active degassing the gas approaches the surface at overpressurized conditions. During active degassing (or puffing), the magma column is interested by the bursting of small gas bubbles at the magma free surface and, as a consequence, the active degassing process generates infrasonic signals. We postulated, in this study, that the rate and the amplitude of infrasonic activity is somehow linked to the rate and the volume of the overpressured gas bubbles, which are generated in the magma column. Our hypothesis is that infrasound is controlled by the quantities of gas exsolved in the magma column and then, that a relationship between infrasound and the vesiculation process should exist. In order to achieve this goal, infrasonic records and bubble size distributions of scoria samples from normal explosive activity at Stromboli processed via X ray tomography have been compared. We observed that the cumulative distribution for both data sets follow similar power laws, indicating that both processes are controlled by a scale invariant phenomenon. However the power law is not stable but changes in different scoria clasts, reflecting when gas bubble nucleation is predominant over bubbles coalescence and viceversa. The power law also changes for the infrasonic activity from time to time, suggesting that infrasound may be controlled also by a different gas exsolution within the magma column. Changes in power law distributions are the same for infrasound and scoria indicating that they are linked to the same process acting in the magmatic system. We suggest that monitoring infrasound on an active volcano could represent an alternative way to monitor the vesiculation process of an open conduit system.

  4. Investigation of fast initialization of spacecraft bubble memory systems

    NASA Technical Reports Server (NTRS)

    Looney, K. T.; Nichols, C. D.; Hayes, P. J.

    1984-01-01

    Bubble domain technology offers significant improvement in reliability and functionality for spacecraft onboard memory applications. In considering potential memory systems organizations, minimization of power in high capacity bubble memory systems necessitates the activation of only the desired portions of the memory. In power strobing arbitrary memory segments, a capability of fast turn on is required. Bubble device architectures, which provide redundant loop coding in the bubble devices, limit the initialization speed. Alternate initialization techniques are investigated to overcome this design limitation. An initialization technique using a small amount of external storage is demonstrated.

  5. Aeration costs in stirred-tank and bubble column bioreactors

    DOE PAGES

    Humbird, D.; Davis, R.; McMillan, J. D.

    2017-08-10

    To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less

  6. Aeration costs in stirred-tank and bubble column bioreactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, D.; Davis, R.; McMillan, J. D.

    To overcome knowledge gaps in the economics of large-scale aeration for production of commodity products, Aspen Plus is used to simulate steady-state oxygen delivery in both stirred-tank and bubble column bioreactors, using published engineering correlations for oxygen mass transfer as a function of aeration rate and power input, coupled with new equipment cost estimates developed in Aspen Capital Cost Estimator and validated against vendor quotations. Here, these simulations describe the cost efficiency of oxygen delivery as a function of oxygen uptake rate and vessel size, and show that capital and operating costs for oxygen delivery drop considerably moving from standard-sizemore » (200 m 3) to world-class size (500 m 3) reactors, but only marginally in further scaling up to hypothetically large (1000 m 3) reactors. Finally, this analysis suggests bubble-column reactor systems can reduce overall costs for oxygen delivery by 10-20% relative to stirred tanks at low to moderate oxygen transfer rates up to 150 mmol/L-h.« less

  7. Enhancing gas-liquid mass transfer rates in non-newtonian fermentations by confining mycelial growth to microbeads in a bubble column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gbewonyo, K.; Wang, D.I.C.

    The performance of a penicillin fermentation was assessed in a laboratory-scale bubble column fermentor, with mycelial growth confined to the pore matrix of celite beads. Final cell densities of 29 g/L and penicillin titres of 5.5 g/L were obtained in the confined cell cultures. In comparison, cultures of free mycelial cells grown in the absence of beads experienced dissolved oxygen limitations in the bubble column, giving only 17 g/L final cell concentrations with equally low penicillin titres of 2 g/L. The better performance of the confined cell cultures was attributed to enhanced gas liquid mass transfer rates, with mass transfermore » coefficients (k /SUB L/ a) two to three times higher than those determined in the free cell cultures. Furthermore, the confined cell cultures showed more efficient utilization of power input for mass transfer, providing up to 50% reduction in energy requirements for aeration.« less

  8. Effects of Solution Chemistry on Nano-Bubbles Transport in Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Takemura, T.; Suzuki, K.; Nihei, N.; Nishimura, T.

    2017-12-01

    Nano-bubbles (NBs) have a considerable potential for the remediation of soil and groundwater contaminated by organic compounds, especially when used in conjunction with bioremediation technologies. Understanding the transport mechanisms of NBs in soils is essential to optimize NB-based remediation techniques. In this study, one-dimensional column transport experiments using glass beads with 0.1 mm size were conducted, where NBs created by oxygen gas at different pH and ionic strength were injected to the column at the constant flow rate. The NBs concentration in the effluent was quantified using a resonant mass measurement technique. Effects of solution chemistry of the NBs water on NB transport in the porous media were investigated. The results showed that attachment of NBs was enhanced under higher ionic strength and lower pH conditions, caused by the reduced repulsive force between NBs and glass beads. In addition, bubble size distributions in the effluents showed that relatively larger NBs were retained in the column. This trend was more significant at lower pH condition.

  9. Stability and reactivity of liposome-encapsulated formate dehydrogenase and cofactor system in carbon dioxide gas-liquid flow.

    PubMed

    Yoshimoto, Makoto; Yamashita, Takayuki; Yamashiro, Takuya

    2010-01-01

    Formate dehydrogenase from Candida boidinii (CbFDH) is potentially applicable in reduction of CO(2) through oxidation of cofactor NADH into NAD(+). For this, the CbFDH activity needs to be maintained under practical reaction conditions, such as CO(2) gas-liquid flow. In this work, CbFDH and cofactor were encapsulated in liposomes and the liposomal enzymes were characterized in an external loop airlift bubble column. The airlift was operated at 45 degrees C with N(2) or CO(2) as gas phase at the superficial gas velocity U(G) of 2.0 or 3.0 cm/s. The activities of liposomal CbFDH/cofactor systems were highly stable in the airlift regardless of the type of gas phase because liposome membranes prevented interactions of the encapsulated enzyme and cofactor molecules with the gas-liquid interface of bubbles. On the other hand, free CbFDH was deactivated in the airlift especially at high U(G) with CO(2) bubbles. The liposomal CbFDH/NADH could catalyze reduction of CO(2) in the airlift giving the fractional oxidation of the liposomal NADH of 23% at the reaction time of 360 min. The cofactor was kept inside liposomes during the reaction operation with less than 10% of leakage. All of the results obtained demonstrate that the liposomal CbFDH/NADH functions as a stable catalyst for reduction of CO(2) in the airlift. (c) 2010 American Institute of Chemical Engineers

  10. CO2 Absorption from Biogas by Glycerol: Conducted in Semi-Batch Bubble Column

    NASA Astrophysics Data System (ADS)

    puji lestari, Pratiwi; Mindaryani, Aswati; Wirawan, S. K.

    2018-03-01

    Biogas is a renewable energy source that has been developed recently. The main contents of Biogas itself are Methane and carbon dioxide (CO2) where Methane is the main component of biogas with CO2 as the highest impurities. The quality of biogas depends on the CO2 content, the lower CO2 levels, the higher biogas quality. Absorption is one of the methods to reduce CO2 level. The selections of absorbent and appropriate operating parameters are important factors in the CO2 absorption from biogas. This study aimed to find out the design parameters for CO2 absorption using glycerol that represented by the overall mass transfer coefficient (KLa) and Henry’s constant (H). This study was conducted in semi-batch bubble column. Mixed gas was contacted with glycerol in a bubble column. The concentration of CO2 in the feed gas inlet and outlet columns were analysed by Gas Chromatograph. The variables observed in this study were superficial gas velocity and temperatures. The results showed that higher superficial gas velocity and lower temperature increased the rate of absorption process and the amount of CO2 absorbed.

  11. CFD Simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development.

    PubMed

    Fan, Wenwen; Yuan, LinJiang; Li, Yonglin

    2018-06-22

    The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r  = 5.0, it is 29.4 times of original floc sludge.

  12. Crystal structure of a transcribing RNA Polymerase II complex reveals a complete transcription bubble

    PubMed Central

    Barnes, Christopher O.; Calero, Monica; Malik, Indranil; Graham, Brian W.; Spahr, Henrik; Lin, Guowu; Cohen, Aina; Brown, Ian S.; Zhang, Qiangmin; Pullara, Filippo; Trakselis, Michael A.; Kaplan, Craig D.; Calero, Guillermo

    2015-01-01

    Summary Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop-1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the Trigger Loop (TL), allowing visualization of its open state. Overall, our observations suggest that “open/closed” conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation. PMID:26186291

  13. Champagne experiences various rhythmical bubbling regimes in a flute.

    PubMed

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  14. A study of the effect of helium concentration and displacement damage on the microstructure of helium ion irradiated tungsten

    NASA Astrophysics Data System (ADS)

    Harrison, R. W.; Greaves, G.; Hinks, J. A.; Donnelly, S. E.

    2017-11-01

    Transmission electron microscopy (TEM) with in-situ He ion irradiation has been used to examine the damage microstructure of W when varying the helium concentration to displacement damage ratio, irradiation temperature and total dose. Irradiations employed 15, 60 or 85 keV He ions, at temperatures between 500 and 1000 °C up to doses of ∼3.0 DPA. Once nucleated and grown to an observable size in the TEM, bubble diameter as a function of irradiation dose did not measurably increase at irradiation temperatures of 500 °C between 1.0 and 3.0 DPA; this is attributed to the low mobility of vacancies and He/vacancy complexes at these temperatures. Bubble diameter increased slightly for irradiation temperatures of 750 °C and rapidly increased when irradiated at 1000 °C. Dislocation loops were observed at irradiation temperatures of 500 and 750 °C and no loops were observed at 1000 °C. Burgers vectors of the dislocations were determined to be b = ±½<111> type only and both vacancy and interstitial loops were observed. The proportion of interstitial loops increased with He-appm/DPA ratio and this is attributed to the concomitant increase in bubble areal density, which reduces the vacancy flux for both the growth of vacancy-type loops and the annihilation of interstitial clusters.

  15. Method for enhancing selectivity and recovery in the fractional flotation of particles in a flotation column

    DOEpatents

    Klunder, Edgar B [Bethel Park, PA

    2011-08-09

    The method relates to particle separation from a feed stream. The feed stream is injected directly into the froth zone of a vertical flotation column in the presence of a counter-current reflux stream. A froth breaker generates a reflux stream and a concentrate stream, and the reflux stream is injected into the froth zone to mix with the interstitial liquid between bubbles in the froth zone. Counter-current flow between the plurality of bubbles and the interstitial liquid facilitates the attachment of higher hydrophobicity particles to bubble surfaces as lower hydrophobicity particles detach. The height of the feed stream injection and the reflux ratio may be varied in order to optimize the concentrate or tailing stream recoveries desired based on existing operating conditions.

  16. The effects of a decompression on seismic parameter profiles in a gas-charged magma

    NASA Astrophysics Data System (ADS)

    Sturton, Susan; Neuberg, Jürgen

    2003-11-01

    Seismic velocities in a gas-charged magma vary with depth and time. Relationships between pressure, density, exsolved gas content, and seismic velocity are derived and used in conjunction with expressions describing diffusive bubble growth to find a series of velocity profiles which depend on time. An equilibrium solution is obtained by considering a column of magma in which the gas distribution corresponds to the magmastatic pressure profile with depth. Decompression events of various sizes are simulated, and the resulting disequilibrium between the gas pressure and magmastatic pressure leads to bubble growth and therefore to a change of seismic velocity and density with time. Bubble growth stops when the system reaches a new equilibrium. The corresponding volume increase is accommodated by accelerating the magma column upwards and an extrusion of lava. A timescale for the system to return to equilibrium can be obtained. The effect of changes in magma viscosity and bubble number density is examined.

  17. Bubble inductors: Pneumatic tuning of a stretchable inductor

    NASA Astrophysics Data System (ADS)

    Lazarus, Nathan; Bedair, Sarah S.

    2018-05-01

    From adaptive matching networks in power systems to channel selectable RF filters and circuitry, tunable inductors are fundamental components for circuits requiring reconfigurability. Here we demonstrate a new continuously tunable inductor based on physically stretching the inductor traces themselves. Liquid-metal-based stretchable conductors are wrapped around a pneumatic bubble actuator, allowing the inductor to be collapsed or expanded by application of pressure. In vacuum the bubble collapses, bringing the loop area to nearly zero, while positive pressure brings a dramatic increase in area and loop inductance. Using this approach, the inductor demonstrated in this work was able to achieve a tuning ratio of 2.6 with 1-2 second response time. With conductors available that can stretch by hundreds of percent, this technique is promising for very large tuning ratios in continuously tunable inductors.

  18. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively controlled with even smaller superficial air velocity than the optimal value provided by a single air stone. Finally, the testing results with both inorganic and organic feeds showed that the solid particle composition and particle size distribution all contribute to the cake formation in a membrane filtration system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Hydrodynamics, mass transfer, and yeast culture performance of a column bioreactor with ejector.

    PubMed

    Prokop, A; Janík, P; Sobotka, M; Krumphanzl, V

    1983-04-01

    A bubble column fitted with an ejector has been tested for its physical and biological performance. The axial diffusion coefficient of the liquid phase in the presence of electrolytes and ethanol was measured by a stimulus-response technique with subsequent evaluation by means of a diffusion model. In contrast to ordinary bubble columns, the coefficient of axial mixing is inversely dependent on the superficial air velocity. The liquid velocity acts in an opposite direction to the backmixing flow in the column. The measurement of volumetric oxygen transfer coefficient in the presence of electrolytes and ethanol was performed using a dynamic gassing-in method adapted for a column. The data were correlated with the superficial air and liquid velocities, total power input, and power for aeration and mixing; the economy coefficient of oxygen transfer was used for finding an optimum ratio of power for aeration and pumping. Growth experiments with Candida utilis on ethanol confirmed some of the above results. Biomass productivity of 2.5 g L(-1) h(-1) testifies about a good transfer capability of the column. Columns fitted with pneumatic and/or hydraulic energy input may be promising for aerobic fermentations considering their mass transfer and mixing characteristics.

  20. Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant k(L)a.

    PubMed

    Doig, Steven D; Ortiz-Ochoa, Kenny; Ward, John M; Baganz, Frank

    2005-01-01

    This work describes the engineering characterization of miniature (2 mL) and laboratory-scale (100 mL) bubble column bioreactors useful for the cultivation of microbial cells. These bioreactors were constructed of glass and used a range of sintered glass gas diffusers with differently sized pores to disperse humidified air within the liquid biomedium. The effect of the pressure of this supplied air on the breakthrough point for gas diffusers with different pore sizes was examined and could be predicted using the Laplace-Young equation. The influence of the superficial gas velocity (u(g)) on the volumetric mass transfer coefficient (k(L)a) was determined, and values of up to 0.09 s(-1) were observed in this work. Two modeling approaches were considered in order to predict and provide comparison criteria. The first related the volumetric power consumption (P/V) to the k(L)a and a good correlation was obtained for differently sized reactors with a given pore size, but this correlation was not satisfactory for bubble columns with different gas diffusers. Values for P/V ranged from about 10 to 400 W.m(-3). Second, a model was developed predicting bubble size (d(b)), bubble rising velocity (u(b)), gas hold-up (phi), liquid side mass transfer coefficient (k(L)), and thus the k(L)a using established theory and empirical correlations. Good agreement was found with our experimental data at different scales and pore sizes. Values for d(b) varied from 0.1 to 0.6 mm, and k(L) values between 1.7 and 9.8 x 10(-4) m.s(-1) were determined. Several E. coli cultivations were performed in the miniature bubble column at low and high k(L)a values, and the results were compared to those from a conventional stirred tank operated under identical k(L)a values. Results from the two systems were similar in terms of biomass growth rate and carbon source utilization.

  1. Improvement of ore recovery efficiency in a flotation column cell using ultra-sonic enhanced bubbles

    NASA Astrophysics Data System (ADS)

    Filippov, L. O.; Royer, J. J.; Filippova, I. V.

    2017-07-01

    The ore process flotation technique is enhanced by using external ultra-sonic waves. Compared to the classical flotation method, the application of ultrasounds to flotation fluids generates micro-bubbles by hydrodynamic cavitation. Flotation performances increase was modelled as a result of increased probabilities of the particle-bubble attachment and reduced detachment probability under sonication. A simplified analytical Navier-Stokes model is used to predict the effect of ultrasonic waves on bubble behavior. If the theory is verified by experimentation, it predicts that the ultrasonic waves would create cavitation micro-bubbles, smaller than the flotation bubble added by the gas sparger. This effect leads to increasing the number of small bubbles in the liquid which promote particle-bubble attachment through coalescence between bubbles and micro-bubbles. The decrease in the radius of the flotation bubbles under external vibration forces has an additional effect by enhancing the bubble-particle collision. Preliminary results performed on a potash ore seem to confirm the theory.

  2. DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.; Ballet, J.; Ackermann, M.

    2016-04-01

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission producedmore » in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.« less

  3. Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of Fermi Large Area Telescope Data

    DOE PAGES

    Acero, F.

    2016-04-22

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emissionmore » produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra con rm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the North and South Galactic direction and located within ~4° of the Galactic Center.« less

  4. Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of Fermi Large Area Telescope Data

    NASA Technical Reports Server (NTRS)

    Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Brandt, T. J.; hide

    2016-01-01

    Most of the celestial gamma rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM),which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20deg and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within approximately 4deg of the Galactic Center.

  5. Simple equations to simulate closed-loop recycling liquid-liquid chromatography: Ideal and non-ideal recycling models.

    PubMed

    Kostanyan, Artak E

    2015-12-04

    The ideal (the column outlet is directly connected to the column inlet) and non-ideal (includes the effects of extra-column dispersion) recycling equilibrium-cell models are used to simulate closed-loop recycling counter-current chromatography (CLR CCC). Simple chromatogram equations for the individual cycles and equations describing the transport and broadening of single peaks and complex chromatograms inside the recycling closed-loop column for ideal and non-ideal recycling models are presented. The extra-column dispersion is included in the theoretical analysis, by replacing the recycling system (connecting lines, pump and valving) by a cascade of Nec perfectly mixed cells. To evaluate extra-column contribution to band broadening, two limiting regimes of recycling are analyzed: plug-flow, Nec→∞, and maximum extra-column dispersion, Nec=1. Comparative analysis of ideal and non-ideal models has shown that when the volume of the recycling system is less than one percent of the column volume, the influence of the extra-column processes on the CLR CCC separation may be neglected. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. View of sugar crystals in a water bubble on Expedition Six

    NASA Image and Video Library

    2003-03-14

    ISS006-E-39259 (14 March 2003) --- A view of sugar crystals in a water bubble within a 50-millimeter (mm) metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  7. How a short double-stranded DNA bends

    NASA Astrophysics Data System (ADS)

    Shin, Jaeoh; Lee, O.-Chul; Sung, Wokyung

    2015-04-01

    A recent experiment using fluorescence microscopy showed that double-stranded DNA fragments shorter than 100 base pairs loop with the probabilities higher by the factor of 102-106 than predicted by the worm-like chain (WLC) model [R. Vafabakhsh and T. Ha, Science 337, 1101(2012)]. Furthermore, the looping probabilities were found to be nearly independent of the loop size. The results signify a breakdown of the WLC model for DNA mechanics which works well on long length scales and calls for fundamental understanding for stressed DNA on shorter length scales. We develop an analytical, statistical mechanical model to investigate what emerges to the short DNA under a tight bending. A bending above a critical level initiates nucleation of a thermally induced bubble, which could be trapped for a long time, in contrast to the bubbles in both free and uniformly bent DNAs, which are either transient or unstable. The trapped bubble is none other than the previously hypothesized kink, which releases the bending energy more easily as the contour length decreases. It leads to tremendous enhancement of the cyclization probabilities, in a reasonable agreement with experiment.

  8. A Better Method for Filling Pasteur Pipet Chromatography Columns

    ERIC Educational Resources Information Center

    Ruekberg, Ben

    2006-01-01

    An alternative method for the preparation of Pasteur pipet chromatography columns is presented that allows the column to be filled with solvent without bubbles and allows greater control of fluid flow while the materials to be separated are added. Students are required to wear gloves and goggles and caution should be used while handling glass…

  9. Effects of Coulomb collisions on cyclotron maser and plasma wave growth in magnetic loops

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Petrosian, Vahe

    1990-01-01

    The evolution of nonthermal electrons accelerated in magnetic loops is determined by solving the kinetic equation, including magnetic field convergence and Coulomb collisions in order to determine the effects of these interactions on the induced cyclotron maser and plasma wave growth. It is found that the growth rates are larger and the possibility of cyclotron maser action is stronger for smaller loop column density, for larger magnetic field convergence, for a more isotropic injected electron pitch angle distribution, and for more impulsive acceleration. For modest values of the column density in the coronal portion of a flaring loop, the growth rates of instabilities are significantly reduced, and the reduction is much larger for the cyclotron modes than for the plasma wave modes. The rapid decrease in the growth rates with increasing loop column density suggests that, in flare loops when such phenomena occur, the densities are lower than commonly accepted.

  10. Ultrasonic effect on the bubble nucleation and heat transfer of oscillating nanofluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Nannan; Fu, Benwei; Key Laboratory of Marine, Mechanical and Manufacturing Engineering of the Ministry of Transport, Dalian 116026

    Ultrasonic sound effect on bubble nucleation, oscillating motion activated by bubble formation, and its heat transfer enhancement of nanofluid was experimentally investigated. Nanofluid consists of distilled water and dysprosium (III) oxide (Dy{sub 2}O{sub 3}) nanoparticles with an average size of 98 nm and a mass ratio of 0.5%. Visualization results demonstrate that when the nanoparticles are added in the fluid influenced by the ultrasonic sound, bubble nucleation can be significantly enhanced. The oscillating motion initiated by the bubble formation of nanofluid under the influence of ultrasonic sound can significantly enhance heat transfer of nanofluid in an interconnected capillary loop.

  11. Microstructural defects in He-irradiated polycrystalline α-SiC at 1000 °C

    NASA Astrophysics Data System (ADS)

    Han, Wentuo; Li, Bingsheng

    2018-06-01

    In order to investigate the effect of the high-temperature irradiation on microstructural evolutions of the polycrystalline SiC, an ion irradiation at 1000 °C with the 500 keV He2+ was imposed to the α-SiC. The platelets, He bubbles, dislocation loops, and particularly, their interaction with the stacking fault and grain boundaries were focused on and characterized by the cross-sectional transmission electron microscopy (XTEM). The platelets expectably exhibit a dominant plane of (0001), while planes of (01-10) and (10-16) are also found. Inside the platelet, the over-pressurized bubbles exist and remarkably cause a strong-strain zone surrounding the platelet. The disparate roles between the grain boundaries and stacking faults in interacting with the bubbles and loops are found. The results are compared with the previous weighty findings and discussed.

  12. Close-up view of Sodium Chloride crystals in a water bubble on Expedition Six.

    NASA Image and Video Library

    2003-03-14

    ISS006-E-39236 (14 March 2003) --- A view of sodium chloride crystals in a water bubble within a 50-millimeter metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  13. Abundances of Deuterium, Oxygen and Nitrogen in the Local Interstellar Medium: Overview of First Results from the Far Ultraviolet Spectroscopic Explorer Mission

    NASA Technical Reports Server (NTRS)

    Moos, H. W.; Sembach, K. R.; Vidal-Madjar, A.; York, D. G.; Friedman, S. D.; Hebrard, G.; Kruk, J. W.; Lehner, N.; Lemoine, M.; Sonneborn, G.; hide

    2002-01-01

    Observations obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) have been used to determine the column densities of D I, O I, and N I along seven sight lines that probe the local interstellar medium (LISM) at distances from 37 pc to 179 pc. Five of the sight lines are within the Local Bubble and two penetrate the surrounding H I wall. Reliable values of N(H I) were determined for five of the sight lines from HST data, IUE data, and published EUVE measurements. The weighted mean of DI/H I for these five sight lines is (1.52 +/- 0.08) x l0(exp -5)(1 sigma uncertainty in the mean). It is likely that the D I/H I ratio in the Local Bubble has a single value. The D I/O I ratio for the five sight lines within the Local Bubble is (3.76 +/- 0.20) x 10(esp -2). It is likely that O I column densities can serve as a proxy for H I in the Local Bubble. The weighted mean for O I/ H I for the seven FUSE sight lines is (3.03 +/- 0.21) x 10(esp -4), comparable to the weighted mean (3.43 +/- 0.15) x 10(exp -4) reported for 13 sight lines probing larger distances and higher column densities. The FUSE weighted mean of N I/ H I for five sight lines is half that reported by Meyer et al. for seven sight lines with larger distances and higher column densities. This result combined with the variability of O I/ N I (six sight lines) indicates that at the low column densities found in the LISM, nitrogen ionization balance is important. Thus, unlike O I, N I cannot be used as a proxy for H I or as a metallicity indicator in the LISM.

  14. Semi-industrial experimental study on bauxite separation using a cell-column integration process

    NASA Astrophysics Data System (ADS)

    Zhang, Ning-ning; Zhou, Chang-chun; Cong, Long-fei; Cao, Wen-long; Zhou, You

    2016-01-01

    The cyclonic-static micro-bubble flotation column (FCSMC) is a highly efficient mineral processing equipment. In this study, a cell-column (FCSMC) integration process was investigated for the separation of bauxite and its feasibility was analyzed on a theoretical basis. The properties of low-grade bauxite ore from Henan Province, China were analyzed. Parameters such as reagent dosage, scraping bubble time, and pressure of the circulating pump during the sorting process were investigated and optimized to improve the flotation efficiency. On the basis of these parameters, continuous separation experiments were conducted. Bauxite concentrate with an aluminum-to-silicon (A/S) mass ratio of 6.37 and a 77.63wt% recovery rate were achieved via a flow sheet consisting of "fast flotation using a flotation cell, one roughing flotation and one cleaning flotation using flotation columns". Compared with the full-flotation-cells process, the cell-column integration process resulted in an increase of the A/S ratio by 0.41 and the recovery rate by 17.58wt%. Cell-column integration separation technology represents a new approach for the separation of middle-to-low-grade bauxite ore.

  15. Contactless Inductive Bubble Detection in a Liquid Metal Flow

    PubMed Central

    Gundrum, Thomas; Büttner, Philipp; Dekdouk, Bachir; Peyton, Anthony; Wondrak, Thomas; Galindo, Vladimir; Eckert, Sven

    2016-01-01

    The detection of bubbles in liquid metals is important for many technical applications. The opaqueness and the high temperature of liquid metals set high demands on the measurement system. The high electrical conductivity of the liquid metal can be exploited for contactless methods based on electromagnetic induction. We will present a measurement system which consists of one excitation coil and a pickup coil system on the opposite sides of the pipe. With this sensor we were able to detect bubbles in a sodium flow inside a stainless steel pipe and bubbles in a column filled with a liquid Gallium alloy. PMID:26751444

  16. Close-up view of Sodium Chloride crystals in a water bubble on Expedition Six.

    NASA Image and Video Library

    2003-03-13

    ISS006-E-39211 (13 March 2003) --- A close up view of sodium chloride crystals in a water bubble within a 50-millimeter metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  17. Close-up view of Sodium Chloride crystals in a water bubble on Expedition Six.

    NASA Image and Video Library

    2003-03-14

    ISS006-E-39238 (14 March 2003) --- A close up view of sodium chloride crystals in a water bubble within a 50-millimeter metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  18. Ozonation kinetics of winery wastewater in a pilot-scale bubble column reactor.

    PubMed

    Lucas, Marco S; Peres, José A; Lan, Bing Yan; Li Puma, Gianluca

    2009-04-01

    The degradation of organic substances present in winery wastewater was studied in a pilot-scale, bubble column ozonation reactor. A steady reduction of chemical oxygen demand (COD) was observed under the action of ozone at the natural pH of the wastewater (pH 4). At alkaline and neutral pH the degradation rate was accelerated by the formation of radical species from the decomposition of ozone. Furthermore, the reaction of hydrogen peroxide (formed from natural organic matter in the wastewater) and ozone enhances the oxidation capacity of the ozonation process. The monitoring of pH, redox potential (ORP), UV absorbance (254 nm), polyphenol content and ozone consumption was correlated with the oxidation of the organic species in the water. The ozonation of winery wastewater in the bubble column was analysed in terms of a mole balance coupled with ozonation kinetics modeled by the two-film theory of mass transfer and chemical reaction. It was determined that the ozonation reaction can develop both in and across different kinetic regimes: fast, moderate and slow, depending on the experimental conditions. The dynamic change of the rate coefficient estimated by the model was correlated with changes in the water composition and oxidant species.

  19. Field testing model predictions of foam coverage and bubble content in the surf zone

    NASA Astrophysics Data System (ADS)

    Shi, F.; Kirby, J. T.; Ma, G.; Holman, R. A.; Chickadel, C. C.

    2012-12-01

    Field-scale modeling of surfzone bubbles and foam coverage is challenging in terms of the computational intensity of multi-phase bubble models based on Navier-Stokes/VOF formulation. In this study, we developed the NHWAVE-bubble package, which includes a 3D non-hydrostatic wave model NHWAVE (Ma et al., 2012), a multi-phase bubble model and a foam model. NHWAVE uses a surface and bottom following sigma coordinate system, making it more applicable to 3D modeling of nearshore waves and circulation in a large-scale field domain. It has been extended to include a multiphase description of polydisperse bubble populations following the approach applied in a 3D VOF model by Ma et al. (2012). A model of a foam layer on the water surface is specified in the model package using a shallow water formulation based on a balance of drag forces due to wind and water column motion. Foam mass conservation includes source and sink terms representing outgassing of the water column, direct foam generation due to surface agitation, and erosion due to bubble bursting. The model is applied in a field scale domain at FRF, Duck, NC where optical data in either visible band (ARGUS) or infrared band were collected during 2010 Surf Zone Optics experiments. The decay of image brightness or intensity following the passage of wave crests is presumably tied to both decay of bubble populations and foam coverage after passage of a broken wave crest. Infrared imagery is likely to provide more detailed information which could separate active breaking from passive foam decay on the surface. Model results will be compared with the measurements with an attention to distinguishing between active generation and passive decay of the foam signature on the water surface.

  20. Implementation of an acoustic-based methane flux estimation methodology in the Eastern Siberian Arctic Sea

    NASA Astrophysics Data System (ADS)

    Weidner, E. F.; Weber, T. C.; Mayer, L. A.

    2017-12-01

    Quantifying methane flux originating from marine seep systems in climatically sensitive regions is of critically importance for current and future climate studies. Yet, the methane contribution from these systems has been difficult to estimate given the broad spatial scale of the ocean and the heterogeneity of seep activity. One such region is the Eastern Siberian Arctic Sea (ESAS), where bubble release into the shallow water column (<40 meters average depth) facilitates transport of methane to the atmosphere without oxidation. Quantifying the current seep methane flux from the ESAS is necessary to understand not only the total ocean methane budget, but also to provide baseline estimates against which future climate-induced changes can be measured. At the 2016 AGU fall meeting, we presented a new acoustic-based flux methodology using a calibrated broadband split-beam echosounder. The broad (14-24 kHz) bandwidth provides a vertical resolution of 10 cm, making possible the identification of single bubbles. After calibration using 64 mm copper sphere of known backscatter, the acoustic backscatter of individual bubbles is measured and compared to analytical models to estimate bubble radius. Additionally, bubbles are precisely located and traced upwards through the water column to estimate rise velocity. The combination of radius and rise velocity allows for gas flux estimation. Here, we follow up with the completed implementation of this methodology applied to the Herald Canyon region of the western ESAS. From the 68 recognized seeps, bubble radii and rise velocity were computed for more than 550 individual bubbles. The range of bubble radii, 1-6 mm, is comparable to those published by other investigators, while the radius dependent rise velocities are consistent with published models. Methane flux for the Herald Canyon region was estimated by extrapolation from individual seep flux values.

  1. Implementing a bubble memory hierarchy system

    NASA Technical Reports Server (NTRS)

    Segura, R.; Nichols, C. D.

    1979-01-01

    This paper reports on implementation of a magnetic bubble memory in a two-level hierarchial system. The hierarchy used a major-minor loop device and RAM under microprocessor control. Dynamic memory addressing, dual bus primary memory, and hardware data modification detection are incorporated in the system to minimize access time. It is the objective of the system to incorporate the advantages of bipolar memory with that of bubble domain memory to provide a smart, optimal memory system which is easy to interface and independent of user's system.

  2. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble's pressure more in line with that of the adjacent material. Suggestions for future work are made.

  3. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    NASA Astrophysics Data System (ADS)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  4. Flight Engineer Donald R. Pettit looks closely at Sodium Chloride within a 50-millimeter metal loop

    NASA Image and Video Library

    2003-03-12

    ISS006-E-39142 (12 March 2003) --- Astronaut Donald R. Pettit, Expedition Six NASA ISS science officer, looks closely at a water bubble within a 50-millimeter metal loop. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  5. Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.

    PubMed

    Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura

    2002-10-01

    Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies.

  6. Helium bubbles aggravated defects production in self-irradiated copper

    NASA Astrophysics Data System (ADS)

    Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn

    2017-12-01

    Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.

  7. Analysis and design of ion-implanted bubble memory devices

    NASA Astrophysics Data System (ADS)

    Wullert, J. R., II; Kryder, M. H.

    1987-04-01

    4-μm period ion-implanted contiguous disk bubble memory circuits, designed and fabricated at AT&T Bell Laboratories, Murray Hill, NJ, have been investigated. Quasistatic testing has provided information about both the operational bias field ranges and the exact failure modes. A variety of major loop layouts were investigated and two turns found to severely limit bias field margins are discussed. The generation process, using a hairpin nucleator, was tested and several interesting failure modes were uncovered. Propagation on four different minor loop paths was observed and each was found to have characteristic failure modes. The transfer processes, both into and out of the minor loops, were investigated at higher frequencies to avoid local heating due to long transfer pulses at low frequencies. Again specific failure modes were identified. Overall bias margins for the chip were 9% at 50 Oe drive field and were limited by transfer-in.

  8. Predicting the fate of methane emanating from the seafloor using a marine two-phase gas model in one dimension (M2PG1) - Example from a known Arctic methane seep site offshore Svalbard

    NASA Astrophysics Data System (ADS)

    Jansson, Pär; Ferré, Benedicte

    2017-04-01

    Transport of methane in seawater occurs by diffusion and advection in the dissolved phase, and/or as free gas in form of bubbles. The fate of methane in bubbles emitted from the seafloor depends on both bubble size and ambient conditions. Larger bubbles can transport methane higher into the water column, potentially reaching the atmosphere and contributing to greenhouse gas concentrations and impacts. Single bubble or plume models have been used to predict the fate of bubble mediated methane gas emissions. Here, we present a new process based two-phase (free and dissolved) gas model in one dimension, which has the capability to dynamically couple water column properties such as temperature, salinity and dissolved gases with the free gas species contained in bubbles. The marine two-phase gas model in one dimension (M2PG1) uses a spectrum of bubbles and an Eulerian formulation, discretized on a finite-volume grid. It employs the most up-to-date equations for solubility and compressibility of the included gases, nitrogen, oxygen, carbon dioxide and methane. M2PG1 is an extension of PROBE (Omstedt, 2011), which facilitates atmospheric coupling and turbulence closures to realistically predict vertical mixing of all properties, including dissolved methane. This work presents the model's first application in an Arctic Ocean environment at the landward limit of the methane-hydrate stability zone west of Svalbard, where we observe substantial methane bubble release over longer time periods. The research is part of the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE) and is supported by the Research Council of Norway through its Centres of Excellence funding scheme grant No. 223259 and UiT. Omstedt, A. (2011). Guide to process based modeling of lakes and coastal seas: Springer.

  9. Shallow-water gaseohydrothermal plume studies after massive eruption at Panarea, Aeolian Islands, Italy

    NASA Astrophysics Data System (ADS)

    Tudino, T.; Bortoluzzi, G.; Aliani, S.

    2014-03-01

    Marine water dynamics in the near field of a massive gas eruption near Panarea (Aeolian Islands volcanic arc, SE Tyrrhenian Sea) is described. ADCP current-meters were deployed during the paroxysmal phase in 2002 and 2003 a few meters from the degassing vent, recording day-long time series. Datasets were sorted to remove errors and select good quality ensembles over the entire water column. Standard deviation of error velocity was considered a proxy for inhomogeneous velocity fields over beams. Time series intervals had been selected when the basic ADCP assumptions were fulfilled and random errors minimized. Backscatter data were also processed to identify bubbles in the water column with the aim of locating bubble-free ensembles. Reliable time series are selected combining these data. Two possible scenarios have been described: firstly, a highly dynamic situation with visible surface diverging rings of waves, entrainment on the lower part of the gas column, detrainment in the upper part and a stagnation line (SL) at mid depth where currents were close to zero and most of the gas bubbles spread laterally; secondly, a less dynamic situation with water entraining into the gas plume at all depths and no surface rings of diverging waves. Reasons for these different dynamics may be ascribed to changes in gas fluxes (one order of magnitude higher in 2002). Description of SL is important to quantify its position in the water column and timing for entrainment-detrainment, and it can be measured by ADCP and calculated from models.

  10. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals.

    PubMed

    Pedraza-de la Cuesta, Susana; Keijzers, Lore; van der Wielen, Luuk A M; Cuellar, Maria C

    2018-04-01

    In multiphase fermentations where the product forms a second liquid phase or where solvents are added for product extraction, turbulent conditions disperse the oil phase as droplets. Surface-active components (SACs) present in the fermentation broth can stabilize the product droplets thus forming an emulsion. Breaking this emulsion increases process complexity and consequently the production cost. In previous works, it has been proposed to promote demulsification of oil/supernatant emulsions in an off-line batch bubble column operating at low gas flow rate. The aim of this study is to test the performance of this recovery method integrated to a fermentation, allowing for continuous removal of the oil phase. A 500 mL bubble column is successfully integrated with a 2 L reactor during 24 h without affecting cell growth or cell viability. However, higher levels of surfactants and emulsion stability are measured in the integrated system compared to a base case, reducing its capacity for oil recovery. This is related to release of SACs due to cellular stress when circulating through the recovery column. Therefore, it is concluded that the gas bubble-induced oil recovery method allows for oil separation and cell recycling without compromising fermentation performance; however, tuning of the column parameters considering increased levels of SACs due to cellular stress is required for improving oil recovery. © 2018 The Authors. Biotechnology Journal Published by Wiley-VCHVerlag GmbH & Co. KGaA, Weinheim.

  11. One-dimensional model of inertial pumping

    NASA Astrophysics Data System (ADS)

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  12. One-dimensional model of inertial pumping.

    PubMed

    Kornilovitch, Pavel E; Govyadinov, Alexander N; Markel, David P; Torniainen, Erik D

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  13. Investigating the emission, dissolution, and oxidation of CH4 within and around a seep bubble plume in the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Leonte, M.; Kessler, J. D.; Socolofsky, S. A.

    2016-02-01

    One of the largest carbon reservoirs on the planet is stored as methane (CH4) in and below the seafloor. However, a large discrepancy exists between estimated fluxes of CH4 into the water column and CH4 fluxes from the sea surface to the atmosphere, suggesting that a significant fraction of CH4 released from seafloor seeps is dissolved and potentially removed through microbial oxidation. Here we present data investigating the fate of CH4 released from the Sleeping Dragon seep site in the Gulf of Mexico. The bubble plume was followed from the seafloor until it fully dissolved using a remotely operated vehicle (ROV). Water samples were collected by the ROV at different depths as well as lateral transects through the bubble plume. These samples were analyzed for dissolved concentrations of methane, ethane, propane, and butane as well as the 13C isotopic ratio of methane. Furthermore, seep bubbles from the seafloor were also collected and analyzed for the same properties. Based on these chemical data, the rate of CH4 emission from the seafloor, oxidation in the water column, and dissolution are investigated.

  14. Temperature impact on the micro structure of tungsten exposed to He irradiation in LHD

    NASA Astrophysics Data System (ADS)

    Bernard, Elodie; Sakamoto, Ryuichi; Tokitani, Masayuki; Masuzaki, Suguru; Hayashi, Hiromi; Yamada, Hiroshi; Yoshida, Naoaki

    2017-02-01

    A new temperature controlled material probe was designed for the exposure of tungsten samples to helium plasma in the LHD. Samples were exposed to estimated fluences of ∼1023 m-2 and temperatures ranging from 65 to 600 °C. Transmission Electron Microscopy analysis allowed the study of the impact of He irradiation under high temperatures on tungsten micro structure for the first time in real-plasma exposure conditions. Both dislocation loops and bubbles appeared from low to medium temperatures and saw an impressive increase of size (factor 4 to 6) most probably by coalescence as the temperature reaches 600 °C, with 500 °C appearing as a threshold for bubble growth. Annealing of the samples up to 800 C highlighted the stability of the dislocation damages formed by helium irradiation at high surface temperature, as bubbles and dislocation loops seem to conserve their characteristics. Additional studies on cross-sections showed that bubbles were formed much deeper (70-100 nm) than the heavily damaged surface layer (10-20 nm), raising concern about the impact on the material mechanical properties conservation and potential additional trapping of hydrogen isotopes.

  15. Theoretical modelling and optimization of bubble column dehumidifier for a solar driven humidification-dehumidification system

    NASA Astrophysics Data System (ADS)

    Ranjitha, P. Raj; Ratheesh, R.; Jayakumar, J. S.; Balakrishnan, Shankar

    2018-02-01

    Availability and utilization of energy and water are the top most global challenges being faced by the new millennium. At the present state water scarcity has become a global as well as a regional challenge. 40 % of world population faces water shortage. Challenge of water scarcity can be tackled only with increase in water supply beyond what is obtained from hydrological cycle. This can be achieved either by desalinating the sea water or by reusing the waste water. High energy requirement need to be overcome for either of the two processes. Of many desalination technologies, humidification dehumidification (HDH) technology powered by solar energy is widely accepted for small scale production. Detailed optimization studies on system have the potential to effectively utilize the solar energy for brackish water desalination. Dehumidification technology, specifically, require further study because the dehumidifier effectiveness control the energetic performance of the entire HDH system. The reason attributes to the high resistance involved to diffuse dilute vapor through air in a dehumidifier. The present work intends to optimize the design of a bubble column dehumidifier for a solar energy driven desalination process. Optimization is carried out using Matlab simulation. Design process will identify the unique needs of a bubble column dehumidifier in HDH system.

  16. Gas holdup and flow regime transition in spider-sparger bubble column: effect of liquid phase properties

    NASA Astrophysics Data System (ADS)

    Besagni, G.; Inzoli, F.; De Guido, G.; Pellegrini, L. A.

    2017-01-01

    This paper discusses the effects of the liquid velocity and the liquid phase properties on the gas holdup and the flow regime transition in a large-diameter and large-scale counter-current two-phase bubble column. In particular, we compared and analysed the experimental data obtained in our previous experimental studies. The bubble column is 5.3 m in height, has an inner diameter of 0.24 m, it was operated with gas superficial velocities in the range of 0.004-0.20 m/s and, in the counter-current mode, the liquid was recirculated up to a superficial velocity of -0.09 m/s. Air was used as the dispersed phase and various fluids (tap water, aqueous solutions of sodium chloride, ethanol and monoethylene glycol) were employed as liquid phases. The experimental dataset consist in gas holdup measurements and was used to investigate the global fluid dynamics and the flow regime transition between the homogeneous flow regime and the transition flow regime. We found that the liquid velocity and the liquid phase properties significantly affect the gas holdup and the flow regime transition. In this respect, a possible relationship (based on the lift force) between the flow regime transition and the gas holdup was proposed.

  17. CFD simulation of fatty acid methyl ester production in bubble column reactor

    NASA Astrophysics Data System (ADS)

    Salleh, N. S. Mohd; Nasir, N. F.

    2017-09-01

    Non-catalytic transesterification is one of the method that was used to produce the fatty acid methyl ester (FAME) by blowing superheated methanol bubbles continuously into the vegetable oil without using any catalyst. This research aimed to simulate the production of FAME from palm oil in a bubble column reactor. Computational Fluid Dynamic (CFD) simulation was used to predict the distribution of fatty acid methyl ester and other product in the reactor. The fluid flow and component of concentration along the reaction time was investigated and the effects of reaction temperature (523 K and 563 K) on the non-catalytic transesterification process has been examined. The study was carried out using ANSYS CFX 17.1. The finding from the study shows that increasing the temperature leads to higher amount of fatty acid methyl ester can be produced in shorter time. On the other hand, concentration of the component such as triglyceride (TG), glycerol (GL) and fatty acid methyl ester (FAME) can be known when reaching the optimum condition.

  18. Bubble vector in automatic merging

    NASA Technical Reports Server (NTRS)

    Pamidi, P. R.; Butler, T. G.

    1987-01-01

    It is shown that it is within the capability of the DMAP language to build a set of vectors that can grow incrementally to be applied automatically and economically within a DMAP loop that serves to append sub-matrices that are generated within a loop to a core matrix. The method of constructing such vectors is explained.

  19. View of salt crystals inserted within a 50mm metal loop in the U.S. Laboratory

    NASA Image and Video Library

    2003-03-15

    ISS006-E-39339 (15 March 2003) --- A close up view of sodium chloride crystals in a water bubble within a 50-millimeter metal loop was photographed by an Expedition Six crewmember. The experiment took place in the Destiny laboratory on the International Space Station (ISS).

  20. Molecular dynamics modeling of helium bubbles in austenitic steels

    NASA Astrophysics Data System (ADS)

    Jelea, A.

    2018-06-01

    The austenitic steel devices from pressurized water reactors are continuously subjected to neutron irradiation that produces crystalline point defects and helium atoms in the steel matrix. These species evolve into large defects such as dislocation loops and helium filled bubbles. This paper analyzes, through molecular dynamics simulations with recently developed interatomic potentials, the impact of the helium/steel interface on the helium behavior in nanosize bubbles trapped in an austenitic steel matrix. It is shown that the repulsive helium-steel interactions induce higher pressures in the bubble compared to bulk helium at the same temperature and average density. A new equation of state for helium is proposed in order to take into account these interface effects.

  1. Revising the Local Bubble Model due to Solar Wind Charge Exchange X-ray Emission

    NASA Astrophysics Data System (ADS)

    Shelton, Robin L.

    2009-03-01

    The hot Local Bubble surrounding the solar neighborhood has been primarily studied through observations of its soft X-ray emission. The measurements were obtained by attributing all of the observed local soft X-rays to the bubble. However, mounting evidence shows that the heliosphere also produces diffuse X-rays. The source is solar wind ions that have received an electron from another atom. The presence of this alternate explanation for locally produced diffuse X-rays calls into question the existence and character of the Local Bubble. This article addresses these questions. It reviews the literature on solar wind charge exchange (SWCX) X-ray production, finding that SWCX accounts for roughly half of the observed local 1/4 keV X-rays found at low latitudes. This article also makes predictions for the heliospheric O VI column density and intensity, finding them to be smaller than the observational error bars. Evidence for the continued belief that the Local Bubble contains hot gas includes the remaining local 1/4 keV intensity, the observed local O VI column density, and the need to fill the local region with some sort of plasma. If the true Local Bubble is half as bright as previously thought, then its electron density and thermal pressure are 1/sqrt{2} as great as previously thought, and its energy requirements and emission measure are 1/2 as great as previously thought. These adjustments can be accommodated easily, and, in fact, bring the Local Bubble’s pressure more in line with that of the adjacent material. Suggestions for future work are made.

  2. Using a Novel Optical Sensor to Characterize Methane Ebullition Processes

    NASA Astrophysics Data System (ADS)

    Delwiche, K.; Hemond, H.; Senft-Grupp, S.

    2015-12-01

    We have built a novel bubble size sensor that is rugged, economical to build, and capable of accurately measuring methane bubble sizes in aquatic environments over long deployment periods. Accurate knowledge of methane bubble size is important to calculating atmospheric methane emissions from in-land waters. By routing bubbles past pairs of optical detectors, the sensor accurately measures bubbles sizes for bubbles between 0.01 mL and 1 mL, with slightly reduced accuracy for bubbles from 1 mL to 1.5 mL. The sensor can handle flow rates up to approximately 3 bubbles per second. Optional sensor attachments include a gas collection chamber for methane sampling and volume verification, and a detachable extension funnel to customize the quantity of intercepted bubbles. Additional features include a data-cable running from the deployed sensor to a custom surface buoy, allowing us to download data without disturbing on-going bubble measurements. We have successfully deployed numerous sensors in Upper Mystic Lake at depths down to 18 m, 1 m above the sediment. The resulting data gives us bubble size distributions and the precise timing of bubbling events over a period of several months. In addition to allowing us to characterize typical bubble size distributions, this data allows us to draw important conclusions about temporal variations in bubble sizes, as well as bubble dissolution rates within the water column.

  3. Bubbles in Titan’s Seas: Nucleation, Growth, and RADAR Signature

    NASA Astrophysics Data System (ADS)

    Cordier, Daniel; Liger-Belair, Gérard

    2018-05-01

    In the polar regions of Titan, the main satellite of Saturn, hydrocarbon seas have been discovered by the Cassini–Huygens mission. RADAR observations have revealed surprising and transient bright areas over the Ligeia Mare surface. As suggested by recent research, bubbles could explain these strange features. However, the nucleation and growth of such bubbles, together with their RADAR reflectivity, have never been investigated. All of these aspects are critical to an actual observation. We have thus applied the classical nucleation theory to our context, and we developed a specific radiative transfer model that is appropriate for bubble streams in cryogenic liquids. According to our results, the sea bed appears to be the most plausible place for the generation of bubbles, leading to a signal comparable to observations. This conclusion is supported by thermodynamic arguments and by RADAR properties of a bubbly column. The latter are also valid in the case of bubble plumes, due to gas leaking from the sea floor.

  4. Spinning AdS loop diagrams: two point functions

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Sleight, Charlotte; Taronna, Massimo

    2018-06-01

    We develop a systematic approach to evaluating AdS loop amplitudes with spinning legs based on the spectral (or "split") representation of bulk-to-bulk propagators, which re-expresses loop diagrams in terms of spectral integrals and higher-point tree diagrams. In this work we focus on 2pt one-loop Witten diagrams involving totally symmetric fields of arbitrary mass and integer spin. As an application of this framework, we study the contribution to the anomalous dimension of higher-spin currents generated by bubble diagrams in higher-spin gauge theories on AdS.

  5. The hot chocolate effect

    NASA Astrophysics Data System (ADS)

    Crawford, Frank S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.

  6. Seismic performance of recycled concrete-filled square steel tube columns

    NASA Astrophysics Data System (ADS)

    Chen, Zongping; Jing, Chenggui; Xu, Jinjun; Zhang, Xianggang

    2017-01-01

    An experimental study on the seismic performance of recycled concrete-filled square steel tube (RCFST) columns is carried out. Six specimens were designed and tested under constant axial compression and cyclic lateral loading. Two parameters, replacement percentage of recycled coarse aggregate (RCA) and axial compression level, were considered in the test. Based on the experimental data, the hysteretic loops, skeleton curves, ductility, energy dissipation capacity and stiffness degradation of RCFST columns were analyzed. The test results indicate that the failure modes of RCFST columns are the local buckling of the steel tube at the bottom of the columns, and the hysteretic loops are full and their shapes are similar to normal CFST columns. Furthermore, the ductility coefficient of all specimens are close to 3.0, and the equivalent viscous damping coefficient corresponding to the ultimate lateral load ranges from 0.323 to 0.360, which demonstrates that RCFST columns exhibit remarkable seismic performance.

  7. Small Gas Bubble Experiment for Mitigation of Cavitation Damage and Pressure Waves in Short-pulse Mercury Spallation Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wendel, Mark W; Felde, David K; Sangrey, Robert L

    2014-01-01

    Populations of small helium gas bubbles were introduced into a flowing mercury experiment test loop to evaluate mitigation of beam-pulse induced cavitation damage and pressure waves. The test loop was developed and thoroughly tested at the Spallation Neutron Source (SNS) prior to irradiations at the Los Alamos Neutron Science Center - Weapons Neutron Research Center (LANSCE-WNR) facility. Twelve candidate bubblers were evaluated over a range of mercury flow and gas injection rates by use of a novel optical measurement technique that accurately assessed the generated bubble size distributions. Final selection for irradiation testing included two variations of a swirl bubblermore » provided by Japan Proton Accelerator Research Complex (J-PARC) collaborators and one orifice bubbler developed at SNS. Bubble populations of interest consisted of sizes up to 150 m in radius with achieved gas void fractions in the 10^-5 to 10^-4 range. The nominal WNR beam pulse used for the experiment created energy deposition in the mercury comparable to SNS pulses operating at 2.5 MW. Nineteen test conditions were completed each with 100 pulses, including variations on mercury flow, gas injection and protons per pulse. The principal measure of cavitation damage mitigation was surface damage assessment on test specimens that were manually replaced for each test condition. Damage assessment was done after radiation decay and decontamination by optical and laser profiling microscopy with damaged area fraction and maximum pit depth being the more valued results. Damage was reduced by flow alone; the best mitigation from bubble injection was between half and a quarter that of flow alone. Other data collected included surface motion tracking by three laser Doppler vibrometers (LDV), loop wall dynamic strain, beam diagnostics for charge and beam profile assessment, embedded hydrophones and pressure sensors, and sound measurement by a suite of conventional and contact microphones.« less

  8. Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium

    NASA Astrophysics Data System (ADS)

    Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.

    2017-12-01

    A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.

  9. Probing the Southern Fermi Bubble in Ultraviolet Absorption Using Distant AGNs

    NASA Astrophysics Data System (ADS)

    Karim, Md Tanveer; Fox, Andrew J.; Jenkins, Edward B.; Bordoloi, Rongmon; Wakker, Bart P.; Savage, Blair D.; Lockman, Felix J.; Crawford, Steven M.; Jorgenson, Regina A.; Bland-Hawthorn, Joss

    2018-06-01

    The Fermi Bubbles are two giant gamma-ray emitting lobes extending 55° above and below the Galactic center. While the Northern Bubble has been extensively studied in ultraviolet (UV) absorption, little is known about the gas kinematics of the southern Bubble. We use UV absorption-line spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to probe the southern Fermi Bubble using a sample of 17 background AGNs projected behind or near the Bubble. We measure the incidence of high-velocity clouds (HVC), finding that 4 out of 6 sightlines passing through the Bubble show HVC absorption, versus 6 out of 11 passing outside. We find strong evidence that the maximum absolute LSR velocity of the HVC components decreases as a function of galactic latitude within the Bubble, for both blueshifted and redshifted components, as expected for a decelerating outflow. We explore whether the column density ratios Si IV/Si III, Si IV/Si II, and Si III/Si II correlate with the absolute galactic latitude within the Bubble. These results demonstrate the use of UV absorption-line spectroscopy to characterize the kinematics and ionization conditions of embedded clouds in the Galactic center outflow.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang; Setyawan, Wahyu; Joshi, Vineet V.

    Xe gas bubble superlattice formation is observed in irradiated uranium–10 wt% molybdenum (U10Mo) fuels. However, the thermodynamic properties of the bubbles (the relationship among bubble size, equilibrium Xe concentration, and bubble pressure) and the mechanisms of bubble growth and superlattice formation are not well known. In this work, molecular dynamics is used to study these properties and mechanisms. The results provide important inputs for quantitative mesoscale models of gas bubble evolution and fuel performance. In the molecular dynamics simulations, the embedded-atom method (EAM) potential of U10Mo-Xe (Smirnova et al. 2013) is employed. Initial gas bubbles with low Xe concentration aremore » generated in a U10Mo single crystal. Then Xe atom atoms are continuously added into the bubbles, and the evolution of pressure and dislocation emission around the bubbles is analyzed. The relationship between pressure, equilibrium Xe concentration, and radius of the bubbles is established. It was found that the gas bubble growth is accompanied by partial dislocation emission, which results in a star-shaped dislocation structure and an anisotropic stress field. The emitted partial dislocations have a Burgers vector along the <111> direction and a slip plane of (11-2). Dislocation loop punch-out was not observed. A tensile stress was found along <110> directions around the bubble, favoring the nucleation and formation of a face-centered cubic bubble superlattice in body-centered cubic U10Mo fuels.« less

  11. Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juanes, Ruben

    The overall goals of this research are: (1) to determine the physical fate of single and multiple methane bubbles emitted to the water column by dissociating gas hydrates at seep sites deep within the hydrate stability zone or at the updip limit of gas hydrate stability, and (2) to quantitatively link theoretical and laboratory findings on methane transport to the analysis of real-world field-scale methane plume data placed within the context of the degrading methane hydrate province on the US Atlantic margin. The project is arranged to advance on three interrelated fronts (numerical modeling, laboratory experiments, and analysis of field-basedmore » plume data) simultaneously. The fundamental objectives of each component are the following: Numerical modeling: Constraining the conditions under which rising bubbles become armored with hydrate, the impact of hydrate armoring on the eventual fate of a bubble’s methane, and the role of multiple bubble interactions in survival of methane plumes to very shallow depths in the water column. Laboratory experiments: Exploring the parameter space (e.g., bubble size, gas saturation in the liquid phase, “proximity” to the stability boundary) for formation of a hydrate shell around a free bubble in water, the rise rate of such bubbles, and the bubble’s acoustic characteristics using field-scale frequencies. Field component: Extending the results of numerical modeling and laboratory experiments to the field-scale using brand new, existing, public-domain, state-of-the-art real world data on US Atlantic margin methane seeps, without acquiring new field data in the course of this particular project. This component quantitatively analyzes data on Atlantic margin methane plumes and place those new plumes and their corresponding seeps within the context of gas hydrate degradation processes on this margin.« less

  12. Bubble coalescence in a Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Garg, Vishrut; Basaran, Osman

    2017-11-01

    Bubble coalescence plays a central role in the hydrodynamics of gas-liquid systems such as bubble column reactors, spargers, and foams. Two bubbles approaching each other at velocity V coalesce when the thin film between them ruptures, which is often the rate-limiting step. Experimental studies of this system are difficult, and recent works provide conflicting results on the effect of V on coalescence times. We simulate the head-on approach of two bubbles of equal radii R in an incompressible Newtonian fluid (density ρ, viscosity μ, and surface tension σ) by solving numerically the free boundary problem comprised of the Navier Stokes and continuity equations. Simulations are made challenging by the existence of highly disparate lengthscales, i.e. film thickness and drop radii, which are resolved by using the method of elliptic mesh generation. For a given liquid, the bubbles are shown to coalesce for all velocities below a critical value. The effects of Ohnesorge number Oh = μ /√{ ρσR } on coalescence time and critical velocity are also investigated.

  13. DO-increasing effects of a microscopic bubble generating system in a fish farm.

    PubMed

    Endo, Akira; Srithongouthai, Sarawut; Nashiki, Hisatsune; Teshiba, Ichiro; Iwasaki, Takaaki; Hama, Daigo; Tsutsumi, Hiroaki

    2008-01-01

    We have developed a "microscopic bubble generating system for the fish farm" and evaluated its ability to improve the quality of seawater and costs of it in marine cages of red sea bream (Pagrus major) in Kusuura Bay, Japan. Our results revealed that DO concentration of bubbling net pens increased and became significantly higher than the level outside the net pen (between 0.52 and 0.87 mg/L), and the whole water column was nearly saturated. Temperatures of the bubbling net pens decreased slightly between 0.08 and 0.12 degrees C in all the layers. Furthermore, micro-bubbles seemed to reach the deeper water due to the downward flow and diffusion. This study demonstrated that the microscopic bubble generating system developed in our research project could increase efficiently the dissolved oxygen concentration throughout all water layers of the fish farm. A capital and operation costs of the system is recoverable within a year.

