Research on the man in the loop control system of the robot arm based on gesture control
NASA Astrophysics Data System (ADS)
Xiao, Lifeng; Peng, Jinbao
2017-03-01
The Man in the loop control system of the robot arm based on gesture control research complex real-world environment, which requires the operator to continuously control and adjust the remote manipulator, as the background, completes the specific mission human in the loop entire system as the research object. This paper puts forward a kind of robot arm control system of Man in the loop based on gesture control, by robot arm control system based on gesture control and Virtual reality scene feedback to enhance immersion and integration of operator, to make operator really become a part of the whole control loop. This paper expounds how to construct a man in the loop control system of the robot arm based on gesture control. The system is a complex system of human computer cooperative control, but also people in the loop control problem areas. The new system solves the problems that the traditional method has no immersion feeling and the operation lever is unnatural, the adjustment time is long, and the data glove mode wears uncomfortable and the price is expensive.
Control and optimization system and method for chemical looping processes
Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao
2014-06-24
A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
Control and optimization system and method for chemical looping processes
Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao
2015-02-17
A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.
Runtime Assurance Framework Development for Highly Adaptive Flight Control Systems
2015-12-01
performing a surveillance mission. The demonstration platform consisted of RTA systems for the inner- loop control, outer- loop guidance, ownship flight...For the inner- loop , the concept of employing multiple transition controllers in the reversionary control system was studied. For all feedback levels...5 RTA Protection Applied to Inner- Loop Control Systems .................................................61 5.1 General Description of Morphing Wing
System identification from closed-loop data with known output feedback dynamics
NASA Technical Reports Server (NTRS)
Phan, Minh; Juang, Jer-Nan; Horta, Lucas G.; Longman, Richard W.
1992-01-01
This paper presents a procedure to identify the open loop systems when it is operating under closed loop conditions. First, closed loop excitation data are used to compute the system open loop and closed loop Markov parameters. The Markov parameters, which are the pulse response samples, are then used to compute a state space representation of the open loop system. Two closed loop configurations are considered in this paper. The closed loop system can have either a linear output feedback controller or a dynamic output feedback controller. Numerical examples are provided to illustrate the proposed closed loop identification method.
Demonstration of Standard HVAC Single-Loop Digital Control Systems
1993-01-01
AD-A265 372 T N FEAP-TR-FE-93/05 REPORT January 1993 FACILITIES ENGINEERING APPLICATIONS PROGRAM Demonstration of Standard HVAC Single-Loop Digital...AND DATES COVERED January 1993 Final 4. TITLE AND SUBTITLE [5. FUNDING NUMBERS Demonstration of Standard HVAC Single-Loop Digital Control Systems FEAP...conditioning ( HVAC ) control systems provide guidance on designing and specifying standard HVAC control systems that use single-loop digital controllers
NASA Astrophysics Data System (ADS)
Ishikawa, Kaoru; Nakamura, Taro; Osumi, Hisashi
A reliable control method is proposed for multiple loop control system. After a feedback loop failure, such as case of the sensor break down, the control system becomes unstable and has a big fluctuation even if it has a disturbance observer. To cope with this problem, the proposed method uses an equivalent transfer function (ETF) as active redundancy compensation after the loop failure. The ETF is designed so that it does not change the transfer function of the whole system before and after the loop failure. In this paper, the characteristic of reliable control system that uses an ETF and a disturbance observer is examined by the experiment that uses the DC servo motor for the current feedback loop failure in the position servo system.
Trajectory tracking control for underactuated stratospheric airship
NASA Astrophysics Data System (ADS)
Zheng, Zewei; Huo, Wei; Wu, Zhe
2012-10-01
Stratospheric airship is a new kind of aerospace system which has attracted worldwide developing interests for its broad application prospects. Based on the trajectory linearization control (TLC) theory, a novel trajectory tracking control method for an underactuated stratospheric airship is presented in this paper. Firstly, the TLC theory is described sketchily, and the dynamic model of the stratospheric airship is introduced with kinematics and dynamics equations. Then, the trajectory tracking control strategy is deduced in detail. The designed control system possesses a cascaded structure which consists of desired attitude calculation, position control loop and attitude control loop. Two sub-loops are designed for the position and attitude control loops, respectively, including the kinematics control loop and dynamics control loop. Stability analysis shows that the controlled closed-loop system is exponentially stable. Finally, simulation results for the stratospheric airship to track typical trajectories are illustrated to verify effectiveness of the proposed approach.
Zhang, Xuena; Wu, Anshi; Yao, Shanglong; Xue, Zhanggang; Yue, Yun
2015-01-01
Background The CONCERT-CL closed-loop infusion system designed by VERYARK Technology Co., Ltd. (Guangxi, China) is an innovation using TCI combined with closed-loop controlled intravenous anesthesia under the guide of BIS. In this study we performed a randomized, controlled, multicenter study to compare closed-loop control and open-loop control of propofol by using the CONCERT-CL closed-loop infusion system. Methods 180 surgical patients from three medical centers undergone TCI intravenous anesthesia with propofol and remifentanil were randomly assigned to propofol closed-loop group and propofol opened-loop groups. Primary outcome was global score (GS, GS = (MDAPE+Wobble)/% of time of bispectral index (BIS) 40-60). Secondary outcomes were doses of the anesthetics and emergence time from anesthesia, such as, time to tracheal extubation. Results There were 89 and 86 patients in the closed-loop and opened-loop groups, respectively. GS in the closed-loop groups (22.21±8.50) were lower than that in the opened-loop group (27.19±15.26) (p=0.009). The higher proportion of time of BIS between 40 and 60 was also observed in the closed-loop group (84.11±9.50%), while that was 79.92±13.17% in the opened-loop group, (p=0.016). No significant differences in propofol dose and time of tracheal extubation were observed. The frequency of propofol regulation in the closed-loop group (31.55±9.46 times/hr) was obverse higher than that in the opened-loop group (6.84±6.21 times/hr) (p=0.000). Conclusion The CONCERT-CL closed-loop infusion system can automatically regulate the TCI of propofol, maintain the BIS value in an adequate range and reduce the workload of anesthesiologists better than open-loop system. Trial Registration ChiCTR ChiCTR-OOR-14005551 PMID:25886041
Control and optimization system
Xinsheng, Lou
2013-02-12
A system for optimizing a power plant includes a chemical loop having an input for receiving an input parameter (270) and an output for outputting an output parameter (280), a control system operably connected to the chemical loop and having a multiple controller part (230) comprising a model-free controller. The control system receives the output parameter (280), optimizes the input parameter (270) based on the received output parameter (280), and outputs an optimized input parameter (270) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Research on phase locked loop in optical memory servo system
NASA Astrophysics Data System (ADS)
Qin, Liqin; Ma, Jianshe; Zhang, Jianyong; Pan, Longfa; Deng, Ming
2005-09-01
Phase locked loop (PLL) is a closed loop automatic control system, which can track the phase of input signal. It widely applies in each area of electronic technology. This paper research the phase locked loop in optical memory servo area. This paper introduces the configuration of digital phase locked loop (PLL) and phase locked servo system, the control theory, and analyses system's stability. It constructs the phase locked loop experiment system of optical disk spindle servo, which based on special chip. DC motor is main object, this system adopted phase locked servo technique and digital signal processor (DSP) to achieve constant linear velocity (CLV) in controlling optical spindle motor. This paper analyses the factors that affect the stability of phase locked loop in spindle servo system, and discusses the affection to the optical disk readout signal and jitter due to the stability of phase locked loop.
Initial Performance of the Keck AO Wavefront Controller System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johansson, E M; Acton, D S; An, J R
2001-03-01
The wavefront controller for the Keck Observatory AO system consists of two separate real-time control loops: a tip-tilt control loop to remove tilt from the incoming wavefront, and a deformable mirror control loop to remove higher-order aberrations. In this paper, we describe these control loops and analyze their performance using diagnostic data acquired during the integration and testing of the AO system on the telescope. Disturbance rejection curves for the controllers are calculated from the experimental data and compared to theory. The residual wavefront errors due to control loop bandwidth are also calculated from the data, and possible improvements tomore » the controller performance are discussed.« less
Fuzzy logic control and optimization system
Lou, Xinsheng [West Hartford, CT
2012-04-17
A control system (300) for optimizing a power plant includes a chemical loop having an input for receiving an input signal (369) and an output for outputting an output signal (367), and a hierarchical fuzzy control system (400) operably connected to the chemical loop. The hierarchical fuzzy control system (400) includes a plurality of fuzzy controllers (330). The hierarchical fuzzy control system (400) receives the output signal (367), optimizes the input signal (369) based on the received output signal (367), and outputs an optimized input signal (369) to the input of the chemical loop to control a process of the chemical loop in an optimized manner.
Servo control booster system for minimizing following error
Wise, William L.
1985-01-01
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
NASA Astrophysics Data System (ADS)
Chen, Xi; Li, Yancheng; Li, Jianchun; Gu, Xiaoyu
2018-01-01
Time delay is a challenge issue faced by the real-time control application of the magnetorheological (MR) devices. Not to deal with it properly may jeopardize the effectiveness of the control, even lead to instability of the control system or catastrophic failure. This paper proposes a dual-loop adaptive control to address the response time delay associated with MR devices. In the proposed dual-loop control, the inner loop is designed to compensate the time delay of MR device induced by the PWM current driver. While the outer loop control can be any structural control algorithm with aims to reducing structural responses of a building during extreme loadings. Here an adaptive control strategy is adopted. To verify the proposed dual-loop control, a smart base isolation system employing magnetorheological elastomer base isolators is used as an example to illustrate the control effect. Numerical study is then conducted using a 5 -storey shear building model equipped with smart base isolation system. The result shows that with the implementation of the inner loop, the control current can instantly follow the control command which reduce the possibility of instability caused by the time delay. Comparative studies are conducted between three control strategies, i.e. dual-loop control, Lyapunov’s direct method based control and optimal passive base isolation control. The results of the study have demonstrated that the proposed dual-loop control strategy can achieve much better performance than the other two control strategies.
Similarity Metrics for Closed Loop Dynamic Systems
NASA Technical Reports Server (NTRS)
Whorton, Mark S.; Yang, Lee C.; Bedrossian, Naz; Hall, Robert A.
2008-01-01
To what extent and in what ways can two closed-loop dynamic systems be said to be "similar?" This question arises in a wide range of dynamic systems modeling and control system design applications. For example, bounds on error models are fundamental to the controller optimization with modern control design methods. Metrics such as the structured singular value are direct measures of the degree to which properties such as stability or performance are maintained in the presence of specified uncertainties or variations in the plant model. Similarly, controls-related areas such as system identification, model reduction, and experimental model validation employ measures of similarity between multiple realizations of a dynamic system. Each area has its tools and approaches, with each tool more or less suited for one application or the other. Similarity in the context of closed-loop model validation via flight test is subtly different from error measures in the typical controls oriented application. Whereas similarity in a robust control context relates to plant variation and the attendant affect on stability and performance, in this context similarity metrics are sought that assess the relevance of a dynamic system test for the purpose of validating the stability and performance of a "similar" dynamic system. Similarity in the context of system identification is much more relevant than are robust control analogies in that errors between one dynamic system (the test article) and another (the nominal "design" model) are sought for the purpose of bounding the validity of a model for control design and analysis. Yet system identification typically involves open-loop plant models which are independent of the control system (with the exception of limited developments in closed-loop system identification which is nonetheless focused on obtaining open-loop plant models from closed-loop data). Moreover the objectives of system identification are not the same as a flight test and hence system identification error metrics are not directly relevant. In applications such as launch vehicles where the open loop plant is unstable it is similarity of the closed-loop system dynamics of a flight test that are relevant.
Improved Beam Jitter Control Methods for High Energy Laser Systems
2009-12-01
Figure 16. The inner loop is a rate control loop composed of a gimbal, power amplifier , controller, and servo components (gyro, motor, and encoder...system characterization experiments 1. WFOV Control Loop a. Resonance Frequency Random signals were applied to the power amplifier and output...Loop Stabilization By applying a disturbance to the input of the power amplifier and measuring torque error, one is able to determine the torque
Iterative LQG Controller Design Through Closed-Loop Identification
NASA Technical Reports Server (NTRS)
Hsiao, Min-Hung; Huang, Jen-Kuang; Cox, David E.
1996-01-01
This paper presents an iterative Linear Quadratic Gaussian (LQG) controller design approach for a linear stochastic system with an uncertain open-loop model and unknown noise statistics. This approach consists of closed-loop identification and controller redesign cycles. In each cycle, the closed-loop identification method is used to identify an open-loop model and a steady-state Kalman filter gain from closed-loop input/output test data obtained by using a feedback LQG controller designed from the previous cycle. Then the identified open-loop model is used to redesign the state feedback. The state feedback and the identified Kalman filter gain are used to form an updated LQC controller for the next cycle. This iterative process continues until the updated controller converges. The proposed controller design is demonstrated by numerical simulations and experiments on a highly unstable large-gap magnetic suspension system.
Robust fast controller design via nonlinear fractional differential equations.
Zhou, Xi; Wei, Yiheng; Liang, Shu; Wang, Yong
2017-07-01
A new method for linear system controller design is proposed whereby the closed-loop system achieves both robustness and fast response. The robustness performance considered here means the damping ratio of closed-loop system can keep its desired value under system parameter perturbation, while the fast response, represented by rise time of system output, can be improved by tuning the controller parameter. We exploit techniques from both the nonlinear systems control and the fractional order systems control to derive a novel nonlinear fractional order controller. For theoretical analysis of the closed-loop system performance, two comparison theorems are developed for a class of fractional differential equations. Moreover, the rise time of the closed-loop system can be estimated, which facilitates our controller design to satisfy the fast response performance and maintain the robustness. Finally, numerical examples are given to illustrate the effectiveness of our methods. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Servo control booster system for minimizing following error
Wise, W.L.
1979-07-26
A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, ..delta..S/sub R/, on a continuous real-time basis, for all operational times of consequence and for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error greater than or equal to ..delta..S/sub R/, to produce precise position correction signals. When the command-to-response error is less than ..delta..S/sub R/, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.
Study of Fluid Cooling Loop System in Chinese Manned Spacecraft
NASA Astrophysics Data System (ADS)
Jiang, Jun; Xu, Jiwan; Fan, Hanlin; Huang, Jiarong
2002-01-01
change. To solve the questions, a fluid cooling loop system must be applied to Chinese manned spacecraft besides other conventional thermal control methods, such as thermal control coatings, multiplayer insulation blankets, heat pipes, electro-heating adjustment temperature devices, and so on. The paper will introduce the thermal design of inner and outer fluid loop including their constitution and fundamental, etc. The capability of heat transportation and the accuracy of control temperature for the fluid loop will be evaluated and analyzed. To insure the air temperature of sealed cabins within 21+/-4, the inlet liquid temperature of condensing heat exchanger needs to be controlled within 9+/-2. To insure this, the inlet liquid temperature of middle heat exchanger needs to be controlled within 8+/-1.8. The inlet temperature point is controlled by a subsidiary loop adjusting: when the computer receives feedbacks of the deviation and the variety rate of deviation from the controlled temperature point. It drives the temperature control valve to adjust the flow flux distribution between the main loop through radiator and the subsidiary loop which isn't through radiator to control the temperature of the mixed fluid within 8+/-1.8. The paper will also introduce thermal designs of key parts in the cooling loop, such as space radiators, heat exchangers and cooling plates. Thermal simulated tests on the ground and flight tests have been performed to verify correctness of thermal designs. rational and the loop system works order. It realizes the circulation of absorbing heat dissipation to the loop and transferring it to radiator then radiating it to space. (2) loop control system controls inlet temperature of middle heat exchanger within 8+/-1.8 under various thermal cases. Thermal design of the middle heat exchanger insures inlet temperature of condensing heat within 9+/-2. Thereby, the air temperature of sealed cabins is controlled within about 21+/-4 accurately. (3) The thermal designs of the key heat exchanging parts (such as radiator, heat exchangers and cooling plates) in the cooling loop are rational and effective, they meet the requirements of heat exchanging and assure the entire system work order.
Two-motor direct drive control for elevation axis of telescope
NASA Astrophysics Data System (ADS)
Tang, T.; Tan, Y.; Ren, G.
2014-07-01
Two-motor application has become a very attractive filed in important field which high performance is permitted to achieve of position, speed, and acceleration. In the elevation axis of telescope control system, two-motor direct drive is proposed to enhance the high performance of tracking control system. Although there are several dominant strengths such as low size of motors and high torsional structural dynamics, the synchronization control of two motors is a very difficult and important. In this paper, a multi-loop control technique base master-slave current control is used to synchronize two motors, including current control loop, speed control loop and position control loop. First, the direct drive function of two motors is modeled. Compared of single motor direct control system, the resonance frequency of two motor control systems is same; while the anti-resonance frequency of two motors control system is 1.414 times than those of sing motor system. Because of rigid coupling for direct drive, the speed of two motor of the system is same, and the synchronization of torque for motors is critical. The current master-slave control technique is effective to synchronize the torque, which the current loop of the master motors is tracked the other slave motor. The speed feedback into the input of current loop of the master motors. The experiments test the performance of the two motors drive system. The random tracking error is 0.0119" for the line trajectory of 0.01°/s.
Closed-loop analysis and control of a non-inverting buck-boost converter
NASA Astrophysics Data System (ADS)
Chen, Zengshi; Hu, Jiangang; Gao, Wenzhong
2010-11-01
In this article, a cascade controller is designed and analysed for a non-inverting buck-boost converter. The fast inner current loop uses sliding mode control. The slow outer voltage loop uses the proportional-integral (PI) control. Stability analysis and selection of PI gains are based on the nonlinear closed-loop error dynamics incorporating both the inner and outer loop controllers. The closed-loop system is proven to have a nonminimum phase structure. The voltage transient due to step changes of input voltage or resistance is predictable. The operating range of the reference voltage is discussed. The controller is validated by a simulation circuit. The simulation results show that the reference output voltage is well-tracked under system uncertainties or disturbances, confirming the validity of the proposed controller.
NASA Technical Reports Server (NTRS)
Taylor, R. B.; Zwicke, P. E.; Gold, P.; Miao, W.
1980-01-01
An analytical study was conducted to define the basic configuration of an active control system for helicopter vibration and gust response alleviation. The study culminated in a control system design which has two separate systems: narrow band loop for vibration reduction and wider band loop for gust response alleviation. The narrow band vibration loop utilizes the standard swashplate control configuration to input controller for the vibration loop is based on adaptive optimal control theory and is designed to adapt to any flight condition including maneuvers and transients. The prime characteristics of the vibration control system is its real time capability. The gust alleviation control system studied consists of optimal sampled data feedback gains together with an optimal one-step-ahead prediction. The prediction permits the estimation of the gust disturbance which can then be used to minimize the gust effects on the helicopter.
Shoemaker, Adam; Grange, Robert W.; Abaid, Nicole; Leonessa, Alexander
2017-01-01
Functional Electrical Stimulation is a promising approach to treat patients by stimulating the peripheral nerves and their corresponding motor neurons using electrical current. This technique helps maintain muscle mass and promote blood flow in the absence of a functioning nervous system. The goal of this work is to control muscle contractions from FES via three different algorithms and assess the most appropriate controller providing effective stimulation of the muscle. An open-loop system and a closed-loop system with three types of model-free feedback controllers were assessed for tracking control of skeletal muscle contractions: a Proportional-Integral (PI) controller, a Model Reference Adaptive Control algorithm, and an Adaptive Augmented PI system. Furthermore, a mathematical model of a muscle-mass-spring system was implemented in simulation to test the open-loop case and closed-loop controllers. These simulations were carried out and then validated through experiments ex vivo. The experiments included muscle contractions following four distinct trajectories: a step, sine, ramp, and square wave. Overall, the closed-loop controllers followed the stimulation trajectories set for all the simulated and tested muscles. When comparing the experimental outcomes of each controller, we concluded that the Adaptive Augmented PI algorithm provided the best closed-loop performance for speed of convergence and disturbance rejection. PMID:28273101
Rinehart, Joseph; Liu, Ngai; Alexander, Brenton; Cannesson, Maxime
2012-01-01
Closed-loop (automated) controllers are encountered in all aspects of modern life in applications ranging from air-conditioning to spaceflight. Although these systems are virtually ubiquitous, they are infrequently used in anesthesiology because of the complexity of physiologic systems and the difficulty in obtaining reliable and valid feedback data from the patient. Despite these challenges, closed-loop systems are being increasingly studied and improved for medical use. Two recent developments have made fluid administration a candidate for closed-loop control. First, the further description and development of dynamic predictors of fluid responsiveness provides a strong parameter for use as a control variable to guide fluid administration. Second, rapid advances in noninvasive monitoring of cardiac output and other hemodynamic variables make goal-directed therapy applicable for a wide range of patients in a variety of clinical care settings. In this article, we review the history of closed-loop controllers in clinical care, discuss the current understanding and limitations of the dynamic predictors of fluid responsiveness, and examine how these variables might be incorporated into a closed-loop fluid administration system.
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA
2012-06-05
A system is provided for controlling two alternating current (AC) machines via a five-phase PWM inverter module. The system comprises a first control loop, a second control loop, and a current command adjustment module. The current command adjustment module operates in conjunction with the first control loop and the second control loop to continuously adjust current command signals that control the first AC machine and the second AC machine such that they share the input voltage available to them without compromising the target mechanical output power of either machine. This way, even when the phase voltage available to either one of the machines decreases, that machine outputs its target mechanical output power.
NASA Technical Reports Server (NTRS)
Broussard, J. R.; Halyo, N.
1984-01-01
This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.
Indirect Identification of Linear Stochastic Systems with Known Feedback Dynamics
NASA Technical Reports Server (NTRS)
Huang, Jen-Kuang; Hsiao, Min-Hung; Cox, David E.
1996-01-01
An algorithm is presented for identifying a state-space model of linear stochastic systems operating under known feedback controller. In this algorithm, only the reference input and output of closed-loop data are required. No feedback signal needs to be recorded. The overall closed-loop system dynamics is first identified. Then a recursive formulation is derived to compute the open-loop plant dynamics from the identified closed-loop system dynamics and known feedback controller dynamics. The controller can be a dynamic or constant-gain full-state feedback controller. Numerical simulations and test data of a highly unstable large-gap magnetic suspension system are presented to demonstrate the feasibility of this indirect identification method.
A method for reducing sampling jitter in digital control systems
NASA Technical Reports Server (NTRS)
Anderson, T. O.; HURBD W. J.; Hurd, W. J.
1969-01-01
Digital phase lock loop system is designed by smoothing the proportional control with a low pass filter. This method does not significantly affect the loop dynamics when the smoothing filter bandwidth is wide compared to loop bandwidth.
Intelligent flight control systems
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1993-01-01
The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.
A control system design approach for flexible spacecraft
NASA Technical Reports Server (NTRS)
Silverberg, L. M.
1985-01-01
A control system design approach for flexible spacecraft is presented. The control system design is carried out in two steps. The first step consists of determining the ideal control system in terms of a desirable dynamic performance. The second step consists of designing a control system using a limited number of actuators that possess a dynamic performance that is close to the ideal dynamic performance. The effects of using a limited number of actuators is that the actual closed-loop eigenvalues differ from the ideal closed-loop eigenvalues. A method is presented to approximate the actual closed-loop eigenvalues so that the calculation of the actual closed-loop eigenvalues can be avoided. Depending on the application, it also may be desirable to apply the control forces as impulses. The effect of digitizing the control to produce the appropriate impulses is also examined.
A Review of Control Strategies in Closed-Loop Neuroprosthetic Systems
Wright, James; Macefield, Vaughan G.; van Schaik, André; Tapson, Jonathan C.
2016-01-01
It has been widely recognized that closed-loop neuroprosthetic systems achieve more favorable outcomes for users then equivalent open-loop devices. Improved performance of tasks, better usability, and greater embodiment have all been reported in systems utilizing some form of feedback. However, the interdisciplinary work on neuroprosthetic systems can lead to miscommunication due to similarities in well-established nomenclature in different fields. Here we present a review of control strategies in existing experimental, investigational and clinical neuroprosthetic systems in order to establish a baseline and promote a common understanding of different feedback modes and closed-loop controllers. The first section provides a brief discussion of feedback control and control theory. The second section reviews the control strategies of recent Brain Machine Interfaces, neuromodulatory implants, neuroprosthetic systems, and assistive neurorobotic devices. The final section examines the different approaches to feedback in current neuroprosthetic and neurorobotic systems. PMID:27462202
Kuntanapreeda, S; Fullmer, R R
1996-01-01
A training method for a class of neural network controllers is presented which guarantees closed-loop system stability. The controllers are assumed to be nonlinear, feedforward, sampled-data, full-state regulators implemented as single hidden-layer neural networks. The controlled systems must be locally hermitian and observable. Stability of the closed-loop system is demonstrated by determining a Lyapunov function, which can be used to identify a finite stability region about the regulator point.
Energy Systems Integration News | Energy Systems Integration Facility |
-the-loop" (HIL) to connect physical devices to software models, EdgePower is drawing on NREL's are putting their controller into a synthetic environment that is called 'controller in-the-loop controller-in-the-loop platform allows us to observe the dynamics of these buildings as they implement the
Development of closed loop roll control for magnetic balance systems
NASA Technical Reports Server (NTRS)
Covert, E. E.; Haldeman, C. W.; Ramohalli, G.; Way, P.
1982-01-01
This research was undertaken with the goal of demonstrating closed loop control of the roll degree of freedom on the NASA prototype magnetic suspension and balance system at the MIT Aerophysics Laboratory, thus, showing feasibility for a roll control system for any large magnetic balance system which might be built in the future. During the research under this grant, study was directed toward the several areas of torque generation, position sensing, model construction and control system design. These effects were then integrated to produce successful closed loop operation of the analogue roll control system. This experience indicated the desirability of microprocessor control for the angular degrees of freedom.
Feedback control laws for highly maneuverable aircraft
NASA Technical Reports Server (NTRS)
Garrard, William L.; Balas, Gary J.
1994-01-01
During the first half of the year, the investigators concentrated their efforts on completing the design of control laws for the longitudinal axis of the HARV. During the second half of the year they concentrated on the synthesis of control laws for the lateral-directional axes. The longitudinal control law design efforts can be briefly summarized as follows. Longitudinal control laws were developed for the HARV using mu synthesis design techniques coupled with dynamic inversion. An inner loop dynamic inversion controller was used to simplify the system dynamics by eliminating the aerodynamic nonlinearities and inertial cross coupling. Models of the errors resulting from uncertainties in the principal longitudinal aerodynamic terms were developed and included in the model of the HARV with the inner loop dynamic inversion controller. This resulted in an inner loop transfer function model which was an integrator with the modeling errors characterized as uncertainties in gain and phase. Outer loop controllers were then designed using mu synthesis to provide robustness to these modeling errors and give desired response to pilot inputs. Both pitch rate and angle of attack command following systems were designed. The following tasks have been accomplished for the lateral-directional controllers: inner and outer loop dynamic inversion controllers have been designed; an error model based on a linearized perturbation model of the inner loop system was derived; controllers for the inner loop system have been designed, using classical techniques, that control roll rate and Dutch roll response; the inner loop dynamic inversion and classical controllers have been implemented on the six degree of freedom simulation; and lateral-directional control allocation scheme has been developed based on minimizing required control effort.
High precision locating control system based on VCM for Talbot lithography
NASA Astrophysics Data System (ADS)
Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song
2016-10-01
Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyang; Zhang, Qichun; Wang, Hong
To enhance the performance of the tracking property , this paper presents a novel control algorithm for a class of linear dynamic stochastic systems with unmeasurable states, where the performance enhancement loop is established based on Kalman filter. Without changing the existing closed loop with the PI controller, the compensative controller is designed to minimize the variances of the tracking errors using the estimated states and the propagation of state variances. Moreover, the stability of the closed-loop systems has been analyzed in the mean-square sense. A simulated example is included to show the effectiveness of the presented control algorithm, wheremore » encouraging results have been obtained.« less
NASA Astrophysics Data System (ADS)
Kwon, Sung-il; Lynch, M.; Prokop, M.
2005-02-01
This paper addresses the system identification and the decoupling PI controller design for a normal conducting RF cavity. Based on the open-loop measurement data of an SNS DTL cavity, the open-loop system's bandwidths and loop time delays are estimated by using batched least square. With the identified system, a PI controller is designed in such a way that it suppresses the time varying klystron droop and decouples the In-phase and Quadrature of the cavity field. The Levenberg-Marquardt algorithm is applied for nonlinear least squares to obtain the optimal PI controller parameters. The tuned PI controller gains are downloaded to the low-level RF system by using channel access. The experiment of the closed-loop system is performed and the performance is investigated. The proposed tuning method is running automatically in real time interface between a host computer with controller hardware through ActiveX Channel Access.
Insulin delivery and nocturnal glucose control in children and adolescents with type 1 diabetes.
Tauschmann, Martin; Hovorka, Roman
2017-12-01
Nocturnal glucose control remains challenging in children and adolescents with type 1 diabetes due to highly variable overnight insulin requirements. The issue may be addressed by glucose responsive insulin delivery based on real-time continuous glucose measurements. Areas covered: This review outlines recent developments of glucose responsive insulin delivery systems from a paediatric perspective. We cover threshold-based suspend application, predictive low glucose suspend, and more advanced single hormone and dual-hormone closed-loop systems. Approaches are evaluated in relation to nocturnal glucose control particularly during outpatient randomised controlled trials. Expert opinion: Significant progress translating research from controlled clinical centre settings to free-living unsupervised home studies have been achieved over the past decade. Nocturnal glycaemic control can be improved whilst reducing the risk of hypoglycaemia with closed-loop systems. Following the US regulatory approval of the first hybrid closed-loop system in non-paediatric population, large multinational closed-loop clinical trials and pivotal studies including paediatric populations are underway or in preparation to facilitate the use of closed-loop systems in clinical practice.
A vision-based system for fast and accurate laser scanning in robot-assisted phonomicrosurgery.
Dagnino, Giulio; Mattos, Leonardo S; Caldwell, Darwin G
2015-02-01
Surgical quality in phonomicrosurgery can be improved by open-loop laser control (e.g., high-speed scanning capabilities) with a robust and accurate closed-loop visual servoing systems. A new vision-based system for laser scanning control during robot-assisted phonomicrosurgery was developed and tested. Laser scanning was accomplished with a dual control strategy, which adds a vision-based trajectory correction phase to a fast open-loop laser controller. The system is designed to eliminate open-loop aiming errors caused by system calibration limitations and by the unpredictable topology of real targets. Evaluation of the new system was performed using CO(2) laser cutting trials on artificial targets and ex-vivo tissue. This system produced accuracy values corresponding to pixel resolution even when smoke created by the laser-target interaction clutters the camera view. In realistic test scenarios, trajectory following RMS errors were reduced by almost 80 % with respect to open-loop system performances, reaching mean error values around 30 μ m and maximum observed errors in the order of 60 μ m. A new vision-based laser microsurgical control system was shown to be effective and promising with significant positive potential impact on the safety and quality of laser microsurgeries.
Sensory feedback in prosthetics: a standardized test bench for closed-loop control.
Dosen, Strahinja; Markovic, Marko; Hartmann, Cornelia; Farina, Dario
2015-03-01
Closing the control loop by providing sensory feedback to the user of a prosthesis is an important challenge, with major impact on the future of prosthetics. Developing and comparing closed-loop systems is a difficult task, since there are many different methods and technologies that can be used to implement each component of the system. Here, we present a test bench developed in Matlab Simulink for configuring and testing the closed-loop human control system in standardized settings. The framework comprises a set of connected generic blocks with normalized inputs and outputs, which can be customized by selecting specific implementations from a library of predefined components. The framework is modular and extensible and it can be used to configure, compare and test different closed-loop system prototypes, thereby guiding the development towards an optimal system configuration. The use of the test bench was demonstrated by investigating two important aspects of closed-loop control: performance of different electrotactile feedback interfaces (spatial versus intensity coding) during a pendulum stabilization task and feedforward methods (joystick versus myocontrol) for force control. The first experiment demonstrated that in the case of trained subjects the intensity coding might be superior to spatial coding. In the second experiment, the control of force was rather poor even with a stable and precise control interface (joystick), demonstrating that inherent characteristics of the prosthesis can be an important limiting factor when considering the overall effectiveness of the closed-loop control. The presented test bench is an important instrument for investigating different aspects of human manual control with sensory feedback.
NASA Technical Reports Server (NTRS)
Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig
2017-01-01
This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.
Multiple Flow Loop SCADA System Implemented on the Production Prototype Loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baily, Scott A.; Dalmas, Dale Allen; Wheat, Robert Mitchell
2015-11-16
The following report covers FY 15 activities to develop supervisory control and data acquisition (SCADA) system for the Northstar Moly99 production prototype gas flow loop. The goal of this effort is to expand the existing system to include a second flow loop with a larger production-sized blower. Besides testing the larger blower, this system will demonstrate the scalability of our solution to multiple flow loops.
Closed Loop System Identification with Genetic Algorithms
NASA Technical Reports Server (NTRS)
Whorton, Mark S.
2004-01-01
High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.
A novel double loop control model design for chemical unstable processes.
Cong, Er-Ding; Hu, Ming-Hui; Tu, Shan-Tung; Xuan, Fu-Zhen; Shao, Hui-He
2014-03-01
In this manuscript, based on Smith predictor control scheme for unstable process in industry, an improved double loop control model is proposed for chemical unstable processes. Inner loop is to stabilize integrating the unstable process and transform the original process to first-order plus pure dead-time dynamic stable process. Outer loop is to enhance the performance of set point response. Disturbance controller is designed to enhance the performance of disturbance response. The improved control system is simple with exact physical meaning. The characteristic equation is easy to realize stabilization. Three controllers are separately design in the improved scheme. It is easy to design each controller and good control performance for the respective closed-loop transfer function separately. The robust stability of the proposed control scheme is analyzed. Finally, case studies illustrate that the improved method can give better system performance than existing design methods. © 2013 ISA Published by ISA All rights reserved.
NASA Technical Reports Server (NTRS)
Collins, J. J.; De Luca, C. J.; Pavlik, A. E.; Roy, S. H.; Emley, M. S.; Young, L. R. (Principal Investigator)
1995-01-01
Stabilogram-diffusion analysis was used to examine how prolonged periods in microgravity affect the open-loop and closed-loop postural control mechanisms. It was hypothesized that following spaceflight: (1) the effective stochastic activity of the open-loop postural control schemes in astronauts is increased; (2) the effective stochastic activity and uncorrelated behavior, respectively, of the closed-loop postural control mechanisms in astronauts are increased; and (3) astronauts utilized open-loop postural controls schemes for shorter time intervals and smaller displacements. Four crew members and two alternates from the 14-day Spacelab Life Sciences 2 Mission were included in the study. Each subject was tested under eyes-open, quiet-standing conditions on multiple preflight and postflight days. The subjects' center-of-pressure trajectories were measured with a force platform and analyzed according to stabilogram-diffusion analysis. It was found that the effective stochastic activity of the open-loop postural control schemes in three of the four crew members was increased following spaceflight. This result is interpreted as an indication that there may be in-flight adaptations to higher-level descending postural control pathways, e.g., a postflight increase in the tonic activation of postural muscles. This change may also be the consequence of a compensatory (e.g., "stiffening") postural control strategy that is adopted by astronauts to account for general feeling of postflight unsteadiness. The crew members, as a group, did not exhibit any consistent preflight/postflight differences in the steady-state behavior of their closed-loop postural control mechanisms or in the functional interaction of their open-loop and closed-loop postural control mechanisms. These results are interpreted as indications that although there may be in-flight adaptations to the vestibular system and/or proprioceptive system, input from the visual system can compensate for such changes during undisturbed stance.
NASA Astrophysics Data System (ADS)
Deng, Chao; Ren, Wei; Mao, Yao; Ren, Ge
2017-08-01
A plug-in module acceleration feedback control (Plug-In AFC) strategy based on the disturbance observer (DOB) principle is proposed for charge-coupled device (CCD)-based fast steering mirror (FSM) stabilization systems. In classical FSM tracking systems, dual-loop control (DLC), including velocity feedback and position feedback, is usually utilized to enhance the closed-loop performance. Due to the mechanical resonance of the system and CCD time delay, the closed-loop bandwidth is severely restricted. To solve this problem, cascade acceleration feedback control (AFC), which is a kind of high-precision robust control method, is introduced to strengthen the disturbance rejection property. However, in practical applications, it is difficult to realize an integral algorithm in an acceleration controller to compensate for the quadratic differential contained in the FSM acceleration model, resulting in a challenging controller design and a limited improvement. To optimize the acceleration feedback framework in the FSM system, different from the cascade AFC, the accelerometers are used to construct DOB to compensate for the platform vibrations directly. The acceleration nested loop can be plugged into the velocity loop without changing the system stability, and the controller design is quite simple. A series of comparative experimental results demonstrate that the disturbance rejection property of the CCD-based FSM can be effectively improved by the proposed approach.
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.
2016-01-01
The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for rehabilitation of gait. While the feasibility of a closed-loop BCI system for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a virtual reality (BCI-VR) environment has yet to be demonstrated. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control the walking movements of a virtual avatar. Moreover, virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. These findings have implications for the development of BCI-VR systems for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI system. PMID:27713915
A Robust H ∞ Controller for an UAV Flight Control System.
López, J; Dormido, R; Dormido, S; Gómez, J P
2015-01-01
The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements.
Smart Braid Feedback for the Closed-Loop Control of Soft Robotic Systems.
Felt, Wyatt; Chin, Khai Yi; Remy, C David
2017-09-01
This article experimentally investigates the potential of using flexible, inductance-based contraction sensors in the closed-loop motion control of soft robots. Accurate motion control remains a highly challenging task for soft robotic systems. Precise models of the actuation dynamics and environmental interactions are often unavailable. This renders open-loop control impossible, while closed-loop control suffers from a lack of suitable feedback. Conventional motion sensors, such as linear or rotary encoders, are difficult to adapt to robots that lack discrete mechanical joints. The rigid nature of these sensors runs contrary to the aspirational benefits of soft systems. As truly soft sensor solutions are still in their infancy, motion control of soft robots has so far relied on laboratory-based sensing systems such as motion capture, electromagnetic (EM) tracking, or Fiber Bragg Gratings. In this article, we used embedded flexible sensors known as Smart Braids to sense the contraction of McKibben muscles through changes in inductance. We evaluated closed-loop control on two systems: a revolute joint and a planar, one degree of freedom continuum manipulator. In the revolute joint, our proposed controller compensated for elasticity in the actuator connections. The Smart Braid feedback allowed motion control with a steady-state root-mean-square (RMS) error of [1.5]°. In the continuum manipulator, Smart Braid feedback enabled tracking of the desired tip angle with a steady-state RMS error of [1.25]°. This work demonstrates that Smart Braid sensors can provide accurate position feedback in closed-loop motion control suitable for field applications of soft robotic systems.
Investigation of Inner Loop Flight Control Strategies for High-Speed Research
NASA Technical Reports Server (NTRS)
Newman, Brett; Kassem, Ayman
1999-01-01
This report describes the activities and findings conducted under contract NAS1-19858 with NASA Langley Research Center. Subject matter is the investigation of suitable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Techniques considered in this body of work are primarily conventional-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include 1) current aeroelastic vehicle modeling procedures require further emphasis and refinement, 2) traditional and nontraditional inner loop flight control strategies employing a single feedback loop do not appear sufficient for highly flexible HSCT class vehicles, 3) inner loop flight control systems will, in all likelihood, require multiple interacting feedback loops, and 4) Ref. H HSCT configuration presents major challenges to designing acceptable closed-loop flight dynamics.
Voice loops as coordination aids in space shuttle mission control.
Patterson, E S; Watts-Perotti, J; Woods, D D
1999-01-01
Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.
Voice loops as coordination aids in space shuttle mission control
NASA Technical Reports Server (NTRS)
Patterson, E. S.; Watts-Perotti, J.; Woods, D. D.
1999-01-01
Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.
Analysis and design of a 3rd order velocity-controlled closed-loop for MEMS vibratory gyroscopes.
Wu, Huan-ming; Yang, Hai-gang; Yin, Tao; Jiao, Ji-wei
2013-09-18
The time-average method currently available is limited to analyzing the specific performance of the automatic gain control-proportional and integral (AGC-PI) based velocity-controlled closed-loop in a micro-electro-mechanical systems (MEMS) vibratory gyroscope, since it is hard to solve nonlinear functions in the time domain when the control loop reaches to 3rd order. In this paper, we propose a linearization design approach to overcome this limitation by establishing a 3rd order linear model of the control loop and transferring the analysis to the frequency domain. Order reduction is applied on the built linear model's transfer function by constructing a zero-pole doublet, and therefore mathematical expression of each control loop's performance specification is obtained. Then an optimization methodology is summarized, which reveals that a robust, stable and swift control loop can be achieved by carefully selecting the system parameters following a priority order. Closed-loop drive circuits are designed and implemented using 0.35 μm complementary metal oxide semiconductor (CMOS) process, and experiments carried out on a gyroscope prototype verify the optimization methodology that an optimized stability of the control loop can be achieved by constructing the zero-pole doublet, and disturbance rejection capability (D.R.C) of the control loop can be improved by increasing the integral term.
Closed-loop and robust control of quantum systems.
Chen, Chunlin; Wang, Lin-Cheng; Wang, Yuanlong
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H(∞) control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention.
Loop transfer recovery for general nonminimum phase discrete time systems. I - Analysis
NASA Technical Reports Server (NTRS)
Chen, Ben M.; Saberi, Ali; Sannuti, Peddapullaiah; Shamash, Yacov
1992-01-01
A complete analysis of loop transfer recovery (LTR) for general nonstrictly proper, not necessarily minimum phase discrete time systems is presented. Three different observer-based controllers, namely, `prediction estimator' and full or reduced-order type `current estimator' based controllers, are used. The analysis corresponding to all these three controllers is unified into a single mathematical framework. The LTR analysis given here focuses on three fundamental issues: (1) the recoverability of a target loop when it is arbitrarily given, (2) the recoverability of a target loop while taking into account its specific characteristics, and (3) the establishment of necessary and sufficient conditions on the given system so that it has at least one recoverable target loop transfer function or sensitivity function. Various differences that arise in LTR analysis of continuous and discrete systems are pointed out.
Simulating closed- and open-loop voluntary movement: a nonlinear control-systems approach.
Davidson, Paul R; Jones, Richard D; Andreae, John H; Sirisena, Harsha R
2002-11-01
In many recent human motor control models, including feedback-error learning and adaptive model theory (AMT), feedback control is used to correct errors while an inverse model is simultaneously tuned to provide accurate feedforward control. This popular and appealing hypothesis, based on a combination of psychophysical observations and engineering considerations, predicts that once the tuning of the inverse model is complete the role of feedback control is limited to the correction of disturbances. This hypothesis was tested by looking at the open-loop behavior of the human motor system during adaptation. An experiment was carried out involving 20 normal adult subjects who learned a novel visuomotor relationship on a pursuit tracking task with a steering wheel for input. During learning, the response cursor was periodically blanked, removing all feedback about the external system (i.e., about the relationship between hand motion and response cursor motion). Open-loop behavior was not consistent with a progressive transfer from closed- to open-loop control. Our recently developed computational model of the brain--a novel nonlinear implementation of AMT--was able to reproduce the observed closed- and open-loop results. In contrast, other control-systems models exhibited only minimal feedback control following adaptation, leading to incorrect open-loop behavior. This is because our model continues to use feedback to control slow movements after adaptation is complete. This behavior enhances the internal stability of the inverse model. In summary, our computational model is currently the only motor control model able to accurately simulate the closed- and open-loop characteristics of the experimental response trajectories.
Energy Systems Integration News | Energy Systems Integration Facility |
distribution feeder models for use in hardware-in-the-loop (HIL) experiments. Using this method, a full feeder ; proposes an additional control loop to improve frequency support while ensuring stable operation. The and Frequency Deviation," also proposes an additional control loop, this time to smooth the wind
Study of a control strategy for grid side converter in doubly- fed wind power system
NASA Astrophysics Data System (ADS)
Zhu, D. J.; Tan, Z. L.; Yuan, F.; Wang, Q. Y.; Ding, M.
2016-08-01
The grid side converter is an important part of the excitation system of doubly-fed asynchronous generator used in wind power system. As a three-phase voltage source PWM converter, it can not only transfer slip power in the form of active power, but also adjust the reactive power of the grid. This paper proposed a control approach for improving its performance. In this control approach, the dc voltage is regulated by a sliding mode variable structure control scheme and current by a variable structure controller based on the input output linearization. The theoretical bases of the sliding mode variable structure control were introduced, and the stability proof was presented. Switching function of the system has been deduced, sliding mode voltage controller model has been established, and the output of the outer voltage loop is the instruction of the inner current loop. Affine nonlinear model of two input two output equations on d-q axis for current has been established its meeting conditions of exact linearization were proved. In order to improve the anti-jamming capability of the system, a variable structure control was added in the current controller, the control law was deduced. The dual-loop control with sliding mode control in outer voltage loop and linearization variable structure control in inner current loop was proposed. Simulation results demonstrate the effectiveness of the proposed control strategy even during the dc reference voltage and system load variation.
Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret
2015-03-01
This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
2003-01-01
183 3.34 5/rev fixed system hub normal force with 4/rev open loop trailing-edge flap input...184 3.35 5/rev fixed system hub normal force with 5/rev open loop trailing-edge flap input...185 3.36 5/rev fixed system hub normal force with 6/rev open loop trailing-edge flap
Multi-loop control of UPS inverter with a plug-in odd-harmonic repetitive controller.
Razi, Reza; Karbasforooshan, Mohammad-Sadegh; Monfared, Mohammad
2017-03-01
This paper proposes an improved multi-loop control scheme for the single-phase uninterruptible power supply (UPS) inverter by using a plug-in odd-harmonic repetitive controller to regulate the output voltage. In the suggested control method, the output voltage and the filter capacitor current are used as the outer and inner loop feedback signals, respectively and the instantaneous value of the reference voltage feedforwarded to the output of the controller. Instead of conventional linear (proportional-integral/-resonant) and conventional repetitive controllers, a plug-in odd-harmonic repetitive controller is employed in the outer loop to regulate the output voltage, which occupies less memory space and offers faster tracking performance compared to the conventional one. Also, a simple proportional controller is used in the inner loop for active damping of possible resonances and improving the transient performance. The feedforward of the converter reference voltage enhances the robust performance of the system and simplifies the system modelling and the controller design. A step-by-step design procedure is presented for the proposed controller, which guarantees stability of the system under worst-case scenarios. Simulation and experimental results validate the excellent steady-state and transient performance of the proposed control scheme and provide the exact comparison of the proposed method with the conventional multi-loop control method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Analytical solutions to optimal underactuated spacecraft formation reconfiguration
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-11-01
Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.
Closed-loop model identification of cooperative manipulators holding deformable objects
NASA Astrophysics Data System (ADS)
Alkathiri, A. A.; Akmeliawati, R.; Azlan, N. Z.
2017-11-01
This paper presents system identification to obtain the closed-loop models of a couple of cooperative manipulators in a system, which function to hold deformable objects. The system works using the master-slave principle. In other words, one of the manipulators is position-controlled through encoder feedback, while a force sensor gives feedback to the other force-controlled manipulator. Using the closed-loop input and output data, the closed-loop models, which are useful for model-based control design, are estimated. The criteria for model validation are a 95% fit between the measured and simulated output of the estimated models and residual analysis. The results show that for both position and force control respectively, the fits are 95.73% and 95.88%.
Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Koppen, Daniel M.
1997-01-01
During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.
A Robust H ∞ Controller for an UAV Flight Control System
López, J.
2015-01-01
The objective of this paper is the implementation and validation of a robust H ∞ controller for an UAV to track all types of manoeuvres in the presence of noisy environment. A robust inner-outer loop strategy is implemented. To design the H ∞ robust controller in the inner loop, H ∞ control methodology is used. The two controllers that conform the outer loop are designed using the H ∞ Loop Shaping technique. The reference vector used in the control architecture formed by vertical velocity, true airspeed, and heading angle, suggests a nontraditional way to pilot the aircraft. The simulation results show that the proposed control scheme works well despite the presence of noise and uncertainties, so the control system satisfies the requirements. PMID:26221622
Analysis and optimisation of the convergence behaviour of the single channel digital tanlock loop
NASA Astrophysics Data System (ADS)
Al-Kharji Al-Ali, Omar; Anani, Nader; Al-Araji, Saleh; Al-Qutayri, Mahmoud
2013-09-01
The mathematical analysis of the convergence behaviour of the first-order single channel digital tanlock loop (SC-DTL) is presented. This article also describes a novel technique that allows controlling the convergence speed of the loop, i.e. the time taken by the phase-error to reach its steady-state value, by using a specialised controller unit. The controller is used to adjust the convergence speed so as to selectively optimise a given performance parameter of the loop. For instance, the controller may be used to speed up the convergence in order to increase the lock range and improve the acquisition speed. However, since increasing the lock range can degrade the noise immunity of the system, in a noisy environment the controller can slow down the convergence speed until locking is achieved. Once the system is in lock, the convergence speed can be increased to improve the acquisition speed. The performance of the SC-DTL system was assessed against similar arctan-based loops and the results demonstrate the success of the controller in optimising the performance of the SC-DTL loop. The results of the system testing using MATLAB/Simulink simulation are presented. A prototype of the proposed system was implemented using a field programmable gate array module and the practical results are in good agreement with those obtained by simulation.
Novel imaging closed loop control strategy for heliostats
NASA Astrophysics Data System (ADS)
Bern, Gregor; Schöttl, Peter; Heimsath, Anna; Nitz, Peter
2017-06-01
Central Receiver Systems use up to thousands of heliostats to concentrate solar radiation. The precise control of heliostat aiming points is crucial not only for efficiency but also for reliable plant operation. Besides the calibration of open loop control systems, closed loop tracking strategies are developed to address a precise and efficient aiming strategy. The need for cost reductions in the heliostat field intensifies the motivation for economic closed loop control systems. This work introduces an approach for a closed loop heliostat tracking strategy using image analysis and signal modulation. The approach aims at the extraction of heliostat focal spot position within the receiver domain by means of a centralized remote vision system decoupled from the rough conditions close to the focal area. Taking an image sequence of the receiver while modulating a signal on different heliostats, their aiming points are retrieved. The work describes the methodology and shows first results from simulations and practical tests performed in small scale, motivating further investigation and deployment.
Split radiator design for heat rejection optimization for a waste heat recovery system
Ernst, Timothy C.; Nelson, Christopher R.
2016-10-18
A cooling system provides improved heat recovery by providing a split core radiator for both engine cooling and condenser cooling for a Rankine cycle (RC). The cooling system includes a radiator having a first cooling core portion and a second cooling core portion. An engine cooling loop is fluidly connected the second cooling core portion. A condenser of an RC has a cooling loop fluidly connected to the first cooling core portion. A valve is provided between the engine cooling loop and the condenser cooling loop adjustably control the flow of coolant in the condenser cooling loop into the engine cooling loop. The cooling system includes a controller communicatively coupled to the valve and adapted to determine a load requirement for the internal combustion engine and adjust the valve in accordance with the engine load requirement.
Finite-dimensional modeling of network-induced delays for real-time control systems
NASA Technical Reports Server (NTRS)
Ray, Asok; Halevi, Yoram
1988-01-01
In integrated control systems (ICS), a feedback loop is closed by the common communication channel, which multiplexes digital data from the sensor to the controller and from the controller to the actuator along with the data traffic from other control loops and management functions. Due to asynchronous time-division multiplexing in the network access protocols, time-varying delays are introduced in the control loop, which degrade the system dynamic performance and are a potential source of instability. The delayed control system is represented by a finite-dimensional, time-varying, discrete-time model which is less complex than the existing continuous-time models for time-varying delays; this approach allows for simpler schemes for analysis and simulation of the ICS.
Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.
Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.
2014-01-01
The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992
Nonlinear model predictive control for chemical looping process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Abhinaya; Lei, Hao; Lou, Xinsheng
A control system for optimizing a chemical looping ("CL") plant includes a reduced order mathematical model ("ROM") that is designed by eliminating mathematical terms that have minimal effect on the outcome. A non-linear optimizer provides various inputs to the ROM and monitors the outputs to determine the optimum inputs that are then provided to the CL plant. An estimator estimates the values of various internal state variables of the CL plant. The system has one structure adapted to control a CL plant that only provides pressure measurements in the CL loops A and B, a second structure adapted to amore » CL plant that provides pressure measurements and solid levels in both loops A, and B, and a third structure adapted to control a CL plant that provides full information on internal state variables. A final structure provides a neural network NMPC controller to control operation of loops A and B.« less
Strain actuated aeroelastic control
NASA Technical Reports Server (NTRS)
Lazarus, Kenneth B.
1992-01-01
Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.
NASA Technical Reports Server (NTRS)
VanZwieten, Tannen; Zhu, J. Jim; Adami, Tony; Berry, Kyle; Grammar, Alex; Orr, Jeb S.; Best, Eric A.
2014-01-01
Recently, a robust and practical adaptive control scheme for launch vehicles [ [1] has been introduced. It augments a classical controller with a real-time loop-gain adaptation, and it is therefore called Adaptive Augmentation Control (AAC). The loop-gain will be increased from the nominal design when the tracking error between the (filtered) output and the (filtered) command trajectory is large; whereas it will be decreased when excitation of flex or sloshing modes are detected. There is a need to determine the range and rate of the loop-gain adaptation in order to retain (exponential) stability, which is critical in vehicle operation, and to develop some theoretically based heuristic tuning methods for the adaptive law gain parameters. The classical launch vehicle flight controller design technics are based on gain-scheduling, whereby the launch vehicle dynamics model is linearized at selected operating points along the nominal tracking command trajectory, and Linear Time-Invariant (LTI) controller design techniques are employed to ensure asymptotic stability of the tracking error dynamics, typically by meeting some prescribed Gain Margin (GM) and Phase Margin (PM) specifications. The controller gains at the design points are then scheduled, tuned and sometimes interpolated to achieve good performance and stability robustness under external disturbances (e.g. winds) and structural perturbations (e.g. vehicle modeling errors). While the GM does give a bound for loop-gain variation without losing stability, it is for constant dispersions of the loop-gain because the GM is based on frequency-domain analysis, which is applicable only for LTI systems. The real-time adaptive loop-gain variation of the AAC effectively renders the closed-loop system a time-varying system, for which it is well-known that the LTI system stability criterion is neither necessary nor sufficient when applying to a Linear Time-Varying (LTV) system in a frozen-time fashion. Therefore, a generalized stability metric for time-varying loop=gain perturbations is needed for the AAC.
Thermal Vacuum Test of GLAS Propylene Loop Heat Pipe Development Model
NASA Technical Reports Server (NTRS)
Baker, Charles; Butler, Dan; Ku, Jentung; Kaya, Tarik; Nikitkin, Michael
2000-01-01
This paper presents viewgraphs on Thermal Vacuum Tests of the GLAS (Geoscience Laser Altimeter System) Propylene Loop Heat Pipe Development Model. The topics include: 1) Flight LHP System (Laser); 2) Test Design and Objectives; 3) DM (Development Model) LHP (Loop Heat Pipe) Test Design; 4) Starter Heater and Coupling Blocks; 5) CC Control Heaters and PRT; 6) Heater Plates (Shown in Reflux Mode); 7) Startup Tests; 8) CC Control Heater Power Tests for CC Temperature Control; and 9) Control Temperature Stability.
Closed-Loop and Robust Control of Quantum Systems
Wang, Lin-Cheng
2013-01-01
For most practical quantum control systems, it is important and difficult to attain robustness and reliability due to unavoidable uncertainties in the system dynamics or models. Three kinds of typical approaches (e.g., closed-loop learning control, feedback control, and robust control) have been proved to be effective to solve these problems. This work presents a self-contained survey on the closed-loop and robust control of quantum systems, as well as a brief introduction to a selection of basic theories and methods in this research area, to provide interested readers with a general idea for further studies. In the area of closed-loop learning control of quantum systems, we survey and introduce such learning control methods as gradient-based methods, genetic algorithms (GA), and reinforcement learning (RL) methods from a unified point of view of exploring the quantum control landscapes. For the feedback control approach, the paper surveys three control strategies including Lyapunov control, measurement-based control, and coherent-feedback control. Then such topics in the field of quantum robust control as H ∞ control, sliding mode control, quantum risk-sensitive control, and quantum ensemble control are reviewed. The paper concludes with a perspective of future research directions that are likely to attract more attention. PMID:23997680
Status of E-ELT M5 scale-one demonstrator
NASA Astrophysics Data System (ADS)
Barriga, Pablo; Sedghi, Babak; Dimmler, Martin; Kornweibel, Nick
2014-07-01
The fifth mirror of the European Extremely Large Telescope optical train is a field stabilization tip/tilt unit responsible for correcting the dynamical tip and tilt caused mainly by wind load on the telescope. A scale-one prototype including the inclined support, the fixed frame and a basic control system was designed and manufactured by NTE-SENER (Spain) and CSEM (Switzerland) as part of the prototyping and design activities. All interfaces to the mirror have been reproduced on a dummy structure reproducing the inertial characteristics of the optical element. The M5 unit is required to have sufficient bandwidth for tip/tilt reference commands coming from the wavefront control system. Such a bandwidth can be achieved using local active damping loop to damp the low frequency mechanical modes before closing a position loop. Prototyping on the M5 unit has been undertaken in order to demonstrate the E-ELT control system architecture, concepts and development standards and to further study active damping strategies. The control system consists of two nested loops: a local damping loop and a position loop. The development of this control system was undertaken following the E-ELT control system development standards in order to determine their applicability and performance and includes hardware selection, communication, synchronization, configuration, and data logging. In this paper we present the current status of the prototype M5 control system and the latest results on the active damping control strategy, in particular the promising results obtained with the method of positive position feedback.
Behavioural system identification of visual flight speed control in Drosophila melanogaster
Rohrseitz, Nicola; Fry, Steven N.
2011-01-01
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles. PMID:20525744
Behavioural system identification of visual flight speed control in Drosophila melanogaster.
Rohrseitz, Nicola; Fry, Steven N
2011-02-06
Behavioural control in many animals involves complex mechanisms with intricate sensory-motor feedback loops. Modelling allows functional aspects to be captured without relying on a description of the underlying complex, and often unknown, mechanisms. A wide range of engineering techniques are available for modelling, but their ability to describe time-continuous processes is rarely exploited to describe sensory-motor control mechanisms in biological systems. We performed a system identification of visual flight speed control in the fruitfly Drosophila, based on an extensive dataset of open-loop responses previously measured under free flight conditions. We identified a second-order under-damped control model with just six free parameters that well describes both the transient and steady-state characteristics of the open-loop data. We then used the identified control model to predict flight speed responses after a visual perturbation under closed-loop conditions and validated the model with behavioural measurements performed in free-flying flies under the same closed-loop conditions. Our system identification of the fruitfly's flight speed response uncovers the high-level control strategy of a fundamental flight control reflex without depending on assumptions about the underlying physiological mechanisms. The results are relevant for future investigations of the underlying neuromotor processing mechanisms, as well as for the design of biomimetic robots, such as micro-air vehicles.
Green, W.L.
1980-12-01
An improved continuous-path-positioning servo-control system is provided for reducing the effects of friction arising at very low cutting speeds in the drive trains of numerically controlled cutting machines, and the like. The improvement comprises a feed forward network for altering the gain of the servo-control loop at low positioning velocities to prevent stick-slip movement of the cutting tool holder being positioned by the control system. The feed forward network shunts conventional lag-compensators in the control loop, or loops, so that the error signal used for positioning varies linearly when the value is small, but being limited for larger values. Thus, at higher positioning speeds there is little effect of the added component upon the control being achieved.
An Environmental for Hardware-in-the-Loop Formation Navigation and Control
NASA Technical Reports Server (NTRS)
Burns, Rich; Naasz, Bo; Gaylor, Dave; Higinbotham, John
2004-01-01
Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Test Bed (FFTB) at NASA Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the inclusion of GPS receiver hardware in the simulation loop. Support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented.
Fei, Juntao; Lu, Cheng
2018-04-01
In this paper, an adaptive sliding mode control system using a double loop recurrent neural network (DLRNN) structure is proposed for a class of nonlinear dynamic systems. A new three-layer RNN is proposed to approximate unknown dynamics with two different kinds of feedback loops where the firing weights and output signal calculated in the last step are stored and used as the feedback signals in each feedback loop. Since the new structure has combined the advantages of internal feedback NN and external feedback NN, it can acquire the internal state information while the output signal is also captured, thus the new designed DLRNN can achieve better approximation performance compared with the regular NNs without feedback loops or the regular RNNs with a single feedback loop. The new proposed DLRNN structure is employed in an equivalent controller to approximate the unknown nonlinear system dynamics, and the parameters of the DLRNN are updated online by adaptive laws to get favorable approximation performance. To investigate the effectiveness of the proposed controller, the designed adaptive sliding mode controller with the DLRNN is applied to a -axis microelectromechanical system gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed methodology can achieve good tracking property, and the comparisons of the approximation performance between radial basis function NN, RNN, and DLRNN show that the DLRNN can accurately estimate the unknown dynamics with a fast speed while the internal states of DLRNN are more stable.
A Robust Inner and Outer Loop Control Method for Trajectory Tracking of a Quadrotor
Xia, Dunzhu; Cheng, Limei; Yao, Yanhong
2017-01-01
In order to achieve the complicated trajectory tracking of quadrotor, a geometric inner and outer loop control scheme is presented. The outer loop generates the desired rotation matrix for the inner loop. To improve the response speed and robustness, a geometric SMC controller is designed for the inner loop. The outer loop is also designed via sliding mode control (SMC). By Lyapunov theory and cascade theory, the closed-loop system stability is guaranteed. Next, the tracking performance is validated by tracking three representative trajectories. Then, the robustness of the proposed control method is illustrated by trajectory tracking in presence of model uncertainty and disturbances. Subsequently, experiments are carried out to verify the method. In the experiment, ultra wideband (UWB) is used for indoor positioning. Extended Kalman Filter (EKF) is used for fusing inertial measurement unit (IMU) and UWB measurements. The experimental results show the feasibility of the designed controller in practice. The comparative experiments with PD and PD loop demonstrate the robustness of the proposed control method. PMID:28925984
Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu
2016-06-25
A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.
Vozeh, S; Steimer, J L
1985-01-01
The concept of feedback control methods for drug dosage optimisation is described from the viewpoint of control theory. The control system consists of 5 parts: (a) patient (the controlled process); (b) response (the measured feedback); (c) model (the mathematical description of the process); (d) adaptor (to update the parameters); and (e) controller (to determine optimum dosing strategy). In addition to the conventional distinction between open-loop and closed-loop control systems, a classification is proposed for dosage optimisation techniques which distinguishes between tight-loop and loose-loop methods depending on whether physician's interaction is absent or included as part of the control step. Unlike engineering problems where the process can usually be controlled by fully automated devices, therapeutic situations often require that the physician be included in the decision-making process to determine the 'optimal' dosing strategy. Tight-loop and loose-loop methods can be further divided into adaptive and non-adaptive, depending on the presence of the adaptor. The main application areas of tight-loop feedback control methods are general anaesthesia, control of blood pressure, and insulin delivery devices. Loose-loop feedback methods have been used for oral anticoagulation and in therapeutic drug monitoring. The methodology, advantages and limitations of the different approaches are reviewed. A general feature common to all application areas could be observed: to perform well under routine clinical conditions, which are characterised by large interpatient variability and sometimes also intrapatient changes, control systems should be adaptive. Apart from application in routine drug treatment, feedback control methods represent an important research tool. They can be applied for the investigation of pathophysiological and pharmacodynamic processes. A most promising application is the evaluation of the relationship between an intermediate response (e.g. drug level), which is often used as feedback for dosage adjustment, and the final therapeutic goal.
ORION Environmental Control and Life Support Systems Suit Loop and Pressure Control Analysis
NASA Technical Reports Server (NTRS)
Eckhardt, Brad; Conger, Bruce; Stambaugh, Imelda C.
2015-01-01
Under NASA's ORION Multi-Purpose Crew Vehicle (MPCV) Environmental Control and Life Support System (ECLSS) Project at Johnson Space Center's (JSC), the Crew and Thermal Systems Division has developed performance models of the air system using Thermal Desktop/FloCAD. The Thermal Desktop model includes an Air Revitalization System (ARS Loop), a Suit Loop, a Cabin Loop, and Pressure Control System (PCS) for supplying make-up gas (N2 and O2) to the Cabin and Suit Loop. The ARS and PCS are designed to maintain air quality at acceptable O2, CO2 and humidity levels as well as internal pressures in the vehicle Cabin and during suited operations. This effort required development of a suite of Thermal Desktop Orion ECLSS models to address the need for various simulation capabilities regarding ECLSS performance. An initial highly detailed model of the ARS Loop was developed in order to simulate rapid pressure transients (water hammer effects) within the ARS Loop caused by events such as cycling of the Pressurized Swing Adsorption (PSA) Beds and required high temporal resolution (small time steps) in the model during simulation. A second ECLSS model was developed to simulate events which occur over longer periods of time (over 30 minutes) where O2, CO2 and humidity levels, as well as internal pressures needed to be monitored in the cabin and for suited operations. Stand-alone models of the PCS and the Negative Pressure relief Valve (NPRV) were developed to study thermal effects within the PCS during emergency scenarios (Cabin Leak) and cabin pressurization during vehicle re-entry into Earth's atmosphere. Results from the Orion ECLSS models were used during Orion Delta-PDR (July, 2014) to address Key Design Requirements (KDR's) for Suit Loop operations for multiple mission scenarios.
Closed-Loop Control of Complex Networks: A Trade-Off between Time and Energy
NASA Astrophysics Data System (ADS)
Sun, Yong-Zheng; Leng, Si-Yang; Lai, Ying-Cheng; Grebogi, Celso; Lin, Wei
2017-11-01
Controlling complex nonlinear networks is largely an unsolved problem at the present. Existing works focus either on open-loop control strategies and their energy consumptions or on closed-loop control schemes with an infinite-time duration. We articulate a finite-time, closed-loop controller with an eye toward the physical and mathematical underpinnings of the trade-off between the control time and energy as well as their dependence on the network parameters and structure. The closed-loop controller is tested on a large number of real systems including stem cell differentiation, food webs, random ecosystems, and spiking neuronal networks. Our results represent a step forward in developing a rigorous and general framework to control nonlinear dynamical networks with a complex topology.
Adaptive Wavelet Coding Applied in a Wireless Control System.
Gama, Felipe O S; Silveira, Luiz F Q; Salazar, Andrés O
2017-12-13
Wireless control systems can sense, control and act on the information exchanged between the wireless sensor nodes in a control loop. However, the exchanged information becomes susceptible to the degenerative effects produced by the multipath propagation. In order to minimize the destructive effects characteristic of wireless channels, several techniques have been investigated recently. Among them, wavelet coding is a good alternative for wireless communications for its robustness to the effects of multipath and its low computational complexity. This work proposes an adaptive wavelet coding whose parameters of code rate and signal constellation can vary according to the fading level and evaluates the use of this transmission system in a control loop implemented by wireless sensor nodes. The performance of the adaptive system was evaluated in terms of bit error rate (BER) versus E b / N 0 and spectral efficiency, considering a time-varying channel with flat Rayleigh fading, and in terms of processing overhead on a control system with wireless communication. The results obtained through computational simulations and experimental tests show performance gains obtained by insertion of the adaptive wavelet coding in a control loop with nodes interconnected by wireless link. These results enable the use of this technique in a wireless link control loop.
Space Station environmental control and life support system distribution and loop closure studies
NASA Technical Reports Server (NTRS)
Humphries, William R.; Reuter, James L.; Schunk, Richard G.
1986-01-01
The NASA Space Station's environmental control and life support system (ECLSS) encompasses functional elements concerned with temperature and humidity control, atmosphere control and supply, atmosphere revitalization, fire detection and suppression, water recovery and management, waste management, and EVA support. Attention is presently given to functional and physical module distributions of the ECLSS among these elements, with a view to resource requirements and safety implications. A strategy of physical distribution coupled with functional centralization is for the air revitalization and water reclamation systems. Also discussed is the degree of loop closure desirable in the initial operational capability status Space Station's oxygen and water reclamation loops.
Fiber-optic projected-fringe digital interferometry
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Beheim, Glenn
1990-01-01
A phase-stepped projected-fringe interferometer was developed which uses a closed-loop fiber-optic phase-control system to make very accurate surface profile measurements. The closed-loop phase-control system greatly reduces phase-stepping error, which is frequently the dominant source of error in digital interferometers. Two beams emitted from a fiber-optic coupler are combined to form an interference fringe pattern on a diffusely reflecting object. Reflections off of the fibers' output faces are used to create a phase-indicating signal for the closed-loop optical phase controller. The controller steps the phase difference between the two beams by pi/2 radians in order to determine the object's surface profile using a solid-state camera and a computer. The system combines the ease of alignment and automated data reduction of phase-stepping projected-fringe interferometry with the greatly improved phase-stepping accuracy of our closed-loop phase-controller. The system is demonstrated by measuring the profile of a plate containing several convex surfaces whose heights range from 15 to 25 micron high.
NASA Astrophysics Data System (ADS)
Zhu, Baolong; Zhang, Zhiping; Zhou, Ding; Ma, Jie; Li, Shunli
2017-08-01
This paper investigates the H∞ control problem of the attitude stabilisation of a rigid spacecraft with external disturbances using prediction-based sampled-data control strategy. Aiming to achieve a 'virtual' closed-loop system, a type of parameterised sampled-data controller is designed by introducing a prediction mechanism. The resultant closed-loop system is equivalent to a hybrid system featured by a continuous-time and an impulsive differential system. By using a time-varying Lyapunov functional, a generalised bounded real lemma (GBRL) is first established for a kind of impulsive differential system. Based on this GBRL and Lyapunov functional approach, a sufficient condition is derived to guarantee the closed-loop system to be asymptotically stable and to achieve a prescribed H∞ performance. In addition, the controller parameter tuning is cast into a convex optimisation problem. Simulation and comparative results are provided to illustrate the effectiveness of the developed control scheme.
Floating-point system quantization errors in digital control systems
NASA Technical Reports Server (NTRS)
Phillips, C. L.; Vallely, D. P.
1978-01-01
This paper considers digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. A quantization error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. The program can be integrated into existing digital simulations of a system.
Kovatchev, Boris P; Renard, Eric; Cobelli, Claudio; Zisser, Howard C; Keith-Hynes, Patrick; Anderson, Stacey M; Brown, Sue A; Chernavvsky, Daniel R; Breton, Marc D; Farret, Anne; Pelletier, Marie-Josée; Place, Jérôme; Bruttomesso, Daniela; Del Favero, Simone; Visentin, Roberto; Filippi, Alessio; Scotton, Rachele; Avogaro, Angelo; Doyle, Francis J
2013-07-01
To evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform. Twenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital-hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance. The total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality. This study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes.
NASA Technical Reports Server (NTRS)
Patel, Vipul P.; Winton, Dale; Ibarra, Thomas H.
2004-01-01
The Internal Thermal Control System (ITCS) has been developed jointly by Boeing Corporation, Huntsville, Alabama and Honeywell Engines & Systems, Torrance, California to meet the internal thermal control needs for the International Space Station (ISS). The ITCS provides heat removal for the critical life support systems and thermal conditioning for numerous experiment racks. The ITCS will be fitted on a number of modules on the ISS. The first US Element containing the ITCS, Node 1, was launched in December 1998. Since Node 1 does not contain a pump to circulate the fluid it was not filled with ITCS fluid until after the US Laboratory Module was installed. The second US Element module, US Laboratory Module, which contains the pumps and all the major ITCS control hardware, was launched in February 2001. The third US Element containing the ITCS, the US Airlock, was launched in July 2001. The dual loop system of the ITCS is comprised of a lowtemperature loop (LTL) and a moderate-temperature loop (MTL). Each loop has a pump package assembly (PPA), a system flow control assembly (SFCA), a threeway mixing valve (TWMV), several rack flow control assemblies (RFCA), cold plates, pressure sensors, temperature sensors, pump bypass assembly (PBA) and a heat exchanger. In addition, the MTL has an additional TWMV, a payload regeneration heat exchanger (P/RHE) and a manual flow control valve (MFCV). The LTL has a service performance and checkout unit (SPCU) heat exchanger. The two loops are linked via one loop crossover assembly (LCA) providing cross loop capabilities and a single PPA, two-loop functionality. One important parameter monitored by the ground stations and on-orbit is the amount of fluid leakage from the ITCS. ISS fluid leakage is of importance since ITCS fluid is costly to re-supply, may be difficult to clean up in zero-g, and if uncontained could lead to equipment failures and potential hazards. This paper examines the nominal leakage observed over period of a year of on-orbit operation and compares this with analysis predictions. This paper also addresses the off-nominal leakage and a fluid transfer event causing significant changes in accumulator quantity.
Synthesis of multi-loop automatic control systems by the nonlinear programming method
NASA Astrophysics Data System (ADS)
Voronin, A. V.; Emelyanova, T. A.
2017-01-01
The article deals with the problem of calculation of the multi-loop control systems optimal tuning parameters by numerical methods and nonlinear programming methods. For this purpose, in the paper the Optimization Toolbox of Matlab is used.
Turbofan engine control system design using the LQG/LTR methodology
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1989-01-01
Application of the linear-quadratic-Gaussian with loop-transfer-recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired target feedback loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.
Turbofan engine control system design using the LQG/LTR methodology
NASA Technical Reports Server (NTRS)
Garg, Sanjay
1989-01-01
Application of the Linear-Quadratic-Gaussian with Loop-Transfer-Recovery methodology to design of a control system for a simplified turbofan engine model is considered. The importance of properly scaling the plant to achieve the desired Target-Feedback-Loop is emphasized. The steps involved in the application of the methodology are discussed via an example, and evaluation results are presented for a reduced-order compensator. The effect of scaling the plant on the stability robustness evaluation of the closed-loop system is studied in detail.
An Optimized Integrator Windup Protection Technique Applied to a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Watts, Stephen R.; Garg, Sanjay
1995-01-01
This paper introduces a new technique for providing memoryless integrator windup protection which utilizes readily available optimization software tools. This integrator windup protection synthesis provides a concise methodology for creating integrator windup protection for each actuation system loop independently while assuring both controller and closed loop system stability. The individual actuation system loops' integrator windup protection can then be combined to provide integrator windup protection for the entire system. This technique is applied to an H(exp infinity) based multivariable control designed for a linear model of an advanced afterburning turbofan engine. The resulting transient characteristics are examined for the integrated system while encountering single and multiple actuation limits.
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB.
Mansouri, Misagh; Reinbolt, Jeffrey A
2012-05-11
Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB's variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1s (OpenSim) to 2.9s (MATLAB). For the closed-loop case, a proportional-integral-derivative controller was used to successfully balance a pole on model's hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.
A platform for dynamic simulation and control of movement based on OpenSim and MATLAB
Mansouri, Misagh; Reinbolt, Jeffrey A.
2013-01-01
Numerical simulations play an important role in solving complex engineering problems and have the potential to revolutionize medical decision making and treatment strategies. In this paper, we combine the rapid model-based design, control systems and powerful numerical method strengths of MATLAB/Simulink with the simulation and human movement dynamics strengths of OpenSim by developing a new interface between the two software tools. OpenSim is integrated with Simulink using the MATLAB S-function mechanism, and the interface is demonstrated using both open-loop and closed-loop control systems. While the open-loop system uses MATLAB/Simulink to separately reproduce the OpenSim Forward Dynamics Tool, the closed-loop system adds the unique feature of feedback control to OpenSim, which is necessary for most human movement simulations. An arm model example was successfully used in both open-loop and closed-loop cases. For the open-loop case, the simulation reproduced results from the OpenSim Forward Dynamics Tool with root mean square (RMS) differences of 0.03° for the shoulder elevation angle and 0.06° for the elbow flexion angle. MATLAB’s variable step-size integrator reduced the time required to generate the forward dynamic simulation from 7.1 s (OpenSim) to 2.9 s (MATLAB). For the closed-loop case, a proportional–integral–derivative controller was used to successfully balance a pole on model’s hand despite random force disturbances on the pole. The new interface presented here not only integrates the OpenSim and MATLAB/Simulink software tools, but also will allow neuroscientists, physiologists, biomechanists, and physical therapists to adapt and generate new solutions as treatments for musculoskeletal conditions. PMID:22464351
A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm
NASA Astrophysics Data System (ADS)
Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew
2016-04-01
The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.
Zhang, Shu; Taft, Cyrus W; Bentsman, Joseph; Hussey, Aaron; Petrus, Bryan
2012-09-01
Tuning a complex multi-loop PID based control system requires considerable experience. In today's power industry the number of available qualified tuners is dwindling and there is a great need for better tuning tools to maintain and improve the performance of complex multivariable processes. Multi-loop PID tuning is the procedure for the online tuning of a cluster of PID controllers operating in a closed loop with a multivariable process. This paper presents the first application of the simultaneous tuning technique to the multi-input-multi-output (MIMO) PID based nonlinear controller in the power plant control context, with the closed-loop system consisting of a MIMO nonlinear boiler/turbine model and a nonlinear cluster of six PID-type controllers. Although simplified, the dynamics and cross-coupling of the process and the PID cluster are similar to those used in a real power plant. The particular technique selected, iterative feedback tuning (IFT), utilizes the linearized version of the PID cluster for signal conditioning, but the data collection and tuning is carried out on the full nonlinear closed-loop system. Based on the figure of merit for the control system performance, the IFT is shown to deliver performance favorably comparable to that attained through the empirical tuning carried out by an experienced control engineer. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
An Environment for Hardware-in-the-Loop Formation Navigation and Control Simulation
NASA Technical Reports Server (NTRS)
Burns, Rich
2004-01-01
Recent interest in formation flying satellite systems has spurred a considerable amount of research in the relative navigation and control of satellites. Development in this area has included new estimation and control algorithms as well as sensor and actuator development specifically geared toward the relative control problem. This paper describes a simulation facility, the Formation Flying Testbed (FFTB) at NASA's Goddard Space Flight Center, which allows engineers to test new algorithms for the formation flying problem with relevant GN&C hardware in a closed loop simulation. The FFTB currently supports the injection of GPS receiver hardware into the simulation loop, and support for satellite crosslink ranging technology is at a prototype stage. This closed-loop, hardware inclusive simulation capability permits testing of navigation and control software in the presence of the actual hardware with which the algorithms must interact. This capability provides the navigation or control developer with a perspective on how the algorithms perform as part of the closed-loop system. In this paper, the overall design and evolution of the FFTB are presented. Each component of the FFTB is then described in detail. Interfaces between the components of the FFTB are shown and the interfaces to and between navigation and control software are described in detail. Finally, an example of closed-loop formation control with GPS receivers in the loop is presented and results are analyzed.
Bidirectional neural interface: Closed-loop feedback control for hybrid neural systems.
Chou, Zane; Lim, Jeffrey; Brown, Sophie; Keller, Melissa; Bugbee, Joseph; Broccard, Frédéric D; Khraiche, Massoud L; Silva, Gabriel A; Cauwenberghs, Gert
2015-01-01
Closed-loop neural prostheses enable bidirectional communication between the biological and artificial components of a hybrid system. However, a major challenge in this field is the limited understanding of how these components, the two separate neural networks, interact with each other. In this paper, we propose an in vitro model of a closed-loop system that allows for easy experimental testing and modification of both biological and artificial network parameters. The interface closes the system loop in real time by stimulating each network based on recorded activity of the other network, within preset parameters. As a proof of concept we demonstrate that the bidirectional interface is able to establish and control network properties, such as synchrony, in a hybrid system of two neural networks more significantly more effectively than the same system without the interface or with unidirectional alternatives. This success holds promise for the application of closed-loop systems in neural prostheses, brain-machine interfaces, and drug testing.
A novel system for automated propofol sedation: hybrid sedation system (HSS).
Zaouter, Cedrick; Taddei, Riccardo; Wehbe, Mohamad; Arbeid, Erik; Cyr, Shantale; Giunta, Francesco; Hemmerling, Thomas M
2017-04-01
Closed-loop systems for propofol have been demonstrated to be safe and reliable for general anesthesia. However, no study has been conducted using a closed-loop system specifically designed for sedation in patients under spinal anesthesia. We developed an automatic anesthesia sedation system that allows for closed-loop delivery of propofol for sedation integrating a decision support system, called the hybrid sedation system (HSS). The objective of this study is to compare this system with standard practice. One hundred fifty patients were enrolled and randomly assigned to two groups: HSS-Group (N = 75), in which propofol was administered using a closed-loop system; Control Group (N = 75), in which propofol was delivered manually. The clinical performance of the propofol sedation control is defined as efficacy to maintain bispectral index (BIS) near 65. The clinical control was called 'Excellent', 'Good', 'Poor' and 'Inadequate' with BIS values within 10 %, from 11 to 20 %, 21 to 30 %, or greater than 30 % of the BIS target of 65, respectively. The controller performance was evaluated using Varvel's parameters. Data are presented as mean ± standard deviation, groups were compared using t test or Chi square test, P < 0.05. Clinical performance of sedation showed 'Excellent' control in the HSS-group for a significantly longer period of time (49 vs. 26 % in the control group, P < 0.0001). 'Poor' and 'Inadequate' sedation was significantly shorter in the HSS Group compared to the Control Group (11 and 10 % vs. 20 and 18 %, respectively, P < 0.0001). The novel, closed-loop system for propofol sedation showed better maintenance of the target BIS value compared to manual administration.
A low power flash-FPGA based brain implant micro-system of PID control.
Lijuan Xia; Fattah, Nabeel; Soltan, Ahmed; Jackson, Andrew; Chester, Graeme; Degenaar, Patrick
2017-07-01
In this paper, we demonstrate that a low power flash FPGA based micro-system can provide a low power programmable interface for closed-loop brain implant inter- faces. The proposed micro-system receives recording local field potential (LFP) signals from an implanted probe, performs closed-loop control using a first order control system, then converts the signal into an optogenetic control stimulus pattern. Stimulus can be implemented through optoelectronic probes. The long term target is for both fundamental neuroscience applications and for clinical use in treating epilepsy. Utilizing our device, closed-loop processing consumes only 14nJ of power per PID cycle compared to 1.52μJ per cycle for a micro-controller implementation. Compared to an application specific digital integrated circuit, flash FPGA's are inherently programmable.
Esselman, W.H.; Kaplan, G.M.
1961-06-20
The control of pressure in pressurized liquid systems, especially a pressurized liquid reactor system, may be achieved by providing a bias circuit or loop across a closed loop having a flow restriction means in the form of an orifice, a storage tank, and a pump connected in series. The subject invention is advantageously utilized where control of a reactor can be achieved by response to the temperature and pressure of the primary cooling system.
Cooling system with automated seasonal freeze protection
Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing
2016-05-24
An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.
Lessons Learned and Flight Results from the F15 Intelligent Flight Control System Project
NASA Technical Reports Server (NTRS)
Bosworth, John
2006-01-01
A viewgraph presentation on the lessons learned and flight results from the F15 Intelligent Flight Control System (IFCS) project is shown. The topics include: 1) F-15 IFCS Project Goals; 2) Motivation; 3) IFCS Approach; 4) NASA F-15 #837 Aircraft Description; 5) Flight Envelope; 6) Limited Authority System; 7) NN Floating Limiter; 8) Flight Experiment; 9) Adaptation Goals; 10) Handling Qualities Performance Metric; 11) Project Phases; 12) Indirect Adaptive Control Architecture; 13) Indirect Adaptive Experience and Lessons Learned; 14) Gen II Direct Adaptive Control Architecture; 15) Current Status; 16) Effect of Canard Multiplier; 17) Simulated Canard Failure Stab Open Loop; 18) Canard Multiplier Effect Closed Loop Freq. Resp.; 19) Simulated Canard Failure Stab Open Loop with Adaptation; 20) Canard Multiplier Effect Closed Loop with Adaptation; 21) Gen 2 NN Wts from Simulation; 22) Direct Adaptive Experience and Lessons Learned; and 23) Conclusions
Design and simulation of a sensor for heliostat field closed loop control
NASA Astrophysics Data System (ADS)
Collins, Mike; Potter, Daniel; Burton, Alex
2017-06-01
Significant research has been completed in pursuit of capital cost reductions for heliostats [1],[2]. The camera array closed loop control concept has potential to radically alter the way heliostats are controlled and installed by replacing high quality open loop targeting systems with low quality targeting devices that rely on measurement of image position to remove tracking errors during operation. Although the system could be used for any heliostat size, the system significantly benefits small heliostats by reducing actuation costs, enabling large numbers of heliostats to be calibrated simultaneously, and enabling calibration of heliostats that produce low irradiance (similar or less than ambient light images) on Lambertian calibration targets, such as small heliostats that are far from the tower. A simulation method for the camera array has been designed and verified experimentally. The simulation tool demonstrates that closed loop calibration or control is possible using this device.
Control of polymer network topology in semi-batch systems
NASA Astrophysics Data System (ADS)
Wang, Rui; Olsen, Bradley; Johnson, Jeremiah
Polymer networks invariably possess topological defects: loops of different orders. Since small loops (primary loops and secondary loops) both lower the modulus of network and lead to stress concentration that causes material failure at low deformation, it is desirable to greatly reduce the loop fraction. We have shown that achieving loop fraction close to zero is extremely difficult in the batch process due to the slow decay of loop fraction with the polymer concentration and chain length. Here, we develop a modified kinetic graph theory that can model network formation reactions in semi-batch systems. We demonstrate that the loop fraction is not sensitive to the feeding policy if the reaction volume maintains constant during the network formation. However, if we initially put concentrated solution of small junction molecules in the reactor and continuously adding polymer solutions, the fractions of both primary loop and higher-order loops will be significantly reduced. There is a limiting value (nonzero) of loop fraction that can be achieved in the semi-batch system in condition of extremely slow feeding rate. This minimum loop fraction only depends on a single dimensionless variable, the product of concentration and with single chain pervaded volume, and defines an operating zone in which the loop fraction of polymer networks can be controlled through adjusting the feeding rate of the semi-batch process.
Integrated flight/propulsion control system design based on a centralized approach
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Mattern, Duane L.; Bullard, Randy E.
1989-01-01
An integrated flight/propulsion control system design is presented for the piloted longitudinal landing task with a modern, statically unstable, fighter aircraft. A centralized compensator based on the Linear Quadratic Gaussian/Loop Transfer Recovery methodology is first obtained to satisfy the feedback loop performance and robustness specificiations. This high-order centralized compensator is then partitioned into airframe and engine sub-controllers based on modal controllability/observability for the compensator modes. The order of the sub-controllers is then reduced using internally-balanced realization techniques and the sub-controllers are simplified by neglecting the insignificant feedbacks. These sub-controllers have the advantage that they can be implemented as separate controllers on the airframe and the engine while still retaining the important performance and stability characteristics of the full-order centralized compensator. Command prefilters are then designed for the closed-loop system with the simplified sub-controllers to obtain the desired system response to airframe and engine command inputs, and the overall system performance evaluation results are presented.
Xingling, Shao; Honglun, Wang
2015-07-01
This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Antenna Linear-Quadratic-Gaussian (LQG) Ccontrollers: Properties, Limits of Performance, and Tuning
NASA Technical Reports Server (NTRS)
Gawronski, Wodek K.
2004-01-01
The LQG controllers significantly improve antenna tracking precision, but their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller, and the selection of weights of the LQG performance index. The paper selects the coordinates of the open-loop model that simplify the shaping of the closed-loop performance. and analyzes the impact of thc weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. Finally, it presents the LQG controller tuning procedure that rationally shapes the closed-loop performance.
NASA Astrophysics Data System (ADS)
Saha, Suman; Das, Saptarshi; Das, Shantanu; Gupta, Amitava
2012-09-01
A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PIλDμ) controller have been approximated in this paper vis-à-vis a LQR tuned conventional integer order PID controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PIλDμ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.
Passivity-based control of linear time-invariant systems modelled by bond graph
NASA Astrophysics Data System (ADS)
Galindo, R.; Ngwompo, R. F.
2018-02-01
Closed-loop control systems are designed for linear time-invariant (LTI) controllable and observable systems modelled by bond graph (BG). Cascade and feedback interconnections of BG models are realised through active bonds with no loading effect. The use of active bonds may lead to non-conservation of energy and the overall system is modelled by proposed pseudo-junction structures. These structures are build by adding parasitic elements to the BG models and the overall system may become singularly perturbed. The structures for these interconnections can be seen as consisting of inner structures that satisfy energy conservation properties and outer structures including multiport-coupled dissipative fields. These fields highlight energy properties like passivity that are useful for control design. In both interconnections, junction structures and dissipative fields for the controllers are proposed, and passivity is guaranteed for the closed-loop systems assuring robust stability. The cascade interconnection is applied to the structural representation of closed-loop transfer functions, when a stabilising controller is applied to a given nominal plant. Applications are given when the plant and the controller are described by state-space realisations. The feedback interconnection is used getting necessary and sufficient stability conditions based on the closed-loop characteristic polynomial, solving a pole-placement problem and achieving zero-stationary state error.
NASA Astrophysics Data System (ADS)
Ekanayake, D. B.; Iyer, R. V.
2015-02-01
We prove the closed loop stability of a PD controller for certain systems with saturating, non-monotone hysteresis and frequency dependent power losses. Most controllers use inverse compensators to cancel out actuator hysteresis nonlinearity. We show that we can achieve stability of the closed-loop system without an explicit inverse computation (using least squares minimization or otherwise).
NASA Astrophysics Data System (ADS)
Dimas Pristovani, R.; Raden Sanggar, D.; Dadet, Pramadihanto.
2018-04-01
Push recovery is one of humanbehaviorwhich is a strategy to defend the body from anexternal force in any environment. This paper describes push recovery strategy which usesMIMO decoupled control system method. The dynamics system uses aquasi-dynamic system based on triple linear inverted pendulum model (TLIPM). The analysis of TLIPMuses zero moment point (ZMP) calculation from ZMP simplification in last research. By using this simplification of dynamics system, the control design can be simplified into 3 serial SISOwith known and uncertain disturbance models in each inverted pendulum. Each pendulum has different plan to damp the external force effect. In this experiment, PID controller (closed- loop)is used to arrange the damp characteristic.The experiment result shows thatwhen using push recovery control strategy (closed-loop control) is about 85.71% whilewithout using push recovery control strategy (open-loop control) it is about 28.57%.
Nonlinear gearshifts control of dual-clutch transmissions during inertia phase.
Hu, Yunfeng; Tian, Lu; Gao, Bingzhao; Chen, Hong
2014-07-01
In this paper, a model-based nonlinear gearshift controller is designed by the backstepping method to improve the shift quality of vehicles with a dual-clutch transmission (DCT). Considering easy-implementation, the controller is rearranged into a concise structure which contains a feedforward control and a feedback control. Then, robustness of the closed-loop error system is discussed in the framework of the input to state stability (ISS) theory, where model uncertainties are considered as the additive disturbance inputs. Furthermore, due to the application of the backstepping method, the closed-loop error system is ordered as a linear system. Using the linear system theory, a guideline for selecting the controller parameters is deduced which could reduce the workload of parameters tuning. Finally, simulation results and Hardware in the Loop (HiL) simulation are presented to validate the effectiveness of the designed controller. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Balanced bridge feedback control system
NASA Technical Reports Server (NTRS)
Lurie, Boris J. (Inventor)
1990-01-01
In a system having a driver, a motor, and a mechanical plant, a multiloop feedback control apparatus for controlling the movement and/or positioning of a mechanical plant, the control apparatus has a first local bridge feedback loop for feeding back a signal representative of a selected ratio of voltage and current at the output driver, and a second bridge feedback loop for feeding back a signal representative of a selected ratio of force and velocity at the output of the motor. The control apparatus may further include an outer loop for feeding back a signal representing the angular velocity and/or position of the mechanical plant.
Closed-Loop Control System for Friction Stir Welding Retractable Pin Tool
NASA Technical Reports Server (NTRS)
Ding, R. Jeffrey; Romine, Peter L.; Munafo, Paul M. (Technical Monitor)
2001-01-01
NASA invention disclosure, NASA Case No. MFS-31413, entitled "System for Controlling the Stirring Pin of a Friction Stir Welding Apparatus", (Patent Pending) authored by Jeff Ding, Dr Peter Romine and Pete Oelgoetz, addresses the precision control of the friction stir welding process. The closed-loop control system automatically adjusts the spinning welding pin, real-time, to maintain a precise penetration ligament (i.e., distance between pin-tip and weld panel backside surface). A specific pin length can be maintained while welding constant thickness or tapered material thickness weld panels. The closed-loop control system provides operator data and information relative to the exact position of the welding pin inside the weld joint. This paper presents the closed-loop RPT control system that operates using the auto-feedback of force signals sensed by the tip and shoulder of the welding pin. Significance: The FSW process can be successfully used in a production environment only if there is a method or technique that informs the FSW operator the precise location of the welding pin inside the weld joint. This is essential for applications in aerospace, automotive, pressure vessel, commercial aircraft and other industries.
Control-structure interaction in precision pointing servo loops
NASA Technical Reports Server (NTRS)
Spanos, John T.
1989-01-01
The control-structure interaction problem is addressed via stability analysis of a generic linear servo loop model. With the plant described by the rigid body mode and a single elastic mode, structural flexibility is categorized into one of three types: (1) appendage, (2) in-the-loop minimum phase, and (3) in-the-loop nonminimum phase. Closing the loop with proportional-derivative (PD) control action and introducing sensor roll-off dynamics in the feedback path, stability conditions are obtained. Trade studies are conducted with modal frequency, modal participation, modal damping, loop bandwidth, and sensor bandwidth treated as free parameters. Results indicate that appendage modes are most likely to produce instability if they are near the sensor rolloff, whereas in-the-loop modes are most dangerous near the loop bandwidth. The main goal of this paper is to provide a fundamental understanding of the control-structure interaction problem so that it may benefit the design of complex spacecraft and pointing system servo loops. In this framework, the JPL Pathfinder gimbal pointer is considered as an example.
Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
Zhu, Yanhe; Zheng, Tianjiao; Jin, Hongzhe; Yang, Jixing; Zhao, Jie
2015-01-01
Unlike traditional rigid actuators, the significant features of Series Elastic Actuator (SEA) are stable torque control, lower output impedance, impact resistance and energy storage. Recently, SEA has been applied in many exoskeletons. In such applications, a key issue is how to realize the human-exoskeleton movement coordination. In this paper, double closed-loop cascade control for lower limb exoskeleton with SEA is proposed. This control method consists of inner SEA torque loop and outer contact force loop. Utilizing the SEA torque control with a motor velocity loop, actuation performances of SEA are analyzed. An integrated exoskeleton control system is designed, in which joint angles are calculated by internal encoders and resolvers and contact forces are gathered by external pressure sensors. The double closed-loop cascade control model is established based on the feedback signals of internal and external sensor. Movement experiments are accomplished in our prototype of lower limb exoskeleton. Preliminary results indicate the exoskeleton movements with pilot can be realized stably by utilizing this double closed-loop cascade control method. Feasibility of the SEA in our exoskeleton robot and effectiveness of the control method are verified.
A digital intensity stabilization system for HeNe laser
NASA Astrophysics Data System (ADS)
Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun
2012-02-01
A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.
Ly, Trang T; Weinzimer, Stuart A; Maahs, David M; Sherr, Jennifer L; Roy, Anirban; Grosman, Benyamin; Cantwell, Martin; Kurtz, Natalie; Carria, Lori; Messer, Laurel; von Eyben, Rie; Buckingham, Bruce A
2017-08-01
Automated insulin delivery systems, utilizing a control algorithm to dose insulin based upon subcutaneous continuous glucose sensor values and insulin pump therapy, will soon be available for commercial use. The objective of this study was to determine the preliminary safety and efficacy of initialization parameters with the Medtronic hybrid closed-loop controller by comparing percentage of time in range, 70-180 mg/dL (3.9-10 mmol/L), mean glucose values, as well as percentage of time above and below target range between sensor-augmented pump therapy and hybrid closed-loop, in adults and adolescents with type 1 diabetes. We studied an initial cohort of 9 adults followed by a second cohort of 15 adolescents, using the Medtronic hybrid closed-loop system with the proportional-integral-derivative with insulin feed-back (PID-IFB) algorithm. Hybrid closed-loop was tested in supervised hotel-based studies over 4-5 days. The overall mean percentage of time in range (70-180 mg/dL, 3.9-10 mmol/L) during hybrid closed-loop was 71.8% in the adult cohort and 69.8% in the adolescent cohort. The overall percentage of time spent under 70 mg/dL (3.9 mmol/L) was 2.0% in the adult cohort and 2.5% in the adolescent cohort. Mean glucose values were 152 mg/dL (8.4 mmol/L) in the adult cohort and 153 mg/dL (8.5 mmol/L) in the adolescent cohort. Closed-loop control using the Medtronic hybrid closed-loop system enables adaptive, real-time basal rate modulation. Initializing hybrid closed-loop in clinical practice will involve individualizing initiation parameters to optimize overall glucose control. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Energy Efficient Engine: Control system preliminary definition report
NASA Technical Reports Server (NTRS)
Howe, David C.
1986-01-01
The object of the Control Preliminary Definition Program was to define a preliminary control system concept as a part of the Energy Efficient Engine program. The program was limited to a conceptual definition of a full authority digital electronic control system. System requirements were determined and a control system was conceptually defined to these requirements. Areas requiring technological development were identified and a plan was established for implementing the identified technological features, including a control technology demonstration. A significant element of this program was a study of the potential benefits of closed-loop active clearance control, along with laboratory tests of candidate clearance sensor elements for a closed loop system.
Modeling and control of non-square MIMO system using relay feedback.
Kalpana, D; Thyagarajan, T; Gokulraj, N
2015-11-01
This paper proposes a systematic approach for the modeling and control of non-square MIMO systems in time domain using relay feedback. Conventionally, modeling, selection of the control configuration and controller design of non-square MIMO systems are performed using input/output information of direct loop, while the output of undesired responses that bears valuable information on interaction among the loops are not considered. However, in this paper, the undesired response obtained from relay feedback test is also taken into consideration to extract the information about the interaction between the loops. The studies are performed on an Air Path Scheme of Turbocharged Diesel Engine (APSTDE) model, which is a typical non-square MIMO system, with input and output variables being 3 and 2 respectively. From the relay test response, the generalized analytical expressions are derived and these analytical expressions are used to estimate unknown system parameters and also to evaluate interaction measures. The interaction is analyzed by using Block Relative Gain (BRG) method. The model thus identified is later used to design appropriate controller to carry out closed loop studies. Closed loop simulation studies were performed for both servo and regulatory operations. Integral of Squared Error (ISE) performance criterion is employed to quantitatively evaluate performance of the proposed scheme. The usefulness of the proposed method is demonstrated on a lab-scale Two-Tank Cylindrical Interacting System (TTCIS), which is configured as a non-square system. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Testing of a controller for a hybrid capillary pumped loop thermal control system
NASA Technical Reports Server (NTRS)
Schweickart, Russell; Ottenstein, Laura; Cullimore, Brent; Egan, Curtis; Wolf, Dave
1989-01-01
A controller for a series hybrid capillary pumped loop (CPL) system that requires no moving parts does not resrict fluid flow has been tested and has demonstrated improved performance characteristics over a plain CPL system and simple hybrid CPL systems. These include heat load sharing, phase separation, self-regulated flow control and distribution, all independent of most system pressure drop. In addition, the controlled system demonstrated a greater heat transport capability than the simple CPL system but without the large fluid inventory requirement of the hybrid systems. A description of the testing is presented along with data that show the advantages of the system.
A Comparison of Multivariable Control Design Techniques for a Turbofan Engine Control
NASA Technical Reports Server (NTRS)
Garg, Sanjay; Watts, Stephen R.
1995-01-01
This paper compares two previously published design procedures for two different multivariable control design techniques for application to a linear engine model of a jet engine. The two multivariable control design techniques compared were the Linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) and the H-Infinity synthesis. The two control design techniques were used with specific previously published design procedures to synthesize controls which would provide equivalent closed loop frequency response for the primary control loops while assuring adequate loop decoupling. The resulting controllers were then reduced in order to minimize the programming and data storage requirements for a typical implementation. The reduced order linear controllers designed by each method were combined with the linear model of an advanced turbofan engine and the system performance was evaluated for the continuous linear system. Included in the performance analysis are the resulting frequency and transient responses as well as actuator usage and rate capability for each design method. The controls were also analyzed for robustness with respect to structured uncertainties in the unmodeled system dynamics. The two controls were then compared for performance capability and hardware implementation issues.
Closed Loop Vibrational Control: Theory and Applications
1993-10-01
the open loop system dynamics will be close to that of Bit. However, in general, in a closed loop system with a specified feedback co-’ - oller , for...Juang, and G. Rodriguez , "Formulations and Applications of Large Structure Actuator and Sensor Placements," Second VPI & SU/AIAA Symposium on Dynamics
Investigation of air transportation technology at Princeton University, 1986
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1988-01-01
The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.
A dual closed-loop control system for mechanical ventilation.