  14. Stable sonoluminescence within a water hammer tube.

    PubMed

    Chakravarty, Avik; Georghiou, Theo; Phillipson, Tacye E; Walton, Alan J

    2004-06-01

    The sonoluminescence (SL) from the collapse of a single gas bubble within a liquid can be produced repetitively using an acoustic resonator. An alternative technique using a water hammer tube, producing SL from bubbles of greater size, is described here. A sealed vertical tube partly filled with a liquid and a gas at low pressure is subjected to vertical vibrations. The oscillation of the pressure within the liquid column, due to inertial forces, excites cavitation bubbles to grow and collapse. Rotation is used to confine the bubbles to the axis of the tube. Bright SL emissions were observed in a number of liquids. Repetitive emission was produced from bubbles in condensed phosphoric acid. Bubbles of 0.4 mm ambient radius (containing 2x 10(14) xenon atoms) were excited by vibration at 35 Hz. Approximately 10(12) photons were emitted per collapse in the range 400-700 nm (over four orders of magnitude greater than the brightest SL reported previously), corresponding to a 1% efficiency of the conversion of mechanical energy into light.

  15. Effects of pH on nano-bubble stability and transport in saturated porous media

    NASA Astrophysics Data System (ADS)

    Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku

    2018-01-01

    An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition.

  16. Effects of pH on nano-bubble stability and transport in saturated porous media.

    PubMed

    Hamamoto, Shoichiro; Takemura, Takato; Suzuki, Kenichiro; Nishimura, Taku

    2018-01-01

    An understanding of nano-scale bubble (NB) transport in porous media is important for potential application of NBs in soil/groundwater remediation. It is expected that the solution chemistry of NB water highly influences the surface characteristics of NBs and porous media and the interaction between them, thus affecting the stability and transport characteristics of NB. In this study, in addition to stability experiments, one-dimensional column transport experiments using glass beads were conducted to investigate the effects of pH on the NB transport behavior. The results showed that the NBs were more stable under higher pH. Column transport experiments revealed that entrapment of NBs, especially larger ones, was enhanced in lower-pH water, likely suggesting pH-dependent NB attachment and physical straining, both of which are also probably influenced by bubble size. Although relatively smaller NBs were released after switching the eluting fluid to one with lower ionic strength, most of the NBs in lower-pH water were still retained in the porous media even altering the chemical condition. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The hot chocolate effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Frank S.

    1982-05-01

    The "hot chocolate effect" was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles floatmore » to the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the ten percent accuracy of the experiments.« less

  18. Hot chocolate effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, F.S.

    1982-05-01

    The ''hot chocolate effect'' was investigated quantitatively, using water. If a tall glass cylinder is filled nearly completely with water and tapped on the bottom with a softened mallet one can detect the lowest longitudinal mode of the water column, for which the height of the water column is one-quarter wavelength. If the cylinder is rapidly filled with hot tap water containing dissolved air the pitch of that mode may descend by nearly three octaves during the first few seconds as the air comes out of solution and forms bubbles. Then the pitch gradually rises as the bubbles float tomore » the top. A simple theoretical expression for the pitch ratio is derived and compared with experiment. The agreement is good to within the 10% accuracy of the experiments.« less

  19. Precipitated Silica from Pumice and Carbon Dioxide Gas (Co2) in Bubble Column Reactor

    NASA Astrophysics Data System (ADS)

    Dewati, R.; Suprihatin, S.; Sumada, K.; Muljani, S.; Familya, M.; Ariani, S.

    2018-01-01

    Precipitated silica from silica and carbon dioxide gas has been studied successfully. The source of silica was obtained from pumice stone while precipitation process was carried out with carbon dioxide gas (CO2). The sodium silicate solution was obtained by extracting the silica from pumice stone with sodium hydroxide (NaOH) solution and heated to 100 °C for 1 h. The carbon dioxide gas is injected into the aqueous solution of sodium silicate in a bubble column reactor to form precipitated silica. m2/g. The results indicate that the products obtained are precipitate silica have surface area in the range of 100 - 227 m2/g, silica concentration more than 80%, white in appearance, and silica concentration reached 90% at pH 7.

  20. Gas Bubble Dynamics under Mechanical Vibrations

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2017-11-01

    The scientific community has a limited understanding of the bubble dynamics under mechanical oscillations due to over simplification of Navier-Stockes equation by neglecting the shear stress tensor and not accounting for body forces when calculating the acoustic radiation force. The current work experimental investigates bubble dynamics under mechanical vibration and resulting acoustic field by measuring the bubble size and velocity using high-speed imaging. The experimental setup consists of a custom-designed shaker table, cast acrylic bubble column, compressed air injection manifold and an optical imaging system. The mechanical vibrations resulted in accelerations between 0.25 to 10 times gravitational acceleration corresponding to frequency and amplitude range of 8 - 22Hz and 1 - 10mm respectively. Throughout testing the void fraction was limited to <5%. The bubble size is larger than resonance size and smaller than acoustic wavelength. The amplitude of acoustic pressure wave was estimated using the definition of Bjerknes force in combination with Rayleigh-Plesset equation. Physical behavior of the system was capture and classified. Bubble size, velocity as well as size and spatial distribution will be presented.

  1. Dissolution of methane bubbles with hydrate armoring in deep ocean conditions

    NASA Astrophysics Data System (ADS)

    Kovalchuk, Margarita; Socolofsky, Scott

    2017-11-01

    The deep ocean is a storehouse of natural gas. Methane bubble moving upwards from marine sediments may become trapped in gas hydrates. It is uncertain precisely how hydrate armoring affects dissolution, or mass transfer from the bubble to the surrounding water column. The Texas A&M Oilspill Calculator was used to simulate a series of gas bubble dissolution experiments conducted in the United States Department of Energy National Energy Technology Laboratory High Pressure Water Tunnel. Several variations of the mass transfer coefficient were calculated based on gas or hydrate phase solubility and clean or dirty bubble correlations. Results suggest the mass transfer coefficient may be most closely modeled with gas phase solubility and dirty bubble correlation equations. Further investigation of hydrate bubble dissolution behavior will refine current numeric models which aid in understanding gas flux to the atmosphere and plumes such as oil spills. Research funded in part by the Texas A&M University 2017 Undergraduate Summer Research Grant and a Grant from the Methane Gas Hydrates Program of the US DOE National Energy Technology Laboratory.

  2. CS Emission Near MIR-bubbles

    NASA Astrophysics Data System (ADS)

    Watson, C.; Devine, Kathryn; Quintanar, N.; Candelaria, T.

    2016-02-01

    We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1-0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1-0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.

  3. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  4. FAST TRACK COMMUNICATION: Regularized Kerr-Newman solution as a gravitating soliton

    NASA Astrophysics Data System (ADS)

    Burinskii, Alexander

    2010-10-01

    The charged, spinning and gravitating soliton is realized as a regular solution of the Kerr-Newman (KN) field coupled with a chiral Higgs model. A regular core of the solution is formed by a domain wall bubble interpolating between the external KN solution and a flat superconducting interior. An internal electromagnetic (em) field is expelled to the boundary of the bubble by the Higgs field. The solution reveals two new peculiarities: (i) the Higgs field is oscillating, similar to the known oscillon models; (ii) the em field forms on the edge of the bubble a Wilson loop, resulting in quantization of the total angular momentum.

  5. High-energy synchrotron study of in-pile-irradiated U–Mo fuels

    DOE PAGES

    Miao, Yinbin; Mo, Kun; Ye, Bei; ...

    2015-12-30

    We report synchrotron scattering analysis results on U-7wt%Mo fuel samples irradiated in the Advanced Test Reactor to three different burnup levels. Mature fission gas bubble superlattice was observed to form at intermediate burnup. The superlattice constant was determined to be 11.7 nm and 12.1 nm by wide-angle and small-angle scattering respectively. Grain sub-division takes place throughout the irradiation and causes the collapse of the superlattice at high burnup. The bubble superlattice expands the lattice constant and acts as strong sinks of radiation induced defects. The evolution of dislocation loops was therefore suppressed until the bubble superlattice collapses.

  6. Online ^{222}Rn removal by cryogenic distillation in the XENON100 experiment

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; Gangi, P. Di; Giovanni, A. Di; Diglio, S.; Duchovni, E.; Eurin, G.; Fei, J.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Gallo Rosso, A.; Galloway, M.; Gao, F.; Garbini, M.; Geis, C.; Goetzke, L. W.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Lellouch, D.; Levinson, L.; Calloch, M. Le; Lin, Q.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Manfredini, A.; Maris, I.; Undagoitia, T. Marrodán; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Piro, M.-C.; Pizzella, V.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Saldanha, R.; dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Lavina, L. Scotto; Selvi, M.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Sivers, M. v.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C.; Upole, N.; Wang, H.; Wei, Y.; Weinheimer, C.; Wulf, J.; Ye, J.; Zhang, Y.; Cristescu, I.

    2017-06-01

    We describe the purification of xenon from traces of the radioactive noble gas radon using a cryogenic distillation column. The distillation column was integrated into the gas purification loop of the XENON100 detector for online radon removal. This enabled us to significantly reduce the constant ^{222}Rn background originating from radon emanation. After inserting an auxiliary ^{222}Rn emanation source in the gas loop, we determined a radon reduction factor of R > 27 (95% C.L.) for the distillation column by monitoring the ^{222}Rn activity concentration inside the XENON100 detector.

  7. A bubble column evaporator with basic flat-plate condenser for brackish and seawater desalination.

    PubMed

    Schmack, Mario; Ho, Goen; Anda, Martin

    2016-01-01

    This paper describes the development and experimental evaluation of a novel bubble column-based humidification-dehumidification system, for small-scale desalination of saline groundwater or seawater in remote regions. A bubble evaporator prototype was built and matched with a simple flat-plate type condenser for concept assessment. Consistent bubble evaporation rates of between 80 and 88 ml per hour were demonstrated. Particular focus was on the performance of the simple condenser prototype, manufactured from rectangular polyvinylchlorid plastic pipe and copper sheet, a material with a high thermal conductivity that quickly allows for conduction of the heat energy. Under laboratory conditions, a long narrow condenser model of 1500 mm length and 100 mm width achieved condensate recovery rates of around 73%, without the need for external cooling. The condenser prototype was assessed under a range of different physical conditions, that is, external water cooling, partial insulation and aspects of air circulation, via implementing an internal honeycomb screen structure. Estimated by extrapolation, an up-scaled bubble desalination system with a 1 m2 condenser may produce around 19 l of distilled water per day. Sodium chloride salt removal was found to be highly effective with condensate salt concentrations between 70 and 135 µS. Based on findings and with the intent to reduce material cost of the system, a shorter condenser length of 750 mm for the non-cooled (passive) condenser and of 500 mm for the water-cooled condenser was considered to be equally efficient as the experimentally evaluated prototype of 1500 mm length.

  8. Theoretical study of closed-loop recycling liquid-liquid chromatography and experimental verification of the theory.

    PubMed

    Kostanyan, Artak E; Erastov, Andrey A

    2016-09-02

    The non-ideal recycling equilibrium-cell model including the effects of extra-column dispersion is used to simulate and analyze closed-loop recycling counter-current chromatography (CLR CCC). Previously, the operating scheme with the detector located before the column was considered. In this study, analysis of the process is carried out for a more realistic and practical scheme with the detector located immediately after the column. Peak equation for individual cycles and equations describing the transport of single peaks and complex chromatograms inside the recycling closed-loop, as well as equations for the resolution between single solute peaks of the neighboring cycles, for the resolution of peaks in the recycling chromatogram and for the resolution between the chromatograms of the neighboring cycles are presented. It is shown that, unlike conventional chromatography, increasing of the extra-column volume (the recycling line length) may allow a better separation of the components in CLR chromatography. For the experimental verification of the theory, aspirin, caffeine, coumarin and the solvent system hexane/ethyl acetate/ethanol/water (1:1:1:1) were used. Comparison of experimental and simulated processes of recycling and distribution of the solutes in the closed-loop demonstrated a good agreement between theory and experiment. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Thermodynamic stability of nanosized multicomponent bubbles/droplets: the square gradient theory and the capillary approach.

    PubMed

    Wilhelmsen, Øivind; Bedeaux, Dick; Kjelstrup, Signe; Reguera, David

    2014-01-14

    Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which shows the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.

  10. Thermodynamic stability of nanosized multicomponent bubbles/droplets: The square gradient theory and the capillary approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilhelmsen, Øivind, E-mail: oivind.wilhelmsen@ntnu.no; Bedeaux, Dick; Kjelstrup, Signe

    Formation of nanosized droplets/bubbles from a metastable bulk phase is connected to many unresolved scientific questions. We analyze the properties and stability of multicomponent droplets and bubbles in the canonical ensemble, and compare with single-component systems. The bubbles/droplets are described on the mesoscopic level by square gradient theory. Furthermore, we compare the results to a capillary model which gives a macroscopic description. Remarkably, the solutions of the square gradient model, representing bubbles and droplets, are accurately reproduced by the capillary model except in the vicinity of the spinodals. The solutions of the square gradient model form closed loops, which showsmore » the inherent symmetry and connected nature of bubbles and droplets. A thermodynamic stability analysis is carried out, where the second variation of the square gradient description is compared to the eigenvalues of the Hessian matrix in the capillary description. The analysis shows that it is impossible to stabilize arbitrarily small bubbles or droplets in closed systems and gives insight into metastable regions close to the minimum bubble/droplet radii. Despite the large difference in complexity, the square gradient and the capillary model predict the same finite threshold sizes and very similar stability limits for bubbles and droplets, both for single-component and two-component systems.« less

  11. Effects of nutrient ratios and carbon dioxide bio-sequestration on biomass growth of Chlorella sp. in bubble column photobioreactor.

    PubMed

    Vo, Hoang-Nhat-Phong; Bui, Xuan-Thanh; Nguyen, Thanh-Tin; Nguyen, Dinh Duc; Dao, Thanh-Son; Cao, Ngoc-Dan-Thanh; Vo, Thi-Kim-Quyen

    2018-08-01

    Photobioreactor technology, especially bubble column configuration, employing microalgae cultivation (e.g., Chlorella sp.), is an ideal man-made environment to achieve sufficient microalgae biomass through its strictly operational control. Nutrients, typically N and P, are necessary elements in the cultivation process, which determine biomass yield and productivity. Specifically, N:P ratios have certain effects on microalgae's biomass growth. It is also attractive that microalgae can sequester CO 2 by using that carbon source for photosynthesis and, subsequently, reducing CO 2 emission. Therefore, this study aims to investigate the effect of N:P ratios on Chlorella sp.'s growth, and to study the dynamic of CO 2 fixation in the bubble column photobioreactor. According to our results, N:P ratio of 15:1 could produce the highest biomass yield (3568 ± 158 mg L -1 ). The maximum algae concentration was 105 × 10 6  cells mL -1 , receiving after 92 h. Chlorella sp. was also able to sequester CO 2 at 28 ± 1.2%, while the specific growth rate and carbon fixation rate were observed at 0.064 h -1 and 68.9 ± 1.91 mg L -1  h -1 , respectively. The types of carbon sources (e.g., organic and inorganic carbon) possessed potential impact on microalgae's cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Heat transfer and hydrodynamic investigations of a baffled slurry bubble column

    NASA Astrophysics Data System (ADS)

    Saxena, S. C.; Chen, Z. D.

    1992-09-01

    Heat transfer and hydrodynamic investigations have been conducted in a 0.108 m internal diameter bubble column at ambient conditions. The column is equipped with seven 19mm diameter tubes arranged in an equilateral triangular pitch of 36.5 mm. A Monsanto synthetic heat transfer fluid, Therminol-66 having a viscosity of 39.8 cP at 303 K, is used as a liquid medium. Magnetite powders, average diameters 27.7 and 36.6 µm, in five concentrations up to 50 weight percent in the slurry, are used. As a gas phase, industrial grade nitrogen of purity 99.6 percent is employed. Gas holdup in different operating modes and regimes have been measured for the two- and three-phase systems over a superficial gas velocity range up to 0.20 m/s in the semi-batch mode. Heat transfer coefficients are measured at different tube locations in the bundle at different radial and vertical locations over a range of operating conditions. All these data are compared with the existing literature correlations and models. New correlations are proposed.

  13. Dynamics of sonoluminescing bubbles within a liquid hammer device.

    PubMed

    Urteaga, Raúl; García-Martínez, Pablo Luis; Bonetto, Fabián J

    2009-01-01

    We studied the dynamics of a single sonoluminescing bubble (SBSL) in a liquid hammer device. In particular, we investigated the phosphoric acid-xenon system, in which pulses up to four orders of magnitude brighter than SBSL in water systems (about 10;{12} photons per pulse) have been previously reported [Chakravarty, Phys. Rev. E 69, 066317 (2004)]. We used stroboscopic photography and a Mie scattering technique in order to measure the radius evolution of the bubbles. Under adequate conditions we may position a bubble at the bottom of the tube (cavity) and a second bubble trapped at the middle of the tube (upper bubble). During its collapse, the cavity produces the compression of the liquid column. This compression drives impulsively the dynamics of the upper bubble. Our measurements reveal that the observed light emissions produced by the upper bubble are generated at its second collapse. We employed a simple numerical model to investigate the conditions that occur during the upper bubble collapse. We found good agreement between numerical and experimental values for the light intensity (fluence) and light pulse widths. Results from the model show that the light emission is increased mainly due to an increase in noble gas ambient radius and not because the maximum temperature increases. Even for the brightest pulses obtained ( 2x10;{13} photons, about 20W of peak power) the maximum temperatures computed for the upper bubble are always lower than 20000K .

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang; Lavender, Curt A.; Joshi, Vineet V.

    Recrystallization plays an important role in swelling kinetics of irradiated metallic nuclear fuels. This talk will present a three-dimensional microstructure-dependent swelling model by integrating the evolution of intra-and inter- granular gas bubbles, dislocation loop density, and recrystallization.

  15. Bubble Plumes at NW Rota-1 Submarine Volcano, Mariana Arc: Visualization and Analysis of Multibeam Water Column Data

    NASA Astrophysics Data System (ADS)

    Merle, S. G.; Chadwick, W. W.; Embley, R. W.; Doucet, M.

    2012-12-01

    During a March 2010 expedition to NW Rota-1 submarine volcano in the Mariana arc a new EM122 multibeam sonar system on the R/V Kilo Moana was used to repeatedly image bubble plumes in the water column over the volcano. The EM122 (12 kHz) system collects seafloor bathymetry and backscatter data, as well as acoustic return water column data. Previous expeditions to NW Rota-1 have included seafloor mapping / CTD tow-yo surveys and remotely operated vehicle (ROV) dives in 2004, 2005, 2006 and 2009. Much of the focus has been on the one main eruptive vent, Brimstone, located on the south side of the summit at a depth of ~440m, which has been persistently active during all ROV visits. Extensive degassing of CO2 bubbles have been observed by the ROV during frequent eruptive bursts from the vent. Between expeditions in April 2009 and March 2010 a major eruption and landslide occurred at NW Rota-1. ROV dives in 2010 revealed that after the landslide the eruptive vent had been reorganized from a single site to a line of vents. Brimstone vent was still active, but 4 other new eruptive vents had also emerged in a NW/SE line below the summit extending ~100 m from the westernmost to easternmost vents. During the ROV dives, the eruptive vents were observed to turn on and off from day to day and hour to hour. Throughout the 2010 expedition numerous passes were made over the volcano summit to image the bubble plumes above the eruptive vents in the water column, in order to capture the variability of the plumes over time and to relate them to the eruptive output of the volcano. The mid-water sonar data set totals >95 hours of observations over a 12-day period. Generally, the ship drove repeatedly over the eruptive vents at a range of ship speeds (0.5-4 knots) and headings. In addition, some mid-water data was collected during three ROV dives when the ship was stationary over the vents. We used the FMMidwater software program (part of QPS Fledermaus) to visualize and analyze the data collected with this new mid-water technology. The data show that during some passes over the vent all 5 eruptive vents were contributing to the plume above the volcano, whereas on other passes only 1 vent was visible. However, it was common that multiple vents were active at any one time. The highest observed rise of a bubble plume in the water column came from the easternmost vent, with the main plume rising 415 meters from the vent to within 175 m of the surface. In some cases, wisps from the main plume rose to heights less than 100 m from the surface. This analysis shows that water column imaging multibeam sonar data can be used as a proxy to determine the level of eruptive activity above submarine volcanoes that have robust CO2 output. We plan to compare this data set to other data sets including hydrophone recordings, ADCP data and ROV visual observations.

  16. Bubble video experiments in the marine waters off Panarea Island (Italy): real-world data for modelling CO2 bubble dissolution and evolution

    NASA Astrophysics Data System (ADS)

    Beaubien, Stan; De Vittor, Cinzia; McGinnis, Dan; Bigi, Sabina; Comici, Cinzia; Ingrosso, Gianmarco; Lombardi, Salvatore; Ruggiero, Livio

    2014-05-01

    Carbon capture and storage is expected to provide an important, short-term contribution to mitigate global climate change due to anthropogenic emissions of CO2. Offshore reservoirs are particularly favourable, however concerns exist regarding the potential for CO2 leakage into the water column (with possible ecosystem impacts) and the atmosphere. Although laboratory experiments and modelling can examine these issues, the study of natural systems can provide a more complete and realistic understanding. For this reason the natural CO2 emission site off the coast of Panarea Island (Italy) was chosen for study within the EC-funded ECO2 project. The present paper discusses the results of field experiments conducted at this site to better understand the fate of CO2 gas bubbles as they rise through the water column, and to use this real-world data as input to test the predictive capabilities of a bubble model. Experiments were conducted using a 1m wide x 1m deep x 3m tall, hollow-tube structure equipped with a vertical guide on the front face and a dark, graduated cloth for contrast and depth reference on the back. A Plexiglas box was filled with the naturally emitted gas and fixed on the seafloor inside the structure. Tubes exit the top of the box to make bubbles of different diameters, while valves on each tube control bubble release rate. Bubble rise velocity was measured by tracking each bubble with a HD video camera mounted in the guide and calculating values over 20 cm intervals. Bubble diameter was measured by filming the bubbles as they collide with a graduated Plexiglas sheet deployed horizontally at the measurement height. Bubble gas was collected at different heights using a funnel and analysed in the laboratory for CO2, O2+Ar, N2, and CH4. Water parameters were measured by performing a CTD cast beside the structure and collecting water samples at four depths using a Niskin bottle; samples were analysed in the laboratory for all carbonate system species, DO, and dissolved gases. An in-house developed GasPro sensor was also mounted on the structure to monitor pCO2 over the entire 2.5 hour duration of the experiment. The obtained data were used as input into the Discrete Bubble Model (DBM) (e.g., McGinnis et al., 2011, doi:10.1029/2010JC006557). The DBM uses mass balance to predict the gas flux across the bubble surface, whereby gas flux direction depends on internal bubble gas concentration and ambient concentration, and considering the Henry's coefficient and partial pressure of the gas. The model uses bubble-size dependent relationships for the mass transfer rate and the bubble rise velocity. Important model input parameters include: bubble size; depth; ambient dissolved gas concentrations, temperature and salinity; and initial bubble gas concentrations. Measured and modelled results are compared, showing good general agreement. Based on the concentrations measured at the lowest level, the modelled and measured bubble concentrations match very closely. Bubble size values do not match as well if this initial concentration is used, however they improve as a value closer to 100% CO2 is applied. This preliminary study has shown promising results and highlight areas where experimental design and data quality should be improved in the next phase of the study.

  17. Eruptive dynamics during magma decompression: a laboratory approach

    NASA Astrophysics Data System (ADS)

    Spina, L.; Cimarelli, C.; Scheu, B.; Wadsworth, F.; Dingwell, D. B.

    2013-12-01

    A variety of eruptive styles characterizes the activity of a given volcano. Indeed, eruptive styles can range from effusive phenomena to explosive eruptions, with related implications for hazard management. Rapid changes in eruptive style can occur during an ongoing eruption. These changes are, amongst other, related to variations in the magma ascent rate, a key parameter affecting the eruptive style. Ascent rate is in turn dependent on several factors such as the pressure in the magma chamber, the physical properties of the magma and the rate at which these properties change. According to the high number of involved parameters, laboratory decompression experiments are the best way to achieve quantitative information on the interplay of each of those factors and the related impact on the eruption style, i.e. by analyzing the flow and deformation behavior of the transparent volatile-bearing analogue fluid. We carried out decompression experiments following different decompression paths and using silicone oil as an analogue for the melt, with which we can simulate a range of melt viscosity values. For a set of experiments we added rigid particles to simulate the presence of crystals in the magma. The pure liquid or suspension was mounted into a transparent autoclave and pressurized to different final pressures. Then the sample was saturated with argon for a fixed amount of time. The decompression path consists of a slow decompression from the initial pressure to the atmospheric condition. Alternatively, samples were decompressed almost instantaneously, after established steps of slow decompression. The decompression path was monitored with pressure transducers and a high-speed video camera. Image analysis of the videos gives quantitative information on the bubble distribution with respect to depth in the liquid, pressure and time of nucleation and on their characteristics and behavior during the ongoing magma ascent. Furthermore, we also monitored the evolution of the expanding height of the silicone oil column with time after the decompression, due to the exsolution of the volatile argon and subsequent bubble growth. Contrastingly, autoclave-wall resolved shear strain of bubbles promotes rapid coalescence until a critical point when permeable outgassing is more efficient than continuing exsolution and bubble growth. At this point the column destabilizes and partially collapses. Collapse progresses until the top of the column is again impermeable and outgassing-driven column expansion resumes. This process repeats in cycles of growth, deformation, destabilization and densification until the melt is at equilibrium saturation with argon and the column collapses completely. We propose that direct observation of the timescales of growth and collapse of a decompressing, shearing column has important implications for decompression-driven rapid conduit ascent of low-viscosity, low-crystallinity magmas. Therefore, even at high exsolution rates, permeable outgassing can transiently retard magma ascent.

  18. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, S.; Walter Anthony, K. M.; Archer, D.

    Microbial methane (CH 4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH 4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH 4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH 4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We findmore » that summertime ebullition dominates annual CH 4 emissions to the atmosphere. Eighty percent of CH 4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH 4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH 4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH 4 dissolution from trapped bubbles, and greater CH 4 emissions from northern lakes.« less

  19. Modeling the impediment of methane ebullition bubbles by seasonal lake ice

    DOE PAGES

    Greene, S.; Walter Anthony, K. M.; Archer, D.; ...

    2014-12-08

    Microbial methane (CH 4) ebullition (bubbling) from anoxic lake sediments comprises a globally significant flux to the atmosphere, but ebullition bubbles in temperate and polar lakes can be trapped by winter ice cover and later released during spring thaw. This "ice-bubble storage" (IBS) constitutes a novel mode of CH 4 emission. Before bubbles are encapsulated by downward-growing ice, some of their CH 4 dissolves into the lake water, where it may be subject to oxidation. We present field characterization and a model of the annual CH 4 cycle in Goldstream Lake, a thermokarst (thaw) lake in interior Alaska. We findmore » that summertime ebullition dominates annual CH 4 emissions to the atmosphere. Eighty percent of CH 4 in bubbles trapped by ice dissolves into the lake water column in winter, and about half of that is oxidized. The ice growth rate and the magnitude of the CH 4 ebullition flux are important controlling factors of bubble dissolution. Seven percent of annual ebullition CH 4 is trapped as IBS and later emitted as ice melts. In a future warmer climate, there will likely be less seasonal ice cover, less IBS, less CH 4 dissolution from trapped bubbles, and greater CH 4 emissions from northern lakes.« less

  20. Microalgal-biotechnology as a platform for an integral biogas upgrading and nutrient removal from anaerobic effluents.

    PubMed

    Bahr, Melanie; Díaz, Ignacio; Dominguez, Antonio; González Sánchez, Armando; Muñoz, Raul

    2014-01-01

    The potential of a pilot high rate algal pond (HRAP) interconnected via liquid recirculation with an external absorption column for the simultaneous removal of H2S and CO2 from biogas using an alkaliphilic microalgal-bacterial consortium was evaluated. A bubble column was preferred as external absorption unit to a packed bed column based on its ease of operation, despite showing a comparable CO2 mass transfer capacity. When the combined HRAP-bubble column system was operated under continuous mode with mineral salt medium at a biogas residence time of 30 min in the absorption column, the system removed 100% of the H2S (up to 5000 ppmv) and 90% of the CO2 supplied, with O2 concentrations in the upgraded biogas below 0.2%. The use of diluted centrates as a free nutrient source resulted in a gradual decrease in CO2 removal to steady values of 40%, while H2S removal remained at 100%. The anaerobic digestion of the algal-bacterial biomass produced during biogas upgrading resulted in a CH4 yield of 0.21-0.27 L/gVS, which could satisfy up to 60% of the overall energy demand for biogas upgrading. This proof of concept study confirmed that algal-bacterial photobioreactors can support an integral upgrading without biogas contamination, with a net negative CO2 footprint, energy production, and a reduction of the eutrophication potential of the residual anaerobic effluents.

  1. In Situ Raman Spectroscopic Observations of Gas-Saturated Rising Oil droplets: Simulation with Decane as an Oil-Equivalent Substitute

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Walz, P. M.; Brewer, P. G.

    2016-02-01

    Oil droplets rising from the sea floor, whether from seeps or well leakage, contain very large quantities of dissolved gas that profoundly affects their density and critical oil-water interfacial characteristics. The primary dissolved gas is methane which may be up to 30% of the molar volume. This can create a hydrate skin as the methane gas is shed from the oil as it rises through the water column, thus decreasing in pressure and increasing in temperature, and steadily changing the rising droplet buoyancy. We have explored this phenomenon by executing controlled ROV based experiments with a "bubble cup" technique in which a small volume of gas saturated decane (saturated with pure methane, a mix of methane and nitrogen , or a mix of methane and CO2) is interrogated by laser Raman spectroscopy. The use of decane as an oil "substitute" is required since natural oil samples are highly fluorescent due to the presence of polycyclic aromatic hydrocarbons. We have devised Matlab techniques for extracting the spectroscopic dissolved methane signal from the thicket of decane peaks that surround it. We have directly observed the rate at which gases are lost from the "oil" per unit area at depths in the water column that are both within and outside the hydrate forming phase boundary. We have compared the behavior of both a non-hydrate forming dissolved gas (nitrogen) with CO2 where the hydrate phase boundary is at significantly shallower depth. The results indicate complex interfacial behavior and physical chemistry. We did not observe direct gas bubble formation on the decane outer surface but did observe gas bubble formation within the oil droplets as they rose through the water column. Because there are significant energy barriers for homogeneous bubble formation within the decane phase, we took this as evidence of significant gas super-saturation within the oil droplet. The gas loss rates increased significantly in all cases when the hydrate phase boundary was crossed.

  2. CFD Study of Full-Scale Aerobic Bioreactors: Evaluation of Dynamic O2 Distribution, Gas-Liquid Mass Transfer and Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humbird, David; Sitaraman, Hariswaran; Stickel, Jonathan

    If advanced biofuels are to measurably displace fossil fuels in the near term, they will have to operate at levels of scale, efficiency, and margin unprecedented in the current biotech industry. For aerobically-grown products in particular, scale-up is complex and the practical size, cost, and operability of extremely large reactors is not well understood. Put simply, the problem of how to attain fuel-class production scales comes down to cost-effective delivery of oxygen at high mass transfer rates and low capital and operating costs. To that end, very large reactor vessels (>500 m3) are proposed in order to achieve favorable economiesmore » of scale. Additionally, techno-economic evaluation indicates that bubble-column reactors are more cost-effective than stirred-tank reactors in many low-viscosity cultures. In order to advance the design of extremely large aerobic bioreactors, we have performed computational fluid dynamics (CFD) simulations of bubble-column reactors. A multiphase Euler-Euler model is used to explicitly account for the spatial distribution of air (i.e., gas bubbles) in the reactor. Expanding on the existing bioreactor CFD literature (typically focused on the hydrodynamics of bubbly flows), our simulations include interphase mass transfer of oxygen and a simple phenomenological reaction representing the uptake and consumption of dissolved oxygen by submerged cells. The simulations reproduce the expected flow profiles, with net upward flow in the center of column and downward flow near the wall. At high simulated oxygen uptake rates (OUR), oxygen-depleted regions can be observed in the reactor. By increasing the gas flow to enhance mixing and eliminate depleted areas, a maximum oxygen transfer (OTR) rate is obtained as a function of superficial velocity. These insights regarding minimum superficial velocity and maximum reactor size are incorporated into NREL's larger techno-economic models to supplement standard reactor design equations.« less

  3. Time-series measurements of bubble plume variability and water column methane distribution above Southern Hydrate Ridge, Oregon

    NASA Astrophysics Data System (ADS)

    Philip, Brendan T.; Denny, Alden R.; Solomon, Evan A.; Kelley, Deborah S.

    2016-03-01

    An estimated 500-2500 gigatons of methane carbon is sequestered in gas hydrate at continental margins and some of these deposits are associated with overlying methane seeps. To constrain the impact that seeps have on methane concentrations in overlying ocean waters and to characterize the bubble plumes that transport methane vertically into the ocean, water samples and time-series acoustic images were collected above Southern Hydrate Ridge (SHR), a well-studied hydrate-bearing seep site ˜90 km west of Newport, Oregon. These data were coregistered with robotic vehicle observations to determine the origin of the seeps, the plume rise heights above the seafloor, and the temporal variability in bubble emissions. Results show that the locations of seep activity and bubble release remained unchanged over the 3 year time-series investigation, however, the magnitude of gas release was highly variable on hourly time scales. Bubble plumes were detected to depths of 320-620 m below sea level (mbsl), in several cases exceeding the upper limit of hydrate stability by ˜190 m. For the first time, sustained gas release was imaged at the Pinnacle site and in-between the Pinnacle and the Summit area of venting, indicating that the subseafloor transport of fluid and gas is not restricted to the Summit at SHR, requiring a revision of fluid-flow models. Dissolved methane concentrations above background levels from 100 to 300 mbsl are consistent with long-term seep gas transport into the upper water column, which may lead to the build-up of seep-derived carbon in regional subsurface waters and to increases in associated biological activity.

  4. Direct Methanol Fuel Cell (DMFC) Battery Replacement Program

    DTIC Science & Technology

    2013-01-29

    selection of the Reynold’s number enables use of water for simulation of gas or liquid flow. Introduction of dye to the flow stream, with video...calibrated using a soap -film flow meter (Bubble-o-meter, Dublin, OH). Eleven Array system temperature regions were set as follows prior to start of...expected. The ar- ray flow proceeds down the columns: column effects would be more likely than row effects from a design of experiments perspective

  5. Low temperature MS2 (ATCC15597-B1) virus inactivation using a hot bubble column evaporator (HBCE).

    PubMed

    Garrido, A; Pashley, R M; Ninham, B W

    2017-03-01

    In the treatment of household wastewater viruses are hard to eliminate. A new technique is described which tackles this major problem. The MS2 (ATCC15597-B1) virus was used as a surrogate to estimate the inactivation rates for enteric viruses by a hot (150°C) air bubble column evaporator (HBCE) system Its surface charging properties obtained by dynamic light scattering, have been studied in a range of aqueous salt solutions and secondary treated synthetic sewage water. A combination of MS2 virus surface charge properties with thermal inactivation rates, and an improved double layer plaque assay technique, allows an assessment of the efficiency of the HBCE process for virus removal in water. The system is a new energy efficient treatment for water reuse applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Immobilization of Trametes versicolor cultures for improving laccase production in bubble column reactor intensified by sonication.

    PubMed

    Wang, Feng; Guo, Chen; Liu, Chun-Zhao

    2013-01-01

    The mycelia of Trametes versicolor immobilized in alginate beads provided higher laccase production than that in pelleted form. An efficient ultrasonic treatment enhanced laccase production from the immobilized T. versicolor cultures. The optimized treatment process consisted of exposing 36-h-old bead cultures to 7-min ultrasonic treatments twice with a 12-h interval using a fixed ultrasonic power and frequency (120 W, 40 kHz). Using the intensification strategy with sonication, laccase production increased by more than 2.1-fold greater than the untreated control in both flasks and bubble column reactors. The enhancement of laccase production by ultrasonic treatment is related to the improved mass transfer of nutrients and product between the liquid medium and the gel matrix. These results provide a basis for the large-scale and highly-efficient production of laccase using sonobioreactors.

  7. Intense gas bubble emissions in the Kerch seep area - A newly discovered high-flux seep site in the Black Sea

    NASA Astrophysics Data System (ADS)

    Römer, M.; Sahling, H.; Pape, T.; Bahr, A.; Feseker, T.; Wintersteller, P.; Bohrmann, G.

    2012-04-01

    More than 500 bubble-induced hydroacoustic anomalies (flares) were found in the water column above the seafloor in the study area comprising about 430 km2 at the Don-Kuban paleo-fan (Eastern Black Sea) by using ship mounted single beam and multibeam echosounders. Almost all flares originated from the seafloor above the gas hydrate stability zone (GHSZ), which in that region is located below ~700 m water depth. This observation confirms the sealing mechanism of gas hydrate, which impedes migration of free gas through the GHSZ and subsequent bubble emission from the seafloor. However, an intense seep site, called the "Kerch seep area" was discovered as an exception at 890 m water depth well within the GHSZ. In situ temperature measurements in shallow sediments indicate locally elevated temperatures probably caused by enhanced upward fluid flow. The base of the GHSZ in this region is generally situated at about 150 m below the seafloor. However, the local thermal anomalies result in a thinning of the gas hydrate occurrence zone to only a few meters below the seafloor and allow free gas to reach the seafloor. At sites where gas migrated into near-surface deposits, shallow gas hydrate deposits evolved and up-doming of overlying sediments led to the formation of mounds rising several meters from the surrounding seafloor. Further gas bubbles ascending from greater depth are accumulated below the gas hydrate layer at the base of the mound structures and migrate horizontally to their rims. At the mound edges gas bubbles either might form fresh gas hydrates and increase the extent of the mound structures by pushing up overlying sediments or escape at several sites into the water column. Two mounds were mapped in ultra-high resolution during dives with the autonomous underwater vehicle 'AUV MARUM SEAL 5000'. Several individual flares were detected in the Kerch seep area using hydroacoustic systems. Repeated surveys in that area conducted during three cruises within four years suggested that gas discharge varied spatially and temporally while the total number of flares remained rather constant. During seafloor inspections with MARUḾs remotely operated vehicle 'ROV QUEST 4000 m' gas bubble emission sites were investigated in detail. Gas bubbles collected during the ROV dives mainly consisted of methane predominantly of microbial origin. By analyzing the high-definition video material the gas flux from several bubble emission sites was calculated. In combination with the hydroacoustic results (flare distributions) it is estimated that about 2.2 - 87 × 106 mol CH4/yr are emitted from the seafloor at the Kerch seep area. Despite this high mass of methane injected into the hydrosphere, the peak of the highest flares at ~350 m water depth as revealed by echosounder recording suggest that the ascending methane completely dissolves in the water column and does not pass the sea-atmosphere boundary.

  8. Generation of High Frequency Response in a Dynamically Loaded, Nonlinear Soil Column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-08-01

    Detailed guidance on linear seismic analysis of soil columns is provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998),” which is currently under revision. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain analysis which includes evaluation of soil columns. When performing linear analysis, a given soil column is typically evaluated with a linear, viscous damped constitutive model. When submitted to a sine wave motion, this constitutive model produces a smooth hysteresis loop. For nonlinear analysis, the soil column can be modelled with an appropriate nonlinear hysteretic soilmore » model. For the model in this paper, the stiffness and energy absorption result from a defined post yielding shear stress versus shear strain curve. This curve is input with tabular data points. When submitted to a sine wave motion, this constitutive model produces a hysteresis loop that looks similar in shape to the input tabular data points on the sides with discontinuous, pointed ends. This paper compares linear and nonlinear soil column results. The results show that the nonlinear analysis produces additional high frequency response. The paper provides additional study to establish what portion of the high frequency response is due to numerical noise associated with the tabular input curve and what portion is accurately caused by the pointed ends of the hysteresis loop. Finally, the paper shows how the results are changed when a significant structural mass is added to the top of the soil column.« less

  9. Methane rising from the Deep: Hydrates, Bubbles, Oil Spills, and Global Warming

    NASA Astrophysics Data System (ADS)

    Leifer, I.; Rehder, G. J.; Solomon, E. A.; Kastner, M.; Asper, V. L.; Joye, S. B.

    2011-12-01

    Elevated methane concentrations in near-surface waters and the atmosphere have been reported for seepage from depths of nearly 1 km at the Gulf of Mexico hydrate observatory (MC118), suggesting that for some methane sources, deepsea methane is not trapped and can contribute to atmospheric greenhouse gas budgets. Ebullition is key with important sensitivity to the formation of hydrate skins and oil coatings, high-pressure solubility, bubble size and bubble plume processes. Bubble ROV tracking studies showed survival to near thermocline depths. Studies with a numerical bubble propagation model demonstrated that consideration of structure I hydrate skins transported most methane only to mid-water column depths. Instead, consideration of structure II hydrates, which are stable to far shallower depths and appropriate for natural gas mixtures, allows bubbles to survive to far shallower depths. Moreover, model predictions of vertical methane and alkane profiles and bubble size evolution were in better agreement with observations after consideration of structure II hydrate properties as well as an improved implementation of plume properties, such as currents. These results demonstrate the importance of correctly incorporating bubble hydrate processes in efforts to predict the impact of deepsea seepage as well as to understand the fate of bubble-transported oil and methane from deepsea pipeline leaks and well blowouts. Application to the DWH spill demonstrated the importance of deepsea processes to the fate of spilled subsurface oil. Because several of these parameters vary temporally (bubble flux, currents, temperature), sensitivity studies indicate the importance of real-time monitoring data.

  10. The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.

  11. Inflatable Column Structure

    NASA Technical Reports Server (NTRS)

    Hedgepeth, J. M.

    1985-01-01

    Lightweight structural member easy to store. Billowing between circumferential loops of fiber inflated column becomes series of cells. Each fiber subjected to same tension along entire length (though tension is different in different fibers). Member is called "isotensoid" column. Serves as jack for automobiles or structures during repairs. Also used as support for temporary bleachers or swimming pools.

  12. Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C

    DOE PAGES

    Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...

    2016-02-03

    Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less

  13. Moduli vacuum bubbles produced by evaporating black holes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, J. R.

    2007-10-15

    We consider a model with a toroidally compactified extra dimension giving rise to a temperature-dependent 4D effective potential with one-loop contributions due to the Casimir effect, along with a 5D cosmological constant. The forms of the effective potential at low and high temperatures indicate a possibility for the formation of a domain wall bubble, formed by the modulus scalar field, surrounding an evaporating black hole. This is viewed as an example of a recently proposed black hole vacuum bubble arising from matter-sourced moduli fields in the vicinity of an evaporating black hole [D. Green, E. Silverstein, and D. Starr, Phys.more » Rev. D 74, 024004 (2006)]. The black hole bubble can be highly opaque to lower-energy particles and photons, and thereby entrap them within. For high-temperature black holes, there may also be a symmetry-breaking black hole bubble of false vacuum of the type previously conjectured by Moss [I. G. Moss, Phys. Rev. D 32, 1333 (1985)], tending to reflect low-energy particles from its wall. A double bubble composed of these two different types of bubble may form around the black hole, altering the hole's emission spectrum that reaches outside observers. Smaller mass black holes that have already evaporated away could have left vacuum bubbles behind that contribute to the dark matter.« less

  14. Simplified liquid oxygen propellant conditioning concepts

    NASA Technical Reports Server (NTRS)

    Cleary, N. L.; Holt, K. A.; Flachbart, R. H.

    1995-01-01

    Current liquid oxygen feed systems waste propellant and use hardware, unnecessary during flight, to condition the propellant at the engine turbopumps prior to launch. Simplified liquid oxygen propellant conditioning concepts are being sought for future launch vehicles. During a joint program, four alternative propellant conditioning options were studied: (1) passive recirculation; (2) low bleed through the engine; (3) recirculation lines; and (4) helium bubbling. The test configuration for this program was based on a vehicle design which used a main recirculation loop that was insulated on the downcomer and uninsulated on the upcomer. This produces a natural convection recirculation flow. The test article for this program simulated a feedline which ran from the main recirculation loop to the turbopump. The objective was to measure the temperature profile of this test article. Several parameters were varied from the baseline case to determine their effects on the temperature profile. These parameters included: flow configuration, feedline slope, heat flux, main recirculation loop velocity, pressure, bleed rate, helium bubbling, and recirculation lines. The heat flux, bleed rate, and recirculation configurations produced the greatest changes from the baseline temperature profile. However, the temperatures in the feedline remained subcooled. Any of the options studied could be used in future vehicles.

  15. Dissolved oxygen control and monitoring implementation in the liquid lead bismuth eutectic loop: HELIOS

    NASA Astrophysics Data System (ADS)

    Nam, Hyo On; Lim, Jun; Han, Dong Yoon; Hwang, Il Soon

    2008-06-01

    A 12 m tall LBE coolant loop, named as HELIOS, has been developed by thermal-hydraulic scaling of the PEACER-300MWe. Thermo-hydraulic experiment and materials test are the principal purposes of HELIOS operation. In this study, an yttria stabilized zirconia (YSZ) based oxygen sensor that was hermetically sealed for long-term applications using the electromagnetically swaged metal-ceramic joining method, have been developed for high temperature oxygen control application over a long period of time. The rugged electrode design has been calibrated to absolute metal-oxide equilibrium by using a first principle of detecting pure metal-oxide transition using electrochemical impedance spectroscopy (EIS). During the materials tests in HELIOS, dissolved oxygen concentration was administered at the intended condition of 10 -6 wt% by direct gas bubbling with Ar + 4%H 2, Ar + 5%O 2 and/or pure Ar while corrosion tests were conducted for up to 1000 h with inspection after each 333 h. During the total 1000 h corrosion test, oxygen concentration was measured by oxygen sensor. The result confirmed that the direct gas bubbling method is a viable and practical option for controlling oxygen concentration in large loops including HELIOS.

  16. The footprint of CO2 leakage in the water-column: Insights from numerical modeling based on a North Sea gas release experiment

    NASA Astrophysics Data System (ADS)

    Vielstädte, L.; Linke, P.; Schmidt, M.; Sommer, S.; Wallmann, K.; McGinnis, D. F.; Haeckel, M.

    2013-12-01

    Assessing the environmental impact of potential CO2 leakage from offshore carbon dioxide storage sites necessitates the investigation of the corresponding pH change in the water-column. Numerical models have been developed to simulate the buoyant rise and dissolution of CO2 bubbles in the water-column and the subsequent near-field dispersion of dissolved CO2 in seawater under ocean current and tidal forcing. In order to test and improve numerical models a gas release experiment has been conducted at 80 m water-depth within the Sleipner area (North Sea). CO2 and Kr (used as inert tracer gas) were released on top of a benthic lander at varying gas flows (<140 kg/day) and bubble sizes (de: 1-6 mm). pCO2 and pH were measured by in situ sensors to monitor the spread of the solute in different vertical heights and distances downstream of the artificial leak. The experiment and numerical analysis show that the impact of such leakage rates is limited to the near-field bottom waters, due to the rapid dissolution of CO2 bubbles in seawater (CO2 is being stripped within the first two to five meters of bubble rise). In particular, small bubbles, which will dissolve close to the seafloor, may cause a dangerous low-pH environment for the marine benthos. However, on the larger scale, the advective transport by e.g. tidal currents, dominates the CO2 dispersal in the North Sea and dilutes the CO2 peak quickly. The model results show that at the small scales (<100 m) of the CO2 plume the lateral eddy diffusion (~0.01 m2/s) has only a negligible effect. Overall, we can postulate that CO2 leakage at a rate of ~ 100 kg per day as in our experiment will only have a localized impact on the marine environment, thereby reducing pH substantially (by 0.4 units) within a diameter of less than 50 m around the release spot (depending on the duration of leakage and the current velocities). Strong currents and tidal cycles significantly reduce the spreading of low-pH water masses into the far-field by efficiently diluting the amount of CO2 in ambient seawater.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.

    Experiments showed that recrystallization dramatically speeds up the gas bubble swelling kinetics in metallic UMo fuels. In this work a recrystallization model is developed to study the effect of microstructures and radiation conditions on recrystallization kinetics. The model integrates the rate theory of intra-granular gas bubble and interstitial loop evolution and a phase field model of recrystallization zone evolution. A fast passage method is employed to describe one dimensional diffusion of interstitials which have diffusivity several order magnitude larger than that of the fission gas Xe. With the model, the effect of grain sizes on recrystallization kinetics is simulated.

  18. High performance liquid chromatography column efficiency enhancement by zero dead volume recycling and practical approach using park and recycle arrangement.

    PubMed

    Minarik, Marek; Franc, Martin; Minarik, Milan

    2018-06-15

    A new instrumental approach to recycling HPLC is described. The concept is based on fast reintroduction of incremental peak sections back onto the separation column. The re-circulation is performed within a closed loop containing only the column and two synchronized switching valves. By having HPLC pump out of the cycle, the method minimizes peak broadening due to dead volume. As a result the efficiency is dramatically increased allowing for the most demanding analytical applications. In addition, a parking loop is employed for temporary storage of analytes from the middle section of the separated mixture prior to their recycling. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Dynamics of gas-driven eruptions: Experimental simulations using CO2-H2O-polymer system

    NASA Astrophysics Data System (ADS)

    Zhang, Youxue; Sturtevant, B.; Stolper, E. M.

    1997-02-01

    We report exploratory experiments simulating gas-driven eruptions using the CO2-H2O system at room temperature as an analog of natural eruptive systems. The experimental apparatus consists of a test cell and a large tank. Initially, up to 1.0 wt% of CO2 is dissolved in liquid water under a pressure of up to 735 kPa in the test cell. The experiment is initiated by suddenly reducing the pressure of the test cell to a typical tank pressure of 10 kPa. The following are the main results: (1) The style of the process depends on the decompression ratio. There is a threshold decompression ratio above which rapid eruption occurs. (2) During rapid eruption, there is always fragmentation at the liquid-vapor interface. Fragmentation may also occur in the flow interior. (3) Initially, the top of the erupting column ascends at a constant acceleration (instead of constant velocity). (4) Average bubble radius grows as t2/3. (5) When viscosity is 20 times that of pure water or greater, a static foam may be stable after expansion to 97% vesicularity. The experiments provide several insights into natural gas-driven eruptions, including (1) the interplay between bubble growth and ascent of the erupting column must be considered for realistic modeling of bubble growth during gas-driven eruptions, (2) buoyant rise of the bubbly magma is not necessary during an explosive volcanic eruption, and (3) CO2-driven limnic eruptions can be explosive. The violence increases with the initial CO2 content dissolved in water.

  20. Experimental constraints on the outgassing dynamics of basaltic magmas

    NASA Astrophysics Data System (ADS)

    Pioli, L.; Bonadonna, C.; Azzopardi, B. J.; Phillips, J. C.; Ripepe, M.

    2012-03-01

    The dynamics of separated two-phase flow of basaltic magmas in cylindrical conduits has been explored combining large-scale experiments and theoretical studies. Experiments consisted of the continuous injection of air into water or glucose syrup in a 0.24 m diameter, 6.5 m long bubble column. The model calculates vesicularity and pressure gradient for a range of gas superficial velocities (volume flow rates/pipe area, 10-2-102 m/s), conduit diameters (100-2 m), and magma viscosities (3-300 Pa s). The model is calibrated with the experimental results to extrapolate key flow parameters such as Co (distribution parameter) and Froude number, which control the maximum vesicularity of the magma in the column, and the gas rise speed of gas slugs. It predicts that magma vesicularity increases with increasing gas volume flow rate and decreases with increasing conduit diameter, until a threshold value (45 vol.%), which characterizes churn and annular flow regimes. Transition to annular flow regimes is expected to occur at minimum gas volume flow rates of 103-104 m3/s. The vertical pressure gradient decreases with increasing gas flow rates and is controlled by magma vesicularity (in bubbly flows) or the length and spacing of gas slugs. This study also shows that until conditions for separated flow are met, increases in magma viscosity favor stability of slug flow over bubbly flow but suggests coexistence between gas slugs and small bubbles, which contribute to a small fraction of the total gas outflux. Gas flow promotes effective convection of the liquid, favoring magma homogeneity and stable conditions.

  1. Rupture loop annex ion exchange RLAIX vault deactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  2. Decentralized safety concept for closed-loop controlled intensive care.

    PubMed

    Kühn, Jan; Brendle, Christian; Stollenwerk, André; Schweigler, Martin; Kowalewski, Stefan; Janisch, Thorsten; Rossaint, Rolf; Leonhardt, Steffen; Walter, Marian; Kopp, Rüdger

    2017-04-01

    This paper presents a decentralized safety concept for networked intensive care setups, for which a decentralized network of sensors and actuators is realized by embedded microcontroller nodes. It is evaluated for up to eleven medical devices in a setup for automated acute respiratory distress syndrome (ARDS) therapy. In this contribution we highlight a blood pump supervision as exemplary safety measure, which allows a reliable bubble detection in an extracorporeal blood circulation. The approach is validated with data of animal experiments including 35 bubbles with a size between 0.05 and 0.3 ml. All 18 bubbles with a size down to 0.15 ml are successfully detected. By using hidden Markov models (HMMs) as statistical method the number of necessary sensors can be reduced by two pressure sensors.

  3. Experimental investigation of sound generation by a protuberance in a laminar boundary layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, M.; Asai, M.; Inasawa, A.

    2014-08-15

    Sound radiation from a two-dimensional protuberance glued on the wall in a laminar boundary layer was investigated experimentally at low Mach numbers. When the protuberance was as high as the boundary-layer thickness, a feedback-loop mechanism set in between protuberance-generated sound and Tollmien-Schlichting (T-S) waves generated by the leading-edge receptivity to the upstream-propagating sound. Although occurrence of a separation bubble immediately upstream of the protuberance played important roles in the evolution of instability waves into vortices interacting with the protuberance, the frequency of tonal vortex sound was determined by the selective amplification of T-S waves in the linear instability stage upstreammore » of the separation bubble and was not affected by the instability of the separation bubble.« less

  4. Behavior and dynamics of bubble breakup in gas pipeline leaks and accidental subsea oil well blowouts.

    PubMed

    Wang, Binbin; Socolofsky, Scott A; Lai, Chris C K; Adams, E Eric; Boufadel, Michel C

    2018-06-01

    Subsea oil well blowouts and pipeline leaks release oil and gas to the environment through vigorous jets. Predicting the breakup of the released fluids in oil droplets and gas bubbles is critical to predict the fate of petroleum compounds in the marine water column. To predict the gas bubble size in oil well blowouts and pipeline leaks, we observed and quantified the flow behavior and breakup process of gas for a wide range of orifice diameters and flow rates. Flow behavior at the orifice transitions from pulsing flow to continuous discharge as the jet crosses the sonic point. Breakup dynamics transition from laminar to turbulent at a critical value of the Weber number. Very strong pure gas jets and most gas/liquid co-flowing jets exhibit atomization breakup. Bubble sizes in the atomization regime scale with the jet-to-plume transition length scale and follow -3/5 power-law scaling for a mixture Weber number. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    DOEpatents

    Gamwo, Isaac K [Murrysville, PA; Gidaspow, Dimitri [Northbrook, IL; Jung, Jonghwun [Naperville, IL

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  6. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA

    USGS Publications Warehouse

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2012-01-01

    From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles <50 μm is measured in the clasts, implying very rapid nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.

  7. Bubble-facilitated VOC transport: Laboratory experiments and numerical modelling

    NASA Astrophysics Data System (ADS)

    Mumford, K. G.; Soucy, N. C.

    2017-12-01

    Most conceptual and numerical models of vapor intrusion assume that the transport of volatile organic compounds (VOCs) from the source to near the building foundation is a diffusion-limited processes. However, the transport of VOCs by mobilized gas bubbles through the saturated zone could lead to increased rates of transport and advection through the unsaturated zone, thereby increasing mass flux and risks associated with vapor intrusion. This mobilized gas could be biogenic (methanogenic) but could also result from the partitioning of VOC to trapped atmospheric gases in light non-aqueous phase liquid (LNAPL) smear zones. The potential for bubble-facilitated VOC transport to increase mass flux was investigated in a series of 1D and 2D laboratory experiments. Pentane source zones were emplaced in sand using sequential drainage and imbibition steps to mimic a water table fluctuation and trap air alongside LNAPL residual. This source was placed below an uncontaminated, water saturated sand (occlusion zone) and a gravel-sized (glass beads) unsaturated zone. Water was pumped laterally through the source zone and occlusion zone to deliver the dissolved gases (air) that are required for the expansion of trapped gas bubbles. Images from 2D flow cell experiments were used to demonstrate fluid rearrangement in the source zone and gas expansion to the occlusion zone, and 1D column experiments were used to measure gas-phase pentane mass flux. This flux was found to be 1-2 orders of magnitude greater than that measured in diffusion-dominated control columns, and showed intermittent behavior consistent with bubble transport by repeated expansion, mobilization, coalescence and trapping. Numerical simulation results under a variety of conditions using an approach that couples macroscopic invasion percolation with mass transfer (MIP-MT) between the aqueous and gas phases will also be presented. The results of this study demonstrate the potential for bubble-facilitated transport to increase transport rates linked to vapor intrusion, and will serve as a basis for further development of conceptual and numerical models to investigate the conditions under which this mechanism may play an important role.

  8. Subcooled Pool Boiling Heat Transfer Mechanisms in Microgravity: Terrier-improved Orion Sounding Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Benton, John; Kucner, Robert

    2000-01-01

    A microscale heater array was used to study boiling in earth gravity and microgravity. The heater array consisted of 96 serpentine heaters on a quartz substrate. Each heater was 0.27 square millimeters. Electronic feedback loops kept each heater's temperature at a specified value. The University of Maryland constructed an experiment for the Terrier-Improved Orion sounding rocket that was delivered to NASA Wallops and flown. About 200 s of high quality microgravity and heat transfer data were obtained. The VCR malfunctioned, and no video was acquired. Subsequently, the test package was redesigned to fly on the KC-135 to obtain both data and video. The pressure was held at atmospheric pressure and the bulk temperature was about 20 C. The wall temperature was varied from 85 to 65 C. Results show that gravity has little effect on boiling heat transfer at wall superheats below 25 C, despite vast differences in bubble behavior between gravity levels. In microgravity, a large primary bubble was surrounded by smaller bubbles, which eventually merged with the primary bubble. This bubble was formed by smaller bubbles coalescing, but had a constant size for a given superheat, indicating a balance between evaporation at the base and condensation on the cap. Most of the heaters under the bubble indicated low heat transfer, suggesting dryout at those heaters. High heat transfer occurred at the contact line surrounding the primary bubble. Marangoni convection formed a "jet" of fluid into the bulk fluid that forced the bubble onto the heater.

  9. Bubble gate for in-plane flow control.

    PubMed

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  10. Layered storage of biogenic methane-enriched gas bubbles in peat: A lumped capacitance model controlled by soil structure

    NASA Astrophysics Data System (ADS)

    Chen, X.; Comas, X.; Binley, A. M.; Slater, L. D.

    2017-12-01

    Methane can accumulate in the gaseous phase in peats, and enter the atmosphere as gas bubbles with a mass flux higher than that via diffusion and plant-mediated pathways. A complete understanding of the mechanisms regulating bubble storage in peats remains incomplete. We developed a layered model to quantify the storage of gas bubbles over a peat column based on a general lumped capacitance model. This conceptual model was applied to explain the effects of peat structure on bubble storage at different depths observed in a laboratory experiment. A peat monolith was collected from the Everglades, a subtropical wetland located in Florida (USA), and kept submerged in a cuboid chamber over 102 days until gas bubble saturation was achieved. Time-lapse ground-penetrating radar (GPR) was used to estimate changes in gas content of each layer and the corresponding average dimensions of stored gas bubbles. The results highlight a hotspot layer of bubble accumulation at depths between 5 and 10 cm below the monolith surface. Bubbles in this shallow hotspot layer were larger relative to those in deeper layers, whilst the degree of decomposition of the upper layers was generally smaller than that of the lower layers based on von Post humification tests. X-ray Computer tomography (CT) was applied to resin-impregnated peat sections from different depths and the results showed that a higher porosity promotes bubbles storage. The stored gas bubbles were released by changing water levels and the air CH4 concentrations above the peat monolith were measured using a flow-through chamber system to confirm the high CH4 concentration in the stored bubbles. Our findings suggest that bubble capacitance is related to the difference in size between gas bubbles and peat pores. This work has implications for better understanding how changes in water table elevation associated with climate change and sea level rise (particularly for freshwater wetlands near coastal areas like the Everglades) may potentially alter bubble sizes, thus bubble storage in peats.

  11. Reliable prediction of heat transfer coefficient in three-phase bubble column reactor via adaptive neuro-fuzzy inference system and regularization network

    NASA Astrophysics Data System (ADS)

    Garmroodi Asil, A.; Nakhaei Pour, A.; Mirzaei, Sh.

    2018-04-01

    In the present article, generalization performances of regularization network (RN) and optimize adaptive neuro-fuzzy inference system (ANFIS) are compared with a conventional software for prediction of heat transfer coefficient (HTC) as a function of superficial gas velocity (5-25 cm/s) and solid fraction (0-40 wt%) at different axial and radial locations. The networks were trained by resorting several sets of experimental data collected from a specific system of air/hydrocarbon liquid phase/silica particle in a slurry bubble column reactor (SBCR). A special convection HTC measurement probe was manufactured and positioned in an axial distance of 40 and 130 cm above the sparger at center and near the wall of SBCR. The simulation results show that both in-house RN and optimized ANFIS due to powerful noise filtering capabilities provide superior performances compared to the conventional software of MATLAB ANFIS and ANN toolbox. For the case of 40 and 130 cm axial distance from center of sparger, at constant superficial gas velocity of 25 cm/s, adding 40 wt% silica particles to liquid phase leads to about 66% and 69% increasing in HTC respectively. The HTC in the column center for all the cases studied are about 9-14% larger than those near the wall region.

  12. Numerical studies on the link between radioisotopic signatures on Earth and the formation of the Local Bubble. I. 60Fe transport to the solar system by turbulent mixing of ejecta from nearby supernovae into a locally homogeneous interstellar medium

    NASA Astrophysics Data System (ADS)

    Schulreich, M. M.; Breitschwerdt, D.; Feige, J.; Dettbarn, C.

    2017-08-01

    Context. The discovery of radionuclides like 60Fe with half-lives of million years in deep-sea crusts and sediments offers the unique possibility to date and locate nearby supernovae. Aims: We want to quantitatively establish that the 60Fe enhancement is the result of several supernovae which are also responsible for the formation of the Local Bubble, our Galactic habitat. Methods: We performed three-dimensional hydrodynamic adaptive mesh refinement simulations (with resolutions down to subparsec scale) of the Local Bubble and the neighbouring Loop I superbubble in different homogeneous, self-gravitating environments. For setting up the Local and Loop I superbubble, we took into account the time sequence and locations of the generating core-collapse supernova explosions, which were derived from the mass spectrum of the perished members of certain stellar moving groups. The release of 60Fe and its subsequent turbulent mixing process inside the superbubble cavities was followed via passive scalars, where the yields of the decaying radioisotope were adjusted according to recent stellar evolution calculations. Results: The models are able to reproduce both the timing and the intensity of the 60Fe excess observed with rather high precision, provided that the external density does not exceed 0.3 cm-3 on average. Thus the two best-fit models presented here were obtained with background media mimicking the classical warm ionised and warm neutral medium. We also found that 60Fe (which is condensed onto dust grains) can be delivered to Earth via two physical mechanisms: either through individual fast-paced supernova blast waves, which cross the Earth's orbit sometimes even twice as a result of reflection from the Local Bubble's outer shell, or, alternatively, through the supershell of the Local Bubble itself, injecting the 60Fe content of all previous supernovae at once, but over a longer time range.

  13. [Recent advances and applications of capillary electrochromatography and pressurized capillary electrochromatography].

    PubMed

    Wu, Yi; Zhang, Xiaohui; Wei, Juan; Xue, Yunyun; Bahatibieke, Marjan; Wang, Yan; Yan, Chao

    2009-09-01

    Capillary electrochromatography (CEC), in which electroosmotic flow (EOF) created from the electrical double layer is made to act as a pump to drive the mobile phase in a capillary column packed with micro-particulates or coated with stationary phase. Both neutral and charged species can be resolved by CEC. It has been demonstrated that the efficiency of a separation obtained by electroosmotic propulsion is superior to that obtained by pressure-driven flow (as is the case in HPLC). CEC combines the best features of CE and versatile selectivity and large sample capacity of HPLC, promising high efficiency, high resolution, high selectivity and high peak capacity. However, in practice, when CEC is used without pressure, often used on a commercial CE instrument, there are problems and difficulties associated with bubbles formation and column dry-out. These difficulties can be overcome by a pressurized CEC (pCEC) system, in which a supplementary pressure is applied to the column in addition to the EOF. In such a system, a pressure can be applied to the capillary column to suppress bubbles formation. Quantitative sample introduction in pCEC can be easily achieved through a rotary-type injector. Most importantly, it is amenable for a solvent gradient mode, similar to that in HPLC, by programming the composition of mobile phase. The article brings a comprehensive survey of recent development of CEC and pCEC, including the development of instrumentation, capillary columns and stationary phase as well as CEC and pCEC applications in life science, biotechnology, pharmaceutical analysis, food safety and environmental security. Prospects for CEC and pCEC development and application are also discussed.

  14. Hydrodynamic models for slurry bubble column reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gidaspow, D.

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore,more » the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.« less

  15. Sonar gas seepage characterization using high resolution systems at short ranges

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Lohrberg, A.; Mücke, I.

    2017-12-01

    Sonar is extremely sensitive in regard to submarine remote sensing of free gas bubbles. Known reasons for this are (1) high impedance contrast between water and gas, holding true also at larger depths with higher hydrostatic pressures and thus greater mole density in a gas bubble; (2) resonating behavior at a specific depth-frequency-size/shape relation with highly non-linear behavior; (3) an overlooked property being valuable for gas seepage detection and characterization is the movement of bubbles controlled by their overall trajectory governed by buoyancy, upwelling effects, tides, eddies, and currents. Moving objects are an unusual seismo-acoustic target in solid earth geophysics, and most processors hardly consider such short term movement. However, analyzing movement pattern over time and space highly improves human and algorithmic bubble detection and helps mitigation of false alarms often caused by fish's swim bladders. We optimized our sonar surveys for gas bubble trajectory analyses using calibrated split-beam and broadband/short pulse multibeam to gather very high quality sonar images. Thus we present sonar data patterns of gas seepage sites recorded at shorter ranges showing individual bubbles or groups of bubbles. Subsequent analyses of bubble trajectories and sonar strength can be used to quantify minor gas fluxes with high accuracy. Moreover, we analyzed strong gas bubble seepage sites with significant upwelling. Acoustic inversion of such major seep fluxes is extremely challenging if not even impossible given uncertainties in bubble size spectra, upwelling velocities, and beam geometry position of targets. Our 3D analyses of the water column multibeam data unraveled that some major bubble flows prescribe spiral vortex trajectories. The phenomenon was first found at an abandoned well site in the North Sea, but our recent investigations confirm such complex bubble trajectories exist at natural seeps, i.e. at the CO2 seep site Panarea (Italy). We hypothesize that accurate 3D analyses of plume shape and trajectory analyses might help to estimate threshold for fluxes.

  16. The behavior of vapor bubbles during boiling enhanced with acoustics and open microchannels

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc K.; Glezer, Ari

    2012-11-01

    Boiling heat transfer on a submerged heated surface is enhanced by combining a grid of surface micromachined open channels and ultrasonic acoustic actuation to control the formation and evolution of vapor bubbles and to inhibit the instability that leads to film boiling at the critical heat flux (CHF). The microchannels provide nucleation sites for vapor bubble formation and enable the entrainment of bulk subcooled fluid to these sites for sustained evaporation. Acoustic actuation excites interfacial oscillations of the detached bubbles and leads to accelerated condensation in the bulk fluid, thereby limiting the formation of vapor columns that precede the CHF instability. The combined effects of microchannels and acoustic actuation are investigated experimentally with emphasis on bubble nucleation, growth, detachment, and condensation. It is shown that this hybrid approach leads to a significant increase in the critical heat flux, a reduction of the vapor mass above the surface, and the breakup of low-frequency vapor slug formation. A large-scale model of the microchannel grid reveals details of the flow near the nucleation site and shows that the presence of the microchannels decreases the surface superheat at a given heat flux. Supported by ONR.

  17. Improved Visualization of Hydroacoustic Plumes Using the Split-Beam Aperture Coherence.

    PubMed

    Blomberg, Ann E A; Weber, Thomas C; Austeng, Andreas

    2018-06-25

    Natural seepage of methane into the oceans is considerable, and plays a role in the global carbon cycle. Estimating the amount of this greenhouse gas entering the water column is important in order to understand their environmental impact. In addition, leakage from man-made structures such as gas pipelines may have environmental and economical consequences and should be promptly detected. Split beam echo sounders (SBES) detect hydroacoustic plumes due to the significant contrast in acoustic impedance between water and free gas. SBES are also powerful tools for plume characterization, with the ability to provide absolute acoustic measurements, estimate bubble trajectories, and capture the frequency dependent response of bubbles. However, under challenging conditions such as deep water and considerable background noise, it can be difficult to detect the presence of gas seepage from the acoustic imagery alone. The spatial coherence of the wavefield measured across the split beam sectors, quantified by the coherence factor (CF), is a computationally simple, easily available quantity which complements the acoustic imagery and may ease the ability to automatically or visually detect bubbles in the water column. We demonstrate the benefits of CF processing using SBES data from the Hudson Canyon, acquired using the Simrad EK80 SBES. We observe that hydroacoustic plumes appear more clearly defined and are easier to detect in the CF imagery than in the acoustic backscatter images.

  18. Fischer-Tropsch Slurry Reactor modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soong, Y.; Gamwo, I.K.; Harke, F.W.

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas,more » solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.« less

  19. Enantioseparation on cellulose dimethylphenylcarbamate-modified zirconia monolithic columns by reversed-phase capillary electrochromatography.

    PubMed

    Kumar, Avvaru Praveen; Park, Jung Hag

    2010-06-25

    This work reports the preparation of monolithic zirconia chiral columns for separation of enantiomeric compounds by capillary electrochromatography (CEC). Using sol-gel technology, a porous monolith having interconnected globular-like structure with through-pores is synthesized in the capillary column as a first step in the synthesis of monolithic zirconia chiral capillary columns. In the second step, the surface of the monolith is modified by coating with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) as the chiral stationary phase to obtain a chiral column (CDMPCZM). The process of the preparation of the zirconia monolithic capillary column was investigated by varying the concentrations of the components of the sol solution including polyethylene glycol, water and acetic acid. CDMPCZM is mechanically stable and no bubble formation was detected with the applied current of up to 30 microA. The enantioseparation behavior of the CDMPCZM columns was investigated by separating a set of 10 representative chiral compounds by varying the applied voltage and pH and organic composition of the aqueous organic mobile phases. Copyright 2010 Elsevier B.V. All rights reserved.

  20. A parallel-vector algorithm for rapid structural analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1990-01-01

    A fast, accurate Choleski method for the solution of symmetric systems of linear equations is presented. This direct method is based on a variable-band storage scheme and takes advantage of column heights to reduce the number of operations in the Choleski factorization. The method employs parallel computation in the outermost DO-loop and vector computation via the 'loop unrolling' technique in the innermost DO-loop. The method avoids computations with zeros outside the column heights, and as an option, zeros inside the band. The close relationship between Choleski and Gauss elimination methods is examined. The minor changes required to convert the Choleski code to a Gauss code to solve non-positive-definite symmetric systems of equations are identified. The results for two large-scale structural analyses performed on supercomputers, demonstrate the accuracy and speed of the method.

  1. A parallel-vector algorithm for rapid structural analysis on high-performance computers

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.; Nguyen, Duc T.; Agarwal, Tarun K.

    1990-01-01

    A fast, accurate Choleski method for the solution of symmetric systems of linear equations is presented. This direct method is based on a variable-band storage scheme and takes advantage of column heights to reduce the number of operations in the Choleski factorization. The method employs parallel computation in the outermost DO-loop and vector computation via the loop unrolling technique in the innermost DO-loop. The method avoids computations with zeros outside the column heights, and as an option, zeros inside the band. The close relationship between Choleski and Gauss elimination methods is examined. The minor changes required to convert the Choleski code to a Gauss code to solve non-positive-definite symmetric systems of equations are identified. The results for two large scale structural analyses performed on supercomputers, demonstrate the accuracy and speed of the method.

  2. Modeling quiescent phase transport of air bubbles induced by breaking waves

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear production in the algorithm for initial bubble entrainment. The study demonstrates a potential use of an entrainment formula in simulations of air bubble population in a surfzone-scale domain. It also reveals some difficulties in use of the two-fluid model for predicting large air pockets induced by wave breaking, and suggests that it may be necessary to use a gas-liquid two-phase model as the basic model framework for the mixture phase and to develop an algorithm to allow for transfer of discrete air pockets to the continuum bubble phase. A more theoretically justifiable air entrainment formulation should be developed.

  3. Study of bubble behavior in weightlessness (effects of thermal gradient and acoustic stationary wave) (M-16)

    NASA Technical Reports Server (NTRS)

    Azuma, H.

    1993-01-01

    The aim of this experiment is to understand how bubbles behave in a thermal gradient and acoustic stationary wave under microgravity. In microgravity, bubble or bubbles in a liquid will not rise upward as they do on Earth but will rest where they are formed because there exists no gravity-induced buoyancy. We are interested in how bubbles move and in the mechanisms which support the movement. We will try two ways to make bubbles migrate. The first experiment concerns behavior of bubbles in a thermal gradient. It is well known than an effect of surface tension which is masked by gravity on the ground becomes dominant in microgravity. The surface tension on the side of the bubble at a lower temperature is stronger than at a higher temperature. The bubble migrates toward the higher temperature side due to the surface tension difference. The migration speed depends on the so-called Marangoni number, which is a function of the temperature difference, the bubble diameter, liquid viscosity, and thermal diffusivity. At present, some experimental data about migration speeds in liquids with very small Marangoni numbers were obtained in space experiments, but cases of large Marangoni number are rarely obtained. In our experiment a couple of bubbles are to be injected into a cell filled with silicon oil, and the temperature gradient is to be made gradually in the cell by a heater and a cooler. We will be able to determine migration speeds in a very wide range of Marangoni numbers, as well as study interactions between the bubbles. We will observe bubble movements affected by hydrodynamical and thermal interactions, the two kinds of interactions which occur simultaneously. These observation data will be useful for analyzing the interactions as well as understanding the behavior of particles or drops in materials processing. The second experiment concerns bubble movement in an acoustic stationary wave. It is known that a bubble in a stationary wave moves toward the node or the loop according to whether its diameter is larger or smaller than that of the main resonant radius. In our experiment fine bubbles will be observed to move according to an acoustic field formed in a cylindrical cell. The existence of bubbles varies the acoustic speed, and the interactive force between bubbles will make the bubble behavior collective and complicated. This experiment will be very useful to development of bubble removable technology as well as to the understanding of bubble behavior.

  4. A Green Bank Telescope 21cm survey of HI clouds in the Milky Way's nuclear wind

    NASA Astrophysics Data System (ADS)

    Denbo, Sara; Endsley, Ryan; Lockman, Felix J.; Ford, Alyson

    2015-01-01

    Feedback processes such as large-scale galactic winds are thought to be responsible for distributing enriched gas throughout a galaxy and even into the IGM. Such winds have been found in many galaxies with active star formation near their center, and the Fermi bubbles provide evidence for such a nuclear wind in our own Milky Way. A recent 21 cm HI survey by the Australia Telescope Compact Array discovered a population of compact, isolated clouds surrounding the Galactic Center that may be entrained in the Fermi bubble wind. We present data from a survey of 21cm HI over an extended region around the Galactic Center using the Green Bank Telescope. These observations provide more strict constraints on neutral clouds in the Fermi bubble wind, and a more robust description of the parameters of HI clouds (i.e., mass, column density, and lifetime) near the Galactic Center.

  5. Zero-lag synchronization and bubbling in delay-coupled lasers.

    PubMed

    Tiana-Alsina, J; Hicke, K; Porte, X; Soriano, M C; Torrent, M C; Garcia-Ojalvo, J; Fischer, I

    2012-02-01

    We show experimentally that two semiconductor lasers mutually coupled via a passive relay fiber loop exhibit chaos synchronization at zero lag, and study how this synchronized regime is lost as the lasers' pump currents are increased. We characterize the synchronization properties of the system with high temporal resolution in two different chaotic regimes, namely, low-frequency fluctuations and coherence collapse, identifying significant differences between them. In particular, a marked decrease in synchronization quality develops as the lasers enter the coherence collapse regime. Our high-resolution measurements allow us to establish that synchronization loss is associated with bubbling events, the frequency of which increases with increasing pump current.

  6. High Curie temperature drive layer materials for ion-implanted magnetic bubble devices

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Wolfe, R.; Blank, S. L.; Nelson, T. J.

    1984-01-01

    Ion implantation of bubble garnets can lower the Curie temperature by 70 C or more, thus limiting high temperature operation of devices with ion-implanted propagation patterns. Therefore, double-layer materials were made with a conventional 2-micron bubble storage layer capped by an ion-implantable drive layer of high Curie temperature, high magnetostriction material. Contiguous disk test patterns were implanted with varying doses of a typical triple implant. Quality of propagation was judged by quasistatic tests on 8-micron period major and minor loops. Variations of magnetization, uniaxial anisotropy, implant dose, and magnetostriction were investigated to ensure optimum flux matching, good charged wall coupling, and wide operating margins. The most successful drive layer compositions were in the systems (SmDyLuCa)3(FeSi)5O12 and (BiGdTmCa)3(FeSi)5O12 and had Curie temperatures 25-44 C higher than the storage layers.

  7. Spiral vane bioreactor

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor)

    1991-01-01

    A spiral vane bioreactor of a perfusion type is described in which a vertical chamber, intended for use in a microgravity condition, has a central rotating filter assembly and has flexible membranes disposed to rotate annularly about the filter assembly. The flexible members have end portions disposed angularly with respect to one another. A fluid replenishment medium is input from a closed loop liquid system to a completely liquid filled chamber containing microcarrier beads, cells and a fluid medium. Output of spent medium is to the closed loop. In the closed loop, the output and input parameters are sensed by sensors. A manifold permits recharging of the nutrients and pH adjustment. Oxygen is supplied and carbon dioxide and bubbles are removed and the system is monitored and controlled by a microprocessor.

  8. Effect of Annealing on Microstructures and Hardening of Helium-Hydrogen-Implanted Sequentially Vanadium Alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Shaoning; Wang, Zhiming

    2018-03-01

    The effect of post-irradiation annealing on the microstructures and mechanical properties of V-4Cr-4Ti alloys was studied. Helium-hydrogen-irradiated sequentially V-4Cr-4Ti alloys at room temperature (RT) were undergone post-irradiation annealing at 450 °C over periods of up to 30 h. These samples were carried out by high-resolution transmission electron microscopy (HRTEM) observation and nanoindentation test. With the holding time, large amounts of point defects produced during irradiation at RT accumulated into large dislocation loops and then dislocation nets which promoted the irradiation hardening. Meanwhile, bubbles appeared. As annealing time extended, these bubbles grew up and merged, and finally broke up. In the process, the size of bubbles increased and the number density decreased. Microstructural changes due to post-irradiation annealing corresponded to the change of hardening. Dislocations and bubbles are co-contributed to irradiation hardening. With the holding time up to 30 h, the recovery of hardening is not obvious. The phenomenon was discussed by dispersed barrier hardening model and Friedel-Kroupa-Hirsch relationship.

  9. Ideas of Flat and Curved Space in History of Physics

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2006-04-01

    Since ``everything which is not prohibited is compulsory'' (assigned to Gell-Mann) we can postulate infinite flat Cartesian N-dimensional (N: any integer) space-time (ST) as embedding for any curved ST. Ergodicity raises quest of whether total number of inflationary and/or Everett bubbles (mini-verses) is finite, countably infinite (aleph-zero) or uncountably infinite (aleph-one). Are these bubbles form Gaussian distribution or form some non-random subsetting? Perhaps, communication between mini-verses (idea of D.Deutsch) can be facilitated by a kind of minimax non-local dynamics akin to Fermat principle? (Minimax Principle in Bubble Cosmology). Even such classical effects as magnetism and polarization have some non-local features. Can we go below the Planck length to perhaps Compton wavelength of our ``Hubble's bubble'' (h/Mc = 10 to minus 95 m, if M = 10 to 54 kg)? When talking about time loops and ergodicity (eternal return paradigm) is there some hysterisis in the way quantum states are accessed in ``forward'' or ``reverse'' direction? (reverse direction implies backward causality of J.Wheeler and/or Aristotelian final causation).

  10. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments.

    PubMed

    Rasoulnia, P; Mousavi, S M

    2016-09-01

    Spent-medium bioleaching of V and Ni from a power plant residual ash (PPR ash) was conducted using organic acids produced by Aspergillus niger. The production of organic acids in a bubble column bioreactor was optimized through selecting three most influencing factors. Under optimum condition of aeration rate of 762.5(ml/min), sucrose concentration of 101.9(g/l) and inoculum size of 40(ml/l), respectively 17,185, 4539, 1042 and 502(ppm) of oxalic, gluconic, citric and malic acids were produced. Leaching experiments were carried out using biogenic produced organic acids under leaching environment temperature of 60°C and rotary shaking speed of 135rpm, with various pulp densities of 1, 2, 3, 5, 7 and 9(%w/v). The results showed that biogenic produced organic acids leached V much more efficiently than Ni so that even at high pulp density of 9(%w/v), 83% of V was recovered while Ni recovery yield was 30%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of liquid medium on the activity of a low-alpha Fischer-Tropsch catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gormley, R.J.; Zarochak, M.F.; Deffenbaugh, P.W.

    1995-12-31

    The purpose of this research was to measure activity, selectivity, and the maintenance of these properties in slurry autoclave experiments with a Fischer-Tropsch (FT) catalyst that was used in the {open_quotes}FT II{close_quotes} bubble-column test, conducted at the Alternative Fuels Development Unit (AFDU) at LaPorte, Texas during May 1994. The catalyst contained iron, copper, and potassium and was formulated to produce mainly hydrocarbons in the gasoline range with lesser production of diesel-range products and wax. The probability of chain growth was thus deliberately kept low. Principal goals of the autoclave work have been to find the true activity of this catalystmore » in a stirred tank reactor, unhindered by heat or mass transfer effects, and to obtain a steady conversion and selectivity over the approximately 15 days of each test. Slurry autoclave testing of the catalyst in heavier waxes also allows insight into operation of larger slurry bubble column reactors. The stability of reactor operation in these experiments, particularly at loadings exceeding 20 weight %, suggests the likely stability of operations on a larger scale.« less

  12. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

    PubMed

    Zhang, Zhiping; Ji, Hairui; Gong, Guiping; Zhang, Xu; Tan, Tianwei

    2014-07-01

    The optimal mixed culture model of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was confirmed to enhance lipid production. A double system bubble column photo-bioreactor was designed and used for demonstrating the relationship of yeast and alga in mixed culture. The results showed that using the log-phase cultures of yeast and alga as seeds for mixed culture, the improvements of biomass and lipid yields reached 17.3% and 70.9%, respectively, compared with those of monocultures. Growth curves of two species were confirmed in the double system bubble column photo-bioreactor, and the second growth of yeast was observed during 36-48 h of mixed culture. Synergistic effects of two species for cell growth and lipid accumulation were demonstrated on O2/CO2 balance, substance exchange, dissolved oxygen and pH adjustment in mixed culture. This study provided a theoretical basis and culture model for producing lipids by mixed culture in place of monoculture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bharat L. Bhatt

    1997-05-01

    A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of themore » velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.« less

  14. Dissolution enhancement and mathematical modeling of removal of residual trichloroethene in sands by ozonation during flushing with micro-nano-bubble solution

    NASA Astrophysics Data System (ADS)

    Sung, Menghau; Teng, Chun-Hao; Yang, Tsung-Hsien

    2017-07-01

    Soil flushing using micro-nano-sized bubbles (MNB) in water as the flushing solution was tested in laboratory sand columns for the cleanup of residual trichloroethene (TCE) non-aqueous-phase-liquid (NAPL). Experiments considering flushing with MNB as well as ozone MNB (OZMNB) in water to treat soils contaminated with residual TCE liquid were conducted to examine effects of ozone on dissolution enhancement. The degrees of residual TCE saturation in soils, ranging from 0.44% to 7.6%, were tested. During flushings, aqueous TCE concentrations at the column exit were monitored and TCE masses remained in the columns after flushing were determined. Experimental results between runs with MNB and OZMNB in water revealed that dissolution enhancement was dependent on residual saturation conditions, and the maximum enhancement was around 9%. Governing equations consisting of three coupled partial differential equations (PDEs) were developed to model the system, and high-order finite difference (HOFD) method was employed to solve these PDEs. From mathematical modeling of reactive mass transfer under low residual saturation conditions (0.44% and 1.9%), experimental data were simulated and important controlling mechanisms were identified. It was concluded that a specific parameter pertinent to NAPL-water interfacial area in the Sherwood number had to be modified to satisfactorily describe the dissolution of TCE in the presence of MNB in water.

  15. The Fate of Volatiles in Subaqueous Explosive Eruptions: An Analysis of Steam Condensation in the Water Column

    NASA Astrophysics Data System (ADS)

    Cahalan, R. C.; Dufek, J.

    2015-12-01

    A model has been developed to determine the theoretical limits of steam survival in a water column during a subaqueous explosive eruption. Understanding the role of steam dynamics in particle transport and the evolution of the thermal budget is critical to addressing the first order questions of subaqueous eruption mechanics. Ash transport in subaqueous eruptions is initially coupled to the fate of volatile transport. The survival of steam bubbles to the water surface could enable non-wetted ash transport from the vent to a subaerial ash cloud. Current eruption models assume a very simple plume mixing geometry, that cold water mixes with the plume immediately after erupting, and that the total volume of steam condenses in the initial phase of mixing. This limits the survival of steam to within tens of meters above the vent. Though these assumptions may be valid, they are unproven, and the calculations based on them do not take into account any kinetic constraints on condensation. The following model has been developed to evaluate the limits of juvenile steam survival in a subaqueous explosive eruption. This model utilizes the analytical model for condensation of steam injected into a sub-cooled pool produced in Park et al. (2007). Necessary parameterizations require an iterative internal calculation of the steam saturation temperature and vapor density for each modeled time step. The contribution of volumetric expansion due to depressurization of a rising bubble is calculated and used in conjunction with condensation rate to calculate the temporal evolution of bubble volume and radius. Using steam bubble volume with the BBO equation for Lagrangian transport in a fluid, the bubble rise velocity is calculated and used to evaluate the rise distance. The steam rise model proves a useful tool to compare the effects of steam condensation, volumetric expansion, volume flux, and water depth on the dynamics of juvenile steam. The modeled results show that a sufficiently high volatile flux could lead to the survival of steam bubbles from >1km depths to the ocean surface, though low to intermediate fluxes lead to fairly rapid condensation. Building on this result we also present the results of simulations of multiphase steam jets and consider the likelihood of collapse inside a vapor envelope.

  16. What are the limits of energy focusing in sonoluminescence?

    NASA Astrophysics Data System (ADS)

    Putterman, Seth; Camara, C.; Kappus, B.; Su, C. K.; Kirilov, E.

    2003-04-01

    Sonoluminescence [SL] is amazing for the extraordinary degree by which ultrasonic energy can be focused by a cavitating bubble. Local energy dissipation exceeds Kirkhoff's law by 1E15 and the acoustic energy density concentrates by 12 orders of magnitude to create picosecond flashes of broadband ultraviolet light. At the minimum bubble radius, the acceleration exceeds 1E11 g and a megabar level shock wave is emitted into the surrounding fluid. For single bubbles driven at 30 KHz, SL is nature's smallest blackbody. This implies that the bubble's interior is such a dense plasma that the photon-matter mean free path is shorter than the wavelength of light, and suggests that SL originates in an unusual state of matter. Excitation of a vertical column of fluid [~10 Hz] so as to create a water hammer leads to the upscaling of SL and generation of flashes of light with 3E8 photons and peak powers approaching 1 W. At 1 MHz, the spectrum resembles bremsstrahlung from a transparent plasma with a temperature ~1 MK. At 10 MHz the collapsed size of the SL bubble approaches 10 nm, which raises the possibility that the SL parameter space may extend to the domain of quantum mechanics. [Research supported by DARPA and DOE.

  17. The effect of air bubbles on rabbit blood brain barrier.

    PubMed

    Hjelde, A; Bolstad, G; Brubakk, A O

    2002-01-01

    Several investigators have claimed that the blood brain barrier (BBB) may be broken by circulating bubbles, resulting in brain tissue edema. The aim of this study was to examine the effect of air bubbles on the permeability of BBB. Three groups of 6 rabbits were infused an isoosmotic solution of NaCl w/macrodex and 1% Tween. The solution was saturated with air bubbles and infused at rates of 50-100 ml hr(-1), a total of 1.6, 3.3, or 6.6 ml in each group, respectively. Two groups, each consisting of 6 rabbits, served as controls; one was infused by a degassed isoosmotic NaCl solution and one was sham-operated. All animals were left for 30 min before they were sacrificed. Specific gravity of brain tissue samples was determined using a brombenzene/kerosene gradient column, where a decrease in specific gravity indicates local brain edema. Specific gravity was significantly lower for left (P = 0.037) and right (P = 0.012) hemisphere white matter and left (P = 0.0015) and right (P = 0.002) hemisphere gray matter for the bubble-infused animals compared to the sham-operated ones. Infusion of degassed NaCl solution alone affected white left (P= 0.011) and right (P= 0.013), but not gray matter of both hemispheres. We speculate that insufficient degassing of the fluid may cause the effect of NaCl solution on the BBB of the white matter, indicating that the vessels of the white matter are more sensitive to gas bubbles than gray matter. Increasing the number of infused bubbles had no further impact on the development of cerebral edema, indicating that a threshold value was reached already at the lowest concentration of bubbles.

  18. Study of CO2 bubble dynamics in seawater from QICS field Experiment

    NASA Astrophysics Data System (ADS)

    Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.

    2011-12-01

    One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html

  19. Study of CO2 bubble dynamics in seawater from QICS field Experiment

    NASA Astrophysics Data System (ADS)

    Chen, B.; Dewar, M.; Sellami, N.; Stahl, H.; Blackford, J.

    2013-12-01

    One of the concerns of employing CCS at engineering scale is the risk of leakage of storage CO2 on the environment and especially on the marine life. QICS, a scientific research project was launched with an aim to study the effects of a potential leak from a CCS system on the UK marine environment [1]. The project involves the injection of CO2 from a shore-based lab into shallow marine sediments. One of the main objectives of the project is to generate experimental data to be compared with the developed physical models. The results of the models are vital for the biogeochemical and ecological models in order to predict the impact of a CO2 leak in a variety of situations. For the evaluation of the fate of the CO2 bubbles into the surrounding seawater, the physical model requires two key parameters to be used as input which are: (i) a correlation of the drag coefficient as function of the CO2 bubble Reynolds number and (ii) the CO2 bubble size distribution. By precisely measuring the CO2 bubble size and rising speed, these two parameters can be established. For this purpose, the dynamical characteristics of the rising CO2 bubbles in Scottish seawater were investigated experimentally within the QICS project. Observations of the CO2 bubbles plume rising freely in the in seawater column were captured by video survey using a ruler positioned at the leakage pockmark as dimension reference. This observation made it possible, for the first time, to discuss the dynamics of the CO2 bubbles released in seawater. [1] QICS, QICS: Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage. (Accessed 15.07.13), http://www.bgs.ac.uk/qics/home.html

  20. Comments on higher rank Wilson loops in N = 2∗

    NASA Astrophysics Data System (ADS)

    Liu, James T.; Zayas, Leopoldo A. Pando; Zhou, Shan

    2018-01-01

    For N = 2∗ theory with U( N ) gauge group we evaluate expectation values of Wilson loops in representations described by a rectangular Young tableau with n rows and k columns. The evaluation reduces to a two-matrix model and we explain, using a combination of numerical and analytical techniques, the general properties of the eigen-value distributions in various regimes of parameters ( N, λ , n, k) where λ is the 't Hooft coupling. In the large N limit we present analytic results for the leading and sub-leading contributions. In the particular cases of only one row or one column we reproduce previously known results for the totally symmetry and totally antisymmetric representations. We also extensively discusss the N = 4 limit of the N = 2∗ theory. While establishing these connections we clarify aspects of various orders of limits and how to relax them; we also find it useful to explicitly address details of the genus expansion. As a result, for the totally symmetric Wilson loop we find new contributions that improve the comparison with the dual holographic computation at one loop order in the appropriate regime.

  1. Separation of emulsified crude oil in saline water by flotation with micro- and nanobubbles generated by a multiphase pump.

    PubMed

    Oliveira, H A; Azevedo, A C; Etchepare, R; Rubio, J

    2017-11-01

    The flocculation-column flotation with hydraulic loading (HL, >10 m h -1 ) was studied for the treatment of oil-in-water emulsions containing 70-400 mg L -1 (turbidity = 70-226 NTU) of oil and salinity (30 and 100 g L -1 ). A polyacrylamide (Dismulgan, 20 mg L -1 ) flocculated the oil droplets, using two floc generator reactors, with rapid and slow mixing stages (head loss = 0.9 to 3.5 bar). Flotation was conducted in two cells (1.5 and 2.5 m) with microbubbles (MBs, 5-80 μm) and nanobubbles (NBs, 50-300 nm diameter, concentration of 10 8 NBs mL -1 ). Bubbles were formed using a centrifugal multiphase pump, with optimized parameters and a needle valve. The results showed higher efficiency with the taller column reducing the residual oil content to 4 mg L -1 and turbidity to 7 NTU. At high HL (27.5 m h -1 ), the residual oil concentrations were below the standard emission (29 mg L -1 ), reaching 18 mg L -1 . The best results were obtained with high concentration of NBs (apart from the bigger bubbles). Mechanisms involved appear to be attachment and entrapment of the NBs onto and inside the flocs. Thus, the aggregates were readily captured, by bigger bubbles (mostly MBs) aiding shear withstanding. Advantages are the small footprint of the cells, low residence time and high processing rate.

  2. Studies in Three Phase Gas-Liquid Fluidised Systems

    NASA Astrophysics Data System (ADS)

    Awofisayo, Joyce Ololade

    1992-01-01

    Available from UMI in association with The British Library. The work is a logical continuation of research started at Aston some years ago when studies were conducted on fermentations in bubble columns. The present work highlights typical design and operating problems that could arise in such systems as waste water, chemical, biochemical and petroleum operations involving three-phase, gas-liquid -solid fluidisation; such systems are in increasing use. It is believed that this is one of few studies concerned with "true" three-phase, gas-liquid-solid fluidised systems, and that this work will contribute significantly to closing some of the gaps in knowledge in this area. The research work was experimentally based and involved studies of the hydrodynamic parameters, phase holdups (gas and solid), particle mixing and segregation, and phase flow dynamics (flow regime and circulation patterns). The studies have focused particularly on the solid behaviour and the influence of properties of solids present on the above parameters in three-phase, gas-liquid-solid fluidised systems containing single particle components and those containing binary and ternary mixtures of particles. All particles were near spherical in shape and two particle sizes and total concentration levels were used. Experiments were carried out in two- and three-dimensional bubble columns. Quantitative results are presented in graphical form and are supported by qualitative results from visual studies which are also shown as schematic diagrams and in photographic form. Gas and solid holdup results are compared for air-water containing single, binary and ternary component particle mixtures. It should be noted that the criteria for selection of the materials used are very important if true three-phase fluidisation is to be achieved: this is very evident when comparing the results with those in the literature. The fluid flow and circulation patterns observed were assessed for validation of the generally accepted patterns, and the author believes that the present work provides more accurate insight into the modelling of liquid circulation in bubble columns. The characteristic bubbly flow at low gas velocity in a two-phase system is suppressed in the three-phase system. The degree of mixing within the system is found to be dependent on flow regime, liquid circulation and the ratio of solid phase physical properties.

  3. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    NASA Astrophysics Data System (ADS)

    Gupta, Uma Shankar; Mohapatra, Ranjita K.; Srivastava, Ajit M.; Tiwari, Vivek K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using the Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken’s hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.

  4. Simulation of Z(3) walls and string production via bubble nucleation in a quark-hadron transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Uma Shankar; Tiwari, Vivek K.; Mohapatra, Ranjita K.

    2010-10-01

    We study the dynamics of confinement-deconfinement phase transition in the context of relativistic heavy-ion collisions within the framework of effective models for the Polyakov loop order parameter. We study the formation of Z(3) walls and associated strings in the initial transition from the confining (hadronic) phase to the deconfining [quark-gluon plasma (QGP)] phase via the so-called Kibble mechanism. Essential physics of the Kibble mechanism is contained in a sort of domain structure arising after any phase transition which represents random variation of the order parameter at distances beyond the typical correlation length. We implement this domain structure by using themore » Polyakov loop effective model with a first order phase transition and confine ourselves with temperature/time ranges so that the first order confinement-deconfinement transition proceeds via bubble nucleation, leading to a well defined domain structure. The formation of Z(3) walls and associated strings results from the coalescence of QGP bubbles expanding in the confining background. We investigate the evolution of the Z(3) wall and string network. We also calculate the energy density fluctuations associated with Z(3) wall network and strings which decay away after the temperature drops below the quark-hadron transition temperature during the expansion of QGP. We discuss evolution of these quantities with changing temperature via Bjorken's hydrodynamical model and discuss possible experimental signatures resulting from the presence of Z(3) wall network and associate strings.« less

  5. Experimental Research on Seismic Performance of Four-Element Variable Cross-Sectional Concrete Filled Steel Tubular Laced Columns

    NASA Astrophysics Data System (ADS)

    Ou, Zhijing; Lin, Jianmao; Chen, Shengfu; Lin, Wen

    2017-10-01

    A total of 7 experimental tests were conducted to investigate seismic performance of four element variable cross-sectional Concrete Filled Steel Tubular (CFST) laced columns. The experimental parameters are longitudinal slope and arrangement type of lacing tubes. The rules on hysteresis loop, ductility, energy expenditure, and stiffness degradation of specimens are researched. Test results indicate that all specimens have good seismic performance; their hysteresis loops are full without obvious shrinkage. With the increase of longitudinal slope, the horizontal carrying capacity increases, energy dissipation capacity improve, and there is slightly increase in stiffness degradation. The influence of arrangement type of lacing tubes on displacement ductility of specimens is big.

  6. Capillary Limit in a Loop Heat Pipe with Dual Evaporators

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Birur, Gajanana; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper describes a study on the capillary limit of a loop heat pipe (LHP) with two evaporators and two condensers. Both theoretical analysis and experimental investigation are conducted. Tests include heat load to one evaporator only, even heat loads to both evaporators and uneven heat load to both evaporators. Results show that after the capillary limit is exceeded, vapor will penetrate through the wick of the weaker evaporator and the compensation chamber (CC) of that evaporator will control the loop operating temperature regardless of which CC has been in control prior to the event Because the evaporator can tolerate vapor bubbles, the loop may continue to work and reach a new steady state at a higher operating temperature. The loop may even function with a modest increase in the heat load past the capillary limit With a heat load to only one evaporator, the capillary limit can be identified by rapid increases in the operating temperature and in the temperature difference between the evaporator and the CC. However, it is more difficult to tell when the capillary limit is exceeded if heat loads are applied to both evaporators. In all cases, the loop can recover by reducing the heat load to the loop.

  7. On the feasibility to conduct gradient liquid chromatography separations in narrow-bore columns at pressures up to 2000bar.

    PubMed

    De Pauw, Ruben; Swier, Tim; Degreef, Bart; Desmet, Gert; Broeckhoven, Ken

    2016-11-18

    The limits in operating pressures are extended for narrow-bore columns in gradient elution up to 2000bar. As the required pumps for these pressures are incompatible with common chromatographic solvents and are not suitable to apply a mobile phase composition gradient, a mobile phase delivery and injection system is described and experimentally validated which allows to use any possible chromatographic solvent in isocratic and gradient elution. The mobile phase delivery and injection system also allows to perform multiple separations without the need to depressurize the column. This system consists out of 5 dual on/off valves and two large volume loops in which the gradient and equilibration volume of initial mobile phase are loaded by a commercial liquid chromatography pump. The loops are then flushed toward the column at extreme pressures. The mobile phase delivery and injection system is first evaluated in isocratic elution and shows a comparable performance to a state-of-the-art commercial flow-through-needle injector but with twice the pressure rating. Distortion of the loaded gradient by dispersion in the gradient storage loop is studied. The effect of the most important parameters (such as flow rate, pressure and gradient steepness) is experimentally investigated. Different gradient steepnesses and volumes can be applied at different flow rates and operating pressures with a good repeatability. Due to the isobaric operation of the pumps, the gradient is monitored in real-time by a mass flow meter installed at the detector outlet. The chromatograms are then converted from time to volume-base. A separation of a 19-compound sample is performed on a 300×2.1mm column at 1000bar and on a 600×2.1mm column at 2000bar. The peak capacity was found to increase from 141 to 199 and thus scales with L as is predicted by theory. This allows to conclude that the inlet pressure for narrow-bore columns in gradient elution can be increased up to 2000bar without fundamental pressure-induced limitations. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    PubMed

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S < 10.0 g L−1 and QAIR > 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

  9. Modeling solubility of CO2/hydrocarbon gas in ionic liquid ([emim][FAP]) using Aspen Plus simulations.

    PubMed

    Bagchi, Bishwadeep; Sati, Sushmita; Shilapuram, Vidyasagar

    2017-08-01

    The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO 2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO 2 . The bubble point pressure and fugacity variation with temperature is different for CO 2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO 2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.

  10. INTERACTIONS OF THE INFRARED BUBBLE N4 WITH ITS SURROUNDINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hong-Li; Li, Jin-Zeng; Yuan, Jing-Hua

    The physical mechanisms that induce the transformation of a certain mass of gas in new stars are far from being well understood. Infrared bubbles associated with H ii regions have been considered to be good samples for investigating triggered star formation. In this paper we report on the investigation of the dust properties of the infrared bubble N4 around the H ii region G11.898+0.747, analyzing its interaction with its surroundings and star formation histories therein, with the aim of determining the possibility of star formation triggered by the expansion of the bubble. Using Herschel PACS and SPIRE images with a widemore » wavelength coverage, we reveal the dust properties over the entire bubble. Meanwhile, we are able to identify six dust clumps surrounding the bubble, with a mean size of 0.50 pc, temperature of about 22 K, mean column density of 1.7 × 10{sup 22} cm{sup −2}, mean volume density of about 4.4 × 10{sup 4} cm{sup −3}, and a mean mass of 320 M{sub ⊙}. In addition, from PAH emission seen at 8 μm, free–free emission detected at 20 cm, and a probability density function in special regions, we could identify clear signatures of the influence of the H ii region on the surroundings. There are hints of star formation, though further investigation is required to demonstrate that N4 is the triggering source.« less

  11. Attrition resistant bulk iron catalysts and processes for preparing and using same

    DOEpatents

    Jothimurugesan, Kandaswamy [Ponca City, OK; Goodwin, Jr., James G.; Gangwal, Santosh K [Cary, NC

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  12. 40 CFR 86.522-78 - Carbon monoxide analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... performance on the most sensitive range. (2) Zero the carbon monoxide analyzer with either zero grade air or zero grade nitrogen. (3) Bubble a mixture of 3 percent CO2 in N2 through water at room temperature and... action. (Use of conditioning columns is one form of corrective action which may be taken.) (b) Initial...

  13. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  14. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  15. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  16. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  17. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted. (See... and water vapor interference if its response to a mixture of 3 percent CO2 in N2, which has been bubbled through water at room temperature, produces an equivalent CO response, as measured on the most...

  18. Water column imaging on hydrothermal vent in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Koh, J.; Park, Y.

    2017-12-01

    Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.

  19. Conceptual design of a 10 to the 8th power bit magnetic bubble domain mass storage unit and fabrication, test and delivery of a feasibility model

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The conceptual design of a highly reliable 10 to the 8th power-bit bubble domain memory for the space program is described. The memory has random access to blocks of closed-loop shift registers, and utilizes self-contained bubble domain chips with on-chip decoding. Trade-off studies show that the highest reliability and lowest power dissipation is obtained when the memory is organized on a bit-per-chip basis. The final design has 800 bits/register, 128 registers/chip, 16 chips/plane, and 112 planes, of which only seven are activated at a time. A word has 64 data bits +32 checkbits, used in a 16-adjacent code to provide correction of any combination of errors in one plane. 100 KHz maximum rotational frequency keeps power low (equal to or less than, 25 watts) and also allows asynchronous operation. Data rate is 6.4 megabits/sec, access time is 200 msec to an 800-word block and an additional 4 msec (average) to a word. The fabrication and operation are also described for a 64-bit bubble domain memory chip designed to test the concept of on-chip magnetic decoding. Access to one of the chip's four shift registers for the read, write, and clear functions is by means of bubble domain decoders utilizing the interaction between a conductor line and a bubble.

  20. On The Origin Of Two-Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gvaramadze, Vasilii

    2007-07-01

    The proper motion of massive stars could cause them to explode far from the geometric centers of their wind-driven bubbles and thereby could affect the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. Cygnus Loop, 3C 400.2, etc.).

  1. Shock-induced collapse of a bubble inside a deformable vessel

    PubMed Central

    Coralic, Vedran; Colonius, Tim

    2013-01-01

    Shockwave lithotripsy repeatedly focuses shockwaves on kidney stones to induce their fracture, partially through cavitation erosion. A typical side effect of the procedure is hemorrhage, which is potentially the result of the growth and collapse of bubbles inside blood vessels. To identify the mechanisms by which shock-induced collapse could lead to the onset of injury, we study an idealized problem involving a preexisting bubble in a deformable vessel. We utilize a high-order accurate, shock- and interface-capturing, finite-volume scheme and simulate the three-dimensional shock-induced collapse of an air bubble immersed in a cylindrical water column which is embedded in a gelatin/water mixture. The mixture is a soft tissue simulant, 10% gelatin by weight, and is modeled by the stiffened gas equation of state. The bubble dynamics of this model configuration are characterized by the collapse of the bubble and its subsequent jetting in the direction of the propagation of the shockwave. The vessel wall, which is defined by the material interface between the water and gelatin/water mixture, is invaginated by the collapse and distended by the impact of the jet. The present results show that the highest measured pressures and deformations occur when the volumetric confinement of the bubble is strongest, the bubble is nearest the vessel wall and/or the angle of incidence of the shockwave reduces the distance between the jet tip and the nearest vessel surface. For a particular case considered, the 40 MPa shockwave utilized in this study to collapse the bubble generated a vessel wall pressure of almost 450 MPa and produced both an invagination and distention of nearly 50% of the initial vessel radius on a 𝒪(10) ns timescale. These results are indicative of the significant potential of shock-induced collapse to contribute to the injury of blood vessels in shockwave lithotripsy. PMID:24015027

  2. Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu

    USGS Publications Warehouse

    Pardo, Natalia; Cronin, Shane J.; Wright, Heather M.N.; Schipper, C. Ian; Smith, Ian; Stewart, Bob

    2014-01-01

    Between 27 and 11 cal. ka BP, a transition is observed in Plinian eruptions at Mt. Ruapehu, indicating evolution from non-collapsing (steady and oscillatory) eruption columns to partially collapsing columns (both wet and dry). To determine the causes of these variations over this eruptive interval, we examined lapilli fall deposits from four eruptions representing the climactic phases of each column type. All eruptions involve andesite to basaltic andesite magmas containing plagioclase, clinopyroxene, orthopyroxene and magnetite phenocrysts. Differences occur in the dominant pumice texture, the degree of bulk chemistry and textural variability, the average microcrystallinity and the composition of groundmass glass. In order to investigate the role of ascent and degassing processes on column stability, vesicle textures were quantified by gas volume pycnometry (porosity), X-ray synchrotron and computed microtomography (μ-CT) imagery from representative clasts from each eruption. These data were linked to groundmass crystallinity and glass geochemistry. Pumice textures were classified into six types (foamy, sheared, fibrous, microvesicular, microsheared and dense) according to the vesicle content, size and shape and microlite content. Bulk porosities vary from 19 to 95 % among all textural types. Melt-referenced vesicle number density ranges between 1.8 × 102 and 8.9 × 102 mm−3, except in fibrous textures, where it spans from 0.3 × 102 to 53 × 102 mm−3. Vesicle-free magnetite number density varies within an order of magnitude from 0.4 × 102 to 4.5 × 102 mm−3 in samples with dacitic groundmass glass and between 0.0 and 2.3 × 102 mm−3 in samples with rhyolitic groundmass. The data indicate that columns that collapsed to produce pyroclastic flows contained pumice with the greatest variation in bulk composition (which overlaps with but extends to slightly more silicic compositions than other eruptive products); textures indicating heterogeneous bubble nucleation, progressively more complex growth history and shear-localization; and the highest degrees of microlite crystallization, most evolved melt compositions and lowest relative temperatures. These findings suggest that collapsing columns in Ruapehu have been produced when strain localization is prominent, early bubble nucleation occurs and variation in decompression rate across the conduit is greatest. This study shows that examination of pumice from steady phases that precede column collapse may be used to predict subsequent column behaviour.

  3. Physical properties of the WAIS Divide ice core

    USGS Publications Warehouse

    Fitzpatrick, Joan J.; Voigt, Donald E.; Fegyveresi, John M.; Stevens, Nathan T.; Spencer, Matthew K.; Cole-Dai, Jihong; Alley, Richard B.; Jardine, Gabriella E.; Cravens, Eric; Wilen, Lawrence A.; Fudge, T. J.; McConnell, Joseph R.

    2014-01-01

    The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ∼50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity-mediated grain size is apparent in the deepest samples.

  4. Forced convection in the wakes of impacting and sliding bubbles

    NASA Astrophysics Data System (ADS)

    O'Reilly Meehan, R.; Williams, N. P.; Donnelly, B.; Persoons, T.; Nolan, K.; Murray, D. B.

    2017-09-01

    Both vapour and gas bubbles are known to significantly increase heat transfer rates between a heated surface and the surrounding fluid, even with no phase change. The cooling structures observed are highly temporal, intricate and complex, with a full description of the surface cooling phenomena not yet available. The current study uses high speed infrared thermography to measure the surface temperature and determine the convective heat flux enhancement associated with the interaction of a single air bubble with a heated, inclined surface. This process can be discretised into the initial impact, in which enhancement levels in excess of 20 times natural convection are observed, and the subsequent sliding behaviour, with more moderate maximum enhancement levels of 8 times natural convection. In both cases, localised regions of suppressed heat transfer are also observed due to the recirculation of warm fluid displaced from the thermal boundary layer with the surface. The cooling patterns observed herein are consistent with the interaction between an undulating wake containing multiple hairpin vortex loops and the thermal boundary layer that exists under the surface, with the initial nature of this enhancement and suppression dependent on the particular point on its rising path at which the bubble impacts the surface.

  5. Are winds in cities always slower than in the countryside? Modelling the Urban Wind Island Effect

    NASA Astrophysics Data System (ADS)

    Droste, Arjan; Steeneveld, Gert-Jan

    2017-04-01

    Though the Urban Heat Island has been extensively studied, relatively little has been documented about differences in wind between the city as a whole and the countryside. Urban winds are difficult to capture in both observations and modelling, due to the complex urban canyon and neighbourhood geometry. This study uses a straightforward mixed-layer model (Tennekes & Driedonks, 1981) to investigate the contrast between the diurnal cycle of wind in the urban and the rural environment. The model contains one urban and one rural column, to identify differences in wind patterns between city and countryside under equal geostrophic forcing. The model has been evaluated against rural observations from the 213 m. Cabauw tower (the Netherlands), and the urban observations from the BUBBLE campaign (Basel, Rotach et al., 2005). The influence of the urban fabric on the wind is investigated by varying the surface underneath the column model using the 10 urban Local Climate Zones, thereby altering building height, fraction of impervious surface, and initial boundary-layer depth. First results show that for high initial urban boundary-layer depths compared to the rural boundary-layer depth, the urban column can be much windier than its rural counterpart: i.e. the urban Wind Island Effect. The effect appears to be most prominent in the morning and the late afternoon (up to 1 m/s), for Local Climate Zones with lower buildings (3 or 7). BUBBLE observations confirm the timing of the Wind Island Effect, though with weaker magnitude.

  6. Completing the evolution of supernova remnants and their bubbles

    NASA Technical Reports Server (NTRS)

    Slavin, Jonathan D.; Cox, Donald P.

    1992-01-01

    The filling fraction of hot gas in the ISM is reexamined with new calculations of the very long term evolution of SNRs and their fossil hot bubbles. Results are presented of a 1D numerical solution of the evolution of an SNR in a homogeneous medium with a nonthermal pressure corresponding to a 5-micro-G magnetic field and density of 0.2/cu cm. Comparison is made with a control simulation having no magnetic field pressure. It is found that the evolutions, once they have become radiative, differ in several significant ways, while both differ appreciably from qualitative pictures presented in the past. Over most of the evolution of either case, the hot bubble in the interior occupies only a small fraction of the shocked volume, the remainder in a thick shell of slightly compressed material. Column densities and radial distributions of O VI, N V, C IV, and Si IV as well as examples of absorption profiles for their strong UV lines are presented.

  7. CFD-DEM study of effect of bed thickness for bubbling fluidized beds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tingwen, Li; Gopalakrishnan, Pradeep; Garg, Rahul

    2011-10-01

    The effect of bed thickness in rectangular fluidized beds is investigated through the CFD–DEM simulations of small-scale systems. Numerical results are compared for bubbling fluidized beds of various bed thicknesses with respect to particle packing, bed expansion, bubble behavior, solids velocities, and particle kinetic energy. Good two-dimensional (2D) flow behavior is observed in the bed having a thickness of up to 20 particle diameters. However, a strong three-dimensional (3D) flow behavior is observed in beds with a thickness of 40 particle diameters, indicating the transition from 2D flow to 3D flow within the range of 20–40 particle diameters. Comparison ofmore » velocity profiles near the walls and at the center of the bed shows significant impact of the front and back walls on the flow hydrodynamics of pseudo-2D fluidized beds. Hence, for quantitative comparison with experiments in pseudo-2D columns, the effect of walls has to be accounted for in numerical simulations.« less

  8. Shock-induced bubble collapse in a vessel: Implications for vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran; Colonius, Tim

    2014-11-01

    In shockwave lithotripsy, shocks are repeatedly focused on kidney stones so to break them. The process leads to cavitation in tissue, which leads to hemorrhage. We hypothesize that shock-induced collapse (SIC) of preexisting bubbles is a potential mechanism for vascular injury. We study it numerically with an idealized problem consisting of the three-dimensional SIC of an air bubble immersed in a cylindrical water column embedded in gelatin. The gelatin is a tissue simulant and can be treated as a fluid due to fast time scales and small spatial scales of collapse. We thus model the problem as a compressible multicomponent flow and simulate it with a shock- and interface-capturing numerical method. The method is high-order, conservative and non-oscillatory. Fifth-order WENO is used for spatial reconstruction and an HLLC Riemann solver upwinds the fluxes. A third-order TVD-RK scheme evolves the solution. We evaluate the potential for injury in SIC for a range of pressures, bubble and vessel sizes, and tissue properties. We assess the potential for injury by comparing the finite strains in tissue, obtained by particle tracking, to ultimate strains from experiments. We conclude that SIC may contribute to vascular rupture and discuss the smallest bubble sizes needed for injury. This research was supported by NIH Grant No. 2PO1DK043881 and utilized XSEDE, which is supported by NSF Grant No. OCI-1053575.

  9. Investigating ebullition in a sand column using dissolved gas analysis and reactive transport modeling

    USGS Publications Warehouse

    Amos, Richard T.; Mayer, K. Ulrich

    2006-01-01

    Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.

  10. Development of a split-flow system for high precision variable sample introduction in supercritical fluid chromatography.

    PubMed

    Sakai, Miho; Hayakawa, Yoshihiro; Funada, Yasuhiro; Ando, Takashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2017-09-15

    In this study, we propose a novel variable sample injection system based on full-loop injection, named the split-flow sample introduction system, for application in supercritical fluid chromatography (SFC). In this system, the mobile phase is split by the differential pressure between two back pressure regulators (BPRs) after full-loop injection suitable for SFC, and this differential pressure determines the introduction rate. Nine compounds with a wide range of characteristics were introduced with high reproducibility and universality, confirming that a robust variable sample injection system was achieved. We also investigated the control factors of our proposed system. Sample introduction was controlled by the ratio between the column-side pressure drops in splitless and split flow, ΔP columnsideinsplitless and ΔP columnsideinsplit , respectively, where ΔP columnsideinsplitless is related to the mobile phase flow rate and composition and the column resistance. When all other conditions are kept constant, increasing the make-up flow induces an additional pressure drop on the column side of the system, which leads to a reduced column-side flow rate, and hence decreased the amount of sample injected, even when the net pressure drop on the column side remains the same. Thus, sample introduction could be highly controlled at low sample introduction rate, regardless of the introduction conditions. This feature is advantageous because, as a control factor, the solvent in the make-up pump is independent of the column-side pressure drop. Copyright © 2017. Published by Elsevier B.V.

  11. Comments on higher rank Wilson loops in N$$ \\mathcal{N} $$ = 2∗

    DOE PAGES

    Liu, James T.; Zayas, Leopoldo A. Pando; Zhou, Shan

    2018-01-01

    For N = 2∗ theory with U(N) gauge group we evaluate expectation values of Wilson loops in representations described by a rectangular Young tableau with n rows and k columns. The evaluation reduces to a two-matrix model and we explain, using a combination of numerical and analytical techniques, the general properties of the eigenvalue distributions in various regimes of parameters (N, λ, n, k) where λ is the ’t Hooft coupling. In the large N limit we present analytic results for the leading and sub-leading contributions. In the particular cases of only one row or one column we reproduce previouslymore » known results for the totally symmetry and totally antisymmetric representations. We also extensively discusss the N = 4 limit of the N = 2∗ theory. While establishing these connections we clarify aspects of various orders of limits and how to relax them; we also find it useful to explicitly address details of the genus expansion. As a result, for the totally symmetric Wilson loop we find new contributions that improve the comparison with the dual holographic computation at one loop order in the appropriate regime.« less

  12. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process.

    PubMed

    Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.

  13. A New Hybrid BFOA-PSO Optimization Technique for Decoupling and Robust Control of Two-Coupled Distillation Column Process

    PubMed Central

    Mohamed, Amr E.; Dorrah, Hassen T.

    2016-01-01

    The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444

  14. Simulation and observation of line-slip structures in columnar structures of soft spheres

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  15. Simulation and observation of line-slip structures in columnar structures of soft spheres.

    PubMed

    Winkelmann, J; Haffner, B; Weaire, D; Mughal, A; Hutzler, S

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  16. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  17. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  18. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  19. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  20. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and 91.320.) (3) A CO instrument will be considered to be essentially free of CO2 and water vapor interference if its response to a mixture of three percent CO2 in N2, which has been bubbled through water at...

  1. Technology development for iron Fischer-Tropsch catalysts. Technical progress report No. 8, July 1, 1992--September 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frame, R.R.; Gala, H.B.