Tehrani, Fleur; Rogers, Mark; Lo, Takkin; Malinowski, Thomas; Afuwape, Samuel; Lum, Michael; Grundl, Brett; Terry, Michael
2004-04-01
Closed-loop mechanical ventilation has the potential to provide more effective ventilatory support to patients with less complexity than conventional ventilation. The purpose of this study was to investigate the effectiveness of an automatic technique for mechanical ventilation. Two closed-loop control systems for mechanical ventilation are combined in this study. In one of the control systems several physiological data are used to automatically adjust the frequency and tidal volume of breaths of a patient. This method, which is patented under US Patent number 4986268, uses the criterion of minimal respiratory work rate to provide the patient with a natural pattern of breathing. The inputs to the system include data representing CO2 and O2 levels of the patient as well as respiratory compliance and airway resistance. The I:E ratio is adjusted on the basis of the respiratory time constant to allow for effective emptying of the lungs in expiration and to avoid intrinsic positive end expiratory pressure (PEEP). This system is combined with another closed-loop control system for automatic adjustment of the inspired fraction of oxygen of the patient. This controller uses the feedback of arterial oxygen saturation of the patient and combines a rapid stepwise control procedure with a proportional-integral-derivative (PID) control algorithm to automatically adjust the oxygen concentration in the patient's inspired gas. The dual closed-loop control system has been examined by using mechanical lung studies, computer simulations and animal experiments. In the mechanical lung studies, the ventilation controller adjusted the breathing frequency and tidal volume in a clinically appropriate manner in response to changes in respiratory mechanics. The results of computer simulations and animal studies under induced disturbances showed that blood gases were returned to the normal physiologic range in less than 25 s by the control system. In the animal experiments understeady-state conditions, the maximum standard deviations of arterial oxygen saturation and the end-tidal partial pressure of CO2 were +/- 1.76% and +/- 1.78 mmHg, respectively. The controller maintained the arterial blood gases within normal limits under steady-state conditions and the transient response of the system was robust under various disturbances. The results of the study have showed that the proposed dual closed-loop technique has effectively controlled mechanical ventilation under different test conditions.
Automatic control of finite element models for temperature-controlled radiofrequency ablation.
Haemmerich, Dieter; Webster, John G
2005-07-14
The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100 degrees C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input.
Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O
2016-03-01
An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.
Closed Brayton cycle power conversion systems for nuclear reactors :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.
2006-04-01
This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors,more » reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.« less
Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation
Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie
2016-01-01
Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844
Closed-loop control of zebrafish response using a bioinspired robotic-fish in a preference test
Kopman, Vladislav; Laut, Jeffrey; Polverino, Giovanni; Porfiri, Maurizio
2013-01-01
In this paper, we study the response of zebrafish to a robotic-fish whose morphology and colour pattern are inspired by zebrafish. Experiments are conducted in a three-chambered instrumented water tank where a robotic-fish is juxtaposed with an empty compartment, and the preference of live subjects is scored as the mean time spent in the vicinity of the tank's two lateral sides. The tail-beating of the robotic-fish is controlled in real-time based on feedback from fish motion to explore a spectrum of closed-loop systems, including proportional and integral controllers. Closed-loop control systems are complemented by open-loop strategies, wherein the tail-beat of the robotic-fish is independent of the fish motion. The preference space and the locomotory patterns of fish for each experimental condition are analysed and compared to understand the influence of real-time closed-loop control on zebrafish response. The results of this study show that zebrafish respond differently to the pattern of tail-beating motion executed by the robotic-fish. Specifically, the preference and behaviour of zebrafish depend on whether the robotic-fish tail-beating frequency is controlled as a function of fish motion and how such closed-loop control is implemented. PMID:23152102
DOT National Transportation Integrated Search
2009-04-27
A Hardware in the Loop (HiL) system was developed to investigate heavy truck instability due to loss of control and rollover situations with and without ESC/RSC systems for a wide range of maneuvers and speeds. The purpose of this HiL model is to exa...
Abdelkarim, Noha; Mohamed, Amr E; El-Garhy, Ahmed M; Dorrah, Hassen T
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller.
Mohamed, Amr E.; Dorrah, Hassen T.
2016-01-01
The two-coupled distillation column process is a physically complicated system in many aspects. Specifically, the nested interrelationship between system inputs and outputs constitutes one of the significant challenges in system control design. Mostly, such a process is to be decoupled into several input/output pairings (loops), so that a single controller can be assigned for each loop. In the frame of this research, the Brain Emotional Learning Based Intelligent Controller (BELBIC) forms the control structure for each decoupled loop. The paper's main objective is to develop a parameterization technique for decoupling and control schemes, which ensures robust control behavior. In this regard, the novel optimization technique Bacterial Swarm Optimization (BSO) is utilized for the minimization of summation of the integral time-weighted squared errors (ITSEs) for all control loops. This optimization technique constitutes a hybrid between two techniques, which are the Particle Swarm and Bacterial Foraging algorithms. According to the simulation results, this hybridized technique ensures low mathematical burdens and high decoupling and control accuracy. Moreover, the behavior analysis of the proposed BELBIC shows a remarkable improvement in the time domain behavior and robustness over the conventional PID controller. PMID:27807444
Lilot, Marc; Bellon, Amandine; Gueugnon, Marine; Laplace, Marie-Christine; Baffeleuf, Bruno; Hacquard, Pauline; Barthomeuf, Felicie; Parent, Camille; Tran, Thomas; Soubirou, Jean-Luc; Robinson, Philip; Bouvet, Lionel; Vassal, Olivia; Lehot, Jean-Jacques; Piriou, Vincent
2018-01-27
An intraoperative automated closed-loop system for goal-directed fluid therapy has been successfully tested in silico, in vivo and in a clinical case-control matching. This trial compared intraoperative cardiac output (CO) in patients managed with this closed-loop system versus usual practice in an academic medical center. The closed-loop system was connected to a CO monitoring system and delivered automated colloid fluid boluses. Moderate to high-risk abdominal surgical patients were randomized either to the closed-loop or the manual group. Intraoperative final CO was the primary endpoint. Secondary endpoints were intraoperative overall mean cardiac index (CI), increase from initial to final CI, intraoperative fluid volume and postoperative outcomes. From January 2014 to November 2015, 46 patients were randomized. There was a lower initial CI (2.06 vs. 2.51 l min -1 m -2 , p = 0.042) in the closed-loop compared to the control group. No difference in final CO and in overall mean intraoperative CI was observed between groups. A significant relative increase from initial to final CI values was observed in the closed-loop but not the control group (+ 28.6%, p = 0.006 vs. + 1.2%, p = 0.843). No difference was found for intraoperative fluid management and postoperative outcomes between groups. There was no significant impact on the primary study endpoint, but this was found in a context of unexpected lower initial CI in the closed-loop group.Trial registry number ID-RCB/EudraCT: 2013-A00770-45. ClinicalTrials.gov Identifier NCT01950845, date of registration: 17 September 2013.
Pilot-in-the-Loop Analysis of Propulsive-Only Flight Control Systems
NASA Technical Reports Server (NTRS)
Chou, Hwei-Lan; Biezad, Daniel J.
1996-01-01
Longitudinal control system architectures are presented which directly couple flight stick motions to throttle commands for a multi-engine aircraft. This coupling enables positive attitude control with complete failure of the flight control system. The architectures chosen vary from simple feedback gains to classical lead-lag compensators with and without prefilters. Each architecture is reviewed for its appropriateness for piloted flight. The control systems are then analyzed with pilot-in-the-loop metrics related to bandwidth required for landing. Results indicate that current and proposed bandwidth requirements should be modified for throttles only flight control. Pilot ratings consistently showed better ratings than predicted by analysis. Recommendations are made for more robust design and implementation. The use of Quantitative Feedback Theory for compensator design is discussed. Although simple and effective augmented control can be achieved in a wide variety of failed configurations, a few configuration characteristics are dominant for pilot-in-the-loop control. These characteristics will be tested in a simulator study involving failed flight controls for a multi-engine aircraft.
Design and Simulation of a PID Controller for Motion Control Systems
NASA Astrophysics Data System (ADS)
Hassan Abdullahi, Zakariyya; Danzomo, Bashir Ahmed; Suleiman Abdullahi, Zainab
2018-04-01
Motion control system plays important role in many industrial applications among which are in robot system, missile launching, positioning systems etc. However, the performance requirement for these applications in terms of high accuracy, high speed, insignificant or no overshoot and robustness have generated continuous challenges in the field of motion control system design and implementation. To compensate this challenge, a PID controller was design using mathematical model of a DC motor based on classical root-locus approach. The reason for adopting root locus design is to remodel the closed-loop response by putting the closed-loop poles of the system at desired points. Adding poles and zeros to the initial open-loop transfer function through the controller provide a way to transform the root locus in order to place the closed-loop poles at the required points. This process can also be used for discrete-time models. The Advantages of root locus over other methods is that, it gives the better way of pinpointing the parameters and can easily predict the fulfilment of the whole system. The controller performance was simulated using MATLAB code and a reasonable degree of accuracy was obtained. Implementation of the proposed model was conducted using-Simulink and the result obtained shows that the PID controller met the transient performance specifications with both settling time and overshoot less than 0.1s and 5% respectively. In terms of steady state error, the PID controller gave good response for both step input and ramp.
Learning from ISS-modular adaptive NN control of nonlinear strict-feedback systems.
Wang, Cong; Wang, Min; Liu, Tengfei; Hill, David J
2012-10-01
This paper studies learning from adaptive neural control (ANC) for a class of nonlinear strict-feedback systems with unknown affine terms. To achieve the purpose of learning, a simple input-to-state stability (ISS) modular ANC method is first presented to ensure the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in finite time. Subsequently, it is proven that learning with the proposed stable ISS-modular ANC can be achieved. The cascade structure and unknown affine terms of the considered systems make it very difficult to achieve learning using existing methods. To overcome these difficulties, the stable closed-loop system in the control process is decomposed into a series of linear time-varying (LTV) perturbed subsystems with the appropriate state transformation. Using a recursive design, the partial persistent excitation condition for the radial basis function neural network (NN) is established, which guarantees exponential stability of LTV perturbed subsystems. Consequently, accurate approximation of the closed-loop system dynamics is achieved in a local region along recurrent orbits of closed-loop signals, and learning is implemented during a closed-loop feedback control process. The learned knowledge is reused to achieve stability and an improved performance, thereby avoiding the tremendous repeated training process of NNs. Simulation studies are given to demonstrate the effectiveness of the proposed method.
Multi-mode ultrasonic welding control and optimization
Tang, Jason C.H.; Cai, Wayne W
2013-05-28
A system and method for providing multi-mode control of an ultrasonic welding system. In one embodiment, the control modes include the energy of the weld, the time of the welding process and the compression displacement of the parts being welded during the welding process. The method includes providing thresholds for each of the modes, and terminating the welding process after the threshold for each mode has been reached, the threshold for more than one mode has been reached or the threshold for one of the modes has been reached. The welding control can be either open-loop or closed-loop, where the open-loop process provides the mode thresholds and once one or more of those thresholds is reached the welding process is terminated. The closed-loop control provides feedback of the weld energy and/or the compression displacement so that the weld power and/or weld pressure can be increased or decreased accordingly.
NASA Astrophysics Data System (ADS)
Del Vescovo, D.; D'Ambrogio, W.
1995-01-01
A frequency domain method is presented to design a closed-loop control for vibration reduction flexible mechanisms. The procedure is developed on a single-link flexible arm, driven by one rotary degree of freedom servomotor, although the same technique may be applied to similar systems such as supports for aerospace antennae or solar panels. The method uses the structural frequency response functions (FRFs), thus avoiding system identification, that produces modeling uncertainties. Two closed-loops are implemented: the inner loop uses acceleration feedback with the aim of making the FRF similar to that of an equivalent rigid link; the outer loop feeds back displacements to achieve a fast positioning response and null steady state error. In both cases, the controller type is established a priori, while actual characteristics are defined by an optimisation procedure in which the relevant FRF is constrained into prescribed bounds and stability is taken into account.
Power in the loop real time simulation platform for renewable energy generation
NASA Astrophysics Data System (ADS)
Li, Yang; Shi, Wenhui; Zhang, Xing; He, Guoqing
2018-02-01
Nowadays, a large scale of renewable energy sources has been connecting to power system and the real time simulation platform is widely used to carry out research on integration control algorithm, power system stability etc. Compared to traditional pure digital simulation and hardware in the loop simulation, power in the loop simulation has higher accuracy and degree of reliability. In this paper, a power in the loop analog digital hybrid simulation platform has been built and it can be used not only for the single generation unit connecting to grid, but also for multiple new energy generation units connecting to grid. A wind generator inertia control experiment was carried out on the platform. The structure of the inertia control platform was researched and the results verify that the platform is up to need for renewable power in the loop real time simulation.
Zheng, Yue; Zhang, Chunxi; Li, Lijing; Song, Lailiang; Chen, Wen
2016-06-10
For a fiber-optic gyroscope (FOG) using electronic dithers to suppress the dead zone, without a fixed loop gain, the deterministic compensation for the dither signals in the control loop of the FOG cannot remain accurate, resulting in the dither residuals in the FOG rotation rate output and the navigation errors in the inertial navigation system. An all-digital automatic-gain-control method for stabilizing the loop gain of the FOG is proposed. By using a perturbation square wave to measure the loop gain of the FOG and adding an automatic gain control loop in the conventional control loop of the FOG, we successfully obtain the actual loop gain and make the loop gain converge to the reference value. The experimental results show that in the case of 20% variation in the loop gain, the dither residuals are successfully eliminated and the standard deviation of the FOG sampling outputs is decreased from 2.00 deg/h to 0.62 deg/h (sampling period 2.5 ms, 10 points smoothing). With this method, the loop gain of the FOG can be stabilized over the operation temperature range and in the long-time application, which provides a solid foundation for the engineering applications of the high-precision FOG.
An error criterion for determining sampling rates in closed-loop control systems
NASA Technical Reports Server (NTRS)
Brecher, S. M.
1972-01-01
The determination of an error criterion which will give a sampling rate for adequate performance of linear, time-invariant closed-loop, discrete-data control systems was studied. The proper modelling of the closed-loop control system for characterization of the error behavior, and the determination of an absolute error definition for performance of the two commonly used holding devices are discussed. The definition of an adequate relative error criterion as a function of the sampling rate and the parameters characterizing the system is established along with the determination of sampling rates. The validity of the expressions for the sampling interval was confirmed by computer simulations. Their application solves the problem of making a first choice in the selection of sampling rates.
Time delay compensation for closed-loop insulin delivery systems: a simulation study.
Reboldi, G P; Home, P D; Calabrese, G; Fabietti, P G; Brunetti, P; Massi Benedetti, M
1991-06-01
Closed loop insulin therapy certainly represents the best possible approach to insulin replacement. However, present limitations preclude wider application of the so-called artificial pancreas. Therefore, a thorough understanding of these limitations is needed to design better systems for future long-term use. The present simulation study was design: to obtain better information on the impact of the measurement delay of currently available closed-loop devices both during closed-loop insulin delivery and blood glucose clamp studies, and to design and test a time delay compensator based on the method originally described by O.J. Smith. Simulations were performed on a Compaq Deskpro 486/25 personal computer under MS-DOS operating system using Simnon rel. 3.00 software. There was a direct relationship between measurement delay and amount of insulin delivered, i.e., the longer the delay the higher the insulin dose needed to control a rise in blood glucose; the closed-loop response in presence of a time delay was qualitatively impaired both during insulin delivery and blood glucose clamp studies; time delay compensation was effective in reducing the insulin dose and improving controller stability during the early phase of clamp studies. However, the robustness of a Smith's predictor-based controller should be carefully evaluated before implementation in closed-loop systems can be considered.
Scholten, Kee; Meng, Ellis
2018-06-15
Closed-loop drug delivery promises autonomous control of pharmacotherapy through the continuous monitoring of biomarker levels. For decades, researchers have strived for portable closed-loop systems capable of treating ambulatory patients with chronic conditions such as diabetes mellitus. After years of development, the first of these systems have left the laboratory and entered commercial use. This long-awaited advance reflects recent development of chronically stable implantable biosensors able to accurately measure biomarker levels in vivo. This review discusses the role of implantable biosensors in closed-loop drug delivery applications, with the intent to provide a resource for engineers and researchers studying such systems. We provide an overview of common biosensor designs and review the principle challenges in implementing long indwelling sensors: namely device sensitivity, selectivity, and lifetime. This review examines novel advances in transducer design, biological interface, and material biocompatibility, with a focus on recent academic and commercial work which provide successful strategies to overcome perennial challenges. This review focuses primarily on the topics of closed-loop glucose control and continuous glucose monitoring biosensors, which make up the overwhelming majority of published research in this area. We conclude with an overview of recent advances in closed-loop systems targeting applications outside blood glucose management. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, X. Y.; Wang, H. B.; Jia, Y. L.; Dong, YH
2018-05-01
In this paper, an open-closed-loop iterative learning control (ILC) algorithm is constructed for a class of nonlinear systems subjecting to random data dropouts. The ILC algorithm is implemented by a networked control system (NCS), where only the off-line data is transmitted by network while the real-time data is delivered in the point-to-point way. Thus, there are two controllers rather than one in the control system, which makes better use of the saved and current information and thereby improves the performance achieved by open-loop control alone. During the transfer of off-line data between the nonlinear plant and the remote controller data dropout occurs randomly and the data dropout rate is modeled as a binary Bernoulli random variable. Both measurement and control data dropouts are taken into consideration simultaneously. The convergence criterion is derived based on rigorous analysis. Finally, the simulation results verify the effectiveness of the proposed method.
Robotic guarded motion system and method
Bruemmer, David J.
2010-02-23
A robot platform includes perceptors, locomotors, and a system controller. The system controller executes instructions for repeating, on each iteration through an event timing loop, the acts of defining an event horizon, detecting a range to obstacles around the robot, and testing for an event horizon intrusion. Defining the event horizon includes determining a distance from the robot that is proportional to a current velocity of the robot and testing for the event horizon intrusion includes determining if any range to the obstacles is within the event horizon. Finally, on each iteration through the event timing loop, the method includes reducing the current velocity of the robot in proportion to a loop period of the event timing loop if the event horizon intrusion occurs.
A simple second-order digital phase-locked loop.
NASA Technical Reports Server (NTRS)
Tegnelia, C. R.
1972-01-01
A simple second-order digital phase-locked loop has been designed for the Viking Orbiter 1975 command system. Excluding analog-to-digital conversion, implementation of the loop requires only an adder/subtractor, two registers, and a correctable counter with control logic. The loop considers only the polarity of phase error and corrects system clocks according to a filtered sequence of this polarity. The loop is insensitive to input gain variation, and therefore offers the advantage of stable performance over long life. Predictable performance is guaranteed by extreme reliability of acquisition, yet in the steady state the loop produces only a slight degradation with respect to analog loop performance.
Origin and control of instability in SCR/triac three-phase motor controllers
NASA Technical Reports Server (NTRS)
Dearth, J. J.
1982-01-01
The energy savings and reactive power reduction functions initiated by the power factor controller (PFC) are discussed. A three-phase PFC with soft start is examined analytically and experimentally to determine how well it controls the open loop instability and other possible modes of instability. The detailed mechanism of the open loop instability is determined and shown to impose design constraints on the closed loop system. The design is shown to meet those constraints.
The Digital Motion Control System for the Submillimeter Array Antennas
NASA Astrophysics Data System (ADS)
Hunter, T. R.; Wilson, R. W.; Kimberk, R.; Leiker, P. S.; Patel, N. A.; Blundell, R.; Christensen, R. D.; Diven, A. R.; Maute, J.; Plante, R. J.; Riddle, P.; Young, K. H.
2013-09-01
We describe the design and performance of the digital servo and motion control system for the 6-meter parabolic antennas of the Submillimeter Array (SMA) on Mauna Kea, Hawaii. The system is divided into three nested layers operating at a different, appropriate bandwidth. (1) A rack-mounted, real-time Unix system runs the position loop which reads the high resolution azimuth and elevation encoders and sends velocity and acceleration commands at 100 Hz to a custom-designed servo control board (SCB). (2) The microcontroller-based SCB reads the motor axis tachometers and implements the velocity loop by sending torque commands to the motor amplifiers at 558 Hz. (3) The motor amplifiers implement the torque loop by monitoring and sending current to the three-phase brushless drive motors at 20 kHz. The velocity loop uses a traditional proportional-integral-derivative (PID) control algorithm, while the position loop uses only a proportional term and implements a command shaper based on the Gauss error function. Calibration factors and software filters are applied to the tachometer feedback prior to the application of the servo gains in the torque computations. All of these parameters are remotely adjustable in the software. The three layers of the control system monitor each other and are capable of shutting down the system safely if a failure or anomaly occurs. The Unix system continuously relays the antenna status to the central observatory computer via reflective memory. In each antenna, a Palm Vx hand controller displays the complete system status and allows full local control of the drives in an intuitive touchscreen user interface. The hand controller can also be connected outside the cabin, a major convenience during the frequent reconfigurations of the interferometer. Excellent tracking performance ( 0.3‧‧ rms) is achieved with this system. It has been in reliable operation on 8 antennas for over 10 years and has required minimal maintenance.
Lehrer, Paul; Eddie, David
2013-06-01
Systems theory has long been used in psychology, biology, and sociology. This paper applies newer methods of control systems modeling for assessing system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning.
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a recirculating control loop which had no water quality maintenance. Results show that periodic water maintenance can improve performance of the SWME. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage of this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the evaluation of water recirculation maintenance components was to enhance the robustness of the SWME through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A patented bed design that was developed for a United Technologies Aerospace System military application provided a low pressure drop means for water maintenance in the SWME recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for the ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
Advanced rotorcraft control using parameter optimization
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters is presented. The algorithm is part of a design algorithm for an optimal linear dynamic output feedback controller that minimizes a finite time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed loop eigensystem. This approach through the use of a accurate Pade series approximation does not require the closed loop system matrix to be diagonalizable. The algorithm has been included in a control design package for optimal robust low order controllers. Usefulness of the proposed numerical algorithm has been demonstrated using numerous practical design cases where degeneracies occur frequently in the closed loop system under an arbitrary controller design initialization and during the numerical search.
Control theory analysis of a three-axis VTOL flight director. M.S. Thesis - Pennsylvania State Univ.
NASA Technical Reports Server (NTRS)
Niessen, F. R.
1971-01-01
A control theory analysis of a VTOL flight director and the results of a fixed-based simulator evaluation of the flight-director commands are discussed. The VTOL configuration selected for this study is a helicopter-type VTOL which controls the direction of the thrust vector by means of vehicle-attitude changes and, furthermore, employs high-gain attitude stabilization. This configuration is the same as one which was simulated in actual instrument flight tests with a variable stability helicopter. Stability analyses are made for each of the flight-director commands, assuming a single input-output, multi-loop system model for each control axis. The analyses proceed from the inner-loops to the outer-loops, using an analytical pilot model selected on the basis of the innermost-loop dynamics. The time response of the analytical model of the system is primarily used to adjust system gains, while root locus plots are used to identify dominant modes and mode interactions.
Diagonal dominance for the multivariable Nyquist array using function minimization
NASA Technical Reports Server (NTRS)
Leininger, G. G.
1977-01-01
A new technique for the design of multivariable control systems using the multivariable Nyquist array method was developed. A conjugate direction function minimization algorithm is utilized to achieve a diagonal dominant condition over the extended frequency range of the control system. The minimization is performed on the ratio of the moduli of the off-diagonal terms to the moduli of the diagonal terms of either the inverse or direct open loop transfer function matrix. Several new feedback design concepts were also developed, including: (1) dominance control parameters for each control loop; (2) compensator normalization to evaluate open loop conditions for alternative design configurations; and (3) an interaction index to determine the degree and type of system interaction when all feedback loops are closed simultaneously. This new design capability was implemented on an IBM 360/75 in a batch mode but can be easily adapted to an interactive computer facility. The method was applied to the Pratt and Whitney F100 turbofan engine.
A Triple-Loop Inductive Power Transmission System for Biomedical Applications.
Lee, Byunghun; Kiani, Mehdi; Ghovanloo, Maysam
2016-02-01
A triple-loop wireless power transmission (WPT) system equipped with closed-loop global power control, adaptive transmitter (Tx) resonance compensation (TRC), and automatic receiver (Rx) resonance tuning (ART) is presented. This system not only opposes coupling and load variations but also compensates for changes in the environment surrounding the inductive link to enhance power transfer efficiency (PTE) in applications such as implantable medical devices (IMDs). The Tx was built around a commercial off-the-shelf (COTS) radio-frequency identification (RFID) reader, operating at 13.56 MHz. A local Tx loop finds the optimal capacitance in parallel with the Tx coil by adjusting a varactor. A global power control loop maintains the received power at a desired level in the presence of changes in coupling distance, coil misalignments, and loading. Moreover, a local Rx loop is implemented inside a power management integrated circuit (PMIC) to avoid PTE degradation due to the Rx coil surrounding environment and process variations. The PMIC was fabricated in a 0.35- μm 4M2P standard CMOS process with 2.54 mm(2) active area. Measurement results show that the proposed triple-loop system improves the overall PTE by up to 10.5% and 4.7% compared to a similar open- and single closed-loop system, respectively, at nominal coil distance of 2 cm. The added TRC and ART loops contribute 2.3% and 1.4% to the overall PTE of 13.5%, respectively. This is the first WPT system to include three loops to dynamically compensate for environment and circuit variations and improve the overall power efficiency all the way from the driver output in Tx to the load in Rx.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George
2010-01-01
This paper covers the propulsion system component modeling and controls development of an integrated mixed compression inlet and turbojet engine that will be used for an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. Using previously created nonlinear component-level propulsion system models, a linear integrated propulsion system model and loop shaping control design have been developed. The design includes both inlet normal shock position control and jet engine rotor speed control for a potential supersonic commercial transport. A preliminary investigation of the impacts of the aero-elastic effects on the incoming flow field to the propulsion system are discussed, however, the focus here is on developing a methodology for the propulsion controls design that prevents unstart in the inlet and minimizes the thrust oscillation experienced by the vehicle. Quantitative Feedback Theory (QFT) specifications and bounds, and aspects of classical loop shaping are used in the control design process. Model uncertainty is incorporated in the design to address possible error in the system identification mapping of the nonlinear component models into the integrated linear model.
A High-Order, Time Invariant, Linearized Model for Application to HHCIAFCS Interaction Studies
NASA Technical Reports Server (NTRS)
Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto
2003-01-01
This paper describes a methodology for the extraction of a linear time invariant model from a nonlinear helicopter model, and followed by an examination of the interactions of the Higher Harmonic Control (HHC) and the Automatic Flight Control System (AFCS). This new method includes an embedded harmonic analyzer inside a linear time invariant model, which allows the periodicity of the helicopter response to be captured. The: coupled high-order model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC loops. Results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. The results also show that the vibration response to maneuvers must be considered during the HHC design process, which leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration response during maneuvers can be reduced by optimizing the closed-loop higher harmonic control laws using conventional control system analyses.
Dagnino, Giulio; Georgilas, Ioannis; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja
2016-03-01
Joint fracture surgery quality can be improved by robotic system with high-accuracy and high-repeatability fracture fragment manipulation. A new real-time vision-based system for fragment manipulation during robot-assisted fracture surgery was developed and tested. The control strategy was accomplished by merging fast open-loop control with vision-based control. This two-phase process is designed to eliminate the open-loop positioning errors by closing the control loop using visual feedback provided by an optical tracking system. Evaluation of the control system accuracy was performed using robot positioning trials, and fracture reduction accuracy was tested in trials on ex vivo porcine model. The system resulted in high fracture reduction reliability with a reduction accuracy of 0.09 mm (translations) and of [Formula: see text] (rotations), maximum observed errors in the order of 0.12 mm (translations) and of [Formula: see text] (rotations), and a reduction repeatability of 0.02 mm and [Formula: see text]. The proposed vision-based system was shown to be effective and suitable for real joint fracture surgical procedures, contributing a potential improvement of their quality.
NASA Astrophysics Data System (ADS)
Phat Luu, Trieu; He, Yongtian; Brown, Samuel; Nakagome, Sho; Contreras-Vidal, Jose L.
2016-06-01
Objective. The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31 Knee: 0.23 ± 0.33 Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24 Knee: 0.55 ± 0.20 Ankle: 0.29 ± 0.22) on Day 8. Significance. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.
Feedback Control Systems Loop Shaping Design with Practical Considerations
NASA Technical Reports Server (NTRS)
Kopsakis, George
2007-01-01
This paper describes loop shaping control design in feedback control systems, primarily from a practical stand point that considers design specifications. Classical feedback control design theory, for linear systems where the plant transfer function is known, has been around for a long time. But it s still a challenge of how to translate the theory into practical and methodical design techniques that simultaneously satisfy a variety of performance requirements such as transient response, stability, and disturbance attenuation while taking into account the capabilities of the plant and its actuation system. This paper briefly addresses some relevant theory, first in layman s terms, so that it becomes easily understood and then it embarks into a practical and systematic design approach incorporating loop shaping design coupled with lead-lag control compensation design. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs.
Experimental Validation of L1 Adaptive Control: Rohrs' Counterexample in Flight
NASA Technical Reports Server (NTRS)
Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Issac; Kitsios, Ioannis; Cao, Chengyu; Gregory, Irene M.; Valavani, Lena
2010-01-01
The paper presents new results on the verification and in-flight validation of an L1 adaptive flight control system, and proposes a general methodology for verification and validation of adaptive flight control algorithms. The proposed framework is based on Rohrs counterexample, a benchmark problem presented in the early 80s to show the limitations of adaptive controllers developed at that time. In this paper, the framework is used to evaluate the performance and robustness characteristics of an L1 adaptive control augmentation loop implemented onboard a small unmanned aerial vehicle. Hardware-in-the-loop simulations and flight test results confirm the ability of the L1 adaptive controller to maintain stability and predictable performance of the closed loop adaptive system in the presence of general (artificially injected) unmodeled dynamics. The results demonstrate the advantages of L1 adaptive control as a verifiable robust adaptive control architecture with the potential of reducing flight control design costs and facilitating the transition of adaptive control into advanced flight control systems.
A review of active control approaches in stabilizing combustion systems in aerospace industry
NASA Astrophysics Data System (ADS)
Zhao, Dan; Lu, Zhengli; Zhao, He; Li, X. Y.; Wang, Bing; Liu, Peijin
2018-02-01
Self-sustained combustion instabilities are one of the most plaguing challenges and problems in lean-conditioned propulsion and land-based engine systems, such as rocket motors, gas turbines, industrial furnace and boilers, and turbo-jet thrust augmenters. Either passive or active control in open- or closed-loop configurations can be implemented to mitigate such instabilities. One of the classical disadvantages of passive control is that it is only implementable to a designed combustor over a limited frequency range and can not respond to the changes in operating conditions. Compared with passive control approaches, active control, especially in closed-loop configuration is more adaptive and has inherent capacity to be implemented in practice. The key components in closed-loop active control are 1) sensor, 2) controller (optimization algorithm) and 3) dynamic actuator. The present work is to outline the current status, technical challenges and development progress of the active control approaches (in open- or closed-loop configurations). A brief description of feedback control, adaptive control, model-based control and sliding mode control are provided first by introducing a simplified Rijke-type combustion system. The modelled combustion system provides an invaluable platform to evaluate the performance of these feedback controllers and a transient growth controller. The performance of these controllers are compared and discussed. An outline of theoretical, numerical and experimental investigations are then provided to overview the research and development progress made during the last 4 decades. Finally, potential, challenges and issues involved with the design, application and implementation of active combustion control strategies on a practical engine system are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Austin; Chakraborty, Sudipta; Wang, Dexin
This paper presents a cyber-physical testbed, developed to investigate the complex interactions between emerging microgrid technologies such as grid-interactive power sources, control systems, and a wide variety of communication platforms and bandwidths. The cyber-physical testbed consists of three major components for testing and validation: real time models of a distribution feeder model with microgrid assets that are integrated into the National Renewable Energy Laboratory's (NREL) power hardware-in-the-loop (PHIL) platform; real-time capable network-simulator-in-the-loop (NSIL) models; and physical hardware including inverters and a simple system controller. Several load profiles and microgrid configurations were tested to examine the effect on system performance withmore » increasing channel delays and router processing delays in the network simulator. Testing demonstrated that the controller's ability to maintain a target grid import power band was severely diminished with increasing network delays and laid the foundation for future testing of more complex cyber-physical systems.« less
Generalized fast feedback system in the SLC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrickson, L.; Allison, S.; Gromme, T.
A generalized fast feedback system has been developed to stabilize beams at various locations in the SLC. The system is designed to perform measurements and change actuator settings to control beam states such as position, angle and energy on a pulse to pulse basis. The software design is based on the state space formalism of digital control theory. The system is database-driven, facilitating the addition of new loops without requiring additional software. A communications system, KISNet, provides fast communications links between microprocessors for feedback loops which involve multiple micros. Feedback loops have been installed in seventeen locations throughout the SLCmore » and have proven to be invaluable in stabilizing the machine.« less
Development of Hardware-in-the-loop Microgrid Testbed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Bailu; Prabakar, Kumaraguru; Starke, Michael R
2015-01-01
A hardware-in-the-loop (HIL) microgrid testbed for the evaluation and assessment of microgrid operation and control system has been presented in this paper. The HIL testbed is composed of a real-time digital simulator (RTDS) for modeling of the microgrid, multiple NI CompactRIOs for device level control, a prototype microgrid energy management system (MicroEMS), and a relay protection system. The applied communication-assisted hybrid control system has been also discussed. Results of function testing of HIL controller, communication, and the relay protection system are presented to show the effectiveness of the proposed HIL microgrid testbed.
Automatic control of finite element models for temperature-controlled radiofrequency ablation
Haemmerich, Dieter; Webster, John G
2005-01-01
Background The finite element method (FEM) has been used to simulate cardiac and hepatic radiofrequency (RF) ablation. The FEM allows modeling of complex geometries that cannot be solved by analytical methods or finite difference models. In both hepatic and cardiac RF ablation a common control mode is temperature-controlled mode. Commercial FEM packages don't support automating temperature control. Most researchers manually control the applied power by trial and error to keep the tip temperature of the electrodes constant. Methods We implemented a PI controller in a control program written in C++. The program checks the tip temperature after each step and controls the applied voltage to keep temperature constant. We created a closed loop system consisting of a FEM model and the software controlling the applied voltage. The control parameters for the controller were optimized using a closed loop system simulation. Results We present results of a temperature controlled 3-D FEM model of a RITA model 30 electrode. The control software effectively controlled applied voltage in the FEM model to obtain, and keep electrodes at target temperature of 100°C. The closed loop system simulation output closely correlated with the FEM model, and allowed us to optimize control parameters. Discussion The closed loop control of the FEM model allowed us to implement temperature controlled RF ablation with minimal user input. PMID:16018811
Spacecraft attitude control using a smart control system
NASA Technical Reports Server (NTRS)
Buckley, Brian; Wheatcraft, Louis
1992-01-01
Traditionally, spacecraft attitude control has been implemented using control loops written in native code for a space hardened processor. The Naval Research Lab has taken this approach during the development of the Attitude Control Electronics (ACE) package. After the system was developed and delivered, NRL decided to explore alternate technologies to accomplish this same task more efficiently. The approach taken by NRL was to implement the ACE control loops using systems technologies. The purpose of this effort was to: (1) research capabilities required of an expert system in processing a classic closed-loop control algorithm; (2) research the development environment required to design and test an embedded expert systems environment; (3) research the complexity of design and development of expert systems versus a conventional approach; and (4) test the resulting systems against the flight acceptance test software for both response and accuracy. Two expert systems were selected to implement the control loops. Criteria used for the selection of the expert systems included that they had to run in both embedded systems and ground based environments. Using two different expert systems allowed a comparison of the real-time capabilities, inferencing capabilities, and the ground-based development environment. The two expert systems chosen for the evaluation were Spacecraft Command Language (SCL), and NEXTPERT Object. SCL is a smart control system produced for the NRL by Interface and Control Systems (ICS). SCL was developed to be used for real-time command, control, and monitoring of a new generation of spacecraft. NEXPERT Object is a commercially available product developed by Neuron Data. Results of the effort were evaluated using the ACE test bed. The ACE test bed had been developed and used to test the original flight hardware and software using simulators and flight-like interfaces. The test bed was used for testing the expert systems in a 'near-flight' environment. The technical approach, the system architecture, the development environments, knowledge base development, and results of this effort are detailed.
NASA Astrophysics Data System (ADS)
Zhu, Xiaoyuan; Zhang, Hui; Fang, Zongde
2015-12-01
This paper presents a robust speed synchronization controller design for an integrated motor-transmission powertrain system in which the driving motor and multi-gearbox are directly coupled. As the controller area network (CAN) is commonly used in the vehicle powertrain system, the possible network-induced random delays in both feedback and forward channel are considered and modeled by using two Markov chains in the controller design process. For the application perspective, the control law adopted here is a generalized proportional-integral (PI) control. By employing the system-augmentation technique, a delay-free stochastic closed-loop system is obtained and the generalized PI controller design problem is converted to a static output feedback (SOF) controller design problem. Since there are external disturbances involved in the closed-loop system, the energy-to-peak performance is considered to guarantee the robustness of the controller. And the controlled output is chosen as the speed synchronization error. To further improve the transient response of the closed-loop system, the pole placement is also employed in the energy-to-peak performance based speed synchronization control. The mode-dependent control gains are obtained by using an iterative linear matrix inequality (LMI) algorithm. Simulation results show the effectiveness of the proposed control approach.
A microprocessor-based real-time simulator of a turbofan engine
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Delaat, John C.; Merrill, Walter C.
1988-01-01
A real-time digital simulator of a Pratt and Whitney F 100 engine is discussed. This self-contained unit can operate in an open-loop stand-alone mode or as part of a closed-loop control system. It can also be used in control system design and development. It accepts five analog control inputs and its sixteen outputs are returned as analog signals.
Reliable numerical computation in an optimal output-feedback design
NASA Technical Reports Server (NTRS)
Vansteenwyk, Brett; Ly, Uy-Loi
1991-01-01
A reliable algorithm is presented for the evaluation of a quadratic performance index and its gradients with respect to the controller design parameters. The algorithm is a part of a design algorithm for optimal linear dynamic output-feedback controller that minimizes a finite-time quadratic performance index. The numerical scheme is particularly robust when it is applied to the control-law synthesis for systems with densely packed modes and where there is a high likelihood of encountering degeneracies in the closed-loop eigensystem. This approach through the use of an accurate Pade series approximation does not require the closed-loop system matrix to be diagonalizable. The algorithm was included in a control design package for optimal robust low-order controllers. Usefulness of the proposed numerical algorithm was demonstrated using numerous practical design cases where degeneracies occur frequently in the closed-loop system under an arbitrary controller design initialization and during the numerical search.
ERIC Educational Resources Information Center
Yamaguchi, Motonori; Crump, Matthew J. C.; Logan, Gordon D.
2013-01-01
Typing performance involves hierarchically structured control systems: At the higher level, an outer loop generates a word or a series of words to be typed; at the lower level, an inner loop activates the keystrokes comprising the word in parallel and executes them in the correct order. The present experiments examined contributions of the outer-…
Coherent random lasing controlled by Brownian motion of the active scatterer
NASA Astrophysics Data System (ADS)
Liang, Shuofeng; Yin, Leicheng; Zhang, ZhenZhen; Xia, Jiangying; Xie, Kang; Zou, Gang; Hu, Zhijia; Zhang, Qijin
2018-05-01
The stability of the scattering loop is fundamental for coherent random lasing in a dynamic scattering system. In this work, fluorescence of DPP (N, N-di [3-(isobutyl polyhedral oligomeric silsesquioxanes) propyl] perylene diimide) is scattered to produce RL and we realize the transition from incoherent RL to coherent RL by controlling the Brownian motion of the scatterers (dimer aggregates of DPP) and the stability of scattering loop. To produce coherent random lasers, the loop needs to maintain a stable state within the loop-stable time, which can be determined through controlled Brownian motion of scatterers in the scattering system. The result shows that the loop-stable time is within 5.83 × 10‑5 s to 1.61 × 10‑4 s based on the transition from coherent to incoherent random lasing. The time range could be tuned by finely controlling the viscosity of the solution. This work not only develops a method to predict the loop-stable time, but also develops the study between Brownian motion and random lasers, which opens the road to a variety of novel interdisciplinary investigations involving modern statistical mechanics and disordered photonics.
Closed loop control of penetration depth during CO₂ laser lap welding processes.
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis In 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.
Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646
NASA Astrophysics Data System (ADS)
Hanai, Yuji; Hayashi, Yasuhiro; Matsuki, Junya
The line voltage control in a distribution network is one of the most important issues for a penetration of Renewable Energy Sources (RES). A loop distribution network configuration is an effective solution to resolve voltage and distribution loss issues concerned about a penetration of RES. In this paper, for a loop distribution network, the authors propose a voltage control method based on tap change control of LRT and active/reactive power control of RES. The tap change control of LRT takes a major role of the proposed voltage control. Additionally the active/reactive power control of RES supports the voltage control when voltage deviation from the upper or lower voltage limit is unavoidable. The proposed method adopts SCADA system based on measured data from IT switches, which are sectionalizing switch with sensor installed in distribution feeder. In order to check the validity of the proposed voltage control method, experimental simulations using a distribution system analog simulator “ANSWER” are carried out. In the simulations, the voltage maintenance capability in the normal and the emergency is evaluated.
Closed-loop motor control using high-speed fiber optics
NASA Technical Reports Server (NTRS)
Dawson, Reginald (Inventor); Rodriquiz, Dagobert (Inventor)
1991-01-01
A closed-loop control system for controlling the operation of one or more servo motors or other controllable devices is described. The system employs a fiber optics link immune to electromagnetic interference, for transmission of control signals from a controller or controllers at a remote station to the power electronics located in proximity to the motors or other devices at the local station. At the remote station the electrical control signals are time-multiplexed, converted to a formatted serial bit stream, and converted to light signals for transmission over a single fiber of the fiber optics link. At the local station, the received optical signals are reconstructed as electrical control signals for the controlled motors or other devices. At the local station, an encoder sensor linked to the driven device generates encoded feedback signals which provide information as to a condition of the controlled device. The encoded signals are placed in a formatted serial bit stream, multiplexed, and transmitted as optical signals over a second fiber of the fiber optic link which closes the control loop of the closed-loop motor controller. The encoded optical signals received at the remote station are demultiplexed, reconstructed and coupled to the controller(s) as electrical feedback signals.
Han, Fengtian; Wang, Wei; Zhang, Xiaoyang; Xie, Huikai
2016-10-03
A large piston-displacement electrothermal micromirror with closed-loop control of both piston scan and tilting of the mirror plate is demonstrated for use in a miniature Fourier transform spectrometer. Constant scan velocity in an ultra large piston scan range has been demonstrated by the proposed closed-loop piston control scheme which can be easily implemented without considerably increasing system complexity. The experimental results show that the usable linear scan range generated by the micromirror has been extended up to 505 μm. The measured spectral resolution in a compact spectrometer reaches 20 cm-1, or 0.57 nm at 532 nm wavelength. Compared to other presented systems, this microspectrometer will benefit from the closed-loop thermal actuator approach utilizing both the piston servo and tilt control to provide more consistent spectral response, improved spectral resolution and enhanced robustness to disturbances.
PDCI Wide-Area Damping Control: PSLF Simulations of the 2016 Open and Closed Loop Test Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilches Bernal, Felipe; Pierre, Brian Joseph; Elliott, Ryan Thomas
To demonstrate and validate the performance of the wide-are a damping control system, the project plans to conduct closed-loop tests on the PDCI in summer/fall 2016. A test plan details the open and closed loop tests to be conducted on the P DCI using the wide-area damping control system. To ensure the appropriate level of preparedness, simulations were performed in order to predict and evaluate any possible unsafe operations before hardware experiments are attempted. This report contains the result s from these simulations using the power system dynamics software PSLF (Power System Load Flow, trademark of GE). The simulations usemore » the WECC (Western Electricity Coordinating Council) 2016 light summer and heavy summer base cases.« less
Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot; Thomas, George; Culley, Dennis; Kratz, Jonathan
2017-01-01
Distributed engine control (DEC) systems alter aircraft engine design constraints because of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.
Robustness study of the pseudo open-loop controller for multiconjugate adaptive optics.
Piatrou, Piotr; Gilles, Luc
2005-02-20
Robustness of the recently proposed "pseudo open-loop control" algorithm against various system errors has been investigated for the representative example of the Gemini-South 8-m telescope multiconjugate adaptive-optics system. The existing model to represent the adaptive-optics system with pseudo open-loop control has been modified to account for misalignments, noise and calibration errors in deformable mirrors, and wave-front sensors. Comparison with the conventional least-squares control model has been done. We show with the aid of both transfer-function pole-placement analysis and Monte Carlo simulations that POLC remains remarkably stable and robust against very large levels of system errors and outperforms in this respect least-squares control. Approximate stability margins as well as performance metrics such as Strehl ratios and rms wave-front residuals averaged over a 1-arc min field of view have been computed for different types and levels of system errors to quantify the expected performance degradation.
Design and Benchmarking of a Network-In-the-Loop Simulation for Use in a Hardware-In-the-Loop System
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Thomas, George Lindsey; Culley, Dennis E.; Kratz, Jonathan L.
2017-01-01
Distributed engine control (DEC) systems alter aircraft engine design constraints be- cause of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.
Vibration suppression using a proofmass actuator operating in stroke/force saturation
NASA Technical Reports Server (NTRS)
Lindner, D. K.; Celano, T. P.; Ide, E. N.
1991-01-01
The design of the control-loop structure for a feedback control system which contains a proofmass actuator for suppressing vibration is discussed. The loop structure is composed of inner control loops, which determine the frequency of the actuator and which are directly related to the actuator and the outer loops which add damping to the structure. When the frequency response of the actuator is matched to the stroke/force saturation curve, the actuator is most effective in the vibration suppression loops, and, since the stroke/force saturation curve is characterized by the stroke length, the mass of the proofmass, and the maximum current delivered by the motor electronics, the size of the actuator can be easily determined. The results of the loop-structure model calculations are verified by examining linear DC motors as proofmass actuators for the Mast in NASA's Control of Flexible Structures program.
Adaptive weld control for high-integrity welding applications
NASA Technical Reports Server (NTRS)
Powell, Bradley W.
1993-01-01
An advanced adaptive control weld system for high-integrity welding applications is presented. The system consists of a state-of-the-art weld control subsystem, motion control subsystem, and sensor subsystem which closes the loop on the process. The adaptive control subsystem (ACS), which is required to totally close the loop on weld process control, consists of a multiprocessor system, data acquisition hardware, and three welding sensors which provide measurements from all areas around the torch in real time. The ACS acquires all 'measurables' and feeds offset trims back into the weld control and motion control subsystems to modify the 'controllables' in order to maintain a previously defined weld quality.
Study on real-time force feedback for a master-slave interventional surgical robotic system.
Guo, Shuxiang; Wang, Yuan; Xiao, Nan; Li, Youxiang; Jiang, Yuhua
2018-04-13
In robot-assisted catheterization, haptic feedback is important, but is currently lacking. In addition, conventional interventional surgical robotic systems typically employ a master-slave architecture with an open-loop force feedback, which results in inaccurate control. We develop herein a novel real-time master-slave (RTMS) interventional surgical robotic system with a closed-loop force feedback that allows a surgeon to sense the true force during remote operation, provide adequate haptic feedback, and improve control accuracy in robot-assisted catheterization. As part of this system, we also design a unique master control handle that measures the true force felt by a surgeon, providing the basis for the closed-loop control of the entire system. We use theoretical and empirical methods to demonstrate that the proposed RTMS system provides a surgeon (using the master control handle) with a more accurate and realistic force sensation, which subsequently improves the precision of the master-slave manipulation. The experimental results show a substantial increase in the control accuracy of the force feedback and an increase in operational efficiency during surgery.
Performance constraints and compensation for teleoperation with delay
NASA Technical Reports Server (NTRS)
Mclaughlin, J. S.; Staunton, B. D.
1989-01-01
A classical control perspective is used to characterize performance constraints and evaluate compensation techniques for teleoperation with delay. Use of control concepts such as open and closed loop performance, stability, and bandwidth yield insight to the delay problem. Teleoperator performance constraints are viewed as an open loop time delay lag and as a delay-induced closed loop bandwidth constraint. These constraints are illustrated with a simple analytical tracking example which is corroborated by a real time, 'man-in-the-loop' tracking experiment. The experiment also provides insight to those controller characteristics which are unique to a human operator. Predictive displays and feedforward commands are shown to provide open loop compensation for delay lag. Low pass filtering of telemetry or feedback signals is interpreted as closed loop compensation used to maintain a sufficiently low bandwidth for stability. A new closed loop compensation approach is proposed that uses a reactive (or force feedback) hand controller to restrict system bandwidth by impeding operator inputs.
Investigation of air transportation technology at Princeton University, 1985
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1987-01-01
The program proceeded along five avenues during 1985. Guidance and control strategies for penetration of microbursts and wind shear, application of artificial intelligence in flight control and air traffic control systems, the use of voice recognition in the cockpit, the effects of control saturation on closed-loop stability and response of open-loop unstable aircraft, and computer aided control system design are among the topics briefly considered. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is the subject of principal concern.
NASA Technical Reports Server (NTRS)
Antoniewicz, Robert F.; Duke, Eugene L.; Menon, P. K. A.
1991-01-01
The design of nonlinear controllers has relied on the use of detailed aerodynamic and engine models that must be associated with the control law in the flight system implementation. Many of these controllers were applied to vehicle flight path control problems and have attempted to combine both inner- and outer-loop control functions in a single controller. An approach to the nonlinear trajectory control problem is presented. This approach uses linearizing transformations with measurement feedback to eliminate the need for detailed aircraft models in outer-loop control applications. By applying this approach and separating the inner-loop and outer-loop functions two things were achieved: (1) the need for incorporating detailed aerodynamic models in the controller is obviated; and (2) the controller is more easily incorporated into existing aircraft flight control systems. An implementation of the controller is discussed, and this controller is tested on a six degree-of-freedom F-15 simulation and in flight on an F-15 aircraft. Simulation data are presented which validates this approach over a large portion of the F-15 flight envelope. Proof of this concept is provided by flight-test data that closely matches simulation results. Flight-test data are also presented.
NASA Astrophysics Data System (ADS)
Ro, Kyoungsoo
The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.
Integration of Online Parameter Identification and Neural Network for In-Flight Adaptive Control
NASA Technical Reports Server (NTRS)
Hageman, Jacob J.; Smith, Mark S.; Stachowiak, Susan
2003-01-01
An indirect adaptive system has been constructed for robust control of an aircraft with uncertain aerodynamic characteristics. This system consists of a multilayer perceptron pre-trained neural network, online stability and control derivative identification, a dynamic cell structure online learning neural network, and a model following control system based on the stochastic optimal feedforward and feedback technique. The pre-trained neural network and model following control system have been flight-tested, but the online parameter identification and online learning neural network are new additions used for in-flight adaptation of the control system model. A description of the modification and integration of these two stand-alone software packages into the complete system in preparation for initial flight tests is presented. Open-loop results using both simulation and flight data, as well as closed-loop performance of the complete system in a nonlinear, six-degree-of-freedom, flight validated simulation, are analyzed. Results show that this online learning system, in contrast to the nonlearning system, has the ability to adapt to changes in aerodynamic characteristics in a real-time, closed-loop, piloted simulation, resulting in improved flying qualities.
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat.
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-04-21
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation.