    1992-12-31

    The objectives of this contract are to develop a technology for the production of active and stable iron Fischer-Tropsch catalysts for use in slurry-phase synthesis reactors and to develop a scaleup procedure for large-scale synthesis of such catalysts for process development and long-term testing in slurry bubble-column reactors. With a feed containing hydrogen and carbon monoxide in the molar ratio of 0.5 to 1.0 to the slurry bubble-column reactor, the catalyst performance target is 88% CO + H{sub 2} conversion at a minimum space velocity of 2.4 NL/hr/gFe. The desired sum of methane and ethane selectivities is no more thanmore » 4%, and the conversion loss per week is not to exceed 1%. Contract Tasks are as follows: 1.0--Catalyst development, 1.1--Technology assessment, 1.2--Precipitated catalyst preparation method development, 1.3--Novel catalyst preparation methods investigation, 1.4--Catalyst pretreatment, 1.5--Catalyst characterization, 2.0--Catalyst testing, 3.0--Catalyst aging studies, and 4.0--Preliminary design and cost estimate of a catalyst synthesis facility. This paper reports progress made on Task 1.« less

  2. Modelling of microalgal growth and lipid production in Dunaliella tertiolecta using nitrogen-phosphorus-potassium fertilizer medium in sintered disk chromatographic glass bubble column.

    PubMed

    Kumar, Anup; Guria, Chandan; Chitres, G; Chakraborty, Arunangshu; Pathak, A K

    2016-10-01

    A comprehensive mathematical model involving NPK-10:26:26 fertilizer, NaCl, NaHCO3, light and temperature operating variables for Dunaliella tertiolecta cultivation is formulated to predict microalgae-biomass and lipid productivity. Proposed model includes Monod/Andrews kinetics for the absorption of essential nutrients into algae-biomass and Droop model involving internal nutrient cell quota for microalgae growth, assuming algae-biomass is composed of sugar, functional-pool and neutral-lipid. Biokinetic model parameters are determined by minimizing the residual-sum-of-square-errors between experimental and computed microalgae-biomass and lipid productivity using genetic algorithm. Developed model is validated with the experiments of Dunaliella tertiolecta cultivation using air-agitated sintered-disk chromatographic glass-bubble column and the effects of operating variables on microalgae-biomass and lipid productivity is investigated. Finally, parametric sensitivity analysis is carried out to know the sensitivity of model parameters on the obtained results in the input parameter space. Proposed model may be helpful in scale-up studies and implementation of model-based control strategy in large-scale algal cultivation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Enceladus and Europa: How Does Hydrothermal Activity Begin at the Surface?

    NASA Technical Reports Server (NTRS)

    Matson, D. L.; Castillo-Rogez, J. C.; Johnson, T. V.; Lunine, J. I.; Davies, A. G.

    2011-01-01

    The question of how the surface hydrothermal activity (e.g., eruptive plumes and heat flow) is initiated can be addressed within the frame-work of our "Perrier Ocean" model. This model delivers the necessary heat and chemicals to support the heat flow and plumes observed by Cassini in Enceladus' South Polar Region. The model employs closed-loop circulation of water from a sub-surface ocean. The ocean is the main reservoir of heat and chemicals, including dissolved gases. As ocean water moves up toward the surface, pressure is re-duced and gases exsolve forming bubbles. This bub-bly mixture is less dense than the icy crust and the buoyant ocean-water mixture rises toward the surface. Near the surface, heat and chemicals, including some volatiles, are delivered to the chambers in which plumes form and also to shallow reservoirs that keep the surface ice "warm". (Plume operations, per se, are as described by Schmidt et al. and Postberg et al. and are adopted by us.) After transferring heat, the water cools, bubbles contract and dissolve, and the mixture is now relatively dense. It descends through cracks in the crust and returns to the ocean. Once the closed-loop circulation has started it is self-sustaining. Loss of water via the erupting plumes is relatively negligible compared to the amount needed to maintain the heat flow.We note that the activity described herein for the the "Perrier-Ocean" model could, a priori, apply to all small icy bodies that sheltered an interior ocean at some point in their history.

  4. Transition scenario and transition control of the flow over a semi-infinite square leading-edge plate

    NASA Astrophysics Data System (ADS)

    Huang, Yadong; Zhou, Benmou; Tang, Zhaolie; Zhang, Fei

    2017-07-01

    In recent investigations of the flow over a square leading-edge flat plate, elliptic instability and transient growth of perturbations are proposed to explain the turbulent transition mechanism of the separating and reattaching flow reported in early experimental visualizations. An original transition scenario as well as a transition control method is presented by a detailed numerical study in this paper. The transient growth of perturbations in the separation bubble induces the primary instability that causes the 2D unsteady flow consisting of Kelvin-Helmholtz (KH) vortices. The pairing instability of the KH vortices induces the subharmonic secondary instability, and then resonance transition occurs. The streamwise Lorentz force as the control input is applied in the recirculation region where the separation bubble generates. The maximum energy amplification magnitude of perturbations takes a linear attenuation with the interaction number; thus, the primary instability is reduced under control. The interaction number represents the strength of the streamwise Lorentz force relative to the inertial force of the fluid. The reduced primary instability is not strong enough to induce the secondary instability, so the flow is globally stable under control. Three-dimensional direct numerical simulation confirms the results of the linear stability analysis. Although the growth rate of the convectively unstable secondary instability is limited by the flow field scale, the feedback loop of the energy transfer promotes the resonance transition. However, as the separation bubble scale is reduced and the feedback loop is broken by the streamwise Lorentz force, the three-dimensional transition is suppressed and a skin-friction drag reduction is achieved.

  5. FAR-ULTRAVIOLET OBSERVATIONS OF THE SPICA NEBULA AND THE INTERACTION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yeon-Ju; Min, Kyoung-Wook; Lim, Tae-Ho

    2013-09-01

    We report the analysis results of far-ultraviolet (FUV) observations, made for a broad region around {alpha} Vir (Spica) including the interaction zone of Loop I and the Local Bubble. The whole region was optically thin and a general correlation was seen between the FUV continuum intensity and the dust extinction, except in the neighborhood of the bright central star, indicating the dust scattering nature of the FUV continuum. We performed Monte Carlo radiative transfer simulations to obtain the optical parameters related to the dust scattering as well as to the geometrical structure of the region. The albedo and asymmetry factormore » were found to be 0.38 {+-} 0.06 and 0.46 {+-} 0.06, respectively, in good agreement with the Milky Way dust grain models. The distance to and the thickness of the interaction zone were estimated to be 70{sup +4}{sub -8} pc and 40{sup +8}{sub -10} pc, respectively. The diffuse FUV continuum in the northern region above Spica was mostly the result of scattering of the starlight from Spica, while that in the southern region was mainly due to the background stars. The C IV {lambda}{lambda}1548, 1551 emission was found throughout the whole region, in contrast to the Si II* {lambda}1532 emission which was bright only within the H II region. This indicates that the C IV line arises mostly at the shell boundaries of the bubbles, with a larger portion likely from the Loop I than from the Local Bubble side, whereas the Si II* line is from the photoionized Spica Nebula.« less

  6. Impact of methane flow through deformable lake sediments on atmospheric release

    NASA Astrophysics Data System (ADS)

    Scandella, B.; Juanes, R.

    2010-12-01

    Methane is a potent greenhouse gas that is generated geothermally and biologically in lake and ocean sediments. Free gas bubbles may escape oxidative traps and contribute more to the atmospheric source than dissolved methane, but the details of the methane release depend on the interactions between the multiple fluid phases and the deformable porous medium. We present a model and supporting laboratory experiments of methane release through “breathing” dynamic flow conduits that open in response to drops in the hydrostatic load on lake sediments, which has been validated against a high-resolution record of free gas flux and hydrostatic pressure in Upper Mystic Lake, MA. In contrast to previous linear elastic fracture mechanics analysis of gassy sediments, the evolution of gas transport in a deformable compliant sediment is presented within the framework of multiphase poroplasticity. Experiments address how strongly the mode and rate of gas flow, captured by our model, impacts the size of bubbles released into the water column. A bubble's size in turn determines how efficiently it transports methane to the atmosphere, and integrating this effect will be critical to improving estimates of the atmospheric methane source from lakes. Cross-sectional schematic of lake sediments showing two venting sites: one open at left and one closed at right. The vertical release of gas bubbles (red) at the open venting site creates a local pressure drop, which drives both bubble formation from the methane-rich pore water (higher concentrations shaded darker red) and lateral advection of dissolved methane (purple arrows). Even as bubbles in the open site escape, those at the closed site remain trapped.

  7. The use of loop-seals for the control of the overpressures in hydraulic transients evolving in a sea service water system

    NASA Astrophysics Data System (ADS)

    Canetta, D.; Capozza, A.; Iovino, G.

    The transient response following pump trip-offs and start-ups was investigated in the sea water system of a nuclear power plant. Specific care was devoted to water column separation and cavity collapse phenomena. A computer program designed for analysis of complex hydraulic networks was used. It is found that dangerous overpressures can be avoided by the use of loop seals. The design of the vacuum breaker valves of the loop seals and the optimization of overall transient behavior is discussed.

  8. A novel circulating loop bioreactor with cells immobilized in loofa ( Luffa cylindrica) sponge for the bioconversion of raw cassava starch to ethanol.

    PubMed

    Roble, N D; Ogbonna, J C; Tanaka, H

    2003-02-01

    A circulating loop bioreactor (CLB) with cells immobilized in loofa sponge was constructed for simultaneous aerobic and anaerobic processes. The CLB consists of an aerated riser and a non-aerated downcomer column connected at the top and bottom by cylindrical pipes. Ethanol production from raw cassava starch was investigated in the CLB. Aspergillus awamori IAM 2389 and Saccharomyces cerevisiae IR2 immobilized on loofa sponge were placed, respectively, in the aerated riser column and non-aerated downcomer column. Both alpha-amylase and glucoamylase activities increased as the aeration rate was increased. Ethanol yield and productivity increased with an increase in the aeration rate up to 0.5 vvm, but decreased at higher aeration rates. The CLB was operated at an aeration rate of 0.5 vvm for more than 600 h, resulting in an average ethanol productivity and yield from raw cassava starch of 0.5 g-ethanol l(-1) x h(-1) and 0.45 g ethanol/g starch, respectively. In order to increase ethanol productivity, it was necessary to increase the dissolved oxygen (DO) concentration in the riser column and decrease the DO concentration in the downcomer column. However, increasing the aeration rate resulted in increases in the DO concentration in both the riser and the downcomer columns. At high aeration rate, there was no significant difference in the DO concentration in the riser and downcomer columns. The aeration rate was therefore uncoupled from the liquid circulation by attaching a time-controlled valve in the upper connecting pipe. By optimizing the time and frequency of valve opening, and operation at high aeration rate, it was possible to maintain a very high DO concentration in the riser column and a low DO concentration in the downcomer column. Under these conditions, ethanol productivity increased by more than 100%, to 1.17 g l(-1) x h(-1).

  9. Efficient Filtration of Effluent Organic Matter by Polycation-Clay Composite Sorbents: Effect of Polycation Configuration on Pharmaceutical Removal.

    PubMed

    Shabtai, Itamar A; Mishael, Yael G

    2016-08-02

    Hybrid polycation-clay composites, based on methylated poly vinylpyridinium, were optimized as sorbents for secondary effluent organic matter (EfOM) including emerging micropollutants. Composite structure was tuned by solution ionic strength and characterized by zeta potential, FTIR, X-ray diffraction, and thermal gravimetric analyses. An increase in ionic strength induced a transition from a train to a loops and tails configuration, accompanied by greater polycation adsorption. Composite charge reversal (zeta potential -18 to 45 mV) increased the adsorption of EfOM and humic acid (HA), moderately and sharply, respectively, suggesting electrostatic and also nonspecific interactions with EfOM. Filtration of EfOM by columns of positively charged composites was superior to that of granular activated carbon (GAC). The overall removal of EfOM was most efficient by the composite with a train configuration. Whereas a composite with a loops and tails configuration was beneficial for the removal of the anionic micropollutants diclofenac, gemfibrozil and ibuprofen from EfOM. These new findings suggest that the loops and tails may offer unique binding sites for small micropollutants which are overseen by the bulk EfOM. Furthermore, they may explain our previous observations that in the presence of dissolved organic matter, micropollutant filtration by GAC columns was reduced, while their filtration by composite columns remained high.

  10. Cavitation luminescence in a water hammer: Upscaling sonoluminescence

    NASA Astrophysics Data System (ADS)

    Su, C.-K.; Camara, C.; Kappus, B.; Putterman, S. J.

    2003-06-01

    Oscillatory acceleration and deceleration of a column of water leads to a pipe hammer as well as cavitation. With a small amount of xenon gas dissolved in the water, we can detect a stream of predominantly ultraviolet subnanosecond flashes of light which are attributed to collapsing bubbles. The observed emission can exceed 108 photons for a single collapse and has a peak power over 0.4 W.

  11. BURST OF STAR FORMATION DRIVES BUBBLE IN GALAXY'S CORE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These NASA Hubble Space Telescope snapshots reveal dramatic activities within the core of the galaxy NGC 3079, where a lumpy bubble of hot gas is rising from a cauldron of glowing matter. The picture at left shows the bubble in the center of the galaxy's disk. The structure is more than 3,000 light-years wide and rises 3,500 light-years above the galaxy's disk. The smaller photo at right is a close-up view of the bubble. Astronomers suspect that the bubble is being blown by 'winds' (high-speed streams of particles) released during a burst of star formation. Gaseous filaments at the top of the bubble are whirling around in a vortex and are being expelled into space. Eventually, this gas will rain down upon the galaxy's disk where it may collide with gas clouds, compress them, and form a new generation of stars. The two white dots just above the bubble are probably stars in the galaxy. The close-up reveals that the bubble's surface is lumpy, consisting of four columns of gaseous filaments that tower above the galaxy's disk. The filaments disperse at a height of 2,000 light-years. Each filament is about 75 light-years wide. Velocity measurements taken by the Canada-France-Hawaii Telescope in Hawaii show that the gaseous filaments are ascending at more than 4 million miles an hour (6 million kilometers an hour). According to theoretical models, the bubble formed when ongoing winds from hot stars mixed with small bubbles of very hot gas from supernova explosions. Observations of the core's structure by radio telescopes indicate that those processes are still active. The models suggest that this outflow began about a million years ago. They occur about every 10 million years. Eventually, the hot stars will die, and the bubble's energy source will fade away. Astronomers have seen evidence of previous outbursts from radio and X-ray observations. Those studies show rings of dust and gas and long plumes of material, all of which are larger than the bubble. NGC 3079 is 50 million light-years from Earth in the constellation Ursa Major. The colors in this image accentuate important details in the bubble. Glowing gas is red and starlight is blue/green. Hubble's Wide Field and Planetary Camera 2 snapped this picture in 1998. The results appear in the July 1, 2001 issue of the Astrophysical Journal. Credits: NASA, Gerald Cecil (University of North Carolina), Sylvain Veilleux (University of Maryland), Joss Bland-Hawthorn (Anglo-Australian Observatory), and Alex Filippenko (University of California at Berkeley).

  12. Effect of surfactant on single drop mass transfer for extraction of aromatics from lubricating oils

    NASA Astrophysics Data System (ADS)

    Izza, H.; Ben Abdessalam, S.; Korichi, M.

    2018-03-01

    Solvent extraction is an effective method for the reduction of the content of aromatic of lubricating oil. Frequently, with phenol, furfural, the NMP (out of N-methyl pyrrolidone). The power solvent and the selectivity can be still to increase while using surfactant as additive which facilitates the separation of phase and increases the yeild in raffinat. Liquid-liquid mass transfer coefficients for single freely rising drops in the presence of surfactant in an extraction column have been investigated. The surfactant used in this study was sodium lauryl ether sulfate (SLES). The experiments were performed by bubbling a solvent as a series of individual drops from the top of the column containing furfural-SLES solution. The column used in this experiment was made from glass with 17 mm inner diameter and a capacity of 125ml. The effects of the concentration of surfactant on the overall coefficient of mass transfer was investigated.

  13. Surface-bubble-modulated liquid chromatography: a new approach for manipulation of chromatographic retention and investigation of solute distribution at water/hydrophobic interfaces.

    PubMed

    Nakamura, Keisuke; Nakamura, Hiroki; Saito, Shingo; Shibukawa, Masami

    2015-01-20

    In this paper, we present a new chromatographic method termed surface-bubble-modulated liquid chromatography (SBMLC), that has a hybrid separation medium incorporated with surface nanobubbles. Nanobubbles or nanoscale gas phases can be fixed at the interface between water and a hydrophobic material by delivering water into a dry column packed with a nanoporous material. The incorporation of a gas phase at the hydrophobic surface leads to the formation of the hybrid separation system consisting of the gas phase, hydrophobic moieties, and the water/hydrophobic interface or the interfacial water. One can change the volume of the gas phase by pressure applied to the column, which in turn alters the area of water/hydrophobic interface or the volume of the interfacial water, while the amount of the hydrophobic moiety remains constant. Therefore, this strategy provides a novel technique not only for manipulating the separation selectivity by pressure but also for elucidating the mechanism of accumulation or retention of solute compounds in aqueous solutions by a hydrophobic material. We evaluate the contributions of the interfacial water at the surface of an octadecyl bonded silica and the bonded layer itself to the retention of various solute compounds in aqueous solutions on the column packed with the material by SBMLC. The results show that the interfacial water formed at the hydrophobic surface has a key role in retention even though its volume is rather small. The manipulation of the separation selectivity of SBMLC for some organic compounds by pressure is demonstrated.

  14. In silico metabolic engineering of Clostridium ljungdahlii for synthesis gas fermentation.

    PubMed

    Chen, Jin; Henson, Michael A

    2016-11-01

    Synthesis gas fermentation is one of the most promising routes to convert synthesis gas (syngas; mainly comprised of H 2 and CO) to renewable liquid fuels and chemicals by specialized bacteria. The most commonly studied syngas fermenting bacterium is Clostridium ljungdahlii, which produces acetate and ethanol as its primary metabolic byproducts. Engineering of C. ljungdahlii metabolism to overproduce ethanol, enhance the synthesize of the native byproducts lactate and 2,3-butanediol, and introduce the synthesis of non-native products such as butanol and butyrate has substantial commercial value. We performed in silico metabolic engineering studies using a genome-scale reconstruction of C. ljungdahlii metabolism and the OptKnock computational framework to identify gene knockouts that were predicted to enhance the synthesis of these native products and non-native products, introduced through insertion of the necessary heterologous pathways. The OptKnock derived strategies were often difficult to assess because increase product synthesis was invariably accompanied by decreased growth. Therefore, the OptKnock strategies were further evaluated using a spatiotemporal metabolic model of a syngas bubble column reactor, a popular technology for large-scale gas fermentation. Unlike flux balance analysis, the bubble column model accounted for the complex tradeoffs between increased product synthesis and reduced growth rates of engineered mutants within the spatially varying column environment. The two-stage methodology for deriving and evaluating metabolic engineering strategies was shown to yield new C. ljungdahlii gene targets that offer the potential for increased product synthesis under realistic syngas fermentation conditions. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Role of fluid in the mechanism of formation of volcaniclastic and coherent kimberlite facies: a diamond perspective

    NASA Astrophysics Data System (ADS)

    Fedortchouk, Yana; Chinn, Ingrid

    2016-04-01

    Dissolution features on diamonds recovered from kimberlites vary depending on the dissolution conditions and can be used as a reliable proxy for volatiles and their role in kimberlite emplacement. Volatiles determine the mechanism of magma emplacement; variation in volatile content and CO2/CO2+H2O ratio may affect the geology of kimberlite bodies and formation of coherent vs. volcaniclastic kimberlite facies. Here we examine the evolution of a kimberlite system during ascent using the resorption morphology of its diamond population. We use 655 macro-diamonds from a complex kimberlite pipe in the Orapa kimberlite field (Botswana) to examine the role of volatiles in the formation of the three facies comprising this pipe: two coherent kimberlite facies (CKA and CKB) and one massive volcaniclastic facies (MVK). The diamonds come from three drillholes through each of the studied kimberlite facies. Separate diamond samples derived from 2 - 13 m intervals were combined into 40 m depth intervals for statistical purposes. Four independent morphological methods allowed us to reliably discriminate products of resorption in kimberlite magma from resorption in the mantle, and use the former in our study. We found that the proportion of diamonds with kimberlitic resorption is the lowest in CKA - 22%, medium in MVK - 50%, and highest in CKB - 73%, and it increases with depth in each of the drillholes. Each kimberlite facies shows its own style of kimberlite-induced resorption on rounded tetrahexahedron (THH) diamonds: glossy surfaces in MVK, rough corroded surfaces in CKB, and combination of glossy surfaces with chains of circular pits in CKA, where these pits represent the initial stages of development of corrosive features observed on CKB diamonds. Based on the results of our previous experimental studies we propose that resorption of MVK diamonds is a product of interaction with COH fluid, resorption of CKB diamonds is a product of interaction with a volatile-undersaturated melt (possibly carbonatitic), and CKA diamonds show an overprint of melt-controlled resorption over a fluid-controlled resorption. We propose an early separation of the fluid phase during the ascent of this kimberlite magma, segregation of this fluid and rise towards the top of the magma column. Over-pressurisation caused by the expansion of this fluid worked as a driving force for the magma ascent acceleration. The magma column has separated into two parts: (1) the bubble-rich magma towards the top, explosive emplacement of which formed the MVK facies, followed by the "tailing" bubble-poor magma quietly arriving to form the CKA facies, and (2) magma that lost volatiles to the upwardly escaping bubbles, in which a slower ascent caused more intensive diamond resorption and delayed emplacement, forming the CKB facie. It is possible that formation, buoyancy, and growth of fluid bubbles controls the ascent of the kimberlite magma, where emplacement of bubble-rich magma forms volcaniclastic kimberlite facies, while fast rise of the bubbles through the magma column separates the fluid-rich phase that moves up preparing the conduit in the surrounding rocks and forms an explosive pipe at the surface, from a volatile-depleted magma, which slowly rises and fills the pipe with CK kimberlite facies.

  16. Turbulence and the Formation of Filaments, Loops, and Shock Fronts in NGC 1275

    NASA Astrophysics Data System (ADS)

    Falceta-Gonçalves, D.; de Gouveia Dal Pino, E. M.; Gallagher, J. S.; Lazarian, A.

    2010-01-01

    NGC 1275, the central galaxy in the Perseus cluster, is the host of gigantic hot bipolar bubbles inflated by active galactic nucleus (AGN) jets observed in the radio as Perseus A. It presents a spectacular Hα-emitting nebulosity surrounding NGC 1275, with loops and filaments of gas extending to over 50 kpc. The origin of the filaments is still unknown, but probably correlates with the mechanism responsible for the giant buoyant bubbles. We present 2.5 and three-dimensional magnetohydrodynamical (MHD) simulations of the central region of the cluster in which turbulent energy, possibly triggered by star formation and supernovae (SNe) explosions, is introduced. The simulations reveal that the turbulence injected by massive stars could be responsible for the nearly isotropic distribution of filaments and loops that drag magnetic fields upward as indicated by recent observations. Weak shell-like shock fronts propagating into the intracluster medium (ICM) with velocities of 100-500 km s-1 are found, also resembling the observations. The isotropic outflow momentum of the turbulence slows the infall of the ICM, thus limiting further starburst activity in NGC 1275. As the turbulence is subsonic over most of the simulated volume, the turbulent kinetic energy is not efficiently converted into heat and additional heating is required to suppress the cooling flow at the core of the cluster. Simulations combining the MHD turbulence with the AGN outflow can reproduce the temperature radial profile observed around NGC 1275. While the AGN mechanism is the main heating source, the SNe are crucial to isotropize the energy distribution.

  17. Determination of physical and dynamic properties of suspended particles in water column with ultrasonic scanning in between the water surface and stable sediment layer.

    NASA Astrophysics Data System (ADS)

    Acar, Dursun; Alpar, Bedri; Ozeren, Sinan; Cagatay, Namık; Sari, Erol; Vardar, Denizhan; Eris, Kadir

    2015-04-01

    The behavior of seafloor sediment with its water column should be known against any occurrences of anoxic or oxic conditions. The most important ones of these conditions are possible leakage of natural gas or escape of liquids from sediment. On the basis of combined solid/liquid flow dynamics in sedimentation, such kind of events can change, even in an effective manner, the dynamic movements of molecules and their cumulative mass of particules, i.e. the suspended materials. The deployment of suitable sediment traps or ultrasonic transducers somewhere in the water column are not easy attempts in order to obtain useful information about the state of suspended materials during sedimentation. These are usually bulky instruments; therefore they may behave like an anti-move suppresser on the particles moving in the float direction, in oxic and anoxic manner. These instruments, on the other hand, may cover the effects of diffusive flow or bubble formed gas and fluid escape from the sediment surface into the water column. Ultrasonic scanners, however, are able to make observations in a remote manner, without affecting such artificial events. Our field trials were successfully completed at the historical estuary called Halic of Marmara sea . The physical properties; such as the velocity of particles, their travel directions, their dimensions and the ability to observe anti-compositor crushes of shock waves of the bubbles are only a few of these observations in natural ambience. The most important problem solved about water pressure during 3 atmosphere . The sensor has been tested successfully few times. We used the ''High voltage electric isolator oil filling'' to the inside of the scanner for pressure equalization between outer side and inner body of probe at a depth of (20 meters) beneath the sea surface . The transmitted signals by the planar crystal of the transducer become weaker under the pressure of overlying water column in depths. Our efforts are now focused on the improved performance of transducer at higher than over 3 atm pressure. Keywords: ultrasonic , flow , particle , Sediment , Cumulative mass

  18. Silica Precipitation and Scaling in Dynamic Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlmann, E.G.; Shor, A.J.; Berlinski, P.

    1976-01-01

    The authors are modifying an existing 100 gpm titanium loop to provide a facility for studying the formation of silica precipitates, their properties and fates, principally as a function of brine composition, temperature, and flow conditions. This loop demonstrated excellent serviceability over a period of years in saline water corrosion studies (to 275 C and 2 M NaCl), with and without pollutant additives such as H{sub 2}S, NH{sub 3}, and SO{sub 2}, and should be equally useful in this application. Simulated silica saturated geothermal waters are prepared by circulating part of the loop flow ({approx} 1 gpm) through a bypassmore » column filled with amorphous silica powder. Exploratory studies in a Once-Through Development System indicated that porous Vycor (Cornin-Glass Code No.7930, 97% SiO{sub 2}, 3% B{sub 2}O{sub 3}) was a suitable material for loading the column. A recent run at {approx} 220 C confirmed this: the system approached equilibrium in agreement with calculation and with the anticipated 15 psi pressure drop through an 18 in. deep bed of 140-200 mesh Vycor powder.« less

  19. Nitrous Oxide Abatement Coupled with Biopolymer Production As a Model GHG Biorefinery for Cost-Effective Climate Change Mitigation.

    PubMed

    Frutos, Osvaldo D; Cortes, Irene; Cantera, Sara; Arnaiz, Esther; Lebrero, Raquel; Muñoz, Raúl

    2017-06-06

    N 2 O represents ∼6% of the global greenhouse gas emission inventory and the most important O 3 -depleting substance emitted in this 21st century. Despite its environmental relevance, little attention has been given to cost-effective and environmentally friendly N 2 O abatement methods. Here we examined, the potential of a bubble column (BCR) and an internal loop airlift (ALR) bioreactors of 2.3 L for the abatement of N 2 O from a nitric acid plant emission. The process was based on the biological reduction of N 2 O by Paracoccus denitrificans using methanol as a carbon/electron source. Two nitrogen limiting strategies were also tested for the coproduction of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) coupled with N 2 O reduction. High N 2 O removal efficiencies (REs) (≈87%) together with a low PHBV cell accumulation were observed in both bioreactors in excess of nitrogen. However, PHBV contents of 38-64% were recorded under N limiting conditions along with N 2 O-REs of ≈57% and ≈84% in the ALR and BCR, respectively. Fluorescence in situ hybridization analyses showed that P. denitrificans was dominant (>50%) after 6 months of experimentation. The successful abatement of N 2 O concomitant with PHBV accumulation confirmed the potential of integrating biorefinery concepts into biological gas treatment for a cost-effective GHG mitigation.

  20. Storm in a Teacup: X-Ray View of an Obscured Quasar and Superbubble

    NASA Astrophysics Data System (ADS)

    Lansbury, George B.; Jarvis, Miranda E.; Harrison, Chris M.; Alexander, David M.; Del Moro, Agnese; Edge, Alastair C.; Mullaney, James R.; Thomson, Alasdair P.

    2018-03-01

    We present the X-ray properties of the “Teacup AGN” (SDSS J1430+1339), a z = 0.085 type 2 quasar that is interacting dramatically with its host galaxy. Spectral modeling of the central quasar reveals a powerful, highly obscured active galactic nucleus (AGN) with a column density of N H = (4.2–6.5) × 1023 cm‑2 and an intrinsic luminosity of L 2–10 keV = (0.8–1.4) × 1044 erg s‑1. The current high bolometric luminosity inferred (L bol ≈1045–1046 erg s‑1) has ramifications for previous interpretations of the Teacup as a fading/dying quasar. High-resolution Chandra imaging data reveal a ≈10 kpc loop of X-ray emission, cospatial with the “eastern bubble” previously identified in luminous radio and ionized gas (e.g., [O III] line) emission. The X-ray emission from this structure is in good agreement with a shocked thermal gas, with T = (4–8) × 106 K, and there is evidence for an additional hot component with T ≳ 3 × 107 K. Although the Teacup is a radiatively dominated AGN, the estimated ratio between the bubble power and the X-ray luminosity is in remarkable agreement with observations of ellipticals, groups, and clusters of galaxies undergoing AGN feedback.

  1. Internal flow patterns on heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves using ethanol and a silver nano-ethanol mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuwakietkumjohn, N.; Rittidech, S.

    The aim of this research was to investigate the internal flow patterns and heat transfer characteristics of a closed-loop oscillating heat-pipe with check valves (CLOHP/CV). The ratio of number of check valves to meandering turns was 0.2. Ethanol and a silver nano-ethanol mixture were used as working fluids with a filling ratio of 50% by total volume of tube. The CLOHP/CV was made of a glass tube with an inside diameter of 2.4 mm. The evaporator section was 50 mm and 100 mm in length and there were 10 meandering turns. An inclination angle of 90 from horizontal axis wasmore » established. The evaporator section was heated by an electric heater and the condenser section was cooled by distilled water. Temperature at the evaporator section was controlled at 85 C, 105 C and 125 C. The inlet and outlet temperatures were measured. A digital camera and video camera were used to observe the flow patterns at the evaporator. The silver nano-ethanol mixture gave higher heat flux than ethanol. When the temperature at the evaporator section was increased from 85 C to 105 C and 125 C. It was found that, the flow patterns occurred as annular flow + slug flow, slug flow + bubble flow and dispersed bubble flow + bubble flow respectively. The main regime of each flow pattern can be determined from the flow pattern map ethanol and a silver nano-ethanol mixture. Each of the two working fluids gave corresponding flow patterns. (author)« less

  2. Characterization of hydrodynamics and solids mixing in fluidized beds involving biomass

    NASA Astrophysics Data System (ADS)

    Fotovat, Farzam

    This thesis focuses on the characterization of hydrodynamics and mixing phenomena in fluidized beds containing mixtures of sand and irregular biomass particles. The first objective of this study is understanding the effect of the large biomass particles on the bubbling characteristics and gas distribution pattern of sand fluidized beds. The second objective is the characterization of mixing/segregation of biomass and sand particles under fluidization conditions. A variety of experimental techniques are employed to study the behavior of two constituting phases of a fluidized bed, i.e., dilute (bubble) and dense (emulsion) phases. Exploring the characteristic fluidization velocities of sand-biomass mixtures unveils that the onset of bubbling in these systems occurs at a higher gas velocity compared to that of the initial fluidization velocity (Uif). The initial bubbling velocity (Uib), the final fluidization velocity ( Uff), and the transition gas velocity from bubbling to turbulent regime (Uc) rise by increasing the fraction of biomass in the mixture. Statistical analysis of the pressure signal at top of the bed reveals that increasing the biomass load hinders the evolution of bubbles at a low gas velocity (U<0.6 m/s), while at high velocities, the bubbling trend of beds containing different fractions of biomass is comparable. The addition of biomass particles to a bed of sand leads to an increase in the mean voidage of the bed; however, the voidage of each phase remains unaffected. It is observed that large biomass particles trigger a break-up of the bubbles, which results in boosting bubbling frequency. The fraction of bubbles at the center of the bed increases with the load of biomass. At the wall region, however, it starts to decrease by adding 2% wt. biomass to pure sand and then increases with the further addition of biomass. The Radioactive Particle Tracking (RPT) technique is implemented in the second section of this work to study the motion and distribution of biomass particles at U=0.36 m/s and U=0.64 m/s. In this regard, an active biomass particle is tracked for a long period of time and its instantaneous position is recorded. The acquired data is then processed to achieve the time-averaged concentration profile of biomass particles. This profile represents the segregation of biomass particles, which tend to accumulate in the upper levels of the bed. Changes in the fraction of biomass with increasing gas velocity are inferred from the local changes of the time-averaged pressure drop values at the top of the bed. To determine the parameters affecting the movement and segregation of biomass particles, their circulatory motion is also scrutinized using the RPT data. The circulation of biomass is impeded when the load of biomass rises at U=0.36 m/s, resulting in a more pronounced segregation of sand and biomass. The opposite trend is observed at U=0.64 m/s. This prompts a more uniform distribution of particles along the bed and brings about a higher degree of mixing. The average rise velocity of biomass is 0.2 times the bubble velocity, regardless of the biomass load or fluidization velocity. A one-dimensional model is proposed to predict the volume fraction of biomass along the bed. Some of the terms of this model are linked to the fluidizing behavior of biomass particles as deduced from the RPT findings. The fluidization of sand and cylindrical biomass particles is also simulated using the BARRACUDA CPFD software, which is based on the Lagrangian-Eulerian approach. Simulation and experimental results are compared in order to evaluate the capability of the numerical approach to predict the bubbling characteristics of the sand-biomass mixture for systems differing in composition and fluidization velocity. The last part of this thesis is devoted to the separation of the main components of the shredded bulky waste. A step-wise process has been developed based on the elutriation and density segregation techniques. After removal of the light and interwoven species of the shredded waste by elutriation, the nonelutriated materials are further separated into two successive fluidization columns. Polypropylene and glass beads are introduced as the fluidization media in these columns in order to make density segregation of the target and not-target components possible. Hence, undesirable combustible matters and hard plastic are separated as the overflow of the first and second fluidization steps. A second elutriation column is also devised to separate and recover fiber and soft plastic. To determine optimal operating conditions, several influential parameters, such as the elutriation velocity and time, the size and density of the fluidization media, and the initial configuration of the feedstock and bed material, are explored. The kinetics of segregation is also derived for both fluidization steps. (Abstract shortened by UMI.).

  3. Portable rotating discharge plasma device

    NASA Astrophysics Data System (ADS)

    Dwyer, B. L.; Brooks, N. H.; Lee, R. L.

    2011-10-01

    We constructed two devices for the purpose of educational demonstration: a rotating tube containing media of two densities to demonstrate axial confinement and a similar device that uses pressure variation to convert a long plasma glow discharge into a long straight arc. In the first device, the buoyant force is countered by the centripetal force, which confines less dense materials to the center of the column. Similarly, a plasma arc heats the gas through which it passes, creating a hot gaseous bubble that is less dense than the surrounding medium. Rotating its containment envelope stabilizes this gas bubble in an analogous manner to an air bubble in a rotating tube of water. In addition to stabilization, the rotating discharge also exhibits a decrease in buoyancy-driven convection currents. This limits the power loss to the walls, which decreases the field strength requirement for maintaining the arc. These devices demonstrate principles of electrodynamics, plasma physics, and fluid mechanics. They are portable and safe for classroom use. Work supported by US DOE under DE-FC02-04ER54698 and the National Undergraduate Fellowship in Fusion Science and Engineering.

  4. The January 2015 Repressurization of ISS ATCS Loop B - Analysis Limitations and Concerns

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene; Rankin, J. Gary; Schaff, Mary; Figueroa, Marcelino

    2015-01-01

    In January 2013 a false ammonia leak alarm resulted in the shutdown and partial depressurization of one of the two International Space Station (ISS) External Active Thermal Control System (EATCS) loops. The depressurization resulted in a vapor bubble of 18 liters in warm parts of the stagnant loop. To repressurize the loop and regain system operation, liquid would have to be moved from the Ammonia Tank Assembly (ATA) into the loop. This resulted in the possibility of moving cold (as low as -30 C) ammonia into the water-filled Internal Active Thermal Control System (IATCS) interface heat exchangers. Before moving forward, the freezing potential of the repressurization was evaluated through analysis - using both a Thermal Desktop SINDA/FLUINT model and hand calculations. The models yielded very different results, but both models indicated that heat exchanger freezing was not an issue. Therefore, the repressurization proceeded. The presentation describes the physical situation of the EATCS prior to repressurization and discusses the potential limits and pitfalls of the repressurization. The pre-repressurization analytical models and their results are discussed. The successful repressurization is describled and the results of a post-event model assessment is detailed.

  5. Corrected Article: Simulation and observation of line-slip structures in columnar structures of soft spheres [Phys. Rev. E 96, 012610 (2017)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.; Haffner, B.; Weaire, D.; Mughal, A.; Hutzler, S.

    2017-07-01

    We present the computed phase diagram of columnar structures of soft spheres under pressure, of which the main feature is the appearance and disappearance of line slips, the shearing of adjacent spirals, as pressure is increased. A comparable experimental observation is made on a column of bubbles under forced drainage, clearly exhibiting the expected line slip.

  6. Consultancy on Large-Scale Submerged Aerobic Cultivation Process Design - Final Technical Report: February 1, 2016 -- June 30, 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crater, Jason; Galleher, Connor; Lievense, Jeff

    NREL is developing an advanced aerobic bubble column model using Aspen Custom Modeler (ACM). The objective of this work is to integrate the new fermentor model with existing techno-economic models in Aspen Plus and Excel to establish a new methodology for guiding process design. To assist this effort, NREL has contracted Genomatica to critique and make recommendations for improving NREL's bioreactor model and large scale aerobic bioreactor design for biologically producing lipids at commercial scale. Genomatica has highlighted a few areas for improving the functionality and effectiveness of the model. Genomatica recommends using a compartment model approach with an integratedmore » black-box kinetic model of the production microbe. We also suggest including calculations for stirred tank reactors to extend the models functionality and adaptability for future process designs. Genomatica also suggests making several modifications to NREL's large-scale lipid production process design. The recommended process modifications are based on Genomatica's internal techno-economic assessment experience and are focused primarily on minimizing capital and operating costs. These recommendations include selecting/engineering a thermotolerant yeast strain with lipid excretion; using bubble column fermentors; increasing the size of production fermentors; reducing the number of vessels; employing semi-continuous operation; and recycling cell mass.« less

  7. Crystallization and precipitation of phosphate from swine wastewater by magnesium metal corrosion.

    PubMed

    Huang, Haiming; Liu, Jiahui; Jiang, Yang

    2015-11-12

    This paper presents a unique approach for magnesium dosage in struvite precipitation by Mg metal corrosion. The experimental results showed that using an air bubbling column filled with Mg metal and graphite pellets for the magnesium dosage was the optimal operation mode, which could significantly accelerate the corrosion of the Mg metal pellets due to the presence of graphite granules. The reaction mechanism experiments revealed that the solution pH could be used as the indicator for struvite crystallization by the process. Increases in the Mg metal dosage, mass ratio of graphite and magnesium metal (G:M) and airflow rate could rapidly increase the solution pH. When all three conditions were at 10 g L(-1), 1:1 and 1 L min(-1), respectively, the phosphate recovery efficiency reached 97.5%. To achieve a high level of automation for the phosphate recovery process, a continuous-flow reactor immersed with the graphite-magnesium air bubbling column was designed to harvest the phosphate from actual swine wastewater. Under conditions of intermittently supplementing small amounts of Mg metal pellets, approximately 95% of the phosphate could be stably recovered as struvite of 95.8% (±0.5) purity. An economic analysis indicated that the process proposed was technically simple and economically feasible.

  8. Crystallization and precipitation of phosphate from swine wastewater by magnesium metal corrosion

    PubMed Central

    Huang, Haiming; Liu, Jiahui; Jiang, Yang

    2015-01-01

    This paper presents a unique approach for magnesium dosage in struvite precipitation by Mg metal corrosion. The experimental results showed that using an air bubbling column filled with Mg metal and graphite pellets for the magnesium dosage was the optimal operation mode, which could significantly accelerate the corrosion of the Mg metal pellets due to the presence of graphite granules. The reaction mechanism experiments revealed that the solution pH could be used as the indicator for struvite crystallization by the process. Increases in the Mg metal dosage, mass ratio of graphite and magnesium metal (G:M) and airflow rate could rapidly increase the solution pH. When all three conditions were at 10 g L–1, 1:1 and 1 L min–1, respectively, the phosphate recovery efficiency reached 97.5%. To achieve a high level of automation for the phosphate recovery process, a continuous-flow reactor immersed with the graphite-magnesium air bubbling column was designed to harvest the phosphate from actual swine wastewater. Under conditions of intermittently supplementing small amounts of Mg metal pellets, approximately 95% of the phosphate could be stably recovered as struvite of 95.8% (±0.5) purity. An economic analysis indicated that the process proposed was technically simple and economically feasible. PMID:26558521

  9. Thermal desorption behavior of helium in aged titanium tritide films

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Shi, L. Q.; Zhou, X. S.; Liang, J. H.; Wang, W. D.; Long, X. G.; Yang, B. F.; Peng, S. M.

    2015-11-01

    The desorption behavior of helium in TiT(1.5∼1.8)-x3Hex film samples (x = 0.0022-0.22) was investigated by thermal desorption technique in vacuum condition in this paper. The thermal helium desorption spectrometry (THDS) of aging titanium tritide films prepared by electron beam evaporation revealed that, depending on the decayed 3He concentration in the samples, there are more than four states of helium existing in the films. The divided four zones in THDS based on helium states represent respectively: (1) the mobile single helium atoms with low activation energy in all aging samples resulted from the interstitial sites or dissociated from interstitial clusters, loops and dislocations, (2) helium bubbles inside the grain lattices, (3) helium bubbles in the grain boundaries and interconnected networks of dislocations in the helium concentration of 3Hegen/Ti > 0.0094, and (4) helium bubbles near or linked to the film surface by interconnected channel for later aging stage with 3Hegen/Ti > 0.18. The proportion of helium desorption in each zone was estimated, and dissociated energies of helium for different trapping states were given.

  10. Dynamics and acoustics of a cavitating Venturi flow using a homogeneous air-propylene glycol mixture

    NASA Astrophysics Data System (ADS)

    Navarrete, M.; Naude, J.; Mendez, F.; Godínez, F. A.

    2015-12-01

    Dynamics and acoustics generated in a cavitating Venturi tube are followed up as a function of the input power of a centrifugal pump. The pump of 5 hp with a modified impeller to produce uniform bubbly flow, pumps 70 liters of propylene glycol in a closed loop (with a water cooling system), in which the Venturi is arranged. The goal was to obtain correlations among acoustical emission, dynamics of the shock waves and the light emission from cavitation bubbles. The instrumentation includes: two piezoelectric transducers, a digital camera, a high-speed video camera, and photomultipliers. As results, we show the cavitation patterns as function of the pump power, and a graphical template of the distribution of the Venturi conditions as a function of the cavitation parameter. Our observations show for the first time the sudden formation of bubble clouds in the straight portion of the pipe after the diverging section of the Venturi. We assume that this is due to pre-existing of nuclei-cloud structures which suddenly grow up by the tensile tails of propagating shock waves (producing a sudden drop in pressure).

  11. Separation of cannabinoids on three different mixed-mode columns containing carbon/nanodiamond/amine-polymer superficially porous particles.

    PubMed

    Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R

    2015-09-01

    Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Columnar Transitions in Microscale Evaporating Liquid Jets

    NASA Astrophysics Data System (ADS)

    Hunter, Hanif; Glezer, Ari

    2007-11-01

    Microscale evaporating liquid jets that are injected into a quiescent gaseous medium having adjustable ambient pressure are investigated over a range of jet speeds using a shadowgraph technique. The jets are formed by a laser-drilled 10 μm nozzle from a small-scale pressurized reservoir, and sub-atmospheric ambient pressure is maintained using a controllable, metered Venturi pump. The near-field jet features are captured by shadowgraph imaging using a pulsed ND-Yag laser and a 12 bit CCD camera where the field of view measured 200 μm on the side. As the ambient pressure is reduced, the jet column undergoes a series of spectacular transitions that are first marked by the appearance of vapor bubbles within the jet column. The transitions progress from columnar instabilities to series of column bifurcations to high-order branching and film formation and culminate in conical atomization of the jet column. In addition to the effects of the ambient pressure, the present investigation also considers effects of the liquid surface tension and vapor pressure on the onset, evolution, and hysteresis of the columnar transitions.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, D.

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less

  14. The energy balance within a bubble column evaporator

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Shahid, Muhammad; Pashley, Richard M.

    2018-05-01

    Bubble column evaporator (BCE) systems have been studied and developed for many applications, such as thermal desalination, sterilization, evaporative cooling and controlled precipitation. The heat supplied from warm/hot dry bubbles is to vaporize the water in various salt solutions until the solution temperature reaches steady state, which was derived into the energy balance of the BCE. The energy balance and utilization involved in each BCE process form the fundamental theory of these applications. More importantly, it opened a new field for the thermodynamics study in the form of heat and vapor transfer in the bubbles. In this paper, the originally derived energy balance was reviewed on the basis of its physics in the BCE process and compared with new proposed energy balance equations in terms of obtained the enthalpy of vaporization (Δ H vap) values of salt solutions from BCE experiments. Based on the analysis of derivation and Δ H vap values comparison, it is demonstrated that the original balance equation has high accuracy and precision, within 2% over 19-55 °C using improved systems. Also, the experimental and theoretical techniques used for determining Δ H vap values of salt solutions were reviewed for the operation conditions and their accuracies compared to the literature data. The BCE method, as one of the most simple and accurate techniques, offers a novel way to determine Δ H vap values of salt solutions based on its energy balance equation, which had error less than 3%. The thermal energy required to heat the inlet gas, the energy used for water evaporation in the BCE and the energy conserved from water vapor condensation were estimated in an overall energy balance analysis. The good agreement observed between input and potential vapor condensation energy illustrates the efficiency of the BCE system. Typical energy consumption levels for thermal desalination for producing pure water using the BCE process was also analyzed for different inlet air temperatures, and indicated the better energy efficiency, of 7.55 kW·h per m3 of pure water, compared to traditional thermal desalination techniques.

  15. A looped-tube traveling-wave engine with liquid pistons

    NASA Astrophysics Data System (ADS)

    Hyodo, H.; Tamura, S.; Biwa, T.

    2017-09-01

    This report describes the operation of a liquid piston engine that uses thermoacoustic spontaneous oscillations of liquid and gas columns connected in series to form a loop. Analysis of the analogous mass-spring model and the numerical calculation based on hydrodynamic equations shows that the natural mode oscillations of the system allow the working gas to execute a Stirling thermodynamic cycle. Numerical results of the operating temperature difference were confirmed from experimentally obtained results.

  16. A magnetohydrodynamic theory of coronal loop transients

    NASA Technical Reports Server (NTRS)

    Yeh, T.

    1982-01-01

    The physical and geometrical characteristics of solar coronal loop transients are described in an MHD model based on Archimedes' MHD buoyancy force. The theory was developed from interpretation of coronagraphic data, particularly from Skylab. The brightness of a loop is taken to indicate the electron density, and successive pictures reveal the electron enhancement in different columns. The forces which lift the loop off the sun surface are analyzed as an MHD buoyancy force affecting every mass element by imparting an inertial force necessary for heliocentrifugal motion. Thermal forces are responsible for transferring the ambient stress to the interior of the loop to begin the process. The kinematic and hydrostatic buoyancy overcome the gravitational force, and a flux rope can then curve upward, spiralling like a corkscrew with varying cross section around the unwinding solar magnetic field lines.

  17. Investigation of Capillary Limit in a Loop Heat Pipe

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2001-01-01

    This paper presets an experimental study on the capillary limit of a loop heat pipe (LHP) at low powers. The slow thermal response of the loop at low powers made it possible to observe interactions among various components after the capillary limit was exceeded. The capillary limit at low powers was achieved by imposing additional pressure drops on the vapor line through the use of a metering valve. A differential pressure transducer was also used to measure the pressure drop across the evaporator and the compensation chamber (CC). Test results show that when the capillary limit is exceeded, vapor will penetrate the primary wick, resulting in a partial dry-out of the evaporator and a rapid increase of the CC temperature. Because the evaporator can tolerate vapor bubbles, the LHP will continue to function and may reach a new steady state at the higher temperature. Thus, the LHP will exhibit a graceful degradation in performance rather than a complete failure. Moreover, the loop can recover from a partial dry-out by reducing the heat load without a re-start.

  18. Sources, extent and history of methane seepage on the continental shelf off northern Norway

    NASA Astrophysics Data System (ADS)

    Sauer, Simone; Lepland, Aivo; Chand, Shyam; Schubert, Carsten J.; Eichinger, Florian; Knies, Jochen

    2014-05-01

    Active natural hydrocarbon gas seepage was recently discovered in the Hola area on the continental shelf off Vesterålen, northern Norway. We conducted acoustic and geochemical investigations to assess the modern and past extent, source and pathways of the gas seepage . Water column echosounder surveys showed bubble plumes up to several tens of metres above the seafloor. Analyses of dissolved methane in the water column indicated slightly elevated concentrations (50 nM) close to the seafloor. To identify fluxes and origin of methane in the sediments we analysed sediment pore water chemistry, the isotopic composition of methane and of dissolved inorganic carbon (d13CCH4, d2HCH4, d13CDIC) in three closely spaced (

  19. Acoustic measurements of the 1999 basaltic eruption of Shishaldin volcano, Alaska 1. Origin of Strombolian activity

    USGS Publications Warehouse

    Vergniolle, S.; Boichu, M.; Caplan-Auerbach, J.

    2004-01-01

    The 1999 basaltic eruption of Shishaldin volcano (Alaska, USA) displayed both classical Strombolian activity and an explosive Subplinian plume. Strombolian activity at Shishaldin occurred in two major phases following the Subplinian activity. In this paper, we use acoustic measurements to interpret the Strombolian activity. Acoustic measurements of the two Strombolian phases show a series of explosions that are modeled by the vibration of a large overpressurised cylindrical bubble at the top of the magma column. Results show that the bubble does not burst at its maximum radius, as expected if the liquid film is stretched beyond its elasticity. But bursting occurs after one cycle of vibration, as a consequence of an instability of the air-magma interface close to the bubble minimum radius. During each Strombolian period, estimates of bubble length and overpressure are calculated. Using an alternate method based on acoustic power, we estimate gas velocity to be 30-60 m/s, in very good agreement with synthetic waveforms. Although there is some variation within these parameters, bubble length and overpressure for the first Strombolian phase are found to be ??? 82 ?? 11 m and 0.083 MPa. For the second Strombolian phase, bubble length and overpressure are estimated at 24 ?? 12 m and 0.15 MPa for the first 17 h after which bubble overpressure shows a constant increase, reaching a peak of 1.4 MPa, just prior to the end of the second Strombolian phase. This peak suggests that, at the time, the magma in the conduit may contain a relatively large concentration of small bubbles. Maximum total gas volume and gas fluxes at the surface are estimated to be 3.3 ?? 107 and 2.9 ?? 103 m3/s for the first phase and 1.0 ?? 108 and 2.2 ?? 103 m3/s for the second phase. This gives a mass flux of 1.2 ?? 103 and 8.7 ?? 102 kg/s, respectively, for the first and the second Strombolian phases. ?? 2004 Elsevier B.V. All rights reserved.

  20. Simultaneous Extraction of Lithium and Hydrogen from Seawater

    DTIC Science & Technology

    2011-04-26

    chromatography . Anions were analyzed by Anion Ion Chromatography (Instrument Dionex ICS-1500, Column Dionex AS9-HC; AG9-HC Guard, eluent: 9.00 mM Na2CO3, flow...rate: 1.25 mL/min, and sample loop was 25 μL). Cations were analyzed by Cation Ion Chromatography (Instrument Dionex DX-500, Cation Column Dionex ...the amount was measured volumetrically. Ion chromatography : Ions in seawater diffused from/to the anode and cathode were determined by ion

  1. Physical conditions for trapping air by a microtrichia-covered insect cuticle during temporary submersion

    NASA Astrophysics Data System (ADS)

    Neumann, Dietrich; Woermann, Dietrich

    2009-08-01

    The intertidal midge Clunio, which reproduces on exposed rocky seashores, becomes enclosed in an irregularly shaped air bubble during short submersion by incoming waves. This water-repellent property of Clunio’s cuticle is caused by a complete cover of hydrophobic microtrichia offering an effective surf tolerance. These microtrichia not only trap a thin air layer above the cuticle but also maintain a larger air bubble between the insect’s ventral side and legs. The effectiveness of the water repellence was quantitatively characterised on the basis of a known model (Crisp and Thorpe, Discuss Faraday Soc 3:210-220, 1948). The parameters of the model are the contact angle θ (>90°) at the contact line of air/water/microtrichia and the distance between individual microtrichia and their radius. When the microtrichia are 1.1 μm apart and have a radius of 0.1 μm and an estimated contact angle θ of 140°, the air layer is stable against hydrostatic pressures of up to 3 m water column. As shown by a modified version of the model, considerably larger air bubbles can be trapped by the microtrichia cover of the legs up to distances of 0.5 mm from the body. The widely spaced (about 8 μm apart) and longer setae of Clunio are not involved in the formation of air layers and air bubble.

  2. Diagnostic-Photographic Determination of Drag/Lift/Torque Coefficients of High Speed Rigid Body in Water Column

    DTIC Science & Technology

    2008-01-01

    various physical processes such as supercavitation and bubbles. A diagnostic- photographic method is developed in this study to determine the drag...nonlinear dynamics, body and multi-phase fluid interaction, supercavitation , and instability theory. The technical application of the hydrodynamics of...uV U ω= = − ×V e e e ei i , (29) where Eq.(9) is used. For a supercavitation area, a correction factor may be

  3. High-resolution recording of particle tracks with in-line holography in a large cryogenic bubble chamber

    NASA Astrophysics Data System (ADS)

    Harigel, Gert G.

    2000-10-01

    Holography has been used successfully in combination with conventional optics for the first time in a large cryogenic bubble chamber, the 15-Foot Bubble Chamber at the Fermi National Accelerator Laboratory (FNAL), during a physics run in a high energy neutrino beam. The innovative system combined the reference beam with the object beam, irradiating a conical volume of approx1.5m3. Bubble tracks from neutrino interactions with a width of approx 120 micrometers have been recorded with good contrast. The ratio of intensities of the object light to the reference light striking the film is called the beam branching ratio (BBR). We obtained in our experiment an exceedingly small minimum- observable ration of BBR = (0.54 divided by 0.21) x 107. The technology has the potential for a wide range of applications. This paper describes the various difficulties in achieving the success. It required the development of laser pulse stretching via enhanced closed loop control with slow Q- switching, to overcome excessive heating of the cryogenic liquid by the powerful laser beam. A sophisticated system of light-absorbing baffles had to be installed to avoid stray light reaching the holographic film. Optical decoupling of classical and holographic illumination systems was required. Real and virtual image replay machines for holograms were built, tailored to our illumination technique.

  4. The evolution of helium from aged Zr tritides: A thermal helium desorption spectrometry study

    NASA Astrophysics Data System (ADS)

    Cheng, G. J.; Huang, G.; Chen, M.; Zhou, X. S.; Liu, J. H.; Peng, S. M.; Ding, W.; Wang, H. F.; Shi, L. Q.

    2018-02-01

    The evolution of He from Zr-tritides was investigated for aging times up to about 6.5 years using analytical thermal helium desorption spectrometry (THDS). Zr films were deposited onto Mo substrates and then converted into Zr-tritides (ZrT1.70∼1.95) inside a tritiding apparatus loaded with pure tritium gas. During aging, there are at least five forms of He in Zr-tritides, and more than 99% of He atoms are in the form of He bubbles. The isolated He bubbles in lattices begin to link with each other when the He/Zr atom ratio reaches about 0.21, and are connected to grain boundaries or dislocation networks at He concentration of He/Zr ≈ 0.26. An interconnected system of channels decorated by bubbles evolves from the network dislocations, dislocation loops and internal boundaries. These He filled networks are formed completely when the He/Zr atom ratio is about 0.38. Once the He/Zr reached about 0.45, the networks of He bubble penetrate to the film surface and He begins an "accelerated release". This critical ratio of He to Zr for He accelerated release is much greater than that found previously for Ti-tritides (0.23-0.30). The difference of He retention in Zr-tritides and Ti-tritides was also discussed in this paper.

  5. Proton-irradiation induced defects in modified 310S steels characterized with positron annihilation spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Weiping; Shen, Zhenyu; Tang, Rui; Jin, Suoxue; Song, Yaoxiang; Long, Yunxiang; Wei, Yaxia; Zhou, Xiong; Chen, Cheng; Guo, Liping

    2018-07-01

    An effective method to improve the irradiation resistance of austenitic stainless steels is adding oversized solutes into steels. In this work, the irradiation resistances of two type of modified 310S steels, in one of which Zr was added and in another Nb, Ta, and W were added, were investigated by proton irradiations at 563 K. Irradiation induced vacancy-type defects was characterized with positron annihilation spectroscopy (PAS), while dislocation loops and bubbles whose size are greater than 1 nm are characterized with transmission electron microscopy (TEM). It is found that the relative S parameter ΔS/S extracted from PAS is more effective than S parameter in evaluating the quantity of vacancy-type defects. It was revealed from ΔS/S that more vacancy-type defects produced in (Nb, Ta, W)-added steels than that in Zr-added steels, and this trend became more obvious with the dose increasing. S-W curves reveal that proton irradiation induced two kinds of vacancy-type defects, i.e. vacancy clusters and proton-vacancy clusters. TEM observation shows that the density of small bubbles induced by proton in (Nb, Ta, W)-added steels is much higher than that in Zr-added steels. Both 1/3 <1 1 1> and 1/2 <1 1 0> dislocation loops were observed with TEM in all of the specimens. The mean size and number density of dislocation loops in (Nb, Ta, W)-added steels are slightly larger than that in Zr-added steels, and increased with increasing irradiation dose. Both PAS and TEM observations shows that irradiation damage in Zr-added steels is less serious than that (Nb, Ta, W)-added steels, and the possible mechanisms are discussed through the enhancement of point defect recombination by oversized solute atoms.