Conceptualization and validation of an open-source closed-loop deep brain stimulation system in rat
Wu, Hemmings; Ghekiere, Hartwin; Beeckmans, Dorien; Tambuyzer, Tim; van Kuyck, Kris; Aerts, Jean-Marie; Nuttin, Bart
2015-01-01
Conventional deep brain stimulation (DBS) applies constant electrical stimulation to specific brain regions to treat neurological disorders. Closed-loop DBS with real-time feedback is gaining attention in recent years, after proved more effective than conventional DBS in terms of pathological symptom control clinically. Here we demonstrate the conceptualization and validation of a closed-loop DBS system using open-source hardware. We used hippocampal theta oscillations as system input, and electrical stimulation in the mesencephalic reticular formation (mRt) as controller output. It is well documented that hippocampal theta oscillations are highly related to locomotion, while electrical stimulation in the mRt induces freezing. We used an Arduino open-source microcontroller between input and output sources. This allowed us to use hippocampal local field potentials (LFPs) to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS significantly suppressed locomotion compared to no stimulation, and required on average only 56% of the stimulation used in open-loop DBS to reach similar effects. The main advantages of open-source hardware include wide selection and availability, high customizability, and affordability. Our open-source closed-loop DBS system is effective, and warrants further research using open-source hardware for closed-loop neuromodulation. PMID:25897892
NASA Technical Reports Server (NTRS)
Cheng, Rendy P.; Tischler, Mark B.; Celi, Roberto
2006-01-01
This research describes a new methodology for the extraction of a high-order, linear time invariant model, which allows the periodicity of the helicopter response to be accurately captured. This model provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC algorithms. The key results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. However, the results show that the vibration response to maneuvers must be considered during the HHC design process, and this leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vibration responses during maneuvers can be reduced by optimizing the closed-loop higher harmonic control algorithm using conventional control system analyses.
On-off closed-loop control of vagus nerve stimulation for the adaptation of heart rate.
Ugalde, Hector Romero; Le Rolle, Virginie; Bel, Alain; Bonnet, Jean-Luc; Andreu, David; Mabo, Philippe; Carrault, Guy; Hernández, Alfredo I
2014-01-01
Vagus nerve stimulation (VNS) is a potential therapeutic approach in a number of clinical applications. Although VNS is commonly delivered in an open-loop approach, it is now recognized that closed-loop approaches may be necessary to optimize the therapy and minimize side effects of neuro-stimulation devices. In this paper, we describe a prototype system for real-time control of the instantaneous heart rate, working synchronously with the heart period. As a first step, an on-off control method has been integrated. The system is evaluated on one sheep with induced heart failure, showing the interest of the proposed approach.
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1986-01-01
An investigation is conducted for the closed loop stability of linear time-invariant systems controlled by linear quadratic (LQ) regulators, in cases where nonlinearities exist in the control channels lying outside the stability sector in regions away from the origin. The estimate of the region of attraction thus obtained furnishes methods for the selection of performance function weights for more robust LQ designs. Attention is then given to the closed loop stability of linear time-invariant systems controlled by the LQ regulators when the nonlinearities in the loops escape the stability sector in a bounded region containing the origin.
Shakouri, Payman; Ordys, Andrzej; Askari, Mohamad R
2012-09-01
In the design of adaptive cruise control (ACC) system two separate control loops - an outer loop to maintain the safe distance from the vehicle traveling in front and an inner loop to control the brake pedal and throttle opening position - are commonly used. In this paper a different approach is proposed in which a single control loop is utilized. The objective of the distance tracking is incorporated into the single nonlinear model predictive control (NMPC) by extending the original linear time invariant (LTI) models obtained by linearizing the nonlinear dynamic model of the vehicle. This is achieved by introducing the additional states corresponding to the relative distance between leading and following vehicles, and also the velocity of the leading vehicle. Control of the brake and throttle position is implemented by taking the state-dependent approach. The model demonstrates to be more effective in tracking the speed and distance by eliminating the necessity of switching between the two controllers. It also offers smooth variation in brake and throttle controlling signal which subsequently results in a more uniform acceleration of the vehicle. The results of proposed method are compared with other ACC systems using two separate control loops. Furthermore, an ACC simulation results using a stop&go scenario are shown, demonstrating a better fulfillment of the design requirements. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.
Lehrer, Paul; Eddie, David
2013-01-01
Systems theory has long been applied in psychology, biology, and sociology. This paper applies newer methods of control systems modeling to the assessment of system stability in health and disease. Control systems can be characterized as open or closed systems with feedback loops. Feedback produces oscillatory activity, and the complexity of naturally occurring oscillatory patterns reflects the multiplicity of feedback mechanisms, such that many mechanisms operate simultaneously to control the system. Unstable systems, often associated with poor health, are characterized by absence of oscillation, random noise, or a very simple pattern of oscillation. This modeling approach can be applied to a diverse range of phenomena, including cardiovascular and brain activity, mood and thermal regulation, and social system stability. External system stressors such as disease, psychological stress, injury, or interpersonal conflict may perturb a system, yet simultaneously stimulate oscillatory processes and exercise control mechanisms. Resonance can occur in systems with negative feedback loops, causing high-amplitude oscillations at a single frequency. Resonance effects can be used to strengthen modulatory oscillations, but may obscure other information and control mechanisms, and weaken system stability. Positive as well as negative feedback loops are important for system function and stability. Examples are presented of oscillatory processes in heart rate variability, and regulation of autonomic, thermal, pancreatic and central nervous system processes, as well as in social/organizational systems such as marriages and business organizations. Resonance in negative feedback loops can help stimulate oscillations and exercise control reflexes, but also can deprive the system of important information. Empirical hypotheses derived from this approach are presented, including that moderate stress may enhance health and functioning. PMID:23572244
NASA Technical Reports Server (NTRS)
Edwards, Darryl; Ungar, Eugene K.; Holt, James M.
2002-01-01
The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e. U.S. Laboratory module) contain a fluid accumulator to accomodate thermal expansion of the system. Other element coolant loops are parasitic (i.e. Airlock), have no accumulator, and require an alternative approach to insure that the system maximum design pressure (MDP) is not exceeded during the Launch to Activation (LTA) phase. During this time the element loops is a stand alone closed system. The solution approach for accomodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.
NASA Technical Reports Server (NTRS)
Edwards, J. Darryl; Ungar, Eugene K.; Holt, James M.; Turner, Larry D. (Technical Monitor)
2001-01-01
The International Space Station (ISS) employs an Internal Active Thermal Control System (IATCS) comprised of several single-phase water coolant loops. These coolant loops are distributed throughout the ISS pressurized elements. The primary element coolant loops (i.e., US Laboratory module) contain a fluid accumulator to accommodate thermal expansion of the system. Other element coolant loops are parasitic (i.e., Airlock), have no accumulator, and require an alternative approach to insure that the system Maximum Design Pressure (MDP) is not exceeded during the Launch to Activation phase. During this time the element loop is a stand alone closed individual system. The solution approach for accommodating thermal expansion was affected by interactions of system components and their particular limitations. The mathematical solution approach was challenged by the presence of certain unknown or not readily obtainable physical and thermodynamic characteristics of some system components and processes. The purpose of this paper is to provide a brief description of a few of the solutions that evolved over time, a novel mathematical solution to eliminate some of the unknowns or derive the unknowns experimentally, and the testing and methods undertaken.
NASA Astrophysics Data System (ADS)
Ugon, B.; Nandong, J.; Zang, Z.
2017-06-01
The presence of unstable dead-time systems in process plants often leads to a daunting challenge in the design of standard PID controllers, which are not only intended to provide close-loop stability but also to give good performance-robustness overall. In this paper, we conduct stability analysis on a double-loop control scheme based on the Routh-Hurwitz stability criteria. We propose to use this unstable double-loop control scheme which employs two P/PID controllers to control first-order or second-order unstable dead-time processes typically found in process industries. Based on the Routh-Hurwitz stability necessary and sufficient criteria, we establish several stability regions which enclose within them the P/PID parameter values that guarantee close-loop stability of the double-loop control scheme. A systematic tuning rule is developed for the purpose of obtaining the optimal P/PID parameter values within the established regions. The effectiveness of the proposed tuning rule is demonstrated using several numerical examples and the result are compared with some well-established tuning methods reported in the literature.
Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 Diabetes
Trevitt, Sara; Simpson, Sue; Wood, Annette
2015-01-01
Background: Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. Methods: A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. Results: Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. Conclusions: There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life. PMID:26589628
Design of feedback control systems for stable plants with saturating actuators
NASA Technical Reports Server (NTRS)
Kapasouris, Petros; Athans, Michael; Stein, Gunter
1988-01-01
A systematic control design methodology is introduced for multi-input/multi-output stable open loop plants with multiple saturations. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way as to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of the methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated in the simulation of an academic example and the simulation of the multivariable longitudinal control of a modified model of the F-8 aircraft.
Control systems for platform landings cushioned by air bags
NASA Astrophysics Data System (ADS)
Ross, Edward W.
1987-07-01
This report presents an exploratory mathematical study of control systems for airdrop platform landings cushioned by airbags. The basic theory of airbags is reviewed and solutions to special cases are noted. A computer program is presented, which calculates the time-dependence of the principal variables during a landing under the action of various control systems. Two existing control systems of open-loop type are compared with a conceptual feedback (closed-loop) system for a fairly typical set of landing conditions. The feedback controller is shown to have performance much superior to the other systems. The feedback system undergoes an interesting oscillation not present in the other systems, the source of which is investigated. Recommendations for future work are included.
Improving truck and speed data using paired video and single-loop sensors
DOT National Transportation Integrated Search
2006-12-01
Real-time speed and truck data are important inputs for modern freeway traffic control and : management systems. However, these data are not directly measurable by single-loop detectors. : Although dual-loop detectors provide speeds and classified ve...
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1996-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
NASA Technical Reports Server (NTRS)
Murphy, Patrick C.
1999-01-01
This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.
Detection of no-model input-output pairs in closed-loop systems.
Potts, Alain Segundo; Alvarado, Christiam Segundo Morales; Garcia, Claudio
2017-11-01
The detection of no-model input-output (IO) pairs is important because it can speed up the multivariable system identification process, since all the pairs with null transfer functions are previously discarded and it can also improve the identified model quality, thus improving the performance of model based controllers. In the available literature, the methods focus just on the open-loop case, since in this case there is not the effect of the controller forcing the main diagonal in the transfer matrix to one and all the other terms to zero. In this paper, a modification of a previous method able to detect no-model IO pairs in open-loop systems is presented, but adapted to perform this duty in closed-loop systems. Tests are performed by using the traditional methods and the proposed one to show its effectiveness. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kucuk, Senol
1988-01-01
Importance of the role of human operator in control systems has led to the particular area of manual control theory. Human describing functions were developed to model human behavior for manual control studies to take advantage of the successful and safe human operations. A single variable approach is presented that can be extended for multi-variable tasks where a low order human response model is used together with its rules, to adapt the model on-line, being capable of responding to the changes in the controlled element dynamics. Basic control theory concepts are used to combine the model, constrained with the physical observations, particularly, for the case of aircraft control. Pilot experience is represented as the initial model parameters. An adaptive root-locus method is presented as the adaptation law of the model where the closed loop bandwidth of the system is to be preserved in a stable manner with the adjustments of the pilot handling qualities which relate the latter to the closed loop bandwidth and damping of the closed loop pilot aircraft combination. A Kalman filter parameter estimator is presented as the controlled element identifier of the adaptive model where any discrepancies of the open loop dynamics from the presented one, are sensed to be compensated.
Development of Plant Control Diagnosis Technology and Increasing Its Applications
NASA Astrophysics Data System (ADS)
Kugemoto, Hidekazu; Yoshimura, Satoshi; Hashizume, Satoru; Kageyama, Takashi; Yamamoto, Toru
A plant control diagnosis technology was developed to improve the performance of plant-wide control and maintain high productivity of plants. The control performance diagnosis system containing this technology picks out the poor performance loop, analyzes the cause, and outputs the result on the Web page. Meanwhile, the PID tuning tool is used to tune extracted loops from the control performance diagnosis system. It has an advantage of tuning safely without process changes. These systems are powerful tools to do Kaizen (continuous improvement efforts) step by step, coordinating with the operator. This paper describes a practical technique regarding the diagnosis system and its industrial applications.
PID Tuning Using Extremum Seeking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killingsworth, N; Krstic, M
2005-11-15
Although proportional-integral-derivative (PID) controllers are widely used in the process industry, their effectiveness is often limited due to poor tuning. Manual tuning of PID controllers, which requires optimization of three parameters, is a time-consuming task. To remedy this difficulty, much effort has been invested in developing systematic tuning methods. Many of these methods rely on knowledge of the plant model or require special experiments to identify a suitable plant model. Reviews of these methods are given in [1] and the survey paper [2]. However, in many situations a plant model is not known, and it is not desirable to openmore » the process loop for system identification. Thus a method for tuning PID parameters within a closed-loop setting is advantageous. In relay feedback tuning [3]-[5], the feedback controller is temporarily replaced by a relay. Relay feedback causes most systems to oscillate, thus determining one point on the Nyquist diagram. Based on the location of this point, PID parameters can be chosen to give the closed-loop system a desired phase and gain margin. An alternative tuning method, which does not require either a modification of the system or a system model, is unfalsified control [6], [7]. This method uses input-output data to determine whether a set of PID parameters meets performance specifications. An adaptive algorithm is used to update the PID controller based on whether or not the controller falsifies a given criterion. The method requires a finite set of candidate PID controllers that must be initially specified [6]. Unfalsified control for an infinite set of PID controllers has been developed in [7]; this approach requires a carefully chosen input signal [8]. Yet another model-free PID tuning method that does not require opening of the loop is iterative feedback tuning (IFT). IFT iteratively optimizes the controller parameters with respect to a cost function derived from the output signal of the closed-loop system, see [9]. This method is based on the performance of the closed-loop system during a step response experiment [10], [11]. In this article we present a method for optimizing the step response of a closed-loop system consisting of a PID controller and an unknown plant with a discrete version of extremum seeking (ES). Specifically, ES is used to minimize a cost function similar to that used in [10], [11], which quantifies the performance of the PID controller. ES, a non-model-based method, iteratively modifies the arguments (in this application the PID parameters) of a cost function so that the output of the cost function reaches a local minimum or local maximum. In the next section we apply ES to PID controller tuning. We illustrate this technique through simulations comparing the effectiveness of ES to other PID tuning methods. Next, we address the importance of the choice of cost function and consider the effect of controller saturation. Furthermore, we discuss the choice of ES tuning parameters. Finally, we offer some conclusions.« less
NASA Technical Reports Server (NTRS)
Bole, Brian; Teubert, Christopher Allen; Cuong Chi, Quach; Hogge, Edward; Vazquez, Sixto; Goebel, Kai; George, Vachtsevanos
2013-01-01
Software-in-the-loop and Hardware-in-the-loop testing of failure prognostics and decision making tools for aircraft systems will facilitate more comprehensive and cost-effective testing than what is practical to conduct with flight tests. A framework is described for the offline recreation of dynamic loads on simulated or physical aircraft powertrain components based on a real-time simulation of airframe dynamics running on a flight simulator, an inner-loop flight control policy executed by either an autopilot routine or a human pilot, and a supervisory fault management control policy. The creation of an offline framework for verifying and validating supervisory failure prognostics and decision making routines is described for the example of battery charge depletion failure scenarios onboard a prototype electric unmanned aerial vehicle.
Simulation of process identification and controller tuning for flow control system
NASA Astrophysics Data System (ADS)
Chew, I. M.; Wong, F.; Bono, A.; Wong, K. I.
2017-06-01
PID controller is undeniably the most popular method used in controlling various industrial processes. The feature to tune the three elements in PID has allowed the controller to deal with specific needs of the industrial processes. This paper discusses the three elements of control actions and improving robustness of controllers through combination of these control actions in various forms. A plant model is simulated using the Process Control Simulator in order to evaluate the controller performance. At first, the open loop response of the plant is studied by applying a step input to the plant and collecting the output data from the plant. Then, FOPDT of physical model is formed by using both Matlab-Simulink and PRC method. Then, calculation of controller’s setting is performed to find the values of Kc and τi that will give satisfactory control in closed loop system. Then, the performance analysis of closed loop system is obtained by set point tracking analysis and disturbance rejection performance. To optimize the overall physical system performance, a refined tuning of PID or detuning is further conducted to ensure a consistent resultant output of closed loop system reaction to the set point changes and disturbances to the physical model. As a result, the PB = 100 (%) and τi = 2.0 (s) is preferably chosen for setpoint tracking while PB = 100 (%) and τi = 2.5 (s) is selected for rejecting the imposed disturbance to the model. In a nutshell, selecting correlation tuning values is likewise depended on the required control’s objective for the stability performance of overall physical model.
Motor Control and Regulation for a Flywheel Energy Storage System
NASA Technical Reports Server (NTRS)
Kenny, Barbara; Lyons, Valerie
2003-01-01
This talk will focus on the motor control algorithms used to regulate the flywheel system at the NASA Glenn Research Center. First a discussion of the inner loop torque control technique will be given. It is based on the principle of field orientation and is implemented without a position or speed sensor (sensorless control). Then the outer loop charge and discharge algorithm will be presented. This algorithm controls the acceleration of the flywheel during charging and the deceleration while discharging. The algorithm also allows the flywheel system to regulate the DC bus voltage during the discharge cycle.
NASA Technical Reports Server (NTRS)
Kapasouris, Petros
1988-01-01
A systematic control design methodology is introduced for multi-input/multi-output systems with multiple saturations. The methodology can be applied to stable and unstable open loop plants with magnitude and/or rate control saturations and to systems in which state limitations are desired. This new methodology is a substantial improvement over previous heuristic single-input/single-output approaches. The idea is to introduce a supervisor loop so that when the references and/or disturbances are sufficiently small, the control system operates linearly as designed. For signals large enough to cause saturations, the control law is modified in such a way to ensure stability and to preserve, to the extent possible, the behavior of the linear control design. Key benefits of this methodology are: the modified compensator never produces saturating control signals, integrators and/or slow dynamics in the compensator never windup, the directional properties of the controls are maintained, and the closed loop system has certain guaranteed stability properties. The advantages of the new design methodology are illustrated by numerous simulations, including the multivariable longitudinal control of modified models of the F-8 (stable) and F-16 (unstable) aircraft.
Decentralized control of sound radiation using iterative loop recovery.
Schiller, Noah H; Cabell, Randolph H; Fuller, Chris R
2010-10-01
A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.
A new RISE-based adaptive control of PKMs: design, stability analysis and experiments
NASA Astrophysics Data System (ADS)
Bennehar, M.; Chemori, A.; Bouri, M.; Jenni, L. F.; Pierrot, F.
2018-03-01
This paper deals with the development of a new adaptive control scheme for parallel kinematic manipulators (PKMs) based on Rrbust integral of the sign of the error (RISE) control theory. Original RISE control law is only based on state feedback and does not take advantage of the modelled dynamics of the manipulator. Consequently, the overall performance of the resulting closed-loop system may be poor compared to modern advanced model-based control strategies. We propose in this work to extend RISE by including the nonlinear dynamics of the PKM in the control loop to improve its overall performance. More precisely, we augment original RISE control scheme with a model-based adaptive control term to account for the inherent nonlinearities in the closed-loop system. To demonstrate the relevance of the proposed controller, real-time experiments are conducted on the Delta robot, a three-degree-of-freedom (3-DOF) PKM.
Decentralized Control of Sound Radiation Using Iterative Loop Recovery
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.
2009-01-01
A decentralized model-based control strategy is designed to reduce low-frequency sound radiation from periodically stiffened panels. While decentralized control systems tend to be scalable, performance can be limited due to modeling error introduced by the unmodeled interaction between neighboring control units. Since bounds on modeling error are not known in advance, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is evaluated numerically using a model of a stiffened aluminum panel that is representative of the sidewall of an aircraft. Simulations demonstrate that the iterative approach can achieve significant reductions in radiated sound power from the stiffened panel without destabilizing neighboring control units.
Robustness Analysis and Optimally Robust Control Design via Sum-of-Squares
NASA Technical Reports Server (NTRS)
Dorobantu, Andrei; Crespo, Luis G.; Seiler, Peter J.
2012-01-01
A control analysis and design framework is proposed for systems subject to parametric uncertainty. The underlying strategies are based on sum-of-squares (SOS) polynomial analysis and nonlinear optimization to design an optimally robust controller. The approach determines a maximum uncertainty range for which the closed-loop system satisfies a set of stability and performance requirements. These requirements, de ned as inequality constraints on several metrics, are restricted to polynomial functions of the uncertainty. To quantify robustness, SOS analysis is used to prove that the closed-loop system complies with the requirements for a given uncertainty range. The maximum uncertainty range, calculated by assessing a sequence of increasingly larger ranges, serves as a robustness metric for the closed-loop system. To optimize the control design, nonlinear optimization is used to enlarge the maximum uncertainty range by tuning the controller gains. Hence, the resulting controller is optimally robust to parametric uncertainty. This approach balances the robustness margins corresponding to each requirement in order to maximize the aggregate system robustness. The proposed framework is applied to a simple linear short-period aircraft model with uncertain aerodynamic coefficients.
Virtual grasping: closed-loop force control using electrotactile feedback.
Jorgovanovic, Nikola; Dosen, Strahinja; Djozic, Damir J; Krajoski, Goran; Farina, Dario
2014-01-01
Closing the control loop by providing somatosensory feedback to the user of a prosthesis is a well-known, long standing challenge in the field of prosthetics. Various approaches have been investigated for feedback restoration, ranging from direct neural stimulation to noninvasive sensory substitution methods. Although there are many studies presenting closed-loop systems, only a few of them objectively evaluated the closed-loop performance, mostly using vibrotactile stimulation. Importantly, the conclusions about the utility of the feedback were partly contradictory. The goal of the current study was to systematically investigate the capability of human subjects to control grasping force in closed loop using electrotactile feedback. We have developed a realistic experimental setup for virtual grasping, which operated in real time, included a set of real life objects, as well as a graphical and dynamical model of the prosthesis. We have used the setup to test 10 healthy, able bodied subjects to investigate the role of training, feedback and feedforward control, robustness of the closed loop, and the ability of the human subjects to generalize the control to previously "unseen" objects. Overall, the outcomes of this study are very optimistic with regard to the benefits of feedback and reveal various, practically relevant, aspects of closed-loop control.
SimSup's Loop: A Control Theory Approach to Spacecraft Operator Training
NASA Technical Reports Server (NTRS)
Owens, Brandon Dewain; Crocker, Alan R.
2015-01-01
Immersive simulation is a staple of training for many complex system operators, including astronauts and ground operators of spacecraft. However, while much has been written about simulators, simulation facilities, and operator certification programs, the topic of how one develops simulation scenarios to train a spacecraft operator is relatively understated in the literature. In this paper, an approach is presented for using control theory as the basis for developing the immersive simulation scenarios for a spacecraft operator training program. The operator is effectively modeled as a high level controller of lower level hardware and software control loops that affect a select set of system state variables. Simulation scenarios are derived from a STAMP-based hazard analysis of the operator's high and low level control loops. The immersive simulation aspect of the overall training program is characterized by selecting a set of scenarios that expose the operator to the various inadequate control actions that stem from control flaws and inadequate control executions in the different sections of the typical control loop. Results from the application of this approach to the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission are provided through an analysis of the simulation scenarios used for operator training and the actual anomalies that occurred during the mission. The simulation scenarios and inflight anomalies are mapped to specific control flaws and inadequate control executions in the different sections of the typical control loop to illustrate the characteristics of anomalies arising from the different sections of the typical control loop (and why it is important for operators to have exposure to these characteristics). Additionally, similarities between the simulation scenarios and inflight anomalies are highlighted to make the case that the simulation scenarios prepared the operators for the mission.
In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.
Kovatchev, Boris P; Breton, Marc; Man, Chiara Dalla; Cobelli, Claudio
2009-01-01
Arguably, a minimally invasive system using subcutaneous (s.c.) continuous glucose monitoring (CGM) and s.c. insulin delivery via insulin pump would be a most feasible step to closed-loop control in type 1 diabetes mellitus (T1DM). Consequently, diabetes technology is focusing on developing an artificial pancreas using control algorithms to link CGM with s.c. insulin delivery. The future development of the artificial pancreas will be greatly accelerated by employing mathematical modeling and computer simulation. Realistic computer simulation is capable of providing invaluable information about the safety and the limitations of closed-loop control algorithms, guiding clinical studies, and out-ruling ineffective control scenarios in a cost-effective manner. Thus computer simulation testing of closed-loop control algorithms is regarded as a prerequisite to clinical trials of the artificial pancreas. In this paper, we present a system for in silico testing of control algorithms that has three principal components: (1) a large cohort of n=300 simulated "subjects" (n=100 adults, 100 adolescents, and 100 children) based on real individuals' data and spanning the observed variability of key metabolic parameters in the general population of people with T1DM; (2) a simulator of CGM sensor errors representative of Freestyle Navigator™, Guardian RT, or Dexcom™ STS™, 7-day sensor; and (3) a simulator of discrete s.c. insulin delivery via OmniPod Insulin Management System or Deltec Cozmo(®) insulin pump. The system has been shown to represent adequate glucose fluctuations in T1DM observed during meal challenges, and has been accepted by the Food and Drug Administration as a substitute to animal trials in the preclinical testing of closed-loop control strategies. © Diabetes Technology Society
Ly, Trang T; Roy, Anirban; Grosman, Benyamin; Shin, John; Campbell, Alex; Monirabbasi, Salman; Liang, Bradley; von Eyben, Rie; Shanmugham, Satya; Clinton, Paula; Buckingham, Bruce A
2015-07-01
To evaluate the feasibility and efficacy of a fully integrated hybrid closed-loop (HCL) system (Medtronic MiniMed Inc., Northridge, CA), in day and night closed-loop control in subjects with type 1 diabetes, both in an inpatient setting and during 6 days at diabetes camp. The Medtronic MiniMed HCL system consists of a fourth generation (4S) glucose sensor, a sensor transmitter, and an insulin pump using a modified proportional-integral-derivative (PID) insulin feedback algorithm with safety constraints. Eight subjects were studied over 48 h in an inpatient setting. This was followed by a study of 21 subjects for 6 days at diabetes camp, randomized to either the closed-loop control group using the HCL system or to the group using the Medtronic MiniMed 530G with threshold suspend (control group). The overall mean sensor glucose percent time in range 70-180 mg/dL was similar between the groups (73.1% vs. 69.9%, control vs. HCL, respectively) (P = 0.580). Meter glucose values between 70 and 180 mg/dL were also similar between the groups (73.6% vs. 63.2%, control vs. HCL, respectively) (P = 0.086). The mean absolute relative difference of the 4S sensor was 10.8 ± 10.2%, when compared with plasma glucose values in the inpatient setting, and 12.6 ± 11.0% compared with capillary Bayer CONTOUR NEXT LINK glucose meter values during 6 days at camp. In the first clinical study of this fully integrated system using an investigational PID algorithm, the system did not demonstrate improved glucose control compared with sensor-augmented pump therapy alone. The system demonstrated good connectivity and improved sensor performance. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.
Design and Modeling of a Variable Heat Rejection Radiator
NASA Technical Reports Server (NTRS)
Miller, Jennifer R.; Birur, Gajanana C.; Ganapathi, Gani B.; Sunada, Eric T.; Berisford, Daniel F.; Stephan, Ryan
2011-01-01
Variable Heat Rejection Radiator technology needed for future NASA human rated & robotic missions Primary objective is to enable a single loop architecture for human-rated missions (1) Radiators are typically sized for maximum heat load in the warmest continuous environment resulting in a large panel area (2) Large radiator area results in fluid being susceptible to freezing at low load in cold environment and typically results in a two-loop system (3) Dual loop architecture is approximately 18% heavier than single loop architecture (based on Orion thermal control system mass) (4) Single loop architecture requires adaptability to varying environments and heat loads
2013-06-01
simulation of complex systems (Sterman 2000, Meadows 2008): a) Causal Loop Diagrams. A Causal Loop Diagram ( CLD ) is used to represent the feedback...structure of the dynamic system. CLDs consist of variables in the system being connected by arrows to show their causal influences and relationships. It is...distribution of orders will be included in the model. 6.4.2 Causal Loop Diagrams The CLD , as seen in Figure 5, is derived from the WDA constructs for the
Modeling the use of a binary mixture as a control scheme for two-phase thermal systems
NASA Technical Reports Server (NTRS)
Benner, S. M.; Costello, Frederick A.
1990-01-01
Two-phase thermal loops using mechanical pumps, capillary pumps, or a combination of the two have been chosen as the main heat transfer systems for the space station. For these systems to operate optimally, the flow rate in the loop should be controlled in response to the vapor/liquid ratio leaving the evaporator. By substituting a mixture of two non-azeotropic fluids in place of the single fluid normally used in these systems, it may be possible to monitor the temperature of the exiting vapor and determine the vapor/liquid ratio. The flow rate would then be adjusted to maximize the load capability with minimum energy input. A FLUINT model was developed to study the system dynamics of a hybrid capillary pumped loop using this type of control and was found to be stable under all the test conditions.
Hard real-time closed-loop electrophysiology with the Real-Time eXperiment Interface (RTXI)
George, Ansel; Dorval, Alan D.; Christini, David J.
2017-01-01
The ability to experimentally perturb biological systems has traditionally been limited to static pre-programmed or operator-controlled protocols. In contrast, real-time control allows dynamic probing of biological systems with perturbations that are computed on-the-fly during experimentation. Real-time control applications for biological research are available; however, these systems are costly and often restrict the flexibility and customization of experimental protocols. The Real-Time eXperiment Interface (RTXI) is an open source software platform for achieving hard real-time data acquisition and closed-loop control in biological experiments while retaining the flexibility needed for experimental settings. RTXI has enabled users to implement complex custom closed-loop protocols in single cell, cell network, animal, and human electrophysiology studies. RTXI is also used as a free and open source, customizable electrophysiology platform in open-loop studies requiring online data acquisition, processing, and visualization. RTXI is easy to install, can be used with an extensive range of external experimentation and data acquisition hardware, and includes standard modules for implementing common electrophysiology protocols. PMID:28557998
ATLAS LTCS Vertically Challenged System Lessons Learned
NASA Technical Reports Server (NTRS)
Patel, Deepak; Garrison, Matt; Ku, Jentung
2014-01-01
Re-planning of LTCS TVAC testing and supporting RTA (Receiver Telescope Assembly) Test Plan and Procedure document preparation. The Laser Thermal Control System (LTCS) is designed to maintain the lasers onboard Advanced Topographic Laser Altimeter System (ATLAS) at their operational temperatures. In order to verify the functionality of the LTCS, a thermal balance test of the thermal hardware was performed. During the first cold start of the LTCS, the Loop Heat Pipe (LHP) was unable to control the laser mass simulators temperature. The control heaters were fully on and the loop temperature remained well below the desired setpoint. Thermal analysis of the loop did not show these results. This unpredicted behavior of the LTCS was brought up to a panel of LHP experts. Based on the testing and a review of all the data, there were multiple diagnostic performed in order to narrow down the cause. The prevailing theory is that gravity is causing oscillating flow within the loop, which artificially increased the control power needs. This resulted in a replan of the LTCS test flow and the addition of a GSE heater to allow vertical operation.
First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying
NASA Technical Reports Server (NTRS)
Gill, E.; Naasz, Bo; Ebinuma, T.
2003-01-01
A closed-loop system for the demonstration of formation flying technologies has been developed at NASA s Goddard Space Flight Center. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. A sample scenario has been set up where the autonomous transition of a satellite formation from an initial along-track separation of 800 m to a final distance of 100 m has been demonstrated. As a result, a typical control accuracy of about 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.
2012-06-01
the open-loop path is established, the feedback system can be treated as a set of SISO feedback loops and a single SISO control law can be applied...Zernike polynomials are commonly referred to by the names, such as focus, coma, astigmatism , and etc. Zernike polynomials can be transformed into
Integrated Reconfigurable Intelligent Systems (IRIS) for Complex Naval Systems
2009-12-31
written. The new implementation supports the XML dialect called dashML. The plug-in is written in Java script using a flexible extension of the...human in the loop control was improved and documented, and the script for integration was developed; further study on theoretical framework for...reference damage controller was developed and tested; the model of human in the loop control was improved and documented, and the script for integrating
NASA Technical Reports Server (NTRS)
Lewis, James L. (Inventor); Carroll, Monty B. (Inventor); Morales, Ray H. (Inventor); Le, Thang D. (Inventor)
2002-01-01
The present invention relates to a fully androgynous, reconfigurable closed loop feedback controlled low impact docking system with load sensing electromagnetic capture ring. The docking system of the present invention preferably comprises two Docking- assemblies, each docking assembly comprising a load sensing ring having an outer face, one of more electromagnets, one or more load cells coupled to said load sensing ring. The docking assembly further comprises a plurality of actuator arms coupled to said load sensing ring and capable of dynamically adjusting the orientation of said load sensing ring and a reconfigurable closed loop control system capable of analyzing signals originating from said plurality of load cells and of outputting real time control for each of the actuators. The docking assembly of the present invention incorporates an active load sensing system to automatically dynamically adjust the load sensing ring during capture instead of requiring significant force to push and realign the ring.
Wang, Ching-Fu; Yang, Shih-Hung; Lin, Sheng-Huang; Chen, Po-Chuan; Lo, Yu-Chun; Pan, Han-Chi; Lai, Hsin-Yi; Liao, Lun-De; Lin, Hui-Ching; Chen, Hsu-Yan; Huang, Wei-Chen; Huang, Wun-Jhu; Chen, You-Yin
Deep brain stimulation (DBS) has been applied as an effective therapy for treating Parkinson's disease or essential tremor. Several open-loop DBS control strategies have been developed for clinical experiments, but they are limited by short battery life and inefficient therapy. Therefore, many closed-loop DBS control systems have been designed to tackle these problems by automatically adjusting the stimulation parameters via feedback from neural signals, which has been reported to reduce the power consumption. However, when the association between the biomarkers of the model and stimulation is unclear, it is difficult to develop an optimal control scheme for other DBS applications, i.e., DBS-enhanced instrumental learning. Furthermore, few studies have investigated the effect of closed-loop DBS control for cognition function, such as instrumental skill learning, and have been implemented in simulation environments. In this paper, we proposed a proof-of-principle design for a closed-loop DBS system, cognitive-enhancing DBS (ceDBS), which enhanced skill learning based on in vivo experimental data. The ceDBS acquired local field potential (LFP) signal from the thalamic central lateral (CL) nuclei of animals through a neural signal processing system. A strong coupling of the theta oscillation (4-7 Hz) and the learning period was found in the water reward-related lever-pressing learning task. Therefore, the theta-band power ratio, which was the averaged theta band to averaged total band (1-55 Hz) power ratio, could be used as a physiological marker for enhancement of instrumental skill learning. The on-line extraction of the theta-band power ratio was implemented on a field-programmable gate array (FPGA). An autoregressive with exogenous inputs (ARX)-based predictor was designed to construct a CL-thalamic DBS model and forecast the future physiological marker according to the past physiological marker and applied DBS. The prediction could further assist the design of a closed-loop DBS controller. A DBS controller based on a fuzzy expert system was devised to automatically control DBS according to the predicted physiological marker via a set of rules. The simulated experimental results demonstrate that the ceDBS based on the closed-loop control architecture not only reduced power consumption using the predictive physiological marker, but also achieved a desired level of physiological marker through the DBS controller. Copyright © 2017 Elsevier Inc. All rights reserved.
A portable hardware-in-the-loop (HIL) device for automotive diagnostic control systems.
Palladino, A; Fiengo, G; Lanzo, D
2012-01-01
In-vehicle driving tests for evaluating the performance and diagnostic functionalities of engine control systems are often time consuming, expensive, and not reproducible. Using a hardware-in-the-loop (HIL) simulation approach, new control strategies and diagnostic functions on a controller area network (CAN) line can be easily tested in real time, in order to reduce the effort and the cost of the testing phase. Nowadays, spark ignition engines are controlled by an electronic control unit (ECU) with a large number of embedded sensors and actuators. In order to meet the rising demand of lower emissions and fuel consumption, an increasing number of control functions are added into such a unit. This work aims at presenting a portable electronic environment system, suited for HIL simulations, in order to test the engine control software and the diagnostic functionality on a CAN line, respectively, through non-regression and diagnostic tests. The performances of the proposed electronic device, called a micro hardware-in-the-loop system, are presented through the testing of the engine management system software of a 1.6 l Fiat gasoline engine with variable valve actuation for the ECU development version. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.
A statistical learning strategy for closed-loop control of fluid flows
NASA Astrophysics Data System (ADS)
Guéniat, Florimond; Mathelin, Lionel; Hussaini, M. Yousuff
2016-12-01
This work discusses a closed-loop control strategy for complex systems utilizing scarce and streaming data. A discrete embedding space is first built using hash functions applied to the sensor measurements from which a Markov process model is derived, approximating the complex system's dynamics. A control strategy is then learned using reinforcement learning once rewards relevant with respect to the control objective are identified. This method is designed for experimental configurations, requiring no computations nor prior knowledge of the system, and enjoys intrinsic robustness. It is illustrated on two systems: the control of the transitions of a Lorenz'63 dynamical system, and the control of the drag of a cylinder flow. The method is shown to perform well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calabrese, G.; Capineri, L., E-mail: lorenzo.capineri@unifi.it; Granato, M.
This paper describes the design of a system for the characterization of magnetic hysteresis behavior in soft ferrite magnetic cores. The proposed setup can test magnetic materials exciting them with controlled arbitrary magnetic field waveforms, including the capability of providing a DC bias, in a frequency bandwidth up to 500 kHz, with voltages up to 32 V peak-to-peak, and currents up to 10 A peak-to-peak. In order to have an accurate control of the magnetic field waveform, the system is based on a voltage controlled current source. The electronic design is described focusing on closed loop feedback stabilization and passivemore » components choice. The system has real-time hysteretic loop acquisition and visualization. The comparisons between measured hysteresis loops of sample magnetic materials and datasheet available ones are shown. Results showing frequency and thermal behavior of the hysteresis of a test sample prove the system capabilities. Moreover, the B-H loops obtained with a multiple waveforms excitation signal, including DC bias, are reported. The proposal is a low-cost and replicable solution for hysteresis characterization of magnetic materials used in power electronics.« less
SNS Resonance Control Cooling Systems and Quadrupole Magnet Cooling Systems DIW Chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magda, Karoly
This report focuses on control of the water chemistry for the Spallation Neutron Source (SNS) Resonance Control Cooling System (RCCS)/Quadrupole Magnet Cooling System (QMCS) deionized water (DIW) cooling loops. Data collected from spring 2013 through spring 2016 are discussed, and an operations regime is recommended.It was found that the RCCS operates with an average pH of 7.24 for all lines (from 7.0 to 7.5, slightly alkaline), the average low dissolved oxygen is in the area of < 36 ppb, and the main loop average resistivity of is > 14 MΩ-cm. The QMCS was found to be operating in a similarmore » regime, with a slightly alkaline pH of 7.5 , low dissolved oxygen in the area of < 45 ppb, and main loop resistivity of 10 to 15 MΩ-cm. During data reading, operational corrections were done on the polishing loops to improve the water chemistry regime. Therefore some trends changed over time.It is recommended that the cooling loops operate in a regime in which the water has a resistivity that is as high as achievable, a dissolved oxygen concentration that is as low as achievable, and a neutral or slightly alkaline pH.« less
NASA Technical Reports Server (NTRS)
Johnson, Eric N.; Davidson, John B.; Murphy, Patrick C.
1994-01-01
When using eigenspace assignment to design an aircraft flight control system, one must first develop a model of the plant. Certain questions arise when creating this model as to which dynamics of the plant need to be included in the model and which dynamics can be left out or approximated. The answers to these questions are important because a poor choice can lead to closed-loop dynamics that are unpredicted by the design model. To alleviate this problem, a method has been developed for predicting the effect of not including certain dynamics in the design model on the final closed-loop eigenspace. This development provides insight as to which characteristics of unmodeled dynamics will ultimately affect the closed-loop rigid-body dynamics. What results from this insight is a guide for eigenstructure control law designers to aid them in determining which dynamics need or do not need to be included and a new way to include these dynamics in the flight control system design model to achieve a required accuracy in the closed-loop rigid-body dynamics. The method is illustrated for a lateral-directional flight control system design using eigenspace assignment for the NASA High Alpha Research Vehicle (HARV).
Digital multi-channel high resolution phase locked loop for surveillance radar systems
NASA Astrophysics Data System (ADS)
Rizk, Mohamed; Shaaban, Shawky; Abou-El-Nadar, Usama M.; Hafez, Alaa El-Din Sayed
This paper present a multi-channel, high resolution, fast lock phase locked loop (PLL) for surveillance radar applications. Phase detector based PLLs are simple to design, suffer no systematic phase error, and can run at the highest speed. Reducing loop gain can proportionally improve jitter performance, but also reduces locking time and pull-in range. The proposed system is based on digital process and control the error signal to the voltage controlled oscillator (VCO) adaptively to control its gain in order to achieve fast lock times while improving in lock jitter performance. Under certain circumstances the design also improves the frequency agility capability of the radar system. The results show a fast lock, high resolution PLL with transient time less than 10 µ sec which is suitable to radar applications.
Analysis of TMT primary mirror control-structure interaction
NASA Astrophysics Data System (ADS)
MacMynowski, Douglas G.; Thompson, Peter M.; Sirota, Mark J.
2008-07-01
The primary mirror control system (M1CS) keeps the 492 segments of the Thirty Meter Telescope primary mirror aligned in the presence of disturbances. A global position control loop uses feedback from inter-segment edge sensors to three actuators behind each segment that control segment piston, tip and tilt. If soft force actuators are used (e.g. voice-coil), then in addition to the global position loop there will be a local servo loop to provide stiffness. While the M1 control system at Keck compensates only for slow disturbances such as gravity and thermal variations, the M1CS for TMT will need to provide some compensation for higher frequency wind disturbances in order to meet stringent error budget targets. An analysis of expected high-wavenumber wind forces on M1 suggests that a 1Hz control bandwidth is required for the global feedback of segment edge-sensorbased position information in order to minimize high spatial frequency segment response for both seeing-limited and adaptive optics performance. A much higher bandwidth is required from the local servo loop to provide adequate stiffness to wind or acoustic disturbances. A related paper presents the control designs for the local actuator servo loops. The disturbance rejection requirements would not be difficult to achieve for a single segment, but the structural coupling between segments mounted on a flexible mirror cell results in controlstructure interaction (CSI) that limits the achievable bandwidth. Using a combination of simplified modeling to build intuition and the full telescope finite element model for verification, we present designs and analysis for both the local servo loop and global loop demonstrating sufficient bandwidth and resulting wind-disturbance rejection despite the presence of CSI.
The Application of Hardware in the Loop Testing for Distributed Engine Control
NASA Technical Reports Server (NTRS)
Thomas, George L.; Culley, Dennis E.; Brand, Alex
2016-01-01
The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.
Closed-loop systems for drug delivery.
Fields, Aaron M; Fields, Kevin M; Cannon, Jeremy W
2008-08-01
To discuss closed-loop systems, the engineering behind them, and the application of these systems. The literature demonstrates that closed-loop systems can be used for controlling the depth of anesthesia, muscle relaxation, blood pressure, intravascular volume, and blood glucose levels. The future anesthesiologist may devote less time to easily delegated tasks when in the operating room. The ability of computers to maintain variables in a set range allows some tasks to be automated. Although monitoring of these systems will never be completely eliminated, the necessity for minute-to-minute intervention may.
1979-04-01
tools, simplification of equipment interfaces involved in manual operations to provide simple system preparation, closing flight control inner loops ...alti- tude, and heading rate. The closed loops operate in three primary modes: cruise, dead reckoning, and approach. The aircraft is stabilized by...onboard closed loops , so the operator is not required to maintain hands-on operation to keep it in the air. The operator is able to command airspeed
NASA Technical Reports Server (NTRS)
Shin, Jong-Yeob; Belcastro, Christine; Khong, thuan
2006-01-01
Formal robustness analysis of aircraft control upset prevention and recovery systems could play an important role in their validation and ultimate certification. Such systems developed for failure detection, identification, and reconfiguration, as well as upset recovery, need to be evaluated over broad regions of the flight envelope or under extreme flight conditions, and should include various sources of uncertainty. To apply formal robustness analysis, formulation of linear fractional transformation (LFT) models of complex parameter-dependent systems is required, which represent system uncertainty due to parameter uncertainty and actuator faults. This paper describes a detailed LFT model formulation procedure from the nonlinear model of a transport aircraft by using a preliminary LFT modeling software tool developed at the NASA Langley Research Center, which utilizes a matrix-based computational approach. The closed-loop system is evaluated over the entire flight envelope based on the generated LFT model which can cover nonlinear dynamics. The robustness analysis results of the closed-loop fault tolerant control system of a transport aircraft are presented. A reliable flight envelope (safe flight regime) is also calculated from the robust performance analysis results, over which the closed-loop system can achieve the desired performance of command tracking and failure detection.
Trevitt, Sara; Simpson, Sue; Wood, Annette
2016-05-01
Closed-loop artificial pancreas device (APD) systems are externally worn medical devices that are being developed to enable people with type 1 diabetes to regulate their blood glucose levels in a more automated way. The innovative concept of this emerging technology is that hands-free, continuous, glycemic control can be achieved by using digital communication technology and advanced computer algorithms. A horizon scanning review of this field was conducted using online sources of intelligence to identify systems in development. The systems were classified into subtypes according to their level of automation, the hormonal and glycemic control approaches used, and their research setting. Eighteen closed-loop APD systems were identified. All were being tested in clinical trials prior to potential commercialization. Six were being studied in the home setting, 5 in outpatient settings, and 7 in inpatient settings. It is estimated that 2 systems may become commercially available in the EU by the end of 2016, 1 during 2017, and 2 more in 2018. There are around 18 closed-loop APD systems progressing through early stages of clinical development. Only a few of these are currently in phase 3 trials and in settings that replicate real life. © 2015 Diabetes Technology Society.
Robust synergetic control design under inputs and states constraints
NASA Astrophysics Data System (ADS)
Rastegar, Saeid; Araújo, Rui; Sadati, Jalil
2018-03-01
In this paper, a novel robust-constrained control methodology for discrete-time linear parameter-varying (DT-LPV) systems is proposed based on a synergetic control theory (SCT) approach. It is shown that in DT-LPV systems without uncertainty, and for any unmeasured bounded additive disturbance, the proposed controller accomplishes the goal of stabilising the system by asymptotically driving the error of the controlled variable to a bounded set containing the origin and then maintaining it there. Moreover, given an uncertain DT-LPV system jointly subject to unmeasured and constrained additive disturbances, and constraints in states, input commands and reference signals (set points), then invariant set theory is used to find an appropriate polyhedral robust invariant region in which the proposed control framework is guaranteed to robustly stabilise the closed-loop system. Furthermore, this is achieved even for the case of varying non-zero control set points in such uncertain DT-LPV systems. The controller is characterised to have a simple structure leading to an easy implementation, and a non-complex design process. The effectiveness of the proposed method and the implications of the controller design on feasibility and closed-loop performance are demonstrated through application examples on the temperature control on a continuous-stirred tank reactor plant, on the control of a real-coupled DC motor plant, and on an open-loop unstable system example.
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L.
2017-01-01
Objective The control of human bipedal locomotion is of great interest to the field of lower-body brain computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. Approach In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1 – 3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated (AM) potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Main results Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson’s r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. Significance These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system. PMID:27064824
Luu, Trieu Phat; He, Yongtian; Brown, Samuel; Nakagame, Sho; Contreras-Vidal, Jose L
2016-06-01
The control of human bipedal locomotion is of great interest to the field of lower-body brain-computer interfaces (BCIs) for gait rehabilitation. While the feasibility of closed-loop BCI systems for the control of a lower body exoskeleton has been recently shown, multi-day closed-loop neural decoding of human gait in a BCI virtual reality (BCI-VR) environment has yet to be demonstrated. BCI-VR systems provide valuable alternatives for movement rehabilitation when wearable robots are not desirable due to medical conditions, cost, accessibility, usability, or patient preferences. In this study, we propose a real-time closed-loop BCI that decodes lower limb joint angles from scalp electroencephalography (EEG) during treadmill walking to control a walking avatar in a virtual environment. Fluctuations in the amplitude of slow cortical potentials of EEG in the delta band (0.1-3 Hz) were used for prediction; thus, the EEG features correspond to time-domain amplitude modulated potentials in the delta band. Virtual kinematic perturbations resulting in asymmetric walking gait patterns of the avatar were also introduced to investigate gait adaptation using the closed-loop BCI-VR system over a period of eight days. Our results demonstrate the feasibility of using a closed-loop BCI to learn to control a walking avatar under normal and altered visuomotor perturbations, which involved cortical adaptations. The average decoding accuracies (Pearson's r values) in real-time BCI across all subjects increased from (Hip: 0.18 ± 0.31; Knee: 0.23 ± 0.33; Ankle: 0.14 ± 0.22) on Day 1 to (Hip: 0.40 ± 0.24; Knee: 0.55 ± 0.20; Ankle: 0.29 ± 0.22) on Day 8. These findings have implications for the development of a real-time closed-loop EEG-based BCI-VR system for gait rehabilitation after stroke and for understanding cortical plasticity induced by a closed-loop BCI-VR system.
Step-control of electromechanical systems
Lewis, Robert N.
1979-01-01
The response of an automatic control system to a general input signal is improved by applying a test input signal, observing the response to the test input signal and determining correctional constants necessary to provide a modified input signal to be added to the input to the system. A method is disclosed for determining correctional constants. The modified input signal, when applied in conjunction with an operating signal, provides a total system output exhibiting an improved response. This method is applicable to open-loop or closed-loop control systems. The method is also applicable to unstable systems, thus allowing controlled shut-down before dangerous or destructive response is achieved and to systems whose characteristics vary with time, thus resulting in improved adaptive systems.
NASA Technical Reports Server (NTRS)
Morton, Richard D.; Jurick, Matthew; Roman, Ruben; Adamson, Gary; Bui, Chinh T.; Laliberte, Yvon J.
2011-01-01
The International Space Station (ISS) contains two Active Thermal Control Sub-systems (ATCS) that function by using a liquid ammonia cooling system collecting waste heat and rejecting it using radiators. These subsystems consist of a number of heat exchangers, cold plates, radiators, the Pump and Flow Control Subassembly (PFCS), and the Pump Module (PM), all of which are Orbital Replaceable Units (ORU's). The PFCS provides the motive force to circulate the ammonia coolant in the Photovoltaic Thermal Control Subsystem (PVTCS) and has been in operation since December, 2000. The Pump Module (PM) circulates liquid ammonia coolant within the External Active Thermal Control Subsystem (EATCS) cooling the ISS internal coolant (water) loops collecting waste heat and rejecting it through the ISS radiators. These PM loops have been in operation since December, 2006. This paper will discuss the original reliability analysis approach of the PFCS and Pump Module, comparing them against the current operational performance data for the ISS External Thermal Control Loops.
PBF Reactor Building (PER620). Cubicle 10. Camera facing southeast. Loop ...
PBF Reactor Building (PER-620). Cubicle 10. Camera facing southeast. Loop pressurizer on right. Other equipment includes loop strained, control valves, loop piping, pressurizer interchanger, and cleanup system cooler. High-density shielding brick walls. Photographer: Kirsh. Date: November 2, 1970. INEEL negative no. 70-4908 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Optical Closed-Loop Propulsion Control System Development
NASA Technical Reports Server (NTRS)
Poppel, Gary L.
1998-01-01
The overall objective of this program was to design and fabricate the components required for optical closed-loop control of a F404-400 turbofan engine, by building on the experience of the NASA Fiber Optic Control System Integration (FOCSI) program. Evaluating the performance of fiber optic technology at the component and system levels will result in helping to validate its use on aircraft engines. This report includes descriptions of three test plans. The EOI Acceptance Test is designed to demonstrate satisfactory functionality of the EOI, primarily fail-safe throughput of the F404 sensor signals in the normal mode, and validation, switching, and output of the five analog sensor signals as generated from validated optical sensor inputs, in the optical mode. The EOI System Test is designed to demonstrate acceptable F404 ECU functionality as interfaced with the EOI, making use of a production ECU test stand. The Optical Control Engine Test Request describes planned hardware installation, optical signal calibrations, data system coordination, test procedures, and data signal comparisons for an engine test demonstration of the optical closed-loop control.
The design of multirate digital control systems
NASA Technical Reports Server (NTRS)
Berg, M. C.
1986-01-01
The successive loop closures synthesis method is the only method for multirate (MR) synthesis in common use. A new method for MR synthesis is introduced which requires a gradient-search solution to a constrained optimization problem. Some advantages of this method are that the control laws for all control loops are synthesized simultaneously, taking full advantage of all cross-coupling effects, and that simple, low-order compensator structures are easily accomodated. The algorithm and associated computer program for solving the constrained optimization problem are described. The successive loop closures , optimal control, and constrained optimization synthesis methods are applied to two example design problems. A series of compensator pairs are synthesized for each example problem. The succesive loop closure, optimal control, and constrained optimization synthesis methods are compared, in the context of the two design problems.
Design of biomass management systems and components for closed loop life support systems
NASA Technical Reports Server (NTRS)
1991-01-01
The goal of the EGM 4000/1 Design class was to investigate a Biomass Management System (BMS) and design, fabricate, and test components for biomass management in a closed-loop life support system (CLLSS). The designs explored were to contribute to the development of NASA's Controlled Ecological Life Support System (CELSS) at Kennedy Space Center. Designs included a sectored plant growth unit, a container and transfer mechanism, and an air curtain system for fugitive particle control. The work performed by the class members is summarized.
Floating-point system quantization errors in digital control systems
NASA Technical Reports Server (NTRS)
Phillips, C. L.
1973-01-01
The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.
A novel pulsed gas metal arc welding system with direct droplet transfer close-loop control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q.; Li, P.; Zhang, L.
1994-12-31
In pulsed gas metal arc welding (GMAW), a predominant parameter that has to be monitored and controlled in real time for maintaining process stability and ensuring weld quality, is droplet transfer. Based on the close correlation between droplet transfer and arc light radiant flux in GMAW of steel and aluminum, a direct closed-loop droplet transfer control system for pulsed GMAW with arc light sensor has been developed. By sensing the droplet transfer directly via the arc light signal, a pulsed GMAW process with real and exact one-pulse, one-droplet transfer has been achieved. The novel pulsed GMAW machine consists of threemore » parts: a sensing system, a controlling system, and a welding power system. The software used in this control system is capable of data sampling and processing, parameter matching, optimum parameter restoring, and resetting. A novel arc light sensing system has been developed. The sensor is small enough to be clamped to a semiautomatic welding torch. Based on thissensingn system, a closed-loop droplet transfer control system of GMAW of steel and aluminum has been built and a commercial prototype has been made. The system is capable of keeping one-pulse, one-droplet transfer against external interferences. The welding process with this control system has been proved to be stable, quiet, with no spatter, and provide good weld formation.« less
Nonlinearity measure and internal model control based linearization in anti-windup design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perev, Kamen
2013-12-18
This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequencymore » ranges.« less
A sliding mode control proposal for open-loop unstable processes.
Rojas, Rubén; Camacho, Oscar; González, Luis
2004-04-01
This papers presents a sliding mode controller based on a first-order-plus-dead-time model of the process for controlling open-loop unstable systems. The proposed controller has a simple and fixed structure with a set of tuning equations as a function of the desired performance. Both linear and nonlinear models were used to study the controller performance by computer simulations.
General, database-driven fast-feedback system for the Stanford Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouse, F.; Allison, S.; Castillo, S.
A new feedback system has been developed for stabilizing the SLC beams at many locations. The feedback loops are designed to sample and correct at the 60 Hz repetition rate of the accelerator. Each loop can be distributed across several of the standard 80386 microprocessors which control the SLC hardware. A new communications system, KISNet, has been implemented to pass signals between the microprocessors at this rate. The software is written in a general fashion using the state space formalism of digital control theory. This allows a new loop to be implemented by just setting up the online database andmore » perhaps installing a communications link. 3 refs., 4 figs.« less
Neutron Source Facility Training Simulator Based on EPICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.
A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less
Architecture of a platform for hardware-in-the-loop simulation of flying vehicle control systems
NASA Astrophysics Data System (ADS)
Belokon', S. A.; Zolotukhin, Yu. N.; Filippov, M. N.
2017-07-01
A hardware-software platform is presented, which is designed for the development and hardware-in-the-loop simulation of flying vehicle control systems. This platform ensures the construction of the mathematical model of the plant, development of algorithms and software for onboard radioelectronic equipment and ground control station, and visualization of the three-dimensional model of the vehicle and external environment of the cockpit in the simulator training mode.
Multiloop Manual Control of Dynamic Systems
NASA Technical Reports Server (NTRS)
Hess, R. A.; Mcnally, B. D.
1984-01-01
Human interaction with a simple, multiloop dynamic system in which the human's activity was systematically varied by changing the levels of automation was studied. The control loop structure resulting from the task definition parallels that for any multiloop manual control system, is considered a sterotype. Simple models of the human in the task, and upon extending a technique for describing the manner in which the human subjectively quantifies his opinion of task difficulty were developed. A man in the loop simulation which provides data to support and direct the analytical effort is presented.
NASA Astrophysics Data System (ADS)
Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin
2017-10-01
For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.
Model predictive control of P-time event graphs
NASA Astrophysics Data System (ADS)
Hamri, H.; Kara, R.; Amari, S.
2016-12-01
This paper deals with model predictive control of discrete event systems modelled by P-time event graphs. First, the model is obtained by using the dater evolution model written in the standard algebra. Then, for the control law, we used the finite-horizon model predictive control. For the closed-loop control, we used the infinite-horizon model predictive control (IH-MPC). The latter is an approach that calculates static feedback gains which allows the stability of the closed-loop system while respecting the constraints on the control vector. The problem of IH-MPC is formulated as a linear convex programming subject to a linear matrix inequality problem. Finally, the proposed methodology is applied to a transportation system.
Three-Loop Automatic of Control System the Landfill of Household Solid Waste
NASA Astrophysics Data System (ADS)
Sereda, T. G.; Kostarev, S. N.
2017-05-01
The analysis of models of governance ground municipal solid waste (MSW). Considered a distributed circuit (spatio-temporal) ground control model. Developed a dynamic model of multicontour control landfill. Adjustable parameters are defined (the ratio of CH4 CO2 emission/fluxes, concentrations of heavy metals ions) and control (purging array, irrigation, adding reagents). Based on laboratory studies carried out with the analysis of equity flows and procedures developed by the transferring matrix that takes into account the relationship control loops. A system of differential equations in the frequency and time domains. Given the numerical approaches solving systems of differential equations in finite differential form.
First Results from a Hardware-in-the-Loop Demonstration of Closed-Loop Autonomous Formation Flying
NASA Technical Reports Server (NTRS)
Gill, E.; Naasz, Bo; Ebinuma, T.
2003-01-01
A closed-loop system for the demonstration of autonomous satellite formation flying technologies using hardware-in-the-loop has been developed. Making use of a GPS signal simulator with a dual radio frequency outlet, the system includes two GPS space receivers as well as a powerful onboard navigation processor dedicated to the GPS-based guidance, navigation, and control of a satellite formation in real-time. The closed-loop system allows realistic simulations of autonomous formation flying scenarios, enabling research in the fields of tracking and orbit control strategies for a wide range of applications. The autonomous closed-loop formation acquisition and keeping strategy is based on Lyapunov's direct control method as applied to the standard set of Keplerian elements. This approach not only assures global and asymptotic stability of the control but also maintains valuable physical insight into the applied control vectors. Furthermore, the approach can account for system uncertainties and effectively avoids a computationally expensive solution of the two point boundary problem, which renders the concept particularly attractive for implementation in onboard processors. A guidance law has been developed which strictly separates the relative from the absolute motion, thus avoiding the numerical integration of a target trajectory in the onboard processor. Moreover, upon using precise kinematic relative GPS solutions, a dynamical modeling or filtering is avoided which provides for an efficient implementation of the process on an onboard processor. A sample formation flying scenario has been created aiming at the autonomous transition of a Low Earth Orbit satellite formation from an initial along-track separation of 800 m to a target distance of 100 m. Assuming a low-thrust actuator which may be accommodated on a small satellite, a typical control accuracy of less than 5 m has been achieved which proves the applicability of autonomous formation flying techniques to formations of satellites as close as 50 m.
Design and analysis of control system for VCSEL of atomic interference magnetometer
NASA Astrophysics Data System (ADS)
Zhang, Xiao-nan; Sun, Xiao-jie; Kou, Jun; Yang, Feng; Li, Jie; Ren, Zhang; Wei, Zong-kang
2016-11-01
Magnetic field detection is an important means of deep space environment exploration. Benefit from simple structure and low power consumption, atomic interference magnetometer become one of the most potential detector payloads. Vertical Cavity Surface Emitting Laser (VCSEL) is usually used as a light source in atomic interference magnetometer and its frequency stability directly affects the stability and sensitivity of magnetometer. In this paper, closed-loop control strategy of VCSEL was designed and analysis, the controller parameters were selected and the feedback error algorithm was optimized as well. According to the results of experiments that were performed on the hardware-in-the-loop simulation platform, the designed closed-loop control system is reasonable and it is able to effectively improve the laser frequency stability during the actual work of the magnetometer.
Molecular Velcro constructed from polymer loop brushes showing enhanced adhesion force
NASA Astrophysics Data System (ADS)
Zhou, Tian; Han, Biao; Han, Lin; Li, Christopher; Department of Materials Science; Engineering Team; School of Biomedical Engineering, Science; Health Systems Team
2015-03-01
Molecular Velcro is commonly seen in biological systems as the formation of strong physical entanglement at molecular scale could induce strong adhesion, which is crucial to many biological processes. To mimic this structure, we designed, and fabricated polymer loop brushes using polymer single crystals with desired surface functionality and controlled chain folding. Compared with reported loop brushes fabricated using triblock copolymers, the present loop bushes have precise loop sizes, loop grafting density, and well controlled tethering locations on the solid surface. Atomic force microscopy-based force spectroscopy measurements using a polymer chain coated probe reveal that the adhesion force are significantly enhanced on the loop brush surface as compared with its single-strand counterpart. This study directly shows the effect of polymer brush conformation on their properties, and suggests a promising strategy for advanced polymer surface design.
Miniature Loop Heat Pipe with Multiple Evaporators for Thermal Control of Small Spacecraft
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Denya; Pauken, Michael; Birur, Gajanana
2005-01-01
This paper presents an advanced miniature heat transport system for thermal control of small spacecraft. The thermal system consists of a loop heat pipe (LHP) with multiple evaporators and multiple deployable radiators for heat transfer, and variable emittance coatings on the radiators for performance enhancement. Thermoelectric coolers are used to control the loop operating temperature. The thermal system combines the functions of variable conductance heat pipes, thermal switches, thermal diodes, and the state-of-the-art LHPs into a single integrated thermal system. It retains all the performance characteristics of state-of-the-art LHPs and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Steady state and transient analytical models have been developed, and scaling criteria have also been established. A breadboard unit has been built for functional testing in laboratory and thermal vacuum environments. Experimental results show excellent performance of the thermal system and correlate very well with theoretical predictions.
Wu, Chung-Yu; Cheng, Cheng-Hsiang; Chen, Zhi-Xin
2018-06-01
In this paper, a 16-channel analog front-end (AFE) electrocorticography signal acquisition circuit for a closed-loop seizure control system is presented. It is composed of 16 input protection circuits, 16 auto-reset chopper-stabilized capacitive-coupled instrumentation amplifiers (AR-CSCCIA) with bandpass filters, 16 programmable transconductance gain amplifiers, a multiplexer, a transimpedance amplifier, and a 128-kS/s 10-bit delta-modulated successive-approximation-register analog-to-digital converter (SAR ADC). In closed-loop seizure control system applications, the stimulator shares the same electrode with the AFE amplifier for effective suppression of epileptic seizures. To prevent from overstress in MOS devices caused by high stimulation voltage, an input protection circuit with a high-voltage-tolerant switch is proposed for the AFE amplifier. Moreover, low input-referred noise is achieved by using the chopper modulation technique in the AR-CSCCIA. To reduce the undesired effects of chopper modulation, an improved offset reduction loop is proposed to reduce the output offset generated by input chopper mismatches. The digital ripple reduction loop is also used to reduce the chopper ripple. The fabricated AFE amplifier has 49.1-/59.4-/67.9-dB programmable gain and 2.02-μVrms input referred noise in a bandwidth of 0.59-117 Hz. The measured power consumption of the AFE amplifier is 3.26 μW per channel, and the noise efficiency factor is 3.36. The in vivo animal test has been successfully performed to verify the functions. It is shown that the proposed AFE acquisition circuit is suitable for implantable closed-loop seizure control systems.
Sliding Mode Control of the X-33 Vehicle in Launch Mode
NASA Technical Reports Server (NTRS)
Shtessel, Yuri; Jackson, Mark; Hall, Charles; Krupp, Don; Hendrix, N. Douglas
1998-01-01
The "nested" structure of the control system for the X33 vehicle in launch mode is developed. Employing backstopping concepts, the outer loop (guidance) and the Inner loop (rates) continuous sliding mode controllers are designed. Simulations of the 3-DOF model of the X33 launch vehicle showed an accurate, robust, de-coupled tracking performance.
An expert system to perform on-line controller restructuring for abrupt model changes
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.
1990-01-01
Work in progress on an expert system used to reconfigure and tune airframe/engine control systems on-line in real time in response to battle damage or structural failures is presented. The closed loop system is monitored constantly for changes in structure and performance, the detection of which prompts the expert system to choose and apply a particular control restructuring algorithm based on the type and severity of the damage. Each algorithm is designed to handle specific types of failures and each is applicable only in certain situations. The expert system uses information about the system model to identify the failure and to select the technique best suited to compensate for it. A depth-first search is used to find a solution. Once a new controller is designed and implemented it must be tuned to recover the original closed-loop handling qualities and responsiveness from the degraded system. Ideally, the pilot should not be able to tell the difference between the original and redesigned systems. The key is that the system must have inherent redundancy so that degraded or missing capabilities can be restored by creative use of alternate functionalities. With enough redundancy in the control system, minor battle damage affecting individual control surfaces or actuators, compressor efficiency, etc., can be compensated for such that the closed-loop performance in not noticeably altered. The work is applied to a Black Hawk/T700 system.
Simple adaptive control system design for a quadrotor with an internal PFC
NASA Astrophysics Data System (ADS)
Mizumoto, Ikuro; Nakamura, Takuto; Kumon, Makoto; Takagi, Taro
2014-12-01
The paper deals with an adaptive control system design problem for a four rotor helicopter or quadrotor. A simple adaptive control design scheme with a parallel feedforward compensator (PFC) in the internal loop of the considered quadrotor will be proposed based on the backstepping strategy. As is well known, the backstepping control strategy is one of the advanced control strategy for nonlinear systems. However, the control algorithm will become complex if the system has higher order relative degrees. We will show that one can skip some design steps of the backstepping method by introducing a PFC in the inner loop of the considered quadrotor, so that the structure of the obtained controller will be simplified and a high gain based adaptive feedback control system will be designed. The effectiveness of the proposed method will be confirmed through numerical simulations.
Hardware-in-the-Loop Rendezvous Tests of a Novel Actuators Command Concept
NASA Astrophysics Data System (ADS)
Gomes dos Santos, Willer; Marconi Rocco, Evandro; Boge, Toralf; Benninghoff, Heike; Rems, Florian
2016-12-01
Integration, test and validation results, in a real-time environment, of a novel concept for spacecraft control are presented in this paper. The proposed method commands simultaneously a group of actuators optimizing a given set of objective functions based on a multiobjective optimization technique. Since close proximity maneuvers play an important role in orbital servicing missions, the entire GNC system has been integrated and tested at a hardware-in-the-loop (HIL) rendezvous and docking simulator known as European Proximity Operations Simulator (EPOS). During the test campaign at EPOS facility, a visual camera has been used to provide the necessary measurements for calculating the relative position with respect to the target satellite during closed-loop simulations. In addition, two different configurations of spacecraft control have been considered in this paper: a thruster reaction control system and a mixed actuators mode which includes thrusters, reaction wheels, and magnetic torqrods. At EPOS, results of HIL closed-loop tests have demonstrated that a safe and stable rendezvous approach can be achieved with the proposed GNC loop.
Optimal Lorentz-augmented spacecraft formation flying in elliptic orbits
NASA Astrophysics Data System (ADS)
Huang, Xu; Yan, Ye; Zhou, Yang
2015-06-01
An electrostatically charged spacecraft accelerates as it moves through the Earth's magnetic field due to the induced Lorentz force, providing a new means of propellantless electromagnetic propulsion for orbital maneuvers. The feasibility of Lorentz-augmented spacecraft formation flying in elliptic orbits is investigated in this paper. Assuming the Earth's magnetic field as a tilted dipole corotating with Earth, a nonlinear dynamical model that characterizes the orbital motion of Lorentz spacecraft in the vicinity of arbitrary elliptic orbits is developed. To establish a predetermined formation configuration at given terminal time, pseudospectral method is used to solve the optimal open-loop trajectories of hybrid control inputs consisted of Lorentz acceleration and thruster-generated control acceleration. A nontilted dipole model is also introduced to analyze the effect of dipole tilt angle via comparisons with the tilted one. Meanwhile, to guarantee finite-time convergence and system robustness against external perturbations, a continuous fast nonsingular terminal sliding mode controller is designed and the closed-loop system stability is proved by Lyapunov theory. Numerical simulations substantiate the validity of proposed open-loop and closed-loop control schemes, and the results indicate that an almost propellantless formation establishment can be achieved by choosing appropriate objective function in the pseudospectral method. Furthermore, compared to the nonsingular terminal sliding mode controller, the closed-loop controller presents superior convergence rate with only a bit more control effort. And the proposed controller can be applied in other Lorentz-augmented relative orbital control problems.
A keyboard control method for loop measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Z.W.
1994-12-31
This paper describes a keyboard control mode based on the DEC VAX computer. The VAX Keyboard code can be found under running of a program was developed. During the loop measurement or multitask operation, it ables to be distinguished from a keyboard code to stop current operation or transfer to another operation while previous information can be held. The combining of this mode, the author successfully used one key control loop measurement for test Dual Input Memory module which is used in a rearrange Energy Trigger system for LEP 8 Bunch operation.
Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.
2016-01-01
Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.
System Control for the Transitional DCS.
1978-12-01
hour. The equipment destroyed includes the TTC-39 switch, all RF and multiplex equipment, emergency power equipment, distribution frames, antennal and...switch executes loop test to Rhein Main ULS, activating a local alarm at Donnersberg. Since restoral activity has not already been completed, alarm is...ITEM COMMENTS (BYTES) Loop ID Switch number and physical loop number 6 (BCD). Loop circuit CCSD 8 Telephone number 3 Location Physical location of
NASA Astrophysics Data System (ADS)
Geetha, A.; Subramani, C.; Thamizh Thentral, T. M.; Krithika, V.; Usha, S.
2018-04-01
Non isolated Bidirectional DC-DC Converter (NIBDDC) is a good interface between DC source and inverter Fed induction motor drive. This paper deals with comparison between open loop and PI controlled Bidirectional DC to DC Converter Inverter System (BDDCIS). The modelling and control of BDDC is becomes an important issue. Open loop BDDCIS and closed loop PI controlled BDDCIS are designed, modelled and simulated using Matlab- simulink and their results are presented. The investigations indicate superior performance of PI controlled BDDCIS. The proposed BDDCIS has advantages like bidirectional power transfer ability, reduced hardware count and improved dynamic response.
Nonlinear control for a class of hydraulic servo system.
Yu, Hong; Feng, Zheng-jin; Wang, Xu-yong
2004-11-01
The dynamics of hydraulic systems are highly nonlinear and the system may be subjected to non-smooth and discontinuous nonlinearities due to directional change of valve opening, friction, etc. Aside from the nonlinear nature of hydraulic dynamics, hydraulic servo systems also have large extent of model uncertainties. To address these challenging issues, a robust state-feedback controller is designed by employing backstepping design technique such that the system output tracks a given signal arbitrarily well, and all signals in the closed-loop system remain bounded. Moreover, a relevant disturbance attenuation inequality is satisfied by the closed-loop signals. Compared with previously proposed robust controllers, this paper's robust controller based on backstepping recursive design method is easier to design, and is more suitable for implementation.
Dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1978-01-01
A dual-loop model of the human controller in single-axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure that involves feeding back that portion of controlled element output rate that is due to control activity. A novel feature of the model is the explicit appearance of the human's internal representation of the manipulator-controlled element dynamics in the inner loop. The sensor inputs to the human controller are assumed to be system error and control force. The former can be sensed via visual, aural, or tactile displays, whereas the latter is assumed to be sensed in kinesthetic fashion. A set of general adaptive characteristics for the model is hypothesized, including a method for selecting simplified internal models of the manipulator-controlled element dynamics. It is demonstrated that the model can produce controller describing functions that closely approximate those measured in four laboratory tracking tasks in which the controlled element dynamics vary considerably in terms of ease of control. An empirically derived expression for the normalized injected error remnant spectrum is introduced.
Learning from adaptive neural dynamic surface control of strict-feedback systems.
Wang, Min; Wang, Cong
2015-06-01
Learning plays an essential role in autonomous control systems. However, how to achieve learning in the nonstationary environment for nonlinear systems is a challenging problem. In this paper, we present learning method for a class of n th-order strict-feedback systems by adaptive dynamic surface control (DSC) technology, which achieves the human-like ability of learning by doing and doing with learned knowledge. To achieve the learning, this paper first proposes stable adaptive DSC with auxiliary first-order filters, which ensures the boundedness of all the signals in the closed-loop system and the convergence of tracking errors in a finite time. With the help of DSC, the derivative of the filter output variable is used as the neural network (NN) input instead of traditional intermediate variables. As a result, the proposed adaptive DSC method reduces greatly the dimension of NN inputs, especially for high-order systems. After the stable DSC design, we decompose the stable closed-loop system into a series of linear time-varying perturbed subsystems. Using a recursive design, the recurrent property of NN input variables is easily verified since the complexity is overcome using DSC. Subsequently, the partial persistent excitation condition of the radial basis function NN is satisfied. By combining a state transformation, accurate approximations of the closed-loop system dynamics are recursively achieved in a local region along recurrent orbits. Then, the learning control method using the learned knowledge is proposed to achieve the closed-loop stability and the improved control performance. Simulation studies are performed to demonstrate the proposed scheme can not only reuse the learned knowledge to achieve the better control performance with the faster tracking convergence rate and the smaller tracking error but also greatly alleviate the computational burden because of reducing the number and complexity of NN input variables.
Design of dissipative low-authority controllers using an eigensystem assignment technique
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Gupta, S.; Joshi, S. M.
1992-01-01
A novel method for the design of dissipative, low-authority controllers has been developed. The method uses a sequential approach along with eigensystem assignment to compute rate and position gain matrices that assign a number of closed-loop poles of the system to desired locations. Because the feedback gain matrices are symmetric and nonnegative definite, the closed-loop stability is always guaranteed regardless of the model order or parameter inaccuracies. The resulting (nominal) closed-loop system can have specified damping ratios for m modes, which makes the plant amenable to high-authority controller design, using methods such as LQG/LTR or H-infinity. A numerical example is worked out for a flexible structure in order to demonstrate the proposed technique.
Fuel control for gas turbine with continuous pilot flame
Swick, Robert M.
1983-01-01
An improved fuel control for a gas turbine engine having a continuous pilot flame and a fuel distribution system including a pump drawing fuel from a source and supplying a line to the main fuel nozzle of the engine, the improvement being a control loop between the pump outlet and the pump inlet to bypass fuel, an electronically controlled throttle valve to restrict flow in the control loop when main nozzle demand exists and to permit substantially unrestricted flow without main nozzle demand, a minimum flow valve in the control loop downstream of the throttle valve to maintain a minimum pressure in the loop ahead of the flow valve, a branch tube from the pilot flame nozzle to the control loop between the throttle valve and the minimum flow valve, an orifice in the branch tube, and a feedback tube from the branch tube downstream of the orifice to the minimum flow valve, the minimum flow valve being operative to maintain a substantially constant pressure differential across the orifice to maintain constant fuel flow to the pilot flame nozzle.
NASA Astrophysics Data System (ADS)
Widge, Alik S.; Moritz, Chet T.
2014-04-01
Objective. There is great interest in closed-loop neurostimulators that sense and respond to a patient's brain state. Such systems may have value for neurological and psychiatric illnesses where symptoms have high intraday variability. Animal models of closed-loop stimulators would aid preclinical testing. We therefore sought to demonstrate that rodents can directly control a closed-loop limbic neurostimulator via a brain-computer interface (BCI). Approach. We trained rats to use an auditory BCI controlled by single units in prefrontal cortex (PFC). The BCI controlled electrical stimulation in the medial forebrain bundle, a limbic structure involved in reward-seeking. Rigorous offline analyses were performed to confirm volitional control of the neurostimulator. Main results. All animals successfully learned to use the BCI and neurostimulator, with closed-loop control of this challenging task demonstrated at 80% of PFC recording locations. Analysis across sessions and animals confirmed statistically robust BCI control and specific, rapid modulation of PFC activity. Significance. Our results provide a preliminary demonstration of a method for emotion-regulating closed-loop neurostimulation. They further suggest that activity in PFC can be used to control a BCI without pre-training on a predicate task. This offers the potential for BCI-based treatments in refractory neurological and mental illness.
Preliminary demonstration of a robust controller design method
NASA Technical Reports Server (NTRS)
Anderson, L. R.
1980-01-01
Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.
Enabling Medical Device Interoperability for the Integrated Clinical Environment
2016-02-01
Pajic M, Mangharam R, Sokolsky O, Arney D, Goldman JM, Lee I. Model-Driven Safety Analysis of Closed - Loop Medical Systems. IEEE Transactions on...Manigel J, Osborn D, Roellike T, Weininger S, Westenskow D, “Development of a Standard for Physiologic Closed Loop Controllers in Medical Devices...3 2010. 27. Arney D, Pajic M, Goldman JM, Lee I, Mangharam R, Sokolsky O, “Toward Patient Safety in Closed - Loop Medical Device Systems,” In
NASA Technical Reports Server (NTRS)
Grose, D. L.
1979-01-01
The development of the DAST I (drones for aerodynamic and structural testing) remotely piloted research vehicle is described. The DAST I is a highly modified BQM-34E/F Firebee II Supersonic Aerial Target incorporating a swept supercritical wing designed to flutter within the vehicle's flight envelope. The predicted flutter and rigid body characteristics are presented. A description of the analysis and design of an active flutter suppression control system (FSS) designed to increase the flutter boundary of the DAST wing (ARW-1) by a factor of 20% is given. The design and development of the digital remotely augmented primary flight control system and on-board analog backup control system is presented. An evaluation of the near real-time flight flutter testing methods is made by comparing results of five flutter testing techniques on simulated DAST I flutter data. The development of the DAST ARW-1 state variable model used to generate time histories of simulated accelerometer responses is presented. This model uses control surface commands and a Dryden model gust as inputs. The feasibility of the concept of extracting open loop flutter characteristics from closed loop FSS responses was examined. It was shown that open loop characteristics can be determined very well from closed loop subcritical responses.
NASA Technical Reports Server (NTRS)
Gettman, Chang-Ching LO
1993-01-01
This thesis develops and demonstrates an approach to nonlinear control system design using linearization by state feedback. The design provides improved transient response behavior allowing faster maneuvering of payloads by the SRMS. Modeling uncertainty is accounted for by using a second feedback loop designed around the feedback linearized dynamics. A classical feedback loop is developed to provide the easy implementation required for the relatively small on board computers. Feedback linearization also allows the use of higher bandwidth model based compensation in the outer loop, since it helps maintain stability in the presence of the nonlinearities typically neglected in model based designs.
Control System Damps Vibrations
NASA Technical Reports Server (NTRS)
Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.
1983-01-01
New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.
Research on the adaptive optical control technology based on DSP
NASA Astrophysics Data System (ADS)
Zhang, Xiaolu; Xue, Qiao; Zeng, Fa; Zhao, Junpu; Zheng, Kuixing; Su, Jingqin; Dai, Wanjun
2018-02-01
Adaptive optics is a real-time compensation technique using high speed support system for wavefront errors caused by atmospheric turbulence. However, the randomness and instantaneity of atmospheric changing introduce great difficulties to the design of adaptive optical systems. A large number of complex real-time operations lead to large delay, which is an insurmountable problem. To solve this problem, hardware operation and parallel processing strategy are proposed, and a high-speed adaptive optical control system based on DSP is developed. The hardware counter is used to check the system. The results show that the system can complete a closed loop control in 7.1ms, and improve the controlling bandwidth of the adaptive optical system. Using this system, the wavefront measurement and closed loop experiment are carried out, and obtain the good results.
Structural Damage Detection Using Virtual Passive Controllers
NASA Technical Reports Server (NTRS)
Lew, Jiann-Shiun; Juang, Jer-Nan
2001-01-01
This paper presents novel approaches for structural damage detection which uses the virtual passive controllers attached to structures, where passive controllers are energy dissipative devices and thus guarantee the closed-loop stability. The use of the identified parameters of various closed-loop systems can solve the problem that reliable identified parameters, such as natural frequencies of the open-loop system may not provide enough information for damage detection. Only a small number of sensors are required for the proposed approaches. The identified natural frequencies, which are generally much less sensitive to noise and more reliable than the identified natural frequencies, are used for damage detection. Two damage detection techniques are presented. One technique is based on the structures with direct output feedback controllers while the other technique uses the second-order dynamic feedback controllers. A least-squares technique, which is based on the sensitivity of natural frequencies to damage variables, is used for accurately identifying the damage variables.
Diagonalizing controller for a superconducting six-axis accelerometer
NASA Astrophysics Data System (ADS)
Bachrach, B.; Canavan, E. R.; Levine, W. S.
A relatively simple MIMO (multiple input, multiple output) controller which converts an instrument with a nondiagonally dominant transfer function matrix into a strongly diagonally dominant device is developed. The instrument, which uses inductance bridges to sense the position of a magnetically levitated superconducting mass, has very lightly damped resonances and fairly strong cross coupling. By taking advantage of the particular structure of the instrument's transfer function matrix, it is possible to develop a relatively simple controller which achieves the desired decoupling. This controller consists of two parts. The first part cancels the nondiagonal terms of the open-loop transfer function matrix, while the second part is simply a set of SISO (single input, single output) controllers. The stability of the closed-loop system is studied using Rosenbrock's INA (inverse Nyguist array) technique, which produces a simple set of conditions guaranteeing stability. Simulation of the closed-loop system indicates that it should easily achieve its performance goals.
Mathematical Modeling of RNA-Based Architectures for Closed Loop Control of Gene Expression.
Agrawal, Deepak K; Tang, Xun; Westbrook, Alexandra; Marshall, Ryan; Maxwell, Colin S; Lucks, Julius; Noireaux, Vincent; Beisel, Chase L; Dunlop, Mary J; Franco, Elisa
2018-05-08
Feedback allows biological systems to control gene expression precisely and reliably, even in the presence of uncertainty, by sensing and processing environmental changes. Taking inspiration from natural architectures, synthetic biologists have engineered feedback loops to tune the dynamics and improve the robustness and predictability of gene expression. However, experimental implementations of biomolecular control systems are still far from satisfying performance specifications typically achieved by electrical or mechanical control systems. To address this gap, we present mathematical models of biomolecular controllers that enable reference tracking, disturbance rejection, and tuning of the temporal response of gene expression. These controllers employ RNA transcriptional regulators to achieve closed loop control where feedback is introduced via molecular sequestration. Sensitivity analysis of the models allows us to identify which parameters influence the transient and steady state response of a target gene expression process, as well as which biologically plausible parameter values enable perfect reference tracking. We quantify performance using typical control theory metrics to characterize response properties and provide clear selection guidelines for practical applications. Our results indicate that RNA regulators are well-suited for building robust and precise feedback controllers for gene expression. Additionally, our approach illustrates several quantitative methods useful for assessing the performance of biomolecular feedback control systems.
Conceptual design of a thermal control system for an inflatable lunar habitat module
NASA Technical Reports Server (NTRS)
Gadkari, Ketan; Goyal, Sanjay K.; Vanniasinkam, Joseph
1991-01-01
NASA is considering the establishment of a manned lunar base within the next few decades. To house and protect the crew from the harsh lunar environment, a habitat is required. A proposed habitat is an spherical, inflatable module. Heat generated in the module must be rejected to maintain a temperature suitable for human habitation. This report presents a conceptual design of a thermal control system for an inflatable lunar module. The design solution includes heat acquisition, heat transport, and heat rejection subsystems. The report discusses alternative designs and design solutions for each of the three subsystems mentioned above. Alternative subsystems for heat acquisition include a single water-loop, a single air-loop, and a double water-loop. The vapor compression cycle, vapor absorption cycle, and metal hydride absorption cycle are the three alternative transport subsystems. Alternative rejection subsystems include flat plate radiators, the liquid droplet radiator, and reflux boiler radiators. Feasibility studies on alternatives of each subsystem showed that the single water-loop, the vapor compression cycle, and the reflux boiler radiator were the most feasible alternatives. The design team combined the three subsystems to come up with an overall system design. Methods of controlling the system to adapt it for varying conditions within the module and in the environment are presented. Finally, the report gives conclusions and recommendations for further study of thermal control systems for lunar applications.
Closed-loop control of gimbal-less MEMS mirrors for increased bandwidth in LiDAR applications
NASA Astrophysics Data System (ADS)
Milanović, Veljko; Kasturi, Abhishek; Yang, James; Hu, Frank
2017-05-01
In 2016, we presented a low SWaP wirelessly controlled MEMS mirror-based LiDAR prototype which utilized an OEM laser rangefinder for distance measurement [1]. The MEMS mirror was run in open loop based on its exceptionally fast design and high repeatability performance. However, to further extend the bandwidth and incorporate necessary eyesafety features, we recently focused on providing mirror position feedback and running the system in closed loop control. Multiple configurations of optical position sensors, mounted on both the front- and the back-side of the MEMS mirror, have been developed and will be presented. In all cases, they include a light source (LED or laser) and a 2D photosensor. The most compact version is mounted on the backside of the MEMS mirror ceramic package and can "view" the mirror's backside through openings in the mirror's PCB and its ceramic carrier. This version increases the overall size of the MEMS mirror submodule from 12mm x 12mm x 4mm to 15mm x 15mm x 7mm. The sensors also include optical and electronic filtering to reduce effects of any interference from the application laser illumination. With relatively simple FPGA-based PID control running at the sample rate of 100 kHz, we could configure the overall response of the system to fully utilize the MEMS mirror's native bandwidth which extends well beyond its first resonance. When compared to the simple open loop method of suppressing overshoot and ringing which significantly limits bandwidth utilization, running the mirrors in closed loop control increased the bandwidth to nearly 3.7 times. A 2.0mm diameter integrated MEMS mirror with a resonant frequency of 1300 Hz was limited to 500Hz bandwidth in open loop driving but was increased to 3kHz bandwidth with the closed loop controller. With that bandwidth it is capable of very sharply defined uniform-velocity scans (sawtooth or triangle waveforms) which are highly desired in scanned mirror LiDAR systems. A 2.4mm diameter mirror with +/-12° of scan angle achieves over 1.3kHz of flat response, allowing sharp triangle waveforms even at 300Hz (600 uniform velocity lines per second). The same methodology is demonstrated with larger, bonded mirrors. Here closed loop control is more challenging due to the additional resonance and a more complex system dynamic. Nevertheless, results are similar - a 5mm diameter mirror bandwidth was increased from 150Hz to 500Hz.
Adaptive control of stochastic linear systems with unknown parameters. M.S. Thesis
NASA Technical Reports Server (NTRS)
Ku, R. T.
1972-01-01
The problem of optimal control of linear discrete-time stochastic dynamical system with unknown and, possibly, stochastically varying parameters is considered on the basis of noisy measurements. It is desired to minimize the expected value of a quadratic cost functional. Since the simultaneous estimation of the state and plant parameters is a nonlinear filtering problem, the extended Kalman filter algorithm is used. Several qualitative and asymptotic properties of the open loop feedback optimal control and the enforced separation scheme are discussed. Simulation results via Monte Carlo method show that, in terms of the performance measure, for stable systems the open loop feedback optimal control system is slightly better than the enforced separation scheme, while for unstable systems the latter scheme is far better.
NASA Technical Reports Server (NTRS)
Chase, Christopher; Serrano, Joseph; Ramadge, Peter J.
1993-01-01
We analyze two examples of the discrete control of a continuous variable system. These examples exhibit what may be regarded as the two extremes of complexity of the closed-loop behavior: one is eventually periodic, the other is chaotic. Our examples are derived from sampled deterministic flow models. These are of interest in their own right but have also been used as models for certain aspects of manufacturing systems. In each case, we give a precise characterization of the closed-loop behavior.
H∞ output tracking control of discrete-time nonlinear systems via standard neural network models.
Liu, Meiqin; Zhang, Senlin; Chen, Haiyang; Sheng, Weihua
2014-10-01
This brief proposes an output tracking control for a class of discrete-time nonlinear systems with disturbances. A standard neural network model is used to represent discrete-time nonlinear systems whose nonlinearity satisfies the sector conditions. H∞ control performance for the closed-loop system including the standard neural network model, the reference model, and state feedback controller is analyzed using Lyapunov-Krasovskii stability theorem and linear matrix inequality (LMI) approach. The H∞ controller, of which the parameters are obtained by solving LMIs, guarantees that the output of the closed-loop system closely tracks the output of a given reference model well, and reduces the influence of disturbances on the tracking error. Three numerical examples are provided to show the effectiveness of the proposed H∞ output tracking design approach.
Theoretical linear approach to the combined man-manipulator system in manual control of an aircraft
NASA Technical Reports Server (NTRS)
Brauser, K.
1981-01-01
An approach to the calculation of the dynamic characteristics of the combined man manipulator system in manual aircraft control was derived from a model of the neuromuscular system. This model combines the neuromuscular properties of man with the physical properties of the manipulator system which is introduced as pilot manipulator model into the manual aircraft control. The assumption of man as a quasilinear and time invariant control operator adapted to operating states, depending on the flight phases, of the control system gives rise to interesting solutions of the frequency domain transfer functions of both the man manipulator system and the closed loop pilot aircraft control system. It is shown that it is necessary to introduce the complete precision pilot manipulator model into the closed loop pilot aircraft transfer function in order to understand the well known handling quality criteria, and to derive these criteria directly from human operator properties.
CSI computer system/remote interface unit acceptance test results
NASA Technical Reports Server (NTRS)
Sparks, Dean W., Jr.
1992-01-01
The validation tests conducted on the Control/Structures Interaction (CSI) Computer System (CCS)/Remote Interface Unit (RIU) is discussed. The CCS/RIU consists of a commercially available, Langley Research Center (LaRC) programmed, space flight qualified computer and a flight data acquisition and filtering computer, developed at LaRC. The tests were performed in the Space Structures Research Laboratory (SSRL) and included open loop excitation, closed loop control, safing, RIU digital filtering, and RIU stand alone testing with the CSI Evolutionary Model (CEM) Phase-0 testbed. The test results indicated that the CCS/RIU system is comparable to ground based systems in performing real-time control-structure experiments.
NASA Astrophysics Data System (ADS)
Kuznetsov, N. V.; Leonov, G. A.; Yuldashev, M. V.; Yuldashev, R. V.
2017-10-01
During recent years it has been shown that hidden oscillations, whose basin of attraction does not overlap with small neighborhoods of equilibria, may significantly complicate simulation of dynamical models, lead to unreliable results and wrong conclusions, and cause serious damage in drilling systems, aircrafts control systems, electromechanical systems, and other applications. This article provides a survey of various phase-locked loop based circuits (used in satellite navigation systems, optical, and digital communication), where such difficulties take place in MATLAB and SPICE. Considered examples can be used for testing other phase-locked loop based circuits and simulation tools, and motivate the development and application of rigorous analytical methods for the global analysis of phase-locked loop based circuits.
Design and Analysis of Morpheus Lander Flight Control System
NASA Technical Reports Server (NTRS)
Jang, Jiann-Woei; Yang, Lee; Fritz, Mathew; Nguyen, Louis H.; Johnson, Wyatt R.; Hart, Jeremy J.
2014-01-01
The Morpheus Lander is a vertical takeoff and landing test bed vehicle developed to demonstrate the system performance of the Guidance, Navigation and Control (GN&C) system capability for the integrated autonomous landing and hazard avoidance system hardware and software. The Morpheus flight control system design must be robust to various mission profiles. This paper presents a design methodology for employing numerical optimization to develop the Morpheus flight control system. The design objectives include attitude tracking accuracy and robust stability with respect to rigid body dynamics and propellant slosh. Under the assumption that the Morpheus time-varying dynamics and control system can be frozen over a short period of time, the flight controllers are designed to stabilize all selected frozen-time control systems in the presence of parametric uncertainty. Both control gains in the inner attitude control loop and guidance gains in the outer position control loop are designed to maximize the vehicle performance while ensuring robustness. The flight control system designs provided herein have been demonstrated to provide stable control systems in both Draper Ares Stability Analysis Tool (ASAT) and the NASA/JSC Trick-based Morpheus time domain simulation.
Yamaguchi, Motonori; Crump, Matthew J C; Logan, Gordon D
2013-06-01
Typing performance involves hierarchically structured control systems: At the higher level, an outer loop generates a word or a series of words to be typed; at the lower level, an inner loop activates the keystrokes comprising the word in parallel and executes them in the correct order. The present experiments examined contributions of the outer- and inner-loop processes to the control of speed and accuracy in typewriting. Experiments 1 and 2 involved discontinuous typing of single words, and Experiments 3 and 4 involved continuous typing of paragraphs. Across experiments, typists were able to trade speed for accuracy but were unable to type at rates faster than 100 ms/keystroke, implying limits to the flexibility of the underlying processes. The analyses of the component latencies and errors indicated that the majority of the trade-offs were due to inner-loop processing. The contribution of outer-loop processing to the trade-offs was small, but it resulted in large costs in error rate. Implications for strategic control of automatic processes are discussed. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Adaptive Neural Network Control of a Flapping Wing Micro Aerial Vehicle With Disturbance Observer.
He, Wei; Yan, Zichen; Sun, Changyin; Chen, Yunan
2017-10-01
The research of this paper works out the attitude and position control of the flapping wing micro aerial vehicle (FWMAV). Neural network control with full state and output feedback are designed to deal with uncertainties in this complex nonlinear FWMAV dynamic system and enhance the system robustness. Meanwhile, we design disturbance observers which are exerted into the FWMAV system via feedforward loops to counteract the bad influence of disturbances. Then, a Lyapunov function is proposed to prove the closed-loop system stability and the semi-global uniform ultimate boundedness of all state variables. Finally, a series of simulation results indicate that proposed controllers can track desired trajectories well via selecting appropriate control gains. And the designed controllers possess potential applications in FWMAVs.
Robot trajectory tracking with self-tuning predicted control
NASA Technical Reports Server (NTRS)
Cui, Xianzhong; Shin, Kang G.
1988-01-01
A controller that combines self-tuning prediction and control is proposed for robot trajectory tracking. The controller has two feedback loops: one is used to minimize the prediction error, and the other is designed to make the system output track the set point input. Because the velocity and position along the desired trajectory are given and the future output of the system is predictable, a feedforward loop can be designed for robot trajectory tracking with self-tuning predicted control (STPC). Parameters are estimated online to account for the model uncertainty and the time-varying property of the system. The authors describe the principle of STPC, analyze the system performance, and discuss the simplification of the robot dynamic equations. To demonstrate its utility and power, the controller is simulated for a Stanford arm.
Analysis and design of segment control system in segmented primary mirror
NASA Astrophysics Data System (ADS)
Yu, Wenhao; Li, Bin; Chen, Mo; Xian, Hao
2017-10-01
Segmented primary mirror will be adopted widely in giant telescopes in future, such as TMT, E-ELT and GMT. High-performance control technology of the segmented primary mirror is one of the difficult technologies for telescopes using segmented primary mirror. The control of each segment is the basis of control system in segmented mirror. Correcting the tilt and tip of single segment is the main work of this paper which is divided into two parts. Firstly, harmonic response done in finite element model of single segment matches the Bode diagram of a two-order system whose natural frequency is 45 hertz and damping ratio is 0.005. Secondly, a control system model is established, and speed feedback is introduced in control loop to suppress resonance point gain and increase the open-loop bandwidth, up to 30Hz or even higher. Corresponding controller is designed based on the control system model described above.
NASA Technical Reports Server (NTRS)
Gawronski, W.
2004-01-01
Wind gusts are the main disturbances that depreciate tracking precision of microwave antennas and radiotelescopes. The linear-quadratic-Gaussian (LQG) controllers - as compared with the proportional-and-integral (PI) controllers significantly improve the tracking precision in wind disturbances. However, their properties have not been satisfactorily understood; consequently, their tuning is a trial-and-error process. A control engineer has two tools to tune an LQG controller: the choice of coordinate system of the controller model and the selection of weights of the LQG performance index. This article analyzes properties of an open- and closed-loop antenna. It shows that the proper choice of coordinates of the open-loop model simplifies the shaping of the closed-loop performance. The closed-loop properties are influenced by the LQG weights. The article shows the impact of the weights on the antenna closed-loop bandwidth, disturbance rejection properties, and antenna acceleration. The bandwidth and the disturbance rejection characterize the antenna performance, while the acceleration represents the performance limit set by the antenna hardware (motors). The article presents the controller tuning procedure, based on the coordinate selection and the weight properties. The procedure rationally shapes the closed-loop performance, as an alternative to the trial-and-error approach.
Huang, Yongmei; Deng, Chao; Ren, Wei; Wu, Qiongyan
2017-01-01
In the CCD-based fine tracking optical system (FTOS), the whole disturbance suppression ability (DSA) is the product of the inner loop and outer position loop. Traditionally, high sampling fiber-optic gyroscopes (FOGs) are added to the platform to stabilize the line-of-sight (LOS). However, because of the FOGs’ high cost and relatively big volume relative to the back narrow space of small rotating mirrors, we attempt in this work to utilize a cheaper and smaller micro-electro-mechanical system (MEMS) accelerometer to build the inner loop, replacing the FOG. Unfortunately, since accelerometers are susceptible to the low-frequency noise, according to the classical way of using accelerometers, the crucial low-frequency DSA of the system is insufficient. To solve this problem, in this paper, we propose an approach based on MEMS accelerometers combining disturbance observer (DOB) with triple-loop control (TLC) in which the composite velocity loop is built by acceleration integration and corrected by CCD. The DOB is firstly used to reform the platform, greatly improving the medium-frequency DSA. Then the composite velocity loop exchanges a part of medium-frequency performance for the low-frequency DSA. A detailed analysis and experiments verify the proposed method has a better DSA than the traditional way and could totally substitute FOG in the LOS stabilization. PMID:29149050
Control system and method for a universal power conditioning system
Lai, Jih-Sheng; Park, Sung Yeul; Chen, Chien-Liang
2014-09-02
A new current loop control system method is proposed for a single-phase grid-tie power conditioning system that can be used under a standalone or a grid-tie mode. This type of inverter utilizes an inductor-capacitor-inductor (LCL) filter as the interface in between inverter and the utility grid. The first set of inductor-capacitor (LC) can be used in the standalone mode, and the complete LCL can be used for the grid-tie mode. A new admittance compensation technique is proposed for the controller design to avoid low stability margin while maintaining sufficient gain at the fundamental frequency. The proposed current loop controller system and admittance compensation technique have been simulated and tested. Simulation results indicate that without the admittance path compensation, the current loop controller output duty cycle is largely offset by an undesired admittance path. At the initial simulation cycle, the power flow may be erratically fed back to the inverter causing catastrophic failure. With admittance path compensation, the output power shows a steady-state offset that matches the design value. Experimental results show that the inverter is capable of both a standalone and a grid-tie connection mode using the LCL filter configuration.
Soenksen, L R; Kassis, T; Noh, M; Griffith, L G; Trumper, D L
2018-03-13
Precise fluid height sensing in open-channel microfluidics has long been a desirable feature for a wide range of applications. However, performing accurate measurements of the fluid level in small-scale reservoirs (<1 mL) has proven to be an elusive goal, especially if direct fluid-sensor contact needs to be avoided. In particular, gravity-driven systems used in several microfluidic applications to establish pressure gradients and impose flow remain open-loop and largely unmonitored due to these sensing limitations. Here we present an optimized self-shielded coplanar capacitive sensor design and automated control system to provide submillimeter fluid-height resolution (∼250 μm) and control of small-scale open reservoirs without the need for direct fluid contact. Results from testing and validation of our optimized sensor and system also suggest that accurate fluid height information can be used to robustly characterize, calibrate and dynamically control a range of microfluidic systems with complex pumping mechanisms, even in cell culture conditions. Capacitive sensing technology provides a scalable and cost-effective way to enable continuous monitoring and closed-loop feedback control of fluid volumes in small-scale gravity-dominated wells in a variety of microfluidic applications.
Design and Modeling of a Liquid Lithium LiMIT Loop
NASA Astrophysics Data System (ADS)
Szott, Matthew; Christenson, Michael; Stemmley, Steven; Ahn, Chisung; Andruczyk, Daniel; Ruzic, David
2017-10-01
The use of flowing liquid lithium in plasma facing components has been shown to reduce erosion and thermal stress damage, prolong device lifetime, decrease edge recycling, reduce impurities, and increase plasma performance, all while providing a clean and self-healing surface. The Liquid Metal Infused Trench (LiMIT) system has proven the concept of controlled thermoelectric magnetohydrodynamic-driven lithium flow for use in fusion relevant conditions, through tests at UIUC, HT-7, and Magnum PSI. As the use of liquid lithium in fusion devices progresses, emphasis must now be placed on full systems integration of flowing liquid metal concepts. The LiMIT system will be upgraded to include a full liquid lithium loop, which will pump lithium into the fusion device, utilize TEMHD to drive lithium through the vessel, and remove lithium for filtration and degassing. Flow control concepts recently developed at UIUC - including wetting control, dryout control, and flow velocity control - will be tested in conjunction in order to demonstrate a robust system. Lithium loop system requirements, designs, and modeling work will be presented, along with plans for installation and testing on the HIDRA device at UIUC. This work is supported by DOE/ALPS DE-FG02-99ER54515.