  6. Direct Numerical Simulations of Multiphase Flows

    NASA Astrophysics Data System (ADS)

    Tryggvason, Gretar

    2013-03-01

    Many natural and industrial processes, such as rain and gas exchange between the atmosphere and oceans, boiling heat transfer, atomization and chemical reactions in bubble columns, involve multiphase flows. Often the mixture can be described as a disperse flow where one phase consists of bubbles or drops. Direct numerical simulations (DNS) of disperse flow have recently been used to study the dynamics of multiphase flows with a large number of bubbles and drops, often showing that the collective motion results in relatively simple large-scale structure. Here we review simulations of bubbly flows in vertical channels where the flow direction, as well as the bubble deformability, has profound implications on the flow structure and the total flow rate. Results obtained so far are summarized and open questions identified. The resolution for DNS of multiphase flows is usually determined by a dominant scale, such as the average bubble or drop size, but in many cases much smaller scales are also present. These scales often consist of thin films, threads, or tiny drops appearing during coalescence or breakup, or are due to the presence of additional physical processes that operate on a very different time scale than the fluid flow. The presence of these small-scale features demand excessive resolution for conventional numerical approaches. However, at small flow scales the effects of surface tension are generally strong so the interface geometry is simple and viscous forces dominate the flow and keep it simple also. These are exactly the conditions under which analytical models can be used and we will discuss efforts to combine a semi-analytical description for the small-scale processes with a fully resolved simulation of the rest of the flow. We will, in particular, present an embedded analytical description to capture the mass transfer from bubbles in liquids where the diffusion of mass is much slower than the diffusion of momentum. This results in very thin mass-boundary layers that are difficult to resolve, but the new approach allows us to simulate the mass transfer from many freely evolving bubbles and examine the effect of the interactions of the bubbles with each other and the flow. We will conclude by attempting to summarize the current status of DNS of multiphase flows. Support by NSF and DOE (CASL)

  7. Effects of Gravity on Cocurrent Two-Phase Gas-Liquid Flows Through Packed Columns

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Balakotaiah, Vemuri; Kamotani, Yasuhiro

    2001-01-01

    This work presents the experimental results of research on the influence of gravity on flow pattern transitions, pressure drop and flow characteristics for cocurrent gas-liquid two-phase flow through packed columns. The flow pattern transition data indicates that the pulse flow regime exists over a wider range of gas and liquid flow rates under reduced gravity conditions compared to normal gravity cocurrent down-flow. This is illustrated by comparing the flow regime transitions found in reduced gravity with the transitions predicted by Talmor. Next, the effect of gravity on the total pressure drop in a packed column is shown to depend on the flow regime. The difference is roughly equivalent to the liquid static head for bubbly flow but begins to decrease at the onset of pulse flow. As the spray flow regime is approached by increasing the gas to liquid ratio, the effect of gravity on pressure drop becomes negligible. Finally, gravity tends to suppress the amplitude of each pressure pulse. An example of this phenomenon is presented.

  8. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Troy Reed; Ergun Kuru

    2004-09-30

    The Advanced Cuttings Transport Study (ACTS) was a 5-year JIP project undertaken at the University of Tulsa (TU). The project was sponsored by the U.S. Department of Energy (DOE) and JIP member companies. The objectives of the project were: (1) to develop and construct a new research facility that would allow three-phase (gas, liquid and cuttings) flow experiments under ambient and EPET (elevated pressure and temperature) conditions, and at different angle of inclinations and drill pipe rotation speeds; (2) to conduct experiments and develop a data base for the industry and academia; and (3) to develop mechanistic models for optimizationmore » of drilling hydraulics and cuttings transport. This project consisted of research studies, flow loop construction and instrumentation development. Following a one-year period for basic flow loop construction, a proposal was submitted by TU to the DOE for a five-year project that was organized in such a manner as to provide a logical progression of research experiments as well as additions to the basic flow loop. The flow loop additions and improvements included: (1) elevated temperature capability; (2) two-phase (gas and liquid, foam etc.) capability; (3) cuttings injection and removal system; (4) drill pipe rotation system; and (5) drilling section elevation system. In parallel with the flow loop construction, hydraulics and cuttings transport studies were preformed using drilling foams and aerated muds. In addition, hydraulics and rheology of synthetic drilling fluids were investigated. The studies were performed under ambient and EPET conditions. The effects of temperature and pressure on the hydraulics and cuttings transport were investigated. Mechanistic models were developed to predict frictional pressure loss and cuttings transport in horizontal and near-horizontal configurations. Model predictions were compared with the measured data. Predominantly, model predictions show satisfactory agreements with the measured data. As a part of this project, instrumentation was developed to monitor cuttings beds and characterize foams in the flow loop. An ultrasonic-based monitoring system was developed to measure cuttings bed thickness in the flow loop. Data acquisition software controls the system and processes the data. Two foam generating devices were designed and developed to produce foams with specified quality and texture. The devices are equipped with a bubble recognition system and an in-line viscometer to measure bubble size distribution and foam rheology, respectively. The 5-year project is completed. Future research activities will be under the umbrella of Tulsa University Drilling Research Projects. Currently the flow loop is being used for testing cuttings transport capacity of aqueous and polymer-based foams under elevated pressure and temperature conditions. Subsequently, the effect of viscous sweeps on cuttings transport under elevated pressure and temperature conditions will be investigated using the flow loop. Other projects will follow now that the ''steady state'' phase of the project has been achieved.« less

  9. Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates

    NASA Astrophysics Data System (ADS)

    Dhillon, Navdeep Singh

    The modern world is run by semiconductor-based electronic systems. Due to continuous improvements in semiconductor device fabrication, there is a clear trend in the market towards the development of electronic devices and components that not only deliver enhanced computing power, but are also more compact. Thermal management has emerged as the primary challenge in this scenario where heat flux dissipation of electronic chips is increasing exponentially, but conventional cooling solutions such as conduction and convection are no longer feasible. To keep device junction temperatures within the safe operating limit, there is an urgent requirement for ultra-high-conductivity thermal substrates that not only absorb and transport large heat fluxes, but can also provide localized cooling to thermal hotspots. This dissertation describes the design, modeling, and fabrication of a phase change-based, planar, ultra-thin, passive thermal transport system that is inspired by the concept of loop heat pipes and capillary pumped loops. Fabricated on silicon and Pyrex wafers using microfabrication techniques, the micro-columnated loop heat pipe (muCLHP) can be integrated directly with densely packed or multiply-stacked electronic substrates, to provide localized high-heat-flux thermal management. The muCLHP employs a dual-scale coherent porous silicon(CPS)-based micro-columnated wicking structure, where the primary CPS wick provides large capillary forces for fluid transport, while a secondary surface-wick maximizes the rate of thin-film evaporation. To overcome the wick thickness limitation encountered in conventional loop heat pipes, strategies based on MEMS surface micromachining techniques were developed to reduce parasitic heat flow from the evaporator to the compensation chamber of the device. Finite element analysis was used to confirm this reduction in a planar evaporator design, thus enabling the generation of a large motive temperature head for continuous device operation. To predict the overall heat carrying capacity of the muCLHP in the capillary pumping limit, an analytical model was developed to account for a steady state pressure balance in the device flow loop. Based on this model, a design optimization study, employing monotonicity analysis and numerical optimization techniques, was undertaken. It was found that an optimized muCLHP device can absorb heat fluxes as large as 1293 W/cm2 when water is used as a working fluid. A finite volume method-based numerical model was also developed to compute the rates of thin-film evaporation from the patterned surface of the secondary wick. The numerical results indicated that, by properly optimizing the dual-scale wick topology, allowable evaporative heat fluxes can be made commensurate with the heat flux performance predicted by the capillary pumping limit. The latter part of the dissertation deals with the fabrication, packaging, and experimental testing of several in-plane-wicking micro loop heat pipe (muLHP) prototypes. These devices were fabricated on silicon and Pyrex substrates and closely resemble the muCLHP design philosophy, with the exception that the CPS wick is substituted with an easier to fabricate in-plane wick. A novel thermal-flux method was developed for the degassing and fluid charging of the muLHP prototypes. Experiments were conducted to study the process of evaporation and dynamics of the liquid and vapor phases in the device flow loop. Using these results, the overall device and individual component topologies critical to the operation of the two-phase flow loop were identified. A continuous two-phase device flow loop was demonstrated for applied evaporator heat fluxes as high as 41 W/cm2. The performance of these devices, currently found to be limited by the motive temperature head requirement, can be significantly improved by implementing the parasitic heat flow-reduction strategies developed in this work. The 3-D thin-film evaporation model, when integrated into the overall device modeling framework, will enable a design optimization of the micro-columnated wick for further device performance enhancements.

  10. Biosensor System for Continuous Monitoring of Organophosphate Aerosols (Postprint)

    DTIC Science & Technology

    2007-05-01

    performed by chromatog- aphy coupled with mass selective detectors or various types of pectroscopy (Staaf and Ostman, 2005; Bjorklund et al., 2004...diverted to aste while the bubble-free flow was directed through the IMER olumns and into a single wavelength absorbance detector . The ow rate was...maintained at 2 ml/min by a second piston pump ositioned between the debubbler and the IMER columns so that he sample was under positive pressure as it

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, D.

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H 2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle.« less

  12. Methane and sulfate dynamics in sediments from mangrove-dominated tropical coastal lagoons, Yucatan, Mexico

    USGS Publications Warehouse

    Chuang, P. C.; Young, Megan B.; Dale, Andrew W.; Miller, Laurence G.; Herrera-Silveira, Jorge A.; Paytan, Adina

    2016-01-01

    Porewater profiles in sediment cores from mangrove-dominated coastal lagoons (Celestún and Chelem) on the Yucatán Peninsula, Mexico, reveal the widespread coexistence of dissolved methane and sulfate. This observation is interesting since dissolved methane in porewaters is typically oxidized anaerobically by sulfate. To explain the observations we used a numerical transport-reaction model that was constrained by the field observations. The model suggests that methane in the upper sediments is produced in the sulfate reduction zone at rates ranging between 0.012 and 31 mmol m−2 d−1, concurrent with sulfate reduction rates between 1.1 and 24 mmol SO42− m−2 d−1. These processes are supported by high organic matter content in the sediment and the use of non-competitive substrates by methanogenic microorganisms. Indeed sediment slurry incubation experiments show that non-competitive substrates such as trimethylamine (TMA) and methanol can be utilized for microbial methanogenesis at the study sites. The model also indicates that a significant fraction of methane is transported to the sulfate reduction zone from deeper zones within the sedimentary column by rising bubbles and gas dissolution. The shallow depths of methane production and the fast rising methane gas bubbles reduce the likelihood for oxidation, thereby allowing a large fraction of the methane formed in the sediments to escape to the overlying water column.

  13. Artemisinin production by plant hairy root cultures in gas- and liquid-phase bioreactors.

    PubMed

    Patra, Nivedita; Srivastava, Ashok K

    2016-01-01

    Alternative biotechnological protocol for large-scale artemisinin production was established. It featured enhanced growth and artemisinin production by cultivation of hairy roots in nutrient mist bioreactor (NMB) coupled with novel cultivation strategies. Artemisinin is used for the treatment of cerebral malaria. Presently, its main source is from seasonal plant Artemisia annua. This study featured investigation of growth and artemisinin production by A. annua hairy roots (induced by Agrobacterium rhizogenes-mediated genetic transformation of explants) in three bioreactor configurations-bubble column reactor, NMB and modified NMB particularly to establish their suitability for commercial production. It was observed that cultivation of hairy roots in a non-stirred bubble column reactor exhibited a biomass accumulation of 5.68 g/l only while batch cultivation in a custom-made NMB exhibited a higher biomass concentration of 8.52 g/l but relatively lower artemisinin accumulation of 0.22 mg/g was observed in this reactor. A mixture of submerged liquid-phase growth (for 5 days) followed by gas-phase cultivation in nutrient mist reactor operation strategy (for next 15 days) was adopted for hairy root cultivation in this investigation. Reasonably, high (23.02 g/l) final dry weight along with the artemisinin accumulation (1.12 mg/g, equivalent to 25.78 mg/l artemisinin) was obtained in this bioreactor, which is the highest reported artemisinin yield in the gas-phase NMB cultivation.

  14. Effects of Anode Flow Field Design on CO2 Bubble Behavior in μDMFC

    PubMed Central

    Li, Miaomiao; Liang, Junsheng; Liu, Chong; Sun, Gongquan; Zhao, Gang

    2009-01-01

    Clogging of anode flow channels by CO2 bubbles is a vital problem for further performance improvements of the micro direct methanol fuel cell (μDMFC). In this paper, a new type anode structure using the concept of the non-equipotent serpentine flow field (NESFF) to solve this problem was designed, fabricated and tested. Experiments comparing the μDMFC with and without this type of anode flow field were implemented using a home-made test loop. Results show that the mean-value, amplitude and frequency of the inlet-to-outlet pressure drops in the NESFF is far lower than that in the traditional flow fields at high μDMFC output current. Furthermore, the sequential images of the CO2 bubbles as well as the μDMFC performance with different anode flow field pattern were also investigated, and the conclusions are in accordance with those derived from the pressure drop experiments. Results of this study indicate that the non-equipotent design of the μDMFC anode flow field can effectively mitigate the CO2 clogging in the flow channels, and hence lead to a significant promotion of the μDMFC performance. PMID:22412313

  15. Molten salt rolling bubble column, reactors utilizing same and related methods

    DOEpatents

    Turner, Terry D.; Benefiel, Bradley C.; Bingham, Dennis N.; Klinger, Kerry M.; Wilding, Bruce M.

    2015-11-17

    Reactors for carrying out a chemical reaction, as well as related components, systems and methods are provided. In accordance with one embodiment, a reactor is provided that includes a furnace and a crucible positioned for heating by the furnace. The crucible may contain a molten salt bath. A downtube is disposed at least partially within the interior crucible along an axis. The downtube includes a conduit having a first end in communication with a carbon source and an outlet at a second end of the conduit for introducing the carbon material into the crucible. At least one opening is formed in the conduit between the first end and the second end to enable circulation of reaction components contained within the crucible through the conduit. An oxidizing material may be introduced through a bottom portion of the crucible in the form of gas bubbles to react with the other materials.

  16. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  17. Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Sugimura, Kazuyuki; Hasegawa, Kenji

    2018-07-01

    Understanding {Ly{α}} emitting galaxies (LAEs) can be a key to reveal cosmic reionization and galaxy formation in the early Universe. Based on halo merger trees and {Ly{α}} radiation transfer calculations, we model redshift evolution of LAEs and their observational properties at z ≥ 6. We consider ionized bubbles associated with individual LAEs and IGM (integer-galactic medium) transmission of {Ly{α}} photons. We find that {Ly{α}} luminosity tightly correlates with halo mass and stellar mass, while the relation with star formation rate has a large dispersion. Comparing our models with the observed luminosity function by Konno et al., we suggest that LAEs at z ˜ 7 have galactic wind of V_out ≳ 100 km s^{-1} and H I column density of N_HI ≳ 10^{20} cm^{-2}. Number density of bright LAEs rapidly decreases as redshift increases, due to both lower star formation rate and smaller H II bubbles. Our model predicts future wide deep surveys with next-generation telescopes, such as James Webb Space Telescope, European Extremely Large Telescope, and Thirty Metre Telescope, can detect LAEs at z ˜ 10 with a number density of n_LAE ˜ {a few } × 10^{-6} Mpc^{-3} for the flux sensitivity of 10^{-18} erg cm^{-2} s^{-1}. When giant H II bubbles are formed by clustering LAEs, the number density of observable LAEs can increase by a factor of few. By combining these surveys with future 21-cm observations, it could be possible to detect both LAEs with L_{Lyα }≳ 10^{42} erg s^{-1} and their associated giant H II bubbles with the size {≳ } 250 kpc at z ˜ 10.

  18. Modelling of Lyman-alpha emitting galaxies and ionized bubbles at the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Sugimura, Kazuyuki; Hasegawa, Kenji

    2018-04-01

    Understanding {Ly{α }} emitting galaxies (LAEs) can be a key to reveal cosmic reionization and galaxy formation in the early Universe. Based on halo merger trees and {Ly{α }} radiation transfer calculations, we model redshift evolution of LAEs and their observational properties at z ≥ 6. We consider ionized bubbles associated with individual LAEs and IGM transmission of {Ly{α }} photons. We find that {Ly{α }} luminosity tightly correlates with halo mass and stellar mass, while the relation with star formation rate has a large dispersion. Comparing our models with the observed luminosity function by Konno et al., we suggest that LAEs at z ˜ 7 have galactic wind of V_out ≳ 100 km s^{-1} and HI column density of N_HI ≳ 10^{20} cm^{-2}. Number density of bright LAEs rapidly decreases as redshift increases, due to both lower star formation rate and smaller HII bubbles. Our model predicts future wide deep surveys with next generation telescopes, such as JWST, E-ELT and TMT, can detect LAEs at z ˜ 10 with a number density of n_LAE ˜ a few × 10^{-6} Mpc^{-3} for the flux sensitivity of 10^{-18} erg cm^{-2} s^{-1}. When giant HII bubbles are formed by clustering LAEs, the number density of observable LAEs can increase by a factor of few. By combining these surveys with future 21-cm observations, it could be possible to detect both LAEs with L_{Lyα }≳ 10^{42} erg s^{-1} and their associated giant HII bubbles with the size ≳ 250 kpc at z ˜ 10.

  19. Observations of Superwinds in Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Marlowe, A. T.; Heckman, T. M.; Wyse, R.; Schommer, R.

    1993-12-01

    Dwarf galaxies are important in developing our understanding of the formation and evolution of galaxies, and of the structure in the universe. The concept of supernova-driven mass outflows is a vital ingredient in theories of the structure and evolution of dwarfs galaxies. We have begun a detailed multi-waveband search for outflows in starbursting dwarf galaxies, and have obtained Fabry-Perot images and Echelle spectra of 20 nearby actively-star-forming dwarf galaxies. In about half the sample, the Fabry-Perot Hα images show loops and filaments with sizes of one to a few kpc. The Echelle spectra taken through the loops and filaments show kinematics consistent with expanding bubble-like structures. We describe these data, and present seven dwarfs in our sample that have the strongest evidence of outflows.

  20. Heard Island and McDonald Islands Acoustic Plumes: Split-beam Echo sounder and Deep Tow Camera Observations of Gas Seeps on the Central Kerguelen Plateau

    NASA Astrophysics Data System (ADS)

    Watson, S. J.; Spain, E. A.; Coffin, M. F.; Whittaker, J. M.; Fox, J. M.; Bowie, A. R.

    2016-12-01

    Heard and McDonald islands (HIMI) are two active volcanic edifices on the Central Kerguelen Plateau. Scientists aboard the Heard Earth-Ocean-Biosphere Interactions voyage in early 2016 explored how this volcanic activity manifests itself near HIMI. Using Simrad EK60 split-beam echo sounder and deep tow camera data from RV Investigator, we recorded the distribution of seafloor emissions, providing the first direct evidence of seabed discharge around HIMI, mapping >244 acoustic plume signals. Northeast of Heard, three distinct plume clusters are associated with bubbles (towed camera) and the largest directly overlies a sub-seafloor opaque zone (sub-bottom profiler) with >140 zones observed within 6.5 km. Large temperature anomalies did not characterize any of the acoustic plumes where temperature data were recorded. We therefore suggest that these plumes are cold methane seeps. Acoustic properties - mean volume backscattering and target strength - and morphology - height, width, depth to surface - of plumes around McDonald resembled those northeast of Heard, also suggesting gas bubbles. We observed no bubbles on extremely limited towed camera data around McDonald; however, visibility was poor. The acoustic response of the plumes at different frequencies (120 kHz vs. 18 kHz), a technique used to classify water column scatterers, differed between HIMI, suggestiing dissimilar target size (bubble radii) distributions. Environmental context and temporal characteristics of the plumes differed between HIMI. Heard plumes were concentrated on flat, sediment rich plains, whereas around McDonald plumes emanated from sea knolls and mounds with hard volcanic seafloor. The Heard plumes were consistent temporally, while the McDonald plumes varied temporally possibly related to tides or subsurface processes. Our data and analyses suggest that HIMI acoustic plumes were likely caused by gas bubbles; however, the bubbles may originate from two or more distinct processes.

  1. Fermi bubbles: high latitude X-ray supersonic shell

    NASA Astrophysics Data System (ADS)

    Keshet, Uri; Gurwich, Ilya

    2018-06-01

    The nature of the bipolar, γ-ray Fermi bubbles (FB) is still unclear, in part because their faint, high-latitude X-ray counterpart has until now eluded a clear detection. We stack ROSAT data at varying distances from the FB edges, thus boosting the signal and identifying an expanding shell behind the southwest, southeast, and northwest edges, albeit not in the dusty northeast sector near Loop I. A Primakoff-like model for the underlying flow is invoked to show that the signals are consistent with halo gas heated by a strong, forward shock to ˜keV temperatures. Assuming ion-electron thermal equilibrium then implies a ˜1056 erg event near the Galactic centre ˜7 Myr ago. However, the reported high absorption-line velocities suggest a preferential shock-heating of ions, and thus more energetic (˜1057 erg), younger (≲ 3 Myr) FBs.

  2. Identification of nonvolatile coal derived products via chromatography coupled with on-line FTIR detection. Quarterly progress report, March 1-May 31, 1985. [C/sub 2/H/sub 2/ extracts of ground coal, coffee and paprika

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, L.T.

    Because it has been our goal to interface the supercritical fluid chromatograph with a Fourier transform infrared spectrometer we have initially chosen packed columns due to their increased sample capacities, and supercritical CO/sub 2/ because of its infrared transparency. This paper compares two sampling techniques that can be utilized in packed column supercritical fluid Chromatography (SFC). Traditional sample introduction is accomplished using an injector with a sample loop. The loop is filled with the appropriate amount of material, and subsequently inserted into the mobile phase path. In most cases the sample must be either dissolved or extracted into an appropriatemore » solvent for such sample introduction. Note that unlike HPLC, where the solvent can be the same as the mobile phase, traditional sampling with SFC must use a solvent that is very different from the mobile phase. As a result, solvent peaks are almost always present, especially with universal detectors like FTIR. An alternative method is described here whereby both extraction of the sample and introduction of the extract onto the column is accomplished on-line using only the supercritical fluid mobile phase. This sampling technique is made possible by a simple valving scheme which ties directly the extraction vessel, the injector, the packed column and the detector. This technique has several advantages over the traditional methods, not the least of which is the absence of a large amount of foreign solvent introduced on the column. 11 refs., 7 figs.« less

  3. Gas-absorption process

    DOEpatents

    Stephenson, Michael J.; Eby, Robert S.

    1978-01-01

    This invention is an improved gas-absorption process for the recovery of a desired component from a feed-gas mixture containing the same. In the preferred form of the invention, the process operations are conducted in a closed-loop system including a gas-liquid contacting column having upper, intermediate, and lower contacting zones. A liquid absorbent for the desired component is circulated through the loop, being passed downwardly through the column, regenerated, withdrawn from a reboiler, and then recycled to the column. A novel technique is employed to concentrate the desired component in a narrow section of the intermediate zone. This technique comprises maintaining the temperature of the liquid-phase input to the intermediate zone at a sufficiently lower value than that of the gas-phase input to the zone to effect condensation of a major part of the absorbent-vapor upflow to the section. This establishes a steep temperature gradient in the section. The stripping factors below this section are selected to ensure that virtually all of the gases in the downflowing absorbent from the section are desorbed. The stripping factors above the section are selected to ensure re-dissolution of the desired component but not the less-soluble diluent gases. As a result, a peak concentration of the desired component is established in the section, and gas rich in that component can be withdrawn therefrom. The new process provides important advantages. The chief advantage is that the process operations can be conducted in a single column in which the contacting zones operate at essentially the same pressure.

  4. Hubble peers inside a celestial geode

    NASA Astrophysics Data System (ADS)

    2004-08-01

    celestial geode hi-res Size hi-res: 148 Kb Credits: ESA/NASA, Yäel Nazé (University of Liège, Belgium) and You-Hua Chu (University of Illinois, Urbana, USA) Hubble peers inside a celestial geode In this unusual image, the NASA/ESA Hubble Space Telescope captures a rare view of the celestial equivalent of a geode - a gas cavity carved by the stellar wind and intense ultraviolet radiation from a young hot star. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. Low resolution version (JPG format) 148 Kb High resolution version (TIFF format) 1929 Kb Acknowledgment: This image was created with the help of the ESA/ESO/NASA Photoshop FITS Liberator. Real geodes are handball-sized, hollow rocks that start out as bubbles in volcanic or sedimentary rock. Only when these inconspicuous round rocks are split in half by a geologist, do we get a chance to appreciate the inside of the rock cavity that is lined with crystals. In the case of Hubble's 35 light-year diameter ‘celestial geode’ the transparency of its bubble-like cavity of interstellar gas and dust reveals the treasures of its interior. The object, called N44F, is being inflated by a torrent of fast-moving particles (what astronomers call a 'stellar wind') from an exceptionally hot star (the bright star just below the centre of the bubble) once buried inside a cold dense cloud. Compared with our Sun (which is losing mass through the so-called 'solar wind'), the central star in N44F is ejecting more than a 100 million times more mass per second and the hurricane of particles moves much faster at 7 million km per hour (as opposed to less than 1.5 million km per hour for our Sun). Because the bright central star does not exist in empty space but is surrounded by an envelope of gas, the stellar wind collides with this gas, pushing it out, like a snow plough. This forms a bubble, whose striking structure is clearly visible in the crisp Hubble image. The nebula N44F is one of a handful of known interstellar bubbles. Bubbles like these have been seen around evolved massive stars (called 'Wolf-Rayet stars'), and also around clusters of stars (where they are called 'super-bubbles'). But they have rarely been viewed around isolated stars, as is the case here. On closer inspection N44F harbours additional surprises. The interior wall of its gaseous cavity is lined with several four to eight light-year high finger-like columns of cool dust and gas. (The structure of these 'columns' is similar to the Eagle Nebula’s iconic 'Pillars of Creation' photographed by Hubble a decade ago, and is seen in a few other nebulae as well). The fingers are created by a blistering ultraviolet radiation from the central star. Like wind socks caught in a gale, they point in the direction of the energy flow. These pillars look small in this image only because they are much farther away from us then the Eagle Nebula’s pillars. N44F is located about 160 000 light-years in the neighbouring dwarf galaxy the Large Magellanic Cloud, in the direction of the southern constellation Dorado. N44F is part of the larger N44 complex, which contains a large super-bubble, blown out by the combined action of stellar winds and multiple supernova explosions. N44 itself is roughly 1000 light-years across. Several compact star-forming regions, including N44F, are found along the rim of the central super-bubble. This image was taken with Hubble's Wide Field Planetary Camera 2, using filters that isolate light emitted by sulphur (shown in blue, a 1200-second exposure) and hydrogen gas (shown in red, a 1000-second exposure).

  5. Effects of bubbling operations on a thermally stratified reservoir: implications for water quality amelioration.

    PubMed

    Fernandez, R L; Bonansea, M; Cosavella, A; Monarde, F; Ferreyra, M; Bresciano, J

    2012-01-01

    Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.

  6. Using Computer Simulations to Model Scoria Cone Growth

    NASA Astrophysics Data System (ADS)

    Bemis, K. G.; Mehta, R. D.

    2016-12-01

    Scoria cones form from the accumulation of scoria delivered by either bursting lava bubbles (Strombolian style eruptions) or the gas thrust of an eruption column (Hawaiian to sub-Plinian style eruption). In this study, we focus on connecting the distribution of scoria delivery to the eventual cone shape rather than the specifics of the mechanism of delivery. For simplicity, we choose to model ballistic paths, that follow the scoria from ejection from crater to landing on the surface and then avalanching down slope. The first stage corresponds to Strombolian-like bursts of the bubble. The second stage only occurs if the angle of repose is greater than 30 degrees. After this condition is met, the scoria particles grain flow downwards until a stable slope is formed. These two stages of the volcanic eruption repeat themselves in the number of phases. We hypothesize that the horizontal travel distance of the ballistic paths, and as a result the width of the volcano, is primarily dependent of the velocity of the particles bursting from the bubble in the crater. Other parameters that may affect the shape of cinder cones are air resistance on ballistic paths, ranges in particle size, ballistic ejection angles, and the total number of particles. Ejection velocity, ejection angle, particle size and air resistance control the delivery distribution of scoria; a similar distribution of scoria can be obtained by sedimentation from columns and the controlling parameters of such (gas thrust velocity, particle density, etc.) can be related to the ballistic delivery in terms of eruption energy and particle characteristics. We present a series of numerical experiments that test our hypotheses by varying different parameters one or more at a time in sets each designed to test a specific hypothesis. Volcano width increases as ejection velocity, ejection angle (measured from surface), or the total number of scoria particles increases. Ongoing investigations seek the controls on crater width.

  7. Electrical Capacitance Volume Tomography for the Packed Bed Reactor ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    Marashdeh, Qussai; Motil, Brian; Wang, Aining; Liang-Shih, Fan

    2013-01-01

    Fixed packed bed reactors are compact, require minimum power and maintenance to operate, and are highly reliable. These features make this technology a highly desirable unit operation for long duration life support systems in space. NASA is developing an ISS experiment to address this technology with particular focus on water reclamation and air revitalization. Earlier research and development efforts funded by NASA have resulted in two hydrodynamic models which require validation with appropriate instrumentation in an extended microgravity environment. To validate these models, the instantaneous distribution of the gas and liquid phases must be measured.Electrical Capacitance Volume Tomography (ECVT) is a non-invasive imaging technology recently developed for multi-phase flow applications. It is based on distributing flexible capacitance plates on the peripheral of a flow column and collecting real-time measurements of inter-electrode capacitances. Capacitance measurements here are directly related to dielectric constant distribution, a physical property that is also related to material distribution in the imaging domain. Reconstruction algorithms are employed to map volume images of dielectric distribution in the imaging domain, which is in turn related to phase distribution. ECVT is suitable for imaging interacting materials of different dielectric constants, typical in multi-phase flow systems. ECVT is being used extensively for measuring flow variables in various gas-liquid and gas-solid flow systems. Recent application of ECVT include flows in risers and exit regions of circulating fluidized beds, gas-liquid and gas-solid bubble columns, trickle beds, and slurry bubble columns. ECVT is also used to validate flow models and CFD simulations. The technology is uniquely qualified for imaging phase concentrations in packed bed reactors for the ISS flight experiments as it exhibits favorable features of compact size, low profile sensors, high imaging speed, and flexibility to fit around columns of various shapes and sizes. ECVT is also safer than other commonly used imaging modalities as it operates in the range of low frequencies (1 MHz) and does not radiate radioactive energy. In this effort, ECVT is being used to image flow parameters in a packed bed reactor for an ISS flight experiment.

  8. Galaxy NGC 3079

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A lumpy bubble of hot gas rises from a cauldron of glowing matter in a distant galaxy, as seen by NASA's Hubble Space Telescope.

    The new images, taken by Hubble's Wide Field and Planetary Camera 2, are online at http://oposite.stsci.edu/pubinfo/pr/2001/28 and http://www.jpl.nasa.gov/images/wfpc. The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    Galaxy NGC 3079, located 50 million light-years from Earth in the constellation Ursa Major, has a huge bubble in the center of its disc, as seen in the image on the left. The smaller photo at right shows a close-up of the bubble. The two white dots are stars.

    Astronomers suspect the bubble is being blown by 'winds,' or high-speed streams of particles, released during a burst of star formation. The bubble's lumpy surface has four columns of gaseous filaments towering above the galaxy's disc. The filaments whirl around in a vortex and are expelled into space. Eventually, this gas will rain down on the disc and may collide with gas clouds, compress them and form a new generation of stars.

    Theoretical models indicate the bubble formed when winds from hot stars mixed with small bubbles of hot gas from supernova explosions. Radio telescope observations indicate those processes are still active. Eventually, the hot stars will die, and the bubble's energy source will fade away.

    The images, taken in 1998, show glowing gas as red and starlight as blue/green. Results appear in the July 1, 2001 issue of the Astrophysical Journal. More information about the Hubble Space Telescope is at http://www.stsci.edu. More information about the Wide Field and Planetary Camera 2 is at http://wfpc2.jpl.nasa.gov.

    The Space Telescope Science Institute, Baltimore, Md., manages space operations for Hubble for NASA's Office of Space Science, Washington, D.C. The institute is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract with the Goddard Space Flight Center, Greenbelt, Md. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. JPL is a division of the California Institute of Technology in Pasadena.

  9. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGES

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less

  10. Sub-micron particles in northwest Atlantic shelf water

    NASA Astrophysics Data System (ADS)

    Longhurst, A. R.; Koike, I.; Li, W. K. W.; Rodriguez, J.; Dickie, P.; Kepay, P.; Partensky, F.; Bautista, B.; Ruiz, J.; Wells, M.; Bird, D. F.

    1992-01-01

    The existence of numerous (1.0 × 10 7 ml -1) sub-micron particles has been confirmed in northwest Atlantic shelf water. These particles were counted independently by two different resistive-pulse instruments, and their existence confirmed by our ability to reduce their numbers by ultracentrifugation, serial dilution and surface coagulation in a bubbling column. There are important implications for the dynamics of DOM in seawater if, as seems probable, these particles represent a fraction of "dissolved" organic material in seawater.

  11. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    USGS Publications Warehouse

    Kieffer, S.W.

    1984-01-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water (??c ??? 103 g cm-2 s-1) and rock (??c ??? 3 ?? 105 g cm2 s-1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquid-vapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a water-steam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound

  12. Simple column-switching ion chromatography method for determining eight monosaccharides and oligosaccharides in honeydew and nectar.

    PubMed

    Ni, Chengzhu; Zhu, Binhe; Wang, Nani; Wang, Muhua; Chen, Suqing; Zhang, Jiajie; Zhu, Yan

    2016-03-01

    Honeydew is excreted by aphids as a sweet waste and nectar is floral honey. Honeydew and nectar are complicated samples which consist of various sugars and amino acids. In this work, a simple ion chromatography with column-switching method was developed for the simultaneous analysis of 8 monosaccharides and oligosaccharides in honeydew and nectar. A reversed-phase column was used as a pretreatment column to eliminate organics on-line and sugars were eluted from a collection loop to analytical column by using column-switching technique. This method showed good linearity (r⩾0.9994) and afforded low limits of detection ranging from 1.55 to 10.17μgL(-1) for all the analytes. Recoveries ranged from 95% to 105% and repeatability results were acceptable with relative standard deviation of less than 3.21% (n=6). This method was successfully applied to quantification of these sugars in honeydew and nectar. These results showed honeydew had much more oligosaccharides than nectar. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Numerical simulation of vertical transport and oxidation of methane in Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Stepanenko, Victor; Iakovlev, Nikolai

    2013-04-01

    The high abundance of methane in shelf of East Siberian Arctic Seas (ESAS) has been a subject of a number of field studies (e.g. Shakhova et al., 2010). This experimental evidence provoked discussions on probable origins of that methane and possible feedbacks to modern climate change. For instance, the hypothesis of methane hydrates degradation under current ocean warming was tested recently in several modeling studies none of which supported this degradation to be significant feedback for climate change. Regardless the origin of methane the knowledge of its budget in the water column is important to link its bottom flux with emission to the atmosphere (and vice versa). It is frequently assumed that all methane released from a seabed of ESAS shelf reaches the atmosphere. When using ocean circulation models (Biastoch et al., 2011) this simplification is cancelled out but the vertical resolution of 3D models at the shelf (that is several tens meters deep) is not enough to accurately resolve turbulent transport of methane and other gases. Moreover, up the knowledge of authors none of the ocean models includes explicitly bubble transport of gases. These constrains motivate this study. In this study a high-resolution 1D single column ocean model is constructed to explicitly simulate the methane transport, oxidation and emission to the atmosphere. The model accounts for both vertical turbulent transport (using k-ɛ closure) and bubble transport of gases. The ground under the seabed is represented by multilayer heat and moisture transfer model, including methane hydrate evolution. It is forced by time series of atmospheric variables from NCEP reanalysis and horizontal advection terms taken from FEMAO-1 3D ocean model. The baseline simulation is performed for the period 1948-2011. The model is validated using temperature profiles measured at research vessels in ESAS. The annual cycle and multiyear variability of methane profiles in water are studied and compared to available in situ measurements. The components of methane budget in water column are calculated, and the ratio of bubble flux to turbulent one inter alia. A number of additional experiments are performed to assess the sensitivity of methane budget components to variation of uncertain parameters of the model (such as initial bubble radius). References 1) Shakhova, N., I.Semiletov, A.Salyuk, V.Yusupov, D.Kosmach, and Ö.Gustafsson. Extensive Methane Venting to the Atmosphere from Sediments of the East Siberian Arctic Shelf. Science 5 March 2010: Vol. 327 no. 5970 pp. 1246-1250 DOI: 10.1126/science.1182221. 2) Biastoch, A., T. Treude, L. H. Rüpke, U. Riebesell, C. Roth, E. B. Burwicz, W. Park, M. Latif, C. W. Büning, G. Madec, and K. Wallmann. Rising Arctic Ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophysical Research Letters, Vol. 38, L08602, doi:10.1029/2011GL047222,2011.

  14. Equations for nickel-chromium wire heaters of column transfer lines in gas chromatographic-electroantennographic detection (GC-EAD).

    PubMed

    Byers, John A

    2004-05-30

    Heating of chromatographic columns, transfer lines, and other devices is often required in neuroscience research. For example, volatile compounds passing through a capillary column of a gas chromatograph (GC) can be split, with half exiting the instrument through a heated transfer line to an insect antenna or olfactory sensillum for electroantennographic detector (GC-EAD) recordings. The heated transfer line is used to prevent condensation of various chemicals in the capillary that would otherwise occur at room temperature. Construction of such a transfer line heater is described using (80/20%) nickel-chromium heating wire wrapped in a helical coil and powered by a 120/220 V ac rheostat. Algorithms were developed in a computer program to estimate the voltage at which a rheostat should be set to obtain the desired heater temperature for a specific coil. The coil attributes (radius, width, number of loops, or length of each loop) are input by the user, as well as AWG size of heating wire and desired heater temperature. The program calculates total length of wire in the helix, resistance of the wire, amperage used, and the voltage to set the rheostat. A discussion of semiochemical isolation methods using the GC-EAD and bioassays is presented.

  15. Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography.

    PubMed

    Creese, Mari E; Creese, Mathew J; Foley, Joe P; Cortes, Hernan J; Hilder, Emily F; Shellie, Robert A; Breadmore, Michael C

    2017-01-17

    Longitudinal on-column thermal modulation for comprehensive two-dimensional liquid chromatography is introduced. Modulation optimization involved a systematic investigation of heat transfer, analyte retention, and migration velocity at a range of temperatures. Longitudinal on-column thermal modulation was realized using a set of alkylphenones and compared to a conventional valve-modulator employing sample loops. The thermal modulator showed a reduced modulation-induced pressure impact than valve modulation, resulting in reduced baseline perturbation by a factor of 6; yielding a 6-14-fold improvement in signal-to-noise. A red wine sample was analyzed to demonstrate the potential of the longitudinal on-column thermal modulator for separation of a complex sample. Discrete peaks in the second dimension using the thermal modulator were 30-55% narrower than with the valve modulator. The results shown herein demonstrate the benefits of an active focusing modulator, such as reduced detection limits and increased total peak capacity.

  16. Soft sensor based composition estimation and controller design for an ideal reactive distillation column.

    PubMed

    Vijaya Raghavan, S R; Radhakrishnan, T K; Srinivasan, K

    2011-01-01

    In this research work, the authors have presented the design and implementation of a recurrent neural network (RNN) based inferential state estimation scheme for an ideal reactive distillation column. Decentralized PI controllers are designed and implemented. The reactive distillation process is controlled by controlling the composition which has been estimated from the available temperature measurements using a type of RNN called Time Delayed Neural Network (TDNN). The performance of the RNN based state estimation scheme under both open loop and closed loop have been compared with a standard Extended Kalman filter (EKF) and a Feed forward Neural Network (FNN). The online training/correction has been done for both RNN and FNN schemes for every ten minutes whenever new un-trained measurements are available from a conventional composition analyzer. The performance of RNN shows better state estimation capability as compared to other state estimation schemes in terms of qualitative and quantitative performance indices. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  17. A novel fast mass transfer anaerobic inner loop fluidized bed biofilm reactor for PTA wastewater treatment.

    PubMed

    Chen, Yingwen; Zhao, Jinlong; Li, Kai; Xie, Shitao

    In this paper, a fast mass transfer anaerobic inner loop fluidized bed biofilm reactor (ILFBBR) was developed to improve purified terephthalic acid (PTA) wastewater treatment. The emphasis of this study was on the start-up mode of the anaerobic ILFBBR, the hydraulic loadings and the operation stability. The biological morphology of the anaerobic biofilm in the reactors was also analyzed. The anaerobic column could operate successfully for 46 days due to the pre-aerating process. The anaerobic column had the capacity to resist shock loadings and maintained a high stable chemical oxygen demand (COD) and terephthalic acid removal rates at a hydraulic retention time of 5-10 h, even under conditions of organic volumetric loadings as high as 28.8 kg COD·m(-3).d(-1). The scanning electron microscope analysis of the anaerobic carrier demonstrated that clusters of prokaryotes grew inside of pores and that the filaments generated by pre-aeration contributed to the anaerobic biofilm formation and stability.

  18. 900-m high gas plumes rising from marine sediments containing structure II hydrates at Vestnesa Ridge, offshore W-Svalbard

    NASA Astrophysics Data System (ADS)

    Smith, Andrew J.; Mienert, Jürgen; Bünz, Stefan; Greinert, Jens; Rasmussen, Tine L.

    2013-04-01

    We study an arctic sediment drift in ~1200 m water depth at Vestnesa Ridge, offshore western Svalbard. The ridge is spotted with pockmarks that range in size from a few meters to hundreds of meters in diameter and centimeters to tens of meters in height (e.g. Vogt et al., 1994). There is a strong negative-polarity seismic reflection below the ridge that is interpreted to record a negative impedance contrast marking the boundary between gas hydrate and water above and free gas and water below: it is the bottom-simulating reflector (BSR). Seismically transparent zones, interpreted as gas chimneys, extend from pockmarks at the seafloor to depths below the BSR (180-220 meters below the seafloor) (Bünz et al., 2012). Gas flares, gas hydrate, and methane-seep-specific biological communities (pogonphora and begiatoa bacterial mats) have been observed adjacent to pockmarks at the ridge (Bünz et al., 2012). We present new single-beam echosounding data that were acquired during 2010 and 2012 cruises on the R/V Helmer Hanssen at Vestnesa Ridge using a Simrad EK60 system that operates at frequencies of 18 and 38 kHz. During both cruises which lasted 3-5 days, we detected continuous bubble release from 4 separate pockmarks in 2010 and 6 separate pockmarks in 2012. There were no noticeable, short-term (hourly or daily) variations in the bubble release from the pockmarks, indicating that the venting from the pockmarks does not undergo rapid changes. Plumes from the pockmarks rise between 875 to 925m above the seafloor to a final water depth of 325 to 275m, respectively. This depth is in excellent agreement with the top of the hydrate stability zone (275 meters below sea level) for the gas composition of hydrate sampled at the ridge (96.31% C1; 3.36% C2; 0.21% C3; 0.11% IC4; 0.01% NC4). This suggests that hydrate skins are forming around the gas bubbles, inhibiting the dissolution of gas, and allowing the bubbles to rise to such great heights in the water column. Our results provide hard constraints for bubble-dissolution models (e.g. McGinnis et al., 2006) that can validate whether a gas-hydrate-rimmed bubble can survive the ~900m rise through the water column. Long-term monitoring of such gas-hydrate and fluid-flow systems is important for quantifying methane fluxes to the ocean, for identifying the source(s) of the venting gas, and for better understanding the environmental conditions under which deep-sea biological communities exist. References Bünz, S., Polyanov, S., Vadakkepuliyambatta, S., Consolaro, C., and Mienert, J., 2012, Active gas venting through hydrate-bearing sediments on the Vestnesa Ridge, offshore W-Svalbard. : Marine Geology v. 332-334, p. 189-197. McGinnis, D.F., Greinert, J., Artemov, Y., Beaubien, S.E., and Wüest, A., 2006, The fate of rising methane bubbles in stratified waters: What fraction reaches the atmosphere?: Journal of Geophysical Research, v. 111, C09007, doi:10.1029/2005JC003183. Vogt, P. R., Crane, K., Sundvor, E., Max, M. D., and Pfirman, S. L., 1994, Methane-generated(?) pockmarks on young, thickly sedimented oceanic crust in the Arctic: Vestnesa ridge, Fram strait: Geology, v. 22, no. 3, p. 255-258.

  19. $${{\\bar{d}} - {\\bar{u}}}$$ Flavor Asymmetry in the Proton in Chiral Effective Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamu, Y.; Ji, Cheung-Ryong; Melnitchouk, Wally

    2015-09-01

    Themore » $${\\bar d - \\bar u}$$ flavor asymmetry in the proton arising from pion loops is computed using chiral effective field theory. calculation includes both nucleon and Δ intermediate states, and uses both the fully relativistic and heavy baryon frameworks. x dependence of $${\\bar d - \\bar u}$$ extracted from the Fermilab E866 Drell–Yan data can be well reproduced in terms of a single transverse momentum cutoff parameter regulating the ultraviolet behavior of the loop integrals. In addition to the distribution at x > 0, corrections to the integrated asymmetry from zero momentum contributions are computed, which arise from pion rainbow and bubble diagrams at x = 0. These have not been accounted for in previous analyses, and can make important contributions to the lowest moment of $${\\bar d-\\bar u}$$ .« less

  20. Simulation of multi-pulse coaxial helicity injection in the Sustained Spheromak Physics Experiment

    NASA Astrophysics Data System (ADS)

    O'Bryan, J. B.; Romero-Talamás, C. A.; Woodruff, S.

    2018-03-01

    Nonlinear, numerical computation with the NIMROD code is used to explore magnetic self-organization during multi-pulse coaxial helicity injection in the Sustained Spheromak Physics eXperiment. We describe multiple distinct phases of spheromak evolution, starting from vacuum magnetic fields and the formation of the initial magnetic flux bubble through multiple refluxing pulses and the eventual onset of the column mode instability. Experimental and computational magnetic diagnostics agree on the onset of the column mode instability, which first occurs during the second refluxing pulse of the simulated discharge. Our computations also reproduce the injector voltage traces, despite only specifying the injector current and not explicitly modeling the external capacitor bank circuit. The computations demonstrate that global magnetic evolution is fairly robust to different transport models and, therefore, that a single fluid-temperature model is sufficient for a broader, qualitative assessment of spheromak performance. Although discharges with similar traces of normalized injector current produce similar global spheromak evolution, details of the current distribution during the column mode instability impact the relative degree of poloidal flux amplification and magnetic helicity content.

  1. Removal of elemental mercury from flue gas by thermally activated ammonium persulfate in a bubble column reactor.

    PubMed

    Liu, Yangxian; Wang, Qian

    2014-10-21

    In this article, a novel technique on removal of elemental mercury (Hg(0)) from flue gas by thermally activated ammonium persulfate ((NH4)(2)S(2)O(8)) has been developed for the first time. Some experiments were carried out in a bubble column reactor to evaluate the effects of process parameters on Hg(0) removal. The mechanism and kinetics of Hg(0) removal are also studied. The results show that the parameters, (NH4)(2)S(2)O(8) concentration, activation temperature and solution pH, have significant impacts on Hg(0) removal. The parameters, Hg(0), SO2 and NO concentration, only have small effects on Hg(0) removal. Hg(0) is removed by oxidations of (NH4)(2)S(2)O(8), sulfate and hydroxyl free radicals. When (NH4)(2)S(2)O(8) concentration is more than 0.1 mol/L and solution pH is lower than 9.71, Hg(0) removal by thermally activated (NH4)(2)S(2)O(8) meets a pseudo-first-order fast reaction with respect to Hg(0). However, when (NH4)(2)S(2)O(8) concentration is less than 0.1 mol/L or solution pH is higher than 9.71, the removal process meets a moderate speed reaction with respect to Hg(0). The above results indicate that this technique is a feasible method for emission control of Hg(0) from flue gas.

  2. Performance and microbial community composition dynamics of aerobic granular sludge from sequencing batch bubble column reactors operated at 20 degrees C, 30 degrees C, and 35 degrees C.

    PubMed

    Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2010-07-01

    Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.

  3. Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers.

    PubMed

    Odize, Victory O; Novak, John; De Clippeleir, Haydee; Al-Omari, Ahmed; Smeraldi, Joshua D; Murthy, Sudhir; Rosso, Diego

    2017-10-01

    Achieving energy neutrality has shifted focus towards aeration system optimization, due to the high energy consumption of aeration processes in modern advanced wastewater treatment plants. A study on fine bubble diffuser fouling and mitigation, quantified by dynamic wet pressure (DWP), oxygen transfer efficiency and alpha was carried out in Blue Plains, Washington, DC. Four polyurethane fine bubble diffusers were installed in a pilot reactor column fed with high rate activated sludge from a full scale system. A mechanical cleaning method, reverse flexing (RF), was used to treat two diffusers (RF1, RF2), while two diffusers were kept as a control (i.e., no reverse flexing). There was a 45% increase in DWP of the control diffuser after 17 months of operation, an indication of fouling. RF treated diffusers (RF1 and RF2) did not show significant increase in DWP, and in comparison to the control diffuser prevented about 35% increase in DWP. Hence, reverse flexing potentially saves blower energy, by reducing the pressure burden on the air blower which increases blower energy requirement. However, no significant impact of the RF treatment in preventing a decrease in alpha-fouling (αF) of the fine pore diffusers, over time in operation was observed.

  4. Application of ozone micro-nano-bubbles to groundwater remediation.

    PubMed

    Hu, Liming; Xia, Zhiran

    2018-01-15

    Ozone is widely used for water treatment because of its strong oxidation ability. However, the efficiency of ozone in groundwater remediation is limited because of its relatively low solubility and rapid decomposition in the aqueous phase. Methods for increasing the stability of ozone within the subsurface are drawing increasing attention. Micro-nano-bubbles (MNBs), with diameters ranging from tens of nanometres to tens of micrometres, present rapid mass transfer rates, persist for a relatively long time in water, and transport with groundwater flow, which significantly improve gas concentration and provide a continuous gas supply. Therefore, MNBs show a considerable potential for application in groundwater remediation. In this study, the characteristics of ozone MNBs were examined, including their size distribution, bubble quantity, and zeta potential. The mass transfer rate of ozone MNBs was experimentally investigated. Ozone MNBs were then used to treat organics-contaminated water, and they showed remarkable cleanup efficiency. Column tests were also conducted to study the efficiency of ozone MNBs for organics-contaminated groundwater remediation. Based on the laboratory tests, field monitoring was conducted on a trichloroethylene (TCE)-contaminated site. The results showed that ozone MNBs can greatly improve remediation efficiency and represent an innovative technology for in situ remediation of organics-contaminated groundwater. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Structure Basis for Directional R-loop Formation and Substrate Handover Mechanisms in Type I CRISPR-Cas System.

    PubMed

    Xiao, Yibei; Luo, Min; Hayes, Robert P; Kim, Jonathan; Ng, Sherwin; Ding, Fang; Liao, Maofu; Ke, Ailong

    2017-06-29

    Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  7. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy.

    PubMed

    Garcia, David; Tessone, Claudio J; Mavrodiev, Pavlin; Perony, Nicolas

    2014-10-06

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  8. The digital traces of bubbles: feedback cycles between socio-economic signals in the Bitcoin economy

    PubMed Central

    Garcia, David; Tessone, Claudio J.; Mavrodiev, Pavlin; Perony, Nicolas

    2014-01-01

    What is the role of social interactions in the creation of price bubbles? Answering this question requires obtaining collective behavioural traces generated by the activity of a large number of actors. Digital currencies offer a unique possibility to measure socio-economic signals from such digital traces. Here, we focus on Bitcoin, the most popular cryptocurrency. Bitcoin has experienced periods of rapid increase in exchange rates (price) followed by sharp decline; we hypothesize that these fluctuations are largely driven by the interplay between different social phenomena. We thus quantify four socio-economic signals about Bitcoin from large datasets: price on online exchanges, volume of word-of-mouth communication in online social media, volume of information search and user base growth. By using vector autoregression, we identify two positive feedback loops that lead to price bubbles in the absence of exogenous stimuli: one driven by word of mouth, and the other by new Bitcoin adopters. We also observe that spikes in information search, presumably linked to external events, precede drastic price declines. Understanding the interplay between the socio-economic signals we measured can lead to applications beyond cryptocurrencies to other phenomena that leave digital footprints, such as online social network usage. PMID:25100315

  9. Thermodynamic and experimental study on heat transfer mechanism of miniature loop heat pipe with water-copper nanofluid

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-wu; Wan, Zhen-ping; Tang, Yong

    2018-02-01

    A miniature loop heat pipe (mLHP) is a promising device for heat dissipation of electronic products. Experimental study of heat transfer performance of an mLHP employing Cu-water nanofluid as working fluid was conducted. It is found that, when input power is above 25 W, the temperature differences between the evaporator wall and vapor of nanofluid, Te - Tv, and the total heat resistance of mLHP using nanofluid are always lower than those of mLHP using de-ionized water. The values of Te - Tv and total heat resistance of mLHP using nanofluid with concentration 1.5 wt. % are the lowest, while when the input power is 25 W, the values of Te - Tv and total heat resistance of mLHP using de-ionized water are even lower than those of mLHP using nanofluid with concentration 2.0 wt. %. At larger input power, the dominant interaction is collision between small bubbles and nanoparticles which can facilitate heat transfer. While at lower input power, nanoparticles adhere to the surface of large bubble. This does not benefit boiling heat transfer. For mLHP using nanofluid with larger concentration, for example 2.0%, the heat transfer may even be worse compared with using de-ionized water at lower input power. The special structure of the mLHP in this study, two separated chambers in the evaporator, produces an extra pressure difference and contributes to the heat transfer performance of the mLHP.

  10. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Archer, D.

    2015-05-01

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial-interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. There is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial-interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere-ocean-terrestrial carbon cycle.

  11. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGES

    Archer, D.

    2015-05-21

    A two-dimensional model of a sediment column, with Darcy fluid flow, biological and thermal methane production, and permafrost and methane hydrate formation, is subjected to glacial–interglacial cycles in sea level, alternately exposing the continental shelf to the cold atmosphere during glacial times and immersing it in the ocean in interglacial times. The glacial cycles are followed by a "long-tail" 100 kyr warming due to fossil fuel combustion. The salinity of the sediment column in the interior of the shelf can be decreased by hydrological forcing to depths well below sea level when the sediment is exposed to the atmosphere. Theremore » is no analogous advective seawater-injecting mechanism upon resubmergence, only slower diffusive mechanisms. This hydrological ratchet is consistent with the existence of freshwater beneath the sea floor on continental shelves around the world, left over from the last glacial period. The salt content of the sediment column affects the relative proportions of the solid and fluid H 2O-containing phases, but in the permafrost zone the salinity in the pore fluid brine is a function of temperature only, controlled by equilibrium with ice. Ice can tolerate a higher salinity in the pore fluid than methane hydrate can at low pressure and temperature, excluding methane hydrate from thermodynamic stability in the permafrost zone. The implication is that any methane hydrate existing today will be insulated from anthropogenic climate change by hundreds of meters of sediment, resulting in a response time of thousands of years. The strongest impact of the glacial–interglacial cycles on the atmospheric methane flux is due to bubbles dissolving in the ocean when sea level is high. When sea level is low and the sediment surface is exposed to the atmosphere, the atmospheric flux is sensitive to whether permafrost inhibits bubble migration in the model. If it does, the atmospheric flux is highest during the glaciating, sea level regression (soil-freezing) part of the cycle rather than during deglacial transgression (warming and thawing). The atmospheric flux response to a warming climate is small, relative to the rest of the methane sources to the atmosphere in the global budget, because of the ongoing flooding of the continental shelf. The increased methane flux due to ocean warming could be completely counteracted by a sea level rise of tens of meters on millennial timescales due to the loss of ice sheets, decreasing the efficiency of bubble transit through the water column. The model results give no indication of a mechanism by which methane emissions from the Siberian continental shelf could have a significant impact on the near-term evolution of Earth's climate, but on millennial timescales the release of carbon from hydrate and permafrost could contribute significantly to the fossil fuel carbon burden in the atmosphere–ocean–terrestrial carbon cycle.« less

  12. Manipulation of double-stranded DNA melting by force

    NASA Astrophysics Data System (ADS)

    Singh, Amit Raj; Granek, Rony

    2017-09-01

    By integrating elasticity—as described by the Gaussian network model—with bond binding energies that distinguish between different base-pair identities and stacking configurations, we study the force induced melting of a double-stranded DNA (dsDNA). Our approach is a generalization of our previous study of thermal dsDNA denaturation [J. Chem. Phys. 145, 144101 (2016), 10.1063/1.4964285] to that induced by force at finite temperatures. It allows us to obtain semimicroscopic information about the opening of the chain, such as whether the dsDNA opens from one of the ends or from the interior, forming an internal bubble. We study different types of force manipulation: (i) "end unzipping," with force acting at a single end base pair perpendicular to the helix, (ii) "midunzipping," with force acting at a middle base pair perpendicular to the helix, and (iii) "end shearing," where the force acts at opposite ends along the helix. By monitoring the free-energy landscape and probability distribution of intermediate denaturation states, we show that different dominant intermediate states are stabilized depending on the type of force manipulation used. In particular, the bubble state of the sequence L60B36, which we have previously found to be a stable state during thermal denaturation, is absent for end unzipping and end shearing, whereas very similar bubbles are stabilized by midunzipping, or when the force location is near the middle of the chain. Ours results offer a simple tool for stabilizing bubbles and loops using force manipulations at different temperatures, and may implicate on the mechanism in which DNA enzymes or motors open regions of the chain.

  13. Induced natural convection thermal cycling device

    DOEpatents

    Heung, Leung Kit [Aiken, SC

    2002-08-13

    A device for separating gases, especially isotopes, by thermal cycling of a separation column using a pressure vessel mounted vertically and having baffled sources for cold and heat. Coils at the top are cooled with a fluid such as liquid nitrogen. Coils at the bottom are either electrical resistance coils or a tubular heat exchange. The sources are shrouded with an insulated "top hat" and simultaneously opened and closed at the outlets to cool or heat the separation column. Alternatively, the sources for cold and heat are mounted separately outside the vessel and an external loop is provided for each circuit.

  14. Multi-fluid CFD analysis in Process Engineering

    NASA Astrophysics Data System (ADS)

    Hjertager, B. H.

    2017-12-01

    An overview of modelling and simulation of flow processes in gas/particle and gas/liquid systems are presented. Particular emphasis is given to computational fluid dynamics (CFD) models that use the multi-dimensional multi-fluid techniques. Turbulence modelling strategies for gas/particle flows based on the kinetic theory for granular flows are given. Sub models for the interfacial transfer processes and chemical kinetics modelling are presented. Examples are shown for some gas/particle systems including flow and chemical reaction in risers as well as gas/liquid systems including bubble columns and stirred tanks.

  15. Evidence of fueling of the 2000 new economy bubble by foreign capital inflow: implications for the future of the US economy and its stock market

    NASA Astrophysics Data System (ADS)

    Sornette, Didier; Zhou, Wei-Xing

    2004-02-01

    Previous analyses of a large ensemble of stock markets have demonstrated that a log-periodic power law (LPPL) behavior of the prices constitutes a qualifying signature of speculative bubbles that often land with a crash. We detect such a LPPL signature in the foreign capital inflow during the bubble on the US markets culminating in March 2000. We detect a weak synchronization and lag with the NASDAQ LPPL pattern. We propose to rationalize these observations by the existence of positive feedback loops between market-appreciation/increased-spending/increased-deficit-of-balance-of-payment/larger-foreign-surplus/increased-foreign-capital-inflows and so on. Our analysis suggests that foreign capital inflow has been following rather than causing the bubble. We then combine a macroeconomic analysis of feedback processes occurring between the economy and the stock market with a technical analysis of more than 200 years of the DJIA to investigate possible scenarios for the future, three years after the end of the bubble and deep into a bearish regime. We conclude that the low interest rates and depreciating dollar are the indispensable ingredients for a lower sustainable burden of the global US debt structure and for allowing the slow rebuilding of an internationally competitive economy. This will probably be accompanied by a weak stock market on the medium term as the growing Federal deficit is consuming a large part of the foreign surplus dollars and the stock market is remaining a very risky and unattractive investment. Notwithstanding strong surge of liquidity in recent months orchestrated by the Federal Reserve, this macroeconomic analysis which incorporates an element of collective behavior is in line with our recent analyses of the bearish market that started in 2000 in terms of a LPPL “anti-bubble”. We project this LPPL anti-bubble to continue at least for another year. On the short term, increased availability of liquidity (M1) and self-fulfilling bullish anticipations may hold the stock market for a while.