Single axis control of ball position in magnetic levitation system using fuzzy logic control
NASA Astrophysics Data System (ADS)
Sahoo, Narayan; Tripathy, Ashis; Sharma, Priyaranjan
2018-03-01
This paper presents the design and real time implementation of Fuzzy logic control(FLC) for the control of the position of a ferromagnetic ball by manipulating the current flowing in an electromagnet that changes the magnetic field acting on the ball. This system is highly nonlinear and open loop unstable. Many un-measurable disturbances are also acting on the system, making the control of it highly complex but interesting for any researcher in control system domain. First the system is modelled using the fundamental laws, which gives a nonlinear equation. The nonlinear model is then linearized at an operating point. Fuzzy logic controller is designed after studying the system in closed loop under PID control action. The controller is then implemented in real time using Simulink real time environment. The controller is tuned manually to get a stable and robust performance. The set point tracking performance of FLC and PID controllers were compared and analyzed.
Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes.
P V, Jayakrishnapillai; Nair, Shantikumar V; Kamalasanan, Kaladhar
2017-05-01
Diabetes mellitus (DM) is a metabolic disorder due to irregularities in glucose metabolism, as a result of insulin disregulation. Chronic DM (Type 1) is treated by daily insulin injections by subcutaneous route. Daily injections cause serious patient non-compliance and medication non-adherence. Insulin Depots (ID) are parenteral formulations designed to release the insulin over a specified period of time, to control the plasma blood glucose level for intended duration. Physiologically, pancreas produces and secretes insulin in basal and pulsatile mode into the blood. Delivery systems mimicking basal release profiles are known as open-loop systems and current marketed products are open-loop systems. Future trend in open-loop systems is to reduce the number of injections per week by enhancing duration of action, by modifying the depot properties. The next generation technologies are closed-loop systems that mimic the pulsatile mode of delivery by pancreas. In closed-loop systems insulin will be released in response to plasma glucose. This review focuses on future trend in open-loop systems; by understanding (a) the secretion of insulin from pancreas, (b) the insulin regulation normal and in DM, (c) insulin depots and (d) the recent progress in open-loop depot technology particularly with respect to nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Motorized CPM/CAM physiotherapy device with sliding-mode Fuzzy Neural Network control loop.
Ho, Hung-Jung; Chen, Tien-Chi
2009-11-01
Continuous passive motion (CPM) and controllable active motion (CAM) physiotherapy devices promote rehabilitation of damaged joints. This paper presents a computerized CPM/CAM system that obviates the need for mechanical resistance devices such as springs. The system is controlled by a computer which performs sliding-mode Fuzzy Neural Network (FNN) calculations online. CAM-type resistance force is generated by the active performance of an electric motor which is controlled so as to oppose the motion of the patient's leg. A force sensor under the patient's foot on the device pedal provides data for feedback in a sliding-mode FNN control loop built around the motor. Via an active impedance control feedback system, the controller drives the motor to behave similarly to a damped spring by generating and controlling the amplitude and direction of the pedal force in relation to the patient's leg. Experiments demonstrate the high sensitivity and speed of the device. The PC-based feedback nature of the control loop means that sophisticated auto-adaptable CPM/CAM custom-designed physiotherapy becomes possible. The computer base also allows extensive data recording, data analysis and network-connected remote patient monitoring.
Applying Computer Models to Realize Closed-Loop Neonatal Oxygen Therapy.
Morozoff, Edmund; Smyth, John A; Saif, Mehrdad
2017-01-01
Within the context of automating neonatal oxygen therapy, this article describes the transformation of an idea verified by a computer model into a device actuated by a computer model. Computer modeling of an entire neonatal oxygen therapy system can facilitate the development of closed-loop control algorithms by providing a verification platform and speeding up algorithm development. In this article, we present a method of mathematically modeling the system's components: the oxygen transport within the patient, the oxygen blender, the controller, and the pulse oximeter. Furthermore, within the constraints of engineering a product, an idealized model of the neonatal oxygen transport component may be integrated effectively into the control algorithm of a device, referred to as the adaptive model. Manual and closed-loop oxygen therapy performance were defined in this article by 3 criteria in the following order of importance: percent duration of SpO2 spent in normoxemia (target SpO2 ± 2.5%), hypoxemia (less than normoxemia), and hyperoxemia (more than normoxemia); number of 60-second periods <85% SpO2 and >95% SpO2; and number of manual adjustments. Results from a clinical evaluation that compared the performance of 3 closed-loop control algorithms (state machine, proportional-integral-differential, and adaptive model) with manual oxygen therapy on 7 low-birth-weight ventilated preterm babies, are presented. Compared with manual therapy, all closed-loop control algorithms significantly increased the patients' duration in normoxemia and reduced hyperoxemia (P < 0.05). The number of manual adjustments was also significantly reduced by all of the closed-loop control algorithms (P < 0.05). Although the performance of the 3 control algorithms was equivalent, it is suggested that the adaptive model, with its ease of use, may have the best utility.
Cao, Feng; Zhang, Chao; Vo Doan, Tat Thang; Li, Yao; Sangi, Daniyal Haider; Koh, Jie Sheng; Huynh, Ngoc Anh; Bin Aziz, Mohamed Fareez; Choo, Hao Yu; Ikeda, Kazuo; Abbeel, Pieter; Maharbiz, Michel M; Sato, Hirotaka
2014-01-01
In this study, a biological microactuator was demonstrated by closed-loop motion control of the front leg of an insect (Mecynorrhina torquata, beetle) via electrical stimulation of the leg muscles. The three antagonistic pairs of muscle groups in the front leg enabled the actuator to have three degrees of freedom: protraction/retraction, levation/depression, and extension/flexion. We observed that the threshold amplitude (voltage) required to elicit leg motions was approximately 1.0 V; thus, we fixed the stimulation amplitude at 1.5 V to ensure a muscle response. The leg motions were finely graded by alternation of the stimulation frequencies: higher stimulation frequencies elicited larger leg angular displacement. A closed-loop control system was then developed, where the stimulation frequency was the manipulated variable for leg-muscle stimulation (output from the final control element to the leg muscle) and the angular displacement of the leg motion was the system response. This closed-loop control system, with an optimized proportional gain and update time, regulated the leg to set at predetermined angular positions. The average electrical stimulation power consumption per muscle group was 148 µW. These findings related to and demonstrations of the leg motion control offer promise for the future development of a reliable, low-power, biological legged machine (i.e., an insect-machine hybrid legged robot).
Analysis of spacecraft battery charger systems
NASA Astrophysics Data System (ADS)
Kim, Seong J.; Cho, Bo H.
In spacecraft battery charger systems, switching regulators are widely used for bus voltage regulation, charge current regulation, and peak power tracking. Small-signal dynamic characteristics of the battery charging subsystem of direct energy transfer (DET) and peak power tracking (PPT) systems are analyzed to facilitate design of the control loop for optimum performance and stability. Control loop designs of the charger in various modes of operation are discussed. Analyses are verified through simulations. It is shown that when the charger operates in the bus voltage regulation mode, the control-to-voltage transfer function has a negative DC gain and two LHP zeros in both the DET and PPT systems. The control-to-inductor current transfer function also has a negative DC gain and a RHP zero. Thus, in the current-mode control, the current loop can no longer be used to stabilize the system. When the system operates in the charge current regulation mode, the charger operates with a fixed duty cycle which is determined by the regulated bus voltage and the battery voltage. Without an input filter, the converter becomes a first-order system. When the peak power tracker is inactive, the operating point of the solar array output moves to the voltage source region. Thus, the solar array behaves as a stiff voltage source to a constant power load.
Flatness-based adaptive fuzzy control of chaotic finance dynamics
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Loia, V.; Tommasetti, A.; Troisi, O.
2017-11-01
A flatness-based adaptive fuzzy control is applied to the problem of stabilization of the dynamics of a chaotic finance system, describing interaction between the interest rate, the investment demand and the price exponent. By proving that the system is differentially flat and by applying differential flatness diffeomorphisms, its transformation to the linear canonical (Brunovsky) is performed. For the latter description of the system, the design of a stabilizing state feedback controller becomes possible. A first problem in the design of such a controller is that the dynamic model of the finance system is unknown and thus it has to be identified with the use neurofuzzy approximators. The estimated dynamics provided by the approximators is used in the computation of the control input, thus establishing an indirect adaptive control scheme. The learning rate of the approximators is chosen from the requirement the system's Lyapunov function to have always a negative first-order derivative. Another problem that has to be dealt with is that the control loop is implemented only with the use of output feedback. To estimate the non-measurable state vector elements of the finance system, a state observer is implemented in the control loop. The computation of the feedback control signal requires the solution of two algebraic Riccati equations at each iteration of the control algorithm. Lyapunov stability analysis demonstrates first that an H-infinity tracking performance criterion is satisfied. This signifies elevated robustness against modelling errors and external perturbations. Moreover, the global asymptotic stability is proven for the control loop.
Adaptation of a modern medium helicopter (Sikorsky S-76) to higher harmonic control
NASA Technical Reports Server (NTRS)
Oleary, J. J.; Kottapalli, S. B. R.; Davis, M. W.
1985-01-01
Sikorsky Aircraft has performed analytical studies, design analyses, and risk reduction tests have been performed for Higher Harmonic Control (HHC) on the S-76. The S-76 is an 8 to 10,000 lb helicopter which cruises at 145 kts. Flight test hardware has been assembled, main servo frequency response tested and upgraded, aircraft control system shake tested and verified, open loop controllers designed and fabricated, closed loop controllers defined and evaluated, and rotors turning ground and flight tests planned for the near future. Open loop analysis shows that about 2 deg of higher harmonic feathering at the blade 75% radius will be required to eliminate 4P vibration in the cockpit.
Robust decentralized control laws for the ACES structure
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Phillips, Douglas J.; Hyland, David C.
1991-01-01
Control system design for the Active Control Technique Evaluation for Spacecraft (ACES) structure at NASA Marshall Space Flight Center is discussed. The primary objective of this experiment is to design controllers that provide substantial reduction of the line-of-sight pointing errors. Satisfaction of this objective requires the controllers to attenuate beam vibration significantly. The primary method chosen for control design is the optimal projection approach for uncertain systems (OPUS). The OPUS design process allows the simultaneous tradeoff of five fundamental issues in control design: actuator sizing, sensor accuracy, controller order, robustness, and system performance. A brief description of the basic ACES configuration is given. The development of the models used for control design and control design for eight system loops that were selected by analysis of test data collected from the structure are discussed. Experimental results showing that very significant performance improvement is achieved when all eight feedback loops are closed are presented.
Applications of Payload Directed Flight
NASA Technical Reports Server (NTRS)
Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu
2009-01-01
Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'
Real-time Simulation of Turboprop Engine Control System
NASA Astrophysics Data System (ADS)
Sheng, Hanlin; Zhang, Tianhong; Zhang, Yi
2017-05-01
On account of the complexity of turboprop engine control system, real-time simulation is the technology, under the prerequisite of maintaining real-time, to effectively reduce development cost, shorten development cycle and avert testing risks. The paper takes RT-LAB as a platform and studies the real-time digital simulation of turboprop engine control system. The architecture, work principles and external interfaces of RT-LAB real-time simulation platform are introduced firstly. Then based on a turboprop engine model, the control laws of propeller control loop and fuel control loop are studied. From that and on the basis of Matlab/Simulink, an integrated controller is designed which can realize the entire process control of the engine from start-up to maximum power till stop. At the end, on the basis of RT-LAB platform, the real-time digital simulation of the designed control system is studied, different regulating plans are tried and more ideal control effects have been obtained.
A closed-loop photon beam control study for the Advanced Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Portmann, G.; Bengtsson, J.
1993-05-01
The third generation Advanced Light Source (ALS) will produce extremely bright photon beams using undulators and wigglers. In order to position the photon beams accurate to the micron level, a closed-loop feedback system is being developed. Using photon position monitors and dipole corrector magnets, a closed-loop system can automatically compensate for modeling uncertainties and exogenous disturbances. The following paper will present a dynamics model for the perturbations of the closed orbit of the electron beam in the ALS storage ring including the vacuum chamber magnetic field penetration effects. Using this reference model, two closed-loop feedback algorithms will be compared --more » a classical PI controller and a two degree-of-freedom approach. The two degree-of-freedom method provides superior disturbance rejection while maintaining the desired performance goals. Both methods will address the need to gain schedule the controller due to the time varying dynamics introduced by changing field strengths when scanning the insertion devices.« less
Optical mapping system with real-time control capability.
Iravanian, Shahriar; Christini, David J
2007-10-01
Real-time, closed-loop intervention is an emerging experiment-control method that promises to provide invaluable new insight into cardiac electrophysiology. One example is the investigation of closed-loop feedback control of cardiac activity (e.g., alternans) as a possible method of preventing arrhythmia onset. To date, such methods have been investigated only in vitro using microelectrode systems, which are hindered by poor spatial resolution and are not well suited for atrial or ventricular tissue preparations. We have developed a system that uses optical mapping techniques and an electrical stimulator as the sensory and effector arms, respectively, of a closed-loop, real-time control system. The system consists of a 2,048 x 1 pixel line-scan charge-coupled device camera that records optical signals from the tissue. Custom-image processing and control software, which is implemented on top of a hard real-time operation system (RTAI Linux), process the data and make control decisions with a deterministic delay of <1 ms. The system is tested in two ways: 1) it is used to control, in real time, simulated optical signals of electrical alternans; and 2) it uses precisely timed, feedback-controlled initiation of antitachycardia pacing to terminate reentrant arrhythmias in an arterially perfused swine right ventricle stained with voltage-sensitive fluorescent dye 4{beta-[2-(di-n-butylamino)-6-napathy]vinyl}pyridinium (di-4-ANEPPS). Thus real-time control of cardiac activity using optical mapping techniques is feasible. Such a system is attractive because it offers greater measurement resolution than the electrode-based systems with which real-time control has been used previously.
Active control of flexible structures using a fuzzy logic algorithm
NASA Astrophysics Data System (ADS)
Cohen, Kelly; Weller, Tanchum; Ben-Asher, Joseph Z.
2002-08-01
This study deals with the development and application of an active control law for the vibration suppression of beam-like flexible structures experiencing transient disturbances. Collocated pairs of sensors/actuators provide active control of the structure. A design methodology for the closed-loop control algorithm based on fuzzy logic is proposed. First, the behavior of the open-loop system is observed. Then, the number and locations of collocated actuator/sensor pairs are selected. The proposed control law, which is based on the principles of passivity, commands the actuator to emulate the behavior of a dynamic vibration absorber. The absorber is tuned to a targeted frequency, whereas the damping coefficient of the dashpot is varied in a closed loop using a fuzzy logic based algorithm. This approach not only ensures inherent stability associated with passive absorbers, but also circumvents the phenomenon of modal spillover. The developed controller is applied to the AFWAL/FIB 10 bar truss. Simulated results using MATLAB© show that the closed-loop system exhibits fairly quick settling times and desirable performance, as well as robustness characteristics. To demonstrate the robustness of the control system to changes in the temporal dynamics of the flexible structure, the transient response to a considerably perturbed plant is simulated. The modal frequencies of the 10 bar truss were raised as well as lowered substantially, thereby significantly perturbing the natural frequencies of vibration. For these cases, too, the developed control law provides adequate settling times and rates of vibrational energy dissipation.
NASA Astrophysics Data System (ADS)
Zhang, Xianxia; Wang, Jian; Qin, Tinggao
2003-09-01
Intelligent control algorithms are introduced into the control system of temperature and humidity. A multi-mode control algorithm of PI-Single Neuron is proposed for single loop control of temperature and humidity. In order to remove the coupling between temperature and humidity, a new decoupling method is presented, which is called fuzzy decoupling. The decoupling is achieved by using a fuzzy controller that dynamically modifies the static decoupling coefficient. Taking the control algorithm of PI-Single Neuron as the single loop control of temperature and humidity, the paper provides the simulated output response curves with no decoupling control, static decoupling control and fuzzy decoupling control. Those control algorithms are easily implemented in singlechip-based hardware systems.
Moore, Brett L; Pyeatt, Larry D; Doufas, Anthony G
2009-01-01
Research has demonstrated the efficacy of closed-loop control of anesthesia using bispectral index (BIS) as the controlled variable, and the recent development of model-based, patient-adaptive systems has considerably improved anesthetic control. To further explore the use of model-based control in anesthesia, we investigated the application of fuzzy control in the delivery of patient-specific propofol-induced hypnosis. In simulated intraoperative patients, the fuzzy controller demonstrated clinically acceptable performance, suggesting that further study is warranted.
Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control.
Gorju, G; Jucha, A; Jain, A; Crozatier, V; Lorgeré, I; Le Gouët, J-L; Bretenaker, F; Colice, M
2007-03-01
We propose and demonstrate a novel active stabilization scheme for wide and fast frequency chirps. The system measures the laser instantaneous frequency deviation from a perfectly linear chirp, thanks to a digital phase detection process, and provides an error signal that is used to servo-loop control the chirped laser. This way, the frequency errors affecting a laser scan over 10 GHz on the millisecond timescale are drastically reduced below 100 kHz. This active optoelectronic digital servo-loop control opens new and interesting perspectives in fields where rapidly chirped lasers are crucial.
Automated Test Environment for a Real-Time Control System
NASA Technical Reports Server (NTRS)
Hall, Ronald O.
1994-01-01
An automated environment with hardware-in-the-loop has been developed by Rocketdyne Huntsville for test of a real-time control system. The target system of application is the man-rated real-time system which controls the Space Shuttle Main Engines (SSME). The primary use of the environment is software verification and validation, but it is also useful for evaluation and analysis of SSME avionics hardware and mathematical engine models. It provides a test bed for the integration of software and hardware. The principles and skills upon which it operates may be applied to other target systems, such as those requiring hardware-in-the-loop simulation and control system development. Potential applications are in problem domains demanding highly reliable software systems requiring testing to formal requirements and verifying successful transition to/from off-nominal system states.
NASA Technical Reports Server (NTRS)
Kuo, B. C.; Singh, G.
1974-01-01
The dynamics of the Large Space Telescope (LST) control system were studied in order to arrive at a simplified model for computer simulation without loss of accuracy. The frictional nonlinearity of the Control Moment Gyroscope (CMG) Control Loop was analyzed in a model to obtain data for the following: (1) a continuous describing function for the gimbal friction nonlinearity; (2) a describing function of the CMG nonlinearity using an analytical torque equation; and (3) the discrete describing function and function plots for CMG functional linearity. Preliminary computer simulations are shown for the simplified LST system, first without, and then with analytical torque expressions. Transfer functions of the sampled-data LST system are also described. A final computer simulation is presented which uses elements of the simplified sampled-data LST system with analytical CMG frictional torque expressions.
Active control of transient rotordynamic vibration by optimal control methods
NASA Technical Reports Server (NTRS)
Palazzolo, A. B.; Lin, R. R.; Alexander, R. M.; Kascak, A. F.
1988-01-01
Although considerable effort has been put into the study of steady state vibration control, there are few methods applicable to transient vibration control of rotorbearing systems. In this paper optimal control theory has been adopted to minimize rotor vibration due to sudden imbalance, e.g., blade loss. The system gain matrix is obtained by choosing the weighting matrices and solving the Riccati equation. Control forces are applied to the system via a feedback loop. A seven mass rotor system is simulated for illustration. A relationship between the number of sensors and the number of modes used in the optimal control model is investigated. Comparisons of responses are made for various configurations of modes, sensors, and actuators. Furthermore, spillover effect is examined by comparing results from collocated and noncollocated sensor configurations. Results show that shaft vibration is significantly attenuated in the closed loop system.
Microcomputer-Aided Control Systems Design.
ERIC Educational Resources Information Center
Roat, S. D.; Melsheimer, S. S.
1987-01-01
Describes a single input/single output feedback control system design program for IBM PC and compatible microcomputers. Uses a heat exchanger temperature control loop to illustrate the various applications of the program. (ML)
Investigation of air transportation technology at Princeton University, 1984
NASA Technical Reports Server (NTRS)
Stengel, Robert F.
1987-01-01
The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along four avenues during 1984: (1) guidance and control strategies for penetration of microbursts and wind shear; (2) application of artificial intelligence in flight control systems; (3) effects of control saturation on closed loop stability; and (4) response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as to general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of principle concern. These areas of investigation are briefly discussed.
System/observer/controller identification toolbox
NASA Technical Reports Server (NTRS)
Juang, Jer-Nan; Horta, Lucas G.; Phan, Minh
1992-01-01
System Identification is the process of constructing a mathematical model from input and output data for a system under testing, and characterizing the system uncertainties and measurement noises. The mathematical model structure can take various forms depending upon the intended use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a collection of functions, written in MATLAB language and expressed in M-files, that implements a variety of modern system identification techniques. For an open loop system, the central features of the SOCIT are functions for identification of a system model and its corresponding forward and backward observers directly from input and output data. The system and observers are represented by a discrete model. The identified model and observers may be used for controller design of linear systems as well as identification of modal parameters such as dampings, frequencies, and mode shapes. For a closed-loop system, an observer and its corresponding controller gain directly from input and output data.
Constant-current control method of multi-function electromagnetic transmitter.
Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun
2015-02-01
Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.
Constant-current control method of multi-function electromagnetic transmitter
NASA Astrophysics Data System (ADS)
Xue, Kaichang; Zhou, Fengdao; Wang, Shuang; Lin, Jun
2015-02-01
Based on the requirements of controlled source audio-frequency magnetotelluric, DC resistivity, and induced polarization, a constant-current control method is proposed. Using the required current waveforms in prospecting as a standard, the causes of current waveform distortion and current waveform distortion's effects on prospecting are analyzed. A cascaded topology is adopted to achieve 40 kW constant-current transmitter. The responsive speed and precision are analyzed. According to the power circuit of the transmitting system, the circuit structure of the pulse width modulation (PWM) constant-current controller is designed. After establishing the power circuit model of the transmitting system and the PWM constant-current controller model, analyzing the influence of ripple current, and designing an open-loop transfer function according to the amplitude-frequency characteristic curves, the parameters of the PWM constant-current controller are determined. The open-loop transfer function indicates that the loop gain is no less than 28 dB below 160 Hz, which assures the responsive speed of the transmitting system; the phase margin is 45°, which assures the stabilization of the transmitting system. Experimental results verify that the proposed constant-current control method can keep the control error below 4% and can effectively suppress load change caused by the capacitance of earth load.
NASA Astrophysics Data System (ADS)
Powell, Keith B.; Vaitheeswaran, Vidhya
2010-07-01
The MMT observatory has recently implemented and tested an optimal wavefront controller for the NGS adaptive optics system. Open loop atmospheric data collected at the telescope is used as the input to a MATLAB based analytical model. The model uses nonlinear constrained minimization to determine controller gains and optimize the system performance. The real-time controller performing the adaptive optics close loop operation is implemented on a dedicated high performance PC based quad core server. The controller algorithm is written in C and uses the GNU scientific library for linear algebra. Tests at the MMT confirmed the optimal controller significantly reduced the residual RMS wavefront compared with the previous controller. Significant reductions in image FWHM and increased peak intensities were obtained in J, H and K-bands. The optimal PID controller is now operating as the baseline wavefront controller for the MMT NGS-AO system.
The dynamics and control of large flexible space structures - 12, supplement 11
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Reddy, A. S. S. R.; Li, Feiyue; Xu, Jianke
1989-01-01
The rapid 2-D slewing and vibrational control of the unsymmetrical flexible SCOLE (Spacecraft Control Laboratory Experiment) with multi-bounded controls is considered. Pontryagin's Maximum Principle is applied to the nonlinear equations of the system to derive the necessary conditions for the optimal control. The resulting two point boundary value problem is then solved by using the quasilinearization technique, and the near minimum time is obtained by sequentially shortening the slewing time until the controls are near the bang-bang type. The tradeoff between the minimum time and the minimum flexible amplitude requirements is discussed. The numerical results show that the responses of the nonlinear system are significantly different from those of the linearized system for rapid slewing. The SCOLE station-keeping closed loop dynamics are re-examined by employing a slightly different method for developing the equations of motion in which higher order terms in the expressions for the mast modal shape functions are now included. A preliminary study on the effect of actuator mass on the closed loop dynamics of large space systems is conducted. A numerical example based on a coupled two-mass two-spring system illustrates the effect of changes caused in the mass and stiffness matrices on the closed loop system eigenvalues. In certain cases the need for redesigning control laws previously synthesized, but not accounting for actuator masses, is indicated.
Eschbach, E.A.; LeBlanc, E.J.; Griffin, J.W.
1992-03-17
The present invention relates to a security device having a control box containing an electronic system and a communications loop over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system and a detection module capable of registering changes in the voltage and phase of the signal transmitted over the loop. 11 figs.
Eschbach, Eugene A.; LeBlanc, Edward J.; Griffin, Jeffrey W.
1992-01-01
The present invention relates to a security device having a control box (12) containing an electronic system (50) and a communications loop (14) over which the system transmits a signal. The device is constructed so that the communications loop can extend from the control box across the boundary of a portal such as a door into a sealed enclosure into which access is restricted whereby the loop must be damaged or moved in order for an entry to be made into the enclosure. The device is adapted for detecting unauthorized entries into such enclosures such as rooms or containers and for recording the time at which such entries occur for later reference. Additionally, the device detects attempts to tamper or interfere with the operation of the device itself and records the time at which such events take place. In the preferred embodiment, the security device includes a microprocessor-based electronic system (50) and a detection module (72) capable of registering changes in the voltage and phase of the signal transmitted over the loop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.
2016-09-01
Embedded instrumentation and control systems that can operate in extreme environments are challenging to design and operate. Extreme environments limit the options for sensors and actuators and degrade their performance. Because sensors and actuators are necessary for feedback control, these limitations mean that designing embedded instrumentation and control systems for the challenging environments of nuclear reactors requires advanced technical solutions that are not available commercially. This report details the development of testbed that will be used for cross-cutting embedded instrumentation and control research for nuclear power applications. This research is funded by the Department of Energy's Nuclear Energy Enabling Technologymore » program's Advanced Sensors and Instrumentation topic. The design goal of the loop-scale testbed is to build a low temperature pump that utilizes magnetic bearing that will be incorporated into a water loop to test control system performance and self-sensing techniques. Specifically, this testbed will be used to analyze control system performance in response to nonlinear and cross-coupling fluid effects between the shaft axes of motion, rotordynamics and gyroscopic effects, and impeller disturbances. This testbed will also be used to characterize the performance losses when using self-sensing position measurement techniques. Active magnetic bearings are a technology that can reduce failures and maintenance costs in nuclear power plants. They are particularly relevant to liquid salt reactors that operate at high temperatures (700 C). Pumps used in the extreme environment of liquid salt reactors provide many engineering challenges that can be overcome with magnetic bearings and their associated embedded instrumentation and control. This report will give details of the mechanical design and electromagnetic design of the loop-scale embedded instrumentation and control testbed.« less
Hybrid suboptimal control of multi-rate multi-loop sampled-data systems
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Chen, Gwangchywan; Tsai, Jason S. H.
1992-01-01
A hybrid state-space controller is developed for suboptimal digital control of multirate multiloop multivariable continuous-time systems. First, an LQR is designed for a continuous-time subsystem which has a large bandwidth and is connnected in the inner loop of the overall system. The designed LQR would optimally place the eigenvalues of a closed-loop subsystem in the common region of an open sector bounded by sector angles + or - pi/2k for k = 2 or 3 from the negative real axis and the left-hand side of a vertical line on the negative real axis in the s-plane. Then, the developed continuous-time state-feedback gain is converted into an equivalent fast-rate discrete-time state-feedback gain via a digital redesign technique (Tsai et al. 1989, Shieh et al. 1990) reviewed here. A real state reconstructor is redeveloped utilizing the fast-rate input-output data of the system of interest. The design procedure of multiloop multivariable systems using multirate samplers is shown, and a terminal homing missile system example is used to demonstrate the effectiveness of the proposed method.
Practical Loop-Shaping Design of Feedback Control Systems
NASA Technical Reports Server (NTRS)
Kopasakis, George
2010-01-01
An improved methodology for designing feedback control systems has been developed based on systematically shaping the loop gain of the system to meet performance requirements such as stability margins, disturbance attenuation, and transient response, while taking into account the actuation system limitations such as actuation rates and range. Loop-shaping for controls design is not new, but past techniques do not directly address how to systematically design the controller to maximize its performance. As a result, classical feedback control systems are designed predominantly using ad hoc control design approaches such as proportional integral derivative (PID), normally satisfied when a workable solution is achieved, without a good understanding of how to maximize the effectiveness of the control design in terms of competing performance requirements, in relation to the limitations of the plant design. The conception of this improved methodology was motivated by challenges in designing control systems of the types needed for supersonic propulsion. But the methodology is generally applicable to any classical control-system design where the transfer function of the plant is known or can be evaluated. In the case of a supersonic aerospace vehicle, a major challenge is to design the system to attenuate anticipated external and internal disturbances, using such actuators as fuel injectors and valves, bypass doors, and ramps, all of which are subject to limitations in actuator response, rates, and ranges. Also, for supersonic vehicles, with long slim type of structures, coupling between the engine and the structural dynamics can produce undesirable effects that could adversely affect vehicle stability and ride quality. In order to design distributed controls that can suppress these potential adverse effects, within the full capabilities of the actuation system, it is important to employ a systematic control design methodology such as this that can maximize the effectiveness of the control design in a methodical and quantifiable way. The emphasis is in generating simple but rather powerful design techniques that will allow even designers with a layman s knowledge in controls to develop effective feedback control designs. Unlike conventional ad hoc methodologies of feedback control design, in this approach actuator rates are incorporated into the design right from the start: The relation between actuator speeds and the desired control bandwidth of the system is established explicitly. The technique developed is demonstrated via design examples in a step-by-step tutorial way. Given the actuation system rates and range limits together with design specifications in terms of stability margins, disturbance rejection, and transient response, the procedure involves designing the feedback loop gain to meet the requirements and maximizing the control system effectiveness, without exceeding the actuation system limits and saturating the controller. Then knowing the plant transfer function, the procedure involves designing the controller so that the controller transfer function together with the plant transfer function equate to the designed loop gain. The technique also shows what the limitations of the controller design are and how to trade competing design requirements such as stability margins and disturbance rejection. Finally, the technique is contrasted against other more familiar control design techniques, like PID control, to show its advantages.
Spacecraft momentum management procedures. [large space telescope
NASA Technical Reports Server (NTRS)
Chen, L. C.; Davenport, P. B.; Sturch, C. R.
1980-01-01
Techniques appropriate for implementation onboard the space telescope and other spacecraft to manage the accumulation of momentum in reaction wheel control systems using magnetic torquing coils are described. Generalized analytical equations are derived for momentum control laws that command the magnetic torquers. These control laws naturally fall into two main categories according to the methods used for updating the magnetic dipole command: closed loop, in which the update is based on current measurements to achieve a desired torque instantaneously, and open-loop, in which the update is based on predicted information to achieve a desired momentum at the end of a period of time. Physical interpretations of control laws in general and of the Space Telescope cross product and minimum energy control laws in particular are presented, and their merits and drawbacks are discussed. A technique for retaining the advantages of both the open-loop and the closed-loop control laws is introduced. Simulation results are presented to compare the performance of these control laws in the Space Telescope environment.
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara M.; Steele, John W.; Makinen, Janice; Bue, Grant C.; Campbell, Colin
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
NASA Technical Reports Server (NTRS)
Rector, Tony; Peyton, Barbara; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2014-01-01
Water loop maintenance components to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop have undergone a comparative performance evaluation with a second SWME water recirculation loop with no water quality maintenance. Results show the benefits of periodic water maintenance. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the evaluation of water recirculation maintenance components was to further enhance this advantage through the leveraging of fluid loop management lessonslearned from the International Space Station (ISS). A bed design that was developed for a UTAS military application, and considered for a potential ISS application with the Urine Processor Assembly, provided a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance cycle included the use of a biocide delivery component developed for ISS to introduce a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
Model-Driven Safety Analysis of Closed-Loop Medical Systems
Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup
2013-01-01
In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure. PMID:24177176
Model-Driven Safety Analysis of Closed-Loop Medical Systems.
Pajic, Miroslav; Mangharam, Rahul; Sokolsky, Oleg; Arney, David; Goldman, Julian; Lee, Insup
2012-10-26
In modern hospitals, patients are treated using a wide array of medical devices that are increasingly interacting with each other over the network, thus offering a perfect example of a cyber-physical system. We study the safety of a medical device system for the physiologic closed-loop control of drug infusion. The main contribution of the paper is the verification approach for the safety properties of closed-loop medical device systems. We demonstrate, using a case study, that the approach can be applied to a system of clinical importance. Our method combines simulation-based analysis of a detailed model of the system that contains continuous patient dynamics with model checking of a more abstract timed automata model. We show that the relationship between the two models preserves the crucial aspect of the timing behavior that ensures the conservativeness of the safety analysis. We also describe system design that can provide open-loop safety under network failure.
Nakajima, Masashi
2011-03-01
Quiet standing and walking are generally considered to be an automatic process regulated by sensory feedback. In our report "Astasia without abasia due to peripheral neuropathy," which was published in 1994, we proposed that forced stepping in patients lacking the ankle torque is a compensatory motor control in order to maintain an upright posture. A statistical-biomechanics approach to the human postural control system has revealed open-loop (descending) control as well as closed-loop (feedback) control in quiet standing, and fractal dynamics in stride-to-stride fluctuations of walking. The descending control system of bipedal upright posture and gait may have a functional link to cognitive domains. Increasing dependence on the descending control system with aging may play a role in falls in elderly people.
Fault Accommodation in Control of Flexible Systems
NASA Technical Reports Server (NTRS)
Maghami, Peiman G.; Sparks, Dean W., Jr.; Lim, Kyong B.
1998-01-01
New synthesis techniques for the design of fault accommodating controllers for flexible systems are developed. Three robust control design strategies, static dissipative, dynamic dissipative and mu-synthesis, are used in the approach. The approach provides techniques for designing controllers that maximize, in some sense, the tolerance of the closed-loop system against faults in actuators and sensors, while guaranteeing performance robustness at a specified performance level, measured in terms of the proximity of the closed-loop poles to the imaginary axis (the degree of stability). For dissipative control designs, nonlinear programming is employed to synthesize the controllers, whereas in mu-synthesis, the traditional D-K iteration is used. To demonstrate the feasibility of the proposed techniques, they are applied to the control design of a structural model of a flexible laboratory test structure.
Design and test hardware for a solar array switching unit
NASA Technical Reports Server (NTRS)
Patil, A. R.; Cho, B. H.; Sable, D.; Lee, F. C.
1992-01-01
This paper describes the control of a pulse width modulated (PWM) type sequential shunt switching unit (SSU) for spacecraft applications. It is found that the solar cell output capacitance has a significant impact on SSU design. Shorting of this cell capacitance by the PWM switch causes input current surges. These surges are minimized by the use of a series filter inductor. The system with a filter is analyzed for ripple and the control to output-voltage transfer function. Stable closed loop design considerations are discussed. The results are supported by modeling and measurements of loop gain and of closed-loop bus impedance on test hardware for NASA's 120 V Earth Observation System (EOS). The analysis and modeling are also applicable to NASA's 160 V Space Station power system.
Method for determining how to operate and control wind turbine arrays in utility systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javid, S.H.; Hauth, R.L.; Younkins, T.D.
1984-01-01
A method for determining how utility wind turbine arrays should be controlled and operated on the load frequency control time-scale is presented. Initial considerations for setting wind turbine control requirements are followed by a description of open loop operation and of closed loop and feed forward wind turbine array control concepts. The impact of variations in array output on meeting minimum criteria are developed. The method for determining the required control functions is then presented and results are tabulated. (LEW)
Closed-Loop Aeromaneuvering for a Mars Precision Landing
NASA Technical Reports Server (NTRS)
Smith, Roy; Boussalis, Dhemetrios; Hadaegh, Fred Y.
1997-01-01
Controlled aeromaneuvering is considered as a means of achieving a precisely targeted landing on Mars. This paper presents a preliminary study of the control issues. The candidate vehicle is the existing Mars Pathfinder augmented with roll thrusters and a center of mass offset actuator. These allow control of both bank angle and lift force, giving the ability to control the range and cross-track during the aeromaneuvering entry. A preliminary control system structure is proposed and a design simulation illustrates significant targeting improvement under closed-loop control.
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1989-01-01
Digital control systems for applications such as aircraft avionics and multibody systems must maintain adequate control integrity in adverse as well as nominal operating conditions. For example, control systems for advanced aircraft, and especially those with relaxed static stability, will be critical to flight and will, therefore, have very high reliability specifications which must be met regardless of operating conditions. In addition, multibody systems such as robotic manipulators performing critical functions must have control systems capable of robust performance in any operating environment in order to complete the assigned task reliably. Severe operating conditions for electronic control systems can result from electromagnetic disturbances caused by lightning, high energy radio frequency (HERF) transmitters, and nuclear electromagnetic pulses (NEMP). For this reason, techniques must be developed to evaluate the integrity of the control system in adverse operating environments. The most difficult and illusive perturbations to computer-based control systems that can be caused by an electromagnetic environment (EME) are functional error modes that involve no component damage. These error modes are collectively known as upset, can occur simultaneously in all of the channels of a redundant control system, and are software dependent. Upset studies performed to date have not addressed the assessment of fault tolerant systems and do not involve the evaluation of a control system operating in a closed-loop with the plant. A methodology for performing a real-time simulation of the closed-loop dynamics of a fault tolerant control system with a simulated plant operating in an electromagnetically harsh environment is presented. In particular, considerations for performing upset tests on the controller are discussed. Some of these considerations are the generation and coupling of analog signals representative of electromagnetic disturbances to a control system under test, analog data acquisition, and digital data acquisition from fault tolerant systems. In addition, a case study of an upset test methodology for a fault tolerant electromagnetic aircraft engine control system is presented.
Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance.
Zhang, Zhizhou; Li, Xiaolong
2018-05-11
In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement.
Real-Time Adaptive Control of a Magnetic Levitation System with a Large Range of Load Disturbance
Zhang, Zhizhou; Li, Xiaolong
2018-01-01
In an idle light-load or a full-load condition, the change of the load mass of a suspension system is very significant. If the control parameters of conventional control methods remain unchanged, the suspension performance of the control system deteriorates rapidly or even loses stability when the load mass changes in a large range. In this paper, a real-time adaptive control method for a magnetic levitation system with large range of mass changes is proposed. First, the suspension control system model of the maglev train is built up, and the stability of the closed-loop system is analyzed. Then, a fast inner current-loop is used to simplify the design of the suspension control system, and an adaptive control method is put forward to ensure that the system is still in a stable state when the load mass varies in a wide range. Simulations and experiments show that when the load mass of the maglev system varies greatly, the adaptive control method is effective to suspend the system stably with a given displacement. PMID:29751610
NASA Technical Reports Server (NTRS)
Chin, Jeffrey C.; Csank, Jeffrey T.
2016-01-01
The Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA ver2) is a control design tool thatenables preliminary estimation of transient performance for models without requiring a full nonlinear controller to bedesigned. The program is compatible with subsonic engine models implemented in the MATLAB/Simulink (TheMathworks, Inc.) environment and Numerical Propulsion System Simulation (NPSS) framework. At a specified flightcondition, TTECTrA will design a closed-loop controller meeting user-defined requirements in a semi or fully automatedfashion. Multiple specifications may be provided, in which case TTECTrA will design one controller for each, producing acollection of controllers in a single run. Each resulting controller contains a setpoint map, a schedule of setpointcontroller gains, and limiters; all contributing to transient characteristics. The goal of the program is to providesteady-state engine designers with more immediate feedback on the transient engine performance earlier in the design cycle.
Bidirectional control system for energy flow in solar powered flywheel
NASA Technical Reports Server (NTRS)
Nola, Frank J. (Inventor)
1987-01-01
An energy storage system for a spacecraft is provided which employs a solar powered flywheel arrangement including a motor/generator which, in different operating modes, drives the flywheel and is driven thereby. A control circuit, including a threshold comparator, senses the output of a solar energy converter, and when a threshold voltage is exceeded thereby indicating the availability of solar power for the spacecraft loads, activates a speed control loop including the motor/generator so as to accelerate the flywheel to a constant speed and thereby store mechanical energy, while also supplying energy from the solar converter to the loads. Under circumstances where solar energy is not available and thus the threshold voltage is not exceeded, the control circuit deactivates the speed control loop and activates a voltage control loop that provides for operation of the motor as a generator so that mechanical energy from the flywheel is converted into electrical energy for supply to the spacecraft loads.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael
2006-01-01
This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Norcross, Jason; Jeng, Frank; Swickrath, Mike
2014-01-01
NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a Portable Life Support System (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the spacesuit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a spacesuit. A Suited Manikin Test Apparatus (SMTA) is being developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.
Li, Hui; Liu, Liying; Lin, Zhili; Wang, Qiwei; Wang, Xiao; Feng, Lishuang
2018-01-22
A new double closed-loop control system with mean-square exponential stability is firstly proposed to optimize the detection accuracy and dynamic response characteristic of the integrated optical resonance gyroscope (IORG). The influence mechanism of optical nonlinear effects on system detection sensitivity is investigated to optimize the demodulation gain, the maximum sensitivity and the linear work region of a gyro system. Especially, we analyze the effect of optical parameter fluctuation on the parameter uncertainty of system, and investigate the influence principle of laser locking-frequency noise on the closed-loop detection accuracy of angular velocity. The stochastic disturbance model of double closed-loop IORG is established that takes the unfavorable factors such as optical effect nonlinearity, disturbed disturbance, optical parameter fluctuation and unavoidable system noise into consideration. A robust control algorithm is also designed to guarantee the mean-square exponential stability of system with a prescribed H ∞ performance in order to improve the detection accuracy and dynamic performance of IORG. The conducted experiment results demonstrate that the IORG has a dynamic response time less than 76us, a long-term bias stability 7.04°/h with an integration time of 10s over one-hour test, and the corresponding bias stability 1.841°/h based on Allan deviation, which validate the effectiveness and usefulness of the proposed detection scheme.
Improvements To Progressive Wave Tube Performance Through Closed-Loop Control
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.
2000-01-01
This report documents recent improvements to the acoustic and thermal control systems of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, Virginia. A brief summary of past acoustic performance is given first to serve as a basis for comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented in three of six facility configurations for a variety of input spectra. Tested spectra include uniform, two cases of pink noise, three cases of narrow-band random, a simulated launch payload bay environment for an expendable launch vehicle, and a simulated external acoustic load for the aft section of a reusable launch vehicle. In addition, a new closed-loop temperature controller and thermocouple data acquisition system are described.
Instrument control software development process for the multi-star AO system ARGOS
NASA Astrophysics Data System (ADS)
Kulas, M.; Barl, L.; Borelli, J. L.; Gässler, W.; Rabien, S.
2012-09-01
The ARGOS project (Advanced Rayleigh guided Ground layer adaptive Optics System) will upgrade the Large Binocular Telescope (LBT) with an AO System consisting of six Rayleigh laser guide stars. This adaptive optics system integrates several control loops and many different components like lasers, calibration swing arms and slope computers that are dispersed throughout the telescope. The purpose of the instrument control software (ICS) is running this AO system and providing convenient client interfaces to the instruments and the control loops. The challenges for the ARGOS ICS are the development of a distributed and safety-critical software system with no defects in a short time, the creation of huge and complex software programs with a maintainable code base, the delivery of software components with the desired functionality and the support of geographically distributed project partners. To tackle these difficult tasks, the ARGOS software engineers reuse existing software like the novel middleware from LINC-NIRVANA, an instrument for the LBT, provide many tests at different functional levels like unit tests and regression tests, agree about code and architecture style and deliver software incrementally while closely collaborating with the project partners. Many ARGOS ICS components are already successfully in use in the laboratories for testing ARGOS control loops.
1981-05-01
made to provide mounting bosses for the closed loop conveyor chute . Ten small round bosses were welded onto the housing to provide this support...became necessary to depart from previous closed loop feeder designs . The original feed system consisted of a series of conveyor elements in a flexible...The flexible chuting has been replaced with rigid chuting forming a loop around the gun housing. This design affords the maximum stiffness and hence
NASA Astrophysics Data System (ADS)
Peterson, Zachary W.
Hybrid motors that employ non-toxic, non-explosive components with a liquid oxidizer and a solid hydrocarbon fuel grain have inherently safe operating characteristics. The inherent safety of hybrid rocket motors offers the potential to greatly reduce overall operating costs. Another key advantage of hybrid rocket motors is the potential for in-flight shutdown, restart, and throttle by controlling the pressure drop between the oxidizer tank and the injector. This research designed, developed, and ground tested a closed-loop throttle controller for a hybrid rocket motor using nitrous oxide and hydroxyl-terminated polybutadiene as propellants. The research simultaneously developed closed-loop throttle algorithms and lab scale motor hardware to evaluate the fidelity of the throttle simulations and algorithms. Initial open-loop motor tests were performed to better classify system parameters and to validate motor performance values. Deep-throttle open-loop tests evaluated limits of stable thrust that can be achieved on the test hardware. Open-loop tests demonstrated the ability to throttle the motor to less than 10% of maximum thrust with little reduction in effective specific impulse and acoustical stability. Following the open-loop development, closed-loop, hardware-in-the-loop tests were performed. The closed-loop controller successfully tracked prescribed step and ramp command profiles with a high degree of fidelity. Steady-state accuracy was greatly improved over uncontrolled thrust.
NASA Technical Reports Server (NTRS)
Rector, Tony; Steele, John W.; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A water loop maintenance device and process to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been undergoing a performance evaluation. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the water recirculation maintenance device and process is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The maintenance process further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware. This
NASA Astrophysics Data System (ADS)
Léchappé, V.; Moulay, E.; Plestan, F.
2018-06-01
The stability of a prediction-based controller for linear time-invariant (LTI) systems is studied in the presence of time-varying input and output delays. The uncertain delay case is treated as well as the partial state knowledge case. The reduction method is used in order to prove the convergence of the closed-loop system including the state observer, the predictor and the plant. Explicit conditions that guarantee the closed-loop stability are given, thanks to a Lyapunov-Razumikhin analysis. Simulations illustrate the theoretical results.
Comparison of control structures for a bidirectional high-frequency dc-dc converter
NASA Astrophysics Data System (ADS)
Himmelstoss, Felix A.; Kolar, Johann W.; Zach, Franz C.
1989-08-01
A system for dc-dc power conversion based on a buck-boost converter topology is presented. It makes power flow in both directions possible. The possibility of bidirectional power flow is useful for certain applications, such as uninterruptable power supplies. Starting from a structural diagram the transfer function of the system is derived. The controller for the converter is then designed. It is made up of a simple voltage controller, a voltage controller with an inner loop current controller (cascade control) and with two kinds of state space control. The transfer functions of the different system parts are derived and dimensioning guidelines for the controller sections are presented. The closed loop behavior of the bidirectional converter for the different control structures is analyzed based on simulation using duty cycle averaging. Bodediagrams and step responses are shown.
NASA Astrophysics Data System (ADS)
Mao, Yao; Deng, Chao; Liu, Qiong; Cao, Zheng
2016-10-01
As laser has narrow transmitting beam and small divergence angle, the LOS (Line of Sight) stabilization of optical communication system is a primary precondition of laser communication links. Compound axis control is usually adopted in LOS stabilization of optical communication system, in which coarse tracking and fine tracking are included. Rejection against high frequency disturbance mainly depends on fine tracking LOS stabilization platform. Limited by different factors such as mechanical characteristic of the stabilization platform and bandwidth/noise of the sensor, the control bandwidth of LOS stabilization platform is restricted so that effective rejection of high frequency disturbance cannot be achieved as it mainly depends on the isolation characteristic of the platform itself. It is proposed by this paper that current loop may reject the effect of back-EMF. By adopting the method of electric control, high frequency isolation characteristic of the platform can be improved. The improvement effect is similar to increasing passive vibration reduction devices. Adopting the double closed loop control structure of velocity and current with the combining of the rejection effect of back-EMF caused by current loop is equivalent to reducing back-EMF coefficient, which can enhance the isolation ability of the LOS stabilization platform to high frequency disturbance.
Adaptive Neural Control of Uncertain MIMO Nonlinear Systems With State and Input Constraints.
Chen, Ziting; Li, Zhijun; Chen, C L Philip
2017-06-01
An adaptive neural control strategy for multiple input multiple output nonlinear systems with various constraints is presented in this paper. To deal with the nonsymmetric input nonlinearity and the constrained states, the proposed adaptive neural control is combined with the backstepping method, radial basis function neural network, barrier Lyapunov function (BLF), and disturbance observer. By ensuring the boundedness of the BLF of the closed-loop system, it is demonstrated that the output tracking is achieved with all states remaining in the constraint sets and the general assumption on nonsingularity of unknown control coefficient matrices has been eliminated. The constructed adaptive neural control has been rigorously proved that it can guarantee the semiglobally uniformly ultimate boundedness of all signals in the closed-loop system. Finally, the simulation studies on a 2-DOF robotic manipulator system indicate that the designed adaptive control is effective.
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System
Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés
2016-01-01
This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks. PMID:27472338
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System.
Belmonte, Lidia María; Morales, Rafael; Fernández-Caballero, Antonio; Somolinos, José Andrés
2016-07-27
This article presents the design of a novel decentralized nonlinear multivariate control scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor dynamics and the body of the model, which is due to the action-reaction principle originated in the acceleration and deceleration of the motor-propeller groups. The proposed controller is composed of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop is used to control the electrical dynamics of the platform, and the nonlinear external loop allows the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical control developments with a set of experiments in order to verify the effectiveness of the proposed nonlinear decentralized feedback controller, in which a comparative study with other controllers is performed, illustrating the excellent performance of the proposed robust decentralized control scheme in both stabilization and trajectory tracking tasks.
Application of higher harmonic blade feathering on the OH-6A helicopter for vibration reduction
NASA Technical Reports Server (NTRS)
Straub, F. K.; Byrns, E. V., Jr.
1986-01-01
The design, implementation, and flight test results of higher harmonic blade feathering for vibration reduction on the OH-6A helicopter are described. The higher harmonic control (HHC) system superimposes fourth harmonic inputs upon the stationary swashplate. These inputs are transformed into 3P, 4P and 5P blade feathering angles. This results in modified blade loads and reduced fuselage vibrations. The primary elements of this adaptive vibration suppression system are: (1) acceleration transducers sensing the vibratory response of the fuselage; (2) a higher harmonic blade pitch actuator system; (3) a flightworthy microcomputer, incorporating the algorithm for reducing vibrations, and (4) a signal conditioning system, interfacing between the sensors, the microcomputer and the HHC actuators. The program consisted of three distinct phases. First, the HHC system was designed and implemented on the MDHC OH-6A helicopter. Then, the open loop, or manual controlled, flight tests were performed, and finally, the closed loop adaptive control system was tested. In 1983, one portion of the closed loop testing was performed, and in 1984, additional closed loop tests were conducted with improved software. With the HHC system engaged, the 4P pilot seat vibration levels were significantly lower than the baseline ON-6A levels. Moreover, the system did not adversely affect blade loads or helicopter performance. In conclusion, this successful proof of concept project demonstrated HHC to be a viable vibration suppression mechanism.