  16. High frequency acoustic propagation under variable sea surfaces

    NASA Astrophysics Data System (ADS)

    Senne, Joseph

    This dissertation examines the effects of rough sea surfaces and sub-surface bubbles on high frequency acoustic transmissions. Owing to the strong attenuation of electromagnetic waves in seawater, acoustic waves are used in the underwater realm much in the same way that electromagnetic waves are used in the atmosphere. The transmission and reception of acoustic waves in the underwater environment is important for a variety of fields including navigation, ocean observation, and real-time communications. Rough sea surfaces and sub-surface bubbles alter the acoustic signals that are received not only in the near-surface water column, but also at depth. This dissertation demonstrates that surface roughness and sub-surface bubbles notably affect acoustic transmissions with frequency ranges typical of underwater communications systems (10-50 kHz). The influence of rough surfaces on acoustic transmissions is determined by modeling forward propagation subject to sea surface dynamics that vary with time scales of less than a second to tens of seconds. A time-evolving rough sea surface model is combined with a rough surface formulation of a parabolic equation model for predicting time-varying acoustic fields. Linear surface waves are generated from surface wave spectra, and evolved in time using a Runge-Kutta integration technique. This evolving, range-dependent surface information is combined with other environmental parameters and fed into the acoustic model, giving an approximation of the time-varying acoustic field. The wide-angle parabolic equation model manages the rough sea surfaces by molding them into the boundary conditions for calculations of the near-surface acoustic field. The influence of sub-surface bubbles on acoustic transmissions is determined by modeling the population of bubbles near the surface and using those populations to approximate the effective changes in sound speed and attenuation. Both range-dependent and range-independent bubble models are considered, with the range-dependent model varying over the same time scales as the sea surface model and the range-independent model invariant over time. The bubble-induced sound speed and attenuation fluctuations are read in by the parabolic equation model, which allows for the effects of surface roughness and sub-surface bubbles to be computed separately or together. These merged acoustic models are validated using concurrently-collected acoustic and environmental information, including surface wave spectra. Data to model comparisons demonstrate that the models are able to approximate the ensemble-averaged acoustic intensity at ranges of at least a kilometer for acoustic signals of 10-20 kHz. The rough surface model is shown to capture variations due to surface fluctuations occurring over time scales of less than a second to tens of seconds. The separate bubble models demonstrate the abilities to account for the intermittency of bubble plumes and to determine overall effect of bubbly layers, respectively. The models are shown to capture variations in the acoustic field occurring over time scales of less than a second to tens of seconds. Comparisons against data demonstrate the ability of the model to track acoustic transmissions under evolving sea surfaces. The effects of the evolving bubble field are demonstrated through the use of idealized test cases. For frequency ranges important to communications, surface roughness is shown to have the more dominant effect, with bubbles having an ancillary effect.

  17. Gain-scheduled {{\\mathscr{H}}}_{\\infty } buckling control of a circular beam-column subject to time-varying axial loads

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Platz, Roland

    2018-06-01

    For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, an approach for gain-scheduled {{\\mathscr{H}}}∞ buckling control of a slender beam-column with circular cross-section subject to time-varying axial loads is investigated experimentally. Piezo-elastic supports with integrated piezoelectric stack actuators at the beam-column ends allow an active stabilization in arbitrary lateral directions. The axial loads on the beam-column influence its lateral dynamic behavior and, eventually, cause the beam-column to buckle. A reduced modal model of the beam-column subject to axial loads including the dynamics of the electrical components is set up and calibrated with experimental data. Particularly, the linear parameter-varying open-loop plant is used to design a model-based gain-scheduled {{\\mathscr{H}}}∞ buckling control that is implemented in an experimental test setup. The beam-column is loaded by ramp- and step-shaped time-varying axial compressive loads that result in a lateral deformation of the beam-column due to imperfections, such as predeformation, eccentric loading or clamping moments. The lateral deformations and the maximum bearable loads of the beam-column are analyzed and compared for the beam-column with and without gain-scheduled {{\\mathscr{H}}}∞ buckling control or, respectively, active and passive configuration. With the proposed gain-scheduled {{\\mathscr{H}}}∞ buckling control it is possible to increase the maximum bearable load of the active beam-column by 19% for ramp-shaped axial loads and to significantly reduce the beam-column deformations for step-shaped axial loads compared to the passive structure.

  18. Cooling molten salt reactors using "gas-lift"

    NASA Astrophysics Data System (ADS)

    Zitek, Pavel; Valenta, Vaclav; Klimko, Marek

    2014-08-01

    This study briefly describes the selection of a type of two-phase flow, suitable for intensifying the natural flow of nuclear reactors with liquid fuel - cooling mixture molten salts and the description of a "Two-phase flow demonstrator" (TFD) used for experimental study of the "gas-lift" system and its influence on the support of natural convection. The measuring device and the application of the TDF device is described. The work serves as a model system for "gas-lift" (replacing the classic pump in the primary circuit) for high temperature MSR planned for hydrogen production. An experimental facility was proposed on the basis of which is currently being built an experimental loop containing the generator, separator bubbles and necessary accessories. This loop will model the removal of gaseous fission products and tritium. The cleaning of the fuel mixture of fluoride salts eliminates problems from Xenon poisoning in classical reactors.

  19. Solar heat collector-generator for cooling purposes

    NASA Astrophysics Data System (ADS)

    Abdullah, K.

    1982-01-01

    The performance of an experimental LiBr-H2O solar collector powered absorption cooling system is described. A numerical model was developed of the energy, mass, and momentum balances across the heat-exchange loop to obtain the refrigerant vapor generation rate. The mechanism works by the thermosiphon principle, which eliminates mechanical devices from the loop. All leaks were fixed before measurements began with a test apparatus comprising a pyrex tube 1.87 m long with a 2.7 i.d. The refrigerant flow rate was monitored, along with temperature changes in the fluid and across the tube. Bubble initiation was observed from the free surface extending downward in the tube. Reynolds numbers varied from 6-43 in the liquid phase and 81-204 in the vapor phase. A formulation was made for the low-velocity two-phase flow and good agreement was demonstrated with the simulation.

  20. Cosmic string wakes

    NASA Technical Reports Server (NTRS)

    Stebbins, Albert; Veeraraghavan, Shoba; Silk, Joseph; Brandenberger, Robert; Turok, Neil

    1987-01-01

    Accretion of matter onto wakes left behind by horizon-sized pieces of cosmic string is investigated, and the effects of wakes on the large-scale structure of the universe are determined. Accretion of cold matter onto wakes, the effects of a long string on fluids with finite velocity dispersion or sound speeds, the interactions between loops and wakes, and the conditions for wakes to survive disruption by loops are discussed. It is concluded that the most important wakes are those which were formed at the time of equal matter and radiation density. This leads to sheetlike overdense regions of galaxies with a mean separation in agreement with the scale of the bubbles of de Lapparent, Geller, and Huchra (1986). However, for the value of G(mu) favored from galaxy formation considerations in a universe with cold dark matter, a wake accretes matter from a distance of only about 1.5 Mpc, which is much less than the distance between the wakes.

  1. Extreme Morphologic and Venting Changes in Methane Seeps at Southern Hydrate Ridge, Cascadia Margin

    NASA Astrophysics Data System (ADS)

    Bigham, K.; Kelley, D. S.; Solomon, E. A.; Delaney, J. R.

    2017-12-01

    Two highly active methane hydrate seeps have been visited over a 7-year period as part of the construction and operation of NSF's Ocean Observatory Initiative's Regional Cable Array at Southern Hydrate Ridge. The site is located 90 km west of Newport, Oregon, at a water depth of 800 m. The seeps, Einstein's Grotto (OOI instrument deployment site) and Smokey Tavern (alternate site to the north), have been visited yearly from 2010 to 2017 with ROVs. Additionally, a digital still camera deployed from 2014 to 2017 at Einstein's Grotto, has been documenting the profound morphologic and biological changes at this site. A cabled pressure sensor, Acoustic Doppler Current Profiler, hydrophone, seismometer array, and uncabled fluid samplers have also been operational at the site for the duration of the camera's deployment. During this time, Einstein's Grotto has evolved from a gentle mound with little venting, to a vigorously bubbling pit bounded by a near vertical wall. Early on bubble emissions blew significant amounts of sediment into the water column and thick Beggiatoa mats coverd the mound. Most recently the face of the pit has collapsed, although bubble plumes are still emitted from the site. The Smokey Tavern site has undergone more extreme changes. Similar to Einstein's Grotto it was first characterized by gentle hummocks with dispersed bacterial mats. In subsequent years, it developed an extremely rugged, elongated collapsed area with vertical walls and jets of methane bubbles rising from small pits near the base of the collapse zone. Meter-across nearly sediment-free blocks of methane hydrate were exposed on the surface and in the walls of the collapse zone. In 2016, this area was unrecognizable with a much more subdued topography, and weak venting of bubbles. Exposed methane hydrate was not visible. From these observations new evolutionary models for methane seeps are being developed for Southern Hydrate Ridge.

  2. Loops in AdS from conformal field theory

    DOE PAGES

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; ...

    2017-07-10

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1=N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1=N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for nite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case ofmore » $$\\phi$$ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an in nite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.« less

  3. Loops in AdS from conformal field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1=N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1=N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for nite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case ofmore » $$\\phi$$ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an in nite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.« less

  4. Behaviour of F82H mod. stainless steel in lead-bismuth under temperature gradient

    NASA Astrophysics Data System (ADS)

    Gómez Briceño, D.; Martín Muñoz, F. J.; Soler Crespo, L.; Esteban, F.; Torres, C.

    2001-07-01

    Austenitic steels can be used in a hybrid system in contact with liquid lead-bismuth eutectic if the region of operating temperatures is not beyond 400°C. For higher temperatures, martensitic steels are recommended. However, at long times, the interaction between the structural material and the eutectic leads to the dissolution of some elements of the steel (Ni, Cr and Fe, mainly) in the liquid metal. In a non-isothermal lead-bismuth loop, the material dissolution takes place at the hot leg of the circuit and, due to the mass transfer, deposition occurs at the cold leg. One of the possible ways to improve the performance of structural materials in lead-bismuth is the creation of an oxide layer. Tests have been performed in a small natural convection loop built of austenitic steel (316L) that has been operating for 3000 h. This loop contains a test area in which several samples of F82Hmod. martensitic steel have been tested at different times. A gas with an oxygen content of 10 ppm was bubbled in the hot area of the circuit during the operation time. The obtained results show that an oxide layer is formed on the samples introduced in the loop at the beginning of the operation and this layer increases with time. However, the samples introduced at different times during the loop operation, are not protected by oxide layers and present material dissolution in some cases.

  5. Loops in AdS from conformal field theory

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; Perlmutter, Eric

    2017-07-01

    We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1 /N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1 /N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for finite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case of ϕ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an infinite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.

  6. Temperature change rate actuated bubble mixing for homogeneous rehydration of dry pre-stored reagents in centrifugal microfluidics.

    PubMed

    Hin, S; Paust, N; Keller, M; Rombach, M; Strohmeier, O; Zengerle, R; Mitsakakis, K

    2018-01-16

    In centrifugal microfluidics, dead volumes in valves downstream of mixing chambers can hardly be avoided. These dead volumes are excluded from mixing processes and hence cause a concentration gradient. Here we present a new bubble mixing concept which avoids such dead volumes. The mixing concept employs heating to create a temperature change rate (TCR) induced overpressure in the air volume downstream of mixing chambers. The main feature is an air vent with a high fluidic resistance, representing a low pass filter with respect to pressure changes. Fast temperature increase causes rapid pressure increase in downstream structures pushing the liquid from downstream channels into the mixing chamber. As air further penetrates into the mixing chamber, bubbles form, ascend due to buoyancy and mix the liquid. Slow temperature/pressure changes equilibrate through the high fluidic resistance air vent enabling sequential heating/cooling cycles to repeat the mixing process. After mixing, a complete transfer of the reaction volume into the downstream fluidic structure is possible by a rapid cooling step triggering TCR actuated valving. The new mixing concept is applied to rehydrate reagents for loop-mediated isothermal amplification (LAMP). After mixing, the reaction mix is aliquoted into several reaction chambers for geometric multiplexing. As a measure for mixing efficiency, the mean coefficient of variation (C[combining macron]V[combining macron], n = 4 LabDisks) of the time to positivity (t p ) of the LAMP reactions (n = 11 replicates per LabDisk) is taken. The C[combining macron]V[combining macron] of the t p is reduced from 18.5% (when using standard shake mode mixing) to 3.3% (when applying TCR actuated bubble mixing). The bubble mixer has been implemented in a monolithic fashion without the need for any additional actuation besides rotation and temperature control, which are needed anyhow for the assay workflow.

  7. Radiation response of ODS ferritic steels with different oxide particles under ion-irradiation at 550 °C

    NASA Astrophysics Data System (ADS)

    Song, Peng; Morrall, Daniel; Zhang, Zhexian; Yabuuchi, Kiyohiro; Kimura, Akihiko

    2018-04-01

    In order to investigate the effects of oxide particles on radiation response such as hardness change and microstructural evolution, three types of oxide dispersion strengthened (ODS) ferritic steels (named Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS), mostly strengthened by Y-Ti-O, Y-Al-O and Y-Zr-O dispersoids, respectively, were simultaneously irradiated with iron and helium ions at 550 °C up to a damage of 30 dpa and a corresponding helium (He) concentration of ∼3500 appm to a depth of 1000-1300 nm. A single iron ion beam irradiation was also performed for reference. Transmission electron microscopy revealed that after the dual ion irradiation helium bubbles of 2.8, 6.6 and 4.5 nm in mean diameter with the corresponding number densities of 1.1 × 1023, 2.7 × 1022 and 3.6 × 1022 m-3 were observed in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS, respectively, while no such bubbles were observed after single ion irradiation. About 80% of intragranular He bubbles were adjacent to oxide particles in the ODS ferritic steels. Although the high number density He bubbles were observed in the ODS steels, the void swelling in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS was still small and estimated to be 0.13%, 0.53% and 0.20%, respectively. The excellent swelling resistance is dominantly attributed to the high sink strength of oxide particles that depends on the morphology of particle dispersion rather than the crystal structure of the particles. In contrast, no dislocation loops were produced in any of the irradiated steels. Nanoindentation measurements showed that no irradiation hardening but softening was found in the ODS ferritic steels, which was probably due to irradiation induced dislocation recovery. The helium bubbles in high number density never contributed to the irradiation hardening of the ODS steels at these irradiation conditions.

  8. Characteristics of Pool Boiling on Graphite-Copper Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2002-01-01

    Nucleate pool boiling performance of different liquids on graphite-copper composite (Gr-Cu) surfaces has been experimentally studied and modeled. Both highly wetting fluids, such as freon-113 and pentane, and a moderately wetting fluid (water) were tested on the Gr-Cu surfaces with different graphite-fiber volume fractions to reveal the enhancement effects of the composite surfaces on the nucleate pool boiling. Results of the experiments show that the graphite-fiber volume fraction has an optimum value. The Gr-Cu composite surface with 25 percent graphite-fiber volume (f=0.25) has a maximum enhancement effect on the nucleate boiling heat transfer comparing to the pure copper surface. For the highly wetting fluid, the nucleate boiling heat transfer is generally enhanced on the Gr- Cu composite surfaces by 3 to 6 times shown. In the low heat flux region, the enhancement is over 6 times, but in the high heat flux region, the enhancement is reduced to about 40%. For the moderately wetting fluid (water), stronger enhancement of nucleate boiling heat transfer is achieved on the composite surface. It shown the experimental results in which one observes the nucleate boiling heat transfer enhancement of 5 to 10 times in the low heat flux region and an enhancement of 3 to 5 times in the high heat flux region. Photographs of bubble departure during the initial stage of nucleate boiling indicate that the bubbles detached from the composite surface are much smaller in diameter than those detached from the pure copper surface. Typical photographs are presented.It shows that the bubbles departed from the composite surface have diameters of only O(0.1) mm, while those departed from the pure copper surface have diameters of O(1) mm. It is also found that the bubbles depart from the composite surface at a much higher frequency, thus forming vapor columns. These two phenomena combined with high thermal conductivity of the graphite fiber are considered the mechanisms for such a significant augmentation in nucleate boiling heat transfer on the composite surfaces. A physical model is developed to describe the phenomenon of bubble departure from the composite surface: The preferred site of bubble nucleation is the fiber tip because of higher tip temperature than the surrounding copper base and poor wettability of the graphite tip compared with that of the base material (copper). The high evaporation rate near the contact line produces the vapor cutback due to the vapor recoil pushing the three-phase line outwards from the fiber tip, and so a neck of the bubble is formed near the bubble bottom. Evaporation and surface tension accelerate the necking process and finally result in the bubble departure while a new small bubble is formed at the tip when the surface tension pushes the three-phase line back to the tip. The process is schematically shown. The proposed model is based on and confirmed by experimental results.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myrabo, D.O.

    This paper describes the world's first buoyant articulated loading column (ALC) made principally of concrete and which can operate in the weather conditions of the North Sea. The ALC is an unmanned structure, mooring and loading being controlled by a tanker. Gravity base buoyancy tanks ''floaters'' are lightly reinforced and have a similar section to the column, 29.5 ft diameter and a wall thickness of 13.8 in. Before towing to the field, the column was ballasted by 1,000 metric tons of hematite, a fine ore aggregate. Final ballast will comprise 1,000 metric tons of hematite and 460 metric tons ofmore » water. Setting will be carried out by pumping water into the column until the base structure contacts the seabed. Once the base has touched down, the 2 cyclindrical buoyancy tanks will be vented, thus instantly applying the full weight of the gravity base to the sea floor and anchoring the ALC. Hyperbaric welding techniques will be used to tie the subsea pipeline into the expansion loop.« less

  10. Chromatographic behavior of small organic compounds in low-temperature high-performance liquid chromatography using liquid carbon dioxide as the mobile phase.

    PubMed

    Motono, Tomohiro; Nagai, Takashi; Kitagawa, Shinya; Ohtani, Hajime

    2015-07-01

    Low-temperature high-performance liquid chromatography, in which a loop injector, column, and detection cell were refrigerated at -35ºC, using liquid carbon dioxide as the mobile phase was developed. Small organic compounds (polyaromatic hydrocarbons, alkylbenzenes, and quinones) were separated by low-temperature high-performance liquid chromatography at temperatures from -35 to -5ºC. The combination of liquid carbon dioxide mobile phase with an octadecyl-silica (C18 ) column provided reversed phase mode separation, and a bare silica-gel column resulted in normal phase mode separation. In both the cases, nonlinear behavior at approximately -15ºC was found in the relationship between the temperature and the retention factors of the analytes (van't Hoff plots). In contrast to general trends in high-performance liquid chromatography, the decrease in temperature enhanced the separation efficiency of both the columns. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Identification and control of plasma vertical position using neural network in Damavand tokamak.

    PubMed

    Rasouli, H; Rasouli, C; Koohi, A

    2013-02-01

    In this work, a nonlinear model is introduced to determine the vertical position of the plasma column in Damavand tokamak. Using this model as a simulator, a nonlinear neural network controller has been designed. In the first stage, the electronic drive and sensory circuits of Damavand tokamak are modified. These circuits can control the vertical position of the plasma column inside the vacuum vessel. Since the vertical position of plasma is an unstable parameter, a direct closed loop system identification algorithm is performed. In the second stage, a nonlinear model is identified for plasma vertical position, based on the multilayer perceptron (MLP) neural network (NN) structure. Estimation of simulator parameters has been performed by back-propagation error algorithm using Levenberg-Marquardt gradient descent optimization technique. The model is verified through simulation of the whole closed loop system using both simulator and actual plant in similar conditions. As the final stage, a MLP neural network controller is designed for simulator model. In the last step, online training is performed to tune the controller parameters. Simulation results justify using of the NN controller for the actual plant.

  12. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)-A Unique Microbial Habitat.

    PubMed

    Trampe, Erik C L; Larsen, Jens E N; Glaring, Mikkel A; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1-2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals.

  13. In situ Dynamics of O2, pH, Light, and Photosynthesis in Ikaite Tufa Columns (Ikka Fjord, Greenland)—A Unique Microbial Habitat

    PubMed Central

    Trampe, Erik C. L.; Larsen, Jens E. N.; Glaring, Mikkel A.; Stougaard, Peter; Kühl, Michael

    2016-01-01

    The Ikka Fjord (SW Greenland) harbors a unique microbial habitat in the form of several hundred submarine tufa columns composed of ikaite, a special hexahydrate form of calcium carbonate that precipitates when alkaline phosphate- and carbonate-enriched spring water seeping out of the sea floor meets cold seawater. While several unique heterotrophic microbes have been isolated from the tufa columns, the microbial activity, and the boundary conditions for microbial growth in ikaite have remained unexplored. We present the first detailed in situ characterization of the physico-chemical microenvironment and activity of oxygenic phototrophs thriving within the ikaite columns. In situ underwater microsensor measurements of pH, temperature, and irradiance in the porous ikaite crystal matrix, revealed an extreme microenvironment characterized by low temperatures, strong light attenuation, and gradients of pH changing from pH 9 at the outer column surface to above pH 10 over the first 1–2 cm of the ikaite. This outer layer of the freshly deposited ikaite matrix contained densely pigmented yellow and green zones harboring a diverse phototrophic community dominated by diatoms and cyanobacteria, respectively, as shown by amplicon sequencing. In situ O2 measurements, as well as underwater variable chlorophyll fluorescence measurements of photosynthetic activity, demonstrated high levels of oxygenic photosynthesis in this extreme gradient environment with strong irradiance-driven O2 dynamics ranging from anoxia to hyperoxic conditions in the ikaite matrix, albeit the local formation of gas bubbles buffered the day-night dynamics of O2 in the tufa columns. The microbial phototrophs in the ikaite matrix are embedded in exopolymers forming endolithic biofilms that may interact with mineral formation and cementing of ikaite crystals. PMID:27242741

  14. The Seismic Velocity In Gas-charged Magma

    NASA Astrophysics Data System (ADS)

    Sturton, S.; Neuberg, J. W.

    2001-12-01

    Long-period and hybrid events, seen at the Soufrière Hills Volcano, Montserrat, show dominant low frequency content suggesting the seismic wavefield is formed as a result of interface waves at the boundary between a fluid and a solid medium. This wavefield will depend on the impedance contrast between the two media and therefore the difference in seismic velocity. For a gas-charged magma, increasing pressure with depth reduces the volume of gas exsolved, increasing the seismic velocity with depth in the conduit. The seismic radiation pattern along the conduit can then be modelled. Where single events merge into tremor, gliding lines can sometimes be seen in the spectra and indicate either changes in the seismic parameters with time or varying triggering rates of single events.The differential equation describing the time dependence of bubble growth by diffusion is solved numerically for a stationary magma column undergoing a decompression event. The volume of gas is depth dependent and increases with time as the bubbles grow and expand. It is used to calculate the depth and time dependence of the density, pressure and seismic velocity. The effect of different viscosities associated with different magma types and concentration of water in the melt on the rate of bubble growth is explored. Crystal growth, which increases the concentration of water in the melt, affects the amount of gas that can be exsolved.

  15. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    NASA Technical Reports Server (NTRS)

    Leahy, D. A.; Nousek, J.; Hamilton, A. J. S.

    1991-01-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate description for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results.

  16. A laboratory study of sediment and contaminant release during gas ebullition.

    PubMed

    Yuan, Qingzhong; Valsaraj, Kalliat T; Reible, Danny D; Willson, Clinton S

    2007-09-01

    Significant quantities of gas are generated from labile organic matter in contaminated sediments. The implications for the gas generation and subsequent release of contaminants from sediments are unknown but may include enhanced direct transport such as pore water advection and diffusion. The behavior of gas in sediments and the resulting migration of a polyaromatic hydrocarbon, viz phenanthrene, were investigated in an experimental system with methane injection at the base of a sediment column. Hexane above the overlying water layer was used to trap any phenanthrene migrating out of the sediment layer. The rate of suspension of solid particulate matter from the sediment bed into the overlying water layer was also monitored. The experiments indicated that significant amounts of both solid particulate matter and contaminant can be released from a sediment bed by gas movement with the amount of release related to the volume of gas released. The effective mass transfer coefficient of gas bubble-facilitated contaminant release was estimated under field conditions, being around three orders of magnitude smaller than that of bioturbation. A thin sand-capping layer (2 cm) was found to dramatically reduce the amount of contaminant or particles released with the gas because it could prevent or at least reduce sediment suspension. Based on the experimental observations, gas bubble-facilitated contaminant transport pathways for both uncapped and capped systems were proposed. Sediment cores were sliced to obtain phenanthrene concentration. X-ray computed tomography (CT) was used to investigate the void space distribution in the sediment penetrated by gas bubbles. The results showed that gas bubble migration could redistribute the sediment void spaces and may facilitate pore water circulation in the sediment.

  17. TEM study of {beta} Prime precipitate interaction mechanisms with dislocations and {beta} Prime interfaces with the aluminium matrix in Al-Mg-Si alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teichmann, Katharina; Marioara, Calin D.; Andersen, Sigmund J.

    The interaction mechanisms between dislocations and semi-coherent, needle-shaped {beta} Prime precipitates in Al-Mg-Si alloys have been studied by High Resolution Transmission Electron Microscopy (HRTEM). Dislocation loops appearing as broad contrast rings around the precipitate cross-sections were identified in the Al matrix. A size dependency of the interaction mechanism was observed; the precipitates were sheared when the longest dimension of their cross-section was shorter than approximately 15 nm, and looped otherwise. A more narrow ring located between the Al matrix and bulk {beta} Prime indicates the presence of a transition interface layer. Together with the bulk {beta} Prime structure, this wasmore » further investigated by High Angle Annular Dark Field Scanning TEM (HAADF-STEM). In the bulk {beta} Prime a higher intensity could be correlated with a third of the Si-columns, as predicted from the published structure. The transition layer incorporates Si columns in the same arrangement as in bulk {beta} Prime , although it is structurally distinct from it. The Z-contrast information and arrangement of these Si-columns demonstrate that they are an extension of the Si-network known to structurally connect all the precipitate phases in the Al-Mg-Si(-Cu) system. The width of the interface layer was estimated to about 1 nm. - Highlights: Black-Right-Pointing-Pointer {beta} Prime is found to be looped at sizes larger than 15 nm (cross section diameter). Black-Right-Pointing-Pointer {beta} Prime is found to be sheared at sizes smaller than 15 nm (cross section diameter). Black-Right-Pointing-Pointer The recently determined crystal structure of {beta} Prime is confirmed by HAADF-STEM. Black-Right-Pointing-Pointer Between {beta} Prime and the Al-matrix a transition layer of about 1 nm is existent. Black-Right-Pointing-Pointer The {beta} Prime /matrix layer is structurally distinct from bulk {beta} Prime and the aluminium matrix.« less

  18. A Multi-Wavelength Study of the Hot Component of the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Nichols, Joy; Oliversen, Ronald K. (Technical Monitor)

    2002-01-01

    The goals of this research are as follows: (1) Using the large number of lines of sight available in the ME database, identify the lines of sight with high-velocity components in interstellar lines, from neutral species through Si VI, C IV, and N V; (2) Compare the column density of the main components (i.e. low velocity components) of the interstellar lines with distance, galactic longitude and latitude, and galactic radial position. Derive statistics on the distribution of components in space (e.g. mean free path, mean column density of a component). Compare with model predictions for the column densities in the walls of old SNR bubbles and superbubbles, in evaporating cloud boundaries and in turbulent mixing layers; (3) For the lines of sight associated with multiple high velocity, high ionization components, model the shock parameters for the associated superbubble and SNR to provide more accurate energy input information for hot phase models and galactic halo models. Thus far 49 lines of sight with at least one high velocity component to the C IV lines have been identified; and (4) Obtain higher resolution data for the lines of sight with high velocity components (and a few without) to further refine these models.

  19. A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors.

    PubMed

    Terán Hilares, Ruly; Kamoei, Douglas Viana; Ahmed, Muhammad Ajaz; da Silva, Silvio Silvério; Han, Jong-In; Santos, Júlio César Dos

    2018-05-01

    Hydrodynamic cavitation (HC) was adopted to assist alkaline-hydrogen peroxide pretreatment of sugarcane bagasse (SCB). In the following condition: 0.29 M of NaOH, 0.78% (v/v) of H 2 O 2 , 9.95 min of process time and 3 bar of inlet pressure, 95.4% of digestibility of cellulosic fraction was achieved. To take the best use of the pretreated biomass, the overall process was intensified by way of employing a packed bed flow-through column reactor and thus enabling to handle a high solid loading of 20%, thereby leading to cellulose and hemicellulose conversions to 74.7% and 75%, respectively. In the fermentation step, a bubble column reactor was introduced to maximize ethanol production from the pretreated SCB by Scheffersomyces stipitis NRRL-Y7124, resulting in 31.50 g/L of ethanol, 0.49 g/g of ethanol yield and 0.68 g/L.h of productivity. All this showed that our HC-assisted NaOH-H 2 O 2 pretreatment strategy along with the process intensification approach might offer an option for SCB-based biorefineries. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  1. Giant Hα Nebula Surrounding the Starburst Merger NGC 6240

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Yagi, Masafumi; Ohyama, Youichi; Komiyama, Yutaka; Kashikawa, Nobunari; Tanaka, Hisashi; Okamura, Sadanori

    2016-03-01

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ˜90 kpc in diameter and the total Hα luminosity amounts to LHα ≈ 1.6 × 1042 erg s-1. The volume filling factor and the mass of the warm ionized gas are ˜10-4-10-5 and ˜5 × 108 M⊙, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hα nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ˜102 Myr ago, formed the extended ionized gas nebula of NGC 6240. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  2. Nested Shells Reveal the Rejuvenation of the Orion-Eridanus Superbubble

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Brown, Anthony G. A.; Bally, John; Tielens, Alexander G. G. M.

    2015-08-01

    The Orion-Eridanus superbubble is the prototypical superbubble owing to its proximity and evolutionary state. Here we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing us to draw a new and more complete picture on the history and evolution of the Orion-Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble and derive quantitative properties of the gas and dust inside Barnard’s Loop. We reveal that Barnard’s Loop is a complete bubble structure that, together with the λ Ori region and other smaller-scale bubbles, expands within the Orion-Eridanus superbubble. We argue that the Orion-Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, Hii region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years.

  3. NESTED SHELLS REVEAL THE REJUVENATION OF THE ORION–ERIDANUS SUPERBUBBLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochsendorf, Bram B.; Brown, Anthony G. A.; Tielens, Alexander G. G. M.

    2015-08-01

    The Orion–Eridanus superbubble is the prototypical superbubble owing to its proximity and evolutionary state. Here we provide a synthesis of recent observational data from WISE and Planck with archival data, allowing us to draw a new and more complete picture on the history and evolution of the Orion–Eridanus region. We discuss the general morphological structures and observational characteristics of the superbubble and derive quantitative properties of the gas and dust inside Barnard’s Loop. We reveal that Barnard’s Loop is a complete bubble structure that, together with the λ Ori region and other smaller-scale bubbles, expands within the Orion–Eridanus superbubble. We argue that themore » Orion–Eridanus superbubble is larger and more complex than previously thought, and that it can be viewed as a series of nested shells, superimposed along the line of sight. During the lifetime of the superbubble, Hii region champagne flows and thermal evaporation of embedded clouds continuously mass-load the superbubble interior, while winds or supernovae from the Orion OB association rejuvenate the superbubble by sweeping up the material from the interior cavities in an episodic fashion, possibly triggering the formation of new stars that form shells of their own. The steady supply of material into the superbubble cavity implies that dust processing from interior supernova remnants is more efficient than previously thought. The cycle of mass loading, interior cleansing, and star formation repeats until the molecular reservoir is depleted or the clouds have been disrupted. While the nested shells come and go, the superbubble remains for tens of millions of years.« less

  4. Gravitational waves and Higgs boson couplings for exploring first order phase transition in the model with a singlet scalar field

    NASA Astrophysics Data System (ADS)

    Hashino, Katsuya; Kakizaki, Mitsuru; Kanemura, Shinya; Ko, Pyungwon; Matsui, Toshinori

    2017-03-01

    We calculate the spectrum of gravitational waves originated from strongly first order electroweak phase transition in the extended Higgs model with a real singlet scalar field. In order to calculate the bubble nucleation rate, we perform a two-field analysis and evaluate bounce solutions connecting the true and the false vacua using the one-loop effective potential at finite temperatures. Imposing the Sakharov condition of the departure from thermal equilibrium for baryogenesis, we survey allowed regions of parameters of the model. We then investigate the gravitational waves produced at electroweak bubble collisions in the early Universe, such as the sound wave, the bubble wall collision and the plasma turbulence. We find that the strength at the peak frequency can be large enough to be detected at future space-based gravitational interferometers such as eLISA, DECIGO and BBO. Predicted deviations in the various Higgs boson couplings are also evaluated at the zero temperature, and are shown to be large enough too. Therefore, in this model strongly first order electroweak phase transition can be tested by the combination of the precision study of various Higgs boson couplings at the LHC, the measurement of the triple Higgs boson coupling at future lepton colliders and the shape of the spectrum of gravitational wave detectable at future gravitational interferometers.

  5. On The Origin Of Two-Shell Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Gvaramadze, V. V.

    2006-08-01

    It is known that proper motion of massive stars causes them to explode far from the geometric centers of their wind-driven bubbles and thereby affects the symmetry of the resulting diffuse supernova remnants (SNRs). We use this fact to explain the origin of SNRs consisting of two partially overlapping shells (e.g. 3C 400.2, Cygnus Loop, Kes32, etc.), whose unusual morphology is usually treated in terms of the collision (or superposition) of two separate SNRs or breakout phenomena in a region with a density discontinuity. We propose that a SNR of this type is a natural consequence of an off-centered cavity supernova (SN) explosion of a moving massive star, which ended its evolution near the edge of the main-sequence (MS) wind-driven bubble. Our proposal implies that one of the shells is the former MS bubble reenergized by the SN blast wave. The second shell, however, could originate in two somewhat different ways, depending on the initial mass of the SN progenitor star. It could be a shell swept-up by the SN blast wave expanding through the unperturbed ambient interstellar medium if the massive star ends its evolution as a red supergiant (RSG). Or it could be the remainder of a pre-existing shell (adjacent to the MS bubble) swept-up by the fast progenitor's wind during the late evolutionary phases if after the RSG phase the star evolves through the Wolf-Rayet phase. In both cases the resulting (two-shell) SNR should be associated only with one (young) neutron star (thus one can somewhat improve the statistics of neutron star/SNR associations since the two-shell SNRs are quite numerous). We discuss several criteria to discern the SNRs formed by SN explosion after the RSG or WR phase.

  6. Seismicity at Old Faithful Geyser: an isolated source of geothermal noise and possible analogue of volcanic seismicity

    NASA Astrophysics Data System (ADS)

    Kieffer, Susan Werner

    1984-09-01

    Old Faithful Geyser in Yellowstone National Park, U.S.A., is a relatively isolated source of seismic noise and exhibits seismic behavior similar to that observed at many volcanoes, including "bubblequakes" that resemble B-type "earthquakes", harmonic tremor before and during eruptions, and periods of seismic quiet prior to eruptions. Although Old Faithful differs from volcanoes in that the conduit is continuously open, that rock-fracturing is not a process responsible for seismicity, and that the erupting fluid is inviscid H 2O rather than viscous magma, there are also remarkable similarities in the problems of heat and mass recharge to the system, in the eruption dynamics, and in the seismicity. Water rises irregularly into the immediate reservoir of Old Faithful as recharge occurs, a fact that suggests that there are two enlarged storage regions: one between 18 and 22 m (the base of the immediate reservoir) and one between about 10 and 12 m depth. Transport of heat from hot water or steam entering at the base of the recharging water column into cooler overlying water occurs by migration of steam bubbles upward and their collapse in the cooler water, and by episodes of convective overturn. An eruption occurs when the temperature of the near-surface water exceeds the boiling point if the entire water column is sufficiently close to the boiling curve that the propagation of pressure-release waves (rarefactions) down the column can bring the liquid water onto the boiling curve. The process of conversion of the liquid water in the conduit at the onset of an eruption into a two-phase liquid-vapor mixture takes on the order of 30 s. The seismicity is directly related to the sequence of filling and heating during the recharge cycle, and to the fluid mechanics of the eruption. Short (0.2-0.3 s), monochromatic, high-frequency events (20-60 Hz) resembling unsustained harmonic tremor and, in some instances, B-type volcanic earthquakes, occur when exploding or imploding bubbles of steam cause transient vibrations of the fluid column. The frequency of the events is determined by the length of the water column and the speed of sound of the fluid in the conduit when these events occur; damping is controlled by the characteristic and hydraulic impedances, which depend on the above parameters, as well as on the recharge rate of the fluid. Two periods of reduced seismicity (of a few tens of seconds to nearly a minute in duration) occur during the recharge cycle, apparently when the water rises rapidly through the narrow regions of the conduit, causing a sudden pressure increase that temporarily suppresses steam bubble formation. A period of decreased seismicity also precedes preplay or an eruption; this appears to be the time when rising steam bubbles move into a zone of boiling that is acoustically decoupled from the wall of the conduit because of the acoustic impedance mismatch between boiling water ( ρ c ˜ 10 3g cm -2 s -1) and rock ( ρ c ˜ 3 × 10 5g cm 2 s -1). Sustained harmonic tremor occurs during the first one to one-and-a-half minutes of an eruption of Old Faithful, but is not detectable in the succeeding minutes of the eruption. The eruption tremor is caused by hydraulic transients propagating within a sublayer of unvesiculated water that underlies the erupting two-phase liquid—vapor mixture. The resonant frequencies of the fluid column decrease to about 1 Hz when all of the water in the conduit has been converted to a water—steam mixture. Surges are observed in the flow at this frequency, but the resonance has not been detected seismically, possibly because the two-phase erupting fluid is seismically decoupled from the rock on which seismometers are placed. If Old Faithful is an analogue for volcanic seismicity, this study shows that because the frequency of tremor depends on the acoustic properties of the fluid and on conduit dimensions, both properties must be considered in analysis of tremor in volcanic regions. Because magma sound speed can vary over nearly two orders of magnitude as it changes from an undersaturated liquid into a saturated two-phase mixture, tremor frequency might vary by this magnitude and very broad-band seismographs may be required if tremor is to be monitored as magma goes from an undersaturated liquid to a vesiculated froth. Cessation of fluid-induced seismicity may indicate that the processes that drive the transients cease, but it is also possible that the processes that drive the transients continue but the fluid properties change so that the fluid becomes acoustically decoupled from the rock on which seismometers are placed.

  7. Roller Coasters!

    ERIC Educational Resources Information Center

    Ansberry, Karen; Morgan, Emily

    2008-01-01

    Students of all ages are fascinated by the ups, downs, loops, and twists of roller coaster rides! What they may not realize is that there is a lot of science involved in making a roller coaster work. This month's column puts students in the shoes of a roller coaster designer as they work in teams to create their own roller coasters. (Contains 1…

  8. OTEC gas desorption studies

    NASA Astrophysics Data System (ADS)

    Chen, F. C.; Golshani, A.

    1982-02-01

    Experiments on deaeration in packed columns and barometric intake systems, and with hydraulic air compression for open-cycle OTEC systems are reported. A gas desorption test loop consisting of water storage tanks, a vacuum system, a liquid recirculating system, an air supply, a column test section, and two barometric leg test sections was used to perform the tests. The aerated water was directed through columns filled with either ceramic Raschig rings or plastic pall rings, and the system vacuum pressure, which drives the deaeration process, was found to be dependent on water velocity and intake pipe height. The addition of a barometric intake pipe increased the deaeration effect 10%, and further tests were run with lengths of PVC pipe as potential means for noncondensibles disposal through hydraulic air compression. Using the kinetic energy from the effluent flow to condense steam in the noncondensible stream improved the system efficiency.

  9. HEAO 1 A-2 low-energy detector X-ray spectra of the Lupus Loop and SN 1006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leahy, D.A.; Nousek, J.; Hamilton, A.J.S.

    1991-06-01

    The Lupus Loop and SN 1006 were observed by the A-2 low-energy detector proportional counters on the HEAO 1 satellite as part of the all-sky survey. As a result of a major advance in understanding of detector response and background accurate analysis of the data has become possible. Soft X-ray spectra for both supernova remnants were constructed from the PHA data taken during the scanning observations. Single-temperature and two-temperature Raymond-Smith models were fitted to the observed spectra. In addition, power-law and power-law plus one-temperature models were fitted to the spectrum of SN 1006. Only two-component models provide an adequate descriptionmore » for both Lupus Loop and SN 1006 spectra. The temperatures, column densities, and emission measures are significantly more accurate than previous results. 29 refs.« less

  10. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martens, C.S.; Albert, D.B.; Alperin, M.J.

    Methane concentrations in the pore waters of Eckernfoerde Bay in the German Baltic Sea generally reach gas bubble saturation values within the upper meter of the sediment column. The depth at which saturation occurs is controlled by a balance between rates of methane production, consumption (oxidation), and transport. The relative importance of anaerobic methane oxidation (AMO) in controlling dissolved and gas bubble methane distributions in the bay's sediments is indirectly revealed through methane concentration versus depth profiles, depth variations in the stable C and H isotope composition of methane, and the C isotope composition of total dissolved inorganic carbon ({Sigma}CO{submore » 2}). Direct radiotracer measurements indicate that AMO rates of over 15 mM/yr are focused at the base of the sulfate reduction zone. Diagenetic equations that describe the depth destructions of the {delta}{sup 13}C and {delta}D values of methane reproduce isotopic shifts observed throughout the methane oxidation zone and are best fit with kinetic isotope fractionation factors of 1.012 {+-} 0.001 and 1.120 {plus{underscore}minus} 0.020 respectively.« less

  11. Fetal stomach paracentesis in combined duodenal and esophageal atresia.

    PubMed

    Kadohira, Ikuko; Miyakoshi, Kei; Shimojima, Naoki; Matsumoto, Tadashi; Minegishi, Kazuhiro; Tanaka, Mamoru; Kuroda, Tatsuo; Yoshimura, Yasunori

    2014-07-01

    Fetuses with concomitant duodenal atresia (DA) and esophageal atresia (EA) might develop in utero gastric rupture as well as neonatal respiratory complication due to dilated stomach and duodenum. Our patient with the typical "double bubble" appearance was highly suspected to have DA in the second trimester. Follow-up examinations revealed a massively dilated stomach and duodenum with a dilated distal esophagus, indicating concomitant DA and EA. With advancing pregnancy, the fetal abdomen progressively increased in size by retention of fluid in the closed loop of DA and EA. To avoid gastric perforation, prenatal stomach paracentesis using an ultrasound-guided needle was performed three times until delivery. A male neonate born at 37 weeks gestation showed no respiratory complication. Perinatal clinical features and operative findings revealed combined DA and EA (gross type A). He was successfully managed with duodenoduodenostomy, followed by esophago-esophagostomy. On fetal sonography, the marked "double bubble" appearance and the cystic structure presenting peristalsis-like movement above the diaphragm were indicative of concomitant DA and EA. Fetal stomach paracentesis could contribute to the improvement of perinatal outcomes in fetuses with this pathological condition.

  12. An eco-friendly approach for heavy metal adsorbent regeneration using CO2-responsive molecular octopus.

    PubMed

    Bai, Yu; Liang, Yen Nan; Hu, Xiao

    2017-10-01

    Perennial problems of adsorption in wastewater treatment include adsorbent recycling, generation of waste sludge and secondary pollution because harmful concentrated acids, bases or strong chelators are often used for adsorbent regeneration and adsorbate recovery. We report, for the first time, an eco-friendly regeneration concept demonstrated with a CO 2 -responsive octopus-like polymeric adsorbent. Various heavy metals can be scavenged at very high Q e by such adsorbent through coordination. Most importantly, the rapid and complete regeneration of the adsorbent and recovery of the heavy metal ions can be readily achieved by CO 2 bubbling within a few minutes under mild conditions, i.e., room temperature and atmospheric pressure. The adsorbent can then be restored to its adsorptive state and reused upon removal of CO 2 by simply bubbling another gas. This eco-friendly, effective, ultra-fast and repeatable CO 2 -triggered regeneration process using CO 2 -responsive adsorbent with versatile structure, morphology or form can be incorporated into a sustainable closed-loop wastewater treatment process to solve the perennial problems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of Supernovae on the Local Interstellar Material

    NASA Astrophysics Data System (ADS)

    Frisch, Priscilla; Dwarkadas, Vikram V.

    A range of astronomical data indicates that ancient supernovae created the galactic environment of the Sun and sculpted the physical properties of the interstellar medium near the heliosphere. In this paper, we review the characteristics of the local interstellar medium that have been affected by supernovae. The kinematics, magnetic field, elemental abundances, and configuration of the nearest interstellar material support the view that the Sun is at the edge of the Loop I superbubble, which has merged into the low-density Local Bubble. The energy source for the higher temperature X-ray-emitting plasma pervading the Local Bubble is uncertain. Winds from massive stars and nearby supernovae, perhaps from the Sco-Cen association, may have contributed radioisotopes found in the geologic record and galactic cosmic ray population. Nested supernova shells in the Orion and Sco-Cen regions suggest spatially distinct sites of episodic star formation. The heliosphere properties vary with the pressure of the surrounding interstellar cloud. A nearby supernova would modify this pressure equilibrium and thereby severely disrupt the heliosphere as well as the local interstellar medium.

  14. Interior Temperature Measurement Using Curved Mercury Capillary Sensor Based on X-ray Radiography

    NASA Astrophysics Data System (ADS)

    Chen, Shuyue; Jiang, Xing; Lu, Guirong

    2017-07-01

    A method was presented for measuring the interior temperature of objects using a curved mercury capillary sensor based on X-ray radiography. The sensor is composed of a mercury bubble, a capillary and a fixed support. X-ray digital radiography was employed to capture image of the mercury column in the capillary, and a temperature control system was designed for the sensor calibration. We adopted livewire algorithms and mathematical morphology to calculate the mercury length. A measurement model relating mercury length to temperature was established, and the measurement uncertainty associated with the mercury column length and the linear model fitted by least-square method were analyzed. To verify the system, the interior temperature measurement of an autoclave, which is totally closed, was taken from 29.53°C to 67.34°C. The experiment results show that the response of the system is approximately linear with an uncertainty of maximum 0.79°C. This technique provides a new approach to measure interior temperature of objects.

  15. Isolation and purification of diastereoisomeric flavonolignans from silymarin by binary-column recycling preparative high-performance liquid chromatography.

    PubMed

    Zhao, Weiquan; Yang, Guang; Zhong, Fanyi; Yang, Nan; Zhao, Xin; Qi, Yunpeng; Fan, Guorong

    2014-09-01

    Silymarin extracted from Silybum marianum (L.) Gaertn consists of a large number of flavonolignans, of which diastereoisomeric flavonolignans including silybin A and silybin B, and isosilybin A and isosilybin B are the main bioactive components, whose preparation from the crude extracts is still a difficult task. In this work, binary-column recycling preparative high-performance liquid chromatography systems without sample loop trapping, where two columns were switched alternately via one or two six-port switching valves, were established and successfully applied to the isolation and purification of the four diastereoisomeric flavonolignans from silymarin. The proposed system showed significant advantages over conventional preparative high-performance liquid chromatography with a single column in increasing efficiency and reducing the cost. To obtain the same amounts of products, the proposed system spends only one tenth of the time that the conventional system spends, and needs only one eleventh of the solvent that the conventional system consumes. Using the proposed system, the four diastereoisomers were successfully isolated from silymarin with purities over 98%. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A loop-counting method for covariate-corrected low-rank biclustering of gene-expression and genome-wide association study data.

    PubMed

    Rangan, Aaditya V; McGrouther, Caroline C; Kelsoe, John; Schork, Nicholas; Stahl, Eli; Zhu, Qian; Krishnan, Arjun; Yao, Vicky; Troyanskaya, Olga; Bilaloglu, Seda; Raghavan, Preeti; Bergen, Sarah; Jureus, Anders; Landen, Mikael

    2018-05-14

    A common goal in data-analysis is to sift through a large data-matrix and detect any significant submatrices (i.e., biclusters) that have a low numerical rank. We present a simple algorithm for tackling this biclustering problem. Our algorithm accumulates information about 2-by-2 submatrices (i.e., 'loops') within the data-matrix, and focuses on rows and columns of the data-matrix that participate in an abundance of low-rank loops. We demonstrate, through analysis and numerical-experiments, that this loop-counting method performs well in a variety of scenarios, outperforming simple spectral methods in many situations of interest. Another important feature of our method is that it can easily be modified to account for aspects of experimental design which commonly arise in practice. For example, our algorithm can be modified to correct for controls, categorical- and continuous-covariates, as well as sparsity within the data. We demonstrate these practical features with two examples; the first drawn from gene-expression analysis and the second drawn from a much larger genome-wide-association-study (GWAS).

  17. Technology development for cobalt F-T catalysts. Quarterly technical progress report number 10, January 1--March 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singleton, A.H.

    1995-06-28

    The goal of this project is the development of a commercially-viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. The major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5%) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. The project consists of five major tasks: catalyst development; catalyst testing; catalyst reproducibility tests; catalyst aging tests; and preliminary design and cost estimate for a demonstrate scale catalyst production facility. Technical accomplishments during this reporting periodmore » include the following. It appears that the higher activity obtained for the catalysts prepared using an organic solution and reduced directly without prior calcination was the result of higher dispersions obtained under such pretreatment. A Ru-promoted Co catalyst on alumina with 30% Co loading exhibited a 4-fold increase in dispersion and a 2-fold increase in activity in the fixed-bed reactor from that obtained with the non-promoted catalyst. Several reactor runs have again focused on pushing conversion to higher levels. The maximum conversion obtained has been 49.7% with 26g catalyst. Further investigations of the effect of reaction temperature on the performance of Co catalysts during F-T synthesis were started using a low activity catalyst and one of the most active catalysts. The three 1 kg catalyst batches prepared by Calsicat for the reproducibility and aging studies were tested in both the fixed-bed and slurry bubble column reactors under the standard reaction conditions. The effects of adding various promoters to some cobalt catalysts have also been addressed. Results are presented and discussed.« less

  18. Mechanical properties of metal dihydrides

    DOE PAGES

    Schultz, Peter A.; Snow, Clark S.

    2016-02-04

    First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less

  19. Preparation and characterization of carbonic anhydrase-conjugated liposomes for catalytic synthesis of calcium carbonate particles.

    PubMed

    Maeshima, Keisuke; Yoshimoto, Makoto

    2017-10-01

    The biomimetic approach using immobilized enzymes is useful for the synthesis of structurally defined inorganic materials. In this work, carbonic anhydrase (CA) from bovine erythrocytes was covalently conjugated at 25°C to the liposomes composed of 15mol% 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine-N-(glutaryl) (NG-POPE), and the zwitterionic and anionic phospholipids with the same acyl chains as NG-POPE. For the conjugation, the carboxyl groups of liposomal NG-POPE were activated with 11mM 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and 4.6mM N-hydroxysulfosuccinimide (sulfo-NHS). The carbonic anhydrase-conjugated liposomes (CALs) with the mean hydrodynamic diameter of 149nm showed the esterase activity corresponding to on average 5.5×10 2 free CA molecules per liposome. On the other hand, the intrinsic fluorescence and absorbance measurements consistently revealed that on average 1.4×10 3 CA molecules were conjugated to a liposome, suggesting that the molecular orientation of enzyme affected its activity. The formation of calcium carbonate particles was significantly accelerated by the CALs ([lipid]=50μ M) in the 0.3M Tris solution at 10-40°C with dissolved CO 2 (≈17mM) and CaCl 2 (46mM). The anionic CALs were adsorbed with calcium as revealed with the ζ-potential measurements. The CAL system offered the calcium-rich colloidal interface where the bicarbonate ions were catalytically produced by the liposome-conjugated CA molecules. The CALs also functioned in the external loop airlift bubble column operated with a model flue gas (10vol/vo% CO 2 ), yielding partly agglomerated calcium carbonate particles as observed with the scanning electron microscopy (SEM). Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography.

    PubMed

    Stoll, Dwight R; Sajulga, Ray W; Voigt, Bryan N; Larson, Eli J; Jeong, Lena N; Rutan, Sarah C

    2017-11-10

    An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension ( 1 D) column into the second dimension ( 2 D) column leads to severe 2 D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1 D mobile phase overwhelms the 2 D column with each injection of 1 D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2 D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2 D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80μL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real injection profiles obtained from 2D-LC interface valves are used to simulate the introduction of samples into the 2 D column. These profiles are highly asymmetric - simulation using simple rectangular pulses leads to peak widths that are far too narrow under many conditions. We believe the simulation approach developed here will be useful for addressing practical questions in the development of 2D-LC methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Liquid uranium alloy-helium fission reactor

    DOEpatents

    Minkov, V.

    1984-06-13

    This invention describes a nuclear fission reactor which has a core vessel and at least one tandem heat exchanger vessel coupled therewith across upper and lower passages to define a closed flow loop. Nuclear fuel such as a uranium alloy in its liquid phase fills these vessels and flow passages. Solid control elements in the reactor core vessel are adapted to be adjusted relative to one another to control fission reaction of the liquid fuel therein. Moderator elements in the other vessel and flow passages preclude fission reaction therein. An inert gas such as helium is bubbled upwardly through the heat exchanger vessel operable to move the liquid fuel upwardly therein and unidirectionally around the closed loop and downwardly through the core vessel. This helium gas is further directed to heat conversion means outside of the reactor vessels to utilize the heat from the fission reaction to generate useful output. The nuclear fuel operates in the 1200 to 1800/sup 0/C range, and even higher to 2500/sup 0/C.

  2. Solution structure and DNA-binding properties of the C-terminal domain of UvrC from E.coli

    PubMed Central

    Singh, S.; Folkers, G.E.; Bonvin, A.M.J.J.; Boelens, R.; Wechselberger, R.; Niztayev, A.; Kaptein, R.

    2002-01-01

    The C-terminal domain of the UvrC protein (UvrC CTD) is essential for 5′ incision in the prokaryotic nucleotide excision repair process. We have determined the three-dimensional structure of the UvrC CTD using heteronuclear NMR techniques. The structure shows two helix–hairpin–helix (HhH) motifs connected by a small connector helix. The UvrC CTD is shown to mediate structure-specific DNA binding. The domain binds to a single-stranded–double-stranded junction DNA, with a strong specificity towards looped duplex DNA that contains at least six unpaired bases per loop (‘bubble DNA’). Using chemical shift perturbation experiments, the DNA-binding surface is mapped to the first hairpin region encompassing the conserved glycine–valine–glycine residues followed by lysine–arginine–arginine, a positively charged surface patch and the second hairpin region consisting of glycine–isoleucine–serine. A model for the protein– DNA complex is proposed that accounts for this specificity. PMID:12426397

  3. High-mass Star Formation Toward Southern Infrared Bubble S10

    NASA Astrophysics Data System (ADS)

    Ranjan Das, Swagat; Tej, Anandmayee; Vig, Sarita; Ghosh, Swarna K.; Ishwara Chandra, C. H.

    2016-11-01

    An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2 M ⊙, lies ˜7″ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μm image. The masses and linear diameter of these range between ˜300-1600 M ⊙ and 0.2-1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.

  4. Microembolism and catheter ablation I: a comparison of irrigated radiofrequency and multielectrode-phased radiofrequency catheter ablation of pulmonary vein ostia.

    PubMed

    Haines, David E; Stewart, Mark T; Dahlberg, Sarah; Barka, Noah D; Condie, Cathy; Fiedler, Gary R; Kirchhof, Nicole A; Halimi, Franck; Deneke, Thomas

    2013-02-01

    Cerebral diffusion-weighted MRI lesions have been observed after catheter ablation of atrial fibrillation. We hypothesized that conditions predisposing to microembolization could be identified using a porcine model of pulmonary vein ablation and an extracorporeal circulation loop. Ablations of the pulmonary veins were performed in 18 swine with echo monitoring. The femoral artery and vein were cannulated and an extracorporeal circulation loop with 2 ultrasonic bubble detectors and a 73-μm filter were placed in series. Microemboli and microbubbles were compared between ablation with an irrigated radiofrequency system (Biosense-Webster) and a phased radiofrequency multielectrode system (pulmonary vein ablation catheter [PVAC], Medtronic, Inc, Carlsbad, CA) in unipolar and 3 blended unipolar/bipolar modes. Animal pathology was examined. The size and number of microbubbles observed during ablation ranged from 30 to 180 μm and 0 to 3253 bubbles per ablation. Microbubble volumes with PVAC (29.1 nL) were greater than with irrigated radiofrequency (0.4 nL; P=0.045), and greatest with type II or III microbubbles on transesophageal echocardiography. Ablation with the PVAC showed fewest microbubbles in the unipolar mode (P=0.012 versus bipolar). The most occurred during bipolar energy delivery with overlap of proximal and distal electrodes (median microbubble volume, 1744 nL; interquartile range, 737-4082 nL; maximum, 19 516 nL). No cerebral MRI lesions were seen, but 2 animals had renal embolization. Left atrial ablation with irrigated radiofrequency and PVAC catheters in swine is associated with microbubble and microembolus production. Avoiding overlap of electrodes 1 and 10 on PVAC should reduce the microembolic burden associated with this procedure.

  5. GIANT Hα NEBULA SURROUNDING THE STARBURST MERGER NGC 6240

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Michitoshi; Yagi, Masafumi; Komiyama, Yutaka

    We revealed the detailed structure of a vastly extended Hα-emitting nebula (“Hα nebula”) surrounding the starburst/merging galaxy NGC 6240 by deep narrow-band imaging observations with the Subaru Suprime-Cam. The extent of the nebula is ∼90 kpc in diameter and the total Hα luminosity amounts to L{sub Hα} ≈ 1.6 × 10{sup 42} erg s{sup −1}. The volume filling factor and the mass of the warm ionized gas are ∼10{sup −4}–10{sup −5} and ∼5 × 10{sup 8} M{sub ⊙}, respectively. The nebula has a complicated structure, which includes numerous filaments, loops, bubbles, and knots. We found that there is a tight spatial correlation between the Hαmore » nebula and the extended soft-X-ray-emitting gas, both in large and small scales. The overall morphology of the nebula is dominated by filamentary structures radially extending from the center of the galaxy. A large-scale bipolar bubble extends along the minor axis of the main stellar disk. The morphology strongly suggests that the nebula was formed by intense outflows—superwinds—driven by starbursts. We also found three bright knots embedded in a looped filament of ionized gas that show head-tail morphologies in both emission-line and continuum, suggesting close interactions between the outflows and star-forming regions. Based on the morphology and surface brightness distribution of the Hα nebula, we propose the scenario that three major episodes of starburst/superwind activities, which were initiated ∼10{sup 2} Myr ago, formed the extended ionized gas nebula of NGC 6240.« less

  6. Seismic Tremors and Three-Dimensional Magma Wagging

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Bercovici, D.