Ewing, Kate C; Fairclough, Stephen H; Gilleade, Kiel
2016-01-01
Biocybernetic adaptation is a form of physiological computing whereby real-time data streaming from the brain and body is used by a negative control loop to adapt the user interface. This article describes the development of an adaptive game system that is designed to maximize player engagement by utilizing changes in real-time electroencephalography (EEG) to adjust the level of game demand. The research consists of four main stages: (1) the development of a conceptual framework upon which to model the interaction between person and system; (2) the validation of the psychophysiological inference underpinning the loop; (3) the construction of a working prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha bands to changing levels of game demand. These variables were then reformulated within the working biocybernetic control loop designed to maximize player engagement. The second study evaluated the performance of an adaptive game of Tetris with respect to system behavior and user experience. Important issues for the design and evaluation of closed-loop interfaces are discussed.
The January 2015 Repressurization of ISS ATCS Loop B - Analysis Limitations and Concerns
NASA Technical Reports Server (NTRS)
Ungar, Eugene; Rankin, J. Gary; Schaff, Mary; Figueroa, Marcelino
2015-01-01
In January 2013 a false ammonia leak alarm resulted in the shutdown and partial depressurization of one of the two International Space Station (ISS) External Active Thermal Control System (EATCS) loops. The depressurization resulted in a vapor bubble of 18 liters in warm parts of the stagnant loop. To repressurize the loop and regain system operation, liquid would have to be moved from the Ammonia Tank Assembly (ATA) into the loop. This resulted in the possibility of moving cold (as low as -30 C) ammonia into the water-filled Internal Active Thermal Control System (IATCS) interface heat exchangers. Before moving forward, the freezing potential of the repressurization was evaluated through analysis - using both a Thermal Desktop SINDA/FLUINT model and hand calculations. The models yielded very different results, but both models indicated that heat exchanger freezing was not an issue. Therefore, the repressurization proceeded. The presentation describes the physical situation of the EATCS prior to repressurization and discusses the potential limits and pitfalls of the repressurization. The pre-repressurization analytical models and their results are discussed. The successful repressurization is describled and the results of a post-event model assessment is detailed.
Ewing, Kate C.; Fairclough, Stephen H.; Gilleade, Kiel
2016-01-01
Biocybernetic adaptation is a form of physiological computing whereby real-time data streaming from the brain and body is used by a negative control loop to adapt the user interface. This article describes the development of an adaptive game system that is designed to maximize player engagement by utilizing changes in real-time electroencephalography (EEG) to adjust the level of game demand. The research consists of four main stages: (1) the development of a conceptual framework upon which to model the interaction between person and system; (2) the validation of the psychophysiological inference underpinning the loop; (3) the construction of a working prototype; and (4) an evaluation of the adaptive game. Two studies are reported. The first demonstrates the sensitivity of EEG power in the (frontal) theta and (parietal) alpha bands to changing levels of game demand. These variables were then reformulated within the working biocybernetic control loop designed to maximize player engagement. The second study evaluated the performance of an adaptive game of Tetris with respect to system behavior and user experience. Important issues for the design and evaluation of closed-loop interfaces are discussed. PMID:27242486
Testing of the Geoscience Laser Altimeter System (GLAS) Prototype Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Douglas, Donya; Ku, Jentung; Kaya, Tarik
1998-01-01
This paper describes the testing of the prototype loop heat pipe (LHP) for the Geoscience Laser Altimeter System (GLAS). The primary objective of the test program was to verify the loop's heat transport and temperature control capabilities under conditions pertinent to GLAS applications. Specifically, the LHP had to demonstrate a heat transport capability of 100 W, with the operating temperature maintained within +/-2K while the condenser sink was subjected to a temperature change between 273K and 283K. Test results showed that this loop heat pipe was more than capable of transporting the required heat load and that the operating temperature could be maintained within +/-2K. However, this particular integrated evaporator-compensation chamber design resulted in an exchange of energy between the two that affected the overall operation of the system. One effect was the high temperature the LHP was required to reach before nucleation would begin due to inability to control liquid distribution during ground testing. Another effect was that the loop had a low power start-up limitation of approximately 25 W. These Issues may be a concern for other applications, although it is not expected that they will cause problems for GLAS under micro-gravity conditions.
Magnetic suspension system for an Annular Momentum Control Device (AMCD)
NASA Technical Reports Server (NTRS)
1979-01-01
A technique to control a rim suspended in a magnetic field was developed. A complete system was developed, incorporating a support structure, magnetic actuators, a rim drive mechanism, an emergency fail-safe system, servo control system, and control electronics. Open loop and closed loop response of the system at zero speed and at 500 revolutions per minute (r/min) of the rim was obtained and analyzed. The rim was then dynamically balanced and a rim speed of 725 r/min was achieved. An analog simulation of the hardware was developed and tested with the actual control electronics connected to the analog computer. The system under development is stable at rim speeds below 700 r/min. Test results indicate that the rim under test is not rigid. The rim has a warp and a number of binding modes which prevented achievement of higher speeds. Further development efforts are required to achieve higher rim speeds.
NASA Technical Reports Server (NTRS)
Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline
2012-01-01
The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.
Wavefront tilt feedforward for the formation interferometer testbad (FIT)
NASA Technical Reports Server (NTRS)
Shields, J. F.; Liewer, K.; Wehmeier, U.
2002-01-01
Separated spacecraft interferometry is a candidate architecture for several future NASA missions. The Formation Interferometer Testbed (FIT) is a ground based testbed dedicated to the validation of this key technology for a formation of two spacecraft. In separated spacecraft interferometry, the residual relative motion of the component spacecraft must be compensated for by articulation of the optical components. In this paper, the design of the FIT interferometer pointing control system is described. This control system is composed of a metrology pointing loop that maintains an optical link between the two spacecraft and two stellar pointing loops for stabilizing the stellar wavefront at both the right and left apertures of the instrument. A novel feedforward algorithm is used to decouple the metrology loop from the left side stellar loop. Experimental results from the testbed are presented that verify this approach and that fully demonstrate the performance of the algorithm.
NASA Astrophysics Data System (ADS)
Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.
2012-04-01
This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.
Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander
NASA Astrophysics Data System (ADS)
Joshi, D. M.; Patel, H. K.; Shah, D. K.
2015-04-01
Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the efficient performance of cryogenic turboexpander (Radial Inflow type) to ensure that the control systems meet the technical conditions and constraints more accurately and ensure the equipment safety.
A laboratory breadboard system for dual-arm teleoperation
NASA Technical Reports Server (NTRS)
Bejczy, A. K.; Szakaly, Z.; Kim, W. S.
1990-01-01
The computing architecture of a novel dual-arm teleoperation system is described. The novelty of this system is that: (1) the master arm is not a replica of the slave arm; it is unspecific to any manipulator and can be used for the control of various robot arms with software modifications; and (2) the force feedback to the general purpose master arm is derived from force-torque sensor data originating from the slave hand. The computing architecture of this breadboard system is a fully synchronized pipeline with unique methods for data handling, communication and mathematical transformations. The computing system is modular, thus inherently extendable. The local control loops at both sites operate at 100 Hz rate, and the end-to-end bilateral (force-reflecting) control loop operates at 200 Hz rate, each loop without interpolation. This provides high-fidelity control. This end-to-end system elevates teleoperation to a new level of capabilities via the use of sensors, microprocessors, novel electronics, and real-time graphics displays. A description is given of a graphic simulation system connected to the dual-arm teleoperation breadboard system. High-fidelity graphic simulation of a telerobot (called Phantom Robot) is used for preview and predictive displays for planning and for real-time control under several seconds communication time delay conditions. High fidelity graphic simulation is obtained by using appropriate calibration techniques.
Optimization of the structural and control system for LSS with reduced-order model
NASA Technical Reports Server (NTRS)
Khot, N. S.
1989-01-01
The objective is the simultaneous design of the structural and control system for space structures. The minimum weight of the structure is the objective function, and the constraints are placed on the closed loop distribution of the frequencies and the damping parameters. The controls approach used is linear quadratic regulator with constant feedback. A reduced-order control system is used. The effect of uncontrolled modes is taken into consideration by the model error sensitivity suppression (MESS) technique which modified the weighting parameters for the control forces. For illustration, an ACOSS-FOUR structure is designed for a different number of controlled modes with specified values for the closed loop damping parameters and frequencies. The dynamic response of the optimum designs for an initial disturbance is compared.
EKF-Based Enhanced Performance Controller Design for Nonlinear Stochastic Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yuyang; Zhang, Qichun; Wang, Hong
In this paper, a novel control algorithm is presented to enhance the performance of tracking property for a class of non-linear dynamic stochastic systems with unmeasurable variables. To minimize the entropy of tracking errors without changing the existing closed loop with PI controller, the enhanced performance loop is constructed based on the state estimation by extended Kalman Filter and the new controller is designed by full state feedback following this presented control algorithm. Besides, the conditions are obtained for the stability analysis in the mean square sense. In the end, the comparative simulation results are given to illustrate the effectivenessmore » of proposed control algorithm.« less
Decentralized Control of Sound Radiation from an Aircraft-Style Panel Using Iterative Loop Recovery
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Cabell, Randolph H.; Fuller, Chris R.
2008-01-01
A decentralized LQG-based control strategy is designed to reduce low-frequency sound transmission through periodically stiffened panels. While modern control strategies have been used to reduce sound radiation from relatively simple structural acoustic systems, significant implementation issues have to be addressed before these control strategies can be extended to large systems such as the fuselage of an aircraft. For instance, centralized approaches typically require a high level of connectivity and are computationally intensive, while decentralized strategies face stability problems caused by the unmodeled interaction between neighboring control units. Since accurate uncertainty bounds are not known a priori, it is difficult to ensure the decentralized control system will be robust without making the controller overly conservative. Therefore an iterative approach is suggested, which utilizes frequency-shaped loop recovery. The approach accounts for modeling error introduced by neighboring control loops, requires no communication between subsystems, and is relatively simple. The control strategy is validated using real-time control experiments performed on a built-up aluminum test structure representative of the fuselage of an aircraft. Experiments demonstrate that the iterative approach is capable of achieving 12 dB peak reductions and a 3.6 dB integrated reduction in radiated sound power from the stiffened panel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozisik, H.; Keltie, R.F.
The open loop control technique of predicting a conditioned input signal based on a specified output response for a second order system has been analyzed both analytically and numerically to gain a firm understanding of the method. Differences between this method of control and digital closed loop control using pole cancellation were investigated as a follow up to previous experimental work. Application of the technique to diamond turning using a fast tool is also discussed.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem
2010-01-01
Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, Goddard Space Fight Center has conducted a Thermal Loop experiment to advance the maturity of the Thermal Loop technology from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. The thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for the TRL 4 and TRL 5 validations, respectively, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. The MLHP demonstrated excellent performance during experimental tests and the analytical model predictions agreed very well with experimental data. All success criteria at various TRLs were met. Hence, the Thermal Loop technology has reached a TRL of 6. This paper presents the validation results, both experimental and analytical, of such a technology development effort.
NASA Astrophysics Data System (ADS)
Schulz, Ulrich; Sierro, Philippe; Nijman, Jint
2008-07-01
The design and implementation of an angular speed control loop for a universal rheometer is not a trivial task. The combination of a highly dynamic, very low inertia (drag cup) motor (motor inertia is 10-5 kg m2) with samples which can range in viscosity from 10-3 Pas to 108 Pas, which can be between purely viscous and higly viscoelastic, which can exhibit yield-stresses, etc. asks for a highly adaptive digital control loop. For the HAAKE MARS rotational rheometer a new adaptive control loop was developed which allows the control of angular speeds as low 5×10-9 rad/s and response times a short as 10 ms. The adaptation of the control loop to "difficult" samples is performed by analysing the response of the complete system to a short pre-test. In this paper we will show that the (very) short response times at (very) low angular speeds are not only achieved with ideal samples, but due to the adaptable control loop, also with "difficult" samples. We will show measurement results on "difficult" samples like cosmetic creams and emulsions, a laponite gel, etc. to proof that angular speeds down to 10-4 rad/s are reached within 10 ms to 20 ms and angular speeds down to 10-7 rad/s within 1 s to 2 s. The response times for reaching ultra low angular speeds down to 5×10-9 rad/s are in the order of 10 s to 30 s. With this new control loop it is, for the first time, possible to measure yield stresses by applying a very low constant shear-rate to the sample and measuring the torque response as a function of time.
NASA Astrophysics Data System (ADS)
Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris
2017-01-01
The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.
Optimization of the open-loop liquid crystal adaptive optics retinal imaging system
NASA Astrophysics Data System (ADS)
Kong, Ningning; Li, Chao; Xia, Mingliang; Li, Dayu; Qi, Yue; Xuan, Li
2012-02-01
An open-loop adaptive optics (AO) system for retinal imaging was constructed using a liquid crystal spatial light modulator (LC-SLM) as the wavefront compensator. Due to the dispersion of the LC-SLM, there was only one illumination source for both aberration detection and retinal imaging in this system. To increase the field of view (FOV) for retinal imaging, a modified mechanical shutter was integrated into the illumination channel to control the size of the illumination spot on the fundus. The AO loop was operated in a pulsing mode, and the fundus was illuminated twice by two laser impulses in a single AO correction loop. As a result, the FOV for retinal imaging was increased to 1.7-deg without compromising the aberration detection accuracy. The correction precision of the open-loop AO system was evaluated in a closed-loop configuration; the residual error is approximately 0.0909λ (root-mean-square, RMS), and the Strehl ratio ranges to 0.7217. Two subjects with differing rates of myopia (-3D and -5D) were tested. High-resolution images of capillaries and photoreceptors were obtained.
Design and experiment study of a semi-active energy-regenerative suspension system
NASA Astrophysics Data System (ADS)
Shi, Dehua; Chen, Long; Wang, Ruochen; Jiang, Haobin; Shen, Yujie
2015-01-01
A new kind of semi-active energy-regenerative suspension system is proposed to recover suspension vibration energy, as well as to reduce the suspension cost and demands for the motor-rated capacity. The system consists of an energy-regenerative damper and a DC-DC converter-based energy-regenerative circuit. The energy-regenerative damper is composed of an electromagnetic linear motor and an adjustable shock absorber with three regulating levels. The linear motor just works as the generator to harvest the suspension vibration energy. The circuit can be used to improve the system’s energy-regenerative performance and to continuously regulate the motor’s electromagnetic damping force. Therefore, although the motor works as a generator and damps the isolation without an external power source, the motor damping force is controllable. The damping characteristics of the system are studied based on a two degrees of freedom vehicle vibration model. By further analyzing the circuit operation characteristics under different working modes, the double-loop controller is designed to track the desired damping force. The external-loop is a fuzzy controller that offers the desired equivalent damping. The inner-loop controller, on one hand, is used to generate the pulse number and the frequency to control the angle and the rotational speed of the step motor; on the other hand, the inner-loop is used to offer the duty cycle of the energy-regenerative circuit. Simulations and experiments are conducted to validate such a new suspension system. The results show that the semi-active energy-regenerative suspension can improve vehicle ride comfort with the controllable damping characteristics of the linear motor. Meanwhile, it also ensures energy regeneration.
Adaptable Single Active Loop Thermal Control System (TCS) for Future Space Missions
NASA Technical Reports Server (NTRS)
Mudawar, Issam; Lee, Seunghyun; Hasan, Mohammad
2015-01-01
This presentation will examine the development of a thermal control system (TCS) for future space missions utilizing a single active cooling loop. The system architecture enables the TCS to be reconfigured during the various mission phases to respond, not only to varying heat load, but to heat rejection temperature as well. The system will consist of an accumulator, pump, cold plates (evaporators), condenser radiator, and compressor, in addition to control, bypass and throttling valves. For cold environments, the heat will be rejected by radiation, during which the compressor will be bypassed, reducing the system to a simple pumped loop that, depending on heat load, can operate in either a single-phase liquid mode or two-phase mode. For warmer environments, the pump will be bypassed, enabling the TCS to operate as a heat pump. This presentation will focus on recent findings concerning two-phase flow regimes, pressure drop, and heat transfer coefficient trends in the cabin and avionics micro-channel heat exchangers when using the heat pump mode. Also discussed will be practical implications of using micro-channel evaporators for the heat pump.
A robust rotorcraft flight control system design methodology utilizing quantitative feedback theory
NASA Technical Reports Server (NTRS)
Gorder, Peter James
1993-01-01
Rotorcraft flight control systems present design challenges which often exceed those associated with fixed-wing aircraft. First, large variations in the response characteristics of the rotorcraft result from the wide range of airspeeds of typical operation (hover to over 100 kts). Second, the assumption of vehicle rigidity often employed in the design of fixed-wing flight control systems is rarely justified in rotorcraft where rotor degrees of freedom can have a significant impact on the system performance and stability. This research was intended to develop a methodology for the design of robust rotorcraft flight control systems. Quantitative Feedback Theory (QFT) was chosen as the basis for the investigation. Quantitative Feedback Theory is a technique which accounts for variability in the dynamic response of the controlled element in the design robust control systems. It was developed to address a Multiple-Input Single-Output (MISO) design problem, and utilizes two degrees of freedom to satisfy the design criteria. Two techniques were examined for extending the QFT MISO technique to the design of a Multiple-Input-Multiple-Output (MIMO) flight control system (FCS) for a UH-60 Black Hawk Helicopter. In the first, a set of MISO systems, mathematically equivalent to the MIMO system, was determined. QFT was applied to each member of the set simultaneously. In the second, the same set of equivalent MISO systems were analyzed sequentially, with closed loop response information from each loop utilized in subsequent MISO designs. The results of each technique were compared, and the advantages of the second, termed Sequential Loop Closure, were clearly evident.
Design validation and performance of closed loop gas recirculation system
NASA Astrophysics Data System (ADS)
Kalmani, S. D.; Joshi, A. V.; Majumder, G.; Mondal, N. K.; Shinde, R. R.
2016-11-01
A pilot experimental set up of the India Based Neutrino Observatory's ICAL detector has been operational for the last 4 years at TIFR, Mumbai. Twelve glass RPC detectors of size 2 × 2 m2, with a gas gap of 2 mm are under test in a closed loop gas recirculation system. These RPCs are continuously purged individually, with a gas mixture of R134a (C2H2F4), isobutane (iC4H10) and sulphur hexafluoride (SF6) at a steady rate of 360 ml/h to maintain about one volume change a day. To economize gas mixture consumption and to reduce the effluents from being released into the atmosphere, a closed loop system has been designed, fabricated and installed at TIFR. The pressure and flow rate in the loop is controlled by mass flow controllers and pressure transmitters. The performance and integrity of RPCs in the pilot experimental set up is being monitored to assess the effect of periodic fluctuation and transients in atmospheric pressure and temperature, room pressure variation, flow pulsations, uniformity of gas distribution and power failures. The capability of closed loop gas recirculation system to respond to these changes is also studied. The conclusions from the above experiment are presented. The validations of the first design considerations and subsequent modifications have provided improved guidelines for the future design of the engineering module gas system.
Closed-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer
NASA Technical Reports Server (NTRS)
Belcastro, Celeste M.
1997-01-01
ABSTRACT Closed-loop HIRF experiments were performed on a fault tolerant flight control computer (FCC) at the NASA Langley Research Center. The FCC used in the experiments was a quad-redundant flight control computer executing B737 Autoland control laws. The FCC was placed in one of the mode-stirred reverberation chambers in the HIRF Laboratory and interfaced to a computer simulation of the B737 flight dynamics, engines, sensors, actuators, and atmosphere in the Closed-Loop Systems Laboratory. Disturbances to the aircraft associated with wind gusts and turbulence were simulated during tests. Electrical isolation between the FCC under test and the simulation computer was achieved via a fiber optic interface for the analog and discrete signals. Closed-loop operation of the FCC enabled flight dynamics and atmospheric disturbances affecting the aircraft to be represented during tests. Upset was induced in the FCC as a result of exposure to HIRF, and the effect of upset on the simulated flight of the aircraft was observed and recorded. This paper presents a description of these closed- loop HIRF experiments, upset data obtained from the FCC during these experiments, and closed-loop effects on the simulated flight of the aircraft.
NASA Technical Reports Server (NTRS)
1985-01-01
The primary objective of the Test Active Control Technology (ACT) System laboratory tests was to verify and validate the system concept, hardware, and software. The initial lab tests were open loop hardware tests of the Test ACT System as designed and built. During the course of the testing, minor problems were uncovered and corrected. Major software tests were run. The initial software testing was also open loop. These tests examined pitch control laws, wing load alleviation, signal selection/fault detection (SSFD), and output management. The Test ACT System was modified to interface with the direct drive valve (DDV) modules. The initial testing identified problem areas with DDV nonlinearities, valve friction induced limit cycling, DDV control loop instability, and channel command mismatch. The other DDV issue investigated was the ability to detect and isolate failures. Some simple schemes for failure detection were tested but were not completely satisfactory. The Test ACT System architecture continues to appear promising for ACT/FBW applications in systems that must be immune to worst case generic digital faults, and be able to tolerate two sequential nongeneric faults with no reduction in performance. The challenge in such an implementation would be to keep the analog element sufficiently simple to achieve the necessary reliability.
Verification of an analytic modeler for capillary pump loop thermal control systems
NASA Technical Reports Server (NTRS)
Schweickart, R. B.; Neiswanger, L.; Ku, J.
1987-01-01
A number of computer programs have been written to model two-phase heat transfer systems for space use. These programs support the design of thermal control systems and provide a method of predicting their performance in the wide range of thermal environments of space. Predicting the performance of one such system known as the capillary pump loop (CPL) is the intent of the CPL Modeler. By modeling two developed CPL systems and comparing the results with actual test data, the CPL Modeler has proven useful in simulating CPL operation. Results of the modeling effort are discussed, together with plans for refinements to the modeler.
Pilot-model measurements of pilot responses in a lateral-directional control task
NASA Technical Reports Server (NTRS)
Adams, J. J.
1976-01-01
Pilot response during an aircraft bank-angle compensatory control task was measured by using an adaptive modeling technique. In the main control loop, which is the bank angle to aileron command loop, the pilot response was the same as that measured previously in single-input, single-output systems. The pilot used a rudder to aileron control coordination that canceled up to 80 percent of the vehicle yawing moment due to aileron deflection.
Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.
2014-10-11
High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system,more » GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls.« less
NASA Technical Reports Server (NTRS)
Petrick, E. J.
1973-01-01
An analytical study was made of the stability of a closed-loop liquid-lithium temperature control of the primary loop of a conceptual nuclear Brayton space powerplant. The operating point was varied from 20 to 120 percent of design. A describing-function technique was used to evaluate the effects of temperature dead band and control coupling backlash. From the system investigation, it was predicted that a limit cycle will not exist with a temperature dead band, but a limit cycle will not exist when backlash is present. The results compare favorably with a digital computer simulation.
Photoacoustic-Based-Close-Loop Temperature Control for Nanoparticle Hyperthermia.
Xiaohua, Feng; Fei, Gao; Yuanjin, Zheng
2015-07-01
Hyperthermia therapy requires tight temperature control to achieve selective killing of cancerous tissue with minimal damage on surrounding healthy tissues. To this end, accurate temperature monitoring and subsequent heating control are critical. However, an economic, portable, and real-time temperature control solution is currently lacking. To bridge this gap, we present a novel portable close-loop system for hyperthermia temperature control, in which photoacoustic technique is proposed for noninvasive real-time temperature measurement. Exploiting the high sensitivity of photoacoustics, the temperature is monitored with an accuracy of around 0.18 °C and then fed back to a controller implemented on field programmable gate array (FPGA) for temperature control. Dubbed as portable hyperthermia feedback controller (pHFC), it stabilizes the temperature at preset values by regulating the hyperthermia power with a proportional-integral-derivative (PID) algorithm; and to facilitate digital implementation, the pHFC further converts the PID output into switching values (0 and 1) with the pulse width modulation (PWM) algorithm. Proof-of-concept hyperthermia experiments demonstrate that the pHFC system is able to bring the temperature from baseline to predetermined value with an accuracy of 0.3° and a negligible temperature overshoot. The pHFC can potentially be translated to clinical applications with customized hyperthermia system design. This paper can facilitate future efforts in seamless integration of close-loop temperature control solution and various clinical hyperthermia systems.
NASA Technical Reports Server (NTRS)
Slafer, Loren I.
1989-01-01
Realtime simulation and hardware-in-the-loop testing is being used extensively in all phases of the design, development, and testing of the attitude control system (ACS) for the new Hughes HS601 satellite bus. Realtime, hardware-in-the-loop simulation, integrated with traditional analysis and pure simulation activities is shown to provide a highly efficient and productive overall development program. Implementation of high fidelity simulations of the satellite dynamics and control system algorithms, capable of real-time execution (using applied Dynamics International's System 100), provides a tool which is capable of being integrated with the critical flight microprocessor to create a mixed simulation test (MST). The MST creates a highly accurate, detailed simulated on-orbit test environment, capable of open and closed loop ACS testing, in which the ACS design can be validated. The MST is shown to provide a valuable extension of traditional test methods. A description of the MST configuration is presented, including the spacecraft dynamics simulation model, sensor and actuator emulators, and the test support system. Overall system performance parameters are presented. MST applications are discussed; supporting ACS design, developing on-orbit system performance predictions, flight software development and qualification testing (augmenting the traditional software-based testing), mission planning, and a cost-effective subsystem-level acceptance test. The MST is shown to provide an ideal tool in which the ACS designer can fly the spacecraft on the ground.
NASA Technical Reports Server (NTRS)
Chullen, Cinda; Conger, Bruce; Korona, Adam; Kanne, Bryan; McMillin, Summer; Paul, Thomas; Norcross, Jason; Alonso, Jesus Delgado; Swickrath, Mike
2015-01-01
NASA is pursuing technology development of an Advanced Extravehicular Mobility Unit (AEMU) which is an integrated assembly made up of primarily a pressure garment system and a portable life support subsystem (PLSS). The PLSS is further composed of an oxygen subsystem, a ventilation subsystem, and a thermal subsystem. One of the key functions of the ventilation system is to remove and control the carbon dioxide (CO2) delivered to the crewmember. Carbon dioxide washout is the mechanism by which CO2 levels are controlled within the space suit helmet to limit the concentration of CO2 inhaled by the crew member. CO2 washout performance is a critical parameter needed to ensure proper and robust designs that are insensitive to human variabilities in a space suit. A suited manikin test apparatus (SMTA) was developed to augment testing of the PLSS ventilation loop in order to provide a lower cost and more controlled alternative to human testing. The CO2 removal function is performed by the regenerative Rapid Cycle Amine (RCA) within the PLSS ventilation loop and its performance is evaluated within the integrated SMTA and Ventilation Loop test system. This paper will provide a detailed description of the schematics, test configurations, and hardware components of this integrated system. Results and analysis of testing performed with this integrated system will be presented within this paper.
Conic Sector Analysis of Hybrid Control Systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Thompson, P. M.
1982-01-01
A hybrid control system contains an analog plant and a hybrid (or sampled-data) compensator. In this thesis a new conic sector is determined which is constructive and can be used to: (1) determine closed loop stability, (2) analyze robustness with respect to modelling uncertainties, (3) analyze steady state response to commands, and (4) select the sample rate. The use of conic sectors allows the designer to treat hybrid control systems as though they were analog control systems. The center of the conic sector can be used as a rigorous linear time invariant approximation of the hybrid control system, and the radius places a bound on the errors of this approximation. The hybrid feedback system can be multivariable, and the sampler is assumed to be synchronous. Algorithms to compute the conic sector are presented. Several examples demonstrate how the conic sector analysis techniques are applied. Extensions to single loop multirate hybrid feedback systems are presented. Further extensions are proposed for multiloop multirate hybrid feedback system and for single rate systems with asynchronous sampling.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1985-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1987-01-01
In the optimal linear quadratic regulator problem for finite dimensional systems, the method known as an alpha-shift can be used to produce a closed-loop system whose spectrum lies to the left of some specified vertical line; that is, a closed-loop system with a prescribed degree of stability. This paper treats the extension of the alpha-shift to hereditary systems. As infinite dimensions, the shift can be accomplished by adding alpha times the identity to the open-loop semigroup generator and then solving an optimal regulator problem. However, this approach does not work with a new approximation scheme for hereditary control problems recently developed by Kappel and Salamon. Since this scheme is among the best to date for the numerical solution of the linear regulator problem for hereditary systems, an alternative method for shifting the closed-loop spectrum is needed. An alpha-shift technique that can be used with the Kappel-Salamon approximation scheme is developed. Both the continuous-time and discrete-time problems are considered. A numerical example which demonstrates the feasibility of the method is included.
Discrete Event Command & Control for Networked Teams with Multiple Missions
2009-03-16
Architecture for Unmanned Ground Systems ( JAUGS )10, and is an efficient means to realize the high-level OODA loops (observe, orient, decide, act) of 4D...for Unmanned Ground systems ( JAUGS )10, and is an efficient means to realize the OODA loops (observe, orient, decide, act) of 4D/RCS11. DEC is able to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pei, L.; Klebaner, A.; Theilacker, J.
2011-06-01
The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.
NASA Technical Reports Server (NTRS)
Aretskin-Hariton, Eliot D.; Zinnecker, Alicia Mae; Culley, Dennis E.
2014-01-01
Distributed Engine Control (DEC) is an enabling technology that has the potential to advance the state-of-the-art in gas turbine engine control. To analyze the capabilities that DEC offers, a Hardware-In-the-Loop (HIL) test bed is being developed at NASA Glenn Research Center. This test bed will support a systems-level analysis of control capabilities in closed-loop engine simulations. The structure of the HIL emulates a virtual test cell by implementing the operator functions, control system, and engine on three separate computers. This implementation increases the flexibility and extensibility of the HIL. Here, a method is discussed for implementing these interfaces by connecting the three platforms over a dedicated Local Area Network (LAN). This approach is verified using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k), which is typically implemented on one computer. There are marginal differences between the results from simulation of the typical and the three-computer implementation. Additional analysis of the LAN network, including characterization of network load, packet drop, and latency, is presented. The three-computer setup supports the incorporation of complex control models and proprietary engine models into the HIL framework.
NASA Technical Reports Server (NTRS)
Togai, Masaki
1990-01-01
Viewgraphs on commercial applications of fuzzy logic in Japan are presented. Topics covered include: suitable application area of fuzzy theory; characteristics of fuzzy control; fuzzy closed-loop controller; Mitsubishi heavy air conditioner; predictive fuzzy control; the Sendai subway system; automatic transmission; fuzzy logic-based command system for antilock braking system; fuzzy feed-forward controller; and fuzzy auto-tuning system.
LINC-NIRVANA piston control elements
NASA Astrophysics Data System (ADS)
Brix, Mario; Pott, Jörg-Uwe; Bertram, Thomas; Rost, Steffen; Borelli, Jose Luis; Herbst, Thomas M.; Kuerster, Martin; Rohloff, Ralf-Rainer
2010-07-01
We review the status of hardware developments related to the Linc-Nirvana optical path difference (OPD) control. The status of our telescope vibration measurements is given. We present the design concept of a feed-forward loop to damp the impact of telescope mirror vibrations on the OPD seen by Linc-Nirvana. At the focus of the article is a description of the actuator of the OPD control loop. The weight and vibration optimized construction of this actuator (aka piston mirror) and its mount has a complex dynamical behavior, which prevents classical PI feedback control from delivering fast and precise motion of the mirror surface. Therefore, an H-; optimized control strategy will be applied, custom designed for the piston mirror. The effort of realizing a custom controller on a DSP to drive the piezo is balanced by the outlook of achieving more than 5x faster servo bandwidths. The laboratory set-up to identify the system, and verify the closed loop control performance is presented. Our goal is to achieve 30 Hz closed-loop control bandwidth at a precision of 30 nm.
Stabilisation of time-varying linear systems via Lyapunov differential equations
NASA Astrophysics Data System (ADS)
Zhou, Bin; Cai, Guang-Bin; Duan, Guang-Ren
2013-02-01
This article studies stabilisation problem for time-varying linear systems via state feedback. Two types of controllers are designed by utilising solutions to Lyapunov differential equations. The first type of feedback controllers involves the unique positive-definite solution to a parametric Lyapunov differential equation, which can be solved when either the state transition matrix of the open-loop system is exactly known, or the future information of the system matrices are accessible in advance. Different from the first class of controllers which may be difficult to implement in practice, the second type of controllers can be easily implemented by solving a state-dependent Lyapunov differential equation with a given positive-definite initial condition. In both cases, explicit conditions are obtained to guarantee the exponentially asymptotic stability of the associated closed-loop systems. Numerical examples show the effectiveness of the proposed approaches.
Thermal Vacuum Testing of a Multi-Evaporator Miniature Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Nagano, Hosei
2008-01-01
Under NASA's New Millennium Program Space Technology 8 Project, four experiments are being developed for future small system applications requiring low mass, low power, and compactness. GSFC is responsible for developing the Thermal Loop experiment, which is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and condensers. The objective is to validate the operation of an MLHP, including reliable start-ups, steady operation, heat load sharing, and tight temperature control over the range of 273K to 308K. An MLHP Breadboard has been built and tested for 1200 hours under the laboratory environment and 500 hours in a thermal vacuum chamber. Results of the TV tests are presented here.
A comparative approach to closed-loop computation.
Roth, E; Sponberg, S; Cowan, N J
2014-04-01
Neural computation is inescapably closed-loop: the nervous system processes sensory signals to shape motor output, and motor output consequently shapes sensory input. Technological advances have enabled neuroscientists to close, open, and alter feedback loops in a wide range of experimental preparations. The experimental capability of manipulating the topology-that is, how information can flow between subsystems-provides new opportunities to understand the mechanisms and computations underlying behavior. These experiments encompass a spectrum of approaches from fully open-loop, restrained preparations to the fully closed-loop character of free behavior. Control theory and system identification provide a clear computational framework for relating these experimental approaches. We describe recent progress and new directions for translating experiments at one level in this spectrum to predictions at another level. Operating across this spectrum can reveal new understanding of how low-level neural mechanisms relate to high-level function during closed-loop behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.
Closed-Loop Control for Sonic Fatigue Testing Systems
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Bossaert, Guido
2001-01-01
This article documents recent improvements to the acoustic control system of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, VA. A brief summary of past acoustic performance is first given to serve as a basis of comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented for a variety of input spectra including uniform, band-limited random and an expendable launch vehicle payload bay environment.
Control of wheeled mobile robot in restricted environment
NASA Astrophysics Data System (ADS)
Ali, Mohammed A. H.; En, Chang Yong
2018-03-01
This paper presents a simulation and practical control system for wheeled mobile robot in restricted environment. A wheeled mobile robot with 3 wheels is fabricated and controlled by proportional derivative active force control (PD-AFC) to move in a pre-planned restricted environment to maintain the tracking errors at zero level. A control system with two loops, outer by PD controller and inner loop by Active Force Control, are designed to control the wheeled mobile robot. Fuzzy logic controller is implemented in the Active force Control to estimate the inertia matrix that will be used to calculate the actual torque applied on the wheeled mobile robot. The mobile robot is tested in two different trajectories, namely are circular and straight path. The actual path and desired path are compared.
An optimal open/closed-loop control method with application to a pre-stressed thin duralumin plate
NASA Astrophysics Data System (ADS)
Nadimpalli, Sruthi Raju
The excessive vibrations of a pre-stressed duralumin plate, suppressed by a combination of open-loop and closed-loop controls, also known as open/closed-loop control, is studied in this thesis. The two primary steps involved in this process are: Step (I) with an assumption that the closed-loop control law is proportional, obtain the optimal open-loop control by direct minimization of the performance measure consisting of energy at terminal time and a penalty on open-loop control force via calculus of variations. If the performance measure also involves a penalty on closed-loop control effort then a Fourier based method is utilized. Step (II) the energy at terminal time is minimized numerically to obtain optimal values of feedback gains. The optimal closed-loop control gains obtained are used to describe the displacement and the velocity of open-loop, closed-loop and open/closed-loop controlled duralumin plate.
A comparative analysis of loop heat pipe based thermal architectures for spacecraft thermal control
NASA Technical Reports Server (NTRS)
Pauken, Mike; Birur, Gaj
2004-01-01
Loop Heat Pipes (LHP) have gained acceptance as a viable means of heat transport in many spacecraft in recent years. However, applications using LHP technology tend to only remove waste heat from a single component to an external radiator. Removing heat from multiple components has been done by using multiple LHPs. This paper discusses the development and implementation of a Loop Heat Pipe based thermal architecture for spacecraft. In this architecture, a Loop Heat Pipe with multiple evaporators and condensers is described in which heat load sharing and thermal control of multiple components can be achieved. A key element in using a LHP thermal architecture is defining the need for such an architecture early in the spacecraft design process. This paper describes an example in which a LHP based thermal architecture can be used and how such a system can have advantages in weight, cost and reliability over other kinds of distributed thermal control systems. The example used in this paper focuses on a Mars Rover Thermal Architecture. However, the principles described here are applicable to Earth orbiting spacecraft as well.
Design and experimental evaluation of robust controllers for a two-wheeled robot
NASA Astrophysics Data System (ADS)
Kralev, J.; Slavov, Ts.; Petkov, P.
2016-11-01
The paper presents the design and experimental evaluation of two alternative μ-controllers for robust vertical stabilisation of a two-wheeled self-balancing robot. The controllers design is based on models derived by identification from closed-loop experimental data. In the first design, a signal-based uncertainty representation obtained directly from the identification procedure is used, which leads to a controller of order 29. In the second design the signal uncertainty is approximated by an input multiplicative uncertainty, which leads to a controller of order 50, subsequently reduced to 30. The performance of the two μ-controllers is compared with the performance of a conventional linear quadratic controller with 17th-order Kalman filter. A proportional-integral controller of the rotational motion around the vertical axis is implemented as well. The control code is generated using Simulink® controller models and is embedded in a digital signal processor. Results from the simulation of the closed-loop system as well as experimental results obtained during the real-time implementation of the designed controllers are given. The theoretical investigation and experimental results confirm that the closed-loop system achieves robust performance in respect to the uncertainties related to the identified robot model.
Cardiovascular simulator improvement: pressure versus volume loop assessment.
Fonseca, Jeison; Andrade, Aron; Nicolosi, Denys E C; Biscegli, José F; Leme, Juliana; Legendre, Daniel; Bock, Eduardo; Lucchi, Julio Cesar
2011-05-01
This article presents improvement on a physical cardiovascular simulator (PCS) system. Intraventricular pressure versus intraventricular volume (PxV) loop was obtained to evaluate performance of a pulsatile chamber mimicking the human left ventricle. PxV loop shows heart contractility and is normally used to evaluate heart performance. In many heart diseases, the stroke volume decreases because of low heart contractility. This pathological situation must be simulated by the PCS in order to evaluate the assistance provided by a ventricular assist device (VAD). The PCS system is automatically controlled by a computer and is an auxiliary tool for VAD control strategies development. This PCS system is according to a Windkessel model where lumped parameters are used for cardiovascular system analysis. Peripheral resistance, arteries compliance, and fluid inertance are simulated. The simulator has an actuator with a roller screw and brushless direct current motor, and the stroke volume is regulated by the actuator displacement. Internal pressure and volume measurements are monitored to obtain the PxV loop. Left chamber internal pressure is directly obtained by pressure transducer; however, internal volume has been obtained indirectly by using a linear variable differential transformer, which senses the diaphragm displacement. Correlations between the internal volume and diaphragm position are made. LabVIEW integrates these signals and shows the pressure versus internal volume loop. The results that have been obtained from the PCS system show PxV loops at different ventricle elastances, making possible the simulation of pathological situations. A preliminary test with a pulsatile VAD attached to PCS system was made. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
A double closed loop to enhance the quality of life of Parkinson's Disease patients: REMPARK system.
Samà, Albert; Pérez-López, Carlos; Rodríguez-Martín, Daniel; Moreno-Aróstegui, J Manuel; Rovira, Jordi; Ahlrichs, Claas; Castro, Rui; Cevada, João; Graça, Ricardo; Guimarães, Vânia; Pina, Bernardo; Counihan, Timothy; Lewy, Hadas; Annicchiarico, Roberta; Bayés, Angels; Rodríguez-Molinero, Alejandro; Cabestany, Joan
2014-01-01
This paper presents REMPARK system, a novel approach to deal with Parkinson's Disease (PD). REMPARK system comprises two closed loops of actuation onto PD. The first loop consists in a wearable system that, based on a belt-worn movement sensor, detects movement alterations that activate an auditory cueing system controlled by a smartphone in order to improve patient's gait. The belt-worn sensor analyzes patient's movement through real-time learning algorithms that were developed on the basis of a database previously collected from 93 PD patients. The second loop consists in disease management based on the data collected during long periods and that enables neurologists to tailor medication of their PD patients and follow the disease evolution. REMPARK system is going to be tested in 40 PD patients in Spain, Ireland, Italy and Israel. This paper describes the approach followed to obtain this system, its components, functionalities and trials in which the system will be validated.
Jastremski, M; Jastremski, C; Shepherd, M; Friedman, V; Porembka, D; Smith, R; Gonzales, E; Swedlow, D; Belzberg, H; Crass, R
1995-10-01
To test a model for the assessment of critical care technology on closed loop infusion control, a technology that is in its early stages of development and testing on human subjects. A computer-assisted search of the English language literature and reviews of the gathered data by experts in the field of closed loop infusion control systems. Studies relating to closed loop infusion control that addressed one or more of the questions contained in our technology assessment template were analyzed. Study design was not a factor in article selection. However, the lack of well-designed clinical outcome studies was an important factor in determining our conclusions. A focus person summarized the data from the selected studies that related to each of the assessment questions. The preliminary data summary developed by the focus person was further analyzed and refined by the task force. Experts in closed loop systems were then added to the group to review the summary provided by the task force. These experts' comments were considered by the task force and this final consensus report was developed. Closed loop system control is a technological concept that may be applicable to several aspects of critical care practice. This is a technology in the early stages of evolution and much more research and data are needed before its introduction into usual clinical practice. Furthermore, each specific application and each device for each application (e.g., nitroprusside infusion, ventilator adjustment), although based on the same technological concept, are sufficiently different in terms of hardware and computer algorithms to require independent validation studies. Closed loop infusion systems may have a role in critical care practice. However, for most applications, further development is required to move this technology from the innovation phase to the point where it can be evaluated so that its role in critical car practice can be defined. Each application of closed loop infusion systems must be independently validated by appropriately designed research studies. Users should be provided with the clinical parameters driving each closed loop system so that they can ensure that it agrees with their opinion of acceptable medical practice. Clinical researchers and leaders in industry should collaborate to perform the scientifically valid, outcome-based research that is necessary to evaluate the effect of this new technology. The original model we developed for technology assessment required the addition of several more questions to produce a complete analysis of an emerging technology. An emerging technology should be systematically assessed (using a model such as the model developed by the Society of Critical Care Medicine), before its introduction into clinical practice in order to provide a focus for human outcome validation trials and to minimize the possibility of widespread use of an unproven technology.
Space Station on-orbit solar array loads during assembly
NASA Astrophysics Data System (ADS)
Ghofranian, S.; Fujii, E.; Larson, C. R.
This paper is concerned with the closed-loop dynamic analysis of on-orbit maneuvers when the Space Shuttle is fully mated to the Space Station Freedom. A flexible model of the Space Station in the form of component modes is attached to a rigid orbiter and on-orbit maneuvers are performed using the Shuttle Primary Reaction Control System jets. The traditional approach for this type of problems is to perform an open-loop analysis to determine the attitude control system jet profiles based on rigid vehicles and apply the resulting profile to a flexible Space Station. In this study a closed-loop Structure/Control model was developed in the Dynamic Analysis and Design System (DADS) program and the solar array loads were determined for single axis maneuvers with various delay times between jet firings. It is shown that the Digital Auto Pilot jet selection is affected by Space Station flexibility. It is also shown that for obtaining solar array loads the effect of high frequency modes cannot be ignored.
Network efficient power control for wireless communication systems.
Campos-Delgado, Daniel U; Luna-Rivera, Jose Martin; Martinez-Sánchez, C J; Gutierrez, Carlos A; Tecpanecatl-Xihuitl, J L
2014-01-01
We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network.
Network Efficient Power Control for Wireless Communication Systems
Campos-Delgado, Daniel U.; Luna-Rivera, Jose Martin; Martinez-Sánchez, C. J.; Gutierrez, Carlos A.; Tecpanecatl-Xihuitl, J. L.
2014-01-01
We introduce a two-loop power control that allows an efficient use of the overall power resources for commercial wireless networks based on cross-layer optimization. This approach maximizes the network's utility in the outer-loop as a function of the averaged signal to interference-plus-noise ratio (SINR) by considering adaptively the changes in the network characteristics. For this purpose, the concavity property of the utility function was verified with respect to the SINR, and an iterative search was proposed with guaranteed convergence. In addition, the outer-loop is in charge of selecting the detector that minimizes the overall power consumption (transmission and detection). Next the inner-loop implements a feedback power control in order to achieve the optimal SINR in the transmissions despite channel variations and roundtrip delays. In our proposal, the utility maximization process and detector selection and feedback power control are decoupled problems, and as a result, these strategies are implemented at two different time scales in the two-loop framework. Simulation results show that substantial utility gains may be achieved by improving the power management in the wireless network. PMID:24683350
Mina, Petros; Tsaneva-Atanasova, Krasimira; Bernardo, Mario di
2016-07-15
We extend a spatially explicit agent based model (ABM) developed previously to investigate entrainment and control of the emergent behavior of a population of synchronized oscillating cells in a microfluidic chamber. Unlike most of the work in models of control of cellular systems which focus on temporal changes, we model individual cells with spatial dependencies which may contribute to certain behavioral responses. We use the model to investigate the response of both open loop and closed loop strategies, such as proportional control (P-control), proportional-integral control (PI-control) and proportional-integral-derivative control (PID-control), to heterogeinities and growth in the cell population, variations of the control parameters and spatial effects such as diffusion in the spatially explicit setting of a microfluidic chamber setup. We show that, as expected from the theory of phase locking in dynamical systems, open loop control can only entrain the cell population in a subset of forcing periods, with a wide variety of dynamical behaviors obtained outside these regions of entrainment. Closed-loop control is shown instead to guarantee entrainment in a much wider region of control parameter space although presenting limitations when the population size increases over a certain threshold. In silico tracking experiments are also performed to validate the ability of classical control approaches to achieve other reference behaviors such as a desired constant output or a linearly varying one. All simulations are carried out in BSim, an advanced agent-based simulator of microbial population which is here extended ad hoc to include the effects of control strategies acting onto the population.
1982-07-01
robustness of the closed-loop system as compared to state feedback. The observer theory of Luenberger specifies the conditions that must be satisfied for...No. ID-17SI-F-l, October 1963. 8. Rynaski, E. G. and Whitbeck, R. F.: "The Theory and Application of Linear Optimal Control," Calspan Report No. IH...pilots tend to control them open-loop. Frequencies much beyond 10 rad/sec are generally beyond pilots’ control capability. Control theory indicates a need
Hybrid Control for Multi-Agent Systems in Complex Sensing Environments
2012-02-28
controllers , the overall closed-loop system is time -varying but can potentially exhibit better stability and performance... system is time -varying and yet, once 4 feedback-interconnected with a suitable controller , it can potentially yield better stability and performance...resolution Sensing, Control and Switched Systems 13 4 Metric-Based Receding Horizon Control 14 5 Decentralized Control and Finite Wordlength Channels 15
Zeng, Hong; Wang, Yanxin; Wu, Changcheng; Song, Aiguo; Liu, Jia; Ji, Peng; Xu, Baoguo; Zhu, Lifeng; Li, Huijun; Wen, Pengcheng
2017-01-01
Brain-machine interface (BMI) can be used to control the robotic arm to assist paralysis people for performing activities of daily living. However, it is still a complex task for the BMI users to control the process of objects grasping and lifting with the robotic arm. It is hard to achieve high efficiency and accuracy even after extensive trainings. One important reason is lacking of sufficient feedback information for the user to perform the closed-loop control. In this study, we proposed a method of augmented reality (AR) guiding assistance to provide the enhanced visual feedback to the user for a closed-loop control with a hybrid Gaze-BMI, which combines the electroencephalography (EEG) signals based BMI and the eye tracking for an intuitive and effective control of the robotic arm. Experiments for the objects manipulation tasks while avoiding the obstacle in the workspace are designed to evaluate the performance of our method for controlling the robotic arm. According to the experimental results obtained from eight subjects, the advantages of the proposed closed-loop system (with AR feedback) over the open-loop system (with visual inspection only) have been verified. The number of trigger commands used for controlling the robotic arm to grasp and lift the objects with AR feedback has reduced significantly and the height gaps of the gripper in the lifting process have decreased more than 50% compared to those trials with normal visual inspection only. The results reveal that the hybrid Gaze-BMI user can benefit from the information provided by the AR interface, improving the efficiency and reducing the cognitive load during the grasping and lifting processes. PMID:29163123
Shock Position Control for Mode Transition in a Turbine Based Combined Cycle Engine Inlet Model
NASA Technical Reports Server (NTRS)
Csank, Jeffrey T.; Stueber, Thomas J.
2013-01-01
A dual flow-path inlet for a turbine based combined cycle (TBCC) propulsion system is to be tested in order to evaluate methodologies for performing a controlled inlet mode transition. Prior to experimental testing, simulation models are used to test, debug, and validate potential control algorithms which are designed to maintain shock position during inlet disturbances. One simulation package being used for testing is the High Mach Transient Engine Cycle Code simulation, known as HiTECC. This paper discusses the development of a mode transition schedule for the HiTECC simulation that is analogous to the development of inlet performance maps. Inlet performance maps, derived through experimental means, describe the performance and operability of the inlet as the splitter closes, switching power production from the turbine engine to the Dual Mode Scram Jet. With knowledge of the operability and performance tradeoffs, a closed loop system can be designed to optimize the performance of the inlet. This paper demonstrates the design of the closed loop control system and benefit with the implementation of a Proportional-Integral controller, an H-Infinity based controller, and a disturbance observer based controller; all of which avoid inlet unstart during a mode transition with a simulated disturbance that would lead to inlet unstart without closed loop control.
NASA Technical Reports Server (NTRS)
Wieseman, Carol D.; Christhilf, David; Perry, Boyd, III
2012-01-01
An important objective of the Semi-Span Super-Sonic Transport (S4T) wind tunnel model program was the demonstration of Flutter Suppression (FS), Gust Load Alleviation (GLA), and Ride Quality Enhancement (RQE). It was critical to evaluate the stability and robustness of these control laws analytically before testing them and experimentally while testing them to ensure safety of the model and the wind tunnel. MATLAB based software was applied to evaluate the performance of closed-loop systems in terms of stability and robustness. Existing software tools were extended to use analytical representations of the S4T and the control laws to analyze and evaluate the control laws prior to testing. Lessons were learned about the complex windtunnel model and experimental testing. The open-loop flutter boundary was determined from the closed-loop systems. A MATLAB/Simulink Simulation developed under the program is available for future work to improve the CPE process. This paper is one of a series of that comprise a special session, which summarizes the S4T wind-tunnel program.
Insulin Patch Pumps: Their Development and Future in Closed-Loop Systems
Bohannon, Nancy J.V.