    2015-12-01

    Seismic tremor is a feature shared by many silicic volcanoes and is a precursor of volcanic eruption. Many of the characteristics of tremors, including their frequency band from 0.5 Hz to 7 Hz, are common for volcanoes with very different geophysical and geochemical properties. The ubiquitous characteristics of tremor imply that it results from some generation mechanism that is common to all volcanoes, instead of being unique to each volcano. Here we present new analysis on the magma-wagging mechanism that has been proposed to generate tremor. The model is based on the suggestion given by previous work (Jellinek & Bercovici 2011; Bercovici et.al. 2013) that the magma column is surrounded by a compressible, bubble-rich foam annulus while rising inside the volcanic conduit, and that the lateral oscillation of the magma inside the annulus causes observable tremor. Unlike the previous two-dimensional wagging model where the displacement of the magma column is restricted to one vertical plane, the three-dimensional model we employ allows the magma column to bend in different directions and has angular motion as well. Our preliminary results show that, without damping from viscous deformation of the magma column, the system retains angular momentum and develops elliptical motion (i.e., the horizontal displacement traces an ellipse). In this ''inviscid'' limit, the magma column can also develop instabilities with higher frequencies than what is found in the original two-dimensional model. Lateral motion can also be out of phase for various depths in the magma column leading to a coiled wagging motion. For the viscous-magma model, we predict a similar damping rate for the uncoiled magma column as in the two-dimensional model, and faster damping for the coiled magma column. The higher damping thus requires the existence of a forcing mechanism to sustain the oscillation, for example the gas-driven Bernoulli effect proposed by Bercovici et al (2013). Finally, using our new 3-D model, the spectrum of displacement and unsynchronized cross-correlation between displacements measured from different locations can be calculated, and this can be compared to more detailed seismic measurements on well monitored volcanoes.

  7. US Atlantic Margin Methane Plumes Identified From Water Column Backscatter Data Acquired by NOAA Ship Okeanos Explorer

    NASA Astrophysics Data System (ADS)

    Kodis, M.; Skarke, A. D.; Ruppel, C. D.; Weber, T.; Lobecker, E.; Malik, M.

    2013-12-01

    The NOAA Office of Ocean Exploration and Research routinely uses NOAA Ship Okeanos Explorer to collect EM302 (30 kHz) multibeam bathymetric data and water column backscatter imagery. These backscatter data have been used to identify gas plumes associated with seafloor methane seeps as part of previous investigations in the Gulf of Mexico and at Blake Ridge. Here, we use QPS Fledermaus Midwater software to analyze over 200,000 km2 of multibeam data acquired on the continental slope and outer shelf of the US Atlantic margin in 2011, 2012, and 2013. Preliminary application of this analytical methodology in late 2012 revealed the first deepwater (> 1000 m water depth) cold seeps found on the US Atlantic margin north of Cape Hatteras as well as 47 new upper slope seeps (http://www.noaanews.noaa.gov/stories2012/20121219_gas_seeps.html). In this new analysis, we identify over 500 water column backscatter anomalies (WCA) originating at the seafloor and extending to various heights in the water column between Cape Hatteras and the Nantucket margin. Data set quality control was achieved through secondary independent analysis of all WCA backscatter records by a highly experienced researcher who assigned a quality factor to each anomaly. Additionally, a subset of the data was analyzed using a Matlab code designed to automatically detect WCA in backscatter data. These quality-control and WCA comparison procedures provide confidence that several hundred of the WCA are robust picks. The observed WCA are structurally consistent with previously confirmed gas bubble plumes, being vertically elongate, rooted at the seafloor, and deflected by currents. They are not structurally consistent with other common WCA such as schooling or swarming organisms. Additionally, the bases of selected WCA that were identified in this analysis have recently been visually and acoustically confirmed to be associated with emission of gas bubbles from the seafloor by the NOAA remotely operated vehicle Deep Discoverer. The physical characteristics and location of the WCA suggest that they are likely methane plumes, although this has yet to be confirmed by direct gas sampling. The WCA occur both in isolation and in clusters, and repeated observation of select seep fields indicated intermittent WCA identifications that could not be explained by uncertainties in the spatial resolution of the data. Thus, some of the WCA appear to exhibit ephemerality on time scales of hours to days. This research was undertaken while the lead author was a NOAA Hollings Scholar intern with the NOAA Office of Ocean Exploration and Research.

  8. News from the "blowout", a man-made methane pockmark in the North Sea: chemosynthetic communities and microbial methane oxidation

    NASA Astrophysics Data System (ADS)

    Steinle, Lea I.; Wilfert, Philipp; Schmidt, Mark; Bryant, Lee; Haeckel, Matthias; Lehmann, Moritz F.; Linke, Peter; Sommer, Stefan; Treude, Tina; Niemann, Helge

    2013-04-01

    The accidental penetration of a base-Quaternary shallow gas pocket by a drilling rig in 1990 caused a "blowout" in the British sector of the North Sea (57°55.29' N, 01°37.86' E). Large quantities of methane have been seeping out of this man-made pockmark ever since. As the onset of gas seepage is well constrained, this site can be used as a natural laboratory to gain information on the development of methane oxidizing microbial communities at cold seeps. During an expedition with the R/V Celtic Explorer in July and August 2012, we collected sediments by video-guided push-coring with an ROV (Kiel 6000) along a gradient from inside the crater (close to where a jet of methane bubbles enters the water column) outwards. We also sampled the water column in a grid above the blowout at three different depths. In this presentation, we provide evidence for the establishment of methanotrophic communities in the sediment (AOM communities) on a time scale of decades. Furthermore, we will report data on methane concentrations and anaerobic methane oxidation rates in the sediment. Finally, we will also discuss the spatial distribution of methane and aerobic methane oxidation rates in the water column.

  9. Hubble Sees a Star ‘Inflating’ a Giant Bubble

    NASA Image and Video Library

    2017-12-08

    For the 26th birthday of NASA’s Hubble Space Telescope, astronomers are highlighting a Hubble image of an enormous bubble being blown into space by a super-hot, massive star. The Hubble image of the Bubble Nebula, or NGC 7635, was chosen to mark the 26th anniversary of the launch of Hubble into Earth orbit by the STS-31 space shuttle crew on April 24, 1990 “As Hubble makes its 26th revolution around our home star, the sun, we celebrate the event with a spectacular image of a dynamic and exciting interaction of a young star with its environment. The view of the Bubble Nebula, crafted from WFC-3 images, reminds us that Hubble gives us a front row seat to the awe inspiring universe we live in,” said John Grunsfeld, Hubble astronaut and associate administrator of NASA’s Science Mission Directorate at NASA Headquarters, in Washington, D.C. The Bubble Nebula is seven light-years across—about one-and-a-half times the distance from our sun to its nearest stellar neighbor, Alpha Centauri, and resides 7,100 light-years from Earth in the constellation Cassiopeia. The seething star forming this nebula is 45 times more massive than our sun. Gas on the star gets so hot that it escapes away into space as a “stellar wind” moving at over four million miles per hour. This outflow sweeps up the cold, interstellar gas in front of it, forming the outer edge of the bubble much like a snowplow piles up snow in front of it as it moves forward. As the surface of the bubble's shell expands outward, it slams into dense regions of cold gas on one side of the bubble. This asymmetry makes the star appear dramatically off-center from the bubble, with its location in the 10 o’clock position in the Hubble view. Dense pillars of cool hydrogen gas laced with dust appear at the upper left of the picture, and more “fingers” can be seen nearly face-on, behind the translucent bubble. The gases heated to varying temperatures emit different colors: oxygen is hot enough to emit blue light in the bubble near the star, while the cooler pillars are yellow from the combined light of hydrogen and nitrogen. The pillars are similar to the iconic columns in the “Pillars of Creation” Eagle Nebula. As seen with the structures in the Eagle Nebula, the Bubble Nebula pillars are being illuminated by the strong ultraviolet radiation from the brilliant star inside the bubble. The Bubble Nebula was discovered in 1787 by William Herschel, a prominent British astronomer. It is being formed by a proto-typical Wolf-Rayet star, BD +60º2522, an extremely bright, massive, and short-lived star that has lost most of its outer hydrogen and is now fusing helium into heavier elements. The star is about four million years old, and in 10 million to 20 million years, it will likely detonate as a supernova. Hubble’s Wide Field Camera-3 imaged the nebula in visible light with unprecedented clarity in February 2016. The colors correspond to blue for oxygen, green for hydrogen, and red for nitrogen. This information will help astronomers understand the geometry and dynamics of this complex system. The Bubble Nebula is one of only a handful of astronomical objects that have been observed with several different instruments onboard Hubble. Hubble also imaged it with the Wide Field Planetary Camera (WFPC) in September 1992, and with Wide Field Planetary Camera-2 (WFPC2) in April 1999. The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA)

  10. The heart works against gravity

    NASA Technical Reports Server (NTRS)

    Seymour, R. S.; Hargens, A. R.; Pedley, T. J.

    1993-01-01

    The circulatory systems of vertebrate animals are closed, and blood leaves and returns to the heart at the same level. It is often concluded, therefore, that the heart works only against the viscous resistance of the system, not against gravity, even in vascular loops above the heart in which the siphon principle operates. However, we argue that the siphon principle does not assist blood flow in superior vascular loops if any of the descending vasculature is collapsible. If central arterial blood pressure is insufficient to support a blood column between the heart and the head, blood flow ceases because of vascular collapse. Furthermore, the siphon principle does not assist the heart even when a continuous stream of blood is flowing in a superior loop. The potential energy gained by blood as it is pumped to the head is lost to friction in partially collapsed descending vessels and thus is not regained. Application of the Poiseuille equation to flow in collapsible vessels is limited; resistance depends on flow rate in partially collapsed vessels with no transmural pressure difference, but flow rate is independent of resistance. Thus the pressure developed by the heart to establish a given flow rate is independent of the resistance occurring in the partially collapsed vessels. The pressure depends only on the height of the blood column and the resistance in the noncollapsed parts of the system. Simple laboratory models, involving water flow in collapsible tubing, dispel the idea that the siphon principle facilitates blood flow and suggest that previously published results may have been affected by experimental artifact.

  11. ADVANCED CUTTINGS TRANSPORT STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefan Miska; Nicholas Takach; Kaveh Ashenayi

    2004-07-31

    We have tested the loop elevation system. We raised the mast to approximately 25 to 30 degrees from horizontal. All went well. However, while lowering the mast, it moved laterally a couple of degrees. Upon visual inspection, severe spalling of the concrete on the face of the support pillar, and deformation of the steel support structure was observed. At this time, the facility is ready for testing in the horizontal position. A new air compressor has been received and set in place for the ACTS test loop. A new laboratory has been built near the ACTS test loop Roughened cupsmore » and rotors for the viscometer (RS300) were obtained. Rheologies of aqueous foams were measured using three different cup-rotor assemblies that have different surface roughness. The relationship between surface roughness and foam rheology was investigated. Re-calibration of nuclear densitometers has been finished. The re-calibration was also performed with 1% surfactant foam. A new cuttings injection system was installed at the bottom of the injection tower. It replaced the previous injection auger. A mechanistic model for cuttings transport with aerated mud has been developed. Cuttings transport mechanisms with aerated water at various conditions were experimentally investigated. A total of 39 tests were performed. Comparisons between the model predictions and experimental measurements show a satisfactory agreement. Results from the ultrasonic monitoring system indicated that we could distinguish between different sand levels. We also have devised ways to achieve consistency of performance by securing the sensors in the caps in exactly the same manner as long as the sensors are not removed from the caps. A preliminary test was conducted on the main flow loop at 100 gpm flow rate and 20 lb/min cuttings injection rate. The measured bed thickness using the ultrasonic method showed a satisfactory agreement with nuclear densitometer readings. Thirty different data points were collected after the test section was put into liquid holdup mode. Readings indicated 2.5 to 2.7 inches of sand. The corresponding nuclear densitometers readings were between 2.5 and 3.1 inches. Lab tests were conducted to check an on-line viewing system. Sharp images were obtained through a CCD camera with the use of a ring light or fiber light. A prototype device for measuring the average bubble size for the foam generator-viscometer was constructed from a 1/2 inch fitting. The new windowed cell has been received and installed on the ACTF Bubble Characterization Cart.« less

  12. HPLC/EC (High Pressure Liquid Chromatography/Electrochemical Detection) Studies of Selected Explosive Components, Nitroanilines, and Nitrophenols with Dual Electrode Electrochemical Detection.

    DTIC Science & Technology

    1985-09-01

    advantage of HPLC/EC for the separation and detection of electroactive species is well documented in the literature (1-5). It has been demonstrated that...Zorbax, Alltech Spherisorb or BAS Biophase columns. The injection valve was a Rheodyne Model 7120 fitted with a 20 pL loop and mounted vertically for

  13. A small-scale plasmoid formed during the May 13, 1985, AMPTE magnetotail barium release

    NASA Technical Reports Server (NTRS)

    Baker, D. N.; Fritz, T. A.; Bernhardt, P. A.

    1989-01-01

    Plasmoids are closed magnetic-loop structures with entrained hot plasma which are inferred to occur on large spatial scales in space plasma systems. A model is proposed here to explain the brightening and rapid tailward movement of the barium cloud released by the AMPTE IRM spacecraft on May 13, 1985. The model suggests that a small-scale plasmoid was formed due to a predicted development of heavy-ion-induced tearing in the thinned near-tail plasma sheet. Thus, a plasmoid may actually have been imaged due to the emissions of the entrained plasma ions within the plasma bubble.

  14. Feedback by massive stars and the emergence of superbubbles. I. Energy efficiency and Vishniac instabilities

    NASA Astrophysics Data System (ADS)

    Krause, M.; Fierlinger, K.; Diehl, R.; Burkert, A.; Voss, R.; Ziegler, U.

    2013-02-01

    Context. Massive stars influence their environment through stellar winds, ionising radiation, and supernova explosions. This is signified by observed interstellar bubbles. Such feedback is an important factor for galaxy evolution theory and galactic wind models. The efficiency of the energy injection into the interstellar medium (ISM) via bubbles and superbubbles is uncertain, and is usually treated as a free parameter for galaxy scale effects. In particular, since many stars are born in groups, it is interesting to study the dependence of the effective energy injection on the concentration of the stars. Aims: We aim to reproduce observations of superbubbles, their relation to the energy injection of the parent stars, and to understand their effective energy input into the ISM, as a function of the spatial configuration of the group of parent stars. Methods: We study the evolution of isolated and merging interstellar bubbles of three stars (25, 32, and 60 M⊙) in a homogeneous background medium with a density of 10mp cm-3 via 3D-hydrodynamic simulations with standard ISM thermodynamics (optically thin radiative cooling and photo-electric heating) and time-dependent energy and mass input according to stellar evolutionary tracks. We vary the position of the three stars relative to each other to compare the energy response for cases of isolated, merging and initially cospatial bubbles. Results: Mainly due to the Vishniac instability, our simulated bubbles develop thick shells and filamentary internal structures in column density. The shell widths reach tens of per cent of the outer bubble radius, which compares favourably to observations. More energy is retained in the ISM for more closely packed groups, by up to a factor of three and typically a factor of two for intermediate times after the first supernova. Once the superbubble is established, different positions of the contained stars make only a minor difference to the energy tracks. For our case of three massive stars, the energy deposition varies only very little for distances up to about 30 pc between the stars. Energy injected by supernovae is entirely dissipated in a superbubble on a timescale of about 1 Myr, which increases slightly with the superbubble size at the time of the explosion. Conclusions: The Vishniac instability may be responsible for the broadening of the shells of interstellar bubbles. Massive star winds are significant energetically due to their - in the long run - more efficient, steady energy injection and because they evacuate the space around the massive stars. For larger scale simulations, the feedback effect of close groups of stars or clusters may be subsumed into one effective energy input with insignificant loss of energy accuracy. The movie associated to Fig. 3 is available at http://www.aanda.org

  15. Cultivation of E. coli in single- and ten-stage tower-loop reactors.

    PubMed

    Adler, I; Schügerl, K

    1983-02-01

    E. Coli was cultivated in batch and continuous operations in the presence of an antifoam agent in stirred-tank and in single- and ten-stage airlift tower reactors with an outer loop. The maximum specific growth rate, mu(m), the substrate yield coefficient, Y(x/s), the respiratory quotient, RQ, substrate conversion, U(s), the volumetric mass transfer coefficient, K(L)a, the specific interfacial area, a, and the specific power input, P/V(L), were measured and compared. If a medium is used with a concentration of complex substrates (extracts) 2.5 times higher than that of glucose, a spectrum of C sources is available and cell regulation influences reactor performance. Both mu(m) and Y(X/S), which were evaluated in batch reactors, cannot be used for continuous reactors or, when measured in stirred-tank reactors, cannot be employed for tower-loop reactors: mu(m) is higher in the stirred-tank batch than in the tower-loop batch reactor, mu(m) and Y(x/s) are higher in the continuous reactor than in the batch single-stage tower-loop reactor. The performance of the single-stage is better than that of the ten-stage reactor due to the inefficient trays employed. A reduction of the medium recirculation rate reduces OTR, U(s), Pr, and Y(X/S) and causes cell sedimentation and flocculation. The volumetric mass transfer coefficient is reduced with increasing cultivation time; the Sauter bubble diameter, d(s), remains constant and does not depend on operational conditions. An increase in the medium recirculation rate reduces k(L)a. The specific power input, P/V(L), for the single-stage tower loop is much lower with the same k(L)a value than for a stirred tank. The relationship k(L)a vs. P/V(L) evaluated for model media in stirred tanks, can also be used for cultivations in these reactors.

  16. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    NASA Astrophysics Data System (ADS)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non-edible lipids by use of the SMV reactor has not been examined yet. Therefore, this study aims to investigate the productivity of biodiesel produced from waste vegetable oils using the SMV reactor. Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is generally produced as a FAME derived from vegetable oil by using alkaline catalyzed alcoholysis process. This alkaline method requires deacidification process prior to the reaction process and the alkaline catalyst removal process after the reaction. Those process increases the total cost of biodiesel fuel production. In order to solve the problems in the conventional alkaline catalyzed alcoholysis process, the authors proposed a non-catalytic alcoholysis process called the Superheated Methanol Vapor (SMV) method with bubble column reactor. So, this study aims to investigate the productivity of biodiesel produced from vegetable oils and other lipids using the SMV method with bubble column reactor.

  17. Multivariable model predictive control design of reactive distillation column for Dimethyl Ether production

    NASA Astrophysics Data System (ADS)

    Wahid, A.; Putra, I. G. E. P.

    2018-03-01

    Dimethyl ether (DME) as an alternative clean energy has attracted a growing attention in the recent years. DME production via reactive distillation has potential for capital cost and energy requirement savings. However, combination of reaction and distillation on a single column makes reactive distillation process a very complex multivariable system with high non-linearity of process and strong interaction between process variables. This study investigates a multivariable model predictive control (MPC) based on two-point temperature control strategy for the DME reactive distillation column to maintain the purities of both product streams. The process model is estimated by a first order plus dead time model. The DME and water purity is maintained by controlling a stage temperature in rectifying and stripping section, respectively. The result shows that the model predictive controller performed faster responses compared to conventional PI controller that are showed by the smaller ISE values. In addition, the MPC controller is able to handle the loop interactions well.

  18. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  19. Diagnostics of electron-heated solar flare models. III - Effects of tapered loop geometry and preheating

    NASA Technical Reports Server (NTRS)

    Emslie, A. G.; Li, Peng; Mariska, John T.

    1992-01-01

    A series of hydrodynamic numerical simulations of nonthermal electron-heated solar flare atmospheres and their corresponding soft X-ray Ca XIX emission-line profiles, under the conditions of tapered flare loop geometry and/or a preheated atmosphere, is presented. The degree of tapering is parameterized by the magnetic mirror ratio, while the preheated atmosphere is parameterized by the initial upper chromospheric pressure. In a tapered flare loop, it is found that the upward motion of evaporated material is faster compared with the case where the flare loop is uniform. This is due to the diverging nozzle seen by the upflowing material. In the case where the flare atmosphere is preheated and the flare geometry is uniform, the response of the atmosphere to the electron collisional heating is slow. The upward velocity of the hydrodynamic gas is reduced due not only to the large coronal column depth, but also to the increased inertia of the overlying material. It is concluded that the only possible electron-heated scenario in which the predicted Ca XIX line profiles agree with the BCS observations is when the impulsive flare starts in a preheated dense corona.

  20. In vivo dynamic analysis of water refilling in embolized xylem vessels of intact Zea mays leaves

    PubMed Central

    Ryu, Jeongeun; Hwang, Bae Geun; Lee, Sang Joon

    2016-01-01

    Background and Aims The refilling of embolized xylem vessels under tension is a major issue in water transport among vascular plants. However, xylem embolism and refilling remain poorly understood because of technical limitations. Direct observation of embolism repair in intact plants is essential to understand the biophysical aspects of water refilling in embolized xylem vessels. This paper reports on details of the water refilling process in leaves of the intact herbaceous monocot plant Zea mays and its refilling kinetics obtained by a direct visualization technique. Methods A synchrotron X-ray micro-imaging technique was used to monitor water refilling in embolized xylem vessels of intact maize leaves. Xylem embolism was artificially induced by using a glass capillary; real-time images of water refilling dynamics were consecutively captured at a frame rate of 50 f.p.s. Key Results Water supply in the radial direction initiates droplet formation on the wall of embolized xylem vessels. Each droplet grows into a water column; this phenomenon shows translation motion or continuous increase in water column volume. In some instances, water columns merge and form one large water column. Water refilling in the radial direction causes rapid recovery from embolism in several minutes. The average water refilling velocity is approx. 1 μm s−1. Conclusions Non-destructive visualization of embolized xylem vessels demonstrates rapid water refilling and gas bubble removal as key elements of embolism repair in a herbaceous monocot species. The refilling kinetics provides new insights into the dynamic mechanism of water refilling phenomena. PMID:27539601

  1. Vapor segregation and loss in basaltic melts

    USGS Publications Warehouse

    Edmonds, M.; Gerlach, T.M.

    2007-01-01

    Measurements of volcanic gases at Pu'u'O??'o??, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: 1 persistent continuous gas emission, 2 gas piston events, and 3 lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u'O??'o??. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The Large gas bubbles are H2O rich and are generated by open-system degassing at depths of <150 m. Static gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone. ?? 2007 The Geological Society of America.

  2. HIGH-MASS STAR FORMATION TOWARD SOUTHERN INFRARED BUBBLE S10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Swagat Ranjan; Tej, Anandmayee; Vig, Sarita

    2016-11-01

    An investigation in radio and infrared wavelengths of two high-mass star-forming regions toward the southern Galactic bubble S10 is presented here. The two regions under study are associated with the broken bubble S10 and Extended Green Object, G345.99-0.02, respectively. Radio continuum emission mapped at 610 and 1280 MHz using the Giant Metrewave Radio Telescope, India, is detected toward both of the regions. These regions are estimated to be ionized by early-B- to late-O-type stars. Spitzer GLIMPSE mid-infrared data is used to identify young stellar objects (YSOs) associated with these regions. A Class-I/II-type source, with an estimated mass of 6.2  M {submore » ⊙}, lies ∼7″ from the radio peak. Pixel-wise, modified blackbody fits to the thermal dust emission using Herschel far-infrared data is performed to construct dust temperature and column density maps. Eight clumps are detected in the two regions using the 250 μ m image. The masses and linear diameter of these range between ∼300–1600  M {sub ⊙} and 0.2–1.1 pc, respectively, which qualifies them as high-mass star-forming clumps. Modeling of the spectral energy distribution of these clumps indicates the presence of high luminosity, high accretion rate, massive YSOs possibly in the accelerating accretion phase. Furthermore, based on the radio and MIR morphology, the occurrence of a possible bow wave toward the likely ionizing star is explored.« less

  3. The X-ray Emitting Components towards l = 111 deg: The Local Hot Bubble and Beyond

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2006-01-01

    We have obtained an XMM-Newton spectrum of the diffuse X-ray emission towards (l, b) = (111.14,1.11), a line of sight with a relatively simple distribution of absorbing clouds; > 9 x 10(exp 19)/sq cm at R>170 pc, a 6 x 10(exp 21)/sq cm molecular cloud at 2.5-3.3 kpc, and a total column of 1.2 x 10(exp 22)/sq cm. We find that the analysis of the XMM-Newton spectrum in conjunction with the RASS spectral energy distribution for the same direction requires three thermal components to be well fit: a "standard" Local Hot Bubble component with kT = 0.089, a component beyond the molecular cloud with kT = 0.59, and a component before the molecular cloud with kT = 0.21. The strength of the O VII 0.56 keV line from the Local Hot Bubble, 2.1+/-0.7 photons/sq cm/s/sr, is consistent with other recent measures. The 0.21 keV component has an emission measure of 0.0022+/-0.0006 pc and is not localized save as diffuse emission within the Galactic plane; it is the best candidate for a pervasive hot medium. The spatial separation of the approx. 0.2 keV component from the approx. 0.6 keV component suggests that the spectral decompositions of the emission from late-type spiral disks found in the literature do represent real temperature components rather than reflecting more complex temperature distributions.

  4. Tidally controlled gas bubble emissions: A comprehensive study using long-term monitoring data from the NEPTUNE cabled observatory offshore Vancouver Island

    NASA Astrophysics Data System (ADS)

    Römer, Miriam; Riedel, Michael; Scherwath, Martin; Heesemann, Martin; Spence, George D.

    2016-09-01

    Long-term monitoring over 1 year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant subsurface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans.

  5. Vapor segregation and loss in basaltic melts

    NASA Astrophysics Data System (ADS)

    Edmonds, Marie; Gerlach, Terrence M.

    2007-08-01

    Measurements of volcanic gases at Pu'u‘Ō’ō, Kilauea Volcano, Hawai'i, reveal distinct degassing regimes with respect to vapor segregation and loss during effusive activity in 2004-2005. Three styles of vapor loss are distinguished by the chemical character of the emitted volcanic gases, measured by open path Fourier transform infrared spectroscopy: (1) persistent continuous gas emission, (2) gas piston events, and (3) lava spattering. Persistent continuous gas emission is associated with magma ascent and degassing beneath the crater vents, then eruption of the degassed magma from flank vents. Gas piston events are the result of static gas accumulation at depths of 400-900 m beneath Pu'u‘Ō’ō. A CO2-rich gas slug travels up the conduit at a few meters per second, displacing magma as it expands. Lava spattering occurs due to dynamic bubble coalescence in a column of relatively stagnant magma. The large gas bubbles are H2O rich and are generated by open-system degassing at depths of <150 m. Static gas accumulation and dynamic bubble coalescence are both manifestations of vapor segregation in basaltic melts, but their implications differ. Accumulation and segregation of CO2-rich vapor at depth does not deplete the melt of H2O (required to drive lava fountains near to the surface) and therefore gas piston events can occur interspersed with lava fountaining activity. Lava spattering, however, efficiently strips H2O-rich vapor from magma beneath the crater vents; the magma must then erupt effusively from vents on the flank of the cone.

  6. Scale translation from shaken to diffused bubble aerated systems for lycopene production by Blakeslea trispora under stimulated conditions.

    PubMed

    Mantzouridou, Fani Th; Naziri, Eleni

    2017-03-01

    This study deals with the scale up of Blakeslea trispora culture from the successful surface-aerated shake flasks to dispersed-bubble aerated column reactor for lycopene production in the presence of lycopene cyclase inhibitor 2-methyl imidazole. Controlling the initial volumetric oxygen mass transfer coefficient (k L a) via airflow rate contributes to increasing cell mass and lycopene accumulation. Inhibitor effectiveness seems to decrease in conditions of high cell mass. Optimization of crude soybean oil (CSO), airflow rate, and 2-methyl imidazole was arranged according to central composite statistical design. The optimized levels of factors were 110.5 g/L, 2.3 vvm, and 29.5 mg/L, respectively. At this optimum setting, maximum lycopene yield (256 mg/L) was comparable or even higher to those reported in shake flasks and stirred tank reactor. 2-Methyl imidazole use at levels significantly lower than those reported for other inhibitors in the literature was successful in terms of process selectivity. CSO provides economic benefits to the process through its ability to stimulate lycopene synthesis, as an inexpensive carbon source and oxygen vector at the same time.

  7. CLOSED-LOOP STRIPPING ANALYSIS (CLSA) OF ...

    EPA Pesticide Factsheets

    Synthetic musk compounds are used as inexpensive fragrance materials for the production of perfumes and as additives to soap, detergent, and shampoo. They have been found in surface water, fish tissues, and human breast milk. The ubiquity of this class of compounds in the environment is attributable to high use and release into the environment. Current techniques for separating these compounds from fish tissues require tedious sample clean-up procedures. To obtain fat-free extracts, gel permeation chromatography (GPC), column chromatography using alumina, and silica gel, and thin layer chromatography (TLC clean-up procedures are frequently employed. Despite the considerable effort and resources devoted to these processes, a fraction of the lipids and lipid-like compounds frequently remains in the extracts. These low-level lipids foul injection liners, contaminate columns, and yield elevated baselines during gas chromatographic analysis of synthetic musk compounds. In this study, a simple method for the determination of synthetic musk compounds in fish tissues has been developed. Closed-loop stripping of saponified fish tissues in a I -L Wheaton purge- and-trap vessel, is used to strip compounds with high vapor pressures such as synthetic musks from the matrix onto a solid sorbent (Abselut Nexus). This technique is useful for screening biological tissues that contain lipids for musk compounds. Analytes are desorbed from the sorbent trap sequentially with polar an

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D.B.

    This paper reports on experiments to examine gas migration rates in drilling muds that were performed in a 15-m-long, 200-mm-ID inclinable flow loop where air injection simulates gas entry during a kick. These tests were conducted using a xanthum gum (a common polymer used in drilling fluids) solution to simulate drilling muds as the liquid phase and air as the gas phase. This work represents a significant extension of existing correlations for gas/liquid flows in large pipe diameters with non- Newtonian fluids. Bubbles rise faster in drilling muds than in water despite the increased viscosity. This surprising result is causedmore » by the change in the flow regime, with large slug-type bubbles forming at lower void fractions. The gas velocity is independent of void fraction, thus simplifying flow modeling. Results show that a gas influx will rise faster in a well than previously believed. This has major implications for kick simulation, with gas arriving at the surface earlier than would be expected and the gas outflow rate being higher than would have been predicted. A model of the two-phase gas flow in drilling mud, including the results of this work, has been incorporated into the joint Schlumberger Cambridge Research (SCR)/BP Intl. kick model.« less

  9. Cyclotron maser and plasma wave growth in magnetic loops

    NASA Technical Reports Server (NTRS)

    Hamilton, Russell J.; Petrosian, Vahe

    1990-01-01

    Cyclotron maser and plasma wave growth which results from electrons accelerated in magnetic loops are studied. The evolution of the accelerated electron distribution is determined by solving the kinetic equation including Coulomb collisions and magnetic convergence. It is found that for modest values of the column depth of the loop the growth rates of instabilities are significantly reduced and that the reduction is much larger for the cyclotron modes than for the plasma wave modes. The large decrease in the growth rate with column depth suggests that solar coronal densities must be much lower than commonly accepted in order for the cyclotron maser to operate. The density depletion has to be similar to that which occurs during auroral kilometric radiation events in the magnetosphere. The resulting distributions are much more complicated than the idealized distributions used in many theoretical studies, but the fastest growing mode can still simply be determined by the ratio of electron plasma to gyrofrequency, U=omega(sub p)/Omega(sub e). However, the dominant modes are different than for the idealized situations with growth of the z-mode largest for U approximately less than 0.5, and second harmonic x-mode (s=2) or fundamental o-mode (s=1) the dominant modes for 0.5 approximately less than U approximately less than 1. The electron distributions typically contain more than one inverted feature which could give rise to wave growth. It is shown that this can result in simultaneous amplification of more than one mode with each mode driven by a different feature and can be observed, for example, by differences in the rise times of the right and left circularly polarized components of the associated spike bursts.

  10. Modified sedimentation-dispersion model for solids in a three-phase slurry column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, D.N.; Ruether, J.A.; Shah, Y.T.

    1986-03-01

    Solids distribution data for a three-phase, batch-fluidized slurry bubble column (SBC) are presented, using air as the gas phase, pure liquids and solutions as the liquid phase, and glass beads and carborundum catalyst powder as the solid phase. Solids distribution data for the three-phase SBC operated in a continuous mode of operation are also presented, using nitrogen as the gas phase, water as the liquid phase, and glass beads as the solid phase. A new model to provide a reasonable approach to predict solids concentration distributions for systems containing polydispersed solids is presented. The model is a modification of standardmore » sedimentation-dispersion model published earlier. Empirical correlations for prediction of hindered settling velocity and solids dispersion coefficient for systems containing polydispersed solids are presented. A new method of evaluating critical gas velocity (CGV) from concentrations of the sample withdrawn at the same port of the SBC is presented. Also presented is a new mapping for CGV which separates the two regimes in the SBC, namely, incomplete fluidization and complete fluidization.« less

  11. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    USGS Publications Warehouse

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  12. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    NASA Astrophysics Data System (ADS)

    Weinstein, Alexander; Navarrete, Luis; Ruppel, Carolyn; Weber, Thomas C.; Leonte, Mihai; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Scranton, Mary I.; Kessler, John D.

    2016-10-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern U.S. Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6-24 kmol methane per day). These analyses suggest that the emitted methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH.

  13. Excitatory neuronal connectivity in the barrel cortex

    PubMed Central

    Feldmeyer, Dirk

    2012-01-01

    Neocortical areas are believed to be organized into vertical modules, the cortical columns, and the horizontal layers 1–6. In the somatosensory barrel cortex these columns are defined by the readily discernible barrel structure in layer 4. Information processing in the neocortex occurs along vertical and horizontal axes, thereby linking individual barrel-related columns via axons running through the different cortical layers of the barrel cortex. Long-range signaling occurs within the neocortical layers but also through axons projecting through the white matter to other neocortical areas and subcortical brain regions. Because of the ease of identification of barrel-related columns, the rodent barrel cortex has become a prototypical system to study the interactions between different neuronal connections within a sensory cortical area and between this area and other cortical as well subcortical regions. Such interactions will be discussed specifically for the feed-forward and feedback loops between the somatosensory and the somatomotor cortices as well as the different thalamic nuclei. In addition, recent advances concerning the morphological characteristics of excitatory neurons and their impact on the synaptic connectivity patterns and signaling properties of neuronal microcircuits in the whisker-related somatosensory cortex will be reviewed. In this context, their relationship between the structural properties of barrel-related columns and their function as a module in vertical synaptic signaling in the whisker-related cortical areas will be discussed. PMID:22798946

  14. Integrands for QCD rational terms and {N} = {4} SYM from massive CSW rules

    NASA Astrophysics Data System (ADS)

    Elvang, Henriette; Freedman, Daniel Z.; Kiermaier, Michael

    2012-06-01

    We use massive CSW rules to derive explicit compact expressions for integrands of rational terms in QCD with any number of external legs. Specifically, we present all- n integrands for the one-loop all-plus and one-minus gluon amplitudes in QCD. We extract the finite part of spurious external-bubble contributions systematically; this is crucial for the application of integrand-level CSW rules in theories without supersymmetry. Our approach yields integrands that are independent of the choice of CSW reference spinor even before integration. Furthermore, we present a recursive derivation of the recently proposed massive CSW-style vertex expansion for massive tree amplitudes and loop integrands on the Coulomb-branch of {N} = {4} SYM. The derivation requires a careful study of boundary terms in all-line shift recursion relations, and provides a rigorous (albeit indirect) proof of the recently proposed construction of massive amplitudes from soft-limits of massless on-shell amplitudes. We show that the massive vertex expansion manifestly preserves all holomorphic and half of the anti-holomorphic supercharges, diagram-by-diagram, even off-shell.

  15. Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation

    NASA Astrophysics Data System (ADS)

    Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.

    2002-12-01

    The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.

  16. A revisit of the role of gas entrapment on the stability conditions of explosive volcanic columns

    NASA Astrophysics Data System (ADS)

    Michaud-Dubuy, Audrey; Carazzo, Guillaume; Kaminski, Edouard; Girault, Frédéric

    2018-05-01

    Explosive volcanic eruptions produce high-velocity turbulent jets that can form either a stable buoyant Plinian column or a collapsing fountain producing pyroclastic density currents (PDC). Determining the source conditions leading to these extreme regimes is a major goal in physical volcanology. Classically, the regime boundary is defined as the critical eruptive mass discharge rate (MDR) before collapse for a given amount of free gas in the eruptive mixture (free gas + pyroclasts) at the vent. Previous studies have shown that an agreement between theory and field data can be achieved in two different frameworks: (i) by accounting for the effect of gas entrapment in large pumice fragments, which lowers the effective gas content, depending on the total grain-size distribution (TGSD) of pyroclastic fragments, or (ii) by accounting for the reduction of turbulent entrainment at the base of the volcanic column due to its negative buoyancy. Here, we aim at combining these two using a 1D model of volcanic column that includes sedimentation to follow the evolution of the TGSD. In powerful (≥ 107 kg s-1) Plinian eruptions, the loss of particles by sedimentation acts as to decrease the load of particles during the plume rise, which favors the formation of a stable column. In this case, we obtain that coarse TGSD promote the formation of stable plumes, a result at odds with the predictions of models considering gas entrapment in large pyroclastic fragments. To interpret this conclusion, we reconsider the effect of gas entrapment and show that in general, it has a dominant role on column collapse compared to particle sedimentation, and hinders the formation of buoyant columns. This drastic effect is reduced when incorporating open porosity, e.g. by considering that some bubbles inside a fragment are connected to the exterior. The characteristics of the PDC produced by column collapse are then predicted as a function of the TGSD and MDR at the source. We further test the model using two well-documented historical events, the ≈186 CE Taupo and 79 CE Vesuvius eruptions. Our model predictions are consistent with the Taupo eruption record, but not with the Vesuvius one. In this latter case, we suggest that the characteristics of the TGSD imply to take into account the thermal disequilibrium between gas and pyroclasts.

  17. A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect.

    PubMed

    Degen, J; Uebele, A; Retze, A; Schmid-Staiger, U; Trösch, W

    2001-12-28

    A newly developed flat panel airlift photobioreactor with a defined circulation path was tested for microalgal culture. The bioreactor exposed the cells to intermittent light to improve the efficiency of light utilization through the flashing-light effect. During batch cultures in the new photobioreactor, the biomass productivity of Chlorella vulgaris was 1.7 times greater than in a randomly mixed bubble column of identical dimension. A reduction in light path from 30 to 15 mm increased the biomass productivity by 2.5-fold. A maximum dry biomass productivity of 0.11 g l(-1) h(-1) was obtained at an artificial illumination of 980 mu E m(-2) s(-1).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amitava Sarkar; James K. Neathery; Burtron H. Davis

    A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of ironmore » catalyst particles and the formation of ultra-fine particles.« less

  19. Singlet Delta oxygen generation for chemical oxygen-iodine lasers

    NASA Astrophysics Data System (ADS)

    Georges, E.; Mouthon, A.; Barraud, R.

    To improve the overall efficiency of chemical oxygen-iodine lasers, it is necessary to increase the generator production and yield of singlet delta oxygen at low and high pressure, respectively, for subsonic and supersonic lasers. The water vapor content must also be as low as possible. A generator model based on gas-liquid reaction and liquid-vapor equilibrium theories is presented. From model predictions, operating conditions have been drawn to attain the following experimental results in a bubble-column: by increasing the superficial gas velocity, the production of singlet delta oxygen is largely improved at low pressure; by mixing chlorine with an inert gas before injection in the reactor, this yield is maintained constant up to higher pressure.

  20. Centrifugal Adsorption Cartridge System

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The centrifugal adsorption cartridge system (CACS) is an apparatus that recovers one or more bioproduct(s) from a dilute aqueous solution or suspension flowing from a bioreactor. The CACS can be used both on Earth in unit gravity and in space in low gravity. The CACS can be connected downstream from the bioreactor; alternatively, it can be connected into a flow loop that includes the bioreactor so that the liquid can be recycled. A centrifugal adsorption cartridge in the CACS (see figure) includes two concentric cylinders with a spiral ramp between them. The volume between the inner and outer cylinders, and between the turns of the spiral ramp is packed with an adsorbent material. The inner cylinder is a sieve tube covered with a gas-permeable, hydrophobic membrane. During operation, the liquid effluent from the bioreactor is introduced at one end of the spiral ramp, which then constrains the liquid to flow along the spiral path through the adsorbent material. The spiral ramp also makes the flow more nearly uniform than it would otherwise be, and it minimizes any channeling other than that of the spiral flow itself. The adsorbent material is formulated to selectively capture the bioproduct(s) of interest. The bioproduct(s) can then be stored in bound form in the cartridge or else eluted from the cartridge. The centrifugal effect of the spiral flow is utilized to remove gas bubbles from the liquid. The centrifugal effect forces the bubbles radially inward, toward and through the membrane of the inner cylinder. The gas-permeable, hydrophobic membrane allows the bubbles to enter the inner cylinder while keeping the liquid out. The bubbles that thus enter the cylinder are vented to the atmosphere. The spacing between the ramps determines rate of flow along the spiral, and thereby affects the air-bubble-removal efficiency. The spacing between the ramps also determines the length of the fluid path through the cartridge adsorbent, and thus affects the bioproduct-capture efficiency of the cartridge. Depending on the application, several cartridges could be connected in a serial or parallel flow arrangement. A parallel arrangement can be used to increase product-capturing and flow capacities while maintaining a low pressure drop. A serial arrangement can be used to obtain high product-capturing capacity; alternatively, series-connected cartridges can be packed with different adsorbents to capture different bioproducts simultaneously.

  1. Laboratory formation of non-cementing, methane hydrate-bearing sands

    USGS Publications Warehouse

    Waite, William F.; Bratton, Peter M.; Mason, David H.

    2011-01-01

    Naturally occurring hydrate-bearing sands often behave as though methane hydrate is acting as a load-bearing member of the sediment. Mimicking this behavior in laboratory samples with methane hydrate likely requires forming hydrate from methane dissolved in water. To hasten this formation process, we initially form hydrate in a free-gas-limited system, then form additional hydrate by circulating methane-supersaturated water through the sample. Though the dissolved-phase formation process can theoretically be enhanced by increasing the pore pressure and flow rate and lowering the sample temperature, a more fundamental concern is preventing clogs resulting from inadvertent methane bubble formation in the circulation lines. Clog prevention requires careful temperature control throughout the circulation loop.

  2. Biodegradation of airborne acetone/styrene mixtures in a bubble column reactor.

    PubMed

    Vanek, T; Silva, A; Halecky, M; Paca, J; Ruzickova, I; Kozliak, E; Jones, K

    2017-07-29

    The ability of a bubble column reactor (BCR) to biodegrade a mixture of styrene and acetone vapors was evaluated to determine the factors limiting the process efficiency, with a particular emphasis on the presence of degradation intermediates and oxygen levels. The results obtained under varied loadings and ratios were matched with the dissolved oxygen levels and kinetics of oxygen mass transfer, which was assessed by determination of k L a coefficients. A 1.5-L laboratory-scale BCR was operated under a constant air flow of 1.0 L.min -1 , using a defined mixed microbial population as a biocatalyst. Maximum values of elimination capacities/maximum overall specific degradation rates of 75.5 gC.m -3 .h -1 /0.197 gC.gdw -1 .h -1 , 66.0 gC.m -3 .h -1 /0.059 gC.gdw -1 .h -1 , and 45.8 gC.m -3 .h -1 /0.027 gC.gdw -1 .h -1 were observed for styrene/acetone 2:1, styrene-rich and acetone-rich mixtures, respectively, indicating significant substrate interactions and rate limitation by biological factors. The BCR removed both acetone and styrene near-quantitatively up to a relatively high organic load of 50 g.m -3 .h -1 . From this point, the removal efficiencies declined under increasing loading rates, accompanied by a significant drop in the dissolved oxygen concentration, showing a process transition to oxygen-limited conditions. However, the relatively efficient pollutant removal from air continued, due to significant oxygen mass transfer, up to a threshold loading rate when the accumulation of acetone and degradation intermediates in the aqueous medium became significant. These observations demonstrate that oxygen availability is the limiting factor for efficient pollutant degradation and that accumulation of intermediates may serve as an indicator of oxygen limitation. Microbial (activated sludge) analyses revealed the presence of amoebae and active nematodes that were not affected by variations in operational conditions.

  3. Development of attrition resistant iron-based Fischer-Tropsch catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-09-20

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H{sub 2}) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H{sub 2}/CO ratios. However, a serious problem with use ofmore » Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results a steady loss of catalyst from the reactor. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (1) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts synthesized at Hampton University (2) seek improvements in the catalyst performance through variations in process conditions, pretreatment procedures and/or modifications in catalyst preparation steps and (3) investigate the performance in a slurry reactor. The effort during the reporting period has been devoted to effects of pretreating procedures, using H{sub 2}, CO and syngas (H{sub 2}/CO = 0.67) as reductants, on the performance (activity, selectivity and stability with time) of a precipitated iron catalyst (100Fe/5Cu/4.2K/10SiO{sub 2} on a mass basis ) during F-T synthesis were studied in a fixed-bed reactor.« less

  4. Fluid activity within the North Anatolian Fault Zone according to 3D marine seismic data on the Sea of Marmara Western High

    NASA Astrophysics Data System (ADS)

    Grall, C.; Henry, P.; Thomas, Y.; Marsset, B.; Westbrook, G.; Saritas, H.; Géli, L.; Ruffine, L.; Dupré, S.; Scalabrin, C.; Augustin, J. M.; Cifçi, G.; Zitter, T.

    2012-04-01

    Along the northern branch of the North Anatolian Fault Zone (NAFZ) within the Sea of Marmara, numerous gas seeps occur. A large part of the gas origin is biogenic but on the Western High, gas bubbles and gas hydrate with a thermogenic signature have been sampled. The expulsion of deep fluids opened new perspective about the permeability, the mechanical properties and the monitoring of the NAFZ. Consequently, the Western High was selected for the deployment of a 3D seismic acquisition layout during the MARMESONET cruise (2009). Thirty-three km2 of high resolution seismic data (with a frequency content of 50-180 Hz) have been collected within the shear band of the fault. The SIMRAD EM-302 was also operated to detect acoustic anomalies related to the presence of gas bubbles in the water column. Within the upper sedimentary cover (seismic penetration ranges from 100 to 500 m bsf), high seismic amplitude variations of the reflectors allow to identify gas traps and gas pathways. Local high amplitude of negative polarity, such as flat spots and bright spots, are observed. Amplitude anomalies are located above and within anticlines and along normal faults. They often correlate with seafloor manifestations of fluid outflow and gas plumes in the water column. This suggests that gas migrates from depth towards the seafloor along normal faults and permeable strata, and part of it is trapped in anticlines. North of the NAF, seabed mounds, corresponding to active hydrocarbon gas seeps, are aligned along a NE-SW direction. They are linked in depth to buried mud volcanoes with an episodic activity. The last mud eruption activity apparently just before or during the Red-H1 horizon deposition which is a prominent reflector of high amplitude and negative polarity occurring all over the Sea of Marmara. It has been interpreted as a stratigraphic horizon, corresponding to slow sedimentation and high sea-level interglacial period.

  5. Experiments on the Expansion of a Dense Plasma into a Background Magnetoplasma

    NASA Astrophysics Data System (ADS)

    Gekelman, Walter; Vanzeeland, Mike; Vincena, Steve; Pribyl, Pat

    2003-10-01

    There are many situations, which occur in space (coronal mass ejections, or are man-made (upper atmospheric detonations) as well as the initial stages of a supernovae, in which a dense plasma expands into a background magnetized plasma, that can support Alfvèn waves. The upgraded LArge Plasma Device (LAPD) is a machine, at UCLA, in which Alfvèn wave propagation in homogeneous and inhomogeneous plasmas has been studied. We describe a series of experiments,which involve the expansion of a dense (initially, n_laser-plasma/n_0≫1) laser-produced plasma into an ambient highly magnetized background plasma capable of supporting Alfvèn waves will be presented. The 150 MW laser is pulsed at the same 1 Hz repetition rate as the plasma in a highly reproducible experiment. The interaction results in the production of intense shear Alfvèn waves, as well as large density perturbations. The waves propagate away from the target and are observed to become plasma column resonances. In the initial phase the background magnetic field is expelled from a plasma bubble. Currents in the main body of the plasma are generated to neutralize the positively charged bubble. The current system which results, becomes that of a spectrum of shear Alfvèn waves. Spatial patterns of the wave magnetic fields waves are measured at over 10^4 locations. As the dense plasma expands across the magnetic field it seeds the column with shear waves. Most of the Alfvèn wave energy is in shear waves, which become field line resonances after a machine transit time. The interplay between waves, currents, inductive electric fields and space charge is analyzed in great detail. Dramatic movies of the measured wave fields and their associated currents will be presented. Work supported by ONR, and DOE /NSF.

  6. Twist functions in vertebral column formation in medaka, Oryzias latipes.

    PubMed

    Yasutake, Junichi; Inohaya, Keiji; Kudo, Akira

    2004-07-01

    Medaka twist, a basic helix-loop-helix (bHLH) transcription factor, is expressed in the sclerotome during embryogenesis. We previously established a line of twist-EGFP transgenic medaka, whose EGFP expression is regulated by the twist promoter; therefore, we could observe the behavior of sclerotomal cells in vivo. In the transgenic medaka embryos, EGFP-positive sclerotomal cells migrated dorsally around the notochord and the neural tube, where at a later stage the vertebral column would be formed. This finding strongly suggests that twist-expressing sclerotomal cells participate in vertebral column formation in medaka. To clarify the function of twist gene in the sclerotome, we performed knockdown analysis of twist by using two kinds of morpholino antisense oligonucleotides targeted against twist (MO1 and MO2). Both the MO1 and MO2 morphants exhibited absence of neural arches, which are bilaterally paired, dorsomedially oriented bones on the dorsal aspect of the centrum. In addition, MO2, which blocks translation of only endogenous twist mRNA in the twist-EGFP transgenic medaka, did not affect the migration pattern of EGFP-positive cells, revealing that the migration of sclerotome-derived cells were normal in the absence of twist gene function. These results demonstrate that medaka twist functions in vertebral column formation by regulating the sclerotomal cell differentiation.

  7. Increasing global accessibility and understanding of water column sonar data

    NASA Astrophysics Data System (ADS)

    Wall, C.; Anderson, C.; Mesick, S.; Parsons, A. R.; Boyer, T.; McLean, S. J.

    2016-02-01

    Active acoustic (sonar) technology is of increasing importance for research examining the water column. NOAA uses water column sonar data to map acoustic properties from the ocean surface to the seafloor - from bubbles to biology to bottom. Scientific echosounders aboard fishery survey vessels are used to estimate biomass, measure fish school morphology, and characterize habitat. These surveys produce large volumes of data that are costly and difficult to maintain due to their size, complexity, and proprietary format that require specific software and extensive knowledge. However, through proper management they can deliver valuable information beyond their original collection purpose. In order to maximize the benefit to the public, the data must be easily discoverable and accessible. Access to ancillary data is also needed for complete environmental context and ecosystem assessment. NOAA's National Centers for Environmental Information, in partnership with NOAA's National Marine Fisheries Service and the University of Colorado, created a national archive for the stewardship and distribution of water column sonar data collected on NOAA and academic vessels. A web-based access page allows users to query the metadata and access the raw sonar data. Visualization products being developed allow researchers and the public to understand the quality and content of large volumes of archived data more easily. Such products transform the complex data into a digestible image or graphic and are highly valuable for a broad audience of varying backgrounds. Concurrently collected oceanographic data and bathymetric data are being integrated into the data access web page to provide an ecosystem-wide understanding of the area ensonified. Benefits of the archive include global access to an unprecedented nationwide dataset and the increased potential for researchers to address cross-cutting scientific questions to advance the field of marine ecosystem acoustics.

  8. Magma wagging and whirling in volcanic conduits

    NASA Astrophysics Data System (ADS)

    Liao, Yang; Bercovici, David; Jellinek, Mark

    2018-02-01

    Seismic tremor characterized by 0.5-7 Hz ground oscillations commonly occur before and during eruptions at silicic volcanoes with widely ranging vent geometries and edifice structures. The ubiquitous characteristics of this tremor imply that its causes are potentially common to silicic volcanoes. Here we revisit and extend to three dimensions the magma-wagging model for tremor (Jellinek and Bercovici, 2011; Bercovici et al., 2013), wherein a stiff magma column rising in a vertical conduit oscillates against a surrounding foamy annulus of bubbly magma, giving rise to tremor. While prior studies were restricted to two-dimensional lateral oscillations, here we explore three-dimensional motion and additional modes of oscillations. In the absence of viscous damping, the magma column undergoes 'whirling' motion: the center of each horizontal section of the column traces an elliptical trajectory. In the presence of viscous effect we identify new 'coiling' and 'uncoiling' column bending shapes with relatively higher and comparable rates of dissipation to the original two-dimensional magma wagging model. We also calculate the seismic P-wave response of the crustal material around the volcanic conduit to the new whirling motions and propose seismic diagnostics for different wagging patterns using the time-lag between seismic stations. We test our model by analyzing pre-eruptive seismic data from the 2009 eruption of Redoubt Volcano. In addition to suggesting that the occurrence of elliptical whirling motion more than 1 week before the eruption, our analysis of seismic time-lags also implies that the 2009 eruption was accompanied by qualitative changes in the magma wagging behavior including fluctuations in eccentricity and a reversal in the direction of elliptical whirling motion when the eruption was immediately impending.

  9. Atmospheric fate of oil matter adsorbed on sea salt particles under UV light

    NASA Astrophysics Data System (ADS)

    Vaitilingom, M.; Avij, P.; Huang, H.; Valsaraj, K. T.

    2014-12-01

    The presence of liquid petroleum hydrocarbons at the sea water surface is an important source of marine pollution. An oil spill in sea-water will most likely occur due to an involuntary accident from tankers, offshore platforms, etc. However, a large amount of oil is also deliberately spilled in sea-water during the clean-out process of tank vessels (e.g. for the Mediterranean Sea, 490,000 tons/yr). Moreover, the pollution caused by an oil spill does not only affect the aquatic environment but also is of concern for the atmospheric environment. A portion of the oil matter present at the sea-water surface is transported into the atmosphere viaevaporation and adsorption at the surface of sea spray particles. Few studies are related to the presence of oil matter in airborne particles resulting from their adsorption on sea salt aerosols. We observed that the non-volatile oil matter was adsorbed at the surface of sea-salt crystals (av. size of 1.1 μm). Due to their small size, these particles can have a significant residence time in the atmosphere. The hydrocarbon matter adsorbed at the surface of these particles can also be transformed by catalyzers present in the atmosphere (i.e. UV, OH, O3, ...). In this work, we focused on the photo-oxidation rates of the C16 to C30alkanes present in these particles. We utilized a bubble column reactor, which produced an abundance of small sized bubbles. These bubbles generated droplets upon bursting at the air-salt water interface. These droplets were then further dried up and lifted to the top of the column where they were collected as particles. These particles were incubated in a controlled reactor in either dark conditions or under UV-visible light. The difference of alkane content analyzed by GC-MS between the particles exposed to UV or the particles not exposed to UV indicated that up to 20% in mass was lost after 20 min of light exposure. The degradation kinetics varied for each range of alkanes (C16-20, C21-25, C26-30) from 20 to 60 μg L-1 min-1. To observe the effect on air composition when samples are exposed to solar light, experiments were conducted under controlled atmospheric conditions: oxygen free or with O3 gas. The results showed the importance of the photo-transformation processes of oil in airborne particles and its relation to the gaseous nature of the ambient atmosphere.

  10. Regulating Ultrasound Cavitation in order to Induce Reproducible Sonoporation

    NASA Astrophysics Data System (ADS)

    Mestas, J.-L.; Alberti, L.; El Maalouf, J.; Béra, J.-C.; Gilles, B.

    2010-03-01

    Sonoporation would be linked to cavitation, which generally appears to be a non reproducible and unstationary phenomenon. In order to obtain an acceptable trade-off between cell mortality and transfection, a regulated cavitation generator based on an acoustical cavitation measurement was developed and tested. The medium to be sonicated is placed in a sample tray. This tray is immersed in in degassed water and positioned above the face of a flat ultrasonic transducer (frequency: 445 kHz; intensity range: 0.08-1.09 W/cm2). This technical configuration was admitted to be conducive to standing-wave generation through reflection at the air/medium interface in the well thus enhancing the cavitation phenomenon. Laterally to the transducer, a homemade hydrophone was oriented to receive the acoustical signal from the bubbles. From this spectral signal recorded at intervals of 5 ms, a cavitation index was calculated as the mean of the cavitation spectrum integration in a logarithmic scale, and the excitation power is automatically corrected. The device generates stable and reproducible cavitation level for a wide range of cavitation setpoint from stable cavitation condition up to full-developed inertial cavitation. For the ultrasound intensity range used, the time delay of the response is lower than 200 ms. The cavitation regulation device was evaluated in terms of chemical bubble collapse effect. Hydroxyl radical production was measured on terephthalic acid solutions. In open loop, the results present a great variability whatever the excitation power. On the contrary the closed loop allows a great reproducibility. This device was implemented for study of sonodynamic effect. The regulation provides more reproducible results independent of cell medium and experimental conditions (temperature, pressure). Other applications of this regulated cavitation device concern internalization of different particles (Quantum Dot) molecules (SiRNA) or plasmids (GFP, DsRed) into different types of cells (AT2, RL, LLC…). Preliminary results are presented.

  11. The Structure, Design, and Closed-Loop Motion Control of a Differential Drive Soft Robot.

    PubMed

    Wu, Pang; Jiangbei, Wang; Yanqiong, Fei

    2018-02-01

    This article presents the structure, design, and motion control of an inchworm inspired pneumatic soft robot, which can perform differential movement. This robot mainly consists of two columns of pneumatic multi-airbags (actuators), one sensor, one baseboard, front feet, and rear feet. According to the different inflation time of left and right actuators, the robot can perform both linear and turning movements. The actuators of this robot are composed of multiple airbags, and the design of the airbags is analyzed. To deal with the nonlinear performance of the soft robot, we use radial basis function neural networks to train the turning ability of this robot on three different surfaces and create a mathematical model among coefficient of friction, deflection angle, and inflation time. Then, we establish the closed-loop automatic control model using three-axis electronic compass sensor. Finally, the automatic control model is verified by linear and turning movement experiments. According to the experiment, the robot can finish the linear and turning movements under the closed-loop control system.

  12. Application of the LQG/LTR technique to robust controller synthesis for a large flexible space antenna

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.; Armstrong, E. S.; Sundararajan, N.

    1986-01-01

    The problem of synthesizing a robust controller is considered for a large, flexible space-based antenna by using the linear-quadratic-Gaussian (LQG)/loop transfer recovery (LTR) method. The study is based on a finite-element model of the 122-m hoop/column antenna, which consists of three rigid-body rotational modes and the first 10 elastic modes. A robust compensator design for achieving the required performance bandwidth in the presence of modeling uncertainties is obtained using the LQG/LTR method for loop-shaping in the frequency domain. Different sensor actuator locations are analyzed in terms of the pole/zero locations of the multivariable systems and possible best locations are indicated. The computations are performed by using the LQG design package ORACLS augmented with frequency domain singular value analysis software.

  13. Methane evasion and oxidation in the Big Cypress National Preserve—a low relief carbonate wetland

    NASA Astrophysics Data System (ADS)

    Ward, N. D.; Bianchi, T. S.; Cohen, M. J.; Martin, J. B.; Quintero, C.; Brown, A.; Osborne, T.; Sawakuchi, H. O.

    2016-12-01

    The Big Cypress National Preserve is a low relief carbonate wetland characterized by unique basin patterning known as "cypress domes." Here we examine the concentration and stable isotopic composition of methane in pore waters, surface waters, and bubbles from the sediment across horizontal gradients in four domes during three sampling campaigns. The proportion of methane oxidized in surface waters was estimated based on isotopic differences between surface water and pore waters/bubbles. Rates of methane evasion from surface waters, soils, and cypress knees to the atmosphere were also measured. Surface water CH4 concentrations ranged from 170 to 4,533 ppm with the highest levels generally being observed during wet periods. Pore water CH4 concentrations ranged from 748 to 75,213 ppm. The concentration of methane in bubbles ranged from 6.5 to 71%. The stable isotopic composition of CH4 ranged from -69.2 to -43.8‰ for all samples and was generally more enriched in surface waters compared to bubbles and porewaters, particularly in the two domes that were persistently inundated throughout the year. Based on these isotopic values, the average percentage of surface water CH4 that was oxidized was 37 ± 16% (maximum of 67%) and 19 ± 4% (maximum of 47%) in the two domes that are persistently inundated versus the two domes that are not inundated during the dry season, respectively. The average rate of CH4 evasion was 3.6 ± 1.6 mmol m-2 d-1 via diffusion, 7.6 ± 4.7 mmol m-2 d-1 via ebullition, 10.9 ± 11.4 mmol m-2 d-1­ from soil surfaces, and 34.3 ± 27.4 mmol m-2 d-1 from cypress knees. These results indicate that CH4 is produced in great quantities in inundated sediments, particularly in the center of the cypress domes. Diffusive fluxes from surface waters are suppressed by microbial oxidation in the water column, whereas ebullition from sediments and evasion through cypress knees, and likely other vascular vegetation, are the primary pathways for CH4 outgassing.

  14. Gas-solid fluidized bed reactors: Scale-up, flow regimes identification and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Zaid, Faraj Muftah

    This research studied the scale-up, flow regimes identification and hydrodynamics of fluidized beds using 6-inch and 18- inch diameter columns and different particles. One of the objectives was to advance the scale-up of gas-solid fluidized bed reactors by developing a new mechanistic methodology for hydrodynamic similarity based on matching the radial or diameter profile of gas phase holdup, since gas dynamics dictate the hydrodynamics of these reactors. This has been successfully achieved. However, the literature reported scale-up methodology based on matching selected dimensionless groups was examined and it was found that it was not easy to match the dimensionless groups and hence, there was some deviation in the hydrodynamics of the studied two different fluidized beds. A new technique based on gamma ray densitometry (GRD) was successfully developed and utilized to on-line monitor the implementation of scale-up, to identify the flow regime, and to measure the radial or diameter profiles of gas and solids holdups. CFD has been demonstrated as a valuable tool to enable the implementation of the newly developed scale-up methodology based on finding the conditions that provide similar or closer radial profile or cross sectional distribution of the gas holdup. As gas velocity increases, solids holdup in the center region of the column decreases in the fully developed region of both 6 inch and 18 inch diameter columns. Solids holdup increased with the increase in the particles size and density. Upflowing particles velocity increased with the gas velocity and became steeper at high superficial gas velocity at all axial heights where the center line velocity became higher than that in the wall region. Smaller particles size and lower density gave larger upflowing particles velocity. Minimum fluidization velocity and transition velocity from bubbly to churn turbulent flow regimes were found to be lower in 18 inch diameter column compared to those obtained in 6 inch diameter column. Also the absolute fluctuation of upflowing particles velocity multiplied by solids holdups vś 3ś as one of the terms for solids mass flux estimation was found to be larger in 18-inch diameter column than that in 6-inch diameter column using same particles size and density.

  15. Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation.

    PubMed

    Airs, R L; Temperton, B; Sambles, C; Farnham, G; Skill, S C; Llewellyn, C A

    2014-10-16

    We report production of chlorophyll f and chlorophyll d in the cyanobacterium Chlorogloeopsis fritschii cultured under near-infrared and natural light conditions. C. fritschii produced chlorophyll f and chlorophyll d when cultured under natural light to a high culture density in a 20 L bubble column photobioreactor. In the laboratory, the ratio of chlorophyll f to chlorophyll a changed from 1:15 under near-infrared, to an undetectable level of chlorophyll f under artificial white light. The results provide support that chlorophylls f and d are both red-light inducible chlorophylls in C. fritschii. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  16. The hydrodynamic and ultrasound-induced forces on microbubbles under high Reynolds number flow representative of the human systemic circulation

    NASA Astrophysics Data System (ADS)

    Clark, Alicia; Aliseda, Alberto

    2016-11-01

    Ultrasound contrast agents (UCAs) are micron-sized bubbles that are used in conjunction with ultrasound (US) in medical applications such as thrombolysis and targeted intravenous drug delivery. Previous work has shown that the Bjerknes force, due to the phase difference between the incoming US pressure wave and the bubble volume oscillations, can be used to manipulate the trajectories of microbubbles. Our work explores the behavior of microbubbles in medium sized blood vessels under both uniform and pulsatile flows at a range of physiologically relevant Reynolds and Womersley numbers. High speed images were taken of the microbubbles in an in-vitro flow loop that replicates physiological flow conditions. During the imaging, the microbubbles were insonified at different diagnostic ultrasound settings (varying center frequency, PRF, etc.). An in-house Lagrangian particle tracking code was then used to determine the trajectories of the microbubbles and, thus, a dynamic model for the microbubbles including the Bjerknes forces acting on them, as well as drag, lift, and added mass. Preliminary work has also explored the behavior of the microbubbles in a patient-specific model of a carotid artery bifurcation to demonstrate the feasibility of preferential steering of microbubbles towards the intracranial circulation with US.

  17. Air Entrainment and Surface Ripples in a Turbulent Ship Hull Boundary Layer

    NASA Astrophysics Data System (ADS)

    Masnadi, Naeem; Erinin, Martin; Duncan, James H.

    2017-11-01

    The air entrainment and free-surface fluctuations caused by the interaction of a free surface and the turbulent boundary layer of a vertical surface-piercing plate is studied experimentally. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section. The belt is accelerated suddenly from rest until reaching constant speed in order to create a temporally evolving boundary layer analogous to the spatially evolving boundary layer that would exist along a surface-piercing towed flat plate. Surface ripples are measured using a cinematic laser-induced fluorescence technique with the laser sheet oriented parallel or normal to the belt surface. Air entrainment events and bubble motions are recorded from underneath the water surface using a stereo imaging system. Measurements of small bubbles, that tend to stay submerged for a longer time, are planned via a high-speed digital in-line holographic system. The support of the Office of Naval Research is gratefully acknowledged.

  18. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation.

    PubMed

    Shen, Xin; Zhao, Lin; Ding, Yuanzhao; Liu, Bo; Zeng, Hui; Zhong, Lirong; Li, Xiqing

    2011-02-28

    Foam delivery of remedial amendments for in situ immobilization of deep vadose zone contaminants can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoparticles in unsaturated porous media was investigated. Carboxyl-modified polystyrene latex microspheres were used as surrogates for nanoparticles of remediation purposes. Foams generated from the solutions of six commonly available surfactants all had excellent abilities to carry the microspheres. The presence of the microspheres did not reduce the stabilities of the foams. When microsphere-laden foam was injected through the unsaturated columns, the fractions of microspheres exiting the column were much higher than that when the microsphere water suspensions were injected through the columns. The enhanced microsphere transport implies that foam delivery could significantly increase the radius of influence of injected nanoparticles of remediation purposes. Reduced tension at air-water interfaces by the surfactant and increased driving forces imparted on the microspheres at the interfaces by the flowing foam bubbles may have both contributed to the enhanced transport. Preliminary tests also demonstrated that foam can carry significant fractions of zero valent iron nanoparticles at concentrations relevant to field remediation conditions (up to 5.3 g L(-1)). As such, this study demonstrates that surfactant foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Liquid Acquisition Device Hydrogen Outflow Testing on the Cryogenic Propellant Storage and Transfer Engineering Design Unit

    NASA Technical Reports Server (NTRS)

    Zimmerli, Greg; Statham, Geoff; Garces, Rachel; Cartagena, Will

    2015-01-01

    As part of the NASA Cryogenic Propellant Storage and Transfer (CPST) Engineering Design Unit (EDU) testing with liquid hydrogen, screen-channel liquid acquisition devices (LADs) were tested during liquid hydrogen outflow from the EDU tank. A stainless steel screen mesh (325x2300 Dutch T will weave) was welded to a rectangular cross-section channel to form the basic LAD channel. Three LAD channels were tested, each having unique variations in the basic design. The LADs fed a common outflow sump at the aft end of the 151 cu. ft. volume aluminum tank, and included a curved section along the aft end and a straight section along the barrel section of the tank. Wet-dry sensors were mounted inside the LAD channels to detect when vapor was ingested into the LADs during outflow. The use of warm helium pressurant during liquid hydrogen outflow, supplied through a diffuser at the top of the tank, always led to early breakdown of the liquid column. When the tank was pressurized through an aft diffuser, resulting in cold helium in the ullage, LAD column hold-times as long as 60 minutes were achieved, which was the longest duration tested. The highest liquid column height at breakdown was 58 cm, which is 23 less than the isothermal bubble-point model value of 75 cm. This paper discusses details of the design, construction, operation and analysis of LAD test data from the CPST EDU liquid hydrogen test.

  20. Two-phase flow correlations as applied to pumping well testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabir, C.S.; Hasan, A.R.

    1994-06-01

    In a pumping-well buildup test, computation of bottom-hole pressure (BHP) and flow rate (BHF) requires the use of a two-phase flow correlation for estimating the gas void-fraction or holdup along the pipe length and shut-in time. Various correlations are available to perform this task. The purpose of this work is to review these two-phase correlations and to provide an objective evaluation. This analysis is necessitated by the fact that considerable differences in BHP and BHF may occur -- depending upon the correlation used -- in wells with long pumping liquid columns or those that have high gas/liquid ratio production. Consequently,more » a potential exists for obtaining different reservoir parameters from transient interpretation. Using laboratory data for two-phase flow in annular geometry, relative strengths of these correlations are explored. The authors' own data and those of others (a total of 114 points) are used in this comparative study. For static liquid columns, the correlations of Hasan-Kabir, Gilbert, and Podio et al. provide acceptable agreement with experimental data, exceptions being the Godbey-Dimon and Schmidt et al. correlations. In contrast, for the moving liquid column scenario, as in a buildup test, the Hasan-Kabir model provides the best agreement with the data set used in this work. A basis for smoothing the bubbly/slug transition boundary is given for the Hasan-Kabir method, together with a field example.« less

  1. A Hydrodynamic Characteristic of a Dual Fluidized Bed Gasification

    NASA Astrophysics Data System (ADS)

    Sung, Yeon Kyung; Song, Jae Hun; Bang, Byung Ryeul; Yu, Tae U.; Lee, Uen Do

    A cold model dual fluidized bed (DFB) reactor, consisting of two parallel interconnected bubbling and fast fluidized beds, was designed for developing an auto-thermal biomass gasifier. The combustor of this system burns the rest char of the gasification process and provides heat to the gasifier by circulating solids inventory. To find an optimal mixing and circulation of heavy solid inventory and light biomass and char materials, we investigate two types of DFB reactors which have different configuration of distributor and way-out location of the solid inventory and char materials in the gasifier. To determine appropriate operating conditions, we measured minimum fluidization velocity, solid circulation rate, axial solid holdup and gas bypassing between the lower loop seal and the gasifier.

  2. A functional renormalization method for wave propagation in random media

    NASA Astrophysics Data System (ADS)

    Lamagna, Federico; Calzetta, Esteban

    2017-08-01

    We develop the exact renormalization group approach as a way to evaluate the effective speed of the propagation of a scalar wave in a medium with random inhomogeneities. We use the Martin-Siggia-Rose formalism to translate the problem into a non equilibrium field theory one, and then consider a sequence of models with a progressively lower infrared cutoff; in the limit where the cutoff is removed we recover the problem of interest. As a test of the formalism, we compute the effective dielectric constant of an homogeneous medium interspersed with randomly located, interpenetrating bubbles. A simple approximation to the renormalization group equations turns out to be equivalent to a self-consistent two-loops evaluation of the effective dielectric constant.

  3. Development of a solenoid pumped in situ zinc analyzer for environmental monitoring

    USGS Publications Warehouse

    Chapin, T.P.; Wanty, R.B.

    2005-01-01

    A battery powered submersible chemical analyzer, the Zn-DigiScan (Zn Digital Submersible Chemical Analyzer), has been developed for near real-time, in situ monitoring of zinc in aquatic systems. Microprocessor controlled solenoid pumps propel sample and carrier through an anion exchange column to separate zinc from interferences, add colorimetric reagents, and propel the reaction complex through a simple photometric detector. The Zn-DigiScan is capable of self-calibration with periodic injections of standards and blanks. The detection limit with this approach was 30 ??g L-1. Precision was 5-10% relative standard deviation (R.S.D.) below 100 ??g L-1, improving to 1% R.S.D. at 1000 ??g L-1. The linear range extended from 30 to 3000 ??g L-1. In situ field results were in agreement with samples analyzed by inductively coupled plasma mass spectrometry (ICPMS). This pump technology is quite versatile and colorimetric methods with complex online manipulations such as column reduction, preconcentration, and dilution can be performed with the DigiScan. However, long-term field deployments in shallow high altitude streams were hampered by air bubble formation in the photometric detector. ?? 2005 Elsevier B.V. All rights reserved.

  4. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE PAGES

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.; ...

    2017-09-01

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  5. Scaled-up production of poacic acid, a plant-derived antifungal agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yue, Fengxia; Gao, Ruili; Piotrowski, Jeff S.

    Poacic acid, a decarboxylated product from 8–5-diferulic acid that is commonly found in monocot lignocellulosic hydrolysates, has been identified as a natural antifungal agent against economically significant fungi and oomycete plant pathogens. Starting from commercially available or monocot-derivable ferulic acid, a three-step synthetic procedure has been developed for the production of poacic acid needed for field testing in a controlled agricultural setting. First, ferulic acid was esterified to produce ethyl ferulate in 92% yield. Second, peroxidase-catalyzed free radical dehydrodimerization of ethyl ferulate produced crude diferulates, mainly 8–5-diferulate, in 91% yield. Finally, crystalline poacic acid was obtained in 25% yield viamore » alkaline hydrolysis of the crude diferulates after purification by flash-column chromatography. Thus, this new procedure offers two key improvements relevant to large-scale production: 1) bubbling air through the reaction mixture in the second step to remove acetone greatly improves the recovery efficiency of the crude diferulates; and 2) telescoping minor impurities directly into the alkaline hydrolysis step eliminates the need for additional column purifications, thus reducing the overall cost of production and removing a major impediment to process scale-up.« less

  6. Simultaneous Extraction of Lithium and Hydrogen from Seawater

    DTIC Science & Technology

    2011-08-22

    to the anode and cathode were determined by ion chromatography . Anions were analyzed by Anion Ion Chromatography (Instrument Dionex ICS-1500, Column...and oxygen gases coming out of the cell were collected and the amount was measured volumetrically. Ion chromatography : Ions in seawater diffused from... Dionex AS9-HC; AG9-HC Guard, eluent: 9.00 mM Na2CO3, flow rate: 1.25 mL/min, and sample loop was 25 μL). Cations were analyzed by Cation Ion

  7. Gauge-invariant effective potential: Equilibrium and nonequilibrium aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyanovsky, D.; Brahm, D.; Holman, R.

    1996-07-01

    We propose a gauge-invariant formulation of the effective potential in terms of a gauge-invariant order parameter, for the Abelian Higgs model. The one-loop contribution at zero and finite temperature is computed explicitly, and the leading terms in the high temperature expansion are obtained. The result is contrasted with the effective potential obtained in several covariant gauge-fixing schemes, and the gauge-invariant quantities that can be reliably extracted from these are identified. It is pointed out that the gauge-invariant effective potential in the one-loop approximation is complex for {ital all} {ital values} of the order parameter between the maximum and the minimummore » of the tree level potential, both at zero and nonzero temperatures. The imaginary part is related to long-wavelength instabilities towards phase separation. We study the real-time dynamics of initial states in the spinodal region, and relate the imaginary part of the effective potential to the growth rate of equal-time gauge-invariant correlation functions in these states. We conjecture that the spinodal instabilities may play a role in nonequilibrium processes {ital inside} the nucleating bubbles if the transition is first order. {copyright} {ital 1996 The American Physical Society.}« less

  8. Products of Submarine Fountains and Bubble-burst Eruptive Activity at 1200 m on West Mata Volcano, Lau Basin

    NASA Astrophysics Data System (ADS)

    Clague, D. A.; Rubin, K. H.; Keller, N. S.

    2009-12-01

    An eruption was observed and sampled at West Mata Volcano using ROV JASON II for 5 days in May 2009 during the NSF-NOAA eruption response cruise to this region of suspected volcanic activity. Activity was focused near the summit at the Prometheus and Hades vents. Prometheus erupted almost exclusively as low-level fountains. Activity at Hades cycled between vigorous degassing, low fountains, and bubble-bursts, building up and partially collapsing a small spatter/scoria cone and feeding short sheet-like and pillow flows. Fire fountains at Prometheus produced mostly small primary pyroclasts that include Pele's hair and fluidal fragments of highly vesicular volcanic glass. These fragments have mostly shattered and broken surfaces, although smooth spatter-like surfaces also occur. As activity wanes, glow in the vent fades, and denser, sometimes altered volcanic clasts are incorporated into the eruption. The latter are likely from the conduit walls and/or vent-rim ejecta, drawn back into the vent by inrushing seawater that replaces water entrained in the rising volcanic plume. Repeated recycling of previously erupted materials eventually produces rounded clasts resembling beach cobbles and pitted surfaces on broken phenocrysts of pyroxene and olivine. We estimate that roughly 33% of near vent ejecta are recycled. Our best sample of this ejecta type was deposited in the drawer of the JASON II ROV during a particularly large explosion that occurred during plume sampling immediately above the vent. Elemental sulfur spherules up to 5 mm in diameter are common in ejecta from both vents and occur inside some of the lava fragments Hades activity included dramatic bubble-bursts unlike anything previously observed under water. The lava bubbles, sometimes occurring in rapid-fire sequence, collapsed in the water-column, producing fragments that are quenched in less than a second to form Pele's hair, limu o Pele, spatter-like lava blobs, and scoria. All are highly vesicular, including the hairs and limu, unlike similar fragments from Loihi Seamount, Axial Seamount, and mid-ocean ridges that have <10% vesicles. The lava bubbles were observed to reach about 1 m in diameter, sometimes appearing to separate from the lava surface, suggesting that they are fed by gasses rising directly from the conduit. Slow-motion video analysis shows that the lava skin stretches to form thin regions that then separate, exposing still incandescent gas within. Bubbles collapse as the lava skin disrupts (usually at the top of the bubble), producing a shower of convex spatter-like lava fragments. Sheet-like lava flows are associated with collapse of the spatter cone and change to pillow lobe extrusion about 5 m from the vent orifice. One pillow lobe sample collected molten contains ~60% vesicles. We suggest that the erupting melt contains large coalesced slugs of magmatic gas and abundant small expanding vesicles that have yet to be incorporated into the large gas slugs. The contrast with Prometheus suggests highly localized conditions of magma devolatilization at W. Mata.

  9. RUBI -a Reference mUltiscale Boiling Investigation for the Fluid Science Laboratory

    NASA Astrophysics Data System (ADS)

    Schweizer, Nils; Stelzer, Marco; Schoele-Schulz, Olaf; Picker, Gerold; Ranebo, Hans; Dettmann, Jan; Minster, Olivier; Toth, Balazs; Winter, Josef; Tadrist, Lounes; Stephan, Peter; Grassi, Walter; di Marco, Paolo; Colin, Catherine; Piero Celata, Gian; Thome, John; Kabov, Oleg

    Boiling is a two-phase heat transfer process where large heat fluxes can be transferred with small driving temperature differences. The high performance of boiling makes the process very interesting for heat transfer applications and it is widely used in industry for example in power plants, refrigeration systems, and electronics cooling. Nevertheless, due to the large number of involved phenomena and their often highly dynamic nature a fundamental understanding and closed theoretical description is not yet accomplished. The design of systems incorporating the process is generally based on empirical correlations, which are commonly accompanied by large uncertainties and, thus, has to be verified by expensive test campaigns. Hence, strong efforts are currently made to develop applicable numerical tools for a reliable prediction of the boiling heat transfer performance and limits. In order to support and validate this development and, in particular as a precondition, to enhance the basic knowledge about boiling the comprehensive multi-scale experiment RUBI (Reference mUlti-scale Boiling Investigation) for the Fluid Science Laboratory on board the ISS is currently in preparation. The scientific objectives and requirements of RUBI have been defined by the members of the ESA topical team "Boiling and Multiphase Flow" and addresses fundamental aspects of boiling phenomena. The main objectives are the measurement of wall temperature and heat flux distribution underneath vapour bubbles with high spatial and tem-poral resolution by means of IR thermography accompanied by the synchronized high-speed observation of the bubble shapes. Furthermore, the fluid temperature in the vicinity and inside of the bubbles will be measured by a micro sensor array. Additional stimuli are the generation of an electric field above the heating surface and a shear flow created by a forced convection loop. The objective of these stimuli is to impose forces on the bubbles and investigate the resulting bubble behaviour such as bubble sliding on and detaching from the surface. The experiments benefits from the absence of vapour buoyancy and natural convection in the high quality and long-term microgravity of the ISS. Effects and phenomena like thermocapillary convection that are hardly observable in normal gravity conditions can be investigated. Clearly predefined conditions particularly of the thermal layer at the heating surface can be established without disturbances by natural convection. Vapour buoyancy as the main detaching force in normal gravity is missing. Hence, it is possible to study stationary, attached bubbles and alternative detaching forces. With RUBI a long history of boiling experiments is perpetuated that used microgravity as a tool for a deeper understanding of the fundamental phenomena. Several precursor experiments closely related to the RUBI project have already been conducted on parabolic flights. The subject of the paper is to provide an overview on the RUBI project, its scientific objectives and the corresponding experimental principle. The current design of the experiment container that is under development at ASTRIUM Space Transportation in Friedrichshafen will be introduced. Furthermore, results from the precursor experiments are presented. The industrial activities of the RUBI project are funded and the science team is supported by ESA.

  10. Separation and Detection of Toxic Gases with a Silicon Micromachined Gas Chromatography System

    NASA Technical Reports Server (NTRS)

    Kolesar, Edward S.; Reston, Rocky R.

    1995-01-01

    A miniature gas chromatography (GC) system was designed and fabricated using silicon micromachining and integrated circuit (IC) processing techniques. The silicon micromachined gas chromatography system (SMGCS) is composed of a miniature sample injector that incorporates a 10 microliter sample loop; a 0.9 meter long, rectangular shaped (300 micrometer width and 10 micrometer height) capillary column coated with a 0.2 micrometer thick copper phthalocyanine (CuPc) stationary phase; and a dual detector scheme based upon a CuPc-coated chemiresistor and a commercially available 125 micrometer diameter thermal conductivity detector (TCD) bead. Silicon micromachining was employed to fabricate the interface between the sample injector and the GC column, the column itself, and the dual detector cavity. A novel IC thin-film processing technique was developed to sublime the CuPc stationary phase coating on the column walls that were micromachined in the host silicon wafer substrate and Pyrex (r) cover plate, which were then electrostatically bonded together. The SMGCS can separate binary gas mixtures composed of parts-per-million (ppm) concentrations of ammonia (NH3) and nitrogen dioxide (NO2) when isothermally operated (55-80 degrees C). With a helium carrier gas and nitrogen diluent, a 10 microliter sample volume containing ammonia and nitrogen dioxide injected at 40 psi ((2.8 x 10(exp 5)Pa)) can be separated in less than 30 minutes.

  11. Temporal Variability of Interstellar Na I Absorption toward the Monoceros Loop

    NASA Astrophysics Data System (ADS)

    Dirks, Cody; Meyer, David M.

    2016-03-01

    We report the first evidence of temporal variability in the interstellar Na I absorption toward HD 47240, which lies behind the Monoceros Loop supernova remnant (SNR). Analysis of multi-epoch Kitt Peak coudé feed spectra from this sight line taken over an eight-year period reveals significant variation in both the observed column density and the central velocities of the high-velocity gas components in these spectra. Given the ˜1.3 mas yr-1 proper motion of HD 47240 and an SNR distance of 1.6 kpc, this variation would imply ˜10 au fluctuations within the SNR shell. Similar variations have been previously reported in the Vela SNR, suggesting a connection between the expanding SNR gas and the observed variations. We speculate on the potential nature of the observed variations toward HD 47240 in the context of the expanding remnant gas interacting with the ambient interstellar medium.

  12. Estimation of Electron Temperature on Glass Spherical Tokamak (GLAST)

    NASA Astrophysics Data System (ADS)

    Hussain, S.; Sadiq, M.; Shah, S. I. W.; GLAST Team

    2015-03-01

    Glass Spherical Tokamak (GLAST) is a small spherical tokamak indigenously developed in Pakistan with an insulating vacuum vessel. A commercially available 2.45 GHz magnetron is used as pre-ionization source for plasma current startup. Different diagnostic systems like Rogowski coils, magnetic probes, flux loops, Langmuir probe, fast imaging and emission spectroscopy are installed on the device. The plasma temperature inside of GLAST, at the time of maxima of plasma current, is estimated by taking into account the Spitzer resistivity calculations with some experimentally determined plasma parameters. The plasma resistance is calculated by using Ohm's law with plasma current and loop voltage as experimentally determined inputs. The plasma resistivity is then determined by using length and area of the plasma column. Finally, the average plasma electron temperature is predicted to be 12.65eV for taking neon (Ne) as a working gas.

  13. Simultaneous determination of D-aspartic acid and D-glutamic acid in rat tissues and physiological fluids using a multi-loop two-dimensional HPLC procedure.

    PubMed

    Han, Hai; Miyoshi, Yurika; Ueno, Kyoko; Okamura, Chieko; Tojo, Yosuke; Mita, Masashi; Lindner, Wolfgang; Zaitsu, Kiyoshi; Hamase, Kenji

    2011-11-01

    For a metabolomics study focusing on the analysis of aspartic and glutamic acid enantiomers, a fully automated two-dimensional HPLC system employing a microbore-ODS column and a narrowbore-enantioselective column was developed. By using this system, a detailed distribution of D-Asp and D-Glu besides L-Asp and L-Glu in mammals was elucidated. For the total analysis concept, the amino acids were first pre-column derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F) to be sensitively and fluorometrically detected. For the non-stereoselective separation of the analytes in the first dimension a monolithic ODS column (750 mm × 0.53 mm i.d.) was adopted, and a self-packed narrowbore-Pirkle type enantioselective column (Sumichiral OA-2500S, 250 mm × 1.5 mm i.d.) was selected for the second dimension. In the rat plasma, RSD values for intra-day and inter-day precision were less than 6.8%, and the accuracy ranged between 96.1% and 105.8%. The values of LOQ of D-Asp and D-Glu were 5 fmol/injection (0.625 nmol/g tissue). The present method was successfully applied to the simultaneous determination of free aspartic acid and glutamic acid enantiomers in 7 brain areas, 11 peripheral tissues, plasma and urine of Wistar rats. Biologically significant D-Asp values were found in various tissue samples whereas for D-Glu the values were very low possibly indicating less significance. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Length Scale and Gravity Effects on Microgravity Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; McQuillen, John; Balombin, Joe

    2002-01-01

    Boiling is a complex phenomenon where hydrodynamics, heat transfer, mass transfer, and interfacial phenomena are tightly interwoven. An understanding of boiling and critical heat flux in microgravity environments is of importance to space based hardware and processes such as heat exchange, cryogenic fuel storage and transportation, electronic cooling, and material processing due to the large amounts of heat that can be removed with relatively little increase in temperature. Although research in this area has been performed in the past four decades, the mechanisms by which heat is removed from surfaces in microgravity are still unclear. In earth gravity, buoyancy is an important parameter that affects boiling heat transfer through the rate at which bubbles are removed from the surface. A simple model describing the bubble departure size based on a quasistatic force balance between buoyancy and surface tension is given by the Fritz [I] relation: Bo(exp 1/2) = 0.0208 theta where Bo is the ratio between buoyancy and surface tension forces. For small, rapidly growing bubbles, inertia associated with the induced liquid motion can also cause bubble departure. In microgravity, the magnitude of effects related to natural convection and buoyancy are small and physical mechanisms normally masked by natural convection in earth gravity such as Marangoni convection can substantially influence the boiling and vapor bubble dynamics. CHF (critical heat transfer) is also substantially affected by microgravity. In 1 g environments, Bo has been used as a correlating parameter for CHF. Zuber's CHF model for an infinite horizontal surface assumes that vapor columns formed by the merger of bubbles become unstable due to a Helmholtz instability blocking the supply of liquid to the surface. The jets are spaced lambda(sub D) apart, where lambda(sub D) = 2pi square root of 3[(sigma)/(g(rho(sub l) - rho(sub v)](exp 1/2) = 2pi square root of 3 L Bo(exp -1/2) = square root of 3 lambda(sub c) and is the wavelength that amplifies most rapidly. The critical wavelength, lambda(sub c), is the wavelength below which a vapor layer underneath a liquid layer is stable. For heaters with Bo smaller than about 3 (heaters smaller than lambda(sub D)), the above model is not applicable, and surface tension effects dominate. Bubble coalescence is thought to be the mechanism for CHF under these conditions. Small Bo can result by decreasing the size of a heater in earth gravity, or by operating a large heater in a lower gravity environment. In the microgravity of space, even large heaters can have low Bo, and models based on Helmholtz instability should not be applicable. The macrolayer model of Haramura and Katto is dimensionally equivalent to Zuber's model and has the same dependence on gravity, so it should not be applicable as well. The goal of this work is to determine how boiling heat transfer mechanisms in a low-g environment are altered from those at higher gravity levels. Boiling data using a microheater array was obtained under gravity environments ranging from 1.8 g to 0.02 g with heater sizes ranging from 2.7 mm to 1 mm. The boiling behavior for 2.7 mm at 0.02 g looked quite similar to boiling on the 1 mm heater at 1 g-the formation of a large primary bubble surrounded by smaller satellite bubbles was observed under both conditions. The similarity suggests that for heaters smaller than some fraction of I(sub c), coalescence and surface tension dominate boiling heat transfer. It also suggests that microgravity boiling can be studied by studying boiling on very small heaters.

  15. Hyporheic less-mobile porosity and solute transport in porous media

    NASA Astrophysics Data System (ADS)

    MahmoodPoorDehkordy, F.; Briggs, M. A.; Day-Lewis, F. D.; Scruggs, C.; Singha, K.; Zarnetske, J. P.; Lane, J. W., Jr.; Bagtzoglou, A. C.

    2017-12-01

    Solute transport and reactive processes are strongly influenced by hydrodynamic exchange with the hyporheic zone. Contaminant transport and redox zonation in the hyporheic zone and near-stream aquifer can be impacted by the exchange between mobile and less-mobile porosity zones in heterogeneous porous media. Less-mobile porosity zones can be created by fine materials with tight pore throats (e.g. clay, organics) and in larger, well-connected pores down gradient of flow obstructions (e.g. sand behind cobbles). Whereas fluid sampling is primarily responsive to the more-mobile domain, tracking solute tracer dynamics by geoelectrical methods provides direct information about both more- and less-mobile zones. During tracer injection through porous media of varied pore connectivity, a lag between fluid and bulk electrical conductivity is observed, creating a hysteresis loop when plotted in conductivity space. Thus, the combination of simultaneous fluid and bulk electrical conductivity measurements enables a much improved quantification of less-mobile solute dynamics compared to traditional fluid-only sampling approaches. We have demonstrated the less-mobile porosity exchange in laboratory-scale column experiments verified by simulation models. The experimental approach has also been applied to streambed sediments in column and reach-scale field experiments and verified using numerical simulation. Properties of the resultant hysteresis loops can be used to estimate exchange parameters of less-mobile porosity. Our integrated approach combining field experiments, laboratory experiments, and numerical modeling provides new insights into the effect of less-mobile porosity on solute transport in the hyporheic zone.

  16. Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount

    NASA Astrophysics Data System (ADS)

    C´e, J.-L.; Stoffers, P.; McMurtry, G.; Richnow, H.; Puteanus, D.; Sedwick, P.

    1991-11-01

    In January 1989 we observed submarine eruptions on the summit of Macdonald volcano during a French-German diving programme with the IFREMER submersible Cyana. Gas-streaming of large amounts of CH 4, CO 2 and SO 2 from summit vents, inferred from water column anomalies and observed by submersible, was accompanied on the sea surface by steam bursts, turbulence, red-glowing gases, and black bubbles comprising volcanic ash, sulphur and sulphides. Chloride depletion of water sampled on the floor of an actively degassing summit crater suggests either boiling and phase separation or additions of magmatic water vapour. Submersible observations, in-situ sampling and shipboard geophysical and hydrographic measurements show that the hydrothermal system of this hotspot volcano is distinguished by the influence of magmatic gases released from its shallow summit.

  17. Validation of a 2.5D CFD model for cylindrical gas–solids fluidized beds

    DOE PAGES

    Li, Tingwen

    2015-09-25

    The 2.5D model recently proposed by Li et al. (Li, T., Benyahia, S., Dietiker, J., Musser, J., and Sun, X., 2015. A 2.5D computational method to simulate cylindrical fluidized beds. Chemical Engineering Science. 123, 236-246.) was validated for two cylindrical gas-solids bubbling fluidized bed systems. Different types of particles tested under various flow conditions were simulated using the traditional 2D model and the 2.5D model. Detailed comparison against the experimental measurements on solid concentration and velocity were conducted. Comparing to the traditional Cartesian 2D flow simulation, the 2.5D model yielded better agreement with the experimental data especially for the solidmore » velocity prediction in the column wall region.« less

  18. Development of standardized air-blown coal gasifier/gas turbine concepts for future electric power systems, Volume 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-02-01

    This appendix is a compilation of work done to predict overall cycle performance from gasifier to generator terminals. A spreadsheet has been generated for each case to show flows within a cycle. The spreadsheet shows gaseous or solid composition of flow, temperature of flow, quantity of flow, and heat heat content of flow. Prediction of steam and gas turbine performance was obtained by the computer program GTPro. Outputs of all runs for each combined cycle reviewed has been added to this appendix. A process schematic displaying all flows predicted through GTPro and the spreadsheet is also added to this appendix.more » The numbered bubbles on the schematic correspond to columns on the top headings of the spreadsheet.« less

  19. Slugging Flow of Water Draining from the Bottom of a Non-Vented Container

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles W. Solbrig

    2010-06-01

    Experiments were run to observe the behavior of water exiting through an orifice at the bottom of an non-vented container. Initially, the container is nearly full of water with a small air space on top. Once the orifice was uncovered, the slugging rate and the drain rate of the water leaving the container were measured. Upon initially opening the orifice, water drains out until the air pressure above the water reduces enough that the air pressure drop from inside to outside of the container supports the water column and the water stops flowing. Air then enters the container through themore » orifice forming a bubble, which grows until it detaches and bubbles through the water to reach the air space. Once the bubble enters, this added air increases the pressure in the air space enough to allow the water to start flowing out again. This cycle of flow out, flow stoppage, air inflow, and bubble breakoff continues over and over until the hole is closed or the container empties. This is referred to as the “slugging cycle.” A mechanism is proposed to describe the slugging cycle which is modeled analytically. This paper presents the description of the experiments, data obtained, the mechanistic model, and comparison of the model to the experimental data. The model predicts outflow rates close to experimental values. Flow rates from non-vented containers are more than 10 to 20 less than vented containers. The bubbles which must enter the container periodically to increase the internal air pressure stop the water flow momentarily so are responsible for this large decrease in flow rate. Swirl induced in the non-vented container causes the flow rates to increase by a factor of two. The flow rate out of a non-vented container is independent of water height which is in direct contrast to a vented container where the flow rate is proportional to the square root of the water height. The constant rate is due to the container pressure. The higher the water level, the lower the air pressure is in the container. This analytical model requires input of the bubble size. The volume recommended is the volume of a cylinder with the base of the orifice area and length of 3.3 cm. Slugging rate varies only a small amount falling in the range to 2 to 4 cycles/sec. Preliminary work with other containers indicates larger containers, larger orifices and nozzle exit shapes produce higher specific flow rates. The standard multiphase flow equations could not be used to analyze this situation because the two phases are not interpenetrating. Instead one phase must fully stop before the other can flow. Interpenetrating phases allow can pass one another each affecting the other with friction and virtual mass. An interesting observation: The negative air pressure in the container is observable. It equals the water height.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Krebs, John F.; Quigley, Kevin J.

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solutionmore » is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project. There are two separate pumps and flow paths for the acid and base operations. The system contains three sample ladders with eight sample loops per ladder for target mixing; column loading, including acid and water washes; and column stripping, including the final water wash.« less

  1. Approaching behavior of a pair of spherical bubbles in quiescent liquids

    NASA Astrophysics Data System (ADS)

    Sanada, Toshiyuki; Kusuno, Hiroaki

    2015-11-01

    Some unique motions related bubble-bubble interaction, such as equilibrium distance, wake induced lift force, have been proposed by theoretical analysis or numerical simulations. These motions are different from the solid spheres like DKT model (Drafting, Kissing and Tumbling). However, there is a lack of the experimental verification. In this study, we experimentally investigated the motion of a pair of bubbles initially positioned in-line configuration in ultrapure water or an aqueous surfactant solution. The bubble motion were observed by two high speed video cameras. The bubbles Reynolds number was ranged from 50 to 300 and bubbles hold the spherical shape in this range. In ultrapure water, initially the trailing bubble deviated from the vertical line on the leading bubble owing to the wake of the leading bubble. And then, the slight difference of the bubble radius changed the relative motion. When the trailing bubble slightly larger than the leading bubble, the trailing bubble approached to the leading bubble due to it's buoyancy difference. The bubbles attracted and collided only when the bubbles rising approximately side by side configuration. In addition, we will also discuss the motion of bubbles rising in an aqueous surfactant solution.

  2. Comment on "Hearing the signal of dark sectors with gravitational wave detectors"

    NASA Astrophysics Data System (ADS)

    Huang, Da; Lu, Bo-Qiang

    2018-03-01

    We revisit the calculation of the gravitational wave spectra generated in a classically scale-invariant S U (2 ) gauge sector with a scalar field in the adjoint representation, as discussed by J. Jaeckel, et al. The finite-temperature potential at 1-loop level can induce a strong first-order phase transition, during which gravitational waves can be generated. With the accurate numerical computation of the on-shell Euclidean actions of the nucleation bubbles, we find that the triangle approximation employed by J. Jaeckel et al. strongly distorts the actual potential near its maximum and thus greatly underestimates the action values. As a result, the gravitational wave spectra predicted by J. Jaeckel et al. deviate significantly from the exact ones in peak frequencies and shapes.

  3. Interaction mechanism of double bubbles in hydrodynamic cavitation

    NASA Astrophysics Data System (ADS)

    Li, Fengchao; Cai, Jun; Huai, Xiulan; Liu, Bin

    2013-06-01

    Bubble-bubble interaction is an important factor in cavitation bubble dynamics. In this paper, the dynamic behaviors of double cavitation bubbles driven by varying pressure field downstream of an orifice plate in hydrodynamic cavitation reactor are examined. The bubble-bubble interaction between two bubbles with different radii is considered. We have shown the different dynamic behaviors between double cavitation bubbles and a single bubble by solving two coupling nonlinear equations using the Runge-Kutta fourth order method with adaptive step size control. The simulation results indicate that, when considering the role of the neighbor smaller bubble, the oscillation of the bigger bubble gradually exhibits a lag in comparison with the single-bubble case, and the extent of the lag becomes much more obvious as time goes by. This phenomenon is more easily observed with the increase of the initial radius of the smaller bubble. In comparison with the single-bubble case, the oscillation of the bigger bubble is enhanced by the neighbor smaller bubble. Especially, the pressure pulse of the bigger bubble rises intensely when the sizes of two bubbles approach, and a series of peak values for different initial radii are acquired when the initial radius ratio of two bubbles is in the range of 0.9˜1.0. Although the increase of the center distance between two bubbles can weaken the mutual interaction, it has no significant influence on the enhancement trend. On the one hand, the interaction between two bubbles with different radii can suppress the growth of the smaller bubble; on the other hand, it also can enhance the growth of the bigger one at the same time. The significant enhancement effect due to the interaction of multi-bubbles should be paid more attention because it can be used to reinforce the cavitation intensity for various potential applications in future.

  4. Global performance parameters for different pneumatic bioreactors operating with water and glycerol solution: experimental data and CFD simulation.

    PubMed

    Rodriguez, G Y; Valverde-Ramírez, M; Mendes, C E; Béttega, R; Badino, A C

    2015-11-01

    Global variables play a key role in evaluation of the performance of pneumatic bioreactors and provide criteria to assist in system selection and design. The purpose of this work was to use experimental data and computational fluid dynamics (CFD) simulations to determine the global performance parameters gas holdup ([Formula: see text]) and volumetric oxygen transfer coefficient (k L a), and conduct an analysis of liquid circulation velocity, for three different geometries of pneumatic bioreactors: bubble column, concentric-tube airlift, and split tube airlift. All the systems had 5 L working volumes and two Newtonian fluids of different viscosities were used in the experiments: distilled water and 10 cP glycerol solution. Considering the high oxygen demand in certain types of aerobic fermentations, the assays were carried out at high flow rates. In the present study, the performances of three pneumatic bioreactors with different geometries and operating with two different Newtonian fluids were compared. A new CFD modeling procedure was implemented, and the simulation results were compared with the experimental data. The findings indicated that the concentric-tube airlift design was the best choice in terms of both gas holdup and volumetric oxygen transfer coefficient. The CFD results for gas holdup were consistent with the experimental data, and indicated that k L a was strongly influenced by bubble diameter and shape.

  5. Morphological diagnostics of star formation in molecular clouds

    NASA Astrophysics Data System (ADS)

    Beaumont, Christopher Norris

    Molecular clouds are the birth sites of all star formation in the present-day universe. They represent the initial conditions of star formation, and are the primary medium by which stars transfer energy and momentum back to parsec scales. Yet, the physical evolution of molecular clouds remains poorly understood. This is not due to a lack of observational data, nor is it due to an inability to simulate the conditions inside molecular clouds. Instead, the physics and structure of the interstellar medium are sufficiently complex that interpreting molecular cloud data is very difficult. This dissertation mitigates this problem, by developing more sophisticated ways to interpret morphological information in molecular cloud observations and simulations. In particular, I have focused on leveraging machine learning techniques to identify physically meaningful substructures in the interstellar medium, as well as techniques to inter-compare molecular cloud simulations to observations. These contributions make it easier to understand the interplay between molecular clouds and star formation. Specific contributions include: new insight about the sheet-like geometry of molecular clouds based on observations of stellar bubbles; a new algorithm to disambiguate overlapping yet morphologically distinct cloud structures; a new perspective on the relationship between molecular cloud column density distributions and the sizes of cloud substructures; a quantitative analysis of how projection effects affect measurements of cloud properties; and an automatically generated, statistically-calibrated catalog of bubbles identified from their infrared morphologies.

  6. Visualization of airflow growing soap bubbles

    NASA Astrophysics Data System (ADS)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  7. Diffusion-reaction modelling of early diagenesis of sediments affected by acid mine drainage.

    NASA Astrophysics Data System (ADS)

    Torres, E.; Ayora, C.; Arias, J. L.; Garcia Robledo, E.; Papaspyrou, S.; Corzo, A.

    2012-04-01

    The Sancho Reservoir (SW Spain) is a monomictic water reservoir affected by acid mine drainage. It has a pH of ~4, with high sulfate (200 ppm) and heavy metal concentrations in the water column. The reservoir develops reducing conditions at the bottom during the stratification period. A laboratory experiment was carried out to study the effect of this oxygen variation on the early diagenesis processes and the cycling of metals. Sediment cores and bottom water were collected during the stratification period and brought to the laboratory. The cores were maintained in an aquarium bubbled with nitrogen gas to maintain hypoxic conditions (~10 µmol O2 L-1) for 1 day. Then, oxic conditions were induced by bubbling with air and maintained for 50 days. Finally, hypoxia was re-established for 10 days. Triplicate cores were sliced in a anaerobic glove box at each stage. Pore water was extracted by centrifugation and: Eh, pH, DO, DOC, sulfate, Fe and trace metals were analyzed. The sediment was freeze-dried and a sequential extraction protocol was applied to determine the exchangeable, AVS, Fe-(oxy)hydroxides, Fe-oxides, organic matter, pyrite sulfur and residual phase iron fractions. Organic carbon and total C, N, H and S were also analyzed in the sediment. A reactive diffusion model has been used to obtain the rates of biogeochemical reactions by fitting to the experimental data. During hypoxic conditions sulfate and Fe-(oxy)hydroxides are reduced, due to the anaerobic oxidation of organic matter, at the very first few cm, releasing sulfide and Fe(II) which precipitate as iron sulfide. When oxygen diffuses in the sediment, sulfate-reduction and the sulfide peaks are displaced deeper into the sediment. Oxygen penetration depth and its consumption rates in the sediment increase quickly, resulting in the reoxidation of the iron sulfides that had precipitated during hypoxic conditions. Sulfide and Fe(II) are released and are again oxidized to Fe(III) and sulfate respectively. Arsenic can be adsorbed onto the iron sulfides and pyrite. During the dissolution of the iron sulfide As will be released and will diffuse to the water column. Copper and zinc can also precipitate as metal sulfides.

  8. Double bubble with the big-bubble technique during deep anterior lamellar keratoplasty.

    PubMed

    Wise, Stephanie; Dubord, Paul; Yeung, Sonia N

    2017-04-28

    To report a case of intraoperative double bubble that formed during big-bubble DALK surgery in a patient with corneal scarring secondary to herpetic stromal keratitis. Case report. A 22 year old woman presented with a large corneal scar, likely secondary to previous herpetic stromal keratitis. She underwent big-bubble DALK surgery for visual rehabilitation. Intraoperatively, a mixed bubble with persistent type 2 bubble postoperatively was noted. The second bubble resorbed with clearance of the graft and good visual outcome after 6 weeks. This case report describes the unusual development of a mixed bubble during big-bubble DALK surgery. This graft cleared with resolution of the second bubble postoperatively without further surgical intervention.

  9. Experimental study on bubble dynamics and wall heat transfer arising from a single nucleation site at subcooled flow boiling conditions – Part 2: Data analysis on sliding bubble characteristics and associated wall heat transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.

    In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less

  10. Experimental study on bubble dynamics and wall heat transfer arising from a single nucleation site at subcooled flow boiling conditions – Part 2: Data analysis on sliding bubble characteristics and associated wall heat transfer

    DOE PAGES

    Yooa, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.

    2016-04-28

    In this second of two companion papers presents an analysis of sliding bubble and wall heat transfer parameters measured during subcooled boiling in a square, vertical, upward flow channel. Bubbles were generated only from a single nucleation site for better observation of both the sliding bubbles’ characteristics and their impact on wall heat transfer through optical measurement techniques. Specific interests include: (i) bubbles departure and subsequent growth while sliding, (ii) bubbles release frequency, (iii) coalescence of sliding bubbles, (iv) sliding bubbles velocity, (v) bubbles size distribution and (vi) wall heat transfer influenced by sliding bubbles. Our results showed that slidingmore » bubbles involve two distinct growth behaviors: (i) at low mass fluxes, sliding bubbles grew fast near the nucleation site, subsequently shrank, and then grew again, (ii) as mass flux increased, however, sliding bubbles grew more steadily. The bubbles originating from the single nucleation site coalesced frequently while sliding, which showed close relation with bubbles release frequency. The sliding bubble velocity near the nucleation site consistently decreased by increasing mass flux, while the observation often became reversed as the bubbles slid downstream due to the effect of interfacial drag. The sliding bubbles moved faster than the local liquid (i.e., ur<0) at low mass flux conditions, but it became reversed as the mass flux increased. The size distribution of sliding bubbles followed Gaussian distribution well both near and far from the nucleation site. The standard deviation of bubble size varied insignificantly through sliding compared to the changes in mean bubble size. Lastly, the sliding bubbles enhanced the wall heat transfer and the effect became more noticeable as inlet subcooling/mass flux decreased or wall heat flux increased. Particularly, the sliding bubble characteristics such as bubble growth behavior observed near the nucleation site played a dominant role in determining the ultimate level of wall heat transfer enhancement within the test channel.« less

  11. A PFM-based MWIR DROIC employing off-pixel fine conversion of photocharge to digital using integrated column ADCs

    NASA Astrophysics Data System (ADS)

    Abbasi, S.; Galioglu, A.; Shafique, A.; Ceylan, O.; Yazici, M.; Gurbuz, Y.

    2017-02-01

    A 32x32 prototype of a digital readout IC (DROIC) for medium-wave infrared focal plane arrays (MWIR IR-FPAs) is presented. The DROIC employs in-pixel photocurrent to digital conversion based on a pulse frequency modulation (PFM) loop and boasts a novel feature of off-pixel residue conversion using 10-bit column SAR ADCs. The remaining charge at the end of integration in typical PFM based digital pixel sensors is usually wasted. Previous works employing in-pixel extended counting methods make use of extra memory and counters to convert this left-over charge to digital, thereby performing fine conversion of the incident photocurrent. This results in a low quantization noise and hence keeps the readout noise low. However, focal plane arrays (FPAs) with small pixel pitch are constrained in pixel area, which makes it difficult to benefit from in-pixel extended counting circuitry. Thus, in this work, a novel approach to measure the residue outside the pixel using column -parallel SAR ADCs has been proposed. Moreover, a modified version of the conventional PFM based pixel has been designed to help hold the residue charge and buffer it to the column ADC. In addition to the 2D array of pixels, the prototype consists of 32 SAR ADCs, a timing controller block and a memory block to buffer the residue data coming out of the ADCs. The prototype has been designed and fabricated in 90nm CMOS.

  12. Premature detonation of an NH₄NO₃ emulsion in reactive ground.

    PubMed

    Priyananda, Pramith; Djerdjev, Alex M; Gore, Jeff; Neto, Chiara; Beattie, James K; Hawkett, Brian S

    2015-01-01

    When NH4NO3 emulsions are used in blast holes containing pyrite, they can exothermally react with pyrite, causing the emulsion to intensively heat and detonate prematurely. Such premature detonations can inflict fatal and very costly damages. The mechanism of heating of the emulsions is not well understood though such an understanding is essential for designing safe blasting. In this study the heating of an emulsion in model blast holes was simulated by solving the heat equation. The physical factors contributing to the heating phenomenon were studied using microscopic and calorimetric methods. Microscopic studies revealed the continuous formation of a large number of gas bubbles as the reaction progressed at the emulsion-pyrite interface, which made the reacting emulsion porous. Calculations show that the increase in porosity causes the thermal conductivity of a reacting region of an emulsion column in a blast hole to decrease exponentially. This large reduction in the thermal conductivity retards heat dissipation from the reacting region causing its temperature to rise. The rise in temperature accelerates the exothermic reaction producing more heat. Simulations predict a migration of the hottest spot of the emulsion column, which could dangerously heat the primers and boosters located in the blast hole. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    NASA Astrophysics Data System (ADS)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  14. Gas Bubble Migration and Trapping in Porous Media: Pore-Scale Simulation

    NASA Astrophysics Data System (ADS)

    Mahabadi, Nariman; Zheng, Xianglei; Yun, Tae Sup; van Paassen, Leon; Jang, Jaewon

    2018-02-01

    Gas bubbles can be naturally generated or intentionally introduced in sediments. Gas bubble migration and trapping affect the rate of gas emission into the atmosphere or modify the sediment properties such as hydraulic and mechanical properties. In this study, the migration and trapping of gas bubbles are simulated using the pore-network model extracted from the 3D X-ray image of in situ sediment. Two types of bubble size distribution (mono-sized and distributed-sized cases) are used in the simulation. The spatial and statistical bubble size distribution, residual gas saturation, and hydraulic conductivity reduction due to the bubble trapping are investigated. The results show that the bubble size distribution becomes wider during the gas bubble migration due to bubble coalescence for both mono-sized and distributed-sized cases. And the trapped bubble fraction and the residual gas saturation increase as the bubble size increases. The hydraulic conductivity is reduced as a result of the gas bubble trapping. The reduction in hydraulic conductivity is apparently observed as bubble size and the number of nucleation points increase.

  15. Nonspherical laser-induced cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Lim, Kang Yuan; Quinto-Su, Pedro A.; Klaseboer, Evert; Khoo, Boo Cheong; Venugopalan, Vasan; Ohl, Claus-Dieter

    2010-01-01

    The generation of arbitrarily shaped nonspherical laser-induced cavitation bubbles is demonstrated with a optical technique. The nonspherical bubbles are formed using laser intensity patterns shaped by a spatial light modulator using linear absorption inside a liquid gap with a thickness of 40μm . In particular we demonstrate the dynamics of elliptic, toroidal, square, and V-shaped bubbles. The bubble dynamics is recorded with a high-speed camera at framing rates of up to 300000 frames per second. The observed bubble evolution is compared to predictions from an axisymmetric boundary element simulation which provides good qualitative agreement. Interesting dynamic features that are observed in both the experiment and simulation include the inversion of the major and minor axis for elliptical bubbles, the rotation of the shape for square bubbles, and the formation of a unidirectional jet for V-shaped bubbles. Further we demonstrate that specific bubble shapes can either be formed directly through the intensity distribution of a single laser focus, or indirectly using secondary bubbles that either confine the central bubble or coalesce with the main bubble. The former approach provides the ability to generate in principle any complex bubble geometry.

  16. Aspherical bubble dynamics and oscillation times

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Godwin, R.P.; Chapyak, E.J.; Noack, J.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightlymore » from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.« less

  17. An experimental study of evaporation waves in a superheated liquid

    NASA Astrophysics Data System (ADS)

    Hill, Larry G.

    1990-01-01

    Evaporation waves in superheated liquids are studied using a rapid-depressurization facility consisting of a vertical glass test cell situated beneath a large, low-pressure reservoir. The objective of this study is to learn more about the physical mechanisms of explosive boiling (of which an evaporation wave is a specific example), as well as properties of the flow it produces.The test cell is initially sealed from the reservoir by a foil diaphragm, and is partially filled with a volatile liquid (Refrigerant 12 or 114). An experiment is initiated by rupturing the diaphragm via a pneumatically driven cutter. The instrumentation consists of fast-response pressure measurements, high-speed motion pictures, and spark-illuminated still photographs. The liquid temperature is typically 20°C; the liquid superheat is controlled by setting the reservoir pressure to values between vacuum and 1 atm. The pressures subsequent to depressurization are very much less than the critical pressure, and the initial temperatures are sufficiently low that, although the test liquid is highly superheated, the superheat limit is not approached. Evaporation waves in which bubble nucleation within the liquid column is suppressed entirely are considered almost exclusively.When the diaphragm is ruptured, the liquid pressure drops to virtually the reservoir value within a few milliseconds. Provided that the liquid superheat so obtained is sufficiently high, the free surface then erupts in a process known as explosive boiling, which is characterized by violent, fine-scale fragmentation of the superheated liquid and extremely rapid evaporation. The explosive boiling process proceeds as a "wavefront" into the liquid column, producing a highspeed, two-phase flow that travels upward into the low-pressure reservoir, emptying the test cell in a few hundred milliseconds. The speed of the wavefront varies between 0.2 and 0.6 m/s, depending on run conditions; the corresponding two-phase flow varies between about 5 and 35 m/s.In the highest superheat case for the more volatile liquid (Refrigerant 12), explosive boiling usually initiates by the rapid formation of nucleation sites at random spots on the liquid free surface and at the glass/free-surface contact line. Boiling spreads to the remaining surface within 160 [...]. In the highest superheat case for the less volatile liquid (Refrigerant 114), nucleation begins only at the glass/free-surface contact line. Boiling then spreads radially inward toward the center. In the lower superheated cases for both liquids, nucleation begins at one or more sites on the glass/free-surface contact line, and propagates across the free surface.At the higher superheats, explosive boiling initiates within a few milliseconds from diaphragm burst, the same time scale as that of liquid depressurization. No distinction is made between the onset of nucleation and that of explosive boiling. However, if the reservoir pressure is raised above a certain approximate value, the onset of explosive boiling is delayed. During the delay period, relatively slow bubbling (initiated at one or more nucleation sites at the glass/free-surface contact line) occurs, and a cluster of bubbles forms in the vicinity of the initial site. The bubble cluster then "explodes," marking the transition to explosive boiling. The delay period increases significantly as the reservoir pressure is raised slightly further. Reservoir pressures corresponding to a delay period of order 100 ms define an approximate self-start threshold pressure, above which the transition to explosive boiling does not occur. Within about 10 ms of initiation, the wave reaches a quasi-steady condition in which the average wave speed, two-phase flow speed, and base and exit pressures are constant. However, the instantaneous propagation rate and the mechanisms that generate the mean flow are observed to be highly nonsteady. The wavefront appears to propagate by heterogeneous bubble nucleation at its leading edge, and any given region of the wavefront tends to propagate in surges associated with new nucleation and/or very fine-scale surface perturbations. Measurements of the instantaneous position of the upstream tip of the wavefront indicate that local velocity fluctuations are the same order as the mean velocity. The leading-edge bubble lifetimes and diameters are statistically distributed; mean values are of order 1 ms and 1 mm, respectively. The leading-edge bubbles are fragmented in violent "bursts" of aerosol. Bursts have a tendency to sweep over the leading-edge bubble layer in a wavelike manner: They are "large-scale structures" associated with the fragmentation of many bubbles.Fragmentation, rapid evaporation, flow acceleration, and pressure drop occur primarily within about 1 cm of the leading edge. Downstream of this region, the average speed and appearance of the flow are virtually constant. This developed flow is a highly nonuniform, two-phase spray containing streaklike structures. Its liquid phase is composed of drops (with a maximum diameter of about 100 [...]), as well as clusters and chains of bubbles (with a diameter of a few hundred microns). A thin liquid layer begins climbing the wall upon wave initiation. Its speed is a few m/s-significantly slower than that of the two-phase flow through the center. Exit pressure measurements indicate that the flow chokes for sufficiently low reservoir pressure; at higher reservoir pressures the flow is unchoked.The self-start threshold is not a propagation threshold, as waves are observed to propagate at somewhat lower superheats if started artificially. This is accomplished in Refrigerant 114 by "jump-starting" the wave, using the more volatile Refrigerant 12. For sufficiently high reservoir pressures, an "absolute" threshold is reached at which the quasi-steady rapid evaporation processes break down.Possible mechanisms for explosive boiling are discussed in light of the present results. While neither of the two previous schools of thought (interfacial instability hypotheses and the secondary nucleation hypothesis) are alone adequate to explain the observed behavior, there is evidence that both may play a role. It is here proposed that the bursting phenomenon and bubble nucleation at the wavefront leading edge are mutually interactive processes-bursting occurring as the violent breakup of interstitial bubble liquid, and nucleation (and fine-scale perturbations) being caused by burst-generated aerosol striking the leading-edge surface. It is not understood what role interfacial instability may play in the bursting process.An evaporation wave is analogous to a premixed flame in that both are classified as "weak deflagration" waves in gasdynamic theory. It is shown that using several approximations that are valid for the type of evaporation waves studied, the conservation equations (jump conditions) can be reduced to a single, simple expression in terms of readily measured and inferred properties.

  18. Extreme conditions in a dissolving air nanobubble

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.

  19. Distillation Column Flooding Predictor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillationmore » columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid/vapor traffic that produce increased contact area and lead to substantial increases in separation efficiency – which translates to a 10% increase in energy efficiency on a BTU/bbl basis. The Flooding Predictor™ operates on the principle that between five to sixty minutes in advance of a flooding event, certain column variables experience an oscillation, a pre-flood pattern. The pattern recognition system of the Flooding Predictor™ utilizes the mathematical first derivative of certain column variables to identify the column’s pre-flood pattern(s). This pattern is a very brief, highly repeatable, simultaneous movement among the derivative values of certain column variables. While all column variables experience negligible random noise generated from the natural frequency of the process, subtle pre-flood patterns are revealed among sub-sets of the derivative values of column variables as the column approaches its hydraulic limit. The sub-set of column variables that comprise the pre-flood pattern is identified empirically through in a two-step process. First, 2ndpoint’s proprietary off-line analysis tool is used to mine historical data for pre-flood patterns. Second, the column is flood-tested to fine-tune the pattern recognition for commissioning. Then the Flooding Predictor™ is implemented as closed-loop advanced control strategy on the plant’s distributed control system (DCS), thus automating control of the column at its hydraulic limit.« less

  20. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

Top