2010-01-01
Abstract Steady progress is being made toward the development of a so-called “artificial pancreas,” which may ultimately be a fully automated, closed-loop, glucose control system comprising a continuous glucose monitor, an insulin pump, and a controller. The controller will use individualized algorithms to direct delivery of insulin without user input. A major factor propelling artificial pancreas development is the substantial incidence of—and attendant patient, parental, and physician concerns about—hypoglycemia and extreme hyperglycemia associated with current means of insulin delivery for type 1 diabetes mellitus (T1DM). A successful fully automated artificial pancreas would likely reduce the frequency of and anxiety about hypoglycemia and marked hyperglycemia. Patch-pump systems (“patch pumps”) are likely to be used increasingly in the control of T1DM and may be incorporated into the artificial pancreas systems of tomorrow. Patch pumps are free of tubing, small, lightweight, and unobtrusive. This article describes features of patch pumps that have been approved for U.S. marketing or are under development. Included in the review is an introduction to control algorithms driving insulin delivery, particularly the two major types: proportional integrative derivative and model predictive control. The use of advanced algorithms in the clinical development of closed-loop systems is reviewed along with projected next steps in artificial pancreas development. PMID:20515308
NASA Astrophysics Data System (ADS)
Canetta, D.; Capozza, A.; Iovino, G.
The transient response following pump trip-offs and start-ups was investigated in the sea water system of a nuclear power plant. Specific care was devoted to water column separation and cavity collapse phenomena. A computer program designed for analysis of complex hydraulic networks was used. It is found that dangerous overpressures can be avoided by the use of loop seals. The design of the vacuum breaker valves of the loop seals and the optimization of overall transient behavior is discussed.
Multiple feedback control apparatus for power conditioning equipment
NASA Technical Reports Server (NTRS)
Biess, John (Inventor); Yu, Yuan (Inventor)
1977-01-01
An improved feedback control system to govern the cyclic operation of the power switch of a non-dissipative power conditioning equipment. The apparatus includes two or three control loops working in unison. The first causes the output DC level to be compared with a reference, and the error amplified for control purposes. The second utilizes the AC component of the voltage across the output filter inductor or the current through the output filter capacitor, and the third loop senses the output transients.
2009-02-27
exchanged by means of line-of-sight sensors that experience periodic communication dropouts due to agent motion. Variation in network topology in...respiratory, and cardiovascular function by man- ual control based on the clinician’s experience and intuition. Open-loop control by clinical personnel can be...to ap- pear. [29] W. M. Haddad and J. M. Bailey, "Closed-Loop Control for Intensive Care Unit Seda- tion," Best Prac. Res. Clinical Anaesthesiology
The Application of LOGO! in Control System of a Transmission and Sorting Mechanism
NASA Astrophysics Data System (ADS)
Liu, Jian; Lv, Yuan-Jun
Logic programming of general logic control module LOGO! has been recommended the application in transmission and sorting mechanism. First, the structure and operating principle of the mechanism had been introduced. Then the pneumatic loop of the mechanism had been plotted in the software of FluidSIM-P. At last, pneumatic loop and motors had been control by LOGO!, which makes the control process simple and clear instead of the complicated control of ordinary relay. LOGO! can achieve the complicated interlock control composed of inter relays and time relays. In the control process, the logic control function of LOGO! is fully used to logic programming so that the system realizes the control of air cylinder and motor. It is reliable and adjustable mechanism after application.
NASA Technical Reports Server (NTRS)
Christhilf, David M.; Pototzky, Anthony S.; Stevens, William L.
2010-01-01
The Simulink-based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) was modified to incorporate linear models representing aeroservoelastic characteristics of the SemiSpan SuperSonic Transport (S4T) wind-tunnel model. The S4T planform is for a Technology Concept Aircraft (TCA) design from the 1990s. The model has three control surfaces and is instrumented with accelerometers and strain gauges. Control laws developed for wind-tunnel testing for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression System functions were implemented in the simulation. The simulation models open- and closed-loop response to turbulence and to control excitation. It provides time histories for closed-loop stable conditions above the open-loop flutter boundary. The simulation is useful for assessing the potential impact of closed-loop control rate and position saturation. It also provides a means to assess fidelity of system identification procedures by providing time histories for a known plant model, with and without unmeasured turbulence as a disturbance. Sets of linear models representing different Mach number and dynamic pressure conditions were implemented as MATLAB Linear Time Invariant (LTI) objects. Configuration changes were implemented by selecting which LTI object to use in a Simulink template block. A limited comparison of simulation versus wind-tunnel results is shown.
NASA Technical Reports Server (NTRS)
Bown, R. L.; Christofferson, A.; Lardas, M.; Flanders, H.
1980-01-01
A lambda matrix solution technique is being developed to perform an open loop frequency analysis of a high order dynamic system. The procedure evaluates the right and left latent vectors corresponding to the respective latent roots. The latent vectors are used to evaluate the partial fraction expansion formulation required to compute the flexible body open loop feedback gains for the Space Shuttle Digital Ascent Flight Control System. The algorithm is in the final stages of development and will be used to insure that the feedback gains meet the design specification.
NASA Astrophysics Data System (ADS)
Rigatos, Gerasimos
2016-12-01
It is shown that the model of the hypothalamic-pituitary-adrenal gland axis is a differentially flat one and this permits to transform it to the so-called linear canonical form. For the new description of the system's dynamics the transformed control inputs contain unknown terms which depend on the system's parameters. To identify these terms an adaptive fuzzy approximator is used in the control loop. Thus an adaptive fuzzy control scheme is implemented in which the unknown or unmodeled system dynamics is approximated by neurofuzzy networks and next this information is used by a feedback controller that makes the state variables (CRH - corticotropin releasing hormone, adenocortocotropic hormone - ACTH, cortisol) of the hypothalamic-pituitary-adrenal gland axis model converge to the desirable levels (setpoints). This adaptive control scheme is exclusively implemented with the use of output feedback, while the state vector elements which are not directly measured are estimated with the use of a state observer that operates in the control loop. The learning rate of the adaptive fuzzy system is suitably computed from Lyapunov analysis, so as to assure that both the learning procedure for the unknown system's parameters, the dynamics of the observer and the dynamics of the control loop will remain stable. The performed Lyapunov stability analysis depends on two Riccati equations, one associated with the feedback controller and one associated with the state observer. Finally, it is proven that for the control scheme that comprises the feedback controller, the state observer and the neurofuzzy approximator, an H-infinity tracking performance can be succeeded.
Sum-of-Squares-Based Region of Attraction Analysis for Gain-Scheduled Three-Loop Autopilot
NASA Astrophysics Data System (ADS)
Seo, Min-Won; Kwon, Hyuck-Hoon; Choi, Han-Lim
2018-04-01
A conventional method of designing a missile autopilot is to linearize the original nonlinear dynamics at several trim points, then to determine linear controllers for each linearized model, and finally implement gain-scheduling technique. The validation of such a controller is often based on linear system analysis for the linear closed-loop system at the trim conditions. Although this type of gain-scheduled linear autopilot works well in practice, validation based solely on linear analysis may not be sufficient to fully characterize the closed-loop system especially when the aerodynamic coefficients exhibit substantial nonlinearity with respect to the flight condition. The purpose of this paper is to present a methodology for analyzing the stability of a gain-scheduled controller in a setting close to the original nonlinear setting. The method is based on sum-of-squares (SOS) optimization that can be used to characterize the region of attraction of a polynomial system by solving convex optimization problems. The applicability of the proposed SOS-based methodology is verified on a short-period autopilot of a skid-to-turn missile.
Active Noise Control of Radiated Noise from Jets Originating NASA
NASA Technical Reports Server (NTRS)
Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.
2013-01-01
The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.
NASA Astrophysics Data System (ADS)
Zhu, Yawen; Cui, Xiaohong; Wang, Qianqian; Tong, Qiujie; Cui, Xutai; Li, Chenyu; Zhang, Le; Peng, Zhong
2016-11-01
The hardware-in-the-loop simulation system, which provides a precise, controllable and repeatable test conditions, is an important part of the development of the semi-active laser (SAL) guided weapons. In this paper, laser energy chain characteristics were studied, which provides a theoretical foundation for the SAL guidance technology and the hardware-in-the-loop simulation system. Firstly, a simplified equation was proposed to adjust the radar equation according to the principles of the hardware-in-the-loop simulation system. Secondly, a theoretical model and calculation method were given about the energy chain characteristics based on the hardware-in-the-loop simulation system. We then studied the reflection characteristics of target and the distance between the missile and target with major factors such as the weather factors. Finally, the accuracy of modeling was verified by experiment as the values measured experimentally generally follow the theoretical results from the model. And experimental results revealed that ratio of attenuation of the laser energy exhibited a non-linear change vs. pulse number, which were in accord with the actual condition.
JPL Advanced Thermal Control Technology Roadmap - 2008
NASA Technical Reports Server (NTRS)
Birur, Gaj
2008-01-01
This slide presentation reviews the status of thermal control technology at JPL and NASA.It shows the active spacecraft that are in vairous positions in the solar syatem, and beyond the solar system and the future missions that are under development. It then describes the challenges that the past missions posed with the thermal control systems. The various solutions that were implemented duirng the decades prior to 1990 are outlined. A review of hte thermal challenges of the future misions is also included. The exploration plan for Mars is then reviewed. The thermal challenges of the Mars Rovers are then outlined. Also the challenges of systems that would be able to be used in to explore Venus, and Titan are described. The future space telescope missions will also need thermal control technological advances. Included is a review of the thermal requirements for manned missions to the Moon. Both Active and passive technologies that have been used and will be used are reviewed. Those that are described are Mechanically Pumped Fluid Loops (MPFL), Loop Heat Pipes, an M3 Passive Cooler, Heat Siwtch for Space and Mars surface applications, phase change material (PCM) technology, a Gas Gap Actuateor using ZrNiH(x), the Planck Sorption Cooler (PCS), vapor compression -- Hybrid two phase loops, advanced pumps for two phase cooling loops, and heat pumps that are lightweight and energy efficient.
Garan performs TCS Water Loop Degassing in Columbus
2011-04-08
ISS027-E-011325 (8 April 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, works on degassing the water loop of the running Water Pump Assembly 2 / Thermal Control System (WPA2/TCS) in the Columbus laboratory of the International Space Station.
Garan performs TCS Water Loop Degassing in Columbus
2011-04-08
ISS027-E-011324 (8 April 2011) --- NASA astronaut Ron Garan, Expedition 27 flight engineer, works on degassing the water loop of the running Water Pump Assembly 2 / Thermal Control System (WPA2/TCS) in the Columbus laboratory of the International Space Station.
Optimizing Voltage Control for Large-Scale Solar - Text version | Energy
system software in the loop during simulations, both for long term studies, as well as in some hardware in the loop studies, where we had actual devices interacting with this. So this is a fairly unique
Arndt, Andreas; Nüsser, Peter; Graichen, Kurt; Müller, Johannes; Lampe, Bernhard
2008-10-01
A control strategy for rotary blood pumps meeting different user-selectable control objectives is proposed: maximum support with the highest feasible flow rate versus medium support with maximum ventricular washout and controlled opening of the aortic valve (AoV). A pulsatility index (PI) is calculated from the pressure difference, which is deduced from the axial thrust measured by the magnetic bearing of the pump. The gradient of PI with respect to pump speed (GPI) is estimated via online system identification. The outer loop of a cascaded controller regulates GPI to a reference value satisfying the selected control objective. The inner loop controls the PI to a reference value set by the outer loop. Adverse pumping states such as suction and regurgitation can be detected on the basis of the GPI estimates and corrected by the controller. A lumped-parameter computer model of the assisted circulation was used to simulate variations of ventricular contractility, pulmonary venous pressure, and aortic pressure. The performance of the outer control loop was demonstrated by transitions between the two control modes. Fast reaction of the inner loop was tested by stepwise reduction of venous return. For maximum support, a low PI was maintained without inducing ventricular collapse. For maximum washout, the pump worked at a high PI in the transition region between the opening and the permanently closed AoV. The cascaded control of GPI and PI is able to meet different control objectives and is worth testing in vitro and in vivo.
NASA Technical Reports Server (NTRS)
Ku, Jentung; Ottenstein, Laura; Douglas, Donya; Hoang, Triem
2010-01-01
Under NASA s New Millennium Program Space Technology 8 (ST 8) Project, four experiments Thermal Loop, Dependable Microprocessor, SAILMAST, and UltraFlex - were conducted to advance the maturity of individual technologies from proof of concept to prototype demonstration in a relevant environment , i.e. from a technology readiness level (TRL) of 3 to a level of 6. This paper presents the new technologies and validation approach of the Thermal Loop experiment. The Thermal Loop is an advanced thermal control system consisting of a miniature loop heat pipe (MLHP) with multiple evaporators and multiple condensers designed for future small system applications requiring low mass, low power, and compactness. The MLHP retains all features of state-of-the-art loop heat pipes (LHPs) and offers additional advantages to enhance the functionality, performance, versatility, and reliability of the system. Details of the thermal loop concept, technical advances, benefits, objectives, level 1 requirements, and performance characteristics are described. Also included in the paper are descriptions of the test articles and mathematical modeling used for the technology validation. An MLHP breadboard was built and tested in the laboratory and thermal vacuum environments for TRL 4 and TRL 5 validations, and an MLHP proto-flight unit was built and tested in a thermal vacuum chamber for the TRL 6 validation. In addition, an analytical model was developed to simulate the steady state and transient behaviors of the MLHP during various validation tests. Capabilities and limitations of the analytical model are also addressed.
Albattat, Ali; Gruenwald, Benjamin C.; Yucelen, Tansel
2016-01-01
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches. PMID:27537894
Albattat, Ali; Gruenwald, Benjamin C; Yucelen, Tansel
2016-08-16
The last decade has witnessed an increased interest in physical systems controlled over wireless networks (networked control systems). These systems allow the computation of control signals via processors that are not attached to the physical systems, and the feedback loops are closed over wireless networks. The contribution of this paper is to design and analyze event-triggered decentralized and distributed adaptive control architectures for uncertain networked large-scale modular systems; that is, systems consist of physically-interconnected modules controlled over wireless networks. Specifically, the proposed adaptive architectures guarantee overall system stability while reducing wireless network utilization and achieving a given system performance in the presence of system uncertainties that can result from modeling and degraded modes of operation of the modules and their interconnections between each other. In addition to the theoretical findings including rigorous system stability and the boundedness analysis of the closed-loop dynamical system, as well as the characterization of the effect of user-defined event-triggering thresholds and the design parameters of the proposed adaptive architectures on the overall system performance, an illustrative numerical example is further provided to demonstrate the efficacy of the proposed decentralized and distributed control approaches.
Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.
2014-06-08
High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts, such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been developed that have the potential to mitigate many power quality concerns. However, local closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. To enable the study of the performance of advanced control schemes in a detailed distribution system environment, a test platform has been developed that integrates Power Hardware-in-the-Loop (PHIL) withmore » concurrent time-series electric distribution system simulation. In the test platform, GridLAB-D, a distribution system simulation tool, runs a detailed simulation of a distribution feeder in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling. At the National Renewable Energy Laboratory (NREL), a hardware inverter interacts with grid and PV simulators emulating an operational distribution system. Power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of inverter control modes—constant power factor and active Volt/VAr control—when integrated into a simulated IEEE 8500-node test feeder. We demonstrate that this platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, results are used to validate GridLAB-D simulations of advanced inverter controls.« less
Joint angle sensors for closed-loop control
NASA Astrophysics Data System (ADS)
Ko, Wen H.; Miao, Chih-Lei
In order to substitute braces that have built-in goniometers and to provide feedback signals for closed loop control of lower extremity Functional Neuromuscular System in paraplegics, a stretchable capacitive sensor was developed to accurately detect angular movement in joints. Promising clinical evaluations on the knee joints of a paraplegic and a volunteer were done. The evaluations show great promise for the possibility of implantation applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerns, Q.A.; Jackson, G.; Kerns, C.R.
This paper describes the damper design for 6 proton on 6 pbar bunches in the Tevatron collider. Signal pickup, transient phase detection, derivative networks, and phase correction via the high-level rf are covered. Each rf station is controlled by a slow feedback loop. In addition, global feedback loops control each set of four cavities, one set for protons and one set for antiprotons. Operational experience with these systems is discussed. 7 refs., 9 figs.
[Research on the Clinical Alarm Management Mechanism Based on Closed-loop Control Theory].
Lin, Zhongkuan; Zheng, Kun; Shen, Yunming; Wu, Yunyun
2018-05-30
This paper proposes a clinical alarm management system based on the theory of the closed loop control. The alarm management mechanism can be divided into the expected standard, improving execution rule, rule execution, medical devices with alarm functions, results analysis strategy and the output link. And, we make relevant application and discussion. Results showed that the mechanism can be operable and effective.
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Schmidt, D. K.; Anderson, M. R.
1985-01-01
Optimal-control-theoretic modeling and frequency-domain analysis is the methodology proposed to evaluate analytically the handling qualities of higher-order manually controlled dynamic systems. Fundamental to the methodology is evaluating the interplay between pilot workload and closed-loop pilot/vehicle performance and stability robustness. The model-based metric for pilot workload is the required pilot phase compensation. Pilot/vehicle performance and loop stability is then evaluated using frequency-domain techniques. When these techniques were applied to the flight-test data for thirty-two highly-augmented fighter configurations, strong correlation was obtained between the analytical and experimental results.
A simplified dynamic model of the T700 turboshaft engine
NASA Technical Reports Server (NTRS)
Duyar, Ahmet; Gu, Zhen; Litt, Jonathan S.
1992-01-01
A simplified open-loop dynamic model of the T700 turboshaft engine, valid within the normal operating range of the engine, is developed. This model is obtained by linking linear state space models obtained at different engine operating points. Each linear model is developed from a detailed nonlinear engine simulation using a multivariable system identification and realization method. The simplified model may be used with a model-based real time diagnostic scheme for fault detection and diagnostics, as well as for open loop engine dynamics studies and closed loop control analysis utilizing a user generated control law.
Sliding mode disturbance observer-based control of a twin rotor MIMO system.
Rashad, Ramy; El-Badawy, Ayman; Aboudonia, Ahmed
2017-07-01
This work proposes a robust tracking controller for a helicopter laboratory setup known as the twin rotor MIMO system (TRMS) using an integral sliding mode controller. To eliminate the discontinuity in the control signal, the controller is augmented by a sliding mode disturbance observer. The actuator dynamics is handled using a backstepping approach which is applicable due to the continuous chattering-free nature of the command signals generated using the disturbance observer based controller. To avoid the complexity of analytically differentiating the command signals, a first order sliding mode differentiator is used. Stability analysis of the closed loop system and the ultimate boundedness of the tracking error is proved using Lyapunov stability arguments. The proposed controller is validated by several simulation studies and is compared to other schemes in the literature. Experimental results using a hardware-in-the-loop system validate the robustness and effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2013-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2012-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high-capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit Transport Water Loop. The bed design further leverages a sorbent developed for the ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System. The leveraging of these water maintenance technologies to the SWME recirculation loop is a unique demonstration of applying the valuable lessons learned on the ISS to the next generation of crewed spaceflight Environmental Control and Life Support System hardware.
NASA Technical Reports Server (NTRS)
Steele, John W.; Rector, Tony; Bue, Grant C.; Campbell, Colin; Makinen, Janice
2011-01-01
A dual-bed device to maintain the water quality of the Advanced Spacesuit Water Membrane Evaporation (SWME) water recirculation loop has been designed and is undergoing testing. The SWME is a heat rejection device under development at the NASA Johnson Space Center to perform thermal control for advanced spacesuits. One advantage to this technology is the potential for a significantly greater degree of tolerance to contamination when compared to the existing Sublimator technology. The driver for the development of a water recirculation maintenance device is to further enhance this advantage through the leveraging of fluid loop management lessons-learned from the International Space Station (ISS). A bed design that was developed for a Hamilton Sundstrand military application, and considered for a potential ISS application with the Urine Processor Assembly, provides a low pressure drop means for water maintenance in a recirculation loop. The bed design is coupled with high capacity ion exchange resins, organic adsorbents, and a cyclic methodology developed for the Extravehicular Mobility Unit (EMU) Transport Water loop. The bed design further leverages a sorbent developed for ISS that introduces a biocide in a microgravity-compatible manner for the Internal Active Thermal Control System (IATCS). The leveraging of these water maintenance technologies to the SWME recirculation loop is a clear demonstration of applying the valuable lessons learned on the ISS to the next generation of manned spaceflight Environmental Control and Life Support System (ECLSS) hardware.
Lin, Hao-Ting
2017-06-04
This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally.
Lin, Hao-Ting
2017-01-01
This project aims to develop a novel large stroke asymmetric pneumatic servo system of a hardware-in-the-loop for path tracking control under variable loads based on the MATLAB Simulink real-time system. High pressure compressed air provided by the air compressor is utilized for the pneumatic proportional servo valve to drive the large stroke asymmetric rod-less pneumatic actuator. Due to the pressure differences between two chambers, the pneumatic actuator will operate. The highly nonlinear mathematical models of the large stroke asymmetric pneumatic system were analyzed and developed. The functional approximation technique based on the sliding mode controller (FASC) is developed as a controller to solve the uncertain time-varying nonlinear system. The MATLAB Simulink real-time system was a main control unit of a hardware-in-the-loop system proposed to establish driver blocks for analog and digital I/O, a linear encoder, a CPU and a large stroke asymmetric pneumatic rod-less system. By the position sensor, the position signals of the cylinder will be measured immediately. The measured signals will be viewed as the feedback signals of the pneumatic servo system for the study of real-time positioning control and path tracking control. Finally, real-time control of a large stroke asymmetric pneumatic servo system with measuring system, a large stroke asymmetric pneumatic servo system, data acquisition system and the control strategy software will be implemented. Thus, upgrading the high position precision and the trajectory tracking performance of the large stroke asymmetric pneumatic servo system will be realized to promote the high position precision and path tracking capability. Experimental results show that fifth order paths in various strokes and the sine wave path are successfully implemented in the test rig. Also, results of variable loads under the different angle were implemented experimentally. PMID:28587220
Experimental study of a self-powered and sensing MR-damper-based vibration control system
NASA Astrophysics Data System (ADS)
Sapiński, Bogdan
2011-10-01
The paper deals with a semi-active vibration control system based on a magnetorheological (MR) damper. The study outlines the model and the structure of the system, and describes its experimental investigation. The conceptual design of this system involves harvesting energy from structural vibrations using an energy extractor based on an electromagnetic transduction mechanism (Faraday's law). The system consists of an electromagnetic induction device (EMI) prototype and an MR damper of RD-1005 series manufactured by Lord Corporation. The energy extracted is applied to control the damping characteristics of the MR damper. The model of the system was used to prove that the proposed vibration control system is feasible. The system was realized in the semi-active control strategy with energy recovery and examined through experiments in the cases where the control coil of the MR damper was voltage-supplied directly from the EMI or voltage-supplied via the rectifier, or supplied with a current control system with two feedback loops. The external loop used the sky-hook algorithm whilst the internal loop used the algorithm switching the photorelay, at the output from the rectifier. Experimental results of the proposed vibration control system were compared with those obtained for the passive system (MR damper is off-state) and for the system with an external power source (conventional system) when the control coil of the MR damper was supplied by a DC power supply and analogue voltage amplifier or a DC power supply and a photorelay. It was demonstrated that the system is able to power-supply the MR damper and can adjust itself to structural vibrations. It was also found that, since the signal of induced voltage from the EMI agrees well with that of the relative velocity signal across the damper, the device can act as a 'velocity-sign' sensor.
Continuous fractional-order Zero Phase Error Tracking Control.
Liu, Lu; Tian, Siyuan; Xue, Dingyu; Zhang, Tao; Chen, YangQuan
2018-04-01
A continuous time fractional-order feedforward control algorithm for tracking desired time varying input signals is proposed in this paper. The presented controller cancels the phase shift caused by the zeros and poles of controlled closed-loop fractional-order system, so it is called Fractional-Order Zero Phase Tracking Controller (FZPETC). The controlled systems are divided into two categories i.e. with and without non-cancellable (non-minimum-phase) zeros which stand in unstable region or on stability boundary. Each kinds of systems has a targeted FZPETC design control strategy. The improved tracking performance has been evaluated successfully by applying the proposed controller to three different kinds of fractional-order controlled systems. Besides, a modified quasi-perfect tracking scheme is presented for those systems which may not have available future tracking trajectory information or have problem in high frequency disturbance rejection if the perfect tracking algorithm is applied. A simulation comparison and a hardware-in-the-loop thermal peltier platform are shown to validate the practicality of the proposed quasi-perfect control algorithm. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Yeonhee; Kang, Moses; Muljadi, Eduard
This paper proposes a power-smoothing scheme for a variable-speed wind turbine generator (WTG) that can smooth out the WTG's fluctuating power caused by varying wind speeds, and thereby keep the system frequency within a narrow range. The proposed scheme employs an additional loop based on the system frequency deviation that operates in conjunction with the maximum power point tracking (MPPT) control loop. Unlike the conventional, fixed-gain scheme, its control gain is modified with the rotor speed. In the proposed scheme, the control gain is determined by considering the ratio of the output of the additional loop to that of themore » MPPT loop. To improve the contribution of the scheme toward maintaining the frequency while ensuring the stable operation of WTGs, in the low rotor speed region, the ratio is set to be proportional to the rotor speed; in the high rotor speed region, the ratio remains constant. The performance of the proposed scheme is investigated under varying wind conditions for the IEEE 14-bus system. The simulation results demonstrate that the scheme successfully operates regardless of the output power fluctuation of a WTG by adjusting the gain with the rotor speed, and thereby improves the frequency-regulating capability of a WTG.« less
NASA Astrophysics Data System (ADS)
Nikolai Aljuri, A.; Bursac, Nenad; Marini, Robert; Cohen, Richard J.
2001-08-01
Prolonged exposure to microgravity in space flight missions (days) impairs the mechanisms responsible for defense of arterial blood pressure (ABP) and cardiac output (CO) against orthostatic stress in the post-flight period. The mechanisms responsible for the observed orthostatic intolerance are not yet completely understood. Additionally, effective counter measures to attenuate this pathophysiological response are not available. The aim of this study was to investigate the ability of our proposed system identification method to predict closed-loop dynamic changes in TPR induced by changes in mean arterial pressure (MAP) and right atrial pressure (RAP). For this purpose we designed and employed a novel experimental animal model for the examination of arterial and cardiopulmonary baroreceptors in the dynamic closed-loop control of total peripheral resistance (TPR), and applied system identification to the analysis of beat-to-beat fluctuations in the measured signals.
NASA Technical Reports Server (NTRS)
Zipf, Mark E.
1989-01-01
An overview is presented of research work focussed on the design and insertion of classical models of human pilot dynamics within the flight control loops of V/STOL aircraft. The pilots were designed and configured for use in integrated control system research and design. The models of human behavior that were considered are: McRuer-Krendel (a single variable transfer function model); and Optimal Control Model (a multi-variable approach based on optimal control and stochastic estimation theory). These models attempt to predict human control response characteristics when confronted with compensatory tracking and state regulation tasks. An overview, mathematical description, and discussion of predictive limitations of the pilot models is presented. Design strategies and closed loop insertion configurations are introduced and considered for various flight control scenarios. Models of aircraft dynamics (both transfer function and state space based) are developed and discussed for their use in pilot design and application. Pilot design and insertion are illustrated for various flight control objectives. Results of pilot insertion within the control loops of two V/STOL research aricraft (Sikorski Black Hawk UH-60A, McDonnell Douglas Harrier II AV-8B) are presented and compared against actual pilot flight data. Conclusions are reached on the ability of the pilot models to adequately predict human behavior when confronted with similar control objectives.
A fuzzy control design case: The fuzzy PLL
NASA Technical Reports Server (NTRS)
Teodorescu, H. N.; Bogdan, I.
1992-01-01
The aim of this paper is to present a typical fuzzy control design case. The analyzed controlled systems are the phase-locked loops (PLL's)--classic systems realized in both analogic and digital technology. The crisp PLL devices are well known.
The Inverse Optimal Control Problem for a Three-Loop Missile Autopilot
NASA Astrophysics Data System (ADS)
Hwang, Donghyeok; Tahk, Min-Jea
2018-04-01
The performance characteristics of the autopilot must have a fast response to intercept a maneuvering target and reasonable robustness for system stability under the effect of un-modeled dynamics and noise. By the conventional approach, the three-loop autopilot design is handled by time constant, damping factor and open-loop crossover frequency to achieve the desired performance requirements. Note that the general optimal theory can be also used to obtain the same gain as obtained from the conventional approach. The key idea of using optimal control technique for feedback gain design revolves around appropriate selection and interpretation of the performance index for which the control is optimal. This paper derives an explicit expression, which relates the weight parameters appearing in the quadratic performance index to the design parameters such as open-loop crossover frequency, phase margin, damping factor, or time constant, etc. Since all set of selection of design parameters do not guarantee existence of optimal control law, explicit inequalities, which are named the optimality criteria for the three-loop autopilot (OC3L), are derived to find out all set of design parameters for which the control law is optimal. Finally, based on OC3L, an efficient gain selection procedure is developed, where time constant is set to design objective and open-loop crossover frequency and phase margin as design constraints. The effectiveness of the proposed technique is illustrated through numerical simulations.
Latest developments on the loop control system of AdOpt@TNG
NASA Astrophysics Data System (ADS)
Ghedina, Adriano; Gaessler, Wolfgang; Cecconi, Massimo; Ragazzoni, Roberto; Puglisi, Alfio T.; De Bonis, Fulvio
2004-10-01
The Adaptive Optics System of the Galileo Telescope (AdOpt@TNG) is the only adaptive optics system mounted on a telescope which uses a pyramid wavefront snesor and it has already shown on sky its potentiality. Recently AdOpt@TNG has undergone deep changes at the level of its higher orders control system. The CCD and the Real Time Computer (RTC) have been substituted as a whole. Instead of the VME based RTC, due to its frequent breakdowns, a dual pentium processor PC with Real-Time-Linux has been chosen. The WFS CCD, that feeds the images to the RTC, was changed to an off-the-shelf camera system from SciMeasure with an EEV39 80x80 pixels as detector. While the APD based Tip/Tilt loop has shown the quality on the sky at the TNG site and the ability of TNG to take advantage of this quality, up to the diffraction limit, the High-Order system has been fully re-developed and the performance of the closed loop is under evaluation to offer the system with the best performance to the astronomical community.
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1984-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1985-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
Entry flight control system downmoding evaluation
NASA Technical Reports Server (NTRS)
Barnes, H. A.
1978-01-01
A method to desensitize the entry flight control system to structural vibration feedback which might induce an oscillatory instability is described. Trends in vehicle response and handling characteristics as a function of gain combinations in the FCS forward and rate feedback loops were described as observed in a man-in-the-loop simulation. Among the flight conditions considered are the effects of downmoding with APU failures, off-nominal trajectory conditions, sensed angle of attack errors, the impact on RCS fuel consumption, performance in the presence of aero variations, recovery from large FCS upsets, and default gains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hessell, Steven M.; Morris, Robert L.; McGrogan, Sean W.
A powertrain including an engine and torque machines is configured to transfer torque through a multi-mode transmission to an output member. A method for controlling the powertrain includes employing a closed-loop speed control system to control torque commands for the torque machines in response to a desired input speed. Upon approaching a power limit of a power storage device transferring power to the torque machines, power limited torque commands are determined for the torque machines in response to the power limit and the closed-loop speed control system is employed to determine an engine torque command in response to the desiredmore » input speed and the power limited torque commands for the torque machines.« less
A tutorial on the LQG/LTR method. [Linear Quadratic Gaussian/Loop Transfer Recovery
NASA Technical Reports Server (NTRS)
Athans, M.
1986-01-01
In this paper the so-called Linear-Quadratic-Gaussian method with Loop-Transfer-Recovery is surveyed. The objective is to provide a pragmatic exposition, with special emphasis on the step-by-step characteristics for designing multivariable feedback control systems.
A loop-based neural architecture for structured behavior encoding and decoding.
Gisiger, Thomas; Boukadoum, Mounir
2018-02-01
We present a new type of artificial neural network that generalizes on anatomical and dynamical aspects of the mammal brain. Its main novelty lies in its topological structure which is built as an array of interacting elementary motifs shaped like loops. These loops come in various types and can implement functions such as gating, inhibitory or executive control, or encoding of task elements to name a few. Each loop features two sets of neurons and a control region, linked together by non-recurrent projections. The two neural sets do the bulk of the loop's computations while the control unit specifies the timing and the conditions under which the computations implemented by the loop are to be performed. By functionally linking many such loops together, a neural network is obtained that may perform complex cognitive computations. To demonstrate the potential offered by such a system, we present two neural network simulations. The first illustrates the structure and dynamics of a single loop implementing a simple gating mechanism. The second simulation shows how connecting four loops in series can produce neural activity patterns that are sufficient to pass a simplified delayed-response task. We also show that this network reproduces electrophysiological measurements gathered in various regions of the brain of monkeys performing similar tasks. We also demonstrate connections between this type of neural network and recurrent or long short-term memory network models, and suggest ways to generalize them for future artificial intelligence research. Copyright © 2017 Elsevier Ltd. All rights reserved.
Robust guaranteed cost tracking control of quadrotor UAV with uncertainties.
Xu, Zhiwei; Nian, Xiaohong; Wang, Haibo; Chen, Yinsheng
2017-07-01
In this paper, a robust guaranteed cost controller (RGCC) is proposed for quadrotor UAV system with uncertainties to address set-point tracking problem. A sufficient condition of the existence for RGCC is derived by Lyapunov stability theorem. The designed RGCC not only guarantees the whole closed-loop system asymptotically stable but also makes the quadratic performance level built for the closed-loop system have an upper bound irrespective to all admissible parameter uncertainties. Then, an optimal robust guaranteed cost controller is developed to minimize the upper bound of performance level. Simulation results verify the presented control algorithms possess small overshoot and short setting time, with which the quadrotor has ability to perform set-point tracking task well. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Closed-loop, pilot/vehicle analysis of the approach and landing task
NASA Technical Reports Server (NTRS)
Anderson, M. R.; Schmidt, D. K.
1986-01-01
In the case of approach and landing, it is universally accepted that the pilot uses more than one vehicle response, or output, to close his control loops. Therefore, to model this task, a multi-loop analysis technique is required. The analysis problem has been in obtaining reasonable analytic estimates of the describing functions representing the pilot's loop compensation. Once these pilot describing functions are obtained, appropriate performance and workload metrics must then be developed for the landing task. The optimal control approach provides a powerful technique for obtaining the necessary describing functions, once the appropriate task objective is defined in terms of a quadratic objective function. An approach is presented through the use of a simple, reasonable objective function and model-based metrics to evaluate loop performance and pilot workload. The results of an analysis of the LAHOS (Landing and Approach of Higher Order Systems) study performed by R.E. Smith is also presented.
Discovery Channel Telescope active optics system early integration and test
NASA Astrophysics Data System (ADS)
Venetiou, Alexander J.; Bida, Thomas A.
2012-09-01
The Discovery Channel Telescope (DCT) is a 4.3-meter telescope with a thin meniscus primary mirror (M1) and a honeycomb secondary mirror (M2). The optical design is an f/6.1 Ritchey-Chrétien (RC) with an unvignetted 0.5° Field of View (FoV) at the Cassegrain focus. We describe the design, implementation and performance of the DCT active optics system (AOS). The DCT AOS maintains collimation and controls the figure of the mirror to provide seeing-limited images across the focal plane. To minimize observing overhead, rapid settling times are achieved using a combination of feed-forward and low-bandwidth feedback control using a wavefront sensing system. In 2011, we mounted a Shack-Hartmann wavefront sensor at the prime focus of M1, the Prime Focus Test Assembly (PFTA), to test the AOS with the wavefront sensor, and the feedback loop. The incoming wavefront is decomposed using Zernike polynomials, and the mirror figure is corrected with a set of bending modes. Components of the system that we tested and tuned included the Zernike to Bending Mode transformations. We also started open-loop feed-forward coefficients determination. In early 2012, the PFTA was replaced by M2, and the wavefront sensor moved to its normal location on the Cassegrain instrument assembly. We present early open loop wavefront test results with the full optical system and instrument cube, along with refinements to the overall control loop operating at RC Cassegrain focus.
Multivariable Techniques for High-Speed Research Flight Control Systems
NASA Technical Reports Server (NTRS)
Newman, Brett A.
1999-01-01
This report describes the activities and findings conducted under contract with NASA Langley Research Center. Subject matter is the investigation of suitable multivariable flight control design methodologies and solutions for large, flexible high-speed vehicles. Specifically, methodologies are to address the inner control loops used for stabilization and augmentation of a highly coupled airframe system possibly involving rigid-body motion, structural vibrations, unsteady aerodynamics, and actuator dynamics. Design and analysis techniques considered in this body of work are both conventional-based and contemporary-based, and the vehicle of interest is the High-Speed Civil Transport (HSCT). Major findings include: (1) control architectures based on aft tail only are not well suited for highly flexible, high-speed vehicles, (2) theoretical underpinnings of the Wykes structural mode control logic is based on several assumptions concerning vehicle dynamic characteristics, and if not satisfied, the control logic can break down leading to mode destabilization, (3) two-loop control architectures that utilize small forward vanes with the aft tail provide highly attractive and feasible solutions to the longitudinal axis control challenges, and (4) closed-loop simulation sizing analyses indicate the baseline vane model utilized in this report is most likely oversized for normal loading conditions.
? PID output-feedback control under event-triggered protocol
NASA Astrophysics Data System (ADS)
Zhao, Di; Wang, Zidong; Ding, Derui; Wei, Guoliang; Alsaadi, Fuad E.
2018-07-01
This paper is concerned with the ? proportional-integral-derivative (PID) output-feedback control problem for a class of linear discrete-time systems under event-triggered protocols. The controller and the actuators are connected through a communication network of limited bandwidth, and an event-triggered communication mechanism is adopted to decide when a certain control signal should be transmitted to the respective actuator. Furthermore, a novel PID output-feedback controller is designed where the accumulative sum-loop (the counterpart to the integral-loop in the continues-time setting) operates on a limited time-window with hope to mitigate the effect from the past measurement data. The main objective of the problem under consideration is to design a desired PID controller such that the closed-loop system is exponentially stable and the prescribed ? disturbance rejection attenuation level is guaranteed under event-triggered protocols. By means of the Lyapunov stability theory combined with the orthogonal decomposition, sufficient conditions are established under which the addressed PID controller design problem is recast into a linear convex optimization one that can be easily solved via available software packages. Finally, a simulation example is exploited to illustrate the usefulness and effectiveness of the established control scheme.
Loop shaping design for tracking performance in machine axes.
Schinstock, Dale E; Wei, Zhouhong; Yang, Tao
2006-01-01
A modern interpretation of classical loop shaping control design methods is presented in the context of tracking control for linear motor stages. Target applications include noncontacting machines such as laser cutters and markers, water jet cutters, and adhesive applicators. The methods are directly applicable to the common PID controller and are pertinent to many electromechanical servo actuators other than linear motors. In addition to explicit design techniques a PID tuning algorithm stressing the importance of tracking is described. While the theory behind these techniques is not new, the analysis of their application to modern systems is unique in the research literature. The techniques and results should be important to control practitioners optimizing PID controller designs for tracking and in comparing results from classical designs to modern techniques. The methods stress high-gain controller design and interpret what this means for PID. Nothing in the methods presented precludes the addition of feedforward control methods for added improvements in tracking. Laboratory results from a linear motor stage demonstrate that with large open-loop gain very good tracking performance can be achieved. The resultant tracking errors compare very favorably to results from similar motions on similar systems that utilize much more complicated controllers.
Herrero, Pau; Bondia, Jorge; Adewuyi, Oloruntoba; Pesl, Peter; El-Sharkawy, Mohamed; Reddy, Monika; Toumazou, Chris; Oliver, Nick; Georgiou, Pantelis
2017-07-01
Current prototypes of closed-loop systems for glucose control in type 1 diabetes mellitus, also referred to as artificial pancreas systems, require a pre-meal insulin bolus to compensate for delays in subcutaneous insulin absorption in order to avoid initial post-prandial hyperglycemia. Computing such a meal bolus is a challenging task due to the high intra-subject variability of insulin requirements. Most closed-loop systems compute this pre-meal insulin dose by a standard bolus calculation, as is commonly found in insulin pumps. However, the performance of these calculators is limited due to a lack of adaptiveness in front of dynamic changes in insulin requirements. Despite some initial attempts to include adaptation within these calculators, challenges remain. In this paper we present a new technique to automatically adapt the meal-priming bolus within an artificial pancreas. The technique consists of using a novel adaptive bolus calculator based on Case-Based Reasoning and Run-To-Run control, within a closed-loop controller. Coordination between the adaptive bolus calculator and the controller was required to achieve the desired performance. For testing purposes, the clinically validated Imperial College Artificial Pancreas controller was employed. The proposed system was evaluated against itself but without bolus adaptation. The UVa-Padova T1DM v3.2 system was used to carry out a three-month in silico study on 11 adult and 11 adolescent virtual subjects taking into account inter-and intra-subject variability of insulin requirements and uncertainty on carbohydrate intake. Overall, the closed-loop controller enhanced by an adaptive bolus calculator improves glycemic control when compared to its non-adaptive counterpart. In particular, the following statistically significant improvements were found (non-adaptive vs. adaptive). Adults: mean glucose 142.2 ± 9.4vs. 131.8 ± 4.2mg/dl; percentage time in target [70, 180]mg/dl, 82.0 ± 7.0vs. 89.5 ± 4.2; percentage time above target 17.7 ± 7.0vs. 10.2 ± 4.1. Adolescents: mean glucose 158.2 ± 21.4vs. 140.5 ± 13.0mg/dl; percentage time in target, 65.9 ± 12.9vs. 77.5 ± 12.2; percentage time above target, 31.7 ± 13.1vs. 19.8 ± 10.2. Note that no increase in percentage time in hypoglycemia was observed. Using an adaptive meal bolus calculator within a closed-loop control system has the potential to improve glycemic control in type 1 diabetes when compared to its non-adaptive counterpart. Copyright © 2017 Elsevier B.V. All rights reserved.
Closed-loop helium circulation system for actuation of a continuously operating heart catheter pump.
Karabegovic, Alen; Hinteregger, Markus; Janeczek, Christoph; Mohl, Werner; Gföhler, Margit
2017-06-09
Currently available, pneumatic-based medical devices are operated using closed-loop pulsatile or open continuous systems. Medical devices utilizing gases with a low atomic number in a continuous closed loop stream have not been documented to date. This work presents the construction of a portable helium circulation addressing the need for actuating a novel, pneumatically operated catheter pump. The design of its control system puts emphasis on the performance, safety and low running cost of the catheter pump. Static and dynamic characteristics of individual elements in the circulation are analyzed to ensure a proper operation of the system. The pneumatic circulation maximizes the working range of the drive unit inside the catheter pump while reducing the total size and noise production.Separate flow and pressure controllers position the turbine's working point into the stable region of the pressure creation element. A subsystem for rapid gas evacuation significantly decreases the duration of helium removal after a leak, reaching subatmospheric pressure in the intracorporeal catheter within several milliseconds. The system presented in the study offers an easy control of helium mass flow while ensuring stable behavior of its internal components.
Open-Loop Flight Testing of COBALT GN&C Technologies for Precise Soft Landing
NASA Technical Reports Server (NTRS)
Carson, John M., III; Amzajerdian, Farzin; Seubert, Carl R.; Restrepo, Carolina I.
2017-01-01
A terrestrial, open-loop (OL) flight test campaign of the NASA COBALT (CoOperative Blending of Autonomous Landing Technologies) platform was conducted onboard the Masten Xodiac suborbital rocket testbed, with support through the NASA Advanced Exploration Systems (AES), Game Changing Development (GCD), and Flight Opportunities (FO) Programs. The COBALT platform integrates NASA Guidance, Navigation and Control (GN&C) sensing technologies for autonomous, precise soft landing, including the Navigation Doppler Lidar (NDL) velocity and range sensor and the Lander Vision System (LVS) Terrain Relative Navigation (TRN) system. A specialized navigation filter running onboard COBALT fuzes the NDL and LVS data in real time to produce a precise navigation solution that is independent of the Global Positioning System (GPS) and suitable for future, autonomous planetary landing systems. The OL campaign tested COBALT as a passive payload, with COBALT data collection and filter execution, but with the Xodiac vehicle Guidance and Control (G&C) loops closed on a Masten GPS-based navigation solution. The OL test was performed as a risk reduction activity in preparation for an upcoming 2017 closed-loop (CL) flight campaign in which Xodiac G&C will act on the COBALT navigation solution and the GPS-based navigation will serve only as a backup monitor.
Ariane 5 and Ariane 5 Evolution GN&C Overview
NASA Astrophysics Data System (ADS)
Pignié, G.
The objective of the paper is to give an overview of the Guidance Navigation and Control (GN&C) principles used for the Ariane 5 Launchers Family, developed for the European Space Agency. The development of the GN&C system, for the Ariane 5 Launcher, within EADS Launch Vehicle Company (formerly "Aérospatiale Space and Strategic Systems Division", and "Aérospatiale - Matra lanceurs"), and under supervision of CNES (French National Space Agency, acting as the prime contractor for Ariane Family) took a wide benefit from the existing, and flight validated methods used for the Ariane 4 Launcher, but a significant amount of new features were added, concerning the control loop, the guidance loop - where a fully adaptive guidance algorithm for exo- atmospheric flight was chosen - and the Failure Detection, Isolation, and Recovery (FIR) management for the sensors. In the paper, we shall describe first the Ariane 5 original version GN&C (for the so-called Ariane 5 Generic launcher), but the improvements designed for the upgraded Ariane 5 Evolution, with a cryogenic third stage, will be also addressed. The first part shall be dedicated to a review of the main constraints and requirements on the GN&C system. In the second part of the paper we shall present the main features of the architecture of the GN&C system, starting from the navigation and control sensors, through the on board computer and software, and going finally to the stages Thrust Vectoring Control (TVC) subsystems, used to control the launcher during the propelled phase, as well as to the attitude control subsystem (ACS), used to control the post boost manoeuvres, and payload injection and jettisoning conditions . The main principles of the subsystems and equipment's redundancy will be also briefly addressed. In the third part, an overall description of the different algorithms, implemented for Navigation, Guidance, Control, and sensors Failure Detection, Isolation, and Recovery (FIR), for atmospheric flight, propelled exo- atmospheric flight and post boost manoeuvres, will be performed. The fourth part of the paper will be dedicated to the assessment of the main performances of the GN&C system. In the last part the main differences between Ariane 5 and Ariane 5 Evolution, with a cryogenic third stage, having a large impact on the GN&C system or the GN&C behaviour will be presented, as well as the improvements on the GN&C algorithms, proposed to cope with theses evolutions. The reasons for changing will be described, and the stress will be put on the most significant evolution for the GN&C systems, which is the replacement of the former Linear Quadratic Gaussian (LQG) based control loop, for the atmospheric flight phase, by a new control loop, based on a robust control approach, through an H infinity design. We believe that this robust control approach, which received, from the middle of the eighties, a very wide attention from the automatic control scientific community (with the issue of a very large set of scientific papers), is particularly well suited to cope with the control of a flexible launcher. It is actually the case for our launcher, because we have bending modes that may have a low frequency, with respect to the dynamic of the rigid body (which is unstable in open loop), and a high excitability, by the control loop. Such a situation may yield potentially unacceptable coupling effects, or poor low frequency performances, if the control design and tuning are not very accurately optimised, with respect to the trade-off between the low frequency performances (such as general loads reduction, tracking of the attitude set-point, ...) and the attenuation, in close loop, of the bending modes, and fuel sloshing modes.
Research on starlight hardware-in-the-loop simulator
NASA Astrophysics Data System (ADS)
Zhang, Ying; Gao, Yang; Qu, Huiyang; Liu, Dongfang; Du, Huijie; Lei, Jie
2016-10-01
The starlight navigation is considered to be one of the most important methods for spacecraft navigation. Starlight simulation system is a high-precision system with large fields of view, designed to test the starlight navigation sensor performance on the ground. A complete hardware-in-the-loop simulation of the system has been built. The starlight simulator is made up of light source, light source controller, light filter, LCD, collimator and control computer. LCD is the key display component of the system, and is installed at the focal point of the collimator. For the LCD cannot emit light itself, so light source and light source power controller is specially designed for the brightness demanded by the LCD. Light filter is designed for the dark background which is also needed in the simulation.
Evaluating Multi-Input/Multi-Output Digital Control Systems
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.; Wieseman, Carol D.; Hoadley, Sherwood T.; Mukhopadhyay, Vivek
1994-01-01
Controller-performance-evaluation (CPE) methodology for multi-input/multi-output (MIMO) digital control systems developed. Procedures identify potentially destabilizing controllers and confirm satisfactory performance of stabilizing ones. Methodology generic and used in many types of multi-loop digital-controller applications, including digital flight-control systems, digitally controlled spacecraft structures, and actively controlled wind-tunnel models. Also applicable to other complex, highly dynamic digital controllers, such as those in high-performance robot systems.
New control strategies for neuroprosthetic systems.
Crago, P E; Lan, N; Veltink, P H; Abbas, J J; Kantor, C
1996-04-01
The availability of techniques to artificially excite paralyzed muscles opens enormous potential for restoring both upper and lower extremity movements with neuroprostheses. Neuroprostheses must stimulate muscle, and control and regulate the artificial movements produced. Control methods to accomplish these tasks include feedforward (open-loop), feedback, and adaptive control. Feedforward control requires a great deal of information about the biomechanical behavior of the limb. For the upper extremity, an artificial motor program was developed to provide such movement program input to a neuroprosthesis. In lower extremity control, one group achieved their best results by attempting to meet naturally perceived gait objectives rather than to follow an exact joint angle trajectory. Adaptive feedforward control, as implemented in the cycle-to-cycle controller, gave good compensation for the gradual decrease in performance observed with open-loop control. A neural network controller was able to control its system to customize stimulation parameters in order to generate a desired output trajectory in a given individual and to maintain tracking performance in the presence of muscle fatigue. The authors believe that practical FNS control systems must exhibit many of these features of neurophysiological systems.
NASA Technical Reports Server (NTRS)
Siwakosit, W.; Hess, R. A.; Bacon, Bart (Technical Monitor); Burken, John (Technical Monitor)
2000-01-01
A multi-input, multi-output reconfigurable flight control system design utilizing a robust controller and an adaptive filter is presented. The robust control design consists of a reduced-order, linear dynamic inversion controller with an outer-loop compensation matrix derived from Quantitative Feedback Theory (QFT). A principle feature of the scheme is placement of the adaptive filter in series with the QFT compensator thus exploiting the inherent robustness of the nominal flight control system in the presence of plant uncertainties. An example of the scheme is presented in a pilot-in-the-loop computer simulation using a simplified model of the lateral-directional dynamics of the NASA F18 High Angle of Attack Research Vehicle (HARV) that included nonlinear anti-wind up logic and actuator limitations. Prediction of handling qualities and pilot-induced oscillation tendencies in the presence of these nonlinearities is included in the example